Science.gov

Sample records for pichia stipitis cbs

  1. Detoxification of corn stover prehydrolyzate by trialkylamine extraction to improve the ethanol production with Pichia stipitis CBS 5776.

    PubMed

    Zhu, Junjun; Yong, Qiang; Xu, Yong; Yu, Shiyuan

    2011-01-01

    In order to realize the separated ethanol fermentation of glucose and xylose, prehydrolysis of corn stover with sulfuric acid at moderate temperature was applied, while inhibitors were produced inevitably. A complex extraction was adopted to detoxify the prehydrolyzate before fermentation to ethanol with Pichia stipitis CBS 5776. The best proportion of mixed extractant was 30% trialkylamine-50% n-octanol -20% kerosene. Detoxification results indicated that 73.3% of acetic acid, 45.7% of 5-hydroxymethylfurfural and 100% of furfural could be removed. Compared with the undetoxified prehydrolyzate, the fermentability of the detoxified prehydrolyzate was significantly improved. After 48 h fermentation of the detoxified prehydrolyzate containing 7.80 g/l of glucose and 52.8 g/l of xylose, the sugar utilization ratio was 93.2%; the ethanol concentration reached its peak value of 21.8 g/l, which was corresponding to 82.3% of the theoretical value. PMID:20952191

  2. Utilization of xylan by yeasts and its conversion to ethanol by Pichia stipitis strains. [Cryptococcus; Pichia stipitis; Candida shehatae

    SciTech Connect

    Lee, H.; Biely, P.; Latta, R.K.; Barbosa, M.F.S.; Schneider, H.

    1986-08-01

    Yeasts able to grow on D-xylose were screened for the ability to hydrolyze xylan. Xylanase activity was found to be rare; a total of only 19 of more than 250 strains yielded a positive test result. The activity was localized largely in the genus Cryptococcus and in Pichia stipitis and its anamorph Candida shehatae. The ability to hydrolyze xylan was generally uncoupled from that to hydrolyze cellulose; only three of the xylan-positive strains also yielded a positive test for cellulolytic activity. Of the 19 xylanolytic strains. 2. P. stipitis CBS 5773 and CBS 5775, converted xylan into ethanol, with about 60% of a theoretical yield computed on the basis of the amount of D-xylose present originally that could be released by acid hydrolysis.

  3. Ethanol reassimilation and ethanol tolerance in Pitchia stipitis CBS 6054 as studied by [sup 13]C nuclear magnetic resonance spectroscopy

    SciTech Connect

    Skoog, K.; Hahn-Haegerdal, B. ); Degn, H.; Jacobsen, H.S.; Jacobsen, J.P. )

    1992-08-01

    Ethanol reassimilation in Pichia stipitis CBS 6054 was studied by using continuous cultures, and the oxidation of [1-[sup 13]C] ethanol was monitored by in vivo and in vitro [sup 13]C nuclear magnetic resonance spectroscopy. Acetate was formed when ethanol was reassimilated. The ATP/ADP ratio and the carbon dioxide production decreased, whereas the malate dehydrogenase activity increased, in ethanol-reassimilating cells. The results are discussed in terms of the low ethanol tolerance in P. stipitis compared with that in Saccharomyces cerevisiae.

  4. Evaluation of Engineered Pichia stipitis Strains for Ethanol Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the fermentation capabilities of five strains of Pichia stipitis that had been engineered for xylose fermentation to ethanol by USDA, ARS, National Center for Agricultural Utilization Research. The strains tested were P. stipitis WT-1-11, WT-1-2, 14-2-6, 22-1-1, and 22-1-12. Strains w...

  5. Pichia stipitis genomics, transcriptomics, and gene clusters

    PubMed Central

    Jeffries, Thomas W; Van Vleet, Jennifer R Headman

    2009-01-01

    Genome sequencing and subsequent global gene expression studies have advanced our understanding of the lignocellulose-fermenting yeast Pichia stipitis. These studies have provided an insight into its central carbon metabolism, and analysis of its genome has revealed numerous functional gene clusters and tandem repeats. Specialized physiological traits are often the result of several gene products acting together. When coinheritance is necessary for the overall physiological function, recombination and selection favor colocation of these genes in a cluster. These are particularly evident in strongly conserved and idiomatic traits. In some cases, the functional clusters consist of multiple gene families. Phylogenetic analyses of the members in each family show that once formed, functional clusters undergo duplication and differentiation. Genome-wide expression analysis reveals that regulatory patterns of clusters are similar after they have duplicated and that the expression profiles evolve along with functional differentiation of the clusters. Orthologous gene families appear to arise through tandem gene duplication, followed by differentiation in the regulatory and coding regions of the gene. Genome-wide expression analysis combined with cross-species comparisons of functional gene clusters should reveal many more aspects of eukaryotic physiology. PMID:19659741

  6. Genetic transformation of xylose-fermenting yeast Pichia stipitis

    SciTech Connect

    Ho, N.W.Y.; Petros, D.; Deng, X.X.

