Science.gov

Sample records for pichia pastoris purification

  1. Expression and purification of mammalian calreticulin in Pichia pastoris.

    PubMed

    Andrin, C; Corbett, E F; Johnson, S; Dabrowska, M; Campbell, I D; Eggleton, P; Opas, M; Michalak, M

    2000-11-01

    Calreticulin is a 46-kDa Ca(2+)-binding chaperone of the endoplasmic reticulum membranes. The protein binds Ca(2+) with high capacity, affects intracellular Ca(2+) homeostasis, and functions as a lectin-like chaperone. In this study, we describe expression and purification procedures for the isolation of recombinant rabbit calreticulin. The calreticulin was expressed in Pichia pastoris and purified to homogeneity by DEAE-Sepharose and Resource Q FPLC chromatography. The protein was not retained in the endoplasmic reticulum of Pichia pastoris but instead it was secreted into the external media. The purification procedures reported here for recombinant calreticulin yield homogeneous preparations of the protein by SDS-PAGE and mass spectroscopy analysis. Purified calreticulin was identified by its NH(2)-terminal amino acid sequences, by its Ca(2+) binding, and by its reactivity with anti-calreticulin antibodies. The protein contained one disulfide bond between (88)Cys and (120)Cys. CD spectral analysis and Ca(2+)-binding properties of the recombinant protein indicated that it was correctly folded. PMID:11049745

  2. Expression and purification of soluble porcine cystatin 11 in Pichia pastoris.

    PubMed

    Fan, Kuohai; Jiang, Junbing; Wang, Zhirui; Fan, Ruicheng; Yin, Wei; Sun, Yaogui; Li, Hongquan

    2014-11-01

    Cystatin 11 (CST11) belongs to the cystatin type 2 family of cysteine protease inhibitors and exhibits antimicrobial activity in vitro. In this study, we describe the expression and purification of recombinant porcine CST11 in the Pichia pastoris system. We then assess its antimicrobial activity against Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, and Bacillus subtilis by liquid growth inhibition assay. Kinetic studies indicate that the recombinant porcine CST11 has high potency against E. coli and S. aureus. Scanning electronic microscope analysis showed that CST11 might be targeting the bacterial membrane and, thus, could potentially be developed as a therapeutic agent for inhibiting microbe infection without the risk of antibiotic resistance. PMID:25161037

  3. Functional expression, purification, and characterization of human Flt3 ligand in the Pichia pastoris system.

    PubMed

    Zhang, Yan-Li; Chen, Song-Sen; Yang, Ke-Gong; Su, Lin; Deng, Yan-Chun; Liu, Chang-Zheng

    2005-08-01

    Flt3 ligand (FL) is a potent hematopoietic cytokine that affects the growth and differentiation of hematopoietic progenitor and stem cells both in vivo and in vitro. Pichia pastoris transformants secreting high-level rhFL were obtained using 'yeastern blotting' method and the expression level in liquid was about 30 mg/L. rhFL was purified to about 95% purity with overnight dialysis, filtration and an anion-exchange step. Further purification steps employing Sephacryl S-200 and reverse-phase HPLC raised the purity to over 99%. The purified rhFL possessed correct N-terminal amino acid sequence and positive Western blotting bands. SDS-PAGE and mass spectrometry analysis showed molecular weight of rhFL was about 21 and 34 kDa, suggesting that rhFL was glycosylated. The result of capillary electrophoresis showed that its pI is 3.12-4.72. Endo H deglycosylation analysis indicated that there was O-glycosylation besides N-glycosylation in rhFL secreted from P. pastoris. Bioactivity assay showed that the purified rhFL had dose-dependent expansion activity on bone marrow nucleated cells. PMID:15914030

  4. Codon optimization, expression, purification, and functional characterization of recombinant human IL-25 in Pichia pastoris.

    PubMed

    Liu, Yushan; Wu, Chengsheng; Wang, Jinyu; Mo, Wei; Yu, Min

    2013-12-01

    Interleukin (IL)-25 (also known as IL-17E) is a distinct member of the IL-17 cytokine family which induces IL-4, IL-5, and IL-13 expression and promotes pathogenic T helper (Th)-2 cell responses in various organs. IL-25 has been shown to have crucial role between innate and adaptive immunity and also a key component of the protection of gastrointestinal helminthes. In this study, to produce bioactive recombinant human IL-25 (rhIL-25), the cDNA of mature IL-25 was performed codon optimization based on methylotropic yeast Pichia pastoris codon bias and cloned into the expression vector pPICZαA. The recombinant vector was transformed into P. pichia strain X-33 and selected by zeocin resistance. Benchtop fermentation and simple purification strategy were established to purify the rhIL-25 with about 17 kDa molecular mass. Functional analysis showed that purified rhIL-25 specifically bond to receptor IL-17BR and induce G-CSF production in vitro. Further annexin V-FITC/PI staining assay indicated that rhIL-25 induced apoptosis in two breast cancer cells, MDA-MB-231 and HBL-100. This study provides a new strategy for the large-scale production of bioactive IL-25 for biological and therapeutic applications. PMID:24100683

  5. Expression of Cellobiose Dehydrogenase from Neurospora crassa in Pichia pastoris and its purification and characterization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A gene encoding cellobiose dehydrogenase (CDH) from Neurospora crassa strain FGSC 2489 has been cloned and expressed in the heterologous host Pichia pastoris, under the control of the AOX1 methanol inducible promoter. Recombinant CDH without the native signal sequence and fused with a his6-tag (rNC-...

  6. Expression and Purification of C-Peptide Containing Insulin Using Pichia pastoris Expression System

    PubMed Central

    Baeshen, Mohammed N.; Bouback, Thamer A. F.; Alzubaidi, Mubarak A.; Alabbas, Omar T. O.; Alshahrani, Sultan M.; Aljohani, Ahmed A. M.; Munshi, Rayan A. A.; Al-Hejin, Ahmed; Redwan, Elrashdy M.; Ramadan, Hassan A. I.; Saini, Kulvinder S.; Baeshen, Nabih A.

    2016-01-01

    Increase in the incidence of Insulin Dependent Diabetes Mellitus (IDDM) among people from developed and developing countries has created a large global market for insulin. Moreover, exploration of new methods for insulin delivery including oral or inhalation route which require very high doses would further increase the demand of cost-effective recombinant insulin. Various bacterial and yeast strains have been optimized to overproduce important biopharmaceuticals. One of the approaches we have taken is the production of recombinant human insulin along with C-peptide in yeast Pichia pastoris. We procured a cDNA clone of insulin from Origene Inc., USA. Insulin cDNA was PCR amplified and cloned into yeast vector pPICZ-α. Cloned insulin cDNA was confirmed by restriction analysis and DNA sequencing. pPICZ-α-insulin clone was transformed into Pichia pastoris SuperMan5 strain. Several Zeocin resistant clones were obtained and integration of insulin cDNA in Pichia genome was confirmed by PCR using insulin specific primers. Expression of insulin in Pichia clones was confirmed by ELISA, SDS-PAGE, and Western blot analysis. In vivo efficacy studies in streptozotocin induced diabetic mice confirmed the activity of recombinant insulin. In conclusion, a biologically active human proinsulin along with C-peptide was expressed at high level using Pichia pastoris expression system. PMID:27579308

  7. Expression and Purification of C-Peptide Containing Insulin Using Pichia pastoris Expression System.

    PubMed

    Baeshen, Mohammed N; Bouback, Thamer A F; Alzubaidi, Mubarak A; Bora, Roop S; Alotaibi, Mohammed A T; Alabbas, Omar T O; Alshahrani, Sultan M; Aljohani, Ahmed A M; Munshi, Rayan A A; Al-Hejin, Ahmed; Ahmed, Mohamed M M; Redwan, Elrashdy M; Ramadan, Hassan A I; Saini, Kulvinder S; Baeshen, Nabih A

    2016-01-01

    Increase in the incidence of Insulin Dependent Diabetes Mellitus (IDDM) among people from developed and developing countries has created a large global market for insulin. Moreover, exploration of new methods for insulin delivery including oral or inhalation route which require very high doses would further increase the demand of cost-effective recombinant insulin. Various bacterial and yeast strains have been optimized to overproduce important biopharmaceuticals. One of the approaches we have taken is the production of recombinant human insulin along with C-peptide in yeast Pichia pastoris. We procured a cDNA clone of insulin from Origene Inc., USA. Insulin cDNA was PCR amplified and cloned into yeast vector pPICZ-α. Cloned insulin cDNA was confirmed by restriction analysis and DNA sequencing. pPICZ-α-insulin clone was transformed into Pichia pastoris SuperMan 5 strain. Several Zeocin resistant clones were obtained and integration of insulin cDNA in Pichia genome was confirmed by PCR using insulin specific primers. Expression of insulin in Pichia clones was confirmed by ELISA, SDS-PAGE, and Western blot analysis. In vivo efficacy studies in streptozotocin induced diabetic mice confirmed the activity of recombinant insulin. In conclusion, a biologically active human proinsulin along with C-peptide was expressed at high level using Pichia pastoris expression system. PMID:27579308

  8. Expression and Purification of Recombinant Human Apolipoprotein A-II in Pichia pastoris

    PubMed Central

    Su, Manman; Qi, Yitian; Wang, Mingxing; Chang, Weiqin; Peng, Shuang; Wang, Dingding

    2013-01-01

    Abstract Apolipoprotein A-II (ApoA-II) is the second most abundant protein constituent of high-density lipoprotein (HDL). The physiologic role of ApoA-II is poorly defined. ApoA-II may inhibit lecithin:cholesterol acyltransferase and cholesteryl-ester-transfer protein activities, but may increase the hepatic lipase activity. ApoA-II may also inhibit the hepatic cholesteryl uptake from HDL probably through the scavenger receptor class B type I depending pathway. Interpretation of data from transgenic and knockout mice of genes involved in lipoprotein metabolism has been often complicated as clinical implications because of species difference. So it is important to obtain human ApoA-II for further studies about its functions. In our studies, Pichia pastoris expression system was first used to express a high-level secreted recombinant human ApoA-II (rhApoA-II). We have cloned the cDNA encoding human ApoA-II and achieved its high-level secreting expression with a yield of 65 mg/L of yeast culture and the purification process was effective and easy to handle. The purified rhApoA-II can be used to further study its biological activities. PMID:24116940

  9. Comparison of the purification of biologically active IL-7 cytokine expressed in Escherichia coli and Pichia pastoris.

    PubMed

    Zaremba-Czogalla, Magdalena; Stumpp, Christian; Bonifacio, Ezio; Paul, Ralf

    2015-06-01

    The large scale screening of cytokine mutants is a component of binding and activity mapping and requires an efficient method of cytokine protein expression. Here, we compared recombinant IL-7 expression with and purification from Escherichia coli and Pichia pastoris. The IL-7 cytokine contains three disulfide bonds that are essential for its biological activity, and which are formed upon secretion through P. pastoris, but not in the reducing cytoplasm of E. coli. In contrast to a previous report we found that P. pastoris secretes active but N-linked hyperglycosylated IL-7. Enzymatic deglycosylation was incompatible with activity measurements in a cell based assay. E. coli expressed IL-7 was refolded from solubilized inclusion bodies. A chromatographic purification step between inclusion body solubilization and refolding increased the yield of biologically active monomeric IL-7, and decreased the amount of inactive soluble aggregates. Cation exchange chromatography of untagged IL-7, and IMAC of His-tagged IL-7 improved refolding yields to a similar extend, indicating that the removal of contaminating components in the solubilized inclusion bodies improves refolding efficiency. We conclude that a chromatographic purification step of IL-7 solubilized from E. coli inclusion bodies increases refolding yield, and may be a suitable general rescue strategy for obtaining folded and biologically active proteins from inclusion bodies. PMID:25703052

  10. Expression, purification and characterization of the recombinant cysteine-rich antimicrobial peptide snakin-1 in Pichia pastoris.

    PubMed

    Kuddus, Md Ruhul; Rumi, Farhana; Tsutsumi, Motosuke; Takahashi, Rika; Yamano, Megumi; Kamiya, Masakatsu; Kikukawa, Takashi; Demura, Makoto; Aizawa, Tomoyasu

    2016-06-01

    Snakin-1 (SN-1) is a small cysteine-rich plant antimicrobial peptide with broad spectrum antimicrobial activity which was isolated from potato (Solanum tuberosum). Here, we carried out the expression of a recombinant SN-1 in the methylotrophic yeast Pichia pastoris, along with its purification and characterization. A DNA fragment encoding the mature SN-1 was cloned into pPIC9 vector and introduced into P. pastoris. A large amount of pure recombinant SN-1 (approximately 40 mg/1L culture) was obtained from a fed-batch fermentation culture after purification with a cation exchange column followed by RP-HPLC. The identity of the recombinant SN-1 was verified by MALDI-TOF MS, CD and (1)H NMR experiments. All these data strongly indicated that the recombinant SN-1 peptide had a folding with six disulfide bonds that was identical to the native SN-1. Our findings showed that SN-1 exhibited strong antimicrobial activity against test microorganisms and produced very weak hemolysis of mammalian erythrocytes. The mechanism of its antimicrobial action against Escherichia coli was investigated by both outer membrane permeability assay and cytoplasmic membrane depolarization assay. These assays demonstrated that SN-1 is a membrane-active antimicrobial peptide which can disrupt both outer and cytoplasmic membrane integrity. This is the first report on the recombinant expression and purification of a fully active SN-1 in P. pastoris. PMID:26854372

  11. Expression, characterization, and purification of recombinant porcine lactoferrin in Pichia pastoris.

    PubMed

    Wang, Sue-Hong; Yang, Tien-Shuh; Lin, Shiang-Ming; Tsai, Ming-Shiun; Wu, Shinn-Chih; Mao, Simon J T

    2002-06-01

    Recombinant porcine lactoferrin (rPLF) was synthesized in Pichia pastoris using a constitutive promoter from the glyceraldehyde-3-phosphate dehydrogenase gene. Strains expressing rPLF with its own signal sequence or with that from the yeast alpha-mating factor (alpha-MF) were able to produce and secrete rPLF, but levels were consistently higher using alpha-MF constructs. In contrast, P. pastoris strains that expressed rPLF without a signal sequence produced the protein in an insoluble intracellular form. Increasing the initial pH of shake-flask culture medium from 6.0 to 7.0 or adding ferric ions to the medium (to 100 microM) resulted in significant improvements in expression of rPLF from P. pastoris. Expression levels (approximately 12 mg/L) were much higher than those observed from Saccharomyces cerevisiae strains (1-2 mg/L). P. pastoris-secreted rPLF was isolated and purified via a one-step simple procedure using a heparin column. The molecular size (78 kDa), isoelectric point (8.8-9.0), N-terminal amino acid sequence, and iron-binding capability of rPLF were each similar to that of native milk PLF. PMID:12071697

  12. Expression, purification and characterization of glycosylated influenza H5N1 hemagglutinin produced in Pichia pastoris.

    PubMed

    Kopera, Edyta; Dwornyk, Angela; Kosson, Piotr; Florys, Katarzyna; Sączyńska, Violetta; Dębski, Janusz; Cecuda-Adamczewska, Violetta; Szewczyk, Bogusław; Zagórski-Ostoja, Włodzimierz; Grzelak, Krystyna

    2014-01-01

    The A/swan/Poland/305-135V08/2006 (H5N1-subtype) hemagglutinin (HA) gene was cloned and expressed in yeast Pichia pastoris (P. pastoris). The HA cDNA lacking the C-terminal transmembrane anchor-coding sequence was fused to an α-factor leader peptide and placed under control of the methanol-inducible P. pastoris alcohol oxidase 1 (AOX1) promoter. Two P. pastoris strains: SMD 1168 and KM 71 were used for protein expression. Recombinant HA protein was secreted into the culture medium reaching an approximately 15 mg/L (KM 71 strain). Fusion protein with a His6 tag was purified to homogeneity in one step affinity chromatography. SDS-PAGE and MS/MS analysis indicated that the protein is cleaved into HA1 and HA2 domains linked by a disulfide bond. Analysis of the N-linked glycans revealed that the overexpressed HA is fully glycosylated at the same sites as the native HA in the vaccine strain. Immunological activity of the hemagglutinin protein was tested in mice, where rHA elicited a high immune response. PMID:25210934

  13. Expression, purification and characterization of human interferon-γ in Pichia pastoris.

    PubMed

    Wang, Dan; Ren, Hui; Xu, Jing-Wei; Sun, Peng-Da; Fang, Xue-Dong

    2014-02-01

    Human interferon-γ (hIFN-γ) is a multifunctional protein known to possess immunoregulatory, antiviral and anticancer functions. In the present study, in order to explore the biological roles of hIFN-γ and its mechanisms of action, IFN-γ was cloned and expressed in Pichia pastoris (P. pastoris) under the control of alcohol oxidase promoter 1 (AOX1). The protein was secreted by two different signal peptides, the native secretion signal peptide of hIFN-γ and the Saccharomyces cerevisiae α signal peptide. Following 96 h of methanol induction, Tricine-SDS-PAGE Coomassie staining, western blot analysis and N-terminal protein sequencing revealed that the level of recombinant hIFN-γ (rhIFN-γ) secreted by the native secretion signal was barely detectable, while the α signal peptide secreted ~300 mg/l. rhIFN-γ was purified by Vivaflow 200, SP Sepharose Fast Flow and Vivaspin 2 ml, yielding >96% of a highly purified rhIFN-γ preparation, with a specific activity of 1 x 10(7)-1.4 x 10(7) IU/mg protein as determined by an antiviral assay. The results demonstrated that the experimental procedures developed are capable of producing a large quantity of active rhIFN-γ from P. pastoris. PMID:24253448

  14. Intracellular expression and purification of the Canstatin-N protein in Pichia pastoris.

    PubMed

    Yin, Huixiang; Liu, Zhenwang; Zhang, Ailian; Zhang, Tianyuan; Luo, Jinxian; Shen, Jincheng; Chen, Liping; Zhou, Bing; Fu, Xian; Fu, Ceyi; Zhang, Zehua

    2012-08-01

    Canstatin-N DNA fragment amplified from human genome was inserted into the MCS of pGAP9K*, an intracellular expression vector of Pichia pastoris, to generate pGAP9K*-can-N which was then transformed into P. pastoris GS115 by electroporation. A transformant was chosen as an engineering strain from the plate containing G418 (700 μg/ml). D-sorbitol was selected as the only carbon source. The fermentation was carried out in a 50 L bioreactor at a 20 L working volume. After 48 h fermentation with continuous feeding of 25% (w/v) D-sorbitol and 0.8% PTM4, the cell grew to A(600)=178 and intracellularly expressed Canstatin-N reached 780 mg/L. Snail enzyme was combined with water to crack P. pastoris and to release intracellular proteins. The purified recombinant Canstatin-N inhibited CAM angiogenesis and induced significant apoptosis of the human umbilical vein endothelial cell (EVC340). PMID:22575729

  15. Cloning, expression and purification of squalene synthase from Candida tropicalis in Pichia pastoris.

    PubMed

    Lee, Pey Yee; Yong, Voon Chen; Rosli, Rozita; Gam, Lay Harn; Chong, Pei Pei

    2014-02-01

    Squalene synthase (SS) is the key precursor and first committed enzyme of the sterol biosynthesis pathway. In a previous work, SS has been identified as one of the immunogenic proteins that could be a potential diagnostic candidate for the pathogenic fungus Candida tropicalis. In this study, SS from C. tropicalis was cloned and expressed as recombinant protein in Pichia pastoris to investigate its reactivity with serum antibodies. ERG9 gene that encodes for SS was amplified by PCR and cloned in-frame into pPICZB expression vector. The recombinant construct was then transformed into P. pastoris GS115 host strain. Expression of the recombinant protein was confirmed by SDS-PAGE and Western blot analysis using anti-His tag probe. Optimal protein production was achieved by cultivating the culture with 1.0% methanol for 72h. The recombinant protein was purified to approximately 97% pure in a single step immobilized metal affinity chromatography with a yield of 70.3%. Besides, the purified protein exhibited specific reactivity with immune sera on Western blot. This is the first report on heterologous expression of antigenic SS from C. tropicalis in P. pastoris which can be exploited for large-scale production and further research. The results also suggested that the protein might be of great value as antigen candidate for serodiagnosis of Candida infection. PMID:24184232

  16. Purification and characterization of a laccase from Coprinopsis cinerea in Pichia pastoris.

    PubMed

    Wang, Bo; Wang, Lijuan; Lin, Yaqiu; Han, Qing; Han, Jing; Gao, Jianjie; Tian, Yongsheng; Zhao, Wei; Peng, Rihe; Yao, Quanhong

    2014-04-01

    A modified laccase gene, CcLCC6, from Coprinopsis cinerea was chemically synthesized according to the yeast codon bias and expressed in Pichia pastoris. The main properties of laccase, effects of ions and inhibitors, and optimal condition for decolouring malachite green (MG) were investigated in this study. The optimal pH level and temperature of laccase are 3.0 and 40 °C, respectively. The metal ions Mn²⁺, Zn²⁺, Fe³⁺ and Al³⁺ could inhibit laccase activity, as well as 1 mM of sodium dodecyl sulphate and sodium thiosulphate. 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), as a mediator, was necessary in decolorizing MG. The optimal pH and temperature for MG decolorization were 3.0 and 50 °C, respectively. Approximately 0.02 μM recombinant laccase could effectively decolour 0.05 mM of MG in 1 h. CcLCC6I could inhibit the toxicity of MG to P. pastoris. This is the first report on the successful expression in P. pastoris of CcLCC6I and its enzymatic property. Laccase can also be considered as a candidate for treating industrial effluent containing MG. PMID:24178808

  17. Expression, purification, and immobilization of His-tagged D-amino acid oxidase of Trigonopsis variabilis in Pichia pastoris.

    PubMed

    Zheng, Huabao; Wang, Xiaolan; Chen, Jun; Zhu, Ke; Zhao, Yuhua; Yang, Yunliu; Yang, Sheng; Jiang, Weihong

    2006-05-01

    High-level expression of D: -amino acid oxidase (DAO) has been reported in Pichia pastoris by integrating the DAO gene under the control of the alcohol oxidase promoter (PAOX1). However, the time taken to reach peak product concentration is usually long (approximately 43 h), and cultivation requires tight regulation of methanol feeding. In this paper, we describe the expression of His-tagged DAO (HDAO) in P. pastoris using the glyceraldehydes-3-phosphate dehydrogenase promoter (PGAP). The maximal level of HDAO expression using the PGAP integrant is attained in 13 h and is equal to that obtained using the PAOX1 integrant in 43 h. We also explored the possibility of secreting HDAO in P. pastoris. In-frame fusion of Saccharomyces cerevisiae alpha-factor secretion signal under a PGAP or PAOX1 resulted in low-level secretion of active HDAO, which was not of practical use. The intracellularly expressed HDAO under PGAP was purified by agar-based affinity support and then immobilized on Amberzyme oxirane resin. The immobilized HDAO, with specific activity of 75 U g-1 (wet weight), could be recycled more than 14 times without significant loss of activity. The data suggest that intracellular production of HDAO under PGAP, followed by affinity purification and immobilization on oxirane resin, may serve as an effective process for the manufacture of immobilized DAO for industrial application. PMID:16217653

  18. High-level expression, purification, characterization and structural prediction of a snake venom metalloproteinase inhibitor in Pichia pastoris.

    PubMed

    Shi, Yi; Ji, Ming-Kai; Xu, Jian-Wen; Lin, Xu; Lin, Jian-Yin

    2012-03-01

    Snake venom metalloproteinase inhibitor BJ46a is from the serum of the venomous snake Bothrops jararaca. It has been proven to possess the capacity to inhibit matrix metalloproteinases (MMPs), likely based on its structural similarity to MMPs. This report describes the successful expression, purification, and characterization of the recombinant protein BJ46a in Pichia pastoris. Purified recombinant protein BJ46a was found to inhibit MMPs. Structural modeling was completed and should provide the foundation for further functional research. To our knowledge, this is the first report on the large scale expression of BJ46a, and it provides promise as a method for generation of BJ46a and investigation of its potential use as a new drug for treatment of antitumor invasion and metastasis. PMID:22307654

  19. [Expression purification and verification of HBscFv-IFNgamma in Pichia pastoris x33].

    PubMed

    Zhou, Shishui; Wang, Xiaoning

    2008-03-01

    In order to effectively cure hepatitis B virus (HBV), we studied on fusion protein HBscFv-IFNgamma, which was connected with single-chain Fv against HBV surface antigen(HBscFv) and gamma-interferon(IFNgamma) of being used in clinic against HBV. Adopting overlap PCR, the hbscfv and the ifngamma were connected into hbscfv-ifngamma. Then the pPICZalphaA/(hbscfv-ifngamma)(1,2,4) of multi-copy recombinant plasmid were constructed and transformed into Pichia pastoris x33. The engineering strain x4 was screened from transformed x33 and could secretively express HBscFv-IFNgamma. The preliminary verification indicates that HBscFv-IFNgamma has the bioactivity of HBscFv and IFNgamma by SDS-PAGE, Western blotting and ELISA. The supernatant of culturing X4 was purified by 14F7 affinity chromatography to HBscFv-IFNgamma with purity of 95%-98%. The HBscFv-IFNgamma is able to bind 27.9% HBV surface antigen (HBsAg) in the serum of HBV transgenic mice, which shows the antibody of HBscFv-IFNgamma has bioactivity in vivo. Therefore HBscFv-IFNgamma can shed light on the development of a new promising HBV-targeted drug. PMID:18589818

  20. Efficient expression, purification, and characterization of a novel FAD-dependent glucose dehydrogenase from Aspergillus terreus in Pichia pastoris.

    PubMed

    Yang, Yufeng; Huang, Lei; Wang, Jufang; Wang, Xiaoning; Xu, Zhinan

    2014-11-28

    Flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) can utilize a variety of external electron acceptors and also has stricter substrate specificity than any other glucose oxidoreductases, which makes it the ideal diagnostic enzyme in the field of glucose biosensors. A gene coding for a hypothetical protein, similar to glucose oxidase and derived from Aspergillus terreus NIH2624, was overexpressed in Pichia pastoris GS115 under the control of an AOX1 promoter with a level of 260,000 U/l in the culture supernatant after fed-batch cultivation for 84 h. After a three-step purification protocol that included isopropanol precipitation, affinity chromatography, and a second isopropanol precipitation, recombinant FAD-GDH was purified with a recovery of 65%. This is the first time that isopropanol precipitation has been used to concentrate a fermentation supernatant and exchange buffers after affinity chromatography purification. The purified FAD-GDH exhibited a broad and diffuse band between 83 and 150 kDa. The recombinant FAD-GDH was stable across a wide pH range (3.5 to 9.0) with maximum activity at pH 7.5 and 55°C. In addition, it displayed very high thermal stability, with a half-life of 82 min at 60°C. These characteristics indicate that FAD-GDH will be useful in the field of glucose biosensors. PMID:25022525

  1. Production, purification, and characterization of human scFv antibodies expressed in Saccharomyces cerevisiae, Pichia pastoris, and Escherichia coli.

    SciTech Connect

    Miller, Keith D.; Feldhaus, Jane M.; Gray, Sean A.; Siegel, Robert W.; Feldhaus, Michael J.

    2005-08-01

    Single chain (scFv) antibodies are used as affinity reagents for diagnostics, therapeutics, and proteomic analyses. The antibody discovery platform we use to identify novel antigen binders involves discovery, characterization, and production. The discovery and characterization components have previously been characterized but in order to fully utilize the capabilities of affinity reagents from our yeast surface display library, efforts were focused on developing a production component to obtain purified, soluble, and active scFvs. Instead of optimizing conditions to achieve maximum yield, efforts were focused on using a system that could quickly and easily produce and process hundreds of scFv antibodies. Heterologous protein expression in Saccharomyces cerevisiae, Pichia pastoris, and Escherichia coli were evaluated for their ability to rapidly, efficaciously, and consistently produce scFv antibodies for use in downstream proteomic applications. Following purification, the binding activity of several scFv antibodies were quantified using a novel Biacore assay. All three systems produced soluble scFv antibodies which ranged in activity from 0-99%. scFv antibody yields from Saccharomyces, Pichia, and E. coli were 1.5-4.2, 0.4-7.3, and 0.63-16.4 mg L-1 culture, respectively. For our purposes, expression in E. coli proved to be the quickest and most consistent way to obtain and characterize purified scFv for downstream applications. The E. coli expression system was also used to compare scFv production levels from the periplasm, inclusion bodies, and culture media. The E. coli production system was then used to produce variants of several scFv to determine structure function relationships.

  2. High-level secretory expression and purification of unhydroxylated human collagen α1(III) chain in Pichia pastoris GS115.

    PubMed

    Li, Linbo; Fan, Daidi; Ma, Xiaoxuan; Deng, Jianjun; He, Jing

    2015-01-01

    Recombinant collagen and gelatin have been applied in biomedical materials field because of products from genetically engineered microorganisms with improved safety, traceability, reproducibility, and homogeneous quality. To obtain high-level secretory expression of single-chain full-length human collagen α1(III) chain (COL3A1) without the N and C telopeptides, the cDNA coding for the human COL3A1 gene was cloned into the secretory expression vector pPIC9K and integrated into Pichia pastoris GS115. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting analysis of culture supernatant from the recombinant methylotrophic yeast suggested that the unhydroxylated recombinant human COL3A1 (rhCOL3A1) was secreted into the culture medium, and exhibited an apparent molecular mass of approximately 130 kDa, which is 1.4 times higher than the theoretical one. Finally, the unhydroxylated rhCOL3A1 was purified to greater than 90% purity using a four-step approach. In addition, methylthiazolydiphenyl-tetrazolium bromide experiments indicated that low concentration of rhCOL3A1 could promote Baby hamster kidney cell (BHK21) proliferation effectively. The production and purification of rhCOL3A1 described in this study offer a new method for obtaining high level of rhCOL3A1 in relatively pure form, which is suitable for biomedical materials application. PMID:25231012

  3. Expression of the GM2-activator protein in the methylotrophic yeast Pichia pastoris, purification, isotopic labeling, and biophysical characterization.

    PubMed

    Wendeler, Michaela; Hoernschemeyer, Joerg; John, Michael; Werth, Norbert; Schoeniger, Maike; Lemm, Thorsten; Hartmann, Rudolf; Kessler, Horst; Sandhoff, Konrad

    2004-03-01

    The GM2-activator protein (GM2AP) belongs to a group of five small, nonenzymatic proteins that are essential cofactors for the degradation of glycosphingolipids in the lysosome. It mediates the interaction between the water-soluble enzyme beta-hexosaminidase A and its membrane-embedded substrate, ganglioside GM2, at the lipid-water interphase. Inherited defects in the gene encoding this glycoprotein cause a fatal neurological storage disorder, the AB variant of GM2 gangliosidosis. With the aim to establish a convenient eukaryotic system that allows the efficient production of functionally folded, glycosylated GM2AP and offers the potential of cost-efficient isotopic labeling for structural studies by NMR spectroscopy, we established the expression of recombinant GM2AP in the methylotrophic yeast Pichia pastoris. For the construction of expression plasmids, either the full cDNA encoding human GM2AP preproprotein was cloned in the expression vector pPIC3.5K, or the cDNA encoding only the mature form of GM2AP was inserted in the vector pPIC9K under control of the alcohol oxidase 1 promoter. Both plasmids led to the successful secretory expression of active, glycosylated GM2AP, which could easily be purified by Ni-NTA chromatography due to the hexahistidine tag introduced at the C-terminus. Remarkably, the expression of this membrane-active protein in P. pastoris was accompanied by two peculiarities which were not encountered in other expression systems for GM2AP: First, a significant fraction of the secreted protein existed in the form of aggregates, and second, considerable amounts of noncovalently bound lipids were associated with the recombinant protein. A three-step purification scheme was therefore devised consisting of Ni-NTA, reversed phase, and gel filtration chromatography, which finally yielded 10-12 mg of purified, monomeric GM2AP per liter of expression supernatant. MALDI- and ESI-TOF mass spectrometry were employed to assess the processing, homogeneity

  4. Cloning and constitutive expression of His-tagged xylanase GH 11 from Penicillium occitanis Pol6 in Pichia pastoris X33: purification and characterization.

    PubMed

    Driss, Dorra; Bhiri, Fatma; Ghorbel, Raoudha; Chaabouni, Semia Ellouz

    2012-05-01

    High-level constitutive expression of xylanase GH11 from Penicillium occitanis Pol6 termed PoXyn2 was achieved using the methylotrophic yeast Pichia pastoris. The PoXyn2 cDNA encoding for a mature xylanase of 320 amino acids was subcloned into the pGAPZαA vector, to construct recombinant xylanse with six histidine residues at the N-terminal and further integrated into the genome of P. pastoris X-33 under the control of the glyceraldehyde 3-phosphate dehydrogenase (GAP) constitutive promoter. Activity assay and SDS-PAGE demonstrate that the His-tagged xylanase was extracellularly expressed in P. pastoris and purified to homogeneity by a simple, one-step purification protocol using immobilized metal affinity chromatography (Ni-NTA resin). The purified PoXyn2 showed a single band on SDS-PAGE with an apparent molecular weight of 30 kDa. The xylanase activity was optimal at pH 3.0 and 50°C. The specific activity measured for Oat Spelt Xylan was 8549.85 U mg(-1). The apparent The K(M) and V(max) values were 8.33±0.7 mg ml(-1)and 58.82±0.9 μmol min(-1) ml(-1), respectively, as measured on Oat Spelt Xylan. This is the first report demonstrating the possibility of mass production of P. occitanis xylanase using P. pastoris. PMID:22402470

  5. High-Level Expression of Pro-Form Lipase from Rhizopus oryzae in Pichia pastoris and Its Purification and Characterization

    PubMed Central

    Wang, Jian-Rong; Li, Yang-Yuan; Xu, Shu-De; Li, Peng; Liu, Jing-Shan; Liu, Dan-Ni

    2014-01-01

    A gene encoding Rhizopus oryzae lipase containing prosequence (ProROL) was cloned into the pPICZαA and electrotransformed into the Pichia pastoris X-33 strain. The lipase was functionally expressed and secreted in Pichia pastoris with a molecular weight of 35 kDa. The maximum lipase activity of recombinant lipase (rProROL) was 21,000 U/mL, which was obtained in a fed-batch cultivation after 168 h induction with methanol in a 50-L bioreactor. After fermentation, the supernatant was concentrated by ultrafiltration with a 10 kDa cut off membrane and purified with ion exchange chromatography using SP Sepharose Fast Flow chromatography. The optimum pH and temperature of the rProROL were pH 9.0 and 40 °C, respectively. The lipase was stable from pH 4.0 to 9.0 and from 25 to 55 °C. The enzyme activity was enhanced by Ca2+ and inhibited by Hg2+ and Ag+. The lipase showed high activity toward triglyceride-Tripalmitin (C16:0) and triglyceride-Trilaurin (C12:0). PMID:24368519

  6. Heterologous expression of Cenchritis muricatus protease inhibitor II (CmPI-II) in Pichia pastoris system: Purification, isotopic labeling and preliminary characterization.

    PubMed

    Cabrera-Muñoz, Aymara; Rojas, Laritza; Gil, Dayrom F; González-González, Yamile; Mansur, Manuel; Camejo, Ayamey; Pires, José R; Alonso-Del-Rivero Antigua, Maday

    2016-10-01

    Cenchritis muricatus protease inhibitor II (CmPI-II) is a tight-binding serine protease inhibitor of the Kazal family with an atypical broad specificity, being active against several proteases such as bovine pancreatic trypsin, human neutrophil elastase and subtilisin A. CmPI-II 3D structures are necessary for understanding the molecular basis of its activity. In the present work, we describe an efficient and straightforward recombinant expression strategy, as well as a cost-effective procedure for isotope labeling for NMR structure determination purposes. The vector pCM101 containing the CmPI-II gene, under the control of Pichia pastoris AOX1 promoter was constructed. Methylotrophic Pichia pastoris strain KM71H was then transformed with the plasmid and the recombinant protein (rCmPI-II) was expressed in benchtop fermenter in unlabeled or (15)N-labeled forms using ammonium chloride ((15)N, 99%) as the sole nitrogen source. Protein purification was accomplished by sequential cation exchange chromatography in STREAMLINE DirectHST, anion exchange chromatography on Hitrap Q-Sepharose FF and gel filtration on Superdex 75 10/30, yielding high quantities of pure rCmPI-II and (15)N rCmPI-II. Recombinant proteins displayed similar functional features as compared to the natural inhibitor and NMR spectra indicated folded and homogeneously labeled samples, suitable for further studies of structure and protease-inhibitor interactions. PMID:27353494

  7. Expression, purification and characterization of low-glycosylation influenza neuraminidase in α-1,6-mannosyltransferase defective Pichia pastoris.

    PubMed

    Yang, Yi-Li; Chang, Shao-Hong; Gong, Xin; Wu, Jun; Liu, Bo

    2012-02-01

    Influenza A viruses expose two major surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA). Although N-glycosylation is essential for many glycoproteins, the glycoproteins expressed in yeast are sometimes hyper-glycosylated, which maybe a primary hindrance to the exploitation of therapeutic glycoprotein production because glycoproteins decorated with yeast-specific glycans are immunogenic and show poor pharmacokinetic properties in humans. To elucidate the NA with different glycosylation in interaction with immunogenicity, here we reported the heterologous expression of influenza NA glycoprotein derived from influenza virus A/newCaledonia/20/99(H1N1) in wide-type Pichia pastoris, α-1,6-mannosyltransferase (och1)-defective P. pastoris and Escherichia coli. We also assessed the immunogenicity of hyper-glycosylated NA expressed in the wide-type, low-glycosylated NA expressed in och1-defective P. pastoris strain and non-glycosylated NA produced in E. coli. Recombinant NA was expressed in wide-type P. pastoris as a 59-97 above kDa glycoprotein, 52-57 kDa in the och1 defective strain, and as a 45 kDa non-glycoprotein in E. coli. The antibody titers of Balb/c mice were tested after the mice were immunized three times with 0.2, 1, or 3 μg purified recombinant NA. Our results demonstrated that after the second immunization, the antibody titer elicited with 1 μg low-glycosylated NA was 1:5,500, while it was 1:10 and 1:13 when elicited by 1 μg hyper-glycosylated and non-glycosylated NA. In the 0.2 μg dose groups, a high antibody titer (1:4,900) was only found after third immunization by low-glycosylated NA, respectively. These results suggest that low-glycosylation in och1-defective P. pastoris enhances the immunogenicity of recombinant NA and elicits similar antibody titers with less antigen when compared with hyper- and non-glycosylated NA. Thus, och1-defective P. pastoris may be a better yeast expression system for production of glycoproteins to research

  8. Expression, purification and characterization of a recombinant Tat47-57-Oct4 fusion protein in Pichia pastoris.

    PubMed

    Wang, Haotian; Zhang, Xinmin; Kong, Ning; Wei, Anhui; Zhang, Yanhong; Ma, Jie; Zhou, Yulai; Yan, Weiqun

    2014-02-01

    The transcription factor, Oct-4, is involved in the self-renewal of undifferentiated embryonic stem cells, and is also significant in the reprogramming process and in the development of tumors. In the present study, the fusion protein, Tat47‑57-Oct4, was secreted by the signal peptide of human serum albumin in Pichia pastoris under the control of alcohol oxidase promoter 1. The yield of recombinant Tat47‑57-Oct4 fusion protein was ~210 mg/l. Following pilot‑scale fermentation, Tat47‑57-Oct4 was purified by ammonium sulfate precipitation, Vivaflow 200 ultrafiltration and SP Sepharose fast flow chromatography in order to obtain 95.6% purity. Immunofluorescence analysis validated the ability of Tat47‑57-Oct4 to cross the cell membrane. The results demonstrated that the experimental procedure developed in the present study could produce large quantities of active Tat47‑57-Oct4 fusion protein from P. pastoris. PMID:24336974

  9. Expression, purification and initial characterization of a novel recombinant antimicrobial peptide Mytichitin-A in Pichia pastoris.

    PubMed

    Meng, De-Mei; Dai, Hong-Xia; Gao, Xiao-Fang; Zhao, Jing-Fang; Guo, Ya-Jun; Ling, Xiao; Dong, Bin; Zhang, Zi-Qi; Fan, Zhen-Chuan

    2016-11-01

    Mytichitin-A is an antimicrobial peptide isolated from the serum of Mytilus coruscus and is reported to inhibit bacterial growth as tested on several Gram-positive bacteria. To produce large quantity of Mytichitin-A to further investigate its biological activity, nucleotide sequence encoding a recombinant 6 × His-Mytichitin-A (rMytichitin-A) peptide was synthesized and inserted into the inducible yeast expression vector pPICZαA. With the availability of such an expression vector called pPICZαA-Mytichitin-A, we transformed Pichia pastoris GS115 cells with a SacI-linearized pPICZαA-Mytichitin-A by electroporation. Transgenic strains secreting rMytichitin-A with a molecular weight of approximate 10 KDa as expected were obtained. The optimal culture condition for rMytichitin-A expression was determined to be 1.0% methanol induction, 96 h incubation at 28 °C and the amount of rMytichitin-A reached 45.5 μg/ml. The percentage of rMytichitin-A was estimated to be 73.6% of the total protein. After rMytichitin-A was purified using nickel ions affinity chromatography, approximate 9.1 mg pure rMytichitin-A was obtained from 500 ml of cell culture medium with 97.8% purity. More importantly, both the culture supernatant and purified rMytichitin-A inhibited the growth of Gram-positive bacteria, especially Staphylococcus aureus and Bacillus subtilis with a minimum inhibition concentration of as low as 31 and 48 μg/ml, respectively. Differently from the native protein, however, the rMytichitin-A is not active against Gram-negative bacteria. Taken together, this is the first report on the heterologous expression of Mytichitin-A in P. pastoris. Our study showed that P. pastoris is an effective expression system for producing large quantities of biologically active Mytichitin-A for both research and application purposes. PMID:27389469

  10. Extracellular expression and efficient purification of a functional recombinant Volvariella volvacea immunomodulatory protein (FIP-vvo) using Pichia pastoris system.

    PubMed

    Sun, Xilin; Huang, Wei; Xiao, Sijia; Liang, Chongyang; Zhang, Shuqin; Liu, Zhiyi; Sun, Fei

    2014-02-01

    The fungal immunomodulatory proteins (FIPs) are a new protein family identified from several edible and medical mushrooms and play an important role in antitumor, anti-allergy and immunomodulating activities. A gene encoding the FIP-vvo was cloned from the mycelia of Volvariella volvacea and recombinant expressed in the Pichia pastoris expression system. SDS-PAGE, amino acid composition and circular dichroism analyses of the recombinant FIP-vvo (reFIP-vvo) indicated that the gene was correctly and successfully expressed. In vitro assays of biological activities revealed that the reFIP-vvo exhibited similar immunomodulating capacities as native form. The reFIP-vvo significantly stimulated the proliferation of mouse spleen lymphocytes and apparently enhanced the expression level of IFN-γ released from the mouse splenocytes. Taken together, the FIP-vvo gene from V. volvacea has been integrated into the yeast genome and expressed effectively at a high level (about 410mg/L), it was capable of agglutinating sheep and rat red blood cells. The reFIP-vvo possessed very similar biological activities to native FIPs, suggesting its potential application as a food supplement or immunomodulating agent in pharmaceuticals and even medical studies. PMID:24262209

  11. Purification of hepatitis B surface antigen virus-like particles from recombinant Pichia pastoris and in vivo analysis of their immunogenic properties.

    PubMed

    Gurramkonda, Chandrasekhar; Zahid, Maria; Nemani, Satish Kumar; Adnan, Ahmad; Gudi, Satheesh Kumar; Khanna, Navin; Ebensen, Thomas; Lünsdorf, Heinrich; Guzmán, Carlos A; Rinas, Ursula

    2013-12-01

    Following earlier studies on high-level intracellular production of hepatitis B surface antigen (HBsAg) using recombinant Pichia pastoris, we present here in detail an enhanced method for the purification of recombinant HBsAg virus-like particles (VLPs). We have screened various detergents for their ability to promote the solubilization of recombinant intracellular HBsAg. In addition, we have analyzed the effect of cell disruption and extraction regarding their impact on the release of HBsAg. Our results show that introduction of the mild nonionic detergent Tween 20 in the initial process of cell lysis at ∼600bars by high pressure homogenization leads to the best results. The subsequent purification steps involved polyethylene glycol precipitation of host cell contaminants, hydrophobic adsorption of HBsAg to colloidal silica followed by ion-exchange chromatography and either isopycnic density ultracentrifugation or size exclusion chromatography for the recovery of the VLPs. After final KSCN treatment and dialysis, a total yield of ∼3% with a purity of >99% was reached. The pure protein was characterized by electron microscopy, showing the presence of uniform VLPs which are the pre-requisite for immunogenicity. The intramuscular co-administration of HBsAg VLPs, with either alum or a PEGylated-derivative of the toll-like receptor 2/6 agonist MALP-2, to mice resulted in the elicitation of significantly higher HBsAg-specific IgG titers as well as a stronger cellular immune response compared to mice vaccinated with a gold standard vaccine (Engerix™). These results show that P. pastoris derived HBsAg VLPs exhibit a high potential as a superior biosimilar vaccine against hepatitis B. PMID:24141044

  12. A high-capacity RNA affinity column for the purification of human IRP1 and IRP2 overexpressed in Pichia pastoris

    PubMed Central

    ALLERSON, CHARLES R.; MARTINEZ, ALAN; YIKILMAZ, EMINE; ROUAULT, TRACEY A.

    2003-01-01

    Regulated expression of proteins involved in mammalian iron metabolism is achieved in part through the interaction of the iron regulatory proteins IRP1 and IRP2 with highly conserved RNA stem-loop structures, known as iron-responsive elements (IREs), that are located within the 5′ or 3′ untranslated regions of regulated transcripts. As part of an effort to determine the structures of the IRP–IRE complexes using crystallographic methods, we have developed an efficient process for obtaining functionally pure IRP1 and IRP2 that relies upon the improved overexpression (>10 mg of soluble IRP per liter of culture) of each human IRP in the yeast Pichia pastoris and large-scale purification using RNA affinity chromatography. Despite the utility of RNA affinity chromatography in the isolation of RNA-binding proteins, current methods for preparing RNA affinity matrices produce columns of low capacity and limited stability. To address these limitations, we have devised a simple method for preparing stable, reusable, high-capacity RNA affinity columns. This method utilizes a bifunctional linker to covalently join a 5′-amino tethered RNA with a thiol-modified Sepharose, and can be used to load 150 nmole or more of RNA per milliliter of solid support. We demonstrate here the use of an IRE affinity column in the large-scale purification of IRP1 and IRP2, and suggest that the convenience of this approach will prove attractive in the analysis of other RNA-binding proteins. PMID:12592010

  13. Expression, purification and characterization of Gloydius shedaoensis venom gloshedobin as Hsp70 fusion protein in Pichia pastoris.

    PubMed

    Yang, Daping; Peng, Mingli; Yang, Hua; Yang, Qing; Xu, Jianqiang

    2009-08-01

    Gloshedobin, a thrombin-like enzyme from the venom of Gloydius shedaoensis was expressed as Hsp70 fusion protein from the construct pPIC9K/hsp70-TLE in the yeast Pichia pastoris. By fusing gloshedobin to the C-terminus of Hsp70, an expression level of 44.5mg Hsp70-gloshedobin per liter of culture was achieved by methanol induction. The fusion protein secreted in the culture medium was conveniently purified by two chromatographic steps: Q-Sepharose FF and Superdex 200. The purified enzyme had an apparent molecular mass of 98 kDa according to SDS-PAGE analysis, and exhibited fibrinogenolytic activity that preferentially degraded fibrinogen alpha-chain. The enzyme also degraded fibrinogen beta-chain to a lesser extent, while showing no degradation toward the gamma-chain. A fibrinogen clotting activity of 499.8 U/mg was achieved by the enzyme, which is within the range reported for other thrombin-like enzymes. Hsp70-gloshedobin had strong esterase activity toward the chromogenic substrate N alpha-p-tosyl-Gly-Pro-Arg-p-nitroanilide, and this activity was optimal at pH 7.5 and 50 degrees C, and was completely inhibited by PMSF, but not by EDTA. We concluded that Hsp70 has no effect on the physiochemical and biochemical properties of gloshedobin. Although applying a fusion partner with very big molecular weight is unusual, Hsp70 proved its advantage in soluble expression of gloshedobin without affecting its fibrinogenolytic activity. And this positive result may provide an alternative strategy for the expression of thrombin-like enzymes in microbial system. PMID:19286459

  14. Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin

    PubMed Central

    2010-01-01

    Background The prevalence of diabetes is predicted to rise significantly in the coming decades. A recent analysis projects that by the year 2030 there will be ~366 million diabetics around the world, leading to an increased demand for inexpensive insulin to make this life-saving drug also affordable for resource poor countries. Results A synthetic insulin precursor (IP)-encoding gene, codon-optimized for expression in P. pastoris, was cloned in frame with the Saccharomyces cerevisiae α-factor secretory signal and integrated into the genome of P. pastoris strain X-33. The strain was grown to high-cell density in a batch procedure using a defined medium with low salt and high glycerol concentrations. Following batch growth, production of IP was carried out at methanol concentrations of 2 g L-1, which were kept constant throughout the remaining production phase. This robust feeding strategy led to the secretion of ~3 gram IP per liter of culture broth (corresponding to almost 4 gram IP per liter of cell-free culture supernatant). Using immobilized metal ion affinity chromatography (IMAC) as a novel approach for IP purification, 95% of the secreted product was recovered with a purity of 96% from the clarified culture supernatant. Finally, the purified IP was trypsin digested, transpeptidated, deprotected and further purified leading to ~1.5 g of 99% pure recombinant human insulin per liter of culture broth. Conclusions A simple two-phase cultivation process composed of a glycerol batch and a constant methanol fed-batch phase recently developed for the intracellular production of the Hepatitis B surface antigen was adapted to secretory IP production. Compared to the highest previously reported value, this approach resulted in an ~2 fold enhancement of IP production using Pichia based expression systems, thus significantly increasing the efficiency of insulin manufacture. PMID:20462406

  15. Expression and purification of the soluble isoform of human receptor for advanced glycation end products (sRAGE) from Pichia pastoris.

    PubMed

    Ostendorp, Thorsten; Weibel, Mirjam; Leclerc, Estelle; Kleinert, Peter; Kroneck, Peter M H; Heizmann, Claus W; Fritz, Günter

    2006-08-18

    RAGE is a multi-ligand receptor involved in various human diseases including diabetes, cancer or Alzheimer's disease. Engagement of RAGE by its ligands triggers activation of key cellular signalling pathways such as the MAP kinase and NF-kappaB pathways. Whereas the main isoform of RAGE is a transmembrane receptor with both extra- and intracellular domains, a secreted soluble isoform (sRAGE), corresponding to the extracellular part only, has the ability to block RAGE signalling and suppress cellular activation. Administration of sRAGE to animal models of cancer or multiple sclerosis blocked successfully tumour growth and the course of the autoimmune disease. These findings demonstrate that sRAGE may have a potential as therapeutic. We present here a fast and simple purification protocol of sRAGE from the yeast Pichia pastoris. The identity of the protein was confirmed by mass spectrometry and Western blot. The protein was N-glycosylated and 95-98% pure as judged by SDS-PAGE. PMID:16806067

  16. Expression of Recombinant Proteins in the Methylotrophic Yeast Pichia pastoris

    PubMed Central

    Weidner, Maria; Taupp, Marcus; Hallam, Steven J.

    2010-01-01

    Protein expression in the microbial eukaryotic host Pichia pastoris offers the possibility to generate high amounts of recombinant protein in a fast and easy to use expression system. As a single-celled microorganism P. pastoris is easy to manipulate and grows rapidly on inexpensive media at high cell densities. Being a eukaryote, P. pastoris is able to perform many of the post-translational modifications performed by higher eukaryotic cells and the obtained recombinant proteins undergo protein folding, proteolytic processing, disulfide bond formation and glycosylation [1]. As a methylotrophic yeast P. pastoris is capable of metabolizing methanol as its sole carbon source. The strong promoter for alcohol oxidase, AOX1, is tightly regulated and induced by methanol and it is used for the expression of the gene of interest. Accordingly, the expression of the foreign protein can be induced by adding methanol to the growth medium [2; 3]. Another important advantage is the secretion of the recombinant protein into the growth medium, using a signal sequence to target the foreign protein to the secretory pathway of P. pastoris. With only low levels of endogenous protein secreted to the media by the yeast itself and no added proteins to the media, a heterologous protein builds the majority of the total protein in the medium and facilitates following protein purification steps [3; 4]. The vector used here (pPICZαA) contains the AOX1 promoter for tightly regulated, methanol-induced expression of the gene of interest; the α-factor secretion signal for secretion of the recombinant protein, a Zeocin resistance gene for selection in both E. coli and Pichia and a C-terminal peptide containing the c-myc epitope and a polyhistidine (6xHis) tag for detection and purification of a recombinant protein. We also show western blot analysis of the recombinant protein using the specific Anti-myc-HRP antibody recognizing the c-myc epitope on the parent vector. PMID:20186119

  17. High-Level Expression of Recombinant Bovine Lactoferrin in Pichia pastoris with Antimicrobial Activity

    PubMed Central

    Iglesias-Figueroa, Blanca; Valdiviezo-Godina, Norberto; Siqueiros-Cendón, Tania; Sinagawa-García, Sugey; Arévalo-Gallegos, Sigifredo; Rascón-Cruz, Quintín

    2016-01-01

    In this study, bovine lactoferrin (bLf), an iron-binding glycoprotein considered an important nutraceutical protein because of its several properties, was expressed in Pichia pastoris KM71-H under AOX1 promoter control, using pJ902 as the recombinant plasmid. Dot blotting analysis revealed the expression of recombinant bovine lactoferrin (rbLf) in Pichia pastoris. After Bach fermentation and purification by molecular exclusion, we obtained an expression yield of 3.5 g/L of rbLf. rbLf and predominantly pepsin-digested rbLf (rbLfcin) demonstrated antibacterial activity against Escherichia coli (E. coli) BL21DE3, Staphylococcus aureus (S. aureus) FRI137, and, in a smaller percentage, Pseudomonas aeruginosa (Ps. Aeruginosa) ATCC 27833. The successful expression and characterization of functional rbLf expressed in Pichia pastoris opens a prospect for the development of natural antimicrobial agents produced recombinantly. PMID:27294912

  18. High-Level Expression of Recombinant Bovine Lactoferrin in Pichia pastoris with Antimicrobial Activity.

    PubMed

    Iglesias-Figueroa, Blanca; Valdiviezo-Godina, Norberto; Siqueiros-Cendón, Tania; Sinagawa-García, Sugey; Arévalo-Gallegos, Sigifredo; Rascón-Cruz, Quintín

    2016-01-01

    In this study, bovine lactoferrin (bLf), an iron-binding glycoprotein considered an important nutraceutical protein because of its several properties, was expressed in Pichia pastoris KM71-H under AOX1 promoter control, using pJ902 as the recombinant plasmid. Dot blotting analysis revealed the expression of recombinant bovine lactoferrin (rbLf) in Pichia pastoris. After Bach fermentation and purification by molecular exclusion, we obtained an expression yield of 3.5 g/L of rbLf. rbLf and predominantly pepsin-digested rbLf (rbLfcin) demonstrated antibacterial activity against Escherichia coli (E. coli) BL21DE3, Staphylococcus aureus (S. aureus) FRI137, and, in a smaller percentage, Pseudomonas aeruginosa (Ps. Aeruginosa) ATCC 27833. The successful expression and characterization of functional rbLf expressed in Pichia pastoris opens a prospect for the development of natural antimicrobial agents produced recombinantly. PMID:27294912

  19. Immobilization of Pichia pastoris cells containing alcohol oxidase activity

    PubMed Central

    Maleknia, S; Ahmadi, H; Norouzian, D

    2011-01-01

    Background and Objectives The attempts were made to describe the development of a whole cell immobilization of P. pastoris by entrapping the cells in polyacrylamide gel beads. The alcohol oxidase activity of the whole cell Pichia pastoris was evaluated in comparison with yeast biomass production. Materials and Methods Methylotrophic yeast P. pastoris was obtained from Collection of Standard Microorganisms, Department of Bacterial Vaccines, Pasteur Institute of Iran (CSMPI). Stock culture was maintained on YPD agar plates. Alcohol oxidase was strongly induced by addition of 0.5% methanol as the carbon source. The cells were harvested by centrifugation then permeabilized. Finally the cells were immobilized in polyacrylamide gel beads. The activity of alcohol oxidase was determined by method of Tane et al. Results At the end of the logarithmic phase of cell culture, the alcohol oxidase activity of the whole cell P. Pastoris reached the highest level. In comparison, the alcohol oxidase activity was measured in an immobilized P. pastoris when entrapped in polyacrylamide gel beads. The alcohol oxidase activity of cells was induced by addition of 0.5% methanol as the carbon source. The cells were permeabilized by cetyltrimethylammonium bromide (CTAB) and immobilized. CTAB was also found to increase the gel permeability. Alcohol oxidase activity of immobilized cells was then quantitated by ABTS/POD spectrophotometric method at OD 420. There was a 14% increase in alcohol oxidase activity in immobilized cells as compared with free cells. By addition of 2-butanol as a substrate, the relative activity of alcohol oxidase was significantly higher as compared with other substrates added to the reaction media. Conclusion Immobilization of cells could eliminate lengthy and expensive procedures of enzyme separation and purification, protect and stabilize enzyme activity, and perform easy separation of the enzyme from the reaction media. PMID:22530090

  20. In vivo unnatural amino acid expression in the methylotrophic yeast Pichia pastoris

    SciTech Connect

    Young, Travis; Schultz, Peter G

    2014-02-11

    The invention provides orthogonal translation systems for the production of polypeptides comprising unnatural amino acids in methyltrophic yeast such as Pichia pastoris. Methods for producing polypeptides comprising unnatural amino acids in methyltrophic yeast such as Pichia pastoris are also provided.

  1. Expression and purification of the trypsin inhibitor from tartary buckwheat in Pichia pastoris and its novel toxic effect on Mamestra brassicae larvae.

    PubMed

    Ruan, Jingjun; Yan, Jun; Hou, Shengqi; Chen, Hui; Wu, Qi; Han, Xueyi

    2015-01-01

    The gene of the trypsin inhibitor of tartary buckwheat (Fagopyrum tataricum) was successfully cloned, expressed in Pichia pastoris and tested for regulatory effects on insect growth. The three significant factors were optimized by single-factor experiments and central composite design in response surface methodology. Proteins were efficiently expressed at levels of 489.6-527.4 U/mg in shaken flasks. The trypsin inhibitor from tartary buckwheat (FtTI) was purified by affinity chromatography and centrifugal ultrafiltration. The purified FtTI efficiently inhibited trypsin protease activity by competitive inhibition with a Ki value 1.5 nM. The molecular mass of the purified protein was approximately 13.8 kDa. FtTI had a higher toxic killing effect on Mamestra brassicae larvae. The median lethal concentration for the larvae was 15 μg/mL. PMID:25258121

  2. Expression and purification of human TAT-p53 fusion protein in Pichia pastoris and its influence on HepG2 cell apoptosis.

    PubMed

    Yan, Haowei; Liu, Nan; Zhao, Zhenghong; Zhang, Xinmin; Xu, Hao; Shao, Bing; Yan, Weiqun

    2012-07-01

    P53 is an attractive target in molecular cancer therapeutics because of its critical role in regulating cell cycle arrest and apoptosis. The limitations in the development of p53-based cancer therapeutic strategy include its inefficient transmission through cell membrane of tumor cells and low protein yields in the expression system. In the present study, p53 was fused with HIV TAT protein, which can cross cell membranes, and expressed by Pichia pastoris. Stable production of Tat-p53 was achieved. After being transduced with Tat-p53 protein, the growth of cancer cell line, HepG2, was inhibited by increased apoptosis in culture. This expression system could thus be utilized to produce human Tat-p53 fusion protein. PMID:22426841

  3. High-level expression, purification and study of bioactivity of fusion protein M-IL-2((88)Arg, (125)Ala) in Pichia pastoris.

    PubMed

    Li, Lin; Qian, Dongmeng; Shao, Guangcan; Yan, Zhiyong; Li, Ronggui; Hua, Xiaomin; Song, Xuxia; Wang, Bin

    2014-09-01

    M-IL-2((88)Arg, (125)Ala) is a fusion protein comprising melittin genetically linked to a mutant human interleukin 2((88)Arg, (125)Ala). In this study, we constructed an expression system of M-IL-2((88)Arg, (125)Ala) in Pichia pastoris: GS115/pPICZα A/M-IL-2((88)Arg, (125)Ala), and achieved the high-level expression of the fusion protein. The maximum yield of the fusion protein M-IL-2((88)Arg, (125)Ala) reached up to 814.5mg/L, higher than the system in Escherichiacoli. The fusion protein was purified by means of ammonium sulfate fractionation, dialysis and nickel ion affinity chromatography. The molecular weight of the fusion protein is about 26kDa, conforming the theoretical value. And M-IL-2((88)Arg, (125)Ala) possesses strong antigen-specificity by Western blot detection. Bioassay results indicated that the fusion protein could directly inhibit the growth of human ovarian cancer SKOV3 cells and Hela cells in vitro. This study provides an alternative strategy for large-scale production of bioactive M-IL-2((88)Arg, (125)Ala) using P. pastoris as an expression host and paves the way to clinical practice. PMID:24955549

  4. Recent advances in the expression of foreign genes in Pichia pastoris.

    PubMed

    Cregg, J M; Vedvick, T S; Raschke, W C

    1993-08-01

    The Pichia pastoris heterologous gene expression system has been utilized to produce attractive levels of a variety of intracellular and extracellular proteins of interest. Recent advances in our understanding and application of the system have improved its utility even further. These advances include: (1) methods for the construction of P. pastoris strains with multiple copies of AOX1-promoter-driven expression cassettes; (2) mixed-feed culture strategies for high foreign protein volumetric productivity rates; (3) methods to reduce proteolysis of some products in high cell-density culture media; (4) tested procedures for purification of secreted products; and (5) detailed information on the structures of N-linked oligosaccharides on P. pastoris secreted proteins. In this review, these advances along with basic features of the P. pastoris system are described and discussed. PMID:7763913

  5. Characterization of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Malone, Christine C.; Ciszak, Eva; Karr, Laurel J.

    1999-01-01

    A soluble form of human bone alkaline phosphatase has been expressed in a recombinant strain of the methylotrophic yeast Pichia pastoris. We constructed a plasmid containing cDNA encoding for human bone alkaline phosphatase, with the hydrophobic carboxyl terminal portion deleted. Alkaline phosphatase was secreted into the medium to a level of 32mg/L when cultured in shake flasks, and enzyme activity was 12U/mg, as measured by a spectrophotometric assay. By conversion to a fermentation system, a yield of 880mg/L has been achieved with an enzyme activity of 968U/mg. By gel electrophoresis analysis, it appears that greater than 50% of the total protein in the fermentation media is alkaline phosphatase. Although purification procedures are not yet completely optimized, they are expected to include filtration, ion exchange and affinity chromatography. Our presentation will focus on the purification and crystallization results up to the time of the conference. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  6. 21 CFR 573.750 - Pichia pastoris dried yeast.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Pichia pastoris dried yeast. 573.750 Section 573.750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.750...

  7. Cloning and Expression of Yak Active Chymosin in Pichia pastoris.

    PubMed

    Luo, Fan; Jiang, Wei Hua; Yang, Yuan Xiao; Li, Jiang; Jiang, Ming Feng

    2016-09-01

    Rennet, a complex of enzymes found in the stomachs of ruminants, is an important component for cheese production. In our study, we described that yak chymosin gene recombinant Pichia pastoris strain could serve as a novel source for rennet production. Yaks total RNA was extracted from the abomasum of an unweaned yak. The yak preprochymosin, prochymosin, and chymosin genes from total RNA were isolated using gene specific primers based on cattle chymosin gene sequence respectively and analyzed their expression pattern byreal time-polymerase chain reaction. The result showed that the chymosin gene expression level of the sucking yaks was 11.45 times higher than one of adult yaks and yak chymosin belongs to Bovidae family in phylogenetic analysis. To express each, the preprochymosin, prochymosin, and chymosin genes were ligated into the expression vector pPICZαA, respectively, and were expressed in Pichia pastoris X33. The results showed that all the recombinant clones of P. pastoris containing the preprochymosin, prochymosin or chymosin genes could produce the active form of recombinant chymosin into the culture supernatant. Heterologous expressed prochymosin (14.55 Soxhlet unit/mL) had the highest enzyme activity of the three expressed chymosin enzymes. Therefore, we suggest that the yak chymosin gene recombinant Pichia pastoris strain could provide an alternative source of rennet production. PMID:27004812

  8. Cloning and Expression of Yak Active Chymosin in Pichia pastoris

    PubMed Central

    Luo, Fan; Jiang, Wei Hua; Yang, Yuan Xiao; Li, Jiang; Jiang, Ming Feng

    2016-01-01

    Rennet, a complex of enzymes found in the stomachs of ruminants, is an important component for cheese production. In our study, we described that yak chymosin gene recombinant Pichia pastoris strain could serve as a novel source for rennet production. Yaks total RNA was extracted from the abomasum of an unweaned yak. The yak preprochymosin, prochymosin, and chymosin genes from total RNA were isolated using gene specific primers based on cattle chymosin gene sequence respectively and analyzed their expression pattern byreal time-polymerase chain reaction. The result showed that the chymosin gene expression level of the sucking yaks was 11.45 times higher than one of adult yaks and yak chymosin belongs to Bovidae family in phylogenetic analysis. To express each, the preprochymosin, prochymosin, and chymosin genes were ligated into the expression vector pPICZαA, respectively, and were expressed in Pichia pastoris X33. The results showed that all the recombinant clones of P. pastoris containing the preprochymosin, prochymosin or chymosin genes could produce the active form of recombinant chymosin into the culture supernatant. Heterologous expressed prochymosin (14.55 Soxhlet unit/mL) had the highest enzyme activity of the three expressed chymosin enzymes. Therefore, we suggest that the yak chymosin gene recombinant Pichia pastoris strain could provide an alternative source of rennet production. PMID:27004812

  9. Cloning, expression, purification, and properties of an endoglucanase gene (glycosyl hydrolase family 12) from Aspergillus niger VTCC-F021 in Pichia pastoris.

    PubMed

    Pham, Thi Hoa; Quyen, Dinh Thi; Nghiem, Ngoc Minh; Vu, Thu Doan

    2011-10-01

    A gene coding for an endoglucanase (EglA), of the glycosyl hydrolase family 12 and derived from Aspergillus niger VTCC-F021, was cloned and sequenced. The cDNA sequence, 717 bp, and its putative endoglucanase, a 238 aa protein with a predicted molecular mass of 26 kDa and a pI of 4.35, exhibited 98.3-98.7% and 98.3-98.6% identities, respectively, with cDNA sequences and their corresponding endoglucanases from Aspergillus niger strains from the GenBank. The cDNA was overexpressed in Pichia pastoris GS115 under the control of an AOX1 promoter with a level of 1.59 U/ml culture supernatant, after 72 h of growth in a YP medium induced with 1% (v/v) of methanol. The molecular mass of the purified EglA, determined by SDS-PAGE, was 33 kDa, with a specific activity of 100.16 and 19.91 U/mg toward 1% (w/v) of beta-glucan and CMC, respectively. Optimal enzymatic activity was noted at a temperature of 55°C and a pH of 5. The recombinant EglA (rEglA) was stable over a temperature range of 30- 37°C and at pH range of 3.5-4.5. Metal ions, detergents, and solvents tested indicated a slightly inhibitory effect on rEglA activity. Kinetic constants (K(m), V(max), k(cat), and k(cat)/ K(m)) determined for rEglA with beta-glucan as a substrate were 4.04 mg/ml, 102.04 U/mg, 2,040.82 min-1, and 505.05, whereas they were 10.17 mg/ml, 28.99 U/mg, 571.71 min-1, and 57.01 with CMC as a substrate, respectively. The results thus indicate that the rEglA obtained in this study is highly specific toward beta-glucan. The biochemical properties of rEglA make it highly valuable for downstream biotechnological applications, including potential use as a feed enzyme. PMID:22031024

  10. Applications of recombinant Pichia pastoris in the healthcare industry

    PubMed Central

    Weinacker, Daniel; Rabert, Claudia; Zepeda, Andrea B.; Figueroa, Carolina A.; Pessoa, Adalberto; Farías, Jorge G.

    2013-01-01

    Since the 1970s, the establishment and development of the biotech industry has improved exponentially, allowing the commercial production of biopharmaceutical proteins. Nowadays, new recombinant protein production is considered a multibillion-dollar market, in which about 25% of commercial pharmaceuticals are biopharmaceuticals. But to achieve a competitive production process is not an easy task. Any production process has to be highly productive, efficient and economic. Despite that the perfect host is still not discovered, several research groups have chosen Pichia pastoris as expression system for the production of their protein because of its many features. The attempt of this review is to embrace several research lines that have adopted Pichia pastoris as their expression system to produce a protein on an industrial scale in the health care industry. PMID:24688491

  11. Applications of recombinant Pichia pastoris in the healthcare industry.

    PubMed

    Weinacker, Daniel; Rabert, Claudia; Zepeda, Andrea B; Figueroa, Carolina A; Pessoa, Adalberto; Farías, Jorge G

    2013-12-01

    Since the 1970s, the establishment and development of the biotech industry has improved exponentially, allowing the commercial production of biopharmaceutical proteins. Nowadays, new recombinant protein production is considered a multibillion-dollar market, in which about 25% of commercial pharmaceuticals are biopharmaceuticals. But to achieve a competitive production process is not an easy task. Any production process has to be highly productive, efficient and economic. Despite that the perfect host is still not discovered, several research groups have chosen Pichia pastoris as expression system for the production of their protein because of its many features. The attempt of this review is to embrace several research lines that have adopted Pichia pastoris as their expression system to produce a protein on an industrial scale in the health care industry. PMID:24688491

  12. Improving the expression of mini-proinsulin in Pichia pastoris.

    PubMed

    País-Chanfrau, José M; García, Yuneski; Licor, Lisandra; Besada, Vladimir; Castellanos-Serra, Lila; Cabello, Cecilia I; Hernández, Lester; Mansur, Manuel; Plana, Liuba; Hidalgo, Abdel; Támbara, Yanet; del C Abrahantes-Pérez, María; del Toro, Yoandris; Valdés, Jorge; Martínez, Eduardo

    2004-08-01

    Increased expression of recombinant mini-proinsulin in Pichia pastoris in 2.5 l bioreactors was achieved by increasing the cultivation pH from 5.1 to 6.3, by decreasing the temperature from 28 to 22 degrees C, and by periodical addition of ammonium sulfate and EDTA to the culture broth. Using this procedure, mini-proinsulin reached nearly 0.3 g l(-1) in the culture supernatant after 160 h of growth. PMID:15483385

  13. Hygromycin-resistance vectors for gene expression in Pichia pastoris.

    PubMed

    Yang, Junjie; Nie, Lei; Chen, Biao; Liu, Yingmiao; Kong, Yimeng; Wang, Haibin; Diao, Liuyang

    2014-04-01

    Pichia pastoris is a common host organism for heterologous protein expression and metabolic engineering. Zeocin-, G418-, nourseothricin- and blasticidin-resistance genes are the only dominant selectable markers currently available for selecting P. pastoris transformants. We describe here new P. pastoris expression vectors that confer a hygromycin resistance base on the Klebsiella pneumoniae hph gene. To demonstrate the application of the vectors for intracellular and secreted protein expression, green fluorescent protein (GFP) and human serum albumin (HSA) were cloned into the vectors and transformed into P. pastoris cells. The resulting strains expressed GFP and HSA constitutively or inducibly. The hygromycin resistance marker was also suitable for post-transformational vector amplication (PTVA) for obtaining strains with high plasmid copy numbers. A strain with multiple copies of the HSA expression cassette after PTVA had increased HSA expression compared with a strain with a single copy of the plasmid. To demonstrate compatibility of the new vectors with other vectors bearing antibiotic-resistance genes, P. pastoris was transformed with the Saccharomyces cerevisiae genes GSH1, GSH2 or SAM2 on plasmids containing genes for resistance to Zeocin, G418 or hygromycin. The resulting strain produced glutathione and S-adenosyl-L-methionine at levels approximately twice those of the parent strain. The new hygromycin-resistance vectors allow greater flexibility and potential applications in recombinant protein production and other research using P. pastoris. PMID:24822243

  14. Protein secretion in Pichia pastoris and advances in protein production.

    PubMed

    Damasceno, Leonardo M; Huang, Chung-Jr; Batt, Carl A

    2012-01-01

    Yeast expression systems have been successfully used for over 20 years for the production of recombinant proteins. With the growing interest in recombinant protein expression for various uses, yeast expression systems, such as the popular Pichia pastoris, are becoming increasingly important. Although P. pastoris has been successfully used in the production of many secreted and intracellular recombinant proteins, there is still room for improvement of this expression system. In particular, secretion of recombinant proteins is still one of the main reasons for using P. pastoris. Therefore, endoplasmic reticulum protein folding, correct glycosylation, vesicular transport to the plasma membrane, gene dosage, secretion signal sequences, and secretome studies are important considerations for improved recombinant protein production. PMID:22057543

  15. Cloning and expression of buffalo active chymosin in Pichia pastoris.

    PubMed

    Vallejo, Juan Andres; Ageitos, Jose Manuel; Poza, Margarita; Villa, Tomas G

    2008-11-26

    To date, only recombinant chymosin has been obtained in its active form from supernatants of filamentous fungi, which are not as good candidates as yeasts for large-scale fermentations. Since Bos taurus chymosin was cloned and expressed, the world demand for this protease has increased to such an extent that the cheesemaking industry has been looking for novel sources of chymosin. In this sense because buffalo chymosin has properties that are more stable than those of B. taurus chymosin, it may occupy a space of its own in the chymosin market. The main objective of the present work was the production of active recombinant buffalo chymosin in the culture supernatant of Pichia pastoris . This yeast has demonstrated its usefulness as an excellent large-scale fermentation tool for the secretion of recombinant foreign proteins. RNA was extracted from the abomasum of a suckling calf water buffalo ( Bubalus arnee bubalis ). Preprochymosin, prochymosin, and chymosin DNA sequences were isolated and expressed into P. pastoris. Only the recombinant clones of P. pastoris containing the prochymosin sequence gene were able to secrete the active form of the chymosin to the culture supernatant. This paper describes for the first time the production of active recombinant chymosin in P. pastoris without the need of a previous in vitro activation. The new recombinant yeast strain could represent a novel and excellent source of rennet for the cheesemaking industry. PMID:18975968

  16. Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris

    PubMed Central

    Marx, Hans; Mattanovich, Diethard; Sauer, Michael

    2008-01-01

    Background High cell density cultures of Pichia pastoris grown on methanol tend to develop yellow colored supernatants, attributed to the release of free flavins. The potential of P. pastoris for flavin overproduction is therefore given, but not pronounced when the yeast is grown on glucose. The aim of this study is to characterize the relative regulatory impact of each riboflavin synthesis gene. Deeper insight into pathway control and the potential of deregulation is established by overexpression of the single genes as well as a combined deregulation of up to all six riboflavin synthesis genes. Results Overexpression of the first gene of the riboflavin biosynthetic pathway (RIB1) is already sufficient to obtain yellow colonies and the accumulation of riboflavin in the supernatant of shake flask cultures growing on glucose. Sequential deregulation of all the genes, by exchange of their native promoter with the strong and constitutive glyceraldehyde-3-phosphate dehydrogenase promoter (PGAP) increases the riboflavin accumulation significantly. Conclusion The regulation of the pathway is distributed over more than one gene. High cell density cultivations of a P. pastoris strain overexpressing all six RIB genes allow the accumulation of 175 mg/L riboflavin in the supernatant. The basis for rational engineering of riboflavin production in P. pastoris has thus been established. PMID:18664246

  17. Characterization of wheat germin (oxalate oxidase) expressed by Pichia pastoris

    SciTech Connect

    Pan, Heng-Yen; Whittaker, Mei M.; Bouveret, Romaric; Berna, Anne; Bernier, Francois; Whittaker, James W. . E-mail: jim@ebs.ogi.edu

    2007-05-18

    High-level secretory expression of wheat (Triticum aestivum) germin/oxalate oxidase was achieved in Pichia pastoris fermentation cultures as an {alpha}-mating factor signal peptide fusion, based on the native wheat cDNA coding sequence. The oxalate oxidase activity of the recombinant enzyme is substantially increased (7-fold) by treatment with sodium periodate, followed by ascorbate reduction. Using these methods, approximately 1 g (4 x 10{sup 4} U) of purified, activated enzyme was obtained following eight days of induction of a high density Pichia fermentation culture, demonstrating suitability for large-scale production of oxalate oxidase for biotechnological applications. Characterization of the recombinant protein shows that it is glycosylated, with N-linked glycan attached at Asn47. For potential biomedical applications, a nonglycosylated (S49A) variant was also prepared which retains essentially full enzyme activity, but exhibits altered protein-protein interactions.

  18. Simple and efficient expression of Agaricus meleagris pyranose dehydrogenase in Pichia pastoris.

    PubMed

    Sygmund, Christoph; Gutmann, Alexander; Krondorfer, Iris; Kujawa, Magdalena; Glieder, Anton; Pscheidt, Beate; Haltrich, Dietmar; Peterbauer, Clemens; Kittl, Roman

    2012-05-01

    Pyranose dehydrogenase (PDH) is a fungal flavin-dependent sugar oxidoreductase that is highly interesting for applications in organic synthesis or electrochemistry. The low expression levels of the filamentous fungus Agaricus meleagris as well as the demand for engineered PDH make heterologous expression necessary. Recently, Aspergillus species were described to efficiently secrete recombinant PDH. Here, we evaluate recombinant protein production with expression hosts more suitable for genetic engineering. Expression in Escherichia coli resulted in no soluble or active PDH. Heterologous expression in the methylotrophic yeast Pichia pastoris was investigated using two different signal sequences as well as a codon-optimized sequence. A 96-well plate activity screening for transformants of all constructs was established and the best expressing clone was used for large-scale production in 50-L scale, which gave a volumetric yield of 223 mg L(-1) PDH or 1,330 U L(-1) d(-1) in space-time yield. Purification yielded 13.4 g of pure enzyme representing 95.8% of the initial activity. The hyperglycosylated recombinant enzyme had a 20% lower specific activity than the native enzyme; however, the kinetic properties were essentially identical. This study demonstrates the successful expression of PDH in the eukaryotic host organism P. pastoris paving the way for protein engineering. Additionally, the feasibility of large-scale production of the enzyme with this expression system together with a simplified purification scheme for easy high-yield purification is shown. PMID:22080342

  19. Cloning, high-level expression, purification, and properties of a novel endo-beta-1,4-mannanase from Bacillus subtilis G1 in Pichia pastoris.

    PubMed

    Vu, Thi Thu Hang; Quyen, Dinh Thi; Dao, Thi Tuyet; Nguyen, Sy Le Thanh

    2012-03-01

    A novel gene coding for an endo-beta-1,4-mannanase (manA) from Bacillus subtilis strain G1 was cloned and overexpressed in P. pastoris GS115, and the enzyme was purified and characterized. The manA gene consisted of an open reading frame of 1,092 nucleotides, encoding a 364-aa protein, with a predicted molecular mass of 41 kDa. The beta-mannanase showed an identity of 90.2-92.9% (< or =95%) with the corresponding amino acid sequences from B. subtilis strains deposited in GenBank. The purified beta- mannanase was a monomeric protein on SDS-PAGE with a specific activity of 2,718 U/mg and identified by MALDITOF mass spectrometry. The recombinant beta-mannanase had an optimum temperature of 45 degrees C and optimum pH of 6.5. The enzyme was stable at temperatures up to 50 degrees C (for 8 h) and in the pH range of 5-9. EDTA and most tested metal ions showed a slightly to an obviously inhibitory effect on enzyme activity, whereas metal ions (Hg2+, Pb2+, and Co2+) substantially inhibited the recombinant beta-mannanase. The chemical additives including detergents (Triton X- 100, Tween 20, and SDS) and organic solvents (methanol, ethanol, n-butanol, and acetone) decreased the enzyme activity, and especially no enzyme activity was observed by addition of SDS at the concentrations of 0.25-1.0% (w/v) or n-butanol at the concentrations of 20-30% (v/v). These results suggested that the beta-mannanase expressed in P. pastoris could potentially be used as an additive in the feed for monogastric animals. PMID:22450788

  20. Heterologous overexpression of Glomerella cingulata FAD-dependent glucose dehydrogenase in Escherichia coli and Pichia pastoris

    PubMed Central

    2011-01-01

    Background FAD dependent glucose dehydrogenase (GDH) currently raises enormous interest in the field of glucose biosensors. Due to its superior properties such as high turnover rate, substrate specificity and oxygen independence, GDH makes its way into glucose biosensing. The recently discovered GDH from the ascomycete Glomerella cingulata is a novel candidate for such an electrochemical application, but also of interest to study the plant-pathogen interaction of a family of wide-spread, crop destroying fungi. Heterologous expression is a necessity to facilitate the production of GDH for biotechnological applications and to study its physiological role in the outbreak of anthracnose caused by Glomerella (anamorph Colletotrichum) spp. Results Heterologous expression of active G. cingulata GDH has been achieved in both Escherichia coli and Pichia pastoris, however, the expressed volumetric activity was about 4800-fold higher in P. pastoris. Expression in E. coli resulted mainly in the formation of inclusion bodies and only after co-expression with molecular chaperones enzymatic activity was detected. The fed-batch cultivation of a P. pastoris transformant resulted in an expression of 48,000 U L-1 of GDH activity (57 mg L-1). Recombinant GDH was purified by a two-step purification procedure with a yield of 71%. Comparative characterization of molecular and catalytic properties shows identical features for the GDH expressed in P. pastoris and the wild-type enzyme from its natural fungal source. Conclusions The heterologous expression of active GDH was greatly favoured in the eukaryotic host. The efficient expression in P. pastoris facilitates the production of genetically engineered GDH variants for electrochemical-, physiological- and structural studies. PMID:22151971

  1. Construction of new Pichia pastoris X-33 strains for production of lycopene and β-carotene.

    PubMed

    Araya-Garay, J M; Feijoo-Siota, L; Rosa-dos-Santos, F; Veiga-Crespo, P; Villa, T G

    2012-03-01

    In this study, we used the non-carotenogenic yeast Pichia pastoris X33 as a receptor for β-carotene-encoding genes, in order to obtain new recombinant strains capable of producing different carotenoidic compounds. We designed and constructed two plasmids, pGAPZA-EBI* and pGAPZA-EBI*L*, containing the genes encoding lycopene and β-carotene, respectively. Plasmid pGAPZA-EBI*, expresses three genes, crtE, crtB, and crtI*, that encode three carotenogenic enzymes, geranylgeranyl diphosphate synthase, phytoene synthase, and phytoene desaturase, respectively. The other plasmid, pGAPZA-EBI*L*, carried not only the three genes above mentioned, but also the crtL* gene, that encodes lycopene β-cyclase. The genes crtE, crtB, and crtI were obtained from Erwinia uredovora, whereas crtL* was cloned from Ficus carica (JF279547). The plasmids were integrated into P. pastoris genomic DNA, and the resulting clones Pp-EBI and Pp-EBIL were selected for either lycopene or β-carotene production and purification, respectively. Cells of these strains were investigated for their carotenoid contents in YPD media. These carotenoids produced by the recombinant P. pastoris clones were qualitatively and quantitatively analyzed by high-resolution liquid chromatography, coupled to photodiode array detector. These analyses confirmed that the recombinant P. pastoris clones indeed produced either lycopene or β-carotene, according to the integrated vector, and productions of 1.141 μg of lycopene and 339 μg of β-carotene per gram of cells (dry weight) were achieved. To the best of our knowledge, this is the first time that P. pastoris has been genetically manipulated to produce β-carotene, thus providing an alternative source for large-scale biosynthesis of carotenoids. PMID:22159890

  2. Transcriptional Regulation of Aerobic Metabolism in Pichia pastoris Fermentation

    PubMed Central

    Zhang, Biao; Li, Baizhi; Chen, Dai; Zong, Jie; Sun, Fei; Qu, Huixin; Liang, Chongyang

    2016-01-01

    In this study, we investigated the classical fermentation process in Pichia pastoris based on transcriptomics. We utilized methanol in pichia yeast cell as the focus of our study, based on two key steps: limiting carbon source replacement (from glycerol to methonal) and fermentative production of exogenous proteins. In the former, the core differential genes in co-expression net point to initiation of aerobic metabolism and generation of peroxisome. The transmission electron microscope (TEM) results showed that yeast gradually adapted methanol induction to increased cell volume, and decreased density, via large number of peroxisomes. In the fermentative production of exogenous proteins, the Gene Ontology (GO) mapping results show that PAS_chr2-1_0582 played a vital role in regulating aerobic metabolic drift. In order to confirm the above results, we disrupted PAS_chr2-1_0582 by homologous recombination. Alcohol consumption was equivalent to one fifth of the normal control, and fewer peroxisomes were observed in Δ0582 strain following methanol induction. In this study we determined the important core genes and GO terms regulating aerobic metabolic drift in Pichia, as well as developing new perspectives for the continued development within this field. PMID:27537181

  3. Transcriptional Regulation of Aerobic Metabolism in Pichia pastoris Fermentation.

    PubMed

    Zhang, Biao; Li, Baizhi; Chen, Dai; Zong, Jie; Sun, Fei; Qu, Huixin; Liang, Chongyang

    2016-01-01

    In this study, we investigated the classical fermentation process in Pichia pastoris based on transcriptomics. We utilized methanol in pichia yeast cell as the focus of our study, based on two key steps: limiting carbon source replacement (from glycerol to methonal) and fermentative production of exogenous proteins. In the former, the core differential genes in co-expression net point to initiation of aerobic metabolism and generation of peroxisome. The transmission electron microscope (TEM) results showed that yeast gradually adapted methanol induction to increased cell volume, and decreased density, via large number of peroxisomes. In the fermentative production of exogenous proteins, the Gene Ontology (GO) mapping results show that PAS_chr2-1_0582 played a vital role in regulating aerobic metabolic drift. In order to confirm the above results, we disrupted PAS_chr2-1_0582 by homologous recombination. Alcohol consumption was equivalent to one fifth of the normal control, and fewer peroxisomes were observed in Δ0582 strain following methanol induction. In this study we determined the important core genes and GO terms regulating aerobic metabolic drift in Pichia, as well as developing new perspectives for the continued development within this field. PMID:27537181

  4. A simple Pichia pastoris fermentation and downstream processing strategy for making recombinant pandemic Swine Origin Influenza a virus Hemagglutinin protein.