    1991-12-31

    A plasmid-mediated transformation system has been developed for the xylose-fermenting yeast Pichia stipitis. We found that plasmid vectors containing the Saccharomyces cerevisiae 2 p replicon and the kanamycin resistance gene (KmR) could be introduced into the Pichia cells and maintained as extrachromosomal elements. Pichia transformants containing such vectors will be resistant to the antibiotic geneticin that can be inactivated by the protein product of KmR. Plasmids identical to those used for transformation can be recovered from the Pichia transformants. Protocols for transformation of P. stipitis by the CaCl{sub 2}-polyethylene glycol-protoplast process or by direct electroporation of intact Pichia cells have both been developed.

  7. Effect of oxygenation on xylose fermentation by Pichia stipitis

    SciTech Connect

    Skoog, K.; Hahn-Haegerdal, B. )

    1990-11-01

    The effect of oxygen limitation on xylose fermentation by Pichia stipitis (CBS 6054) was investigated in continuous culture. The maximum specific ethanol productivity (0.20 g of ethanol g dry weight{sup {minus}1} h{sup {minus}1}) and ethanol yield (0.48 g/g) was reached at an oxygen transfer rate below 1 mmol/liter per h. In the studied range of oxygenation, the xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) activities were constant as well as the ratio between the NADPH and NADH activities of xylose reductase. No xylitol production was found. The pyruvate decarboxylase (EC 4.1.1.1) activity increased and the malate dehydrogenase (EC 1.1.1.37) activity decreased with decreasing oxygenation. With decreasing oxygenation, the intracellular intermediary metabolites sedoheptulose 7-phosphate, glucose 6-phosphate, fructose 1,6-diphosphate, and malate accumulated slightly while pyruvate decreased. The ratio of the xylose uptake rate under aerobic conditions, in contrast to that under anaerobic assay conditions, increased with increasing oxygenation in the culture. The results are discussed in relation to the energy level in the cell, the redox balance, and the mitochondrial function.

  8. Enhancing ethanol production from cellulosic sugars using Scheffersomyces (Pichia) stipitis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies were performed on the effect of CaCO3 and CaCl2 supplementation to fermentation medium for ethanol production from xylose, glucose, or their mixtures using Scheffersomyces (Pichia) stipitis. Both of these chemicals were found to improve maximum ethanol concentration and ethanol productivity....

  9. The switch from xylose to glucose stalled by repression of xylose-utilizing enzymes during exposure of Scheffersomyces (Pichia) stipitis to high ethanol concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During the fermentation of lignocellulosic hydrolyzates to ethanol by Scheffersomyces (Pichia) stipitis NRRL Y-7124 (CBS 5773), the switch from glucose to xylose uptake results in a diauxic lag unless process strategies to prevent this are applied. When cells were grown on glucose, the length of th...

  10. Repression of xylose-specific enzymes by ethanol in Scheffersomyces (Pichia) stipitis and elimination of diauxic lag with xylose-grown populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During the fermentation of lignocellulosic hydrolyzates to ethanol by native pentose-fermenting yeasts such as Scheffersomyces (Pichia) stipitis NRRL Y-7124 (CBS 5773) and Pachysolen tannophilus NRRL Y-2460, the switch from glucose to xylose uptake results in a diauxic lag unless process strategies ...

  11. Repression of xylose-specific enzymes by ethanol in Scheffersomyces (Pichia) stipitis and utility of repitching xylose-grown populations to eliminate diauxic lag

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During the fermentation of lignocellulosic hydrolyzates to ethanol by native pentose-fermenting yeasts such as Scheffersomyces (Pichia) stipitis NRRL Y-7124 (CBS 5773) and Pachysolen tannophilus NRRL Y-2460, the switch from glucose to xylose uptake results in a diauxic lag unless process strategies ...

  12. Alcoholic fermentation of d-xylose by yeasts. [Brettanomyces naardenensis; Candida shehatae; Candida tenuis; Pachysolen tannaphilus, Pichia segobiensis; Pichia stipitis

    SciTech Connect

    Toivola, A.; Yarrow, D.; van den Bosch, E.; van Dijken, J.P.; Scheffers, W.A.

    1984-06-01

    Type strains of 200 species of yeasts able to ferment glucose and grow on xylose were screened for fermentation of D-xylose. In most of the strains tested, ethanol production was negligible. Nineteen were found to produce between 0.1 and 1.0 g of ethanol per liter. Strains of the following species produce more than 1 g of ethanol per liter in the fermentation test with 2% xylose: Brettanomyces naardenensis, Candida shehatae, Candida tenuis, Pachysolen tannophilus, Pichia segobiensis, and Pichia stipitis. Subsequent screening of these yeasts for their capacity to ferment D-cellobiose revealed that only Candida tenuis CBS 4435 was a good fermenter of both xylose and cellobiose under the test conditions used.

  13. The Effect of Initial Cell Concentration on Xylose Fermentation by Pichia stipitis

    NASA Astrophysics Data System (ADS)

    Agbogbo, Frank K.; Coward-Kelly, Guillermo; Torry-Smith, Mads; Wenger, Kevin; Jeffries, Thomas W.