    PubMed

    Athmaram, T N; Singh, Anil Kumar; Saraswat, Shweta; Srivastava, Saurabh; Misra, Princi; Kameswara Rao, M; Gopalan, N; Rao, P V L

    2013-02-01

    The present Influenza vaccine manufacturing process has posed a clear impediment to initiation of rapid mass vaccination against spreading pandemic influenza. New vaccine strategies are therefore needed that can accelerate the vaccine production. Pichia offers several advantages for rapid and economical bulk production of recombinant proteins and, hence, can be attractive alternative for producing an effective influenza HA based subunit vaccine. The recombinant Pichia harboring the transgene was subjected to fed-batch fermentation at 10 L scale. A simple fermentation and downstream processing strategy is developed for high-yield secretory expression of the recombinant Hemagglutinin protein of pandemic Swine Origin Influenza A virus using Pichia pastoris via fed-batch fermentation. Expression and purification were optimized and the expressed recombinant Hemagglutinin protein was verified by sodium dodecyl sulfate polyacrylamide gel electrophoresis, Western blot and MALDI-TOF analysis. In this paper, we describe a fed-batch fermentation protocol for the secreted production of Swine Influenza A Hemagglutinin protein in the P. pastoris GS115 strain. We have shown that there is a clear relationship between product yield and specific growth rate. The fed-batch fermentation and downstream processing methods optimized in the present study have immense practical application for high-level production of the recombinant H1N1 HA protein in a cost effective way using P. pastoris. PMID:23247902

  5. Surface display and bioactivity of Bombyx mori acetylcholinesterase on Pichia pastoris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To construct the Pichia pastoris (P. pastoris) cell surface display system of Bombyx mori acetylcholinesterase (BmAChE), the gene for the anchor protein (AGa1) was obtained from Saccharomyces cerevisiae and was fused with the modified Bombyx mori acetylcholinesterase gene (bmace) and transformed int...

  6. Expression of Eukaryotic Membrane Proteins in Pichia pastoris.

    PubMed

    Hartmann, Lucie; Kugler, Valérie; Wagner, Renaud

    2016-01-01

    A key point when it comes to heterologous expression of eukaryotic membrane proteins (EMPs) is the choice of the best-suited expression platform. The yeast Pichia pastoris has proven to be a very versatile system showing promising results in a growing number of cases. Indeed, its particular methylotrophic characteristics combined to the very simple handling of a eukaryotic microorganism that possesses the majority of mammalian-like machineries make it a very competitive expression system for various complex proteins, in amounts compatible with functional and structural studies. This chapter describes a set of robust methodologies routinely used for the successful expression of a variety of EMPs, going from yeast transformation with the recombinant plasmid to the analysis of the quality and quantity of the proteins produced. PMID:27485335

  7. Production and Analysis of Perdeuterated Lipids from Pichia pastoris Cells

    PubMed Central

    de Ghellinck, Alexis; Schaller, Hubert; Laux, Valérie; Haertlein, Michael; Sferrazza, Michele; Maréchal, Eric; Wacklin, Hanna; Jouhet, Juliette; Fragneto, Giovanna

    2014-01-01

    Probing molecules using perdeuteration (i.e deuteration in which all hydrogen atoms are replaced by deuterium) is extremely useful in a wide range of biophysical techniques. In the case of lipids, the synthesis of the biologically relevant unsaturated perdeuterated lipids is challenging and not usually pursued. In this work, perdeuterated phospholipids and sterols from the yeast Pichia pastoris grown in deuterated medium are extracted and analyzed as derivatives by gas chromatography and mass spectrometry respectively. When yeast cells are grown in a deuterated environment, the phospholipid homeostasis is maintained but the fatty acid unsaturation level is modified while the ergosterol synthesis is not affected by the deuterated culture medium. Our results confirm that the production of well defined natural unsaturated perdeuterated lipids is possible and gives also new insights about the process of desaturase enzymes. PMID:24747350

  8. Constitutive expression of Botrytis aclada laccase in Pichia pastoris.

    PubMed

    Kittl, Roman; Gonaus, Christoph; Pillei, Christian; Haltrich, Dietmar; Ludwig, Roland

    2012-01-01

    The heterologous expression of laccases is important for their large-scale production and genetic engineering--a prerequisite for industrial application. Pichia pastoris is the preferred expression host for fungal laccases. The recently cloned laccase from the ascomycete Botrytis aclada (BaLac) has been efficiently expressed in P. pastoris under the control of the inducible alcohol oxidase (AOX1) promoter. In this study, we compare these results to the constitutive expression in the same organism using the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter. The results show that the amounts of BaLac produced with the GAP system (517 mgL(-1)) and the AOX1 system (495 mgL(-1)) are comparable. The constitutive expression is, however, faster, and the specific activity of BaLac in the culture supernatant is higher (41.3 Umg(-1) GAP, 14.2 Umg(-1) AOX1). In microtiter plates, the constitutive expression provides a clear advantage due to easy manipulation (simple medium, no methanol feeding) and fast enzyme production (high-throughput screening assays can already be performed after 48 h). PMID:22705842

  9. Constitutive expression of Botrytis aclada laccase in Pichia pastoris

    PubMed Central

    Kittl, Roman; Gonaus, Christoph; Pillei, Christian; Haltrich, Dietmar; Ludwig, Roland

    2012-01-01

    The heterologous expression of laccases is important for their large-scale production and genetic engineering—a prerequisite for industrial application. Pichia pastoris is the preferred expression host for fungal laccases. The recently cloned laccase from the ascomycete Botrytis aclada (BaLac) has been efficiently expressed in P. pastoris under the control of the inducible alcohol oxidase (AOX1) promoter. In this study, we compare these results to the constitutive expression in the same organism using the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter. The results show that the amounts of BaLac produced with the GAP system (517 mgL-1) and the AOX1 system (495 mgL-1) are comparable. The constitutive expression is, however, faster, and the specific activity of BaLac in the culture supernatant is higher (41.3 Umg-1 GAP, 14.2 Umg-1 AOX1). In microtiter plates, the constitutive expression provides a clear advantage due to easy manipulation (simple medium, no methanol feeding) and fast enzyme production (high-throughput screening assays can already be performed after 48 h). PMID:22705842

  10. Biotechnological advances towards an enhanced peroxidase production in Pichia pastoris.

    PubMed

    Krainer, Florian W; Gerstmann, Michaela A; Darnhofer, Barbara; Birner-Gruenberger, Ruth; Glieder, Anton

    2016-09-10

    Horseradish peroxidase (HRP) is a high-demand enzyme for applications in diagnostics, bioremediation, biocatalysis and medicine. Current HRP preparations are isolated from horseradish roots as mixtures of biochemically diverse isoenzymes. Thus, there is a strong need for a recombinant production process enabling a steady supply with enzyme preparations of consistent high quality. However, most current recombinant production systems are limited at titers in the low mg/L range. In this study, we used the well-known yeast Pichia pastoris as host for recombinant HRP production. To enhance recombinant enzyme titers we systematically evaluated engineering approaches on the secretion process, coproduction of helper proteins, and compared expression from the strong methanol-inducible PAOX1 promoter, the strong constitutive PGAP promoter, and a novel bidirectional promoter PHTX1. Ultimately, coproduction of HRP and active Hac1 under PHTX1 control yielded a recombinant HRP titer of 132mg/L after 56h of cultivation in a methanol-independent and easy-to-do bioreactor cultivation process. With regard to the many versatile applications for HRP, the establishment of a microbial host system suitable for efficient recombinant HRP production was highly overdue. The novel HRP production platform in P. pastoris presented in this study sets a new benchmark for this medically relevant enzyme. PMID:27432633

  11. Molecular optimization of rabies virus glycoprotein expression in Pichia pastoris.

    PubMed

    Ben Azoun, Safa; Belhaj, Aicha Eya; Göngrich, Rebecca; Gasser, Brigitte; Kallel, Héla

    2016-05-01

    In this work, different approaches were investigated to enhance the expression rabies virus glycoprotein (RABV-G) in the yeast Pichia pastoris; this membrane protein is responsible for the synthesis of rabies neutralizing antibodies. First, the impact of synonymous codon usage bias was examined and an optimized RABV-G gene was synthesized. Nevertheless, data showed that the secretion of the optimized RABV-G gene was not tremendously increased as compared with the non-optimized one. In addition, similar levels of RABV-G were obtained when α-factor mating factor from Saccharomyces cerevisiae or the acid phosphatase PHO1 was used as a secretion signal. Therefore, sequence optimization and secretion signal were not the major bottlenecks for high-level expression of RABV-G in P. pastoris. Unfolded protein response (UPR) was induced in clones containing high copy number of RABV-G expression cassette indicating that folding was the limiting step for RABV-G secretion. To circumvent this limitation, co-overexpression of five factors involved in oxidative protein folding was investigated. Among these factors only PDI1, ERO1 and GPX1 proved their benefit to enhance the expression. The highest expression level of RABV-G reached 1230 ng ml(-1) . Competitive neutralizing assay confirmed that the recombinant protein was produced in the correct conformational form in this host. PMID:26880068

  12. Cloning, Expression, and Characterization of Siamese Crocodile (Crocodylus siamensis) Hemoglobin from Escherichia coli and Pichia pastoris.

    PubMed

    Anwised, Preeyanan; Jangpromma, Nisachon; Temsiripong, Theeranan; Patramanon, Rina; Daduang, Sakda; Jitrapakdee, Sarawut; Araki, Tomohiro; Klaynongsruang, Sompong

    2016-08-01

    Recombinant Crocodylus siamensis hemoglobin (cHb) has been constructed and expressed using Escherichia coli as the expression system in conjunction with a trigger factor from the Cold-shock system as the fusion protein. While successful processing as soluble protein in E. coli was achieved, the net yields of active protein from downstream purification processes remained still unsatisfactory. In this study, cHb was constructed and expressed in the eukaryotic expression system Pichia pastoris. The results showed that cHb was excreted from P. pastoris as a soluble protein after 72 h at 25 °C. The amino acid sequence of recombinant cHb was confirmed using LC-MS/MS. Indeed, the characteristic of Hb was investigated by external heme incorporation. The UV-Vis profile showed a specific pattern of the absorption at 415 nm, indicating the recombinant cHb was formed complex with heme, resulting in active oxyhemoglobin (OxyHb). This result suggests that the heme molecules were fully combined with heme binding site of the recombinant cHb, thus producing characteristic red color for the OxyHb at 540 and 580 nm. The results revealed that the recombinant cHb was prosperously produced in P. pastoris and exhibited a property as protein-ligand binding. Thus, our work described herein offers a great potential to be applied for further studies of heme-containing protein expression. It represents further pleasing option for protein production and purification on a large scale, which is important for determination and characterization of the authenticity features of cHb proteins. PMID:27301987

  13. Functional expression of a blood tolerant laccase in Pichia pastoris

    PubMed Central

    2013-01-01

    Background Basidiomycete high-redox potential laccases (HRPLs) working in human physiological fluids (pH 7.4, 150 mM NaCl) arise great interest in the engineering of 3D-nanobiodevices for biomedical uses. In two previous reports, we described the directed evolution of a HRPL from basidiomycete PM1 strain CECT 2971: i) to be expressed in an active, soluble and stable form in Saccharomyces cerevisiae, and ii) to be active in human blood. In spite of the fact that S. cerevisiae is suited for the directed evolution of HRPLs, the secretion levels obtained in this host are not high enough for further research and exploitation. Thus, the search for an alternative host to over-express the evolved laccases is mandatory. Results A blood-active laccase (ChU-B mutant) fused to the native/evolved α-factor prepro-leader was cloned under the control of two different promoters (PAOX1 and PGAP) and expressed in Pichia pastoris. The most active construct, which contained the PAOX1 and the evolved prepro-leader, was fermented in a 42-L fed-batch bioreactor yielding production levels of 43 mg/L. The recombinant laccase was purified to homogeneity and thoroughly characterized. As happened in S. cerevisiae, the laccase produced by P. pastoris presented an extra N-terminal extension (ETEAEF) generated by an alternative processing of the α-factor pro-leader at the Golgi compartment. The laccase mutant secreted by P. pastoris showed the same improved properties acquired after several cycles of directed evolution in S. cerevisiae for blood-tolerance: a characteristic pH-activity profile shifted to the neutral-basic range and a greatly increased resistance against inhibition by halides. Slight biochemical differences between both expression systems were found in glycosylation, thermostability and turnover numbers. Conclusions The tandem-yeast system based on S. cerevisiae to perform directed evolution and P. pastoris to over-express the evolved laccases constitutes a promising approach for

  14. Production of in vivo biotinylated scFv specific to almond (Prunus dulcis) proteins by recombinant Pichia pastoris.

    PubMed

    de la Cruz, Silvia; Alcocer, Marcos; Madrid, Raquel; García, Aina; Martín, Rosario; González, Isabel; García, Teresa

    2016-06-10

    The methylotropic yeast Pichia pastoris has demonstrated its suitability for large-scale production of recombinant proteins. As an eukaryotic organism P. pastoris presents a series of advantages at expression and processing of heterologous proteins when compared with Escherichia coli. In this work, P. pastoris has been used to express a scFv from a human synthetic library previously shown to bind almond proteins. In order to facilitate purification and post processing manipulations, the scFv was engineered with a C-terminal tag and biotinylated in vivo. After purification, biotinylated scFv were bound to avidin conjugated with HRP producing a multimeric scFv. The multimeric scFv showed to maintain their ability to recognize almond protein when assayed in ELISA, reaching a LOD of 470mgkg(-1). This study describes an easy method to produce large quantities of in vivo biotinylated scFv in P. pastoris. By substituting the enzyme or fluorochromes linked to avidin, it will be possible to generate a diverse number of multimeric scFv as probes to suit different analytical platforms in the detection of almond in food products. PMID:27085890

  15. Molecular cloning and expression in Pichia pastoris of a hypoallergenic antigen 5.

    PubMed

    Vinzón, Sabrina E; Pirpignani, María L; Nowicki, Cristina; Biscoglio de Jiménez Bonino, Mirtha

    2010-09-01

    Stings by insects from the Hymenoptera order can cause life-threatening allergic reactions and impair life quality. Immunotherapy with venom extracts is the most extensively employed treatment to reduce morbidity and mortality, but purified and safer allergy vaccines are needed. Antigen 5 is an important allergen of vespid venoms. We previously reported that Antigen 5 from Polybia scutellaris (Poly s 5) is likely to be a hypoallergenic variant. On the basis of such findings, this work deals with the recombinant expression and purification of Poly s 5 in Pichia pastoris. In order to overcome non-native glycosylation of the recombinant protein, it was necessary to delete a glycosylation site. On the other hand, different strategies were attempted to obtain a satisfactory yield of the protein; moreover, the influence of the methanol concentration in the expression medium was investigated and found to be crucial. Mass spectrometry, N-terminal sequencing, and IgG-binding inhibition assays were performed. Results allowed us to confirm the immunological equivalence between the recombinant and the natural proteins. In conclusion, a novel protocol for the recombinant expression of Poly s 5 in P. pastoris was designed thus bringing about a high yield of the protein useful for clinical and scientific purposes. PMID:20371379

  16. Recombinant protein production facility for fungal biomass-degrading enzymes using the yeast Pichia pastoris

    PubMed Central

    Haon, Mireille; Grisel, Sacha; Navarro, David; Gruet, Antoine; Berrin, Jean-Guy; Bignon, Christophe

    2015-01-01

    Filamentous fungi are the predominant source of lignocellulolytic enzymes used in industry for the transformation of plant biomass into high-value molecules and biofuels. The rapidity with which new fungal genomic and post-genomic data are being produced is vastly outpacing functional studies. This underscores the critical need for developing platforms dedicated to the recombinant expression of enzymes lacking confident functional annotation, a prerequisite to their functional and structural study. In the last decade, the yeast Pichia pastoris has become increasingly popular as a host for the production of fungal biomass-degrading enzymes, and particularly carbohydrate-active enzymes (CAZymes). This study aimed at setting-up a platform to easily and quickly screen the extracellular expression of biomass-degrading enzymes in P. pastoris. We first used three fungal glycoside hydrolases (GHs) that we previously expressed using the protocol devised by Invitrogen to try different modifications of the original protocol. Considering the gain in time and convenience provided by the new protocol, we used it as basis to set-up the facility and produce a suite of fungal CAZymes (GHs, carbohydrate esterases and auxiliary activity enzyme families) out of which more than 70% were successfully expressed. The platform tasks range from gene cloning to automated protein purifications and activity tests, and is open to the CAZyme users’ community. PMID:26441929

  17. Recombinant protein production facility for fungal biomass-degrading enzymes using the yeast Pichia pastoris.

    PubMed

    Haon, Mireille; Grisel, Sacha; Navarro, David; Gruet, Antoine; Berrin, Jean-Guy; Bignon, Christophe

    2015-01-01

    Filamentous fungi are the predominant source of lignocellulolytic enzymes used in industry for the transformation of plant biomass into high-value molecules and biofuels. The rapidity with which new fungal genomic and post-genomic data are being produced is vastly outpacing functional studies. This underscores the critical need for developing platforms dedicated to the recombinant expression of enzymes lacking confident functional annotation, a prerequisite to their functional and structural study. In the last decade, the yeast Pichia pastoris has become increasingly popular as a host for the production of fungal biomass-degrading enzymes, and particularly carbohydrate-active enzymes (CAZymes). This study aimed at setting-up a platform to easily and quickly screen the extracellular expression of biomass-degrading enzymes in P. pastoris. We first used three fungal glycoside hydrolases (GHs) that we previously expressed using the protocol devised by Invitrogen to try different modifications of the original protocol. Considering the gain in time and convenience provided by the new protocol, we used it as basis to set-up the facility and produce a suite of fungal CAZymes (GHs, carbohydrate esterases and auxiliary activity enzyme families) out of which more than 70% were successfully expressed. The platform tasks range from gene cloning to automated protein purifications and activity tests, and is open to the CAZyme users' community. PMID:26441929

  18. Expression and characterization of camel chymosin in Pichia pastoris.

    PubMed

    Wang, Nan; Wang, Kevin Yueju; Li, GangQiang; Guo, WenFang; Liu, DeHu

    2015-07-01

    Chymosin efficiently coagulates milk and so is widely used in commercial cheese production. Traditional chymosin production requires the slaughter of a large numbers of unweaned calves. In the present study, a full-length camel prochymosin gene was synthesized and cloned into the pPIC9K vector, which was then inserted into the yeast strain, Pichia pastoris GS115. Expression of the chymosin gene in yeast was under the control of an AOX1 inducible promoter. The yeast system produced approximately 37mg/L of recombinant enzyme under lab conditions. SDS-PAGE of the raw supernatant revealed two molecular bands, which were approximately 42kDa and 45kDa in size. The 45kDa band disappeared after treatment of the supernatant with N-glycosidase F (PNGase F), indicating that the recombinant protein was partially glycosylated. When subjected to a low pH, recombinant prochymosin was converted into mature and active chymosin. The active chymosin was capable of specifically hydrolyzing κ-casein. A pH of 5.04, and temperature range of 45-50°C, was optimum for milk clotting activity. Maximum milk clotting activity was detected with the inclusion of 20-40mM CaCl2. The recombinant enzyme was highly active and stable over a wide pH range (from 2.5 to 6.5) at 20°C for 8h. Thermostability of the recombinant enzyme was also analyzed. Pilot-scale production (300mg/L) was attained using a 5L fermenter. We demonstrated that expression of the camel chymosin gene in P. pastoris could represent an excellent system for producing active camel chymosin for potential use in the commercial production of cheese. PMID:25837439

  19. [Overexpression of Penicillium expansum lipase gene in Pichia pastoris].

    PubMed

    Yuan, Cai; Lin, Lin; Shi, Qiao-Qin; Wu, Song-Gang

    2003-03-01

    The alkaline lipase gene of Penicillium expansum (PEL) was coloned into the yeast integrative plasmid pPIC3.5K, which was then transformed into His4 mutant yeast GS115. Recombinant Pichia strains were obtained by minimal olive oil-methanol plates screening and confirmed by PCR. The expression producus of PEL gene was analysis by SDS-PAGE and olive oil plate, the result indicated that PEL gene was functionally overexpressed in Pichia pastoris and up to 95% of the secreted protein. Recombinant lipase had a molecular mass of 28kD, showing a range similar to that of PEL, could hydrolyze olive oil and formed clear halos in the olive oil plates. Four different strategies (different media, pH, glycerol and methanol concentration) were applied to optimize the cultivation conditions, the activity of lipase was up to 260 u/mL under the optimal cultivation conditions. It is pointed out that the absence of the expensive biotin and yeast nitrogen base in the medium increased the lipase production. The possible reason of this result is absence of yeast nitrogen base increased the medium pH during cultivation, and PEL shows a higher stability at this condition. The lipase activity of the supernatant from the culture grown at pH 7 was higher than the one from the culture in the same medium at pH 6.0 is due to the pH stability of PEL too. The results also showed that the methanol and glycerol concentration had a marked effect on the production of lipase. PMID:15966328

  20. Differential secretion pathways of proteins fused to the Escherichia coli maltose binding protein (MBP) in Pichia pastoris.

    PubMed

    Moua, Pachai S; Gonzalez, Alfonso; Oshiro, Kristin T; Tam, Vivian; Li, Zhiguo Harry; Chang, Jennifer; Leung, Wilson; Yon, Amy; Thor, Der; Venkatram, Sri; Franz, Andreas H; Risser, Douglas D; Lin-Cereghino, Joan; Lin-Cereghino, Geoff P

    2016-08-01

    The Escherichia coli maltose binding protein (MBP) is an N-terminal fusion partner that was shown to enhance the secretion of some heterologous proteins from the yeast Pichia pastoris, a popular host for recombinant protein expression. The amount of increase in secretion was dependent on the identity of the cargo protein, and the fusions were proteolyzed prior to secretion, limiting its use as a purification tag. In order to overcome these obstacles, we used the MBP as C-terminal partner for several cargo peptides. While the Cargo-MBP proteins were no longer proteolyzed in between these two moieties when the MBP was in this relative position, the secretion efficiency of several fusions was lower than when MBP was located at the opposite end of the cargo protein (MBP-Cargo). Furthermore, fluorescence analysis suggested that the MBP-EGFP and EGFP-MBP proteins followed different routes within the cell. The effect of several Pichia pastoris beta-galactosidase supersecretion (bgs) strains, mutants showing enhanced secretion of select reporters, was also investigated on both MBP-EGFP and EGFP-MBP. While the secretion efficiency, proteolysis and localization of the MBP-EGFP was influenced by the modified function of Bgs13, EGFP-MBP behavior was not affected in the bgs strain. Taken together, these results indicate that the location of the MBP in a fusion affects the pathway and trans-acting factors regulating secretion in P. pastoris. PMID:27079175

  1. Electrochemical studies of a truncated laccase produced in Pichia pastoris

    SciTech Connect

    Gelo-Pujic, M.; Kim, H.H.; Butlin, N.G.; Palmore, G.T.R.

    1999-12-01

    The cDNA that encodes an isoform is laccase from Trametes versicolor (LCCI), as well as a truncated version (LCCIa), was subcloned and expressed by using the yeast Pichia pastoris as the heterologous host. The amino acid sequence of LCCIa is identical to that of LCCI except that the final 11 amino acids at the C terminus of LCCI are replaced with a single cysteine residue. This modification was introduced for the purpose of improving the kinetics of electron transfer between an electrode and the copper-containing active site of laccase. The two laccases (LCCI and LCCIa) are compared in terms of their relative activity with two substrates that have different redox potentials. Results from electrochemical studies on solutions containing LCCI and LCCIa indicate that the redox potential of the active site of LCCIa is shifted to more negative values (411 mV versus normal hydrogen electrode voltage) than that found in other fungal laccases. In addition, replacing the 11 codons at the C terminus of the laccase gene with a single cysteine codon influences the rate of heterogeneous electron transfer between and electrode and the copper-containing active site. These results demonstrate for the first time that the rate of electron transfer between an oxidoreductase and an electrode can be enhanced by changes to the primary structure of a protein via site-directed mutagenesis.

  2. Crystal Structure of Alcohol Oxidase from Pichia pastoris

    PubMed Central

    Valerius, Oliver; Feussner, Ivo; Ficner, Ralf

    2016-01-01

    FAD-dependent alcohol oxidases (AOX) are key enzymes of methylotrophic organisms that can utilize lower primary alcohols as sole source of carbon and energy. Here we report the crystal structure analysis of the methanol oxidase AOX1 from Pichia pastoris. The crystallographic phase problem was solved by means of Molecular Replacement in combination with initial structure rebuilding using Rosetta model completion and relaxation against an averaged electron density map. The subunit arrangement of the homo-octameric AOX1 differs from that of octameric vanillyl alcohol oxidase and other dimeric or tetrameric alcohol oxidases, due to the insertion of two large protruding loop regions and an additional C-terminal extension in AOX1. In comparison to other alcohol oxidases, the active site cavity of AOX1 is significantly reduced in size, which could explain the observed preference for methanol as substrate. All AOX1 subunits of the structure reported here harbor a modified flavin adenine dinucleotide, which contains an arabityl chain instead of a ribityl chain attached to the isoalloxazine ring. PMID:26905908

  3. Crystal Structure of Alcohol Oxidase from Pichia pastoris.

    PubMed

    Koch, Christian; Neumann, Piotr; Valerius, Oliver; Feussner, Ivo; Ficner, Ralf

    2016-01-01

    FAD-dependent alcohol oxidases (AOX) are key enzymes of methylotrophic organisms that can utilize lower primary alcohols as sole source of carbon and energy. Here we report the crystal structure analysis of the methanol oxidase AOX1 from Pichia pastoris. The crystallographic phase problem was solved by means of Molecular Replacement in combination with initial structure rebuilding using Rosetta model completion and relaxation against an averaged electron density map. The subunit arrangement of the homo-octameric AOX1 differs from that of octameric vanillyl alcohol oxidase and other dimeric or tetrameric alcohol oxidases, due to the insertion of two large protruding loop regions and an additional C-terminal extension in AOX1. In comparison to other alcohol oxidases, the active site cavity of AOX1 is significantly reduced in size, which could explain the observed preference for methanol as substrate. All AOX1 subunits of the structure reported here harbor a modified flavin adenine dinucleotide, which contains an arabityl chain instead of a ribityl chain attached to the isoalloxazine ring. PMID:26905908

  4. Expression, purification and characterization of a human single-chain Fv antibody fragment fused with the Fc of an IgG1 targeting a rabies antigen in Pichia pastoris.

    PubMed

    Wang, Ding-ding; Su, Man-man; Sun, Yan; Huang, Shu-lin; Wang, Ju; Yan, Wei-qun

    2012-11-01

    Because the demand for rabies post exposure prophylaxis (PEP) treatment has increased exponentially in recent years, the limited supply of human and equine rabies immunoglobulin (HRIG and ERIG) has failed to provide an adequate amount of the required passive immune component in PEP in countries where canine rabies is endemic. The replacement of HRIG and ERIG with a potentially cheaper and efficacious alternative biological for the treatment of rabies in humans, therefore, remains a high priority. In this study, we set out to assess a human single-chain Fv antibody fragment fused with the Fc of an IgG1 targeting a rabies antigen to develop a product that can be used as a component of the PEP cocktail. We cloned the ScFv fragment from a human ScFv library that was established previously and inserted this fragment into the expression vector pPICZαC/Fc. An active recombinant ScFv-Fc fusion protein was successfully expressed in Pichia pastoris. The production of ScFv-Fc was optimized and scaled up in an 80L fermentor with yields exceeding 60mg/L. The ScFv-Fc protein was purified to more than 95% purity using a two-step scheme: ammonium sulfate fractionation and Protein A Sepharose CL-4B. The ScFv-Fc fusion protein neutralized rabies virus in a standard in vivo neutralization assay in which the virus was incubated with the ScFv-Fc molecules before intracranial inoculation in mice. Our results suggest that functional antibodies can be produced in P. pastoris and that ScFv-Fc fusion proteins have the potential to serve as therapeutic candidates. PMID:22982755

  5. High level expression of kringle 5 fragment of plasminogen in Pichia pastoris.

    PubMed

    Zhou, Yufei; Zheng, Quan; Gao, Jin; Gu, Jun

    2005-02-01

    Angiogensis can be blocked by inhibitors such as endostatin and angiostatin. The kringle 5 fragment of plasminogen also has a potent inhibitory effect on endothelial cell proliferation and leads to the inhibition of angiogenesis. It has promise in anti-angiogenic therapy due to its small size and potent inhibitory effect. Preparation of kringle 5 has been achieved through the proteolysis of native plasminogen and recombinant DNA technology. Bacterially expressed recombinant kringle 5 is mainly insoluble and expressed at low level. The refolding yield is also low. To produce recombinant human kringle 5 in a large quantity, we have genetically modified a strain of Pichia pastoris. On methanol induction, this strain expressed and secreted biologically active, recombinant kringle 5. The expression level of the engineered strain in culture reached more than 300 mgl(-1). Purification was easily achieved by precipitation, hydrophobic and DEAE ion exchange chromatography. The recovery of recombinant kringle 5 was about 50% after purification. Yeast-expressed kringle 5 has a higher activity in anti-endothelial proliferation than bacterially expressed kringle 5. PMID:15717125

  6. Separation of bivalent anti-T cell immunotoxin from Pichia pastoris glycoproteins by borate anion exchange.

    PubMed

    Woo, Jung Hee; Neville, David M

    2003-08-01

    A major problem encountered in the large-scale purification of the bivalent anti-T cell immunotoxin, A-dmDT390-bisFv(G4S), from Pichia pastoris supernatants was the presence of host glycoproteins exhibiting similar charge, size, and hydrophobicity characteristics. We overcame this problem by employing borate anion exchange chromatography. The borate anion has an affinity for carbohydrates and imparts negative charges to these structures. We found that at a concentration of sodium borate between 50 and 100 mM, the nonglycosylated immunotoxin did not bind to Poros 50 HQ anion exchanger resin, but glycoproteins, including aggregates related to the immunotoxin, did. By using this property of the immunotoxin in the presence of sodium borate, we successfully developed a 3-step purification procedure: (i) Butyl-650M hydrophobic interaction chromatography, (ii) Poros 50 HQ anion exchange chromatography in the presence of borate, and (iii) HiTrap Q anion exchange chromatography. The final preparation exhibited a purity of greater than 98% and a yield of greater than 50% from the supernatant. Previously, boronic acid resins have been used to separate glycoproteins from proteins. However, combining borate anion with conventional anion exchange resins accomplishes the separation of the immunotoxin from glycoproteins and eliminates the need to evaluate nonstandard resins with respect to good manufacturing practice guidelines. PMID:12951782

  7. Expression and characterization of HPV-16 L1 capsid protein in Pichia pastoris

    PubMed Central

    Bazan, Silvia Boschi; de Alencar Muniz Chaves, Agtha; Aires, Karina Araújo; Cianciarullo, Aurora Marques; Garcea, Robert L.; Ho, Paulo Lee

    2013-01-01

    Human papillomaviruses (HPVs) are responsible for the most common human sexually transmitted viral infections. Infection with high-risk HPVs, particularly HPV16, is associated with the development of cervical cancer. The papillomavirus L1 major capsid protein, the basis of the currently marketed vaccines, self-assembles into virus-like particles (VLPs). Here, we describe the expression, purification and characterization of recombinant HPV16 L1 produced by a methylotrophic yeast. A codon-optimized HPV16 L1 gene was cloned into a non-integrative expression vector under the regulation of a methanol-inducible promoter and used to transform competent Pichia pastoris cells. Purification of L1 protein from yeast extracts was performed using heparin–sepharose chromatography, followed by a disassembly/reassembly step. VLPs could be assembled from the purified L1 protein, as demonstrated by electron microscopy. The display of conformational epitopes on the VLPs surface was confirmed by hemagglutination and hemagglutination inhibition assays and by immuno-electron microscopy. This study has implications for the development of an alternative platform for the production of a papillomavirus vaccine that could be provided by public health programs, especially in resource-poor areas, where there is a great demand for low-cost vaccines. PMID:19756360

  8. Toxicological Evaluation of Lactase Derived from Recombinant Pichia pastoris

    PubMed Central

    Liu, Yifei; Chen, Delong; Luo, Yunbo; Huang, Kunlun; Zhang, Wei; Xu, Wentao

    2014-01-01

    A recombinant lactase was expressed in Pichia pastoris, resulting in enzymatic activity of 3600 U/mL in a 5 L fermenter. The lactase product was subjected to a series of toxicological tests to determine its safety for use as an enzyme preparation in the dairy industry. This recombinant lactase had the highest activity of all recombinant strains reported thus far. Acute oral toxicity, mutagenicity, genotoxic, and subchronic toxicity tests performed in rats and mice showed no death in any groups. The lethal dose 50% (LD50) based on the acute oral toxicity study is greater than 30 mL/kg body weight, which is in accordance with the 1500 L milk consumption of a 50 kg human daily. The lactase showed no mutagenic activity in the Ames test or a mouse sperm abnormality test at levels of up to 5 mg/plate and 1250 mg/kg body weight, respectively. It also showed no genetic toxicology in a bone marrow cell micronucleus test at levels of up to 1250 mg/kg body weight. A 90-day subchronic repeated toxicity study via the diet with lactase levels up to 1646 mg/kg (1000-fold greater than the mean human exposure) did not show any treatment-related significant toxicological effects on body weight, food consumption, organ weights, hematological and clinical chemistry, or histopathology compared to the control groups. This toxicological evaluation system is comprehensive and can be used in the safety evaluation of other enzyme preparations. The lactase showed no acute, mutagenic, genetic, or subchronic toxicity under our evaluation system. PMID:25184300

  9. Catabolite inactivation in the methylotrophic yeast Pichia pastoris

    SciTech Connect

    Murray, W.D.; Duff, S.J.B. ); Beveridge, T.J. )

    1990-08-01

    Inactivation of the alcohol oxidase enzyme system of Pichia pastoris, during the whole-cell bioconversion of ethanol to acetaldehyde, was due to catabolite inactivation. Electron microscopy showed that methanol-grown cells contained peroxisomes but were devoid of these microbodies after the bioconversion. Acetaldehyde in the presence of O{sub 2} was the effector of catabolite inactivation. The process was initiated by the appearance of free acetaldehyde, and was characterized by an increase in the level of cyclic AMP, that coincided with a rapid 55% drop in alcohol oxidase activity. Further enzyme inactivation, believed to be due to proteolytic degradation, then proceeded at a constant but slower rate and was complete 21 h after acetaldehyde appearance. The rate of catabolite inactivation was dependent on acetaldehyde concentration up to 0.14 mM. It was temperature dependent and occurred within 24 h at 37{degree}C and by 6 days at 15{degree}C but not at 3{degree}C. Alcohol oxidase activity was psychrotolerant, with only a 17% decrease in initial specific activity over a temperature drop from 37 to 3{degree}C. In contrast, protease activity was inhibited at temperatures below 15{degree}C. When the bioconversion was run at 3{degree}C, catabolite inactivation was prevented. In the presence of 3 M Tris hydrochloride buffer, 123 g of acetaldehyde per liter was produced at 3{degree}C, compared with 58 g/liter at 30{degree}C. By using 0.5 M Tris in a cyclic-batch procedure, 140.6 g of acetaldehyde was produced.

  10. Toxicological evaluation of lactase derived from recombinant Pichia pastoris.

    PubMed

    Zou, Shiying; He, Xiaoyun; Liu, Yifei; Chen, Delong; Luo, Yunbo; Huang, Kunlun; Zhang, Wei; Xu, Wentao

    2014-01-01

    A recombinant lactase was expressed in Pichia pastoris, resulting in enzymatic activity of 3600 U/mL in a 5 L fermenter. The lactase product was subjected to a series of toxicological tests to determine its safety for use as an enzyme preparation in the dairy industry. This recombinant lactase had the highest activity of all recombinant strains reported thus far. Acute oral toxicity, mutagenicity, genotoxic, and subchronic toxicity tests performed in rats and mice showed no death in any groups. The lethal dose 50% (LD50) based on the acute oral toxicity study is greater than 30 mL/kg body weight, which is in accordance with the 1500 L milk consumption of a 50 kg human daily. The lactase showed no mutagenic activity in the Ames test or a mouse sperm abnormality test at levels of up to 5 mg/plate and 1250 mg/kg body weight, respectively. It also showed no genetic toxicology in a bone marrow cell micronucleus test at levels of up to 1250 mg/kg body weight. A 90-day subchronic repeated toxicity study via the diet with lactase levels up to 1646 mg/kg (1000-fold greater than the mean human exposure) did not show any treatment-related significant toxicological effects on body weight, food consumption, organ weights, hematological and clinical chemistry, or histopathology compared to the control groups. This toxicological evaluation system is comprehensive and can be used in the safety evaluation of other enzyme preparations. The lactase showed no acute, mutagenic, genetic, or subchronic toxicity under our evaluation system. PMID:25184300

  11. Biotechnological Strains of Komagataella (Pichia) pastoris are Komagataella phaffii as Determined from Multigene Sequence Analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pichia pastoris was reassigned earlier to the genus Komagataella following phylogenetic analysis of gene sequences. Since that time, two additional species of Komagataella have been described, K. pseudopastoris and K. phaffii. Because these three species are unlikely to be resolved from the standa...

  12. A high-throughput protein expression system in Pichia pastoris using a newly developed episomal vector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We describe here the construction of a Gateway-compatible vector, pBGP1-DEST, for rapid and convenient preparation of expression plasmids for production of secretory proteins in Pichia pastoris. pBGP1-DEST directs the synthesis of a fusion protein consisting of the N-terminal signal and pro-sequence...

  13. A proteomic analysis of the Pichia pastoris secretome in methanol-induced cultures.

    PubMed

    Huang, Chung-Jr; Damasceno, Leonardo M; Anderson, Kyle A; Zhang, Sheng; Old, Lloyd J; Batt, Carl A

    2011-04-01

    The secreted proteome of Pichia pastoris X-33 was investigated in methanol-induced cultures with a goal to enhance the secretion and purification of recombinant proteins. In a fed-batch fermentation at 30 °C, more host proteins were found in greater concentrations compared to cultures grown at 25 °C. Protein samples collected directly from the culture media at 25 °C, as well as separated by two-dimensional (2D) gel, were subjected to ESI-MS/MS analysis. A total of 75 proteins were identified in the media from different conditions including pre- and post-methanol induction and in a strain overexpressing a recombinant schistosomiasis vaccine, Sm14-C62V. The identified proteins include native secreted proteins and some intracellular proteins, most of which have low isoelectric points (pI < 6). 2D gel analyses further revealed important characteristics, such as abundance, degradation, and glycosylation of these identified proteins in this proteome. Cell wall-associated proteins involved in cell wall biogenesis, structure, and modification comprised the majority of the secreted proteins which have been identified. Intracellular proteins such as alcohol oxidase and superoxide dismutase were also found in the proteome, suggesting some degree of cell lysis. However, both protocols show that their concentrations are significantly lower than the native secreted proteins. This study identifies proteins secreted or released into the culture media in the methanol-induced fermentation cultures of P. pastoris X-33 and suggests potential biotechnology applications based on the discovery of this proteome. PMID:21305280

  14. Expression of enzymatically inactive wasp venom phospholipase A1 in Pichia pastoris.

    PubMed

    Borodina, Irina; Jensen, Bettina M; Wagner, Tim; Hachem, Maher A; Søndergaard, Ib; Poulsen, Lars K

    2011-01-01

    Wasp venom allergy is the most common insect venom allergy in Europe. It is manifested by large local reaction or anaphylactic shock occurring after a wasp sting. The allergy can be treated by specific immunotherapy with whole venom extracts. Wasp venom is difficult and costly to obtain and is a subject to composition variation, therefore it can be advantageous to substitute it with a cocktail of recombinant allergens. One of the major venom allergens is phospholipase A1, which so far has been expressed in Escherichia coli and in insect cells. Our aim was to produce the protein in secreted form in yeast Pichia pastoris, which can give high yields of correctly folded protein on defined minimal medium and secretes relatively few native proteins simplifying purification.Residual amounts of enzymatically active phospholipase A1 could be expressed, but the venom protein had a deleterious effect on growth of the yeast cells. To overcome the problem we introduced three different point mutations at the critical points of the active site, where serine137, aspartate165 or histidine229 were replaced by alanine (S137A, D165A and H229A). All the three mutated forms could be expressed in P. pastoris. The H229A mutant did not have any detectable phospholipase A1 activity and was secreted at the level of several mg/L in shake flask culture. The protein was purified by nickel-affinity chromatography and its identity was confirmed by MALDI-TOF mass spectrometry. The protein could bind IgE antibodies from wasp venom allergic patients and could inhibit the binding of wasp venom to IgE antibodies specific for phospholipase A1 as shown by Enzyme Allergo-Sorbent Test (EAST). Moreover, the recombinant protein was allergenic in a biological assay as demonstrated by its capability to induce histamine release of wasp venom-sensitive basophils.The recombinant phospholipase A1 presents a good candidate for wasp venom immunotherapy. PMID:21731687

  15. Expression of Enzymatically Inactive Wasp Venom Phospholipase A1 in Pichia pastoris

    PubMed Central

    Borodina, Irina; Jensen, Bettina M.; Wagner, Tim; Hachem, Maher A.; Søndergaard, Ib; Poulsen, Lars K.