    Xylose was fermented using Pichia stipitis CBS 6054 at different initial cell concentrations. A high initial cell concentration increased the rate of xylose utilization, ethanol formation, and the ethanol yield. The highest ethanol concentration of 41.0 g/L and a yield of 0.38 g/g was obtained using an initial cell concentration of 6.5 g/L. Even though more xylitol was produced when the initial cell concentrations were high, cell density had no effect on the final ethanol yield. A two-parameter mathematical model was used to predict the cell population dynamics at the different initial cell concentrations. The model parameters, a and b correlate with the initial cell concentrations used with an R 2 of 0.99.

  14. Culture Nutrition and Physiology Impact the Inhibitor Tolerance of the Yeast Pichia stipitis NRRL Y-7124

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Robust microorganisms are needed to consume both hexose and pentose sugars and to withstand, survive, and function in the presence of stress factors common to fermentations of lignocellulose hydrolysates, including the inhibitors furfural, 5-hydroxymethylfurfural (HMF), and ethanol. Pichia stipitis...

  15. High-efficiency transformation of Pichia stipitis based on its URA3 gene and a homologous autonomous replication sequence, ARS2.

    PubMed Central

    Yang, V W; Marks, J A; Davis, B P; Jeffries, T W

    1994-01-01

    This paper describes the first high-efficiency transformation system for the xylose-fermenting yeast Pichia stipitis. The system includes integrating and autonomously replicating plasmids based on the gene for orotidine-5'-phosphate decarboxylase (URA3) and an autonomous replicating sequence (ARS) element (ARS2) isolated from P. stipitis CBS 6054. Ura- auxotrophs were obtained by selecting for resistance to 5-fluoroorotic acid and were identified as ura3 mutants by transformation with P. stipitis URA3. P. stipitis URA3 was cloned by its homology to Saccharomyces cerevisiae URA3, with which it is 69% identical in the coding region. P. stipitis ARS elements were cloned functionally through plasmid rescue. These sequences confer autonomous replication when cloned into vectors bearing the P. stipitis URA3 gene. P. stipitis ARS2 has features similar to those of the consensus ARS of S. cerevisiae and other ARS elements. Circular plasmids bearing the P. stipitis URA3 gene with various amounts of flanking sequences produced 600 to 8,600 Ura+ transformants per micrograms of DNA by electroporation. Most transformants obtained with circular vectors arose without integration of vector sequences. One vector yielded 5,200 to 12,500 Ura+ transformants per micrograms of DNA after it was linearized at various restriction enzyme sites within the P. stipitis URA3 insert. Transformants arising from linearized vectors produced stable integrants, and integration events were site specific for the genomic ura3 in 20% of the transformants examined. Plasmids bearing the P. stipitis URA3 gene and ARS2 element produced more than 30,000 transformants per micrograms of plasmid DNA. Autonomously replicating plasmids were stable for at least 50 generations in selection medium and were present at an average of 10 copies per nucleus. Images PMID:7811063

  16. Genomic sequence of the xylose fermenting, insect-inhabitingyeast, Pichia stipitis

    SciTech Connect

    Jeffries, Thomas W.; Grigoriev, Igor; Grimwood, Jane; Laplaza,Jose M.; Aerts, Andrea; Salamov, Asaf; Schmutz, Jeremy; Lindquist, Erika; Dehal, Paramvir; Shapiro, Harris; Jin, Yong-Su; Passoth, Volkmar; Richardson, Paul M.

    2007-06-25

    Xylose is a major constituent of angiosperm lignocellulose,so its fermentation is important for bioconversion to fuels andchemicals. Pichia stipitis is the best-studied native xylose fermentingyeast. Genes from P. stipitis have been used to engineer xylosemetabolism in Saccharomycescerevisiae, and the regulation of the P.stipitis genome offers insights into the mechanisms of xylose metabolismin yeasts. We have sequenced, assembled and finished the genome ofP.stipitis. As such, it is one of only a handful of completely finishedeukaryotic organisms undergoing analysis and manual curation. Thesequence has revealed aspects of genome organization, numerous genes forbiocoversion, preliminary insights into regulation of central metabolicpathways, numerous examples of co-localized genes with related functions,and evidence of how P. stipitis manages to achieve redox balance whilegrowing on xylose under microaerobic conditions.

  17. Characterization of xylose uptake in the yeasts Pichia heedii and Pichia stipitis

    SciTech Connect

    Does, A.L.; Bisson, L.F. )

    1989-01-01

    The efficient conversion of renewable biomass to ethanol is an area of active research. Pentoses make up nearly one-third of the reducing sugars derived from the hydrolysis of lignocellulose, with xylose as the major component. The kinetics of xylose uptake were investigated in the efficient xylose fermenter Pichia stipitis and in the more readily genetically manipulated, strictly respiratory yeast Pichia heedii. Both yeasts demonstrated more than one xylose uptake system, differing in substrate affinity. The K{sub m} of high-affinity xylose uptake in both organisms was similar to that of the efficient high-affinity glucose uptake system of Saccharomyces cerevisiae. In P. heedii, low-affinity xylose uptake was enhanced with growth on 2% but not 0.05% xylose and high-affinity uptake was reduced. In contrast to glucose uptake, xylose uptake in P. heedii was inhibited by dinitrophenol. Dinitrophenol inhibited both glucose and xylose uptake by P. stipitis. Glucose uptake was not inhibited by a 100-fold molar excess of xylose in P. heedii. It is suggested that xylose uptake in P. heedii is via a carrier system(s) distinct from those for glucose uptake.

  18. Transcriptional control of ADH genes in the xylose-fermenting yeast Pichia stipitis

    SciTech Connect

    Cho, J.Y.; Jeffries, T.W. |

    1999-06-01

    The authors studied the expression of the genes encoding group 1 alcohol dehydrogenases (PsADH1 and PsADH2) in the xylose-fermenting yeast Pichia stipitis CBS 6054. The cells expressed PsADH1 approximately 10 times higher under oxygen-limited conditions than under fully aerobic conditions when cultivated on xylose. Transcripts of PsADH2 were not detectable under either aeration condition. The authors used a PsADH1::lacZ fusion to monitor PsADH1 expression and found that expression increased as oxygen decreased. The level of PsADH1 transcript was expressed about 10-fold in cells grown in the presence of heme under oxygen-limited conditions. Concomitantly with the induction of PsADH1, PsCYC1 expression was regressed. These results indicate that oxygen availability regulates PsADH1 expression and that regulation may be mediated by heme. The regulation of PsADH2 expression was also examined in other genetic backgrounds. Disruption of PsADH1 dramatically increased PsADH2 expression on nonfermentable carbon sources under fully aerobic conditions, indicating that the expression of PsADH2 is subject to feedback regulation under these conditions.

  19. Diminished respirative growth and enhanced assimilative sugar uptake result in higher specific fermentation rates by the mutant Pichia stipitis FPL-061

    SciTech Connect

    Sreenath, H.K.; Jeffries, T.W. |

    1997-12-31

    A mutant strain of Pichia stipitis, FPL-061, was obtained by selecting for growth on L-xylose in the presence of respiratory inhibitors. The specific fermentation rate of FPL-061, was higher than that of the parent, Pichia stipitis CBS 6054, because of its lower cell yield and growth rate and higher specific substrate uptake rate. With a mixture of glucose and xylose, the mutant strain FPL-061 produced 29.4 g ethanol/L with a yield of 0.42 g ethanol/g sugar consumed. By comparison, CBS 6054 produced 25.7 g ethanol/L with a yield of 0.35 g/g. The fermentation was most efficient at an aeration rate of 9.2 mmoles O{sub 2} L{sup -1} h{sup -1}. At high aeration rates (22 mmoles O{sub 2} L{sup -1} h{sup -1}), the mutant cell yield was less than that of the parent. At low aeration rates, (1.1 to 2.5 O{sub 2} L{sup -1} h{sup -1}), cell yields were similar, the ethanol formation rates were low, and xylitol accumulation was observed in both the strains. Both strains respired the ethanol once sugar was exhausted. We infer from the results that the mutant, P. stipitis FPL-061, diverts a larger fraction of its metabolic energy from cell growth into ethanol production. 21 refs., 5 figs.

  20. Enhancing ethanol production from cellulosic sugars using Scheffersomyces (Pichia) stipitis.

    PubMed

    Okonkwo, C C; Azam, M M; Ezeji, T C; Qureshi, N

    2016-07-01

    Studies were performed on the effect of CaCO3 and CaCl2 supplementation to fermentation medium for ethanol production from xylose, glucose, or their mixtures using Scheffersomyces (Pichia) stipitis. Both of these chemicals were found to improve maximum ethanol concentration and ethanol productivity. Use of xylose alone resulted in the production of 20.68 ± 0.44 g L(-1) ethanol with a productivity of 0.17 ± 0.00 g L(-1) h(-1), while xylose plus 3 g L(-1) CaCO3 resulted in the production of 24.68 ± 0.75 g L(-1) ethanol with a productivity of 0.21 ± 0.01 g L(-1) h(-1). Use of xylose plus glucose in combination with 3 g L(-1) CaCO3 resulted in the production of 47.37 ± 0.55 g L(-1) ethanol (aerobic culture), thus resulting in an ethanol productivity of 0.39 ± 0.00 g L(-1) h(-1). These values are 229 % of that achieved in xylose medium. Supplementation of xylose and glucose medium with 0.40 g L(-1) CaCl2 resulted in the production of 44.84 ± 0.28 g L(-1) ethanol with a productivity of 0.37 ± 0.02 g L(-1) h(-1). Use of glucose plus 3 g L(-1) CaCO3 resulted in the production of 57.39 ± 1.41 g L(-1) ethanol under micro-aerophilic conditions. These results indicate that supplementation of cellulosic sugars in the fermentation medium with CaCO3 and CaCl2 would improve economics of ethanol production from agricultural residues. PMID:26966011

  1. Evaluation of a kinetic model for computer simulation of growth and fermentation by Scheffersomyces (Pichia) stipitis fed D-xylose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scheffersomyces (formly Pichia) stipitis is a potential biocatalyst for converting lignocelluloses to ethanol because the yeast natively ferments xylose. An unstructured kinetic model based upon a system of linear differential equations has been formulated that describes growth and ethanol productio...