    2011-01-01

    Wasp venom allergy is the most common insect venom allergy in Europe. It is manifested by large local reaction or anaphylactic shock occurring after a wasp sting. The allergy can be treated by specific immunotherapy with whole venom extracts. Wasp venom is difficult and costly to obtain and is a subject to composition variation, therefore it can be advantageous to substitute it with a cocktail of recombinant allergens. One of the major venom allergens is phospholipase A1, which so far has been expressed in Escherichia coli and in insect cells. Our aim was to produce the protein in secreted form in yeast Pichia pastoris, which can give high yields of correctly folded protein on defined minimal medium and secretes relatively few native proteins simplifying purification. Residual amounts of enzymatically active phospholipase A1 could be expressed, but the venom protein had a deleterious effect on growth of the yeast cells. To overcome the problem we introduced three different point mutations at the critical points of the active site, where serine137, aspartate165 or histidine229 were replaced by alanine (S137A, D165A and H229A). All the three mutated forms could be expressed in P. pastoris. The H229A mutant did not have any detectable phospholipase A1 activity and was secreted at the level of several mg/L in shake flask culture. The protein was purified by nickel-affinity chromatography and its identity was confirmed by MALDI-TOF mass spectrometry. The protein could bind IgE antibodies from wasp venom allergic patients and could inhibit the binding of wasp venom to IgE antibodies specific for phospholipase A1 as shown by Enzyme Allergo-Sorbent Test (EAST). Moreover, the recombinant protein was allergenic in a biological assay as demonstrated by its capability to induce histamine release of wasp venom-sensitive basophils. The recombinant phospholipase A1 presents a good candidate for wasp venom immunotherapy. PMID:21731687

  16. Genome-scale metabolic reconstructions of Pichia stipitis and Pichia pastoris and in silico evaluation of their potentials

    PubMed Central

    2012-01-01

    Background Pichia stipitis and Pichia pastoris have long been investigated due to their native abilities to metabolize every sugar from lignocellulose and to modulate methanol consumption, respectively. The latter has been driving the production of several recombinant proteins. As a result, significant advances in their biochemical knowledge, as well as in genetic engineering and fermentation methods have been generated. The release of their genome sequences has allowed systems level research. Results In this work, genome-scale metabolic models (GEMs) of P. stipitis (iSS884) and P. pastoris (iLC915) were reconstructed. iSS884 includes 1332 reactions, 922 metabolites, and 4 compartments. iLC915 contains 1423 reactions, 899 metabolites, and 7 compartments. Compared with the previous GEMs of P. pastoris, PpaMBEL1254 and iPP668, iLC915 contains more genes and metabolic functions, as well as improved predictive capabilities. Simulations of physiological responses for the growth of both yeasts on selected carbon sources using iSS884 and iLC915 closely reproduced the experimental data. Additionally, the iSS884 model was used to predict ethanol production from xylose at different oxygen uptake rates. Simulations with iLC915 closely reproduced the effect of oxygen uptake rate on physiological states of P. pastoris expressing a recombinant protein. The potential of P. stipitis for the conversion of xylose and glucose into ethanol using reactors in series, and of P. pastoris to produce recombinant proteins using mixtures of methanol and glycerol or sorbitol are also discussed. Conclusions In conclusion the first GEM of P. stipitis (iSS884) was reconstructed and validated. The expanded version of the P. pastoris GEM, iLC915, is more complete and has improved capabilities over the existing models. Both GEMs are useful frameworks to explore the versatility of these yeasts and to capitalize on their biotechnological potentials. PMID:22472172

  17. Functional expression of soluble forms of human CD38 in Escherichia coli and Pichia pastoris.

    PubMed

    Fryxell, K B; O'Donoghue, K; Graeff, R M; Lee, H C; Branton, W D

    1995-06-01

    Cyclic adenosine diphosphate (ADP)-ribose (cADPR), a metabolite of nicotinamide adenine dinucleotide (NAD+), mobilizes calcium from intracellular stores in many cells. The synthesis of cADPR from NAD+ and its subsequent hydrolysis to ADPR is catalyzed by an ADP-ribosyl cyclase and a cADPR hydrolase, respectively. The ADP-ribosyl cyclase cloned from the ovotestis of the marine invertebrate Aplysia californica has amino acid sequence homology to the human lymphocyte surface antigen CD38. CD38 has been shown to catalyze both the formation and the hydrolysis of cADPR. In this study, we produced soluble, enzymatically active CD38 using recombinant expression techniques in bacteria and yeast. We engineered a gene coding for a soluble form of CD38 by excision of the region of the gene coding for the N-terminal amino acids representing the putative membrane spanning sequence and short putative intracellular sequence. For expression in bacteria (Escherichia coli), this construct was cloned into the pFlag-1 plasmid which allows induced, periplasmic expression and relatively simple purification of the soluble CD38. For expression in yeast (Pichia pastoris) the CD38 sequence was further modified to eliminate four putative N-linked glycosylation sites and the resulting construct was expressed as a secreted protein. Both systems produce soluble enzymes of approximately 30 kDa and both recombinant enzymes display similar cyclase and hydrolase activities. PMID:7663169

  18. High-level production of Fc-fused kringle domain in Pichia pastoris.

    PubMed

    Jeong, Gu Min; Lee, Yong Jae; Kim, Yong Sung; Jeong, Ki Jun

    2014-06-01

    Recently, as a new non-immunoglobulin-based protein scaffold, a human kringle domain was successfully engineered toward biologically functional agonists and antagonists. In this study, the fed-batch cultivation conditions were optimized for enhanced production of an Fc-fused kringle domain (KD548-Fc) in Pichia pastoris. Fed-batch cultivations were performed in 5-l laboratory-scale bioreactors, and in order to find the optimal conditions for high-level production of KD548-Fc, several parameters including the initial carbon source (glycerol) concentration, temperature, and pH were investigated. When cells were cultivated at pH 4.0 and 25 °C with 9.5 % glycerol in the initial medium, the highest production yield (635 mg/l) was achieved with high productivity (7.2 mg/l/h). Furthermore, functional KD548-Fc was successfully purified from the culture broth using a simple purification procedure with high purity and recovery yield. PMID:24682857

  19. Constitutive expression of barley α-amylase in Pichia pastoris by high-density cell culture.

    PubMed

    Liu, Z W; Yin, H X; Yi, X P; Zhang, A L; Luo, J X; Zhang, T Y; Fu, C Y; Zhang, Z H; Shen, J C; Chen, L P

    2012-05-01

    α-amy gene amplified from barley genome was cloned into MCS of pGAP9K to generate pGAP9K-α-amy which was then transformed into Pichia pastoris GS115 by electroporation. Transformants with multi-copies and high expression for the foreign gene were selected on G418 containing plate and expression analysis. The fermentation was carried out in a 50 l bioreactor with 20 l working volume, using a high-density cell culture method by continuously feeding with 50% glycerol-0.8% PTM4 to the growing culture for 54 h at 30°C. Under the control of GAP promoter (pGAP), α-amy gene was constitutively expressed. At the end of the fermentation, the α-AMY expression reached 125 mg/l, while the biomass growth was 186 as measured by absorption of 600 nm. The secreted α-AMY was purified to 97.5% by SP-Sepharose FF ion-exchange chromatography and affinity purification. The recombinant α-AMY showed activity on hydrolysis of starch. PMID:22201022

  20. Protein Production with a Pichia pastoris OCH1 Knockout Strain in Fed-Batch Mode.

    PubMed

    Gmeiner, Christoph; Spadiut, Oliver

    2015-01-01

    The methylotrophic yeast Pichia pastoris is a widely used host organism for recombinant protein production in biotechnology and pharmaceutical industry. However, if the target product describes a glycoprotein, an α-1,6-mannosyltransferase located in the Golgi apparatus of P. pastoris, called OCH1, triggers hypermannosylation of the recombinant protein which significantly impedes following unit operations and hampers biopharmaceutical product applications. A knockout of the och1 gene allows the production of less-glycosylated proteins-however, morphology and physiology of P. pastoris also change, complicating the upstream process. Here, we describe a controlled and efficient bioprocess based on the specific substrate uptake rate (q s) for a recombinant P. pastoris OCH1 knockout strain expressing a peroxidase as model protein. PMID:26082217

  1. Genome-scale metabolic model of Pichia pastoris with native and humanized glycosylation of recombinant proteins.

    PubMed

    Irani, Zahra Azimzadeh; Kerkhoven, Eduard J; Shojaosadati, Seyed Abbas; Nielsen, Jens

    2016-05-01

    Pichia pastoris is used for commercial production of human therapeutic proteins, and genome-scale models of P. pastoris metabolism have been generated in the past to study the metabolism and associated protein production by this yeast. A major challenge with clinical usage of recombinant proteins produced by P. pastoris is the difference in N-glycosylation of proteins produced by humans and this yeast. However, through metabolic engineering, a P. pastoris strain capable of producing humanized N-glycosylated proteins was constructed. The current genome-scale models of P. pastoris do not address native nor humanized N-glycosylation, and we therefore developed ihGlycopastoris, an extension to the iLC915 model with both native and humanized N-glycosylation for recombinant protein production, but also an estimation of N-glycosylation of P. pastoris native proteins. This new model gives a better prediction of protein yield, demonstrates the effect of the different types of N-glycosylation of protein yield, and can be used to predict potential targets for strain improvement. The model represents a step towards a more complete description of protein production in P. pastoris, which is required for using these models to understand and optimize protein production processes. Biotechnol. Bioeng. 2016;113: 961-969. © 2015 Wiley Periodicals, Inc. PMID:26480251

  2. Codon modification for the DNA sequence of a single-chain Fv antibody against clenbuterol and expression in Pichia pastoris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To improve expression efficiency of the recombinant single-chain variable fragment (scFv) against clenbuterol (CBL) obtained from mouse in the methylotrophic yeast Pichia pastoris (P. pastoris) GS115, the DNA sequence encoding for CBL-scFv was designed and synthesized based on the codon bias of P. p...

  3. The Effect of α-Mating Factor Secretion Signal Mutations on Recombinant Protein Expression in Pichia pastoris

    PubMed Central

    Lin-Cereghino, Geoff P.; Stark, Carolyn M.; Kim, Daniel; Chang, Jennifer; Shaheen, Nadia; Poerwanto, Hansel; Agari, Kimiko; Moua, Pachai; Low, Lauren K.; Tran, Namphuong; Huang, Amy D.; Nattestad, Maria; Oshiro, Kristin T.; Chang, John William; Chavan, Archana; Tsai, Jerry W.; Lin-Cereghino, Joan

    2013-01-01

    The methylotrophic yeast, Pichia pastoris, has been genetically engineered to produce many heterologous proteins for industrial and research purposes. In order to secrete proteins for easier purification from the extracellular medium, the coding sequence of recombinant proteins are initially fused to the Saccharomyces cerevisiae α-mating factor secretion signal leader. Extensive site-directed mutagenesis of the prepro region of the α-mating factor secretion signal sequence was performed in order to determine the effects of various deletions and substitutions on expression. Though some mutations clearly dampened protein expression, deletion of amino acids 57-70, corresponding to the predicted 3rd alpha helix of α-mating factor secretion signal, increased secretion of reporter proteins horseradish peroxidase and lipase at least 50% in small-scale cultures. These findings raise the possibility that the secretory efficiency of the leader can be further enhanced in the future. PMID:23454485

  4. [Optimization on the production of analgesic peptide from Buthus martensii Karsch in Pichia pastoris].

    PubMed

    Yang, Jin-ling; He, Hui-xia; Zhu, Hui-xin; Cheng, Ke-di; Zhu, Ping

    2009-01-01

    The technology of liquid fermentation for producing the recombinant analgesic peptide BmK AngM1 from Buthus martensii Karsch in Pichia pastoris was studied by single-factor and orthogonal test. The results showed that the optimal culture conditions were as follows: 1.2% methanol, 0.6% casamino acids, initial pH 6.0, and three times of basal inoculation volume. Under the above culture conditions, the expression level of recombinant BmK AngM1 in Pichia pastoris was above 500 mg x L(-1), which was more than three times of the control. The study has laid a foundation for the large-scale preparation of BmK AngM1 to meet the needs of theoretical research of BmK AngM1 and development of new medicines. PMID:19350829

  5. Cloning and functional expression of a mungbean defensin VrD1 in Pichia pastoris.

    PubMed

    Chen, Ji-Jr; Chen, Gan-Hong; Hsu, Hui-Ching; Li, Shin-Shing; Chen, Ching-San

    2004-04-21

    It was shown previously that a bacterially expressed mungbean defensin VrCRP exhibited both antifungal and insecticidal activities. To isolate this protein in a large quantity for its characterization, the defensin cDNA was expressed in Pichia pastoris and the recombinant defensin (rVrD1) was purified. The recombinant VrD1 was shown to inhibit the growth of fungi such as Fusarium oxysporum, Pyricularia oryza, Rhizoctonia solani, and Trichophyton rubrum and development of bruchid larva. The protein also inhibits in vitro protein synthesis. These biological activities are similar to that of the bacterially expressed defensin. Functional expression of VrD1 in Pichia pastoris provides a highly feasible system to study the structure-function relationship of VrD1 using the mutagenesis approach. PMID:15080630

  6. Evaluation in broilers of the probiotic properties of Pichia pastoris and a recombinant P. pastoris containing the Clostridium perfringens alpha toxin gene.

    PubMed

    Gil de los Santos, João Rodrigo; Storch, Otávio Brod; Fernandes, Cristina Gevehr; Gil-Turnes, Carlos

    2012-05-01

    The probiotic properties of Pichia pastoris and of a recombinant P. pastoris containing the Clostridium perfringens alpha toxin gene were evaluated in broilers. One-day-old chicks randomly divided in four groups were fed with commercial feed devoid of antibacterials. The control group (1) received plain food, while the other groups were supplemented with either P. pastoris (2), the recombinant P. pastoris (3) or Bacillus cereus var. Toyoi (4). At day 49, live weights, feed efficiency and seroconversions were higher (P<0.05) in the supplemented groups than in the control groups. Group 3 showed the best results, while group 2 had lower weight gain than groups 3 and 4 although food conversion was better than in group 4. Seroconversions were not different (P>0.05) among the supplemented groups. Adverse reactions were not observed in histopathologic evaluation. We concluded that P. pastoris and the recombinant P. pastoris could be used as probiotics in broilers. PMID:22176763

  7. Bacteriophage T7 RNA polymerase-based expression in Pichia pastoris.

    PubMed

    Hobl, Birgit; Hock, Björn; Schneck, Sandra; Fischer, Reinhard; Mack, Matthias

    2013-11-01

    A novel Pichia pastoris expression vector (pEZT7) for the production of recombinant proteins employing prokaryotic bacteriophage T7 RNA polymerase (T7 RNAP) (EC 2.7.7.6) and the corresponding promoter pT7 was constructed. The gene for T7 RNAP was stably introduced into the P. pastoris chromosome 2 under control of the (endogenous) constitutive P. pastoris glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter (pGAP). The gene product T7 RNAP was engineered to contain a nuclear localization signal, which directed recombinant T7 RNAP to the P. pastoris nucleus. To promote translation of uncapped T7 RNAP derived transcripts, the internal ribosomal entry site from hepatitis C virus (HCV-IRES) was inserted directly upstream of the multiple cloning site of pEZT7. A P. pastoris autonomous replicating sequence (PARS1) was integrated into pEZT7 enabling propagation and recovery of plasmids from P. pastoris. Rapid amplification of 5' complementary DNA ends (5' RACE) experiments employing the test plasmid pEZT7-EGFP revealed that transcripts indeed initiated at pT7. HCV-IRES mediated translation of the latter mRNAs, however, was not observed. Surprisingly, HCV-IRES and the reverse complement of PARS1 (PARS1rc) were both found to display significant promoter activity as shown by 5' RACE. PMID:24056257

  8. Differential gene expression in recombinant Pichia pastoris analysed by heterologous DNA microarray hybridisation

    PubMed Central

    Sauer, Michael; Branduardi, Paola; Gasser, Brigitte; Valli, Minoska; Maurer, Michael; Porro, Danilo; Mattanovich, Diethard

    2004-01-01

    Background Pichia pastoris is a well established yeast host for heterologous protein expression, however, the physiological and genetic information about this yeast remains scanty. The lack of a published genome sequence renders DNA arrays unavailable, thereby hampering more global investigations of P. pastoris from the beginning. Here, we examine the suitability of Saccharomyces cerevisiae DNA microarrays for heterologous hybridisation with P. pastoris cDNA. Results We could show that it is possible to obtain new and valuable information about transcriptomic regulation in P. pastoris by probing S. cerevisiae DNA microarrays. The number of positive signals was about 66 % as compared to homologous S. cerevisiae hybridisation, and both the signal intensities and gene regulations correlated with high significance between data obtained from P. pastoris and S. cerevisiae samples. The differential gene expression patterns upon shift from glycerol to methanol as carbon source were investigated in more detail. Downregulation of TCA cycle genes and a decrease of genes related to ribonucleotide and ribosome synthesis were among the major effects identified. Conclusions We could successfully demonstrate that heterologous microarray hybridisations allow deep insights into the transcriptomic regulation processes of P. pastoris. The observed downregulation of TCA cycle and ribosomal synthesis genes correlates to a significantly lower specific growth rate during the methanol feed phase. PMID:15610561

  9. Pichia pastoris expressed EtMic2 protein as a potential vaccine against chicken coccidiosis.

    PubMed

    Zhang, Jie; Chen, Peipei; Sun, Hui; Liu, Qing; Wang, Longjiang; Wang, Tiantian; Shi, Wenyan; Li, Hongmei; Xiao, Yihong; Wang, Pengfei; Wang, Fangkun; Zhao, Xiaomin

    2014-09-15

    Chicken coccidiosis caused by Eimeria species leads to tremendous economic losses to the avian industry worldwide. Identification of parasite life cycle specific antigens is a critical step in recombinant protein vaccine development against Eimeria infections. In the present study, we amplified and cloned the microneme-2 (EtMIC2) gene from Eimeria tenella wild type strain SD-01, and expressed the EtMic2 protein using Pichia pastoris and Escherichia coli expression systems, respectively. The EtMic2 proteins expressed by P. pastoris and E. coli were used as vaccines to immunize chickens and their protective efficacies were compared and evaluated. The results indicated that both P. pastoris and E. coli expressed EtMic2 proteins exhibited good immunogenicity in stimulating host immune responses and the Pichia expressed EtMic2 provided better protection than the E. coli expressed EtMic2 did by significantly increasing growth rate, inducing high specific antibody response, reducing the oocyst output and cecal lesions. Particularly, the Pichia expressed EtMic2 protein exhibited much better ability in inducing cell mediated immune response than the E. coli expressed EtMic2. PMID:25047705

  10. Cloning and characterization of the Pichia pastoris MET2 gene as a selectable marker.

    PubMed

    Thor, Der; Xiong, See; Orazem, Claire C; Kwan, An-Chun; Cregg, James M; Lin-Cereghino, Joan; Lin-Cereghino, Geoff P

    2005-07-01

    We describe the isolation and characterization of a new biosynthetic gene, MET2, from the methylotrophic yeast Pichia pastoris. The predicted product of PpMET2 is significantly similar to its Saccharomyces cerevisiae counterpart, ScMET2, which encodes homoserine-O-transacetylase. The ScMET2 was able to complement the P. pastoris met2 strain; however, the converse was not true. Expression vectors based on PpMET2 for the intracellular and secreted production of foreign proteins and corresponding auxotrophic strains were constructed and tested for use in heterologous expression. The expression vectors and corresponding strains provide greater flexibility when using P. pastoris for recombinant protein expression. PMID:15996626

  11. Process technology for production and recovery of heterologous proteins with Pichia pastoris.

    PubMed

    Jahic, Mehmedalija; Veide, Andres; Charoenrat, Theppanya; Teeri, Tuula; Enfors, Sven-Olof

    2006-01-01

    Developments in process techniques for production and recovery of heterologous proteins with Pichia pastoris are presented. Limitations for the standard techniques are described, and alternative techniques that solve the limitations problems are reviewed together with the methods that resulted in higher productivity of the P. pastoris processes. The main limitations are proteolysis of the secreted products and cell death in the high cell density bioreactor cultures. As a consequence, both low productivity and lower quality of the feedstock for downstream processing are achieved in processes hampered with these problems. Methods for exploring proteolysis and cell death are also presented. Solving the problems makes the conditions for downstream processing superior for the P. pastoris expression systems compared to other systems, which either need complex media or rely on intracellular production. These improved conditions allow for interfacing of cultivation with downstream processing in an integrated fashion. PMID:17137292

  12. Pichia pastoris Production of Tat-NGB and Its Neuroprotection on Rat Pheochromocytoma Cells.

    PubMed

    Ye, Qiao; Sun, Yangdong; Wu, Yonghong; Gao, Yan; Li, Zhihui; Li, Weiguang; Zhang, Chenggang

    2016-01-01

    Neuroglobin (NGB) is a newly discovered neuroprotector and mainly localized in the neurons and retinal cells of the central and peripheral nervous systems in vertebrates, and its prokaryotic expression protein of which fused with HIV-1 virus-encoded Tat peptide exhibited significant antioxidant and anti-hypoxia. However, no study has documented on the anti-hypoxia of yeast expressed Tat-NGB. To address it, the NGB cDNA fragment with and without Tat tag was designed and conjugated to pPIC9K followed by electroporation, and positive colonies were screened. Subsequently, Tat-NGB-His and His-NGB-His proteins were expressed by inducer methanol and identified by SDS-PAGE, and purified with HisTrap™ FF crude column. After desalting, the transmembrane transduction of Tat-NGB was examined and identified by Western blot, and the anti-hypoxia activity was also examined by CCK-8 kit. Unexpectedly, Tat-NGB-His and His-NGB-His proteins were high yield and secretory expressed in GS115 Pichia pastoris. After purification, the high purified protein was prepared and exhibited a significant transmembrane transduction of Tat-NGB-His (**p < 0.01, compare to control and His-NGB-His). Significantly, Tat-NGB-His could protect hypoxia induced injury of PC12 cells and had an obviously difference when comparing to control and His-NGB-His groups (*p < 0.05, **p < 0.01). The present study first reported the yeast expressed production of Tat-NGB-His and His-NGB-His, and then elucidated the transduction and neuroprotection of Tat-NGB-His on PC12 cell. It not only provided a significant reference for high-yield expression of NGB in yeast expression system, but also provided a significant prevention and treatment of hypoxic and ischemic brain injury. PMID:26646387

  13. 21 CFR 573.750 - Pichia pastoris dried yeast.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS... pastoris dried yeast may be used in feed formulations of broiler chickens as a source of protein not to... the following percent-by-weight specifications: (1) Crude protein, not less than 60 percent. (2)...

  14. 21 CFR 573.750 - Pichia pastoris dried yeast.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS... pastoris dried yeast may be used in feed formulations of broiler chickens as a source of protein not to... the following percent-by-weight specifications: (1) Crude protein, not less than 60 percent. (2)...

  15. 21 CFR 573.750 - Pichia pastoris dried yeast.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS... pastoris dried yeast may be used in feed formulations of broiler chickens as a source of protein not to... the following percent-by-weight specifications: (1) Crude protein, not less than 60 percent. (2)...

  16. 21 CFR 573.750 - Pichia pastoris dried yeast.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS... pastoris dried yeast may be used in feed formulations of broiler chickens as a source of protein not to... the following percent-by-weight specifications: (1) Crude protein, not less than 60 percent. (2)...

  17. Camelid-derived heavy-chain nanobody against Clostridium botulinum neurotoxin E in Pichia pastoris.

    PubMed

    Baghban, Roghayyeh; Gargari, Seyed Latif Mousavi; Rajabibazl, Masoumeh; Nazarian, Shahram; Bakherad, Hamid

    2016-01-01

    Botulinum neurotoxins (BoNTs) result in severe and often fatal disease, botulism. Common remedial measures such as equine antitoxin and human botulism immunoglobulin in turn are problematic and time-consuming. Therefore, diagnosis and therapy of BoNTs are vital. The variable domain of heavy-chain antibodies (VHH) has unique features, such as the ability to identify and bind specifically to target epitopes and ease of production in bacteria and yeast. The Pichia pastoris is suitable for expression of recombinant antibody fragments. Disulfide bond formation and correct folds of protein with a high yield are some of the advantages of this eukaryotic host. In this study, we have expressed and purified the camelid VHH against BoNT/E in P. pastoris. The final yield of P. pastoris-expressed antibody was estimated to be 16 mg/l, which is higher than that expressed by Escherichia coli. The nanobody expressed in P. pastoris neutralized 4LD50 of the BoNT/E upon i.p. injection in 25% of mice. The nanobody expressed in E. coli extended the mice's survival to 1.5-fold compared to the control. This experiment indicated that the quality of expressed protein in the yeast is superior to that of the bacterial expression. Favorable protein folding by P. pastoris seems to play a role in its better toxin-binding property. PMID:24673401

  18. Expression in Pichia pastoris and characterization of echistatin, an RGD-containing short disintegrin.

    PubMed

    Chen, Yi-Chun; Cheng, Chun-Ho; Shiu, Jia-Hau; Chang, Yao-Tsung; Chang, Yung-Sheng; Huang, Chun-Hau; Lee, Jenq-Chang; Chuang, Woei-Jer

    2012-12-15

    Echistatin (Ech) is a potent inhibitor of integrins and was isolated from snake Echis carinatus. To facilitate the study on the molecular determinants of integrin-ligand interactions, we expressed recombinant Ech and its mutants in the Pichia pastoris (P. pastoris) expression system and purified them to homogeneity with the yields of 2-7 mg/L. Ech produced in P. pastoris inhibited platelet aggregation with the IC(50) value of 210.5 nM. The sequential assignment and structure analysis of recombinant Ech were obtained by 2D and 3D (15)N-edited NMR spectra. These data suggests that Ech produced in P. pastoris retained its function and native fold. The results presented here provide the evidences that four disulfide-bonded peptide inhibitor of integrin, Ech, can be expressed in P. pastoris with correct fold and high yield. Platelet aggregation analysis of Ech mutants showed that the length of C-terminus and the K45 residue of Ech are important for interacting with integrin αIIbβ3. We also found that recombinant Ech can inhibit the migration of human A375 melanoma cell. These findings may serve as the basis for understanding the activities of Ech. PMID:22982571

  19. Surface Display and Bioactivity of Bombyx mori Acetylcholinesterase on Pichia pastoris

    PubMed Central

    He, Yong-Sheng; Beier, Ross C.; Sun, Yuan-Ming; Xu, Zhen-Lin; Wu, Wei-Jian; Shen, Yu-Dong; Xiao, Zhi-Li; Lai, Li-Na; Wang, Hong; Yang, Jin-Yi

    2013-01-01

    A Pichia pastoris (P. pastoris) cell surface display system of Bombyx mori acetylcholinesterase (BmAChE) was constructed and its bioactivity was studied. The modified Bombyx mori acetylcholinesterase gene (bmace) was fused with the anchor protein (AGα1) from Saccharomyces cerevisiae and transformed into P. pastoris strain GS115. The recombinant strain harboring the fusion gene bmace-AGα1 was induced to display BmAChE on the P. pastoris cell surface. Fluorescence microscopy and flow cytometry assays revealed that the BmAChE was successfully displayed on the cell surface of P. pastoris GS115. The enzyme activity of the displayed BmAChE was detected by the Ellman method at 787.7 U/g (wet cell weight). In addition, bioactivity of the displayed BmAChE was verified by inhibition tests conducted with eserine, and with carbamate and organophosphorus pesticides. The displayed BmAChE had an IC50 of 4.17×10−8 M and was highly sensitive to eserine and five carbamate pesticides, as well as seven organophosphorus pesticides. Results suggest that the displayed BmAChE had good bioactivity. PMID:23940577

  20. Expression of the Trichoderma reesei tyrosinase 2 in Pichia pastoris: isotopic labeling and physicochemical characterization.

    PubMed

    Westerholm-Parvinen, Ann; Selinheimo, Emilia; Boer, Harry; Kalkkinen, Nisse; Mattinen, Maija; Saloheimo, Markku

    2007-09-01

    Trichoderma reesei tyrosinase TYR2 has been demonstrated to be able to oxidize various phenolic compounds and also peptide and protein bound tyrosine, and thus is of great interest for different biotechnological applications. In order to understand the reaction mechanism of the enzyme it would be essential to solve its three dimensional structure. Pichia pastoris is a suitable expression system for the production of recombinant enzymes for NMR studies and therefore we expressed TYR2 in this host. As a result of extensive optimization, the production yield of active histidine tagged tyrosinase purified from P. pastoris shake flask cultures was increased from 2.5 to 24 mg/L. Correct copper concentration in the growth medium was critical for the expression of this copper containing enzyme. Our analysis showed that TYR2 expressed in P. pastoris is post-translationally modified; the C-terminal domain of 153 amino acids of the protein is proteolytically cleaved off from the catalytic domain and the only potential N-glycosylation site is glycosylated. The activities of TYR2 expressed in P. pastoris and T. reesei on diphenolic L-dopa and monophenolic L-tyrosine were rather similar. The TYR2 expressed in P. pastoris showed the same physicochemical properties in CD and unfolding assays as the native TYR2 enzyme. Uniform isotopic (15)N-labeling of TYR2 was carried out with (15)NH(4)SO(4) in minimal medium to assess the suitability of the expression system for investigation by NMR spectroscopy. PMID:17562370

  1. Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris.

    PubMed

    Wriessnegger, Tamara; Augustin, Peter; Engleder, Matthias; Leitner, Erich; Müller, Monika; Kaluzna, Iwona; Schürmann, Martin; Mink, Daniel; Zellnig, Günther; Schwab, Helmut; Pichler, Harald

    2014-07-01

    The sesquiterpenoid (+)-nootkatone is a highly demanded and highly valued aroma compound naturally found in grapefruit, pummelo or Nootka cypress tree. Extraction of (+)-nootkatone from plant material or its production by chemical synthesis suffers from low yields and the use of environmentally harmful methods, respectively. Lately, major attention has been paid to biotechnological approaches, using cell extracts or whole-cell systems for the production of (+)-nootkatone. In our study, the yeast Pichia pastoris initially was applied as whole-cell biocatalyst for the production of (+)-nootkatone from (+)-valencene, the abundant aroma compound of oranges. Therefore, we generated a strain co-expressing the premnaspirodiene oxygenase of Hyoscyamus muticus (HPO) and the Arabidopsis thaliana cytochrome P450 reductase (CPR) that hydroxylated extracellularly added (+)-valencene. Intracellular production of (+)-valencene by co-expression of valencene synthase from Callitropsis nootkatensis resolved the phase-transfer issues of (+)-valencene. Bi-phasic cultivations of P. pastoris resulted in the production of trans-nootkatol, which was oxidized to (+)-nootkatone by an intrinsic P. pastoris activity. Additional overexpression of a P. pastoris alcohol dehydrogenase and truncated hydroxy-methylglutaryl-CoA reductase (tHmg1p) significantly enhanced the (+)-nootkatone yield to 208mg L(-1) cell culture in bioreactor cultivations. Thus, metabolically engineered yeast P. pastoris represents a valuable, whole-cell system for high-level production of (+)-nootkatone from simple carbon sources. PMID:24747046

  2. Enhanced expression of human prostaglandin H synthase-2 in the yeast Pichia pastoris and removal of the C-terminal tag with bovine carboxypeptidase A.

    PubMed

    Kukk, Kaia; Samel, Nigulas

    2016-08-10

    Vertebrate prostaglandin H synthases (PGHSs) are membrane-bound disulphide-containing hemoglycoproteins. Therefore, eukaryotic expression systems are required for the production of recombinant PGHSs. Recently we announced the expression of human PGHS-2 (hPGHS-2) in the yeast Pichia pastoris. Here we report improved production of hPGHS-2 in P. pastoris and a convenient method for the purification and de-tagging of the protein. An affinity tag comprised of a proline, a glycine and eight histidines was introduced into the C-terminal end of hPGHS-2. The tagged hPGHS-2 was expressed intracellularly in P. pastoris under the control of a constitutive or methanol-inducible promoter. Compared to constitutive expression, methanol-induced expression yielded approximately four times more protein. The analysis of high and low gene copy number recombinants revealed a positive correlation between the gene copy number and the expression level of hPGHS-2. The recombinant hPGHS-2 was purified using immobilised metal ion affinity chromatography. A novel elution method, treatment of the affinity resin with bovine carboxypeptidase A, was employed. The yield of pure de-tagged hPGHS-2 from 1l of yeast culture was approximately 3mg. The protein purification process with simultaneous removal of the C-terminal polyhistidine tag could be easily applied for the affinity purification of other proteins. PMID:27316830

  3. Expression of endoglucanases in Pichia pastoris under control of the GAP promoter

    PubMed Central

    2014-01-01

    Background Plant-derived biomass is a potential alternative to fossil feedstocks for a greener economy. Enzymatic saccharification of biomass has been studied extensively and endoglucanases have been found to be a prerequisite for quick initial liquefaction of biomass under industrial conditions. Pichia pastoris, widely used for heterologous protein expression, can be utilized for fungal endoglucanase production. The recently marketed PichiaPink™ expression system allows for rapid clone selection, and employs the methanol inducible AOX1 promoter to ensure high protein expression levels. However, methanol is toxic and poses a fire hazard, issues which become more significant at an industrial scale. It is possible to eliminate these risks and still maintain high productivity by switching to the constitutive GAP promoter. Results In the present study, a plasmid carrying the constitutive GAP promoter was created for PichiaPink™. We then studied expression of two endoglucanases, AfCel12A from Aspergillus fumigatus and TaCel5A from Thermoascus aurantiacus, regulated by either the AOX1 promoter or the GAP promoter. Initial experiments in tubes and small bioreactors showed that the levels of AfCel12A obtained with the constitutive promoter were similar or higher, compared to the AOX1 promoter, whereas the levels of TaCel5A were somewhat lower. After optimization of cultivation conditions using a 15-l bioreactor, the recombinant P. pastoris strains utilizing the GAP promoter produced ca. 3–5 g/l of total secreted protein, with CMCase activity equivalent to 1200 nkat/ml AfCel12A and 170 nkat/ml TaCel5A. Conclusions We present a strategy for constitutive recombinant protein expression in the novel PichiaPink™ system. Both AfCel12A and TaCel5A were successfully expressed constitutively in P. pastoris under the GAP promoter. Reasonable protein levels were reached after optimizing cultivation conditions. PMID:24742273

  4. Glycosylation characterization of recombinant human erythropoietin produced in glycoengineered Pichia pastoris by mass spectrometry.

    PubMed

    Gong, Bing; Burnina, Irina; Stadheim, Terrance A; Li, Huijuan

    2013-12-01

    Glycosylation plays a critical role in the in vivo efficacy of both endogenous and recombinant erythropoietin (EPO). Using mass spectrometry, we characterized the N-/O-linked glycosylation of recombinant human EPO (rhEPO) produced in glycoengineered Pichia pastoris and compared with the glycosylation of Chinese hamster ovary (CHO) cell-derived rhEPO. While the three predicted N-linked glycosylation sites (Asn24, Asn38 and Asn83) showed complete site occupancy, Pichia- and CHO-derived rhEPO showed distinct differences in the glycan structures with the former containing sialylated bi-antennary glycoforms and the latter containing a mixture of sialylated bi-, tri- and tetra-antennary structures. Additionally, the N-linked glycans from Pichia-produced rhEPO were similar across all three sites. A low level of O-linked mannosylation was detected on Pichia-produced rhEPO at position Ser126, which is also the O-linked glycosylation site for endogenous human EPO and CHO-derived rhEPO. In summary, the mass spectrometric analyses revealed that rhEPO derived from glycoengineered Pichia has a highly uniform bi-antennary N-linked glycan composition and preserves the orthogonal O-linked glycosylation site present on endogenous human EPO and CHO-derived rhEPO. PMID:24338886

  5. Influence of Pichia pastoris cellular material on polymerase chain reaction performance as a synthetic biology standard for genome monitoring.

    PubMed

    Templar, Alexander; Woodhouse, Stefan; Keshavarz-Moore, Eli; Nesbeth, Darren N

    2016-08-01

    Advances in synthetic genomics are now well underway in yeasts due to the low cost of synthetic DNA. These new capabilities also bring greater need for quantitating the presence, loss and rearrangement of loci within synthetic yeast genomes. Methods for achieving this will ideally; i) be robust to industrial settings, ii) adhere to a global standard and iii) be sufficiently rapid to enable at-line monitoring during cell growth. The methylotrophic yeast Pichia pastoris (P. pastoris) is increasingly used for industrial production of biotherapeutic proteins so we sought to answer the following questions for this particular yeast species. Is time-consuming DNA purification necessary to obtain accurate end-point polymerase chain reaction (e-pPCR) and quantitative PCR (qPCR) data? Can the novel linear regression of efficiency qPCR method (LRE qPCR), which has properties desirable in a synthetic biology standard, match the accuracy of conventional qPCR? Does cell cultivation scale influence PCR performance? To answer these questions we performed e-pPCR and qPCR in the presence and absence of cellular material disrupted by a mild 30s sonication procedure. The e-pPCR limit of detection (LOD) for a genomic target locus was 50pg (4.91×10(3) copies) of purified genomic DNA (gDNA) but the presence of cellular material reduced this sensitivity sixfold to 300pg gDNA (2.95×10(4) copies). LRE qPCR matched the accuracy of a conventional standard curve qPCR method. The presence of material from bioreactor cultivation of up to OD600=80 did not significantly compromise the accuracy of LRE qPCR. We conclude that a simple and rapid cell disruption step is sufficient to render P. pastoris samples of up to OD600=80 amenable to analysis using LRE qPCR which we propose as a synthetic biology standard. PMID:27211507

  6. Deglycosylation to obtain stable and homogeneous Pichia pastoris-expressed N-A1 domains of carcinoembryonic antigen.

    PubMed

    Sainz-Pastor, Noelia; Tolner, Berend; Huhalov, Alexandra; Kogelberg, Heide; Lee, Yie Chia; Zhu, Delin; Begent, Richard Henry John; Chester, Kerry Ann

    2006-08-15

    Carcinoembryonic antigen (CEA) is a seven domain membrane glycoprotein widely used as a tumour marker for adenocarcinomas and as a target for antibody-directed therapies. Structural models have proposed that the first two domains of CEA (the N terminal and adjoining A1 domains) bind MFE-23, a single chain Fv antibody in experimental clinical use. We aimed to produce recombinant N-A1 to test this hypothesis. The N-A1 domains were expressed as soluble protein with a C-terminal hexahistidine tag (His6-tag) in the yeast Pichia pastoris. His6-tagged N-A1 was captured from the supernatant by batch purification with copper-loaded Streamline Chelating, an immobilised metal affinity chromatography (IMAC) matrix usually utilised in expanded bed techniques. Purified N-A1 was heterogeneous with a molecular weight range from 38 to 188 kDa. Deglycosylation with endoglycosidase H (Endo H) resulted in three discrete molecular weight forms of N-A1, one partially mannosylated, one fully Endo H-digested and one fully Endo H-digested but lacking the His6-tag. These were separated by concanavalin A chromatography followed by HiTrap IMAC. The procedure resulted in single-band-purity, mannose-free N-A1. The binding interaction of MFE-23 to N-A1 was analysed by surface plasmon resonance. The affinity constants retrieved were KD = 4.49 x 10(-9)M for the P. pastoris expressed, native N-A1, and 5.33 x 10(-9) M for the Endo H-treated N-A1. To our knowledge this is the first time that two consecutive domains of CEA have been stably expressed and purified from P. pastoris. This work confirms that the CEA epitope recognised by MFE-23 resides in N-A1. PMID:16678252

  7. Whole Pichia pastoris Yeast Expressing Measles Virus Nucleoprotein as a Production and Delivery System to Multimerize Plasmodium Antigens

    PubMed Central

    Jacob, Daria; Ruffie, Claude; Dubois, Myriam; Combredet, Chantal; Amino, Rogerio; Formaglio, Pauline; Gorgette, Olivier; Pehau-Arnaudet, Gérard; Guery, Charline; Puijalon, Odile; Barale, Jean-Christophe; Ménard, Robert; Tangy, Frédéric; Sala, Monica

    2014-01-01

    Yeasts are largely used as bioreactors for vaccine production. Usually, antigens are produced in yeast then purified and mixed with adjuvants before immunization. However, the purification costs and the safety concerns recently raised by the use of new adjuvants argue for alternative strategies. To this end, the use of whole yeast as both production and delivery system appears attractive. Here, we evaluated Pichia pastoris yeast as an alternative vaccine production and delivery system for the circumsporozoite protein (CS) of Plasmodium, the etiologic agent of malaria. The CS protein from Plasmodium berghei (Pb) was selected given the availability of the stringent C57Bl/6 mouse model of infection by Pb sporozoites, allowing the evaluation of vaccine efficacy in vivo. PbCS was multimerized by fusion to the measles virus (MV) nucleoprotein (N) known to auto-assemble in yeast in large-size ribonucleoprotein rods (RNPs). Expressed in P. pastoris, the N-PbCS protein generated highly multimeric and heterogenic RNPs bearing PbCS on their surface. Electron microscopy and immunofluorescence analyses revealed the shape of these RNPs and their localization in peripheral cytoplasmic inclusions. Subcutaneous immunization of C57Bl/6 mice with heat-inactivated whole P. pastoris expressing N-PbCS RNPs provided significant reduction of parasitemia after intradermal challenge with a high dose of parasites. Thus, in the absence of accessory adjuvants, a very low amount of PbCS expressed in whole yeast significantly decreased clinical damages associated with Pb infection in a highly stringent challenge model, providing a proof of concept of the intrinsic adjuvancy of this vaccine strategy. In addition to PbCS multimerization, the N protein contributed by itself to parasitemia delay and long-term mice survival. In the future, mixtures of whole recombinant yeasts expressing relevant Plasmodium antigens would provide a multivalent formulation applicable for antigen combination screening

  8. In vivo synthesis of mammalian-like, hybrid-type N-glycans in Pichia pastoris.

    PubMed

    Vervecken, Wouter; Kaigorodov, Vladimir; Callewaert, Nico; Geysens, Steven; De Vusser, Kristof; Contreras, Roland

    2004-05-01

    The Pichia pastoris N-glycosylation pathway is only partially homologous to the pathway in human cells. In the Golgi apparatus, human cells synthesize complex oligosaccharides, whereas Pichia cells form mannose structures that can contain up to 40 mannose residues. This hypermannosylation of secreted glycoproteins hampers the downstream processing of heterologously expressed glycoproteins and leads to the production of protein-based therapeutic agents that are rapidly cleared from the blood because of the presence of terminal mannose residues. Here, we describe engineering of the P. pastoris N-glycosylation pathway to produce nonhyperglycosylated hybrid glycans. This was accomplished by inactivation of OCH1 and overexpression of an alpha-1,2-mannosidase retained in the endoplasmic reticulum and N-acetylglucosaminyltransferase I and beta-1,4-galactosyltransferase retained in the Golgi apparatus. The engineered strain synthesized a nonsialylated hybrid-type N-linked oligosaccharide structure on its glycoproteins. The procedures which we developed allow glycan engineering of any P. pastoris expression strain and can yield up to 90% homogeneous protein-linked oligosaccharides. PMID:15128513

  9. Biomarkers to evaluate the effects of temperature and methanol on recombinant Pichia pastoris

    PubMed Central

    Zepeda, Andrea B.; Figueroa, Carolina A.; Abdalla, Dulcineia S.P.; Maranhão, Andrea Q.; Ulloa, Patricio H.; Pessoa, Adalberto; Farías, Jorge G.