  2. Ethanol fermentation of a mixture of pentoses and hexoess by Pichia stipitis

    SciTech Connect

    Chung, Bong-Hwan; Ryu, Yeon-Woo; Seo, Jin-Ho

    1995-12-01

    Hydrolysis of cellulosic materials generates a mixture of hexoses (mannose, glucose, and galactose) and pentoses (xylose and arabinose). The research was carried out to study the pattern of carbon utilization by P. stipitis CBS5776 for ethanol production from cellulose hydrolyzates. The yeast utilized glucose and mannose first, and then galactose and xylose as carbon sources. Arabinose was not used at all, P. stipitis produced ethanol with a yield coefficient 0.33 g ethanol/g sugar in a mixture of sugars. The pattern for carbon utilization was also investigated in a continuous culture.

  3. Genome-scale metabolic reconstructions of Pichia stipitis and Pichia pastoris and in silico evaluation of their potentials

    PubMed Central

    2012-01-01

    Background Pichia stipitis and Pichia pastoris have long been investigated due to their native abilities to metabolize every sugar from lignocellulose and to modulate methanol consumption, respectively. The latter has been driving the production of several recombinant proteins. As a result, significant advances in their biochemical knowledge, as well as in genetic engineering and fermentation methods have been generated. The release of their genome sequences has allowed systems level research. Results In this work, genome-scale metabolic models (GEMs) of P. stipitis (iSS884) and P. pastoris (iLC915) were reconstructed. iSS884 includes 1332 reactions, 922 metabolites, and 4 compartments. iLC915 contains 1423 reactions, 899 metabolites, and 7 compartments. Compared with the previous GEMs of P. pastoris, PpaMBEL1254 and iPP668, iLC915 contains more genes and metabolic functions, as well as improved predictive capabilities. Simulations of physiological responses for the growth of both yeasts on selected carbon sources using iSS884 and iLC915 closely reproduced the experimental data. Additionally, the iSS884 model was used to predict ethanol production from xylose at different oxygen uptake rates. Simulations with iLC915 closely reproduced the effect of oxygen uptake rate on physiological states of P. pastoris expressing a recombinant protein. The potential of P. stipitis for the conversion of xylose and glucose into ethanol using reactors in series, and of P. pastoris to produce recombinant proteins using mixtures of methanol and glycerol or sorbitol are also discussed. Conclusions In conclusion the first GEM of P. stipitis (iSS884) was reconstructed and validated. The expanded version of the P. pastoris GEM, iLC915, is more complete and has improved capabilities over the existing models. Both GEMs are useful frameworks to explore the versatility of these yeasts and to capitalize on their biotechnological potentials. PMID:22472172

  4. Isolation of xylose reductase gene of Pichia stipitis and its expression in Saccharomyces cerevisiae

    SciTech Connect

    Takuma, Shinya; Nakashima, Noriyuki; Tantirungkij, Manee

    1991-12-31

    A NADPH/NADH-dependent xylose reductase gene was isolated from the xylose-assimilating yeast, Pichia stipitis. DNA sequence analysis showed that the gene consists of 951 bp. The gene introduced in Saccharomyces cerevisiae was transcribed to mRNA, and a considerable amount of enzyme activity was observed constitutively, whereas transcription and translation in P steps were inducible. S. cerevisiae carrying the xylose reductase gene could not, however, grow on xylose medium, and could not produce ethanol from xylose. Since xylose uptake and accumulation of xylitol by S. cerevisiae were observed, the conversion of xylitol to xylulose seemed to be limited.

  5. Metabolic-Flux Profiling of the Yeasts Saccharomyces cerevisiae and Pichia stipitis

    PubMed Central

    Fiaux, Jocelyne; Çakar, Z. Petek; Sonderegger, Marco; Wüthrich, Kurt; Szyperski, Thomas; Sauer, Uwe

    2003-01-01

    The so far largely uncharacterized central carbon metabolism of the yeast Pichia stipitis was explored in batch and glucose-limited chemostat cultures using metabolic-flux ratio analysis by nuclear magnetic resonance. The concomitantly characterized network of active metabolic pathways was compared to those identified in Saccharomyces cerevisiae, which led to the following conclusions. (i) There is a remarkably low use of the non-oxidative pentose phosphate (PP) pathway for glucose catabolism in S. cerevisiae when compared to P. stipitis batch cultures. (ii) Metabolism of P. stipitis batch cultures is fully respirative, which contrasts with the predominantly respiro-fermentative metabolic state of S. cerevisiae. (iii) Glucose catabolism in chemostat cultures of both yeasts is primarily oxidative. (iv) In both yeasts there is significant in vivo malic enzyme activity during growth on glucose. (v) The amino acid biosynthesis pathways are identical in both yeasts. The present investigation thus demonstrates the power of metabolic-flux ratio analysis for comparative profiling of central carbon metabolism in lower eukaryotes. Although not used for glucose catabolism in batch culture, we demonstrate that the PP pathway in S. cerevisiae has a generally high catabolic capacity by overexpressing the Escherichia coli transhydrogenase UdhA in phosphoglucose isomerase-deficient S. cerevisiae. PMID:12582134

  6. Random UV-C mutagenesis of Scheffersomyces (formerly Pichia) stipitis NRRL Y-7124 to improve anaerobic growth on lignocellulosic sugars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yeast strains for anaerobic conversion of lignocellulosic sugars to ethanol were produced from Scheffersomyces (formerly Pichia) stipitis NRRL Y-7124 using UV-C mutagenesis. Random UV-C mutagenesis potentially produces large numbers of mutations broadly and uniformly over the whole genome to genera...

  7. High solid loading hydrolyzate-tolerant strains of Scheffersomyces (Pichia) stipitis exhibiting reduced diauxic lag and higher ethanol productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During the fermentation of lignocellulosic hydrolyzates to ethanol by native pentose-fermenting yeasts such as Scheffersomyces (Pichia) stipitis NRRL Y-7124, the switch from glucose to xylose uptake results in a diauxic lag unless process strategies to prevent this are applied. Further investigation...

  8. Continuous fermentation of D-xylose by immobilized Pichia stipitis

    SciTech Connect

    Nunez, M.J.; Dominguez, C.H.; Sanroman, A.; Lema, J.M.

    1991-12-31

    The main purpose of this work was to compare the performance of two different kinds of reactors (CSTR and CPFR) in order to enhance the ethanol productivity in the fermentation of D-xylose by Pichia steps immobilized in {kappa}-carrageenan. Immobilization was carried out in a 4% aqueous suspension of {kappa}-carrageenan, which was mixed with the inoculum. The bioparticles were treated with Al(NO{sub 3}){sub 3} as hardening agent. The fermenters operated during a long period of time (about 30 d). Best results were obtained in the packed-bed reactor (CPFR), which allowed operation at high final ethanol concentrations, this fact having been explained because of the observed strong product inhibition. The overall productivity reached values higher than 3.8 g/(L{circ}h). This supposed an interesting improvement with relation to the productivities found in the literature, which as an average did not exceed 1 g/(L{circ}h). However, the specific productivities of yeast in the continuous stirred tank reactor (CSTR) were always greater because the bioparticles were kept in close contact with the broth, whereas in the CPFR, there were at least two problems: (a) the possibility that the produced gas could prevent the intimate contact between the substrate and the particles and (b) the possible existence of preferential paths.

  9. Ethanol production from rice hull using Pichia stipitis and optimization of acid pretreatment and detoxification processes.

    PubMed

    Germec, Mustafa; Kartal, Fatma Kubra; Bilgic, Merve; Ilgin, Merve; Ilhan, Eda; Güldali, Hazal; Isci, Aslı; Turhan, Irfan

    2016-07-01

    The goal of this study was to produce ethanol from rice hull hydrolysates (RHHs) using Pichia stipitis strains and to optimize dilute acid hydrolysis and detoxification processes by response surface methodology (RSM). The optimized conditions were found as 127.14°C, solid:liquid ratio of 1:10.44 (w/v), acid ratio of 2.52% (w/v), and hydrolysis time of 22.01 min. At these conditions, the fermentable sugar concentration was 21.87 g/L. Additionally, the nondetoxified RHH at optimized conditions contained 865.2 mg/L phenolics, 24.06 g/L fermentable sugar, no hydroxymethylfurfural (HMF), 1.62 g/L acetate, 0.36 g/L lactate, 1.89 g/L glucose, and 13.49 g/L fructose + xylose. Furthermore, RHH was detoxified with various methods and the best procedures were found to be neutralization with CaO or charcoal treatment in terms of the reduction of inhibitory compounds as compared to nondetoxified RHH. After detoxification procedures, the content of hydrolysates consisted of 557.2 and 203.1 mg/L phenolics, 19.7 and 21.60 g/L fermentable sugar, no HMF, 0.98 and 1.39 g/L acetate, 0 and 0.04 g/L lactate, 1.13 and 1.03 g/L glucose, and 8.46 and 12.09 g/L fructose + xylose, respectively. Moreover, the base-line mediums (control), and nondetoxified and detoxified hydrolysates were used to produce ethanol by using P. stipitis strains. The highest yields except that of base-line mediums were achieved using neutralization (35.69 and 38.33% by P. stipitis ATCC 58784 and ATCC 58785, respectively) and charcoal (37.55% by P. stipitis ATCC 58785) detoxification methods. Results showed that the rice hull can be utilized as a good feedstock for ethanol production using P. stipitis. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:872-882, 2016. PMID:27071671

  10. Ethanol production from acid hydrolysates based on the construction and demolition wood waste using Pichia stipitis.

    PubMed

    Cho, Dae Haeng; Shin, Soo-Jeong; Bae, Yangwon; Park, Chulhwan; Kim, Yong Hwan

    2011-03-01

    The feasibility of ethanol production from the construction and demolition (C&D) wood waste acid hydrolysates was investigated. The chemical compositions of the classified C&D wood waste were analyzed. Concentrated sulfuric acid hydrolysis was used to obtain the saccharide hydrolysates and the inhibitors in the hydrolysates were also analyzed. The C&D wood waste composed of lumber, plywood, particleboard, and medium density fiberboard (MDF) had polysaccharide (cellulose, xylan, and glucomannan) fractions of 60.7-67.9%. The sugar composition (glucose, xylose, and mannose) of the C&D wood wastes varied according to the type of wood. The additives used in the wood processing did not appear to be released into the saccharide solution under acid hydrolysis. Although some fermentation inhibitors were detected in the hydrolysates, they did not affect the ethanol production by Pichia stipitis. The hexose sugar-based ethanol yield and ethanol yield efficiency were 0.42-0.46 g ethanol/g substrate and 84.7-90.7%, respectively. Therefore, the C&D wood wastes dumped in landfill sites could be used as a raw material feedstock for the production of bioethanol. PMID:21251816