    2014-01-01

    Pichia pastoris is methylotrophic yeast used as an efficient expression system for heterologous protein production. In order to evaluate the effects of temperature (10 and 30 °C) and methanol (1 and 3% (v/v)) on genetically-modified Pichia pastoris, different biomarkers were evaluated: Heat stress (HSF-1 and Hsp70), oxidative stress (OGG1 and TBARS) and antioxidant (GLR). Three yeast cultures were performed: 3X = 3% methanol-10 °C, 4X = 3% methanol-30 °C, and 5X = 1% methanol-10°C. The expression level of HIF-1α, HSF-1, HSP-70 and HSP-90 biomarkers were measured by Western blot and in situ detection was performed by immunocytochemistry. Ours results show that at 3% methanol −30 °C there is an increase of mitochondrial OGG1 (mtOGG1), Glutathione Reductase (GLR) and TBARS. In addition, there was a cytosolic expression of HSF-1 and HSP-70, which indicates a deprotection against nucleolar fragmentation (apoptosis). On the other hand, at 3% methanol −10 °C and 1% and at methanol −10 °C conditions there was nuclear expression of OGG1, lower levels of TBARS and lower expression of GLR, cytosolic expression of HSF-1 and nuclear expression HSP-70. In conclusion, our results suggest that 3% methanol-30 °C is a condition that induces a strong oxidative stress and risk factors of apoptosis in modified-genetically P. pastoris. PMID:25242930

  10. Biomarkers to evaluate the effects of temperature and methanol on recombinant Pichia pastoris.

    PubMed

    Zepeda, Andrea B; Figueroa, Carolina A; Abdalla, Dulcineia S P; Maranhão, Andrea Q; Ulloa, Patricio H; Pessoa, Adalberto; Farías, Jorge G

    2014-01-01

    Pichia pastoris is methylotrophic yeast used as an efficient expression system for heterologous protein production. In order to evaluate the effects of temperature (10 and 30 °C) and methanol (1 and 3% (v/v)) on genetically-modified Pichia pastoris, different biomarkers were evaluated: Heat stress (HSF-1 and Hsp70), oxidative stress (OGG1 and TBARS) and antioxidant (GLR). Three yeast cultures were performed: 3X = 3% methanol-10 °C, 4X = 3% methanol-30 °C, and 5X = 1% methanol-10°C. The expression level of HIF-1α, HSF-1, HSP-70 and HSP-90 biomarkers were measured by Western blot and in situ detection was performed by immunocytochemistry. Ours results show that at 3% methanol -30 °C there is an increase of mitochondrial OGG1 (mtOGG1), Glutathione Reductase (GLR) and TBARS. In addition, there was a cytosolic expression of HSF-1 and HSP-70, which indicates a deprotection against nucleolar fragmentation (apoptosis). On the other hand, at 3% methanol -10 °C and 1% and at methanol -10 °C conditions there was nuclear expression of OGG1, lower levels of TBARS and lower expression of GLR, cytosolic expression of HSF-1 and nuclear expression HSP-70. In conclusion, our results suggest that 3% methanol-30 °C is a condition that induces a strong oxidative stress and risk factors of apoptosis in modified-genetically P. pastoris. PMID:25242930

  11. Functionalized silk assembled from a recombinant spider silk fusion protein (Z-4RepCT) produced in the methylotrophic yeast Pichia pastoris.

    PubMed

    Jansson, Ronnie; Lau, Cheuk H; Ishida, Takuya; Ramström, Margareta; Sandgren, Mats; Hedhammar, My

    2016-05-01

    Functional biological materials are a growing research area with potential applicability in medicine and biotechnology. Using genetic engineering, the possibility to introduce additional functions into spider silk-based materials has been realized. Recently, a recombinant spider silk fusion protein, Z-4RepCT, was produced intracellularly in Escherichia coli and could after purification self-assemble into silk-like fibers with ability to bind antibodies via the IgG-binding Z domain. In this study, the use of the methylotrophic yeast Pichia pastoris for production of Z-4RepCT has been investigated. Temperature, pH and production time were influencing the amount of soluble Z-4RepCT retrieved from the extracellular fraction. Purification of secreted Z-4RepCT resulted in a mixture of full-length and degraded silk proteins that failed to self-assemble into fibers. A position in the C-terminal domain of 4RepCT was identified as being subjected to proteolytic cleavage by proteases in the Pichia culture supernatant. Moreover, the C-terminal domain was subjected to glycosylation during production in P. pastoris. These observed alterations of the CT domain are suggested to contribute to the failure in fiber assembly. As alternative approach, Z-4RepCT retrieved from the intracellular fraction, which was less degraded, was used and shown to retain ability to assemble into silk-like fibers after enzymatic deglycosylation. PMID:26814048

  12. Functional expression of the lactate permease Jen1p of Saccharomyces cerevisiae in Pichia pastoris.

    PubMed Central

    Soares-Silva, Isabel; Schuller, Dorit; Andrade, Raquel P; Baltazar, Fátima; Cássio, Fernanda; Casal, Margarida

    2003-01-01

    In Saccharomyces cerevisiae the activity for the lactate-proton symporter is dependent on JEN1 gene expression. Pichia pastoris was transformed with an integrative plasmid containing the JEN1 gene. After 24 h of methanol induction, Northern and Western blotting analyses indicated the expression of JEN1 in the transformants. Lactate permease activity was obtained in P. pastoris cells with a V (max) of 2.1 nmol x s(-1) x mg of dry weight(-1). Reconstitution of the lactate permease activity was achieved by fusing plasma membranes of P. pastoris methanol-induced cells with Escherichia coli liposomes containing cytochrome c oxidase, as proton-motive force. These assays in reconstituted heterologous P. pastoris membrane vesicles demonstrate that S. cerevisiae Jen1p is a functional lactate transporter. Moreover, a S. cerevisiae strain deleted in the JEN1 gene was transformed with a centromeric plasmid containing JEN1 under the control of the glyceraldehyde-3-phosphate dehydrogenase constitutive promotor. Constitutive JEN1 expression and lactic acid uptake were observed in cells grown on either glucose and/or acetic acid. The highest V (max) (0.84 nmol x s(-1) x mg of dry weight(-1)) was obtained in acetic acid-grown cells. Thus overexpression of the S. cerevisiae JEN1 gene in both S. cerevisiae and P. pastoris cells resulted in increased activity of lactate transport when compared with the data previously reported in lactic acid-grown cells of native S. cerevisiae strains. Jen1p is the only S. cerevisiae secondary porter characterized so far by heterologous expression in P. pastoris at both the cell and the membrane-vesicle levels. PMID:12962538

  13. A multi-level study of recombinant Pichia pastoris in different oxygen conditions

    PubMed Central

    2010-01-01

    Background Yeasts are attractive expression platforms for many recombinant proteins, and there is evidence for an important interrelation between the protein secretion machinery and environmental stresses. While adaptive responses to such stresses are extensively studied in Saccharomyces cerevisiae, little is known about their impact on the physiology of Pichia pastoris. We have recently reported a beneficial effect of hypoxia on recombinant Fab secretion in P. pastoris chemostat cultivations. As a consequence, a systems biology approach was used to comprehensively identify cellular adaptations to low oxygen availability and the additional burden of protein production. Gene expression profiling was combined with proteomic analyses and the 13C isotope labelling based experimental determination of metabolic fluxes in the central carbon metabolism. Results The physiological adaptation of P. pastoris to hypoxia showed distinct traits in relation to the model yeast S. cerevisiae. There was a positive correlation between the transcriptomic, proteomic and metabolic fluxes adaptation of P. pastoris core metabolism to hypoxia, yielding clear evidence of a strong transcriptional regulation component of key pathways such as glycolysis, pentose phosphate pathway and TCA cycle. In addition, the adaptation to reduced oxygen revealed important changes in lipid metabolism, stress responses, as well as protein folding and trafficking. Conclusions This systems level study helped to understand the physiological adaptations of cellular mechanisms to low oxygen availability in a recombinant P. pastoris strain. Remarkably, the integration of data from three different levels allowed for the identification of differences in the regulation of the core metabolism between P. pastoris and S. cerevisiae. Detailed comparative analysis of the transcriptomic data also led to new insights into the gene expression profiles of several cellular processes that are not only susceptible to low oxygen

  14. Methods for efficient high-throughput screening of protein expression in recombinant Pichia pastoris strains.

    PubMed

    Camattari, Andrea; Weinhandl, Katrin; Gudiminchi, Rama K

    2014-01-01

    The methylotrophic yeast Pichia pastoris is becoming one of the favorite industrial workhorses for protein expression. Due to the widespread use of integration vectors, which generates significant clonal variability, screening methods allowing assaying hundreds of individual clones are of particular importance. Here we describe methods to detect and analyze protein expression, developed in a 96-well format for high-throughput screening of recombinant P. pastoris strains. The chapter covers essentially three common scenarios: (1) an enzymatic assay for proteins expressed in the cell cytoplasm, requiring cell lysis; (2) a whole-cell assay for a fungal cytochrome P450; and (3) a nonenzymatic assay for detection and quantification of tagged protein secreted into the supernatant. PMID:24744029

  15. Mutant strains of Pichia pastoris with enhanced secretion of recombinant proteins.

    PubMed

    Larsen, Sasha; Weaver, Jun; de Sa Campos, Katherine; Bulahan, Rhobe; Nguyen, Jackson; Grove, Heather; Huang, Amy; Low, Lauren; Tran, Namphuong; Gomez, Seth; Yau, Jennifer; Ilustrisimo, Thomas; Kawilarang, Jessica; Lau, Jonathan; Tranphung, Maivi; Chen, Irene; Tran, Christina; Fox, Marcia; Lin-Cereghino, Joan; Lin-Cereghino, Geoff P

    2013-11-01

    Although Pichia pastoris is a popular protein expression system, it exhibits limitations in its ability to secrete heterologous proteins. Therefore, a REMI (restriction enzyme mediated insertion) strategy was utilized to select mutant beta-g alactosidase s upersecretion (bgs) strains that secreted increased levels of a β-galactosidase reporter. Many of the twelve BGS genes may have functions in intracellular signaling or vesicle transport. Several of these strains also appeared to contain a more permeable cell wall. Preliminary characterization of four bgs mutants showed that they differed in the ability to enhance the export of other reporter proteins. bgs13, which has a disruption in a gene homologous to Saccharomyces cerevisiae protein kinase C (PKC1), gave enhanced secretion of most recombinant proteins that were tested, raising the possibility that it has the universal super-secreter phenotype needed in an industrial production strain of P. pastoris. PMID:23881328

  16. Secretion of human interleukin-2 fused with green fluorescent protein in recombinant Pichia pastoris.

    PubMed

    Cha, Hyung Joon; Dalal, Nimish N; Bentley, William E

    2005-07-01

    Methylotrophic yeast Pichia pastoris is convenient for the expression of eukaryotic foreign proteins owing to its potential for posttranslational modifications, protein folding, and facile culturing. In this work, human interleukin (hIL)-2 was successfully produced as a secreted fusion form in recombinant P. pastoris. By employing green fluorescent protein (GFP) as a monitoring fusion partner, clear identification of fusion protein expression and quantification of intracellular hIL-2 were possible even though there was no correlation between culture supernatant fluorescence and secreted hIL-2 owing to high media interference. Importantly, by the addition of casamino acids in basal medium, we were able to enhance threefold amount of secreted hIL-2, which was present both as a fusion and as a clipped fragment. PMID:16014994

  17. [Synthesis of diisooctyl adipate catalyzed by lipase-displaying Pichia pastoris whole-cell biocatalysts].

    PubMed

    Zhang, Na; Jin, Zi; Lin, Ying; Zheng, Suiping; Han, Shuangyan

    2013-07-01

    An enzyme-displaying yeast as a whole-cell biocatalyst is an alternative to immobilized enzyme, due to its low-cost preparation and simple recycle course. Here, lipase-displaying Pichia pastoris whole-cell was used as a biocatalyst to synthesize diisooctyl adipate in the non-aqueous system. The maximum productivity of diisooctyl adipate was obtained as 85.0% in a 10 mL reaction system. The yield could be reached as high as 97.8% when the reaction system was scaled up to 200 mL. The purity obtained is 98.2% after vacuum distillation. Thus, the lipase-displaying P. pastoris whole-cell biocatalyst was promising in commercial application for diisooctyl adipate synthesis in non-aqueous phase. PMID:24195369

  18. Bioremediation of Parboiled Rice Effluent Supplemented with Biodiesel-Derived Glycerol Using Pichia pastoris X-33

    PubMed Central

    Gil de los Santos, Diego; Gil Turnes, Carlos; Rochedo Conceição, Fabricio

    2012-01-01

    This paper describes the use of Pichia pastoris X-33 as a bioremediator to reduce the chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), and phosphorus (P-PO4   3−), after culture in parboiled rice effluent supplemented with p.a. glycerol or a glycerol by-product of the biodiesel industry. The greatest reduction in the COD (55%), TKN (45%), and P-PO4   3− (52%) of the effluent was observed in cultures of P. pastoris X-33 supplemented with 15 g ·L−1 of biodiesel-derived glycerol. Furthermore, the overall biomass yield was 2.1 g ·L−1. These data suggest that biodiesel-derived glycerol is an efficient carbon source for the bioremediation of parboiled rice effluent and biomass production. PMID:22919327

  19. Knockout of an endogenous mannosyltransferase increases the homogeneity of glycoproteins produced in Pichia pastoris

    PubMed Central

    Krainer, Florian W.; Gmeiner, Christoph; Neutsch, Lukas; Windwarder, Markus; Pletzenauer, Robert; Herwig, Christoph; Altmann, Friedrich; Glieder, Anton; Spadiut, Oliver

    2013-01-01

    The yeast Pichia pastoris is a common host for the recombinant production of biopharmaceuticals, capable of performing posttranslational modifications like glycosylation of secreted proteins. However, the activity of the OCH1 encoded α-1,6-mannosyltransferase triggers hypermannosylation of secreted proteins at great heterogeneity, considerably hampering downstream processing and reproducibility. Horseradish peroxidases are versatile enzymes with applications in diagnostics, bioremediation and cancer treatment. Despite the importance of these enzymes, they are still isolated from plant at low yields with different biochemical properties. Here we show the production of homogeneous glycoprotein species of recombinant horseradish peroxidase by using a P. pastoris platform strain in which OCH1 was deleted. This och1 knockout strain showed a growth impaired phenotype and considerable rearrangements of cell wall components, but nevertheless secreted more homogeneously glycosylated protein carrying mainly Man8 instead of Man10 N-glycans as a dominant core glycan structure at a volumetric productivity of 70% of the wildtype strain. PMID:24252857

  20. Effects of pre- and pro-sequence of thaumatin on the secretion by Pichia pastoris.

    PubMed

    Ide, Nobuyuki; Masuda, Tetsuya; Kitabatake, Naofumi

    2007-11-23

    Thaumatin is a 22-kDa sweet-tasting protein containing eight disulfide bonds. When thaumatin is expressed in Pichia pastoris using the thaumatin cDNA fused with both the alpha-factor signal sequence and the Kex2 protease cleavage site from Saccharomyces cerevisiae, the N-terminal sequence of the secreted thaumatin molecule is not processed correctly. To examine the role of the thaumatin cDNA-encoded N-terminal pre-sequence and C-terminal pro-sequence on the processing of thaumatin and efficiency of thaumatin production in P. pastoris, four expression plasmids with different pre-sequence and pro-sequence were constructed and transformed into P. pastoris. The transformants containing pre-thaumatin gene that has the native plant signal, secreted thaumatin molecules in the medium. The N-terminal amino acid sequence of the secreted thaumatin molecule was processed correctly. The production yield of thaumatin was not affected by the C-terminal pro-sequence, and the pro-sequence was not processed in P. pastoris, indicating that pro-sequence is not necessary for thaumatin synthesis. PMID:17897626

  1. mazF as a counter-selectable marker for unmarked genetic modification of Pichia pastoris.

    PubMed

    Yang, Junjie; Jiang, Weihong; Yang, Sheng

    2009-06-01

    In this study, we demonstrate a novel method for unmarked genetic modification of the methylotrophic yeast Pichia pastoris, in which the Escherichia coli toxin gene mazF was used as a counter-selectable marker. mazF was placed under the tightly controlled AOX1 promoter, and the induced expression of MazF in P. pastoris halted cell growth. A modular plasmid was constructed in which mazF and a Zeocin resistance gene acted as counter-selectable and active-selectable markers, respectively, and the MazF-ZeoR cassette was flanked by two direct repeats for marker recycling. Linearized delivery vectors constructed from the modular plasmid were integrated into the P. pastoris genome via homologous recombination, introducing genetic modifications. Upon counter-selection with methanol medium, which induces the AOX1 promoter, the markers were recycled efficiently via homologous recombination between the direct repeats. We used this method successfully to knock-out the ARG1 and MET2 genes, knock-in a green fluorescent protein expression cassette, and perform site-directed mutagenesis on the ARG1 gene, all without introducing unwanted selection markers. The novel method allows repeated use of the selectable marker gene for multiple modifications and will be a useful tool for P. pastoris studies. PMID:19416369

  2. Lignocellulose degrading extremozymes produced by Pichia pastoris: current status and future prospects.

    PubMed

    Ergün, Burcu Gündüz; Çalık, Pınar

    2016-01-01

    In this review article, extremophilic lignocellulosic enzymes with special interest on xylanases, β-mannanases, laccases and finally cellulases, namely, endoglucanases, exoglucanases and β-glucosidases produced by Pichia pastoris are reviewed for the first time. Recombinant lignocellulosic extremozymes are discussed from the perspectives of their potential application areas; characteristics of recombinant and native enzymes; the effects of P. pastoris expression system on recombinant extremozymes; and their expression levels and applied strategies to increase the enzyme expression yield. Further, effects of enzyme domains on activity and stability, protein engineering via molecular dynamics simulation and computational prediction, and site-directed mutagenesis and amino acid modifications done are also focused. Superior enzyme characteristics and improved stability due to the proper post-translational modifications and better protein folding performed by P. pastoris make this host favourable for extremozyme production. Especially, glycosylation contributes to the structure, function and stability of enzymes, as generally glycosylated enzymes produced by P. pastoris exhibit better thermostability than non-glycosylated enzymes. However, there has been limited study on enzyme engineering to improve catalytic efficiency and stability of lignocellulosic enzymes. Thus, in the future, studies should focus on protein engineering to improve stability and catalytic efficiency via computational modelling, mutations, domain replacements and fusion enzyme technology. Also metagenomic data need to be used more extensively to produce novel enzymes with extreme characteristics and stability. PMID:26497303

  3. Construction of a novel Pichia pastoris strain for production of xanthophylls.

    PubMed

    Araya-Garay, José Miguel; Ageitos, José M; Vallejo, Juan A; Veiga-Crespo, Patricia; Sánchez-Pérez, Angeles; Villa, Tomás G

    2012-01-01

    In this study, we used the yeast carotenogenic producer Pichia pastoris Pp-EBIL strain, which has been metabolically engineered, by heterologously expressing β-carotene-pathway enzymes to produce β-carotene, as a vessel for recombinant astaxanthin expression. For this purpose, we designed new P. pastoris recombinant-strains harboring astaxanthin-encoding genes from carotenogenic microorganism, and thus capable of producing xanthophyllic compounds. We designed and constructed a plasmid (pGAPZA-WZ) containing both the β-carotene ketolase (crtW) and β-carotene hydroxylase (crtZ) genes from Agrobacterium aurantiacum, under the control of the GAP promoter and containing an AOX-1 terminator. The plasmid was then integrated into the P. pastoris Pp-EBIL strain genomic DNA, producing clone Pp-EBILWZ. The recombinant P. pastoris (Pp-EBILWZ) cells exhibited a strong reddish carotenoid coloration and were confirmed, by HPLC, to produce not only the previous described carotenoids lycopene and β-carotene, but also de novo synthesized astaxanthin. PMID:22534340

  4. Expression of Functional Influenza Virus RNA Polymerase in the Methylotrophic Yeast Pichia pastoris

    PubMed Central

    Hwang, Jung-Shan; Yamada, Kazunori; Honda, Ayae; Nakade, Kohji; Ishihama, Akira

    2000-01-01

    Influenza virus RNA polymerase with the subunit composition PB1-PB2-PA is a multifunctional enzyme with the activities of both synthesis and cleavage of RNA and is involved in both transcription and replication of the viral genome. In order to produce large amounts of the functional viral RNA polymerase sufficient for analysis of its structure-function relationships, the cDNAs for RNA segments 1, 2, and 3 of influenza virus A/PR/8, each under independent control of the alcohol oxidase gene promoter, were integrated into the chromosome of the methylotrophic yeast Pichia pastoris. Simultaneous expression of all three P proteins in the yeast P. pastoris was achieved by the addition of methanol. To purify the P protein complexes, a sequence coding for a histidine tag was added to the PB2 protein gene at its N terminus. Starting from the induced P. pastoris cell lysate, we partially purified a 3P complex by Ni2+-agarose affinity column chromatography. The 3P complex showed influenza virus model RNA-directed and ApG-primed RNA synthesis in vitro but was virtually inactive without addition of template or primer. The kinetic properties of model template-directed RNA synthesis and the requirements for template sequence were analyzed using the 3P complex. Furthermore, the 3P complex showed capped RNA-primed RNA synthesis. Thus, we conclude that functional influenza virus RNA polymerase with the catalytic properties of a transcriptase is formed in the methylotrophic yeast P. pastoris. PMID:10756019

  5. Cloning and expression of Trichoderma reesei cellobiohydrolase I in Pichia pastoris

    SciTech Connect

    Godbole, S.; Decker, S.R.; Nieves, R.A.; Adney, W.S.; Vinzant, T.B.; Baker, J.O.; Thomas, S.R.; Himmel, M.E.

    1999-10-01

    Pichia pastoris was transformed with the Trichoderma reesei cbh1 gene, and the recombinant enzyme was purified and analyzed kinetically and by circular dichroism. The P. pastoris rCBH I was recognized by MoAb raised to T. reesei CBH I but was found in multiple molecular weight species on SDS-PAGE gels. Carbohydrate content determination and SDS-PAGE western analysis indicated that the recombinant protein was hyperglycosylated, although a species very similar in molecular weight to the T. reesei enzyme could be isolated chromatographically. The P. pastoris rCBH I also demonstrated activity toward soluble and insoluble substrates (i.e., pNPL and Sigmacell), although at a level significantly lower than the wild-type enzyme. More seriously, the yeast-expressed enzyme showed non-wild-type secondary structure by circular dichroism. The authors conclude that P. pastoris may not serve as an adequate host for the site-directed mutagenesis of T. reesei CBH I.

  6. Improving the Secretory Expression of an -Galactosidase from Aspergillus niger in Pichia pastoris.

    PubMed

    Zheng, Xianliang; Fang, Bo; Han, Dongfei; Yang, Wenxia; Qi, Feifei; Chen, Hui; Li, Shengying

    2016-01-01

    α-Galactosidases are broadly used in feed, food, chemical, pulp, and pharmaceutical industries. However, there lacks a satisfactory microbial cell factory that is able to produce α-galactosidases efficiently and cost-effectively to date, which prevents these important enzymes from greater application. In this study, the secretory expression of an Aspergillus niger α-galactosidase (AGA) in Pichia pastoris was systematically investigated. Through codon optimization, signal peptide replacement, comparative selection of host strain, and saturation mutagenesis of the P1' residue of Kex2 protease cleavage site for efficient signal peptide removal, a mutant P. pastoris KM71H (Muts) strain of AGA-I with the specific P1' site substitution (Glu to Ile) demonstrated remarkable extracellular α-galactosidase activity of 1299 U/ml upon a 72 h methanol induction in 2.0 L fermenter. The engineered yeast strain AGA-I demonstrated approximately 12-fold higher extracellular activity compared to the initial P. pastoris strain. To the best of our knowledge, this represents the highest yield and productivity of a secreted α-galactosidase in P. pastoris, thus holding great potential for industrial application. PMID:27548309

  7. A toolbox of endogenous and heterologous nuclear localization sequences for the methylotrophic yeast Pichia pastoris

    PubMed Central

    Weninger, Astrid; Glieder, Anton; Vogl, Thomas

    2015-01-01

    Nuclear localization sequences (NLSs) are required for the import of proteins in the nucleus of eukaryotes. However many proteins from bacteria or bacteriophages are used for basic studies in molecular biology, to generate synthetic genetic circuits or for genome editing applications. Prokaryotic recombinases, CRISPR-associated proteins such as Cas9 or bacterial and viral polymerases require efficient NLSs to function in eukaryotes. The yeast Pichia pastoris is a widely used expression platform for heterologous protein production, but molecular tools such as NLSs are limited. Here we have characterized a set of 10 NLSs for P. pastoris, including the first endogenous NLSs (derived from P. pastoris proteins) and commonly used heterologous NLSs. The NLSs were evaluated by fusing them in N- and C-terminal position to an enhanced green fluorescent protein showing pronounced differences in fluorescence levels and nuclear targeting. Thereby we provide a set of different NLSs that can be applied to optimize the nuclear import of heterologous proteins in P. pastoris, paving the way for the establishment of intricate synthetic biology applications. PMID:26347503

  8. Expression and Characterization of the RKOD DNA Polymerase in Pichia pastoris

    PubMed Central

    Wang, Fei; Li, Shuntang; Zhao, Hui; Bian, Lu; Chen, Liang; Zhang, Zhen; Zhong, Xing; Ma, Lixin; Yu, Xiaolan

    2015-01-01

    The present study assessed high-level expression of the KOD DNA polymerase in Pichia pastoris. Thermococcus kodakaraensis KOD1 is a DNA polymerase that is widely used in PCR. The DNA coding sequence of KOD was optimized based on the codon usage bias of P. pastoris and synthesized by overlapping PCR, and the nonspecific DNA-binding protein Sso7d from the crenarchaeon Sulfolobus solfataricus was fused to the C-terminus of KOD. The resulting novel gene was cloned into a pHBM905A vector and introduced into P. pastoris GS115 for secretory expression. The yield of the target protein reached approximately 250 mg/l after a 6-d induction with 1% (v/v) methanol in shake flasks. This yield is much higher than those of other DNA polymerases expressed heterologously in Escherichia coli. The recombinant enzyme was purified, and its enzymatic features were studied. Its specific activity was 19,384 U/mg. The recombinant KOD expressed in P. pastoris exhibited excellent thermostability, extension rate and fidelity. Thus, this report provides a simple, efficient and economic approach to realize the production of a high-performance thermostable DNA polymerase on a large scale. This is the first report of the expression in yeast of a DNA polymerase for use in PCR. PMID:26134129

  9. High-level extracellular production and characterization of Candida antarctica lipase B in Pichia pastoris.

    PubMed

    Eom, Gyeong Tae; Lee, Seung Hwan; Song, Bong Keun; Chung, Keun-Wo; Kim, Young-Wun; Song, Jae Kwang

    2013-08-01

    The gene encoding lipase B from Candida antarctica (CalB) was expressed in Pichia pastoris after it was synthesized by the recursive PCR and cloned into the Pichia expression plasmid, pPICZαA. The CalB was successfully secreted in the recombinant P. pastoris strain X-33 with an apparent molecular weight of 34 kDa. For 140 h flask culture, the dry cell weight and the extracellular lipase activity reached at 5.4 g/l and 57.9 U/l toward p-nitrophenyl palmitate, respectively. When we performed the fed-batch fermentation using a methanol feeding strategy for 110 h, the dry cell weight and the extracellular lipase activity were increased to 135.7 g/l and 11,900 U/l; the CalB protein concentration was 1.18 g/l of culture supernatant. The characteristics of CalB recovered from the P. pastoris culture were compared with the commercial form of CalB produced in Aspergillus oryzae. The kinetic constants and specific activity, the effects of activity and stability on temperature and pH, the glycosylation extent, the degree of immobilization on macroporous resin and the yield of esterification reaction between oleic acid and n-butanol were almost identical to each other. Therefore, we successfully proved that the Pichia-based expression system for CalB in this study was industrially promising compared with one of the most efficient production systems. PMID:23571105

  10. Metabolic engineering of Pichia pastoris for the production of dammarenediol-II.

    PubMed

    Liu, Xin-Bin; Liu, Min; Tao, Xin-Yi; Zhang, Zhong-Xi; Wang, Feng-Qing; Wei, Dong-Zhi

    2015-12-20

    Dammarenediol-II is the nucleus of dammarane-type ginsenosides, which are a group of active triterpenoids exhibiting various pharmacological activities. Based on the native triterpene synthetic pathway, a dammarenediol-II synthetic pathway was established in Pichia pastoris by introducing a dammarenediol-II synthase gene (PgDDS) from Panax ginseng, which is responsible for the cyclization of 2,3-oxidosqualene to dammarenediol-II in this study. To enhance productivity, a strategy of "increasing supply and reducing competitive consumption of 2,3-oxidosqualene" was used. To increase the supply of 2,3-oxidosqualene, we augmented expression of the ERG1 gene, which is responsible for 2,3-oxidosqualene synthesis. This significantly improved the yield of dammarenediol-II over 6.7-fold, from 0.030mg/g dry cell weight (DCW) to 0.203mg/g DCW. Subsequently, to reduce competition for 2,3-oxidosqualene from ergosterol biosynthesis without affecting the normal growth of P. pastoris, we targeted the ERG7gene, which is responsible for conversion of 2,3-oxidosqualene to lanosterol. This gene was downregulated by replacing its native promoter with a thiamine-repressible promoter, using a marker-recycling and gene-targeting Cre- lox71/66 system developed for P. pastoris herein. The yield of dammarenediol-II was further increased more than 3.6-fold, to 0.736mg/g DCW. Furthermore, the direct addition of 0.5g/L squalene into the culture medium further enhanced the yield of dammarenediol-II to 1.073mg/g DCW, which was 37.5-fold higher than the yield from the strain with the PgDDS gene introduction only. The P. pastoris strains engineered in this study constitute a good platform for further production of ginsenosides in Pichia species. PMID:26467715

  11. Large-scale production in Pichia pastoris of the recombinant vaccine Gavac against cattle tick.

    PubMed

    Canales, M; Enríquez, A; Ramos, E; Cabrera, D; Dandie, H; Soto, A; Falcón, V; Rodríguez, M; de la Fuente, J

    1997-03-01

    A gene coding for the Bm86 tick protein was recently cloned, expressed in Pichia pastoris and shown to induce an inmunological response in cattle against ticks. Moreover, the Gavac vaccine (Heber Biotec S.A., Havana, Cuba), which contains this recombinant protein, has proved to control the Boophilus microplus populations under field conditions. This paper reviews the development and large-scale production of this vaccine, the efficacy of the resulting product and the strategy followed in designing its production plant. The production plant fulfills biosafety requirements and GMP. PMID:9141213

  12. Biochemical characterization of the recombinant Boophilus microplus Bm86 antigen expressed by transformed Pichia pastoris cells.

    PubMed

    Montesino, R; Cremata, J; Rodríguez, M; Besada, V; Falcón, V; de la Fuente, J

    1996-02-01

    In the present paper we report the biochemical characteristics of the recombinant tick (Boophilus microplus) gut antigen Bm86 that previously has been cloned, expressed and recovered at high levels in the methylotrophic yeast Pichia pastoris. The results demonstrate that rBm86 had a modification at position 92 (Thr replaced by Ile) and aggregated, forming particles ranging between 17 and 40 nm. The rBm86 was N-glycosylated, having at least two non-glycosylated sequons (Asn-329 and Asn-363) and a ratio of only 0.4/65 (free Cys/total Cys)/mol of protein. PMID:8867893

  13. Simplified high-throughput screening of AOX1-expressed laccase enzyme in Pichia pastoris.

    PubMed

    Kenzom, T; Srivastava, P; Mishra, S

    2015-11-15

    The heterologous protein expression in Pichia pastoris under the control of alcohol oxidase (AOX1)promoter comprises two steps, the growth and induction phases, which are time-consuming and technically demanding. Here, we describe an alternate method where expression is carried out directly in the methanol-containing medium. Using this method, we were successful in screening high-activity laccase clones from a library of laccase mutants generated by random mutagenesis. This simplified method not only saves time but also is highly efficient and can be used for screening a large number of clones. PMID:26299646

  14. [Isolation and characterization of PAOX2 mutant in Pichia pastoris].

    PubMed

    Dai, X Y; Wang, Y X; Zhou, J; Wang, Y Q

    2000-01-01

    Spontaneous Mut+ mutants of P. pastoris AOX1-defective expression strain have been isolated, they were identified as phenotypically utilized methanol to grow as wild type. The results obtained from measuring growth curve when cultivated in medium in which methanol as a sole carbon source and detecting HSA protein on SDS-PAGE confirmed that the mutants have increased ability to utilize methanol and express foreign HSA gene product. The promoter region of AOX2 gene from the mutants has been cloned by PCR amplification, and the DNA fragment is 1022bp in size. Sequencing analysis showed that there are two point mutations at positions of -529 and -255 from the translation initiation codon respectively. The mutations improved AOX-1 defective function and facilitate the foreign gene for higher expression. PMID:11051726

  15. Protective oral vaccination against infectious bursal disease virus using the major viral antigenic protein VP2 produced in Pichia pastoris.

    PubMed

    Taghavian, Omid; Spiegel, Holger; Hauck, Rüdiger; Hafez, Hafez M; Fischer, Rainer; Schillberg, Stefan

    2013-01-01

    Infectious bursal disease virus (IBDV) causes economically important immunosuppressive disease in young chickens. The self-assembling capsid protein (VP2) from IBDV strain IR01 was expressed in Pichia pastoris resulting in the formation of homomeric, 23-nm infectious bursal disease subviral particles (IBD-SVPs) with a yield of 76 mg/l before and 38 mg/l after purification. Anti-IBDV antibodies were detected in chickens injected with purified IBD-SVPs or fed with either purified IBD-SVPs or inactivated P. pastoris cells containing IBD-VP2 (cell-encapsulated). Challenge studies using the heterologous classical IBDV strain (MB3) showed that intramuscular vaccination with 20 µg purified IBD-SVPs conferred full protection, achieved complete virus clearance and prevented bursal damage and atrophy, compared with only 40% protection, 0-10% virus clearance accompanied by severe atrophy and substantial bursal damage in mock-vaccinated and challenge controls. The commercial IBDV vaccine also conferred full protection and achieved complete virus clearance, albeit with partial bursal atrophy. Oral administration of 500 µg purified IBD-SVPs with and without adjuvant conferred 100% protection but achieved only 60% virus clearance with adjuvant and none without it. Moderate bursal damage was observed in both cases but the inclusion of adjuvant resulted in bursal atrophy similar to that observed with live-attenuated vaccine and parenteral administration of 20 µg purified IBD-SVPs. The oral administration of 250 mg P. pastoris cells containing IBD-VP2 resulted in 100% protection with adjuvant and 60% without, accompanied by moderate bursal damage and atrophy in both groups, whereas 25 mg P. pastoris cells containing IBD-VP2 resulted in 90-100% protection with moderate bursal lesions and severe atrophy. Finally, the oral delivery of 50 µg purified IBD-SVPs achieved 40-60% protection with severe bursal lesions and atrophy. Both oral and parenteral administration of yeast

  16. Protective Oral Vaccination against Infectious bursal disease virus Using the Major Viral Antigenic Protein VP2 Produced in Pichia pastoris

    PubMed Central

    Taghavian, Omid; Spiegel, Holger; Hauck, Rüdiger; Hafez, Hafez M.; Fischer, Rainer; Schillberg, Stefan

    2013-01-01

    Infectious bursal disease virus (IBDV) causes economically important immunosuppressive disease in young chickens. The self-assembling capsid protein (VP2) from IBDV strain IR01 was expressed in Pichia pastoris resulting in the formation of homomeric, 23-nm infectious bursal disease subviral particles (IBD-SVPs) with a yield of 76 mg/l before and 38 mg/l after purification. Anti-IBDV antibodies were detected in chickens injected with purified IBD-SVPs or fed with either purified IBD-SVPs or inactivated P. pastoris cells containing IBD-VP2 (cell-encapsulated). Challenge studies using the heterologous classical IBDV strain (MB3) showed that intramuscular vaccination with 20 µg purified IBD-SVPs conferred full protection, achieved complete virus clearance and prevented bursal damage and atrophy, compared with only 40% protection, 0–10% virus clearance accompanied by severe atrophy and substantial bursal damage in mock-vaccinated and challenge controls. The commercial IBDV vaccine also conferred full protection and achieved complete virus clearance, albeit with partial bursal atrophy. Oral administration of 500 µg purified IBD-SVPs with and without adjuvant conferred 100% protection but achieved only 60% virus clearance with adjuvant and none without it. Moderate bursal damage was observed in both cases but the inclusion of adjuvant resulted in bursal atrophy similar to that observed with live-attenuated vaccine and parenteral administration of 20 µg purified IBD-SVPs. The oral administration of 250 mg P. pastoris cells containing IBD-VP2 resulted in 100% protection with adjuvant and 60% without, accompanied by moderate bursal damage and atrophy in both groups, whereas 25 mg P. pastoris cells containing IBD-VP2 resulted in 90–100% protection with moderate bursal lesions and severe atrophy. Finally, the oral delivery of 50 µg purified IBD-SVPs achieved 40–60% protection with severe bursal lesions and atrophy. Both oral and parenteral administration of yeast

  17. The intracellular production and secretion of HIV-1 envelope protein in the methylotrophic yeast Pichia pastoris.

    PubMed

    Scorer, C A; Buckholz, R G; Clare, J J; Romanos, M A

    1993-12-22

    The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein, gp120 (ENV), is required in large quantities for immunological studies and as a potential vaccine component. We have expressed the DNA encoding gp120 in a highly efficient expression system based on the methylotrophic yeast, Pichia pastoris. The native gene was found to contain a sequence which resembled a Saccharomyces cerevisiae polyadenylation consensus and acted as a premature polyadenylation site in P. pastoris, resulting in the production of truncated mRNA. As full-length mRNA was produced in S. cerevisiae, this indicates differences in mRNA 3'-end formation between the two yeasts. Inactivation of this site by site-directed mutagenesis revealed several additional fortuitous polyadenylation sites within the gene. We have designed and constructed a 69%-synthetic gene with increased G + C content which overcomes this transcriptional problem, giving rise to full-length mRNA. High levels of intracellular, insoluble, unglycosylated ENV were produced [1.25 mg/ml in high-density (2 x 10(10) cells per ml) fermentations]. ENV also was secreted from P. pastoris using the S. cerevisiae alpha-factor prepro secretion leader and the S. cerevisiae invertase signal sequence. However, a high proportion of the secreted product was found to be hyperglycosylated, in contrast to other foreign proteins secreted from P. pastoris. There also was substantial proteolytic degradation, but this was minimized by maintaining a low pH on induction. Insoluble, yeast-derived ENV proteins are being considered as vaccine antigens and the P. pastoris system offers an efficient method of production. PMID:8293993

  18. Cloning and expression of Candida guilliermondii xylose reductase gene (xyl1) in Pichia pastoris.

    PubMed

    Handumrongkul, C; Ma, D P; Silva, J L

    1998-04-01

    A xylose reductase gene (xyl1) of Candida guilliermondii ATCC 20118 was cloned and characterized. The open reading frame of xyl1 contained 954 nucleotides encoding a protein of 317 amino acids with a predicted molecular mass of 36 kDa. The derived amino acid sequence of C. guilliermondii xylose reductase was 70.4% homologous to that of Pichia stipitis. The gene was placed under the control of an alcohol oxidase promoter (AOX1) and integrated into the genome of a methylotrophic yeast, Pichia pastoris. Methanol induced the expression of the 36-kDa xylose reductase in both intracellular and secreted expression systems. The expressed enzyme preferentially utilized NADPH as a cofactor and was functional both in vitro and in vivo. The different cofactor specificity between P. pastoris and C. guilliermondii xylose reductases might be due to the difference in the numbers of histidine residues and their locations between the two proteins. The recombinant was able to ferment xylose, and the maximum xylitol accumulation (7.8 g/l) was observed when the organism was grown under aerobic conditions. PMID:9615481

  19. Heterologous, Expression, and Characterization of Thermostable Glucoamylase Derived from Aspergillus flavus NSH9 in Pichia pastoris

    PubMed Central

    Karim, Kazi Muhammad Rezaul; Hossain, Md. Anowar; Sing, Ngieng Ngui; Mohd Sinang, Fazia; Hussain, Mohd Hasnain Md.; Roslan, Hairul Azman

    2016-01-01

    A novel thermostable glucoamylase cDNA without starch binding domain (SBD) of Aspergillus flavus NSH9 was successfully identified, isolated, and overexpressed in Pichia pastoris GS115. The complete open reading frame of glucoamylase from Aspergillus flavus NSH9 was identified by employing PCR that encodes 493 amino acids lacking in the SBD. The first 17 amino acids were presumed to be a signal peptide. The cDNA was cloned into Pichia pastoris and the highest expression of recombinant glucoamylase (rGA) was observed after 8 days of incubation period with 1% methanol. The molecular weight of the purified rGA was about 78 kDa and exhibited optimum catalytic activity at pH 5.0 and temperature of 70°C. The enzyme was stable at higher temperature with 50% of residual activity observed after 20 min at 90°C and 100°C. Low concentration of metal (Mg++, Fe++, Zn++, Cu++, and Pb++) had positive effect on rGA activity. This rGA has the potential for use and application in the saccharification steps, due to its thermostability, in the starch processing industries. PMID:27504454

  20. In situ microscopy for online monitoring of cell concentration in Pichia pastoris cultivations.

    PubMed

    Marquard, D; Enders, A; Roth, G; Rinas, U; Scheper, T; Lindner, P

    2016-09-20

    In situ Microscopy (ISM) is an optical non-invasive technique to monitor cells in bioprocesses in real-time. Pichia pastoris is one of the most promising protein expression systems. This yeast combines fast growth on simple media and important eukaryotic features such as glycosylation. In this work, the ISM technology was applied to Pichia pastoris cultivations for online monitoring of the cell concentration during cultivation. Different ISM settings were tested. The acquired images were analyzed with two image processing algorithms. In seven cultivations the cell concentration was monitored by the applied algorithms and offline samples were taken to determine optical density (OD) and dry cell mass (DCM). Cell concentrations up to 74g/L dry cell mass could be analyzed via the ISM. Depending on the algorithm and the ISM settings, an accuracy between 0.3 % and 12 % was achieved. The overall results show that for a robust measurement a combination of the two described algorithms is required. PMID:27485811

  1. Overexpression and biochemical characterization of a thermostable phytase from Bacillus subtilis US417 in Pichia pastoris.