  11. Induction of Xylose Reductase and Xylitol Dehydrogenase Activities in Pachysolen tannophilus and Pichia stipitis on Mixed Sugars

    PubMed Central

    Bicho, Paul A.; Runnals, P. Lynn; Cunningham, J. Douglas; Lee, Hung

    1988-01-01

    The induction of xylose reductase and xylitol dehydrogenase activities on mixed sugars was investigated in the yeasts Pachysolen tannophilus and Pichia stipitis. Enzyme activities induced on d-xylose served as the controls. In both yeasts, d-glucose, d-mannose, and 2-deoxyglucose inhibited enzyme induction by d-xylose to various degrees. Cellobiose, l-arabinose, and d-galactose were not inhibitory. In liquid batch culture, P. tannophilus utilized d-glucose and d-mannose rapidly and preferentially over d-xylose, while d-galactose consumption was poor and lagged behind that of the pentose sugar. In P. stipitis, all three hexoses were used preferentially over d-xylose. The results showed that the repressibility of xylose reductase and xylitol dehydrogenase may limit the potential of yeast fermentation of pentose sugars in hydrolysates of lignocellulosic substrates. PMID:16347538

  12. [Effect of phenolic ketones on ethanol fermentation and cellular lipid composition of Pichia stipitis].

    PubMed

    Yang, Jinlong; Cheng, Yichao; Zhu, Yuanyuan; Zhu, Junjun; Chen, Tingting; Xu, Yong; Yong, Qiang; Yu, Shiyuan

    2016-02-01

    Lignin degradation products are toxic to microorganisms, which is one of the bottlenecks for fuel ethanol production. We studied the effects of phenolic ketones (4-hydroxyacetophenone, 4-hydroxy-3-methoxy-acetophenone and 4-hydroxy-3,5-dimethoxy-acetophenone) derived from lignin degradation on ethanol fermentation of xylose and cellular lipid composition of Pichia stipitis NLP31. Ethanol and the cellular fatty acid of yeast were analyzed by high performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS). Results indicate that phenolic ketones negatively affected ethanol fermentation of yeast and the lower molecular weight phenolic ketone compound was more toxic. When the concentration of 4-hydroxyacetophenone was 1.5 g/L, at fermentation of 24 h, the xylose utilization ratio, ethanol yield and ethanol concentration decreased by 42.47%, 5.30% and 9.76 g/L, respectively, compared to the control. When phenolic ketones were in the medium, the ratio of unsaturated fatty acids to saturated fatty acids (UFA/SFA) of yeast cells was improved. When 1.5 g/L of three aforementioned phenolic ketones was added to the fermentation medium, the UFA/SFA ratio of yeast cells increased to 3.03, 3.06 and 3.61, respectively, compared to 2.58 of the control, which increased cell membrane fluidity and instability. Therefore, phenolic ketones can reduce the yeast growth, increase the UFA/SFA ratio of yeast and lower ethanol productivity. Effectively reduce or remove the content of lignin degradation products is the key to improve lignocellulose biorefinery. PMID:27382768

  13. Evaluation of the tolerance of acetic acid and 2-furaldehyde on the growth of Pichia stipitis and its respiratory deficient.

    PubMed

    Ortiz-Muñiz, B; Rasgado-Mellado, J; Solis-Pacheco, J; Nolasco-Hipólito, C; Domínguez-González, J M; Aguilar-Uscanga, M G

    2014-10-01

    The use of lignocellulosic residues for ethanol production is limited by toxic compounds in fermenting yeasts present in diluted acid hydrolysates like acetic acid and 2-furaldehyde. The respiratory deficient phenotype gives the cell the ability to resist several toxic compounds. So the aim of this work was to evaluate the tolerance to toxic compounds present in lignocellulosic hydrolysates like acetic acid and 2-furaldehyde in Pichia stipitis and its respiratory deficient strains. The respiratory deficient phenotype was induced by exposure to chemical agents such as acriflavine, acrylamide and rhodamine; 23 strains were obtained. The selection criterion was based on increasing specific ethanol yield (g ethanol g(-1) biomass) with acetic acid and furaldehyde tolerance. The screening showed that P. stipitis NRRL Y-7124 ACL 2-1RD (lacking cytochrome c), obtained using acrylamide, presented the highest specific ethanol production rate (1.82 g g(-1 )h(-1)). Meanwhile, the ACF8-3RD strain showed the highest acetic acid tolerance (7.80 g L(-1)) and the RHO2-3RD strain was able to tolerate up to 1.5 g L(-1) 2-furaldehyde with a growth and ethanol production inhibition of 23 and 22 %, respectively. The use of respiratory deficient yeast phenotype is a strategy for ethanol production improvement in a medium with toxic compounds such as hydrolysed sugarcane bagasse amongst others. PMID:24700134

  14. Fermentation Kinetics for Xylitol Production by a Pichia stipitis d-Xylulokinase Mutant Previously Grown in Spent Sulfite Liquor

    NASA Astrophysics Data System (ADS)

    Rodrigues, Rita C. L. B.; Lu, Chenfeng; Lin, Bernice; Jeffries, Thomas W.