    PubMed

    Hmida-Sayari, Aïda; Elgharbi, Fatma; Farhat, Ameny; Rekik, Hatem; Blondeau, Karine; Bejar, Samir

    2014-09-01

    The overexpression of the native gene encoding the thermostable Bacillus subtilis US417 phytase using Pichia pastoris system is described. The phytase gene, in which the sequence encoding the signal peptide was replaced by that of the α-factor of Saccharomyces cerevisiae, was placed under the control of the methanol-inducible promoter of the alcohol oxidase 1 gene and expressed in Pichia pastoris. Small-scale expression experiments and activity assays were used to screen positive colonies. A recombinant strain was selected and produces 43 and 227 U/mL of phytase activity in shake flasks and in high-cell-density fermentation, respectively. The purified phytase was glycosylated protein and varied in size (50-65 kDa). It has a molecular mass of 43 kDa when it was deglycosylated. The purified r-PHY maintains 100% of its activity after 10 min incubation at 75 °C and pH 7.5. This thermostable phytase, which is also active over broad pH ranges, may be useful as feed additives, since it can resist the temperature used in the feed-pelleting process. PMID:24859267

  2. Heterologous, Expression, and Characterization of Thermostable Glucoamylase Derived from Aspergillus flavus NSH9 in Pichia pastoris.

    PubMed

    Karim, Kazi Muhammad Rezaul; Husaini, Ahmad; Hossain, Md Anowar; Sing, Ngieng Ngui; Mohd Sinang, Fazia; Hussain, Mohd Hasnain Md; Roslan, Hairul Azman

    2016-01-01

    A novel thermostable glucoamylase cDNA without starch binding domain (SBD) of Aspergillus flavus NSH9 was successfully identified, isolated, and overexpressed in Pichia pastoris GS115. The complete open reading frame of glucoamylase from Aspergillus flavus NSH9 was identified by employing PCR that encodes 493 amino acids lacking in the SBD. The first 17 amino acids were presumed to be a signal peptide. The cDNA was cloned into Pichia pastoris and the highest expression of recombinant glucoamylase (rGA) was observed after 8 days of incubation period with 1% methanol. The molecular weight of the purified rGA was about 78 kDa and exhibited optimum catalytic activity at pH 5.0 and temperature of 70°C. The enzyme was stable at higher temperature with 50% of residual activity observed after 20 min at 90°C and 100°C. Low concentration of metal (Mg(++), Fe(++), Zn(++), Cu(++), and Pb(++)) had positive effect on rGA activity. This rGA has the potential for use and application in the saccharification steps, due to its thermostability, in the starch processing industries. PMID:27504454

  3. A multi-bioreactor system for optimal production of malaria vaccines with Pichia pastoris.

    PubMed

    Fricke, Jens; Pohlmann, Kristof; Tatge, Frithjof; Lang, Roman; Faber, Bart; Luttmann, Reiner

    2011-04-01

    The successful development of optimal multistage production processes for recombinant products with Pichia pastoris needs to meet three pre-conditions. These pre-conditions are (i) strategies for performing fully automated and observable processes, (ii) characterization of the host cell-specific reaction parameters in order to make an adapted process layout for feeding and aeration strategies, and (iii) knowledge of optimal operation parameter conditions for maximizing the expression productivity of target protein amount and/or quality. In this report, an approach of a fully automated multi-bioreactor plant is described that meets all these requirements. The expression and secretion of a potential malaria vaccine with Pichia pastoris was chosen as an example to demonstrate the quality of the bioreactor system. Methods for the simultaneous identification of reaction kinetics were developed for strain characterization. Process optimization was carried out by applying a sequential/parallel Design of Experiments. In the view of Process Analytical Technology (PAT)-applications and in order to develop fully automated and globally observable production processes, methods for quasi on-line monitoring of recombinant protein secretion titers and the immunological quality of the products are also discussed in detail. PMID:21472987

  4. Optimization of Recombinant Expression of Synthetic Bacterial Phytase in Pichia pastoris Using Response Surface Methodology

    PubMed Central

    Akbarzadeh, Ali; Dehnavi, Ehsan; Aghaeepoor, Mojtaba; Amani, Jafar

    2015-01-01

    Background: Escherichia coli phytase is an acidic histidine phytase with great specific activity. Pichia pastoris is a powerful system for the heterologous expression of active and soluble proteins which can express recombinant proteins in high cell density fermenter without loss of product yield and efficiently secrete heterologous proteins into the media. Recombinant protein expression is influenced by expression conditions such as temperature, concentration of inducer, and pH. By optimization, the yield of expressed proteins can be increase. Response surface methodology (RSM) has been widely used for the optimization and studying of different parameters in biotechnological processes. Objectives: In this study, the expression of synthetic appA gene in P. pastoris was greatly improved by adjusting the expression condition. Materials and Methods: The appA gene with 410 amino acids was synthesized by P. pastoris codon preference and cloned in expression vector pPinkα-HC, under the control of AOX1 promoter, and it was transformed into P. pastoris GS115 by electroporation. Recombinant phytase was expressed in buffered methanol-complex medium (BMMY) and the expression was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and enzymatic assay. To achieve the highest level of expression, methanol concentration, pH and temperature were optimized via RSM. Finally, the optimum pH and temperature for recombinant phytase activity was determined. Results: Escherichia coli phytase was expressed in P. pastoris under different cultivation conditions (post-induction temperature, methanol concentration, and post-induction pH). The optimized conditions by RSM using face centered central composite design were 1% (v/v) methanol, pH = 5.8, and 24.5°C. Under the optimized conditions, appA was successfully expressed in P. pastoris and the maximum phytase activity was 237.2 U/mL after 72 hours of expression. Conclusions: By optimization of recombinant

  5. Citrobacter amalonaticus Phytase on the Cell Surface of Pichia pastoris Exhibits High pH Stability as a Promising Potential Feed Supplement

    PubMed Central

    Li, Cheng; Lin, Ying; Huang, Yuanyuan; Liu, Xiaoxiao; Liang, Shuli

    2014-01-01

    Phytase expressed and anchored on the cell surface of Pichia pastoris avoids the expensive and time-consuming steps of protein purification and separation. Furthermore, yeast cells with anchored phytase can be used as a whole-cell biocatalyst. In this study, the phytase gene of Citrobacter amalonaticus was fused with the Pichia pastoris glycosylphosphatidylinositol (GPI)-anchored glycoprotein homologue GCW61. Phytase exposed on the cell surface exhibits a high activity of 6413.5 U/g, with an optimal temperature of 60°C. In contrast to secreted phytase, which has an optimal pH of 5.0, phytase presented on the cell surface is characterized by an optimal pH of 3.0. Moreover, our data demonstrate that phytase anchored on the cell surface exhibits higher pH stability than its secreted counterpart. Interestingly, our in vitro digestion experiments demonstrate that phytase attached to the cell surface is a more efficient enzyme than secreted phytase. PMID:25490768

  6. Enhancement in production of recombinant two-chain Insulin Glargine by over-expression of Kex2 protease in Pichia pastoris.

    PubMed

    Sreenivas, Suma; Krishnaiah, Sateesh M; Govindappa, Nagaraja; Basavaraju, Yogesh; Kanojia, Komal; Mallikarjun, Niveditha; Natarajan, Jayaprakash; Chatterjee, Amarnath; Sastry, Kedarnath N

    2015-01-01

    Glargine is an analog of Insulin currently being produced by recombinant DNA technology using two different hosts namely Escherichia coli and Pichia pastoris. Production from E. coli involves the steps of extraction of inclusion bodies by cell lysis, refolding, proteolytic cleavage and purification. In P. pastoris, a single-chain precursor with appropriate disulfide bonding is secreted to the medium. Downstream processing currently involves use of trypsin which converts the precursor into two-chain final product. The use of trypsin in the process generates additional impurities due to presence of Lys and Arg residues in the Glargine molecule. In this study, we describe an alternate approach involving over-expression of endogenous Kex2 proprotein convertase, taking advantage of dibasic amino acid sequence (Arg-Arg) at the end of B-chain of Glargine. KEX2 gene over-expression in Pichia was accomplished by using promoters of varying strengths to ensure production of greater levels of fully functional two-chain Glargine product, confirmed by HPLC and mass analysis. In conclusion, this new production process involving Kex2 protease over-expression improves the downstream process efficiency, reduces the levels of impurities generated and decreases the use of raw materials. PMID:25239036

  7. Enhancement of protein secretion in Pichia pastoris by overexpression of protein disulfide isomerase.

    PubMed

    Inan, Mehmet; Aryasomayajula, Dinesh; Sinha, Jayanta; Meagher, Michael M

    2006-03-01

    A potential vaccine candidate, Necator americanus secretory protein (Na-ASP1), against hookworm infections, has been expressed in Pichia pastoris. Na-ASP1, a 45 kDa protein containing 20 cysteines, was directed outside the cell by fusing the protein to the preprosequence of the alpha-mating factor of Saccharomyces cerevisiae. Most of the protein produced by single copy clones was secreted outside the cell. However, increasing gene copy number of Na-ASP1 protein in P. pastoris saturated secretory capacity and therefore, decreased the amount of secreted protein in clones harboring multiple copies of Na-ASP1 gene. Overexpression of the endoplasmic reticulum (ER) resident, homologous chaperone protein, protein disulfide isomerase (PDI) was able to increase the secretion of (Na-ASP1) protein in high copy clones. The effect of PDI levels on secretion of Na-ASP1 protein was examined in clones with varying copy number of PDI gene. Increase in secreted Na-ASP1 secretion is correlated well with the PDI copy number. Increasing levels of PDI also increased overall Na-ASP1 protein production in all the clones. Nevertheless, there was still accumulation of intracellular Na-ASP1 protein in P. pastoris clones over-expressing Na-ASP1 and PDI proteins. PMID:16255058

  8. A dynamic fed batch strategy for a Pichia pastoris mixed feed system to increase process understanding.

    PubMed

    Zalai, Dénes; Dietzsch, Christian; Herwig, Christoph; Spadiut, Oliver

    2012-01-01

    Mixed substrate feeding strategies are frequently investigated to enhance the productivity of recombinant Pichia pastoris processes. For this purpose, numerous fed batch experiments or time-consuming continuous cultivations are required to optimize control parameters such as the substrate mixing ratio and the applied methanol concentration. In this study, we decoupled the feeding of methanol and glycerol in a mixed substrate fed batch environment to gain process understanding for a recombinant P. pastoris Muts strain producing the model enzyme horseradish peroxidase. Specific substrate uptake rates (qs) were controlled separately, and a stepwise increased qGly-control scheme was applied to investigate the effect of various substrate fluxes on the culture. The qs-controlled strategy allowed a parallel characterization of the metabolism and the recombinant protein expression in a fed batch environment. A critical-specific glycerol uptake rate was determined, where a decline of the specific productivity occurred, and a time-dependent acceleration of protein expression was characterized with the dynamic fed batch approach. Based on the observations on recombinant protein expression, propositions for an optimal feeding design to target maximal productivities were stated. Thus, the dynamic fed batch strategy was found to be a valuable tool for both process understanding and optimization of product formation for P. pastoris in a mixed substrate environment. PMID:22505140

  9. Production of glycosylated thermostable Providencia rettgeri penicillin G amidase in Pichia pastoris.

    PubMed

    Sevo, Milica; Degrassi, Giuliano; Skoko, Natasa; Venturi, Vittorio; Ljubijankić, Goran

    2002-01-01

    Penicillin G amidase from Providencia rettgeri is a heterodimer of 92 kDa. We have previously expressed the Pr. rettgeri pac gene coding for this enzyme in Saccharomyces cerevisiae, and now we report the expression and characterization in the methylotrophic yeast Pichia pastoris. The recombinant catalytically active enzyme (rPAC(Pr)) was secreted from shake flask-grown P. pastoris cells into the medium at a level of approximately 0.18 U ml(-1). This yield of rPAC(Pr) was higher, by two orders of magnitude, than that obtained using a single-copy expression plasmid in S. cerevisiae. In addition, the secreted recombinant enzyme was entirely N-glycosylated. The recombinant PAC(Pr) was further characterized in terms of specific activity, kinetic parameters and thermostability. Except the significantly higher thermostability of the glycosylated rPAC(Pr) produced in P. pastoris, the other parameters were very similar to those of the corresponding non-glycosylated enzymes produced in bacteria or in S. cerevisiae. The higher thermostability of this recombinant enzyme has a clear industrial advantage. PMID:12702330

  10. Co-overexpression of PpPDI enhances secretion of ancrod in Pichia pastoris.

    PubMed

    Zhang, Shou-Tao; Fang, Hui-Min; Zhao, Li; Tian, Qing-Nan; Qin, Yun-Fei; Lu, Ping; Chen, San-Jun; Bao, Zhen-Xia; Liang, Feng

    2011-08-01

    Ancrod, a serine protease purified from the venom of Agkistrodon rhodostoma, is highly specific for fibrinogen. It causes anticoagulation by defibrinogenation and has been used as a therapeutic anticoagulant for the treatment of moderate to severe forms of peripheral arterial circulatory disorders in a variety of countries. The DNA of ancrod was amplified by recursive PCR with a yeast bias codon and cloned into the pGEM-T Easy vector. In order to achieve a high level secretion and a full activity expression of ancrod in Pichia pastoris (P. pastoris), the P. pastoris protein disulfide bond isomerase (PpPDI) was co-overexpressed in the strain. The secretion characteristics of ancrod with and without PpPDI were examined. With co-overexpression of PpPDI, the production of recombinant ancrod (rAncrod) was increased to 315 mg/L in the culture medium, which is twofold higher than the control strain carrying only the ancrod gene. Through purified by Ni²⁺ affinity chromatography and phenyl Sepharose column, the purity of rAncrod was found to be as high as 95.2%. The fibrinogenolytic and zymographic activities of the rAncrod were determined and found to be similar to that of the native protein. This improved expression system can facilitate further studies and the industrial production of ancrod. PMID:21340538

  11. rhEPO (recombinant human eosinophil peroxidase): expression in Pichia pastoris and biochemical characterization

    PubMed Central

    Ciaccio, Chiara; Gambacurta, Alessandra; Sanctis, Giampiero DE; Spagnolo, Domenico; Sakarikou, Christina; Petrella, Giovanni; Coletta, Massimo

    2006-01-01

    A Pichia pastoris expression system has for the first time been successfully developed to produce rhEPO (recombinant human eosinophil peroxidase). The full-length rhEPO coding sequence was cloned into the pPIC9 vector in frame with the yeast α-Factor secretion signal under the transcriptional control of the AOX (acyl-CoA oxidase) promoter, and transformed into P. pastoris strain GS115. Evidence for the production of rhEPO by P. pastoris as a glycosylated dimer precursor of approx. 80 kDa was determined by SDS/PAGE and gel filtration chromatography. Recombinant hEPO undergoes proteolytic processing, similar to that in the native host, to generate two chains of approx. 50 and 20 kDa. A preliminary biochemical characterization of purified rhEPO demonstrated that the spectral and kinetic properties of the recombinant wild-type EPO are comparable with those of the native enzyme and are accompanied by oxidizing activity towards several physiological anionic substrates such as SCN−, Br− and Cl−. On the basis of the estimated Km and kcat values it is evident that the pseudohalide SCN− is the most specific substrate for rhEPO, consistent with the catalytic properties of other mammalian EPOs purified from blood. PMID:16396635

  12. Codon optimisation improves the expression of Trichoderma viride sp. endochitinase in Pichia pastoris

    PubMed Central

    Yu, Ping; Yan, Yuan; Gu, Qing; Wang, Xiangyang

    2013-01-01

    The mature cDNA of endochitinase from Trichoderma viride sp. was optimised based on the codon bias of Pichia pastoris GS115 and synthesised by successive PCR; the sequence was then transformed into P. pastoris GS115 via electroporation. The transformant with the fastest growth rate on YPD plates containing 4 mg/mL G418 was screened and identified. This transformant produced 23.09 U/mL of the recombinant endochitinase, a 35% increase compared to the original strain bearing the wild-type endochitinase cDNA. The recombinant endochitinase was sequentially purified by ammonia sulphate precipitation, DE-52 anion-exchange chromatography and Sephadex G-100 size-exclusion chromatography. Thin-layer chromatography indicated that the purified endochitinase could hydrolyse chito-oligomers or colloidal chitin to generate diacetyl-chitobiose (GlcNAc)2 as the main product. This study demonstrates (1) a means for high expression of Trichoderma viride sp. endochitinase in P. pastoris using codon optimisation and (2) the preparation of chito-oligomers using endochitinase. PMID:24154717

  13. Optimization of erythropoietin production with controlled glycosylation-PEGylated erythropoietin produced in glycoengineered Pichia pastoris.

    PubMed

    Nett, Juergen H; Gomathinayagam, Sujatha; Hamilton, Stephen R; Gong, Bing; Davidson, Robert C; Du, Min; Hopkins, Daniel; Mitchell, Teresa; Mallem, Muralidhar R; Nylen, Adam; Shaikh, Seemab S; Sharkey, Nathan; Barnard, Gavin C; Copeland, Victoria; Liu, Liming; Evers, Raymond; Li, Yan; Gray, Peter M; Lingham, Russell B; Visco, Denise; Forrest, Gail; DeMartino, Julie; Linden, Thomas; Potgieter, Thomas I; Wildt, Stefan; Stadheim, Terrance A; d'Anjou, Marc; Li, Huijuan; Sethuraman, Natarajan

    2012-01-01

    Pichia pastoris is a methylotropic yeast that has gained great importance as an organism for protein expression in recent years. Here, we report the expression of recombinant human erythropoietin (rhEPO) in glycoengineered P. pastoris. We show that glycosylation fidelity is maintained in fermentation volumes spanning six orders of magnitude and that the protein can be purified to high homogeneity. In order to increase the half-life of rhEPO, the purified protein was coupled to polyethylene glycol (PEG) and then compared to the currently marketed erythropoiesis stimulating agent, Aranesp(®) (darbepoetin). In in vitro cell proliferation assays the PEGylated protein was slightly, and the non-PEGylated protein was significantly more active than comparator. Pharmacodynamics as well as pharmacokinetic activity of PEGylated rhEPO in animals was comparable to that of Aranesp(®). Taken together, our results show that glycoengineered P. pastoris is a suitable production host for rhEPO, yielding an active biologic that is comparable to those produced in current mammalian host systems. PMID:22100268

  14. Heterologous expression of codon optimized Trichoderma reesei Cel6A in Pichia pastoris.

    PubMed

    Sun, Fubao Fuelbiol; Bai, Renhui; Yang, Huimin; Wang, Fei; He, Jing; Wang, Chundi; Tu, Maobing

    2016-10-01

    The Cel6A deficiency has become one of the limiting factors for cellulose saccharification in biochemical conversion of cellulosic biomass to fuels and chemicals. The work attempted to use codon optimization to enhance Trichoderma reesei Cel6A expression in Pichia pastoris. Two recombinants P. pastoris GS115 containing AOX1 and GAP promotors were successfully constructed, respectively. The optimal temperatures and pHs of the expressed Cel6A from two recombinants were consistent with each other, were also in the extremely similar range to that reported on the native Cel6A from T. reesei. Based on the shake flask fermentation, AOX1 promotor enabled the recombinant to produce 265U/L and 300mg/L of the Cel6A enzyme, and the GAP promotor resulted in 145U/L and 200mg/L. High cell density fed batch (HCDFB) fermentation significantly improved the enzyme titer (1100U/L) and protein yield (2.0g/L) for the recombinant with AOX1 promotor. Results have showed that the AOX1 promotor is more suitable than the GAP for the Cel6A expression in P. pastoris. And the HCDFB cultivation is a favorable way to express the Cel6A highly in the methanol inducible yeast. PMID:27542751

  15. High-level production in Pichia pastoris of an anti-p185HER-2 single-chain antibody fragment using an alternative secretion expression vector.

    PubMed

    Gurkan, Cemal; Symeonides, Stefan N; Ellar, David J

    2004-02-01

    The methylotrophic yeast Pichia pastoris has become a highly popular expression host for the recombinant production of a wide variety of proteins. Initial success with this system was greatly facilitated by the development of versatile expression vectors that were almost exclusively based on the strong, tightly regulated promoter of the P. pastoris major alcohol oxidase gene ( AOX1 ). For example, pIB4 is an Escherichia coli - P. pastoris shuttle vector that also uses the AOX1 promoter to allow intracellular expression of endogenous and foreign genes in the latter organism. Since the eukaryotic advantages of P. pastoris would be best harnessed through the secretory targeting of the recombinant proteins, we modified the pIB4 vector by adding the Saccharomyces cerevisiae alpha-factor secretion signal immediately upstream of its multiple cloning site. Here we describe the construction of this modified vector, pIB4alpha, and its successful use for the high-level expression and secretion of a functional single-chain antibody fragment (scFv), C6.5, which targets p185(HER-2), a cell-surface glycoprotein overexpressed in about 30% of human breast and ovarian cancers. The PCR strategy used for the subcloning of the C6.5 construct into pIB4alpha also introduced a short DNA sequence coding for a C-terminal hexahistidine tag, which allowed subsequent purification of the secreted scFv, by immobilized-metal-affinity chromatography, to a yield of 70 mg x l(-1) of shake-flask culture. In conclusion, our results suggest that the secretion expression vector pIB4alpha not only complements the original pIB4 vector for intracellular expression in P. pastoris, but might also constitute an attractive alternative to the commercially available secretion expression vectors. PMID:12962542

  16. A functional Kv1.2-hERG chimaeric channel expressed in Pichia pastoris

    NASA Astrophysics Data System (ADS)

    Dhillon, Mandeep S.; Cockcroft, Christopher J.; Munsey, Tim; Smith, Kathrine J.; Powell, Andrew J.; Carter, Paul; Wrighton, David C.; Rong, Hong-Lin; Yusaf, Shahnaz P.; Sivaprasadarao, Asipu

    2014-02-01

    Members of the six-transmembrane segment family of ion channels share a common structural design. However, there are sequence differences between the members that confer distinct biophysical properties on individual channels. Currently, we do not have 3D structures for all members of the family to help explain the molecular basis for the differences in their biophysical properties and pharmacology. This is due to low-level expression of many members in native or heterologous systems. One exception is rat Kv1.2 which has been overexpressed in Pichia pastoris and crystallised. Here, we tested chimaeras of rat Kv1.2 with the hERG channel for function in Xenopus oocytes and for overexpression in Pichia. Chimaera containing the S1-S6 transmembrane region of HERG showed functional and pharmacological properties similar to hERG and could be overexpressed and purified from Pichia. Our results demonstrate that rat Kv1.2 could serve as a surrogate to express difficult-to-overexpress members of the six-transmembrane segment channel family.

  17. A functional Kv1.2-hERG chimaeric channel expressed in Pichia pastoris

    PubMed Central

    Dhillon, Mandeep S.; Cockcroft, Christopher J.; Munsey, Tim; Smith, Kathrine J.; Powell, Andrew J.; Carter, Paul; Wrighton, David C.; Rong, Hong-lin; Yusaf, Shahnaz P.; Sivaprasadarao, Asipu

    2014-01-01

    Members of the six-transmembrane segment family of ion channels share a common structural design. However, there are sequence differences between the members that confer distinct biophysical properties on individual channels. Currently, we do not have 3D structures for all members of the family to help explain the molecular basis for the differences in their biophysical properties and pharmacology. This is due to low-level expression of many members in native or heterologous systems. One exception is rat Kv1.2 which has been overexpressed in Pichia pastoris and crystallised. Here, we tested chimaeras of rat Kv1.2 with the hERG channel for function in Xenopus oocytes and for overexpression in Pichia. Chimaera containing the S1–S6 transmembrane region of HERG showed functional and pharmacological properties similar to hERG and could be overexpressed and purified from Pichia. Our results demonstrate that rat Kv1.2 could serve as a surrogate to express difficult-to-overexpress members of the six-transmembrane segment channel family. PMID:24569544

  18. Recombination of thermo-alkalistable, high xylooligosaccharides producing endo-xylanase from Thermobifida fusca and expression in Pichia pastoris.

    PubMed

    Wang, Qian; Du, Wen; Weng, Xiao-Yan; Liu, Ming-Qi; Wang, Jia-Kun; Liu, Jian-Xin

    2015-02-01

    For xylooligosaccharide (XO) production, endo-xylanase from Thermobifida fusca was modified by error-prone PCR and DNA shuffling. The G4SM1 mutant (S62T, S144C, N198D, and A217V) showed the most improved hydrolytic activity and was two copies expressed in Pichia pastoris under the control of GAP promoter. The maximum xylanase activity in culture supernatants was 165 ± 5.5 U/ml, and the secreted protein concentration reached 493 mg/l in a 2-l baffled shake flask. After 6× His-tagged protein purification, the specific activity of G4SM1 was 2036 ± 45.8 U/mg, 2.12 times greater than that of wild-type enzyme. Additionally, G4SM1 was stable over a wide pH range from 5.0 to 9.0. Meanwhile, half-life of G4SM1 thermal inactivation at 70 °C increased 8.5-fold. Three-dimensional structures suggest that two amino acid substitutions, S62T and S144C, located at catalytic domain may be responsible for the enhanced activity and thermostability of xylanase. Xylobiose was the dominant end product of xylan hydrolysis by G4SM1. Due to its attractive biochemical properties, G4SM1 has potential value in commercial XO production. PMID:25384545

  19. Two variants of the major serine protease inhibitor from the sea anemone Stichodactyla helianthus, expressed in Pichia pastoris.

    PubMed

    García-Fernández, Rossana; Ziegelmüller, Patrick; González, Lidice; Mansur, Manuel; Machado, Yoan; Redecke, Lars; Hahn, Ulrich; Betzel, Christian; Chávez, María de Los Ángeles

    2016-07-01

    The major protease inhibitor from the sea anemone Stichodactyla helianthus (ShPI-1) is a non-specific inhibitor that binds trypsin and other trypsin-like enzymes, as well as chymotrypsin, and human neutrophil elastase. We performed site-directed mutagenesis of ShPI-1 to produce two variants (rShPI-1/K13L and rShPI/Y15S) that were expressed in Pichia pastoris, purified, and characterized. After a single purification step, 65 mg and 15 mg of protein per liter of culture supernatant were obtained for rShPI-1/K13L and rShPI/Y15S, respectively. Functional studies demonstrated a 100-fold decreased trypsin inhibitory activity as result of the K13L substitution at the reactive (P1) site. This protein variant has a novel tight-binding inhibitor activity of pancreatic elastase and increased activity toward neutrophil elastase in comparison to rShPI-1A. In contrast, the substitution Y15S at P2' site did not affect the Ki value against trypsin, but did reduce activity 10-fold against chymotrypsin and neutrophil elastase. Our results provide two new ShPI-1 variants with modified inhibitory activities, one of them with increased biomedical potential. This study also offers new insight into the functional impact of the P1 and P2' sites on ShPI-1 specificity. PMID:26993255

  20. Structural and functional characterization of recombinant napin-like protein of Momordica charantia expressed in methylotrophic yeast Pichia pastoris.

    PubMed

    Yadav, Shailesh Kumar R; Sahu, Tejram; Dixit, Aparna

    2016-08-01

    Napin and napin-like proteins belong to the 2S albumin seed storage family of proteins and have been shown to display a variety of biological activities. However, due to a high degree of polymorphism, purification of a single napin or napin-like protein exhibiting biological activity is extremely difficult. In the present study, we have produced the napin-like protein of Momordica charantia using the methylotrophic Pichia pastoris expression system. The recombinant napin-like protein (rMcnapin) secreted in the extracellular culture supernatant was enriched by ammonium sulfate precipitation, and purified using size exclusion chromatography at a yield of ∼290 mg/L of culture. Secondary structure analysis of the purified rMcnapin revealed it to be predominantly α-helical with minimal β strand content. CD spectroscopic and fluorescence spectroscopic analyses revealed the rMcnapin to be stable at a wide range of temperatures and pH. The rMcnapin exhibited antifungal activity against Trichoderma viride with an IC50 of ∼3.7 μg/ml and trypsin inhibitor activity with an IC50 of 4.2 μM. Thus, large amounts of homogenous preparations of the biologically active rMcnapin could be obtained at shake flask level, which is otherwise difficult from its natural source. PMID:27020281

  1. Optimized Proteomic Mass Spectrometry Characterization of Recombinant Human μ-Opioid Receptor Functionally Expressed in Pichia pastoris Cell Lines.

    PubMed

    Rosa, Mònica; Bech-Serra, Joan Josep; Canals, Francesc; Zajac, Jean Marie; Talmont, Franck; Arsequell, Gemma; Valencia, Gregorio

    2015-08-01

    Human μ-opioid receptor (hMOR) is a class-A G-protein-coupled receptor (GPCR), a prime therapeutic target for the management of moderate and severe pain. A chimeric form of the receptor has been cocrystallized with an opioid antagonist and resolved by X-ray diffraction; however, further direct structural analysis is still required to identify the active form of the receptor to facilitate the rational design of hMOR-selective agonist and antagonists with therapeutic potential. Toward this goal and in spite of the intrinsic difficulties posed by the highly hydrophobic transmembrane motives of hMOR, we have comprehensively characterized by mass spectrometry (MS) analysis the primary sequence of the functional hMOR. Recombinant hMOR was overexpressed as a C-terminal c-myc and 6-his tagged protein using an optimized expression procedure in Pichia pastoris cells. After membrane solubilization and metal-affinity chromatography purification, a procedure was devised to enhance the concentration of the receptor. Subsequent combinations of in-solution and in-gel digestions using either trypsin, chymotrypsin, or proteinase K, followed by matrix-assisted laser desorption ionization time-of-flight MS or nanoliquid chromatography coupled with tandem MS analyses afforded an overall sequence coverage of up to >80%, a level of description first attained for an opioid receptor and one of the six such high-coverage MS-based analyses of any GPCR. PMID:26090583

  2. Expression of a Phanerochaete chrysosporium manganese peroxidase gene in the yeast Pichia pastoris.

    PubMed

    Gu, Lina; Lajoie, Curtis; Kelly, Christine

    2003-01-01

    A gene encoding manganese peroxidase (mnp1) from Phanerochaete chrysosporium was cloned downstream of a constitutive glyceraldehyde-3-phosphate dehydrogenase promoter in the methylotrophic yeast Pichia pastoris. Three different expression vectors were constructed: pZBMNP contains the native P. chrysosporium fungal secretion signal, palphaAMNP contains an alpha-factor secretion signal derived from Saccharomyces cerevisiae, and pZBIMNP has no secretion signal and was used for intracellular expression. Both the native fungal secretion signal sequence and alpha-factor secretion signal sequence directed the secretion of active recombinant manganese peroxidase (rMnP) from P. pastoris transformants. The majority of the rMnP produced by P. pastoris exhibited a molecular mass (55-100 kDa) considerably larger than that of the wild-type manganese peroxidase (wtMnP, 46 kDa). Deletion of the native fungal secretion signal yielded a molecular mass of 39 kDa for intracellular rMnP in P. pastoris. Treatment of the secreted rMnP with endoglycosidase H (Endo H) resulted in a considerable decrease in the mass of rMnP, indicating N-linked hyperglycosylation. Partially purified rMnP showed kinetic characteristics similar to those of wtMnP. Both enzymes also had similar pH stability profiles. Addition of exogenous Mn(II), Ca(II), and Fe(III) conferred additional thermal stability to both enzymes. However, rMnP was slightly less thermostable than wtMnP, which demonstrated an extended half-life at 55 degrees C. PMID:14524699

  3. Role of the PAS1 gene of Pichia pastoris in peroxisome biogenesis

    PubMed Central

    1994-01-01

    Several groups have reported the cloning and sequencing of genes involved in the biogenesis of yeast peroxisomes. Yeast strains bearing mutations in these genes are unable to grow on carbon sources whose metabolism requires peroxisomes, and these strains lack morphologically normal peroxisomes. We report the cloning of Pichia pastoris PAS1, the homologue (based on a high level of protein sequence similarity) of the Saccharomyces cerevisiae PAS1. We also describe the creation and characterization of P. pastoris pas1 strains. Electron microscopy on the P. pastoris pas1 cells revealed that they lack morphologically normal peroxisomes, and instead contain membrane-bound structures that appear to be small, mutant peroxisomes, or "peroxisome ghosts." These "ghosts" proliferated in response to induction on peroxisome-requiring carbon sources (oleic acid and methanol), and they were distributed to daughter cells. Biochemical analysis of cell lysates revealed that peroxisomal proteins are induced normally in pas1 cells. Peroxisome ghosts from pas1 cells were purified on sucrose gradients, and biochemical analysis showed that these ghosts, while lacking several peroxisomal proteins, did import varying amounts of several other peroxisomal proteins. The existence of detectable peroxisome ghosts in P. pastoris pas1 cells, and their ability to import some proteins, stands in contrast with the results reported by Erdmann et al. (1991) for the S. cerevisiae pas1 mutant, in which they were unable to detect peroxisome-like structures. We discuss the role of PAS1 in peroxisome biogenesis in light of the new information regarding peroxisome ghosts in pas1 cells. PMID:7962088

  4. Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose:methanol mixtures

    PubMed Central

    2012-01-01

    Background The methylotrophic yeast Pichia pastoris has emerged as one of the most promising yeast hosts for the production of heterologous proteins. Mixed feeds of methanol and a multicarbon source instead of methanol as sole carbon source have been shown to improve product productivities and alleviate metabolic burden derived from protein production. Nevertheless, systematic quantitative studies on the relationships between the central metabolism and recombinant protein production in P. pastoris are still rather limited, particularly when growing this yeast on mixed carbon sources, thus hampering future metabolic network engineering strategies for improved protein production. Results The metabolic flux distribution in the central metabolism of P. pastoris growing on a mixed feed of glucose and methanol was analyzed by Metabolic Flux Analysis (MFA) using 13C-NMR-derived constraints. For this purpose, we defined new flux ratios for methanol assimilation pathways in P. pastoris cells growing on glucose:methanol mixtures. By using this experimental approach, the metabolic burden caused by the overexpression and secretion of a Rhizopus oryzae lipase (Rol) in P. pastoris was further analyzed. This protein has been previously shown to trigger the unfolded protein response in P. pastoris. A series of 13C-tracer experiments were performed on aerobic chemostat cultivations with a control and two different Rol producing strains growing at a dilution rate of 0.09 h−1 using a glucose:methanol 80:20 (w/w) mix as carbon source. The MFA performed in this study reveals a significant redistristribution of carbon fluxes in the central carbon metabolism when comparing the two recombinant strains vs the control strain, reflected in increased glycolytic, TCA cycle and NADH regeneration fluxes, as well as higher methanol dissimilation rates. Conclusions Overall, a further 13C-based MFA development to characterise the central metabolism of methylotrophic yeasts when growing on mixed

  5. The response to unfolded protein is involved in osmotolerance of Pichia pastoris

    PubMed Central

    2010-01-01

    Background The effect of osmolarity on cellular physiology has been subject of investigation in many different species. High osmolarity is of importance for biotechnological production processes, where high cell densities and product titers are aspired. Several studies indicated that increased osmolarity of the growth medium can have a beneficial effect on recombinant protein production in different host organisms. Thus, the effect of osmolarity on the cellular physiology of Pichia pastoris, a prominent host for recombinant protein production, was studied in carbon limited chemostat cultures at different osmolarities. Transcriptome and proteome analyses were applied to assess differences upon growth at different osmolarities in both, a wild type strain and an antibody fragment expressing strain. While our main intention was to analyze the effect of different osmolarities on P. pastoris in general, this was complemented by studying it in context with recombinant protein production. Results In contrast to the model yeast Saccharomyces cerevisiae, the main osmolyte in P. pastoris was arabitol rather than glycerol, demonstrating differences in osmotic stress response as well as energy metabolism. 2D Fluorescence Difference Gel electrophoresis and microarray analysis were applied and demonstrated that processes such as protein folding, ribosome biogenesis and cell wall organization were affected by increased osmolarity. These data indicated that upon increased osmolarity less adaptations on both the transcript and protein level occurred in a P. pastoris strain, secreting the Fab fragment, compared with the wild type strain. No transcriptional activation of the high osmolarity glycerol (HOG) pathway was observed at steady state conditions. Furthermore, no change of the specific productivity of recombinant Fab was observed at increased osmolarity. Conclusion These data point out that the physiological response to increased osmolarity is different to S. cerevisiae

  6. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  7. Modeling of mini-proinsulin production in Pichia pastoris using the AOX promoter.

    PubMed

    País, José M; Varas, Laura; Valdés, Jorge; Cabello, Cecilia; Rodríguez, Lester; Mansur, Manuel

    2003-02-01

    An unstructured model based on mass balance equations for a recombinant methylotrophic yeast Pichia pastoris MutS (Methanol Utilization Slow) strain expressing the mini-proinsulin (MPI), was successfully established in quasi-steady state fed-batch fermentations with varying total quantity of biomass in a 7 l fermenter. The model describes the relationships between the total biomass and induction time, both in the batch and fed-batch phases. In addition, good correlations were obtained when the total quantity of MPI was correlated with the total biomass, demonstrating that the product of interest is associated with growth in the methanol phase. The parameters of the fermentation model obtained are similar to those reported by other researchers. PMID:12882580

  8. [Expression Of DNA-Encoded Antidote to Organophosphorus Toxins in the Methylotrophic Yeast Pichia Pastoris].

    PubMed

    Terekhov, S S; Bobik, T V; Mokrushina, Yu A; Stepanova, A V; Aleksandrova, N M; Smirnov, I V; Belogurov, A A; Ponomarenko, N A; Gabibov, A G

    2016-01-01

    A platform for the cloning and expression of active human butyrylcholinesterase (BuChE) in the yeast Pichia pastoris is first presented. Genetic constructs for BuChE gene expression, separately and in conjunction with a proline-rich peptide called proline-rich attachment domain (PRAD), are based on the vector pPICZαA. It is shown that the highest level of production is achieved in the expression of a BuChE gene without PRAD pPICZαA. It is found that one can obtain up to 125 mg of active enzyme from 1 L of culture medium at an optimal pH environment (pH 7.6), an optical seed culture density of 3 o.u., and an optimum methanol addition mode of (0.5% methanol in the first day and 0.2% thereafter from the second day). PMID:27266247

  9. [Expression of snake venom thrombin-like enzyme calobin in Pichia pastoris].

    PubMed

    Yuan, Shengling; Wang, Peng; Tao, Haoxia; Zhan, Dewen; Wang, Yanchun; Wang, Lingchun; Liu, Chunjie; Zhang, Zhaoshan

    2009-04-01

    Thrombin-like enzymes (TLEs) are studied widely because of their therapeutic potential in myocardial infarction and thrombotic diseases. We synthesized the DNA fragment encoding thrombin-like enzyme calobin from Agkistrodon caliginosus (Korean Viper) venom by fusion PCR and expressed it in Pichia pastoris. After induction by 0.5% methanol for 48 h, the expression level of recombinant calobin reached 3.5 g/L in medium. The recombinant calobin was purified by Q-Sepharose Fast Flow ion-exchange chromatography and Sephacryl-S-100 gel filtration chromatography. Purified sample had a molecular weight of 32 kD shown in SDS-PAGE. It hydrolyzed fibrinogen and formed a light white hydrolysis circle in fibrinogen plate. SDS-PAGE analysis showed that recombinant calobin cleaved Aalpha-chain of fibrinogen specifically, and produced an appropriately 40 kD new band. However, we failed to find its fibrin-clot formation activity. PMID:19637626

  10. Characterization and high expression of recombinant Ustilago maydis xylanase in Pichia pastoris.

    PubMed

    Han, Hongjuan; You, Shuang; Zhu, Bo; Fu, Xiaoyan; Sun, Baihui; Qiu, Jin; Yu, Chengye; Chen, Lei; Peng, Rihe; Yao, Quanhong

    2015-03-01

    A recombinant xylanase gene (rxynUMB) from Ustilago maydis 521 was expressed in Pichia pastoris, and the enzyme was purified and characterized. Phylogenetic analysis demonstrated that rxynUMB belongs to glycosyl hydrolase family 11. The Trp84, Trp95, Glu93, and Glu189 residues are proposed to be present at the active site. The apparent molecular mass of the recombinant xylananse was approximately 24 kDa, and the optimum pH and temperature were 4.3 and 50 °C, respectively. Xylanase activity was enhanced by 166 and 115% with Fe(2+) and Mn(2+), respectively. The biochemical properties of this recombinant xylanase suggest that it may be a useful candidate for a variety of commercial applications. PMID:25381595

  11. Automated pipeline for rapid production and screening of HIV-specific monoclonal antibodies using pichia pastoris.

    PubMed

    Shah, Kartik A; Clark, John J; Goods, Brittany A; Politano, Timothy J; Mozdzierz, Nicholas J; Zimnisky, Ross M; Leeson, Rachel L; Love, J Christopher; Love, Kerry R

    2015-12-01

    Monoclonal antibodies (mAbs) that bind and neutralize human pathogens have great therapeutic potential. Advances in automated screening and liquid handling have resulted in the ability to discover antigen-specific antibodies either directly from human blood or from various combinatorial libraries (phage, bacteria, or yeast). There remain, however, bottlenecks in the cloning, expression and evaluation of such lead antibodies identified in primary screens that hinder high-throughput screening. As such, "hit-to-lead identification" remains both expensive and time-consuming. By combining the advantages of overlap extension PCR (OE-PCR) and a genetically stable yet easily manipulatable microbial expression host Pichia pastoris, we have developed an automated pipeline for the rapid production and screening of full-length antigen-specific mAbs. Here, we demonstrate the speed, feasibility and cost-effectiveness of our approach by generating several broadly neutralizing antibodies against human immunodeficiency virus (HIV). PMID:26032261

  12. Metabolomics sampling of Pichia pastoris revisited: rapid filtration prevents metabolite loss during quenching.

    PubMed

    Russmayer, Hannes; Troyer, Christina; Neubauer, Stefan; Steiger, Matthias G; Gasser, Brigitte; Hann, Stephan; Koellensperger, Gunda; Sauer, Michael; Mattanovich, Diethard

    2015-09-01

    Metabolomics can be defined as the quantitative assessment of a large number of metabolites of a biological system. A prerequisite for the accurate determination of intracellular metabolite concentrations is a reliable and reproducible sample preparation method, which needs to be optimized for each organism individually. Here, we compare the performance of rapid filtration and centrifugation after quenching of Pichia pastoris cells in cold methanol. During incubation in the quenching solution, metabolites are lost from the cells with a half-life of 70-180 min. Metabolites with lower molecular weights showed lower half-lifes compared to metabolites with higher molecular weight. Rapid filtration within 2 min after quenching leads to only minor losses below 2%, and is thus the preferred method for cell separation. PMID:26091839

  13. Recombinants proteins for industrial uses: utilization of Pichia pastoris expression system

    PubMed Central

    Rabert, Claudia; Weinacker, Daniel; Pessoa, Adalberto; Farías, Jorge G.

    2013-01-01

    The innovation in industrial process with impact in the efficient production is the major challenge for actual industry. A high numerous of enzymes are utilized in at different level of process; the search for new alternatives with better characteristic has become a field of study of great interest, the recombinant protein achievement in a different host system is an alternative widely assessed for production of this. The microorganism Pichia pastoris has been used like a successful expression system in diverse areas, improved the yield and extraction-recovery of the product expressed. The reported of diverse authors in the production of enzymes with different application in industry is varied, in this review the different industry areas and the characteristic of the enzymes produced are detailed. PMID:24294221

  14. Generation of xylooligosaccharides from microwave irradiated agroresidues using recombinant thermo-alkali-stable endoxylanase of the polyextremophilic bacterium Bacillus halodurans expressed in Pichia pastoris.

    PubMed

    Kumar, Vikash; Satyanarayana, T

    2015-03-01

    The recombinant Pichia pastoris harboring the endoxylanase gene (TSEV1xyl) of Bacillus halodurans TSEV1 yielded a high titer of extracellular xylanase (502±23 U ml(-1)) on induction with methanol. The purified recombinant xylanase (TSEV1xyl) displayed optimal activity at 80°C and pH 9.0. The glycosylated recombinant xylanase exhibited higher thermostability (T1/2 of 45 min at 80°C) than the native enzyme (T1/2 of 35 min at 80°C). The agroresidues subjected to pretreatment (soaking in alkali followed by microwave irradiation) liberated xylooligosaccharides (XOS) upon hydrolysis with the recombinant xylanase. The removal of unhydrolyzed agroresidues, xylanase and xylose from the hydrolysate by two-step ultrafiltration led to the purification of XOS as confirmed by TLC as well as HPLC analysis. PMID:25553569

  15. [Cloning and expression of bacteriophage FMV lysocyme gene in cells of yeasts Saccharomyces cerevisiae and Pichia pastoris].

    PubMed

    Kozlov, D G; Cheperigin, S E; Chestkov, A V; Krylov, V N; Tsygankov, Iu D

    2010-03-01

    Cloning, sequencing, and expression of the gene for soluble lysozyme of bacteriophage FMV from Gram-negative Pseudomonas aeruginosa bacteria were conducted in yeast cells. Comparable efficiency of two lysozyme expression variants (as intracellular or secreted proteins) was estimated in cells of Saccharomyces cerevisiae and Pichia pastoris. Under laboratory conditions, yeast S. cerevisiae proved to be more effective producer of phage lysozyme than P. pastoris, the yield of the enzyme in the secreted form being significantly higher than that produced in the intracellular form. PMID:20391778

  16. Production in Pichia pastoris of protein-based polymers with small heterodimer-forming blocks.

    PubMed

    Domeradzka, Natalia E; Werten, Marc W T; de Vries, Renko; de Wolf, Frits A

    2016-05-01

    Some combinations of leucine zipper peptides are capable of forming α-helical heterodimeric coiled coils with very high affinity. These can be used as physical cross-linkers in the design of protein-based polymers that form supramolecular structures, for example hydrogels, upon mixing solutions containing the complementary blocks. Such two-component physical networks are of interest for many applications in biomedicine, pharmaceutics, and diagnostics. This article describes the efficient secretory production of A and B type leucine zipper peptides fused to protein-based polymers in Pichia pastoris. By adjusting the fermentation conditions, we were able to significantly reduce undesirable proteolytic degradation. The formation of A-B heterodimers in mixtures of the purified products was confirmed by size exclusion chromatography. Our results demonstrate that protein-based polymers incorporating functional heterodimer-forming blocks can be produced with P. pastoris in sufficient quantities for use in future supramolecular self-assembly studies and in various applications. Biotechnol. Bioeng. 2016;113: 953-960. © 2015 Wiley Periodicals, Inc. PMID:26479855

  17. Directed gene copy number amplification in Pichia pastoris by vector integration into the ribosomal DNA locus.

    PubMed

    Marx, Hans; Mecklenbräuker, Astrid; Gasser, Brigitte; Sauer, Michael; Mattanovich, Diethard

    2009-12-01

    The yeast Pichia pastoris is a widely used host organism for heterologous protein production. One of the basic steps for strain improvement is to ensure a sufficient level of transcription of the heterologous gene, based on promoter strength and gene copy number. To date, high-copy-number integrants of P. pastoris are achievable only by screening of random events or by cloning of gene concatemers. Methods for rapid and reliable multicopy integration of the expression cassette are therefore desirable. Here we present such a method based on vector integration into the rDNA locus and post-transformational vector amplification by repeated selection on increased antibiotic concentrations. Data are presented for two exemplary products: human serum albumin, which is secreted into the supernatant, and human superoxide dismutase, which is accumulated in the cytoplasm of the cells. The striking picture evolving is that intracellular protein production is tightly correlated with gene copy number, while use of the secretory pathway introduces a high clonal variability and the correlation with gene copy number is valid only for low gene copy numbers. PMID:19799640

  18. Coexpression of cellulases in Pichia pastoris as a self-processing protein fusion.

    PubMed

    de Amorim Araújo, Juliana; Ferreira, Túlio César; Rubini, Marciano Régis; Duran, Ana Gilhema Gomez; De Marco, Janice Lisboa; de Moraes, Lidia Maria Pepe; Torres, Fernando Araripe Gonçalves

    2015-12-01

    The term cellulase refers to any component of the enzymatic complex produced by some fungi, bacteria and protozoans which act serially or synergistically to catalyze the cleavage of cellulosic materials. Cellulases have been widely used in many industrial applications ranging from food industry to the production of second generation ethanol. In an effort to develop new strategies to minimize the costs of enzyme production we describe the development of a Pichia pastoris strain able to coproduce two different cellulases. For that purpose the eglII (endoglucanase II) and cbhII (cellobiohydrolase II) genes from Trichoderma reesei were fused in-frame separated by the self-processing 2A peptide sequence from the foot-and-mouth disease virus. The protein fusion construct was placed under the control of the strong inducible AOX1 promoter. Analysis of culture supernatants from methanol-induced yeast transformants showed that the protein fusion was effectively processed. Enzymatic assay showed that the processed enzymes were fully functional with the same catalytic properties of the individual enzymes produced separately. Furthermore, when combined both enzymes acted synergistically on filter paper to produce cellobiose as the main end-product. Based on these results we propose that P. pastoris should be considered as an alternative platform for the production of cellulases at competitive costs. PMID:26698316

  19. Preparation and PEGylation of exendin-4 peptide secreted from yeast Pichia pastoris.

    PubMed

    Zhou, Jin; Cai, Zhong-Hua; Li, Lei; Kou, Chuang; Gao, Yun-Feng

    2009-06-01

    Exendin-4, a peptide analogue of glucagon-like peptide (GLP-1), has been developed for treatment of type 2 diabetes. Herein, the secretive exendin-4 peptide, expressed by methanol induction in Pichia pastoris, was purified to near homogeneity by Ni-NTA agarose chromatography. 103.6 mg of protein was obtained from 1 L of the supernatant and its purity was 96.1%. Subsequently, the PEGylated exendin-4 was prepared. The bioactivity of exendin-4 was determined by examining the glucose-lowering and insulin-releasing ability in plasma. Then, a safety evaluation was performed by histological examination of the main organs (liver, kidney and pancreas). PEGylated exendin-4 displayed glucose-lowering and insulin-stimulating action in vivo without obvious damage to the above organs. The results suggest that the P. pastoris expression could be used to produce large quantities of exendin-4, and PEGylation is a useful tool to maintain and enhance bioactivity of the peptide. PMID:19462477

  20. Antibacterial Activity of Recombinant Pig Intestinal Parasite Cecropin P4 Peptide Secreted from Pichia pastoris

    PubMed Central

    Song, Ki-Duk; Lee, Woon-Kyu

    2014-01-01

    Cecropins (Cec) are antibacterial peptides and their expression is induced in a pig intestinal parasite Ascaris suum by bacterial infection. To explore the usefulness of its activity as an antibiotic, CecP4 cDNA was prepared and cloned into the pPICZ B expression vector and followed by the integration into AOX1 locus in Pichia pastoris. The supernatants from cell culture were collected after methanol induction and concentrated for the test of antimicrobial activity. The recombinant P. patoris having CecP4 showed antimicrobial activity when tested against Staphyllococcus aureus in disc diffusion assay. We selected one of the CecP4 clones (CecP4-2) and performed further studies with it. The growth of recombinant P. pastoris was optimized using various concentration of methanol, and it was found that 2% methanol in the culture induced more antibacterial activity, compared to 1% methanol. We extended the test of antimicrobial activity by applying the concentrated supernatant of CecP4 culture to Pseudomonas aeruginosa and E. coli respectively. Recombinant CecP4 also showed antimicrobial activity against both Pseudomona and E. coli, suggesting the broad spectrum of its antimicrobial activity. After improvements for the scale-up, it will be feasible to use recombinant CecP4 for supplementation to the feed to control microbial infections in young animals, such as piglets. PMID:25049952

  1. Expression and characterization of a recombinant endoglucanase from western corn rootworm, in Pichia pastoris.

    PubMed

    Valencia Jiménez, Arnubio; Wang, Haichuan; Siegfried, Blair D

    2014-01-01

    The endoglucanase cDNA, Dvv-ENGase I, from western corn rootworm, Diabrotica virgifera virgifera LeConte was expressed using the GS115 methylotrophic strain of Pichia pastoris. The Dvv-ENGase I gene was cloned into the integrative plasmid pPICZαA under the control of AOX1, which is a methanol-inducible promoter. Positive clones were selected for their ability to produce the recombinant endoglucanase upon continuous methanol induction. The secreted recombinant insect endoglucanase Dvv-ENGase I has an apparent molecular mass of 29 kDa. The recombinant endo-1,4-β-glucanase (ENGase) was able to digest the substrates: hydroxyethyl cellulose (HEC), carboxymethyl cellulose (CMC), and Whatman No. 1 filter paper. A higher accumulation of reducing sugar was evident when the P. pastoris expression medium contained HEC (1%) instead of CMC (1%). An enzymatic activity band was detected after performing electrophoretic separation under nondenaturing conditions. The biological activity of the recombinant Dvv-ENGase I was influenced by the presence of protease inhibitors in the culture medium. PMID:25434035

  2. Engineering Pichia pastoris for improved NADH regeneration: A novel chassis strain for whole-cell catalysis.

    PubMed

    Geier, Martina; Brandner, Christoph; Strohmeier, Gernot A; Hall, Mélanie; Hartner, Franz S; Glieder, Anton

    2015-01-01

    Many synthetically useful reactions are catalyzed by cofactor-dependent enzymes. As cofactors represent a major cost factor, methods for efficient cofactor regeneration are required especially for large-scale synthetic applications. In order to generate a novel and efficient host chassis for bioreductions, we engineered the methanol utilization pathway of Pichia pastoris for improved NADH regeneration. By deleting the genes coding for dihydroxyacetone synthase isoform 1 and 2 (DAS1 and DAS2), NADH regeneration via methanol oxidation (dissimilation) was increased significantly. The resulting Δdas1 Δdas2 strain performed better in butanediol dehydrogenase (BDH1) based whole-cell conversions. While the BDH1 catalyzed acetoin reduction stopped after 2 h reaching ~50% substrate conversion when performed in the wild type strain, full conversion after 6 h was obtained by employing the knock-out strain. These results suggest that the P. pastoris Δdas1 Δdas2 strain is capable of supplying the actual biocatalyst with the cofactor over a longer reaction period without the over-expression of an additional cofactor regeneration system. Thus, focusing the intrinsic carbon flux of this methylotrophic yeast on methanol oxidation to CO2 represents an efficient and easy-to-use strategy for NADH-dependent whole-cell conversions. At the same time methanol serves as co-solvent, inductor for catalyst and cofactor regeneration pathway expression and source of energy. PMID:26664594

  3. Codon optimization and expression of irisin in Pichia pastoris GS115.

    PubMed

    Duan, Huikun; Wang, Haisong; Ma, Baicheng; Jiang, Pingzhe; Tu, Peipei; Ni, Zaizhong; Li, Xiaodan; Li, Miao; Ma, Xiaofeng; Wang, Bin; Wu, Ri; Li, Minggang

    2015-08-01

    Irisin is a novel hormone which is related to many metabolic diseases. In order to illuminate the function and therapeutic effect of irisin, gaining active irisin is necessary. In this work, a codon-optimized irisin gene was designed according to Pichia pastoris synonymous codon usage bias and cloned into the pPIC9K expression vector. Sequencing result indicating that the sequence of irisin was consistent with the modified irisin and the irisin was in frame with α-factor secretion signal ATG. The plasmid pPIC9K-irisin was transformed into GS115 P. pastoris cells through electroporation. The positive transformants were screened on MD medium and analyzed by PCR. Five recombinant GS115/pPIC9K-irisin strains were obtained, but only one strain expressed irisin successfully. SDS-PAGE and Western blot were used to assess the expression level and purity of irisin. The irisin was also simply purified and the effect of pH value, methanol concentration and induction time on the production of irisin was investigated. The results showed that the best conditions of irisin expression were as follows: pH 6.0, 2.0% methanol and induction for 96 h. This work laid the basis for further investigation into the therapeutic and pharmacological effects of irisin, as well as development of irisin-based therapy. PMID:25931394

  4. Δ(9)-Tetrahydrocannabinolic acid synthase production in Pichia pastoris enables chemical synthesis of cannabinoids.

    PubMed

    Lange, Kerstin; Schmid, Andreas; Julsing, Mattijs K

    2015-10-10

    Δ(9)-Tetrahydrocannabinol (THC) is of increasing interest as a pharmaceutical and bioactive compound. Chemical synthesis of THC uses a laborious procedure and does not satisfy the market demand. The implementation of biocatalysts for specific synthesis steps might be beneficial for making natural product availability independent from the plant. Δ(9)-Tetrahydrocannabinolic acid synthase (THCAS) from C. sativa L. catalyzes the cyclization of cannabigerolic acid (CBGA) to Δ(9)-tetrahydrocannabinolic acid (THCA), which is non-enzymatically decarboxylated to THC. We report the preparation of THCAS in amounts sufficient for the biocatalytic production of THC(A). Active THCAS was most efficiently obtained from Pichia pastoris. THCAS was produced on a 2L bioreactor scale and the enzyme was isolated by single-step chromatography with a specific activity of 73Ug(-1)total protein. An organic/aqueous two-liquid phase setup for continuous substrate delivery facilitated in situ product removal. In addition, THCAS activity in aqueous environments lasted for only 20min whereas the presence of hexane stabilized the activity over 3h. In conclusion, production of THCAS in P. pastoris Mut(S) KM71 KE1, subsequent isolation, and its application in a two-liquid phase setup enables the synthesis of THCA on a mg scale. PMID:26197418

  5. Expression and Control of Codon-Optimized Granulocyte Colony-Stimulating Factor in Pichia pastoris.

    PubMed

    Maity, Nitu; Thawani, Ankita; Sharma, Anshul; Gautam, Ashwani; Mishra, Saroj; Sahai, Vikram

    2016-01-01

    Granulocyte colony-stimulating factor (GCSF) has therapeutic applications due to its proven efficacy in different forms of neutropenia and chemotherapy-induced leucopenia. The original 564-bp nucleotide sequence from NCBI was codon optimized and assembled by overlapping PCR method comprising of 16 oligos of 50-nt length with 15 base overhang. The synthetic gene (CO-GCSF) was cloned under glucose utilizing glyceraldehyde 3-phosphate dehydrogenase (GAP) and methanol-utilizing alcohol oxidase (AOX1) promoters and expressed in Pichia pastoris SMD1168 strain. Constitutive expression under GAP resulted in cellular toxicity while AOX1 promoter controlled expression was stable. Variation in the levels of expression was observed among the transformant colonies with transformant #2 secreting up to ∼4 mg/L of GCSF. The molecular mass of the expressed GCSF in P. pastoris was ∼19.0 kDa. Quatitation of the expressed protein was carried out by a highly reproducible gel densitometric method. Effect of several operational and nutritional conditions was studied on GCSF production and the results suggest a general approach for increasing the yield of GCSF several folds (2- to 5-fold) over the standard conditions employed currently. Cultivation of the single-copy integrant in the chemically defined medium in a 5-L fermenter resulted in a volumetric productivity of ∼0.7 mg/L/h at the end of the induction phase, which was about 4-fold higher than attained in the shake flask. PMID:26410223

  6. Recombinant human N-acetylgalactosamine-6-sulfate sulfatase (GALNS) produced in the methylotrophic yeast Pichia pastoris

    PubMed Central

    Rodríguez-López, Alexander; Alméciga-Díaz, Carlos J.; Sánchez, Jhonnathan; Moreno, Jefferson; Beltran, Laura; Díaz, Dennis; Pardo, Andrea; Ramírez, Aura María; Espejo-Mojica, Angela J.; Pimentel, Luisa; Barrera, Luis A.

    2016-01-01

    Mucopolysaccharidosis IV A (MPS IV A, Morquio A disease) is a lysosomal storage disease (LSD) produced by mutations on N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Recently an enzyme replacement therapy (ERT) for this disease was approved using a recombinant enzyme produced in CHO cells. Previously, we reported the production of an active GALNS enzyme in Escherichia coli that showed similar stability properties to that of a recombinant mammalian enzyme though it was not taken-up by culture cells. In this study, we showed the production of the human recombinant GALNS in the methylotrophic yeast Pichia pastoris GS115 (prGALNS). We observed that removal of native signal peptide and co-expression with human formylglycine-generating enzyme (SUMF1) allowed an improvement of 4.5-fold in the specific GALNS activity. prGALNS enzyme showed a high stability at 4 °C, while the activity was markedly reduced at 37 and 45 °C. It was noteworthy that prGALNS was taken-up by HEK293 cells and human skin fibroblasts in a dose-dependent manner through a process potentially mediated by an endocytic pathway, without any additional protein or host modification. The results show the potential of P. pastoris in the production of a human recombinant GALNS for the development of an ERT for Morquio A. PMID:27378276

  7. Expression of soluble recombinant lipoxygenase from Pleurotus sapidus in Pichia pastoris.

    PubMed

    Kelle, Sebastian; Zelena, Katerina; Krings, Ulrich; Linke, Diana; Berger, Ralf G

    2014-03-01

    The first heterologous expression of an iron-containing lipoxygenase from a basidiomycete in Pichia pastoris is reported. Five different expression constructs of the lipoxygenase gene LOX1 from Pleurotus sapidus were cloned and successfully transferred into P. pastoris SMD1168, but only one pPIC9K vector construct was functionally expressed. In this construct the vector-provided α-factor signal sequence was replaced by insertion of a second Kozak sequence between the signal sequence and the LOX1 gene. His(+) transformants were screened for their level of resistance to geneticin (G418). Lox1 was expressed under different culture conditions and purified using the N-terminal His-tag. Relative enzyme activity increased significantly 48h after methanol induction and was highest with 2mll(-1) inducer. The recombinant enzyme showed an optimal lipoxygenase activity at pH 7 and 30-35°C and a vmax like the wild-type enzyme. PMID:24440506

  8. Recombinant human N-acetylgalactosamine-6-sulfate sulfatase (GALNS) produced in the methylotrophic yeast Pichia pastoris.

    PubMed

    Rodríguez-López, Alexander; Alméciga-Díaz, Carlos J; Sánchez, Jhonnathan; Moreno, Jefferson; Beltran, Laura; Díaz, Dennis; Pardo, Andrea; Ramírez, Aura María; Espejo-Mojica, Angela J; Pimentel, Luisa; Barrera, Luis A

    2016-01-01

    Mucopolysaccharidosis IV A (MPS IV A, Morquio A disease) is a lysosomal storage disease (LSD) produced by mutations on N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Recently an enzyme replacement therapy (ERT) for this disease was approved using a recombinant enzyme produced in CHO cells. Previously, we reported the production of an active GALNS enzyme in Escherichia coli that showed similar stability properties to that of a recombinant mammalian enzyme though it was not taken-up by culture cells. In this study, we showed the production of the human recombinant GALNS in the methylotrophic yeast Pichia pastoris GS115 (prGALNS). We observed that removal of native signal peptide and co-expression with human formylglycine-generating enzyme (SUMF1) allowed an improvement of 4.5-fold in the specific GALNS activity. prGALNS enzyme showed a high stability at 4 °C, while the activity was markedly reduced at 37 and 45 °C. It was noteworthy that prGALNS was taken-up by HEK293 cells and human skin fibroblasts in a dose-dependent manner through a process potentially mediated by an endocytic pathway, without any additional protein or host modification. The results show the potential of P. pastoris in the production of a human recombinant GALNS for the development of an ERT for Morquio A. PMID:27378276

  9. Engineering Pichia pastoris for improved NADH regeneration: A novel chassis strain for whole-cell catalysis

    PubMed Central

    Geier, Martina; Brandner, Christoph; Strohmeier, Gernot A; Hall, Mélanie; Hartner, Franz S

    2015-01-01

    Summary Many synthetically useful reactions are catalyzed by cofactor-dependent enzymes. As cofactors represent a major cost factor, methods for efficient cofactor regeneration are required especially for large-scale synthetic applications. In order to generate a novel and efficient host chassis for bioreductions, we engineered the methanol utilization pathway of Pichia pastoris for improved NADH regeneration. By deleting the genes coding for dihydroxyacetone synthase isoform 1 and 2 (DAS1 and DAS2), NADH regeneration via methanol oxidation (dissimilation) was increased significantly. The resulting Δdas1 Δdas2 strain performed better in butanediol dehydrogenase (BDH1) based whole-cell conversions. While the BDH1 catalyzed acetoin reduction stopped after 2 h reaching ~50% substrate conversion when performed in the wild type strain, full conversion after 6 h was obtained by employing the knock-out strain. These results suggest that the P. pastoris Δdas1 Δdas2 strain is capable of supplying the actual biocatalyst with the cofactor over a longer reaction period without the over-expression of an additional cofactor regeneration system. Thus, focusing the intrinsic carbon flux of this methylotrophic yeast on methanol oxidation to CO2 represents an efficient and easy-to-use strategy for NADH-dependent whole-cell conversions. At the same time methanol serves as co-solvent, inductor for catalyst and cofactor regeneration pathway expression and source of energy. PMID:26664594

  10. Antibacterial Activity of Recombinant Pig Intestinal Parasite Cecropin P4 Peptide Secreted from Pichia pastoris.

    PubMed

    Song, Ki-Duk; Lee, Woon-Kyu

    2014-02-01

    Cecropins (Cec) are antibacterial peptides and their expression is induced in a pig intestinal parasite Ascaris suum by bacterial infection. To explore the usefulness of its activity as an antibiotic, CecP4 cDNA was prepared and cloned into the pPICZ B expression vector and followed by the integration into AOX1 locus in Pichia pastoris. The supernatants from cell culture were collected after methanol induction and concentrated for the test of antimicrobial activity. The recombinant P. patoris having CecP4 showed antimicrobial activity when tested against Staphyllococcus aureus in disc diffusion assay. We selected one of the CecP4 clones (CecP4-2) and performed further studies with it. The growth of recombinant P. pastoris was optimized using various concentration of methanol, and it was found that 2% methanol in the culture induced more antibacterial activity, compared to 1% methanol. We extended the test of antimicrobial activity by applying the concentrated supernatant of CecP4 culture to Pseudomonas aeruginosa and E. coli respectively. Recombinant CecP4 also showed antimicrobial activity against both Pseudomona and E. coli, suggesting the broad spectrum of its antimicrobial activity. After improvements for the scale-up, it will be feasible to use recombinant CecP4 for supplementation to the feed to control microbial infections in young animals, such as piglets. PMID:25049952

  11. Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight.

    PubMed

    Jeong, Euijoon; Shim, Woo Yong; Kim, Jung Hoe

    2014-09-20

    The high molecular weight (>1 MDa) of hyaluronic acid (HA) is important for its biological functions. The reported limiting factors for the production of HA with high molecular weight (MW) by microbial fermentation are the insufficient HA precursor pool and cell growth inhibition. To overcome these issues, the Xenopus laevis xhasA2 and xhasB genes encoding hyaluronan synthase 2 (xhasA2) and UDP-glucose dehydrogenase (xhasB), were expressed in Pichia pastoris widely used for production of heterologous proteins. In this study, expression vectors containing various combination cassettes of HA pathway genes including xhasA2 and xhasB from X. laevis as well as UDP-glucose pyrophosphorylase (hasC), UDP-N-acetylglucosamine pyrophosphorylase (hasD) and phosphoglucose isomerase (hasE) from P. pastoris were constructed and tested. First, HA pathway genes were overexpressed using pAO815 and pGAPZB vectors, resulting in the production of 1.2 MDa HA polymers. Second, in order to decrease hyaluronan synthase expression a strong AOX1 promoter in the xhasA2 gene was replaced by a weak AOX2 promoter which increased the mean MW of HA to 2.1 MDa. Finally, the MW of HA polymer was further increased to 2.5 MDa by low-temperature cultivation (26 °C) which reduced cell growth inhibition. The yield of HA production by the P. pastoris recombinant strains in 1L of fermentation culture was 0.8-1.7 g/L. PMID:24892811

  12. Molecular genetic manipulation of Pichia pastoris SEC4 governs cell growth and glucoamylase secretion.

    PubMed

    Liu, Shi-Hwei; Chou, Wei-I; Lin, Shu-Chuan; Sheu, Chia-Chin; Chang, Margaret Dah-Tsyr

    2005-11-01

    We have previously engineered a recombinant Pichia pastoris GS115 transformant, MSPGA-7, harboring seven copies of glucoamylase (GA) fused with modified signal peptide. High yield secretion of GA was achieved as an extra copy of SEC4 was integrated to the transformant. To elucidate the physiological role of SEC4, a dominant-negative mutant of SEC4, SEC4(S28N), was overexpressed under the control of alchohol oxidase 1 (AOX1) promoter in P. pastoris strain MSPGA-7 as well as a set of host cells harboring multi-copy of wild type SEC4. We found that SEC4(S28N) mutation in the key guanine nucleotide binding domain reduced guanine nucleotide binding affinity, hence it blocked the transport of vesicles required for targeting and fusion to the plasma membrane. The inhibitory levels of cell growth and GA secretion were correlated with the dosage of SEC4(S28N) gene. In addition, overexpression of SEC4 driven by AOX1 promoter in MSPGA-7 improved the secretory production of GA, but demonstrated the delay of cell growth by increased gene dosage of SEC4. Interestingly, a limited level of Sec4p did not disturb the cell growth. It was because expression of only one copy of SEC4 resulted in delay of cell growth at an early stage while still maintaining high level Sec4p at long-term incubation. Accordingly, as glyceraldehyde-3-phosphate dehydrogenase promoter was used to substitute AOX1 promoter to drive the SEC4 expression, enhanced GA secretion but not inhibition of cell growth was achieved. Taken together, our results demonstrate that SEC4 is essential for P. pastoris in regulating cell growth and heterologous protein secretion in a dosage-dependent manner. PMID:16176807

  13. High level expression of organophosphorus hydrolase in Pichia pastoris by multicopy ophcM assembly.

    PubMed

    Shen, Wei; Shu, Min; Ma, Lixin; Ni, Hong; Yan, Hong

    2016-03-01

    The residues of organophosphorus pesticides bring serious impact on the environmental safety and people's health. Biodegradation of organophosphorus pesticides is recognized as an ideal method. An organophosphorus hydrolase (OPHCM) from Pseudomonas pseudoalcaligenes was synthesized and expressed in Pichia pastoris. The yield reached approximately 470 mg/l after a 6-d induction in shake flasks. To improve the enzyme production, we describe a novel approach to express OPHCM efficiently with a biobrick assembly method in vitro. Four recombinant plasmids containing 1-4 copies of ophcM-expressing cassettes were constructed and transformed into P. pastoris. Increasing the copy number of ophcM gene enhanced the expression level of OPHCM. The maximum yield and specific activity in P. pastoris harboring two-copy tandem ophcM-expressing cassettes reached 610 mg/l after a 6-d induction in shake flasks and 7.8 g/l in high-density fermentation with specific activity of 13.7 U/mg. The optimum pH and temperature of the recombinant OPHCM activity were 11.0 and 50 °C, respectively. In addition, the enzyme activity of recombinant OPHCM enhanced 57.6% and 30.1% in the presence of 1 mM Cd(2+) and 5% glycerol, respectively. The high expression and good properties of recombinant OPHCM provide an effective solution to solve the pollution of organophosphorus pesticides in the environment. Moreover, the approach for generating multicopy gene expressing vectors here will benefit the study for enhancing the expression level of genes of interest. PMID:26611611

  14. Molecular genetic manipulation of Pichia pastoris SEC4 governs cell growth and glucoamylase secretion

    SciTech Connect

    Liu, S.-H.; Chou, W.-I; Lin, S.-C.; Sheu, C.-C.; Chang, Margaret Dah-Tsyr . E-mail: dtchang@life.nthu.edu.tw

    2005-11-04

    We have previously engineered a recombinant Pichia pastoris GS115 transformant, MSPGA-7, harboring seven copies of glucoamylase (GA) fused with modified signal peptide. High yield secretion of GA was achieved as an extra copy of SEC4 was integrated to the transformant. To elucidate the physiological role of SEC4, a dominant-negative mutant of SEC4, SEC4 {sub S28N}, was overexpressed under the control of alchohol oxidase 1 (AOX1) promoter in P. pastoris strain MSPGA-7 as well as a set of host cells harboring multi-copy of wild type SEC4. We found that SEC4 {sub S28N} mutation in the key guanine nucleotide binding domain reduced guanine nucleotide binding affinity, hence it blocked the transport of vesicles required for targeting and fusion to the plasma membrane. The inhibitory levels of cell growth and GA secretion were correlated with the dosage of SEC4 {sub S28N} gene. In addition, overexpression of SEC4 driven by AOX1 promoter in MSPGA-7 improved the secretory production of GA, but demonstrated the delay of cell growth by increased gene dosage of SEC4. Interestingly, a limited level of Sec4p did not disturb the cell growth. It was because expression of only one copy of SEC4 resulted in delay of cell growth at an early stage while still maintaining high level Sec4p at long-term incubation. Accordingly, as glyceraldehyde-3-phosphate dehydrogenase promoter was used to substitute AOX1 promoter to drive the SEC4 expression, enhanced GA secretion but not inhibition of cell growth was achieved. Taken together, our results demonstrate that SEC4 is essential for P. pastoris in regulating cell growth and heterologous protein secretion in a dosage-dependent manner.

  15. Upscale of recombinant α-L-rhamnosidase production by Pichia pastoris MutS strain

    PubMed Central

    Markošová, Kristína; Weignerová, Lenka; Rosenberg, Michal; Křen, Vladimír; Rebroš, Martin

    2015-01-01

    Pichia pastoris is currently one of the most preferred microorganisms for recombinant enzyme production due to its efficient expression system. The advantages include the production of high amounts of recombinant proteins containing the appropriate posttranslational modifications and easy cultivation conditions. α-L-Rhamnosidase is a biotechnologically important enzyme in food and pharmaceutical industry, used for example in debittering of citrus fruit juices, rhamnose pruning from naringin, or enhancement of wine aromas, creating a demand for the production of an active and stable enzyme. The production of recombinant α-L-rhamnosidase cloned in the MutS strain of P. pastoris KM71H was optimized. The encoding gene is located under the control of the AOX promoter, which is induced by methanol whose concentration is instrumental for these strain types. Fermentation was upscaled in bioreactors employing various media and several methanol-feeding strategies. It was found that fed batch with BSM media was more effective compared to BMMH (Buffered Methanol-complex Medium) media due to lower cost and improved biomass formation. In BSM (Basal Salt Medium) medium, the dry cell weight reached approximately 60 g/L, while in BMMH it was only 8.3 g/L, without additional glycerol, which positively influenced the amount of enzyme produced. New methanol feeding strategy, based on the level of dissolved oxygen was developed in this study. This protocol that is entirely independent on methanol monitoring was up scaled to a 19.5-L fermenter with 10-L working volume with the productivity of 13.34 mgprot/L/h and specific activity of α-L-rhamnosidase of 82 U/mg. The simplified fermentation protocol was developed for easy and effective fermentation of P. pastoris MutS based on dissolved oxygen monitoring in the induction phase of an enzyme production. PMID:26539173

  16. High-level expression of human tumour suppressor P53 in the methylotrophic yeast: Pichia pastoris.

    PubMed

    Abdelmoula-Souissi, Salma; Rekik, Leila; Gargouri, Ali; Mokdad-Gargouri, Raja

    2007-08-01

    The human tumour suppressor P53 is a key protein involved in tumour suppression. P53 acts as a "guardian of genome" by regulating many target genes involved in cell cycle regulation, DNA repair and apoptosis. We report the P53 expression by the methylotrophic yeast Pichia pastoris using the methanol inducible AOX1 promoter. We have produced the rP53 in intracellular form as well as secreted using the Saccharomyces cerevisiae alpha-mating factor prepro-leader sequence in two genetic contexts of Pichia, Mut(s) and Mut(+). The intracellular P53 was successfully produced by Mut(s) (KM71) as well as Mut(+) (X33) strains, however, the secreted form was mainly observed in the Mut(s) strain, despite a higher number of p53 copies integrated in the Mut(+) strain. Interestingly, in Mut(s) phenotype, the medium pH influences markedly the rP53 production since it was higher at pH 7 than 6. PMID:17482479

  17. Cloning, sequence analysis, expression of Cyathus bulleri laccase in Pichia pastoris and characterization of recombinant laccase

    PubMed Central

    2012-01-01

    Background Laccases are blue multi-copper oxidases and catalyze the oxidation of phenolic and non-phenolic compounds. There is considerable interest in using these enzymes for dye degradation as well as for synthesis of aromatic compounds. Laccases are produced at relatively low levels and, sometimes, as isozymes in the native fungi. The investigation of properties of individual enzymes therefore becomes difficult. The goal of this study was to over-produce a previously reported laccase from Cyathus bulleri using the well-established expression system of Pichia pastoris and examine and compare the properties of the recombinant enzyme with that of the native laccase. Results In this study, complete cDNA encoding laccase (Lac) from white rot fungus Cyathus bulleri was amplified by RACE-PCR, cloned and expressed in the culture supernatant of Pichia pastoris under the control of the alcohol oxidase (AOX)1 promoter. The coding region consisted of 1,542 bp and encodes a protein of 513 amino acids with a signal peptide of 16 amino acids. The deduced amino acid sequence of the matured protein displayed high homology with laccases from Trametes versicolor and Coprinus cinereus. The sequence analysis indicated the presence of Glu 460 and Ser 113 and LEL tripeptide at the position known to influence redox potential of laccases placing this enzyme as a high redox enzyme. Addition of copper sulfate to the production medium enhanced the level of laccase by about 12-fold to a final activity of 7200 U L-1. The recombinant laccase (rLac) was purified by ~4-fold to a specific activity of ~85 U mg-1 protein. A detailed study of thermostability, chloride and solvent tolerance of the rLac indicated improvement in the first two properties when compared to the native laccase (nLac). Altered glycosylation pattern, identified by peptide mass finger printing, was proposed to contribute to altered properties of the rLac. Conclusion Laccase of C. bulleri was successfully produced extra

  18. Expression of HpaI in Pichia pastoris and optimization of conditions for the heparinase I production.

    PubMed

    Yu, Ping; Yang, Jun; Gu, Huifen

    2014-06-15

    Heparinase I has important applications in the fields of biomedicine and pharmaceuticals. The heparinase I gene (HpaI) from Flavobacterium heparinum was cloned and overexpressed in Pichia pastoris GS115, and the conditions for the heparinase I production were optimized by RSM. PCR analysis indicated that HpaI was integrated into the P. pastoris GS115 genome. The concentrations of key factors that affected the heparinase I activity were optimized, and were as follows: oleic acid, 0.07%, liquid volume in flask, 34.3 ml/L, and methanol, 0.96%. Under the optimal conditions, the activity of heparinase I was up to 323 U/L in shake flask. A maximal heparinase I activity of 398.5 U/L from the transformant 2 was achieved in a 5L fermentor. This study demonstrates the overproduction of heparinase I by recombinant P. pastoris. PMID:24721072

  19. The GDI1 genes from Kluyveromyces lactis and Pichia pastoris: cloning and functional expression in Saccharomyces cerevisiae.

    PubMed

    Brummer, M H; Richard, P; Sundqvist, L; Väänänen, R; Keränen, S

    2001-07-01

    The nucleotide sequences of 2.8 kb and 2.9 kb fragments containing the Kluyveromyces lactis and Pichia pastoris GDI1 genes, respectively, were determined. K. lactis GDI1 was found during sequencing of a genomic library clone, whereas the P. pastoris GDI1 was obtained from a genomic library by complementing a Saccharomyces cerevisiae sec19-1 mutant strain. The sequenced DNA fragments contain open reading frames of 1338 bp (K.lactis) and 1344 bp (P. pastoris), coding for polypeptides of 445 and 447 residues, respectively. Both sequences fully complement the S. cerevisiae sec19-1 mutation. They have high degrees of homology with known GDP dissociation inhibitors from yeast species and other eukaryotes. PMID:11447595

  20. Reconstruction and visualization of carbohydrate, N-glycosylation pathways in Pichia pastoris CBS7435 using computational and system biology approaches.

    PubMed

    Srivastava, Akriti; Somvanshi, Pallavi; Mishra, Bhartendu Nath

    2013-06-01

    Pichia pastoris is an efficient expression system for production of recombinant proteins. To understand its physiology for building novel applications it is important to understand and reconstruct its metabolic network. The metabolic reconstruction approach connects genotype with phenotype. Here, we have attempted to reconstruct carbohydrate metabolism pathways responsible for high biomass density and N-glycosylation pathways involved in the post translational modification of proteins of P. pastoris CBS7435. Both these metabolic pathways play a crucial role in heterologous protein production. We report novel, missing and unannotated enzymes involved in the target metabolic pathways. A strong possibility of cellulose and xylose metabolic processes in P. pastoris CBS7435 suggests its use in the area of biofuels. The reconstructed metabolic networks can be used for increased yields and improved product quality, for designing appropriate growth medium, for production of recombinant therapeutics and for making biofuels. PMID:24432138

  1. Engineered fungal polyketide biosynthesis in Pichia pastoris: a potential excellent host for polyketide production

    PubMed Central

    2013-01-01

    Background Polyketides are one of the most important classes of secondary metabolites and usually make good drugs. Currently, heterologous production of fungal polyketides for developing a high potential industrial application system with high production capacity and pharmacutical feasibility was still at its infancy. Pichia pastoris is a highly successful system for the high production of a variety of heterologous proteins. In this work, we aim to develop a P. pastoris based in vivo fungal polyketide production system for first time and evaluate its feasibility for future industrial application. Results A recombinant P. pastoris GS115-NpgA-ATX with Aspergillus nidulans phosphopantetheinyl transferase (PPtase) gene npgA and Aspergillus terrus 6-methylsalicylic acid (6-MSA) synthase (6-MSAS) gene atX was constructed. A specific compound was isolated and idenified as 6-MSA by HPLC, LC-MS and NMR. Transcription of both genes were detected. In 5-L bioreactor, the GS115-NpgA-ATX grew well and produced 6-MSA quickly until reached a high value of 2.2 g/L by methanol induction for 20 hours. Thereafter, the cells turned to death ascribing to high concentration of antimicrobial 6-MSA. The distribution of 6-MSA changed that during early and late induction phase it existed more in supernatant while during intermediate stage it mainly located intracellular. Different from 6-MSA production strain, recombinant M. purpureus pksCT expression strains for citrinin intermediate production, no matter PksCT located in cytoplasm or in peroxisomes, did not produce any specfic compound. However, both npgA and pksCT transcripted effectively in cells and western blot analysis proved the expression of PPtase. Then the PPTase was expressed and purified, marked by fluorescent probes, and reacted with purified ACP domain and its mutant ACPm of PksCT. Fluoresence was only observed in ACP but not ACPm, indicating that the PPTase worked well with ACP to make it bioactive holo-ACP. Thus, some

  2. Antibacterial efficacy of recombinant Siganus oramin L-amino acid oxidase expressed in Pichia pastoris.

    PubMed

    Li, Ruijun; Li, Anxing

    2014-12-01

    Siganus oraminl-amino acid oxidase is a novel natural protein (named SR-LAAO) isolated from serum of the rabbitfish (S. oramin), which showed antibacterial activity against both Gram-positive and Gram-negative bacteria and had a lethal effect on the parasites Cryptocaryon irritans, Trypanosoma brucei brucei and Ichthyophthirius multifiliis. In order to test whether recombinant SR-LAAO (rSR-LAAO) produced by the eukaryotic expression system also has antimicrobial activity, the yeast Pichia pastoris was used as the expression host to obtain rSR-LAAO in vitro. Crude rSR-LAAO produced by P. pastoris integrated with the SR-LAAO gene had antibacterial activity against both Gram-positive and Gram-negative bacteria as shown by inhibition zone assay of the antibacterial spectrum on agar plates. The average diameter of the inhibition zone of crude rSR-LAAO against the Gram-positive bacteria Staphylococcus aureus and Streptococcus agalactiae was 1.040 ± 0.045 cm and 1.209 ± 0.085 cm, respectively. For the Gram-negative bacteria Aeromonas sobria, Escherichia coli, Vibrio alginolyticus, Vibrio cholera and Photobacterium damselae subsp. piscicida, the average diameter of inhibition zone was 1.291 ± 0.089 cm, 0.943 ± 0.061 cm, 0.756 ± 0.057 cm, 0.834 ± 0.023 cm and 1.211 ± 0.026 cm, respectively. These results were obtained at the logarithmic growth phase of S. agalactiae and A. sobria cell suspensions after incubation with 0.5 mg/mL crude rSR-LAAO for 24 h. The final bacterial growth rate was decreased significantly. The relative inhibition rate can reach 50% compared to crude products from P. pastoris integrated with an empty vector at the same concentration of protein. The antimicrobial activity of crude rSR-LAAO was likely associated with H2O2 formation, because its inhibition zones were disturbed significantly by catalase. Scanning electron microscopy results showed crude rSR-LAAO-treated bacterial surfaces became rough and particles were attached, cell walls were

  3. Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay

    PubMed Central

    2012-01-01

    Background Recent studies demonstrate that enzymes from the glycosyl hydrolase family 61 (GH61) show lytic polysaccharide monooxygenase (PMO) activity. Together with cellobiose dehydrogenase (CDH) an enzymatic system capable of oxidative cellulose cleavage is formed, which increases the efficiency of cellulases and put PMOs at focus of biofuel research. Large amounts of purified PMOs, which are difficult to obtain from the native fungal producers, are needed to study their reaction kinetics, structure and industrial application. In addition, a fast and robust enzymatic assay is necessary to monitor enzyme production and purification. Results Four pmo genes from Neurospora crassa were expressed in P. pastoris under control of the AOX1 promoter. High yields were obtained for the glycosylated gene products PMO-01867, PMO-02916 and PMO-08760 (>300 mg L-1), whereas the yield of non-glycosylated PMO-03328 was moderate (~45 mg L-1). The production and purification of all four enzymes was specifically followed by a newly developed, fast assay based on a side reaction of PMO: the production of H2O2 in the presence of reductants. While ascorbate is a suitable reductant for homogeneous PMO preparations, fermentation samples require the specific electron donor CDH. Conclusions P. pastoris is a high performing expression host for N. crassa PMOs. The pmo genes under control of the native signal sequence are correctly processed and active. The novel CDH-based enzyme assay allows fast determination of PMO activity in fermentation samples and is robust against interfering matrix components. PMID:23102010

  4. A Rapid Method for Determining the Concentration of Recombinant Protein Secreted from Pichia pastoris

    NASA Astrophysics Data System (ADS)

    Sun, L. W.; Zhao, Y.; Niu, L. P.; Jiang, R.; Song, Y.; Feng, H.; feng, K.; Qi, C.

    2011-02-01

    Pichia secretive expression system is one of powerful eukaryotic expression systems in genetic engineering, which is especially suitable for industrial utilization. Because of the low concentration of the target protein in initial experiment, the methods and conditions for expression of the target protein should be optimized according to the protein yield repetitively. It is necessary to set up a rapid, simple and convenient analysis method for protein expression levels instead of the generally used method such as ultrafiltration, purification, dialysis, lyophilization and so on. In this paper, acetone precipitation method was chosen to concentrate the recombinant protein firstly after comparing with four different protein precipitation methods systematically, and then the protein was analyzed by SDS-Polyacrylamide Gel Electrophoresis. The recombinant protein was determined with the feature of protein band by the Automated Image Capture and 1-D Analysis Software directly. With this method, the optimized expression conditions of basic fibroblast growth factor secreted from pichia were obtained, which is as the same as using traditional methods. Hence, a convenient tool to determine the optimized conditions for the expression of recombinant proteins in Pichia was established.

  5. Production in stirred-tank bioreactor of recombinant bovine chymosin B by a high-level expression transformant clone of Pichia pastoris.

    PubMed

    Noseda, Diego Gabriel; Recúpero, Matías; Blasco, Martín; Bozzo, Joaquín; Galvagno, Miguel Ángel

    2016-07-01

    An intense screening of Pichia pastoris clones transformed with the gene of bovine chymosin under methanol-inducible AOX1 promoter was performed, obtaining a transformant clone with a higher milk-clotting activity value in comparison with our previous studies. The scaling of recombinant-chymosin production was carried out by a fed-batch strategy in a stirred-tank bioreactor using biodiesel-byproduct crude glycerol as the carbon source and pure methanol for the induction of chymosin expression, achieving a biomass concentration of 158 g DCW/L and a maximum coagulant activity of 192 IMCU/ml after 120 h of methanol induction. Recombinant bovine chymosin was purified from bioreactor-fermentation culture by a procedure including anion-exchange chromatography which allowed obtaining heterologous chymosin with high level of purity and activity; suggesting that this downstream step could be scaled up in a successful manner for chymosin purification. Thermoestability assay permitted to establish that unformulated recombinant chymosin could be stored at 5 °C without decrease of enzyme activity throughout at least 120 days. Finally, reiterative methanol-inductions of recombinant chymosin expression in bioreactor demonstrated that the reutilization of cell biomass overcame the low enzyme productivity usually reached by P. pastoris system. PMID:27033608

  6. Expression of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris using the GAP promoter.

    PubMed

    Vassileva, A; Chugh, D A; Swaminathan, S; Khanna, N

    2001-06-01

    High-level expression and efficient assembly of Hepatitis B surface Antigen (HBsAg) particles have been reported in Pichia pastoris by integrating a single copy of the HBsAg gene under the control of the alcohol oxidase (AOX1) promoter. However, the time taken to reach peak product concentration is usually very long ( approximately 240 h). In this paper, we describe the expression of HBsAg in P. pastoris using the recently described glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter. Unlike the previously described AOX1 promoter based system (in which biomass is generated first followed by methanol-induced antigen production), biomass generation and antigen production occur simultaneously in medium containing glycerol or glucose. Maximal levels of HBsAg expression in case of the single copy AOX1 integrant (attained after 6 days of induction) exceeded the levels of antigen produced by the single copy GAP integrant. However, this was offset by continuous antigen production by the GAP clone. In an attempt to further enhance antigen production levels of the GAP clones, we isolated multicopy Pichia integrants containing up to four copies of the GAP promoter-driven constitutive expression cassette using the Zeocin screening procedure. The data demonstrated a direct correlation between the gene dosage and the levels of HBsAg expressed by the GAP clones. The effect of copy number was additive and the four copy clone resulted in about four-fold higher yield of HBsAg. The majority of HBsAg produced in the constitutive expression system was found to be of particulate form, based on sedimentation behaviour and particle-specific ELISA, suggesting that it has the potential to serve as an effective immunogen. These particles were sensitive to thiol reagents. We also explored the possibility of secreting the GAP expressed HBsAg in P. pastoris. In-frame fusion of the Saccharomyces cerevisiae alpha-factor secretion signal under the constitutive GAP promoter resulted in

  7. High-level expression and characterization of the Bacillus subtilis subsp. subtilis str. BSP1 YwaD aminopeptidase in Pichia pastoris.

    PubMed

    Tang, Wei; Li, Zhezhe; Li, Chunhua; Yu, Xianhong; Wang, Fei; Wan, Xin; Wang, Yaping; Ma, Lixin

    2016-06-01

    Aminopeptidases are widely used for creating protein hydrolysates and peptide sequencing. The ywaD gene from a new Bacillus isolate, named Bacillus subtilis subsp. subtilis str. BSP1, was cloned into the yeast expression vector pHBM905A and expressed and secreted by Pichia pastoris strain GS115. The deduced amino acid sequence of the aminopeptidase encoded by the ywaD gene shared up to 98% identity with aminopeptidases from B. subtilis strains 168 and zj016. The yield (3.81 g/l) and specific activity (788 U/mg) of recombinant YwaD in high-density fermentation were extremely high. And 829.83 mg of the purified enzyme (4089.72 U/mg) were harvested. YwaD was glycosylated, and its activity decreased after deglycosylation, which was similar to that of the aminopeptidase from B. subtilis strain zj016. YwaD was most active toward l-arginine-4-nitroanilide. Moreover, it exhibited high resistance to carbamide, which was not true for aminopeptidases from B. subtilis strains 168 and zj016, which could simplify the purification of YwaD. Moreover, the expression and parts of characterization of the aminopeptidase from B. subtilis strain 168 in Pichia pastoris were added as supplementary material. The sequence and other characteristics of YwaD were compared with those of aminopeptidases from B. subtilis strains 168 and zj016, and they will provide a solid foundation for further research on the influence of amino acid mutations on the function of aminopeptidases. PMID:26898926

  8. Heterologous expression and enzymatic characterization of fructosyltransferase from Aspergillus niger in Pichia pastoris.

    PubMed

    Yang, Hailin; Wang, Yitian; Zhang, Ling; Shen, Wei

    2016-01-25

    In this work, the cDNA encoding fructosyltransferase (FTase) from Aspergillus niger YZ59 (CICIM F0901) was obtained and expressed in the methylotrophic yeast Pichia pastoris strain GS115. The yield of recombinant FTase in a 5-L fermentor reached 1020.0 U/mL after 96 h of induction, which was 1160.4 times higher that of native FTase from A. niger YZ59. The specific activity of recombinant FTase was 6.8×10(4) U/mg. The optimum temperature and pH of the recombinant FTase were 55 °C and 5.5, respectively. The recombinant FTase was stable below 40 °C and at pH from 3.0 to 10.0. Using sucrose as the substrate, the Km and Vmax values of recombinant FTase were 159.8 g/L and 0.66 g/(L min), respectively. The turnover number (kcat) and catalytic efficiency (kcat/Km) of recombinant FTase was 1.1×10(4) min(-1) and 68.8 L/(g min), respectively. The recombinant FTase was slightly activated by 5mM Ni(2+), Mg(2+), K(+), Fe(3+), or Mn(2+), but inhibited by all other metal ions (Na(+), Li(+), Ba(2+), Ca(2+), Zn(2+), and Cu(2+)). The highest yield of fructooligosaccharides for purified FTase reached approximately 343.3 g/L (w/v). This is the first study reporting the heterologous expression of FTases from A. niger in P. pastoris. This study plays an important role in the fructooligosaccharide synthesis industry by recombinant FTases. PMID:25976629

  9. Increasing pentose phosphate pathway flux enhances recombinant protein production in Pichia pastoris.

    PubMed

    Nocon, Justyna; Steiger, Matthias; Mairinger, Teresa; Hohlweg, Jonas; Rußmayer, Hannes; Hann, Stephan; Gasser, Brigitte; Mattanovich, Diethard

    2016-07-01

    Production of heterologous proteins in Pichia pastoris (syn. Komagataella sp.) has been shown to exert a metabolic burden on the host metabolism. This burden is associated with metabolite drain, which redirects nucleotides and amino acids from primary metabolism. On the other hand, recombinant protein production affects energy and redox homeostasis of the host cell. In a previous study, we have demonstrated that overexpression of single genes of the oxidative pentose phosphate pathway (PPP) had a positive influence on recombinant production of cytosolic human superoxide dismutase (hSOD). In this study, different combinations of these genes belonging to the oxidative PPP were generated and analyzed. Thereby, a 3.8-fold increase of hSOD production was detected when glucose-6-phosphate dehydrogenase (ZWF1) and 6-gluconolactonase (SOL3) were simultaneously overexpressed, while the combinations of other genes from PPP had no positive effect on protein production. By measuring isotopologue patterns of (13)C-labelled metabolites, we could detect an upshift in the flux ratio of PPP to glycolysis upon ZWF1 and SOL3 co-overexpression, as well as increased levels of 6-phosphogluconate. The substantial improvement of hSOD production by ZWF1 and SOL3 co-overexpression appeared to be connected to an increase in PPP flux. In conclusion, we show that overexpression of SOL3 together with ZWF1 enhanced both the PPP flux ratio and hSOD accumulation, providing evidence that in P. pastoris Sol3 limits the flux through PPP and recombinant protein production. PMID:27020289

  10. A Gene Optimization Strategy that Enhances Production of Fully Functional P-Glycoprotein in Pichia pastoris

    PubMed Central

    Protasevich, Irina I.; Brouillette, Christie G.; Harrell, Patina M.; Hildebrandt, Ellen; Gasser, Brigitte; Mattanovich, Diethard; Ward, Andrew; Chang, Geoffrey; Urbatsch, Ina L.

    2011-01-01

    Background Structural and biochemical studies of mammalian membrane proteins remain hampered by inefficient production of pure protein. We explored codon optimization based on highly expressed Pichia pastoris genes to enhance co-translational folding and production of P-glycoprotein (Pgp), an ATP-dependent drug efflux pump involved in multidrug resistance of cancers. Methodology/Principal Findings Codon-optimized “Opti-Pgp” and wild-type Pgp, identical in primary protein sequence, were rigorously analyzed for differences in function or solution structure. Yeast expression levels and yield of purified protein from P. pastoris (∼130 mg per kg cells) were about three-fold higher for Opti-Pgp than for wild-type protein. Opti-Pgp conveyed full in vivo drug resistance against multiple anticancer and fungicidal drugs. ATP hydrolysis by purified Opti-Pgp was strongly stimulated ∼15-fold by verapamil and inhibited by cyclosporine A with binding constants of 4.2±2.2 µM and 1.1±0.26 µM, indistinguishable from wild-type Pgp. Maximum turnover number was 2.1±0.28 µmol/min/mg and was enhanced by 1.2-fold over wild-type Pgp, likely due to higher purity of Opti-Pgp preparations. Analysis of purified wild-type and Opti-Pgp by CD, DSC and limited proteolysis suggested similar secondary and ternary structure. Addition of lipid increased the thermal stability from Tm ∼40°C to 49°C, and the total unfolding enthalpy. The increase in folded state may account for the increase in drug-stimulated ATPase activity seen in presence of lipids. Conclusion The significantly higher yields of protein in the native folded state, higher purity and improved function establish the value of our gene optimization approach, and provide a basis to improve production of other membrane proteins. PMID:21826197

  11. Cloning and constitutive expression of Deschampsia antarctica Cu/Zn superoxide dismutase in Pichia pastoris

    PubMed Central

    Sánchez-Venegas, Jaime R; Navarrete, Alejandro; Dinamarca, Jorge; Bravo Ramírez, León A; Moraga, Ana Gutiérrez; Gidekel, Manuel

    2009-01-01

    Background Deschampsia antarctica shows tolerance to extreme environmental factors such as low temperature, high light intensity and an increasing UV radiation as result of the Antarctic ozone layer thinning. It is very likely that the survival of this species is due to the expression of genes that enable it to tolerate high levels of oxidative stress. On that account, we planned to clone the D. antarctica Cu/ZnSOD gene into Pichia pastoris and to characterize the heterologous protein. Findings The Copper/Zinc superoxide dismutase (Cu/ZnSOD) gene, SOD gene, was isolated from a D. antarctica by cDNA library screening. This SOD gene was cloned in the expression vector pGAPZαA and successfully integrated into the genome of the yeast P. pastoris SMD1168H. A constitutive expression system for the expression of the recombinant SOD protein was used. The recombinant protein was secreted into the YPD culture medium as a glycosylated protein with a 32 mg/l expression yield. The purified recombinant protein possesses a specific activity of 440 U/mg. Conclusion D. antarctica Cu/ZnSOD recombinant protein was expressed in a constitutive system, and purified in a single step by means of an affinity column. The recombinant SOD was secreted to the culture medium as a glycoprotein, corresponding to approximately 13% of the total secreted protein. The recombinant protein Cu/ZnSOD maintains 60% of its activity after incubation at 40°C for 30 minutes and it is stable (80% of activity) between -20°C and 20°C. The recombinant SOD described in this study can be used in various biotechnological applications. PMID:19821975

  12. [High-level production of neutral endoglucanase 1 in Pichia pastoris].

    PubMed

    Ding, Shao-Jun; Song, Mei-Jing; Yang, Hong-Jun; Xing, Zeng-Tao; Zhou, Rui; Cao, Jie

    2006-01-01

    The gene (eg1) encoding for novel endoglucanase 1 was cloned previously from Chinese straw mushroom Volvariella volvacea. EG1 has high thermal stability and optimal pH at neutral and shows great potential in textile and paper industry applications. To improve the expression level of EG1 in Pichia pastoris, the increasing copy number of clone, and its high cell density fermentation in 3.2L fermenter for its high-level expression were investigated in this work. By electro-transformation of pPICZalphaB-egl into GS115EG11 integrated with single copy of eg1 gene, A resistant transformant with 3.8 times higher level expression than GS115EG11 was screened from YPDSZ plate containing 2000 microg/mL of Zeocin. The effect of initial cell density, pH and methanol on its expression and biomass accumulation was evaluated in shaking culture. Optimal EG1 production was observed when initial cell density OD600 was 5.0. EG1 production and biomass accumulation did not seem to vary when cells were induced at different pH values. Both of EG1 and cell density were found to increase with higher methanol concentrations, reaching 62.48 IU/mL and 31.7 (OD600) respectively after 120 h induction with 2.0% (V/V) methanol compared to 30.24 IU/mL and 17.79 (OD60) with 0.25% methanol induction. EG1 expression was further increased by 6.4 times higher than shaking culture after 95.5 hours induction with methanol in fed-batch fermentation, so totally 34 times higher than that for GS115EG11 was achieved by screening of high Zeocin resistant clone and high cell density fermentation. The production of EG1 with 543.36IU/mL CMC activity and 8.80mg/mL protein expression was obtained in Pichia pastoris. PMID:16572843

  13. Enhancing the production of Fc fusion protein in fed-batch fermentation of Pichia pastoris by design of experiments.

    PubMed

    Lin, Henry; Kim, Tina; Xiong, Fei; Yang, Xiaoming

    2007-01-01

    This study focuses on the feasibility of producing a therapeutic Fc fusion protein in Pichia pastoris (P. pastoris) and presents an optimization design of experiment (DOE) strategy in a well-defined experimental space. The parameters examined in this study include pH, temperature, salt supplementation, and batch glycerol concentration. The effects of these process conditions were captured by statistical analysis focusing on growth rate and titer responses. Batch medium and fermentation conditions were also investigated prior to the DOE study in order to provide a favorable condition to enable the production of this Fc fusion protein. The results showed that approximately 373 mg/L of the Fc fusion protein could be produced. The pH was found to be particularly critical for the production of this Fc fusion protein. It was significantly higher than the conventional, recommended pH for P. pastoris fermentation. The development of this process shows that protein production in P. pastoris is protein specific, and there is not a set of pre-defined conditions that can work well for all types of proteins. Thorough process development would need to be performed for every type of protein in order for large-scale production in P. pastoris to be feasible. PMID:17461547

  14. Expression in Pichia pastoris and characterization of APETx2, a specific inhibitor of acid sensing ion channel 3.

    PubMed

    Anangi, Raveendra; Chen, Chih-Cheng; Lin, Yi-Wen; Cheng, Yuan-Ren; Cheng, Chun-Ho; Chen, Yi-Chun; Chu, Yuan-Ping; Chuang, Woei-Jer

    2010-12-01

    Acid sensing ion channels (ASICs) are family of proteins predominantly present in the central and peripheral nervous system. They are known to play important roles in the pathophysiology of pain and ischemic stroke. APETx2 is a potent and selective inhibitor of ASIC3-containing channels and was isolated from sea anemone Anthopleura elegantissima. To facilitate the study on the molecular determinants of ASIC3-ligand interactions, we expressed recombinant APETx2 in the Pichia pastoris (P. pastoris) expression system and purified it to homogeneity. Recombinant APETx2 produced in P. pastoris inhibited the acid-evoked ASIC3 current with the IC(50) value of 37.3 nM. The potency of recombinant toxin is similar to that of native APETx2. The sequential assignment and structure analysis of APETx2 were obtained by 2D and 3D (15)N-edited NMR spectra. Our NMR data suggests that APETx2 produced in P. pastoris retained its native fold. The results presented here provide the first direct evidence that highly disulfide bonded peptide inhibitor of ASIC3, APETx2, can be expressed in P. pastoris with correct fold and high yield. We also showed that the R17A mutant exhibited a decrease in activity, suggesting the feasibility of the use of this expression system to study the interactions between APETx2 and ASIC3. These evidences may serve as the basis for understanding the selectivity and activity of APETx2. PMID:20813121

  15. Co-expression of protein tyrosine kinases EGFR-2 and PDGFRβ with protein tyrosine phosphatase 1B in Pichia pastoris.

    PubMed

    Tu, Pham Ngoc; Wang, Yamin; Cai, Menghao; Zhou, Xiangshan; Zhang, Yuanxing

    2014-02-28

    The regulation of protein tyrosine phosphorylation is mediated by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) and is essential for cellular homeostasis. Coexpression of PTKs with PTPs in Pichia pastoris was used to facilitate the expression of active PTKs by neutralizing their apparent toxicity to cells. In this study, the gene encoding phosphatase PTP1B with or without a blue fluorescent protein or peroxisomal targeting signal 1 was cloned into the expression vector pAG32 to produce four vectors. These vectors were subsequently transformed into P. pastoris GS115. The tyrosine kinases EGFR-2 and PDGFRβ were expressed from vector pPIC3.5K and were fused with a His-tag and green fluorescent protein at the N-terminus. The two plasmids were transformed into P. pastoris with or without PTP1B, resulting in 10 strains. The EGFR-2 and PDGFRβ fusion proteins were purified by Ni(2+) affinity chromatography. In the recombinant P. pastoris, the PTKs co-expressed with PTP1B exhibited higher kinase catalytic activity than did those expressing the PTKs alone. The highest activities were achieved by targeting the PTKs and PTP1B into peroxisomes. Therefore, the EGFR-2 and PDGFRβ fusion proteins expressed in P. pastoris may be attractive drug screening targets for anticancer therapeutics. PMID:24248091

  16. In Pichia pastoris, growth rate regulates protein synthesis and secretion, mating and stress response

    PubMed Central

    Rebnegger, Corinna; Graf, Alexandra B; Valli, Minoska; Steiger, Matthias G; Gasser, Brigitte; Maurer, Michael; Mattanovich, Diethard

    2014-01-01

    Protein production in yeasts is related to the specific growth rate μ. To elucidate on this correlation, we studied the transcriptome of Pichia pastoris at different specific growth rates by cultivating a strain secreting human serum albumin at μ = 0.015 to 0.15 h–1 in glucose-limited chemostats. Genome-wide regulation revealed that translation-related as well as mitochondrial genes were upregulated with increasing μ, while autophagy and other proteolytic processes, carbon source-responsive genes and other targets of the TOR pathway as well as many transcriptional regulators were downregulated at higher μ. Mating and sporulation genes were most active at intermediate μ of 0.05 and 0.075 h–1. At very slow growth (μ = 0.015 h–1) gene regulation differs significantly, affecting many transporters and glucose sensing. Analysis of a subset of genes related to protein folding and secretion reveals that unfolded protein response targets such as translocation, endoplasmic reticulum genes, and cytosolic chaperones are upregulated with increasing growth rate while proteolytic degradation of secretory proteins is downregulated. We conclude that a high μ positively affects specific protein secretion rates by acting on multiple cellular processes. PMID:24323948

  17. Discovery of a rhamnose utilization pathway and rhamnose-inducible promoters in Pichia pastoris.

    PubMed

    Liu, Bo; Zhang, Yuwei; Zhang, Xue; Yan, Chengliang; Zhang, Yuhong; Xu, Xinxin; Zhang, Wei

    2016-01-01

    The rhamnose utilization pathway in Pichia pastoris has not been clarified although this strain can grow well on rhamnose as a sole carbon source. In this study, four genes, PAS_chr4_0338, PAS_chr4_0339, PAS_chr4_0340, and PAS_chr4_0341, were, for the first time, predicted to be involved in rhamnose metabolism along with the previously identified gene PAS_chr1_4-0075. Moreover, expression of these genes, especially PAS_chr4_0341 and PAS_chr1_4-0075 designated as LRA4 and LRA3, was confirmed to significantly increase and clearly decrease in the presences of rhamnose and glucose, respectively. LRA4 encoding a putative L-2-keto-3-deoxyrhamnonate aldolase, was further confirmed via gene disruption and gene complementation to participate in rhamnose metabolism. Using β-galactosidase and green fluorescent protein as reporters, the promoters of LRA4 and LRA3 performed well in driving efficient production of heterologous proteins. By using food grade rhamnose instead of the toxic compound methanol as the inducer, the two promoters would be excellent candidates for driving the production of food-grade and therapeutically important recombinant proteins. PMID:27256707

  18. Production of a soluble and functional recombinant apolipoproteinD in the Pichia pastoris expression system.

    PubMed

    Armanmehr, Shiva; Kalhor, Hamid Reza; Tabarraei, Alijan

    2016-05-01

    ApolipoproteinD (ApoD) is a human glycoprotein from the lipocalin family. ApoD contains a conserved central motif of an 8-stranded antiparallel β-sheet, which forms a beta-barrel that can be used for transport and storage of diverse hydrophobic ligands. Due to hydrophobic nature of ApoD, it has been difficult to generate a recombinant version of this protein. In the present work, we aimed at the production of ApoD in the robust Pichia pastoris expression system. To this end, the ApoD gene sequence was synthesized and subcloned for expression in the yeast host cells. Following integration of the ApoD gene into the yeast genomic region using homologous recombination, the ApoD recombinant protein was induced using methanol, reaching its maximum induction at 96 h. Having purified the ApoD recombinant protein by affinity chromatography, we measured the dissociation constant (KD) using its natural ligands: progesterone and arachidonic acid. Our results provide a viable solution to the production of recombinant ApoD protein in lieu of previous obstacles in generating soluble and functional ApoD protein. PMID:26826316

  19. Comparison of ADH3 promoter with commonly used promoters for recombinant protein production in Pichia pastoris.

    PubMed

    Karaoglan, Mert; Karaoglan, Fidan Erden; Inan, Mehmet

    2016-05-01

    Recombinant protein production under the control of the PADH3 was compared with Pichia pastoris PAOX1 and PGAP. The single-copy-clones expressing Aspergillus niger xylanase (XylB) gene with the three different promoters were tested in shake flask and 5 L fed-batch fermentation processes. Recombinant protein production with PADH3, PAOX1 and PGAP were initiated by addition of ethanol, methanol and glucose, respectively in the culture medium. The fermentation process was carried out for 72 h at 30 °C, pH 5 and 30% dissolved oxygen. Extracellular protein production yield for PADH3 (3725 U/mL) was higher than for PAOX1 (2095 U/mL) and PGAP (580 U/mL) at fermentor scale under the conditions tested. These results show that the PADH3 promoter is a promising tool for large scale production of recombinant proteins and can be an alternative to the PAOX1 and PGAP. PMID:26835836

  20. Characterization of Bovine Interferon α1: Expression in Yeast Pichia pastoris, Biological Activities, and Physicochemical Characteristics

    PubMed Central

    Shao, Jianwei; Cao, Chong; Bao, Jun; Liu, Hongtao; Peng, Tongquan

    2015-01-01

    A bovine interferon α (BoIFNα) gene that included signal sequence was amplified from bovine liver genomic DNA. The gene was named BoIFN-α1 according to the position at which the encoded gene of the bovine IFN was located in the bovine genome. The sequence included a 23-amino-acid signal peptide and a 166-amino-acid mature peptide. The structural characteristics and phylogenetic relationships of the BoIFN-α1 gene were analyzed. A recombinant mature BoIFN-α1 (rBoIFN-α1) was expressed in the yeast Pichia pastoris. Physicochemical characteristics and antiviral activity were determined in vitro. Recombinant BoIFN-α1 was found to be highly sensitive to trypsin and stable at pH 2.0 or 65°C. It also exhibited antiviral activity, which was neutralized by a rabbit anti-rBoIFNα polyclonal antibody. This study revealed that rBoIFN-α1 has the typical characteristics of IFNα and can be used for both research and industrial application. PMID:25343404

  1. Pichia pastoris as a host for secretion of toxic saporin chimeras.

    PubMed

    Lombardi, Alessio; Bursomanno, Sara; Lopardo, Teresa; Traini, Roberta; Colombatti, Marco; Ippoliti, Rodolfo; Flavell, David J; Flavell, Sopsamorn U; Ceriotti, Aldo; Fabbrini, Maria Serena

    2010-01-01

    Most of the targeting moieties, such as antibody fragments or growth factor domains, used to construct targeted toxins for anticancer therapy derive from secretory proteins. These normally fold in the oxidative environment of the endoplasmic reticulum, and hence their folding in bacterial cells can be quite inefficient. For instance, only low amounts of properly folded antimetastatic chimera constituted by the amino-terminal fragment of human urokinase (ATF) fused to the plant ribosome-inactivating protein saporin could be recovered. ATF-saporin was instead secreted efficiently when expressed in eukaryotic cells protected from autointoxication with neutralizing anti-saporin antibodies. Pichia pastoris is a microbial eukaryotic host where these domains can fold into a transport-competent conformation and reach the extracellular medium. We show here that despite some host toxicity codon-usage optimization greatly increased the expression levels of active saporin but not those of an active-site mutant SAP-KQ in GS115 (his4) strain. The lack of any toxicity associated with expression of the latter confirmed that toxicity is due to saporin catalytic activity. Nevertheless, GS115 (his4) cells in flask culture secreted 3.5 mg/L of a histidine-tagged ATF-saporin chimera showing an IC(50) of 6 x 10(-11) M against U937 cells, thus demonstrating the suitability of this expression platform for secretion of toxic saporin-based chimeras. PMID:19786581

  2. Biochemical characterization of Aspergillus oryzae native tannase and the recombinant enzyme expressed in Pichia pastoris.

    PubMed

    Mizuno, Toshiyuki; Shiono, Yoshihito; Koseki, Takuya

    2014-10-01

    In this study, the biochemical properties of the recombinant tannase from Aspegillus oryzae were compared with those of the native enzyme. Extracellular native tannase was purified from a commercial enzyme source. Recombinant tannase highly expressed in Pichia pastoris was prepared as an active extracellular protein. Purified native and recombinant tannases produced smeared bands with apparent molecular masses of 45-80 kDa and 45-75 kDa, respectively, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After N-deglycosylation, the native enzyme yielded molecular masses of 33 kDa and 30 kDa, whereas the recombinant enzyme yielded molecular masses of 34 kDa and 30 kDa. Purified native and recombinant tannases had an optimum pH of 4.0-5.0 and 5.0, respectively, and were stable up to 40°C. After N-deglycosylation, both enzymes exhibited reduced thermostability. Catalytic efficiencies of both purified enzymes were greater with natural substrates, such as (-)-catechin, (-)-epicatechin, and (-)-epigallocatechin gallates, than those with synthetic substrates, such as methyl, ethyl, and propyl gallates. However, there were no activities against the methyl esters of ferulic, p-coumaric, caffeic, and sinapic acids, which indicate feruloyl esterase activity, or the ethyl, propyl, and butyl esters of 4-hydroxybenzoic acid, which indicate paraben hydrolase activity. PMID:24856589

  3. Heterologous expression and kinetic characterisation of Neurospora crassa β-xylosidase in Pichia pastoris.

    PubMed

    Kirikyali, N; Connerton, I F

    2014-04-10

    To degrade plant hemicelluloses fungi employ β-xylosidases to hydrolyse xylooligosaccharides, released by endo-xylanases, into xylose. We have expressed the β-xylosidase from Neurospora crassa in Pichia pastoris under the control of alcohol oxidase 1 (AOX1) promoter. The recombinant enzyme is optimally active at 50 °C and pH 5.0 with Km and Vmax values of 8.9 mM and 1052 μmol min⁻¹ mg⁻¹ respectively against 4-nitrophenyl β-xylopyranoside. Xylose is a non-competitive inhibitor with a K(i) of 1.72 mM. The enzyme is characterised to be an exo-cutting enzyme releasing xylose from the non-reducing ends of β-1,4 linked xylooligosaccharides (X₂, X₃ and X₄) but also capable of transxylosilation. Catalytic conversion of X₂, X₃ and X4 decreases (V(max) and k(cat)) with increasing chain length. PMID:24629269

  4. Heterologous expression of Pycnoporus cinnabarinus cellobiose dehydrogenase in Pichia pastoris and involvement in saccharification processes

    PubMed Central

    2011-01-01

    Background Cellobiose dehydrogenase (CDH) is an extracellular hemoflavoenzyme produced by lignocellulose-degrading fungi including Pycnoporus cinnabarinus. We investigated the cellulolytic system of P. cinnabarinus, focusing on the involvement of CDH in the deconstruction of lignocellulosic biomass. Results First, P. cinnabarinus growth conditions were optimized for CDH production. Following growth under cellulolytic conditions, the main components secreted were cellulases, xylanases and CDH. To investigate the contribution of P. cinnabarinus secretome in saccharification processes, the Trichoderma reesei enzymatic cocktail was supplemented with the P. cinnabarinus secretome. A significant enhancement of the degradation of wheat straw was observed with (i) the production of a large amount of gluconic acid, (ii) increased hemicellulose degradation, and (iii) increased overall degradation of the lignocellulosic material. P. cinnabarinus CDH was heterologously expressed in Pichia pastoris to obtain large amounts of pure enzyme. In a bioreactor, the recombinant CDH (rCDH) expression level reached 7800 U/L. rCDH exhibited values of biochemical parameters similar to those of the natural enzyme, and was able to bind cellulose despite the absence of a carbohydrate-binding module (CBM). Following supplementation of purified rCDH to T. reesei enzymatic cocktail, formation of gluconic acid and increased hemicellulose degradation were observed, thus confirming the previous results observed with P. cinnabarinus secretome. Conclusions We demonstrate that CDH offers an attractive tool for saccharification process enhancement due to gluconic acid production from raw lignocellulosic material. PMID:22204630

  5. Incorporation of Nasutitermes takasagoensis endoglucanase into cell surface-displayed minicellulosomes in Pichia pastoris X33.

    PubMed

    Ou, Jingshen; Cao, Yicheng

    2014-09-01

    In this study, the yeast Pichia pastoris was genetically modified to assemble minicellulosomes on its cell surface by the heterologous expression of a truncated scaffoldin CipA from Clostridium acetobutylicum. Fluorescence microscopy and western blot analysis confirmed that CipA was targeted to the yeast cell surface and that NtEGD, the Nasutitermes takasagoensis endoglucanase that was fused with dockerin, interacted with CipA on the yeast cell surface, suggesting that the cohesin and dockerin domains and cellulose-binding module of C. acetobutylicum were functional in the yeasts. The enzymatic activities of the cellulases in the minicellulosomes that were displayed on the yeast cell surfaces increased dramatically following interaction with the cohesin-dockerin domains. Additionally, the hydrolysis efficiencies of NtEGD for carboxymethyl cellulose, microcrystal cellulose, and filter paper increased up to 1.4-fold, 2.0-fold, and 3.2-fold, respectively. To the best of our knowledge, this is the first report describing the expression of C. acetobutylicum minicellulosomes in yeast and the incorporation of animal cellulases into cellulosomes. This strategy of heterologous cellulase incorporation lends novel insight into the process of cellulosome assembly. Potentially, the surface display of cellulosomes, such as that reported in this study, may be utilized in the engineering of S. cerevisiae for ethanol production from cellulose and additional future applications. PMID:24851815

  6. Production of glucaric acid from myo-inositol in engineered Pichia pastoris.

    PubMed

    Liu, Ye; Gong, Xu; Wang, Cui; Du, Guocheng; Chen, Jian; Kang, Zhen

    2016-09-01

    A potential myo-inositol oxygenase (ppMIOX) was identified as a functional enzyme and a glucaric acid synthetic pathway was firstly constructed in Pichia pastoris. Coexpression of the native ppMIOX and the urinate dehydrogenase (Udh) from Pseudomonas putida KT2440 led to obvious accumulation of glucaric acid (90.46±0.04mg/L) from myo-inositol whereas no glucaric acid was detected from glucose. In comparison, coexpression of the heterologous mouse MIOX (mMIOX) and Udh resulted in higher titers of glucaric acid from glucose and myo-inositol, 107.19±11.91mg/L and 785.4±1.41mg/L, respectively. By applying a fusion expression strategy with flexible peptides, the mMIOX specific activity and the glucaric acid concentration were significantly increased. Using glucose and myo-inositol as carbon substrates, the production of glucaric acid was substantially enhanced to 6.61±0.30g/L in fed-batch cultures. To the best of our knowledge, this is the highest reported value to date. PMID:27444324

  7. Centromeres of the Yeast Komagataella phaffii (Pichia pastoris) Have a Simple Inverted-Repeat Structure.

    PubMed

    Coughlan, Aisling Y; Hanson, Sara J; Byrne, Kevin P; Wolfe, Kenneth H

    2016-01-01

    Centromere organization has evolved dramatically in one clade of fungi, the Saccharomycotina. These yeasts have lost the ability to make normal eukaryotic heterochromatin with histone H3K9 methylation, which is a major component of pericentromeric regions in other eukaryotes. Following this loss, several different types of centromere emerged, including two types of sequence-defined ("point") centromeres, and the epigenetically defined "small regional" centromeres of Candida albicans Here we report that centromeres of the methylotrophic yeast Komagataella phaffii (formerly called Pichia pastoris) are structurally defined. Each of its four centromeres consists of a 2-kb inverted repeat (IR) flanking a 1-kb central core (mid) region. The four centromeres are unrelated in sequence. CenH3 (Cse4) binds strongly to the cores, with a decreasing gradient along the IRs. This mode of organization resembles Schizosaccharomyces pombe centromeres but is much more compact and lacks the extensive flanking heterochromatic otr repeats. Different isolates of K. phaffii show polymorphism for the orientation of the mid regions, due to recombination in the IRs. CEN4 is located within a 138-kb region that changes orientation during mating-type switching, but switching does not induce recombination of centromeric IRs. Our results demonstrate that evolutionary transitions in centromere organization have occurred in multiple yeast clades. PMID:27497317

  8. Highly efficient expression and characterization of a β-mannanase from Bacillus subtilis in Pichia pastoris.

    PubMed

    Li, Ren-Kuan; Chen, Ping; Ng, Tzi Bun; Yang, Jie; Lin, Juan; Yan, Fen; Ye, Xiu-Yun

    2015-01-01

    A β-mannanase gene (Man5) from Bacillus subtilis BS5 was cloned by PCR and integrated into the genome of Pichia pastoris GS115 via pPIC9 vector. The recombinant Man5 with a molecular mass of 43 kDa was successfully expressed and secreted into the culture medium. After methanol induction in a shake flask for 96 H, the recombinant Man5 protein reached 375 µg/mL in concentration, with an enzyme activity of 892 U/mL. The recombinant Man5 was purified 3.35-fold with 60% yield by using HiTrap DEAE FF and HiTrap Phenyl FF columns. The specific activity of the purified enzyme was 7,978 U/mg. The optimum temperature and pH of the recombinant Man5 were 50 °C and 6.0, respectively. Studies of substrate specificity showed that the optimum substrate for the Man5 was konjac flour, suggesting that it has great potential as an effective additive in the food industry. PMID:24863613

  9. Rhipicephalus (Boophilus) microplus: expression and characterization of Bm86-CG in Pichia pastoris.

    PubMed

    Cunha, Rodrigo Casquero; Andreotti, Renato; Leite, Fábio Pereira Leivas

    2011-01-01

    The cattle tick Rhipicephalus (Boophilus) microplus is responsible for great economic losses. It is mainly controlled chemically, with limitations regarding development of resistance to the chemicals. Vaccines may help control this parasite, thereby reducing tick pesticide use. In this light, we performed subcloning of the gene of the protein Bm86-GC, the homologue protein that currently forms the basis of vaccines (Gavac(TM) and TickGard(PLUS)) that have been developed against cattle ticks. The subcloning was done in the pPIC9 expression vector, for transformation in the yeast Pichia pastoris. This protein was characterized by expression of the recombinant Mut+ strain, which expressed greater quantities of protein. The expressed protein (rBm86-CG) was recognized in the Western-blot assay using anti-Gavac, anti-TickGard, anti-larval extract and anti-rBm86-CG polyclonal sera. The serum produced in cattle vaccinated with the antigen CG rBm86 presented high antibody titers and recognized the native protein. The rBm86-GC has potential relevance as an immunogen for vaccine formulation against cattle ticks. PMID:21722483

  10. Adjuvant and immunostimulating properties of the recombinant Bm86 protein expressed in Pichia pastoris.

    PubMed

    García-García, J C; Soto, A; Nigro, F; Mazza, M; Joglar, M; Hechevarría, M; Lamberti, J; de la Fuente, J

    1998-01-01

    The cattle tick Boophilus microplus has remained a latent problem to the cattle industry. The recombinant vaccine GAVAC against the cattle tick has proved its efficacy and, conveniently, combined with the use of chemicals could be the solution to this problem. As this vaccine is based in the recombinant concealed antigen Bm86, it has to be given periodically to the animal to maintain an adequate level of antibodies. Some other commercially available vaccines for cattle also have to be given periodically, which creates the possibility of combining vaccines for cattle. In an attempt to evaluate the possible interactions of the Bm86 with other vaccine antigens, a potent stimulatory effect was demonstrated of the recombinant Bm86 on the humoral immune response to the recombinant Hepatitis B surface antigen in mice, and to the inactivated Infectious Bovine Rhinothraqueitis virus in cattle. These results make the Bm86 antigen expressed in Pichia pastoris a good candidate for combining vaccines for cattle because of its dual role, immunogen and adjuvant. PMID:9682358