    Spent sulfite pulping liquor (SSL) contains lignin, which is present as lignosulfonate, and hemicelluloses that are present as hydrolyzed carbohydrates. To reduce the biological oxygen demand of SSL associated with dissolved sugars, we studied the capacity of Pichia stipitis FPL-YS30 (xyl3Δ) to convert these sugars into useful products. FPL-YS30 produces a negligible amount of ethanol while converting xylose into xylitol. This work describes the xylose fermentation kinetics of yeast strain P.stipitis FPL-YS30. Yeast was grown in rich medium supplemented with different carbon sources: glucose, xylose, or ammonia-base SSL. The SSL and glucose-acclimatized cells showed similar maximum specific growth rates (0.146 h-1). The highest xylose consumption at the beginning of the fermentation process occurred using cells precultivated in xylose, which showed relatively high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49). However, the maximum specific rates of xylose consumption (0.19 gxylose/gcel h) and xylitol production (0.059 gxylitol/gcel h) were obtained with cells acclimatized in glucose, in which the ratio between xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) was kept at higher level (0.82). In this case, xylitol production (31.6 g/l) was 19 and 8% higher than in SSL and xylose-acclimatized cells, respectively. Maximum glycerol (6.26 g/l) and arabitol (0.206 g/l) production were obtained using SSL and xylose-acclimatized cells, respectively. The medium composition used for the yeast precultivation directly reflected their xylose fermentation performance. The SSL could be used as a carbon source for cell production. However, the inoculum condition to obtain a high cell concentration in SSL needs to be optimized.

  15. Detoxification of rice straw and olive tree pruning hemicellulosic hydrolysates employing Saccharomyces cerevisiae and its effect on the ethanol production by Pichia stipitis.

    PubMed

    Fonseca, Bruno Guedes; Puentes, Juan Gabriel; Mateo, Soledad; Sánchez, Sebastian; Moya, Alberto J; Roberto, Inês Conceição

    2013-10-01

    The aim of this work was to study the ability of Saccharomyces cerevisiae (baker's yeast) to metabolize a variety of aromatic compounds found in rice straw (RSHH) and olive tree pruning (OTHH) hemicellulosic hydrolysates, obtained by acid hydrolysis at different sugar and toxic compound concentrations. Initially, the hydrolysates were inoculated with S. cerevisiae (10 g L(-1)) and incubated at 30 °C under agitation at 200 rpm for 6 h. The results showed that this yeast was able to utilize phenolic and furan compounds in both hemicellulose hydrolysates. Next, the treated hydrolysates were inoculated with Pichia stipitis NRRL Y-7124 to evaluate the effect of biotransformation of aromatic compounds on ethanol production, and better fermentation results were obtained in this case compared to untreated ones. The untreated hemicellulose hydrolysates were not able to be fermented when they were incubated with Pichia stipitis. However, in RSHH treated hydrolysates, ethanol (Y(P/S)) and biomass (Y(X/S)) yields and volumetric ethanol productivity (Q(P)) were 0.17 g g(-1), 0.15 g g(-1) and 0.09 g L(-1) h(-1), respectively. The OTHH-treated hydrolysates showed less favorable results compared to RSHH, but the fermentation process was favored with regard to untreated hydrolysate. These results showed that the fermentation by P. stipitis in untreated hydrolysates was strongly inhibited by toxic compounds present in the media and that treatment with S. cerevisiae promoted a significant reduction in their toxicities. PMID:23992561

  16. Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis.

    PubMed

    Yadav, K Srilekha; Naseeruddin, Shaik; Prashanthi, G Sai; Sateesh, Lanka; Rao, L Venkateswar

    2011-06-01

    Rice straw is one of the abundant lignocellulosic feed stocks in the world and has been selected for producing ethanol at an economically feasible manner. It contains a mixture of sugars (hexoses and pentoses). Biphasic acid hydrolysis was carried out with sulphuric acid using rice straw. After acid hydrolysis, the sugars, furans and phenolics were estimated. The initial concentration of sugar was found to be 16.8 g L(-1). However to increase the ethanol yield, the initial sugar concentration of the hydrolysate was concentrated to 31 g L(-1) by vacuum distillation. The concentration of sugars, phenols and furans was checked and later detoxified by over liming to use for ethanol fermentation. Ethanol concentration was found to be 12 g L(-1), with a yield, volumetric ethanol productivity and fermentation efficiency of 0.33 g L(-1)h(-1), 0.4 g g(-1) and 95%, respectively by co-culture of OVB 11 (Saccharomyces cerevisiae) and Pichia stipitis NCIM 3498. PMID:21470850

  17. Fermentation of Acid-pretreated Corn Stover to Ethanol Without Detoxification Using Pichia stipitis

    NASA Astrophysics Data System (ADS)

    Agbogbo, Frank K.; Haagensen, Frank D.; Milam, David; Wenger, Kevin S.

    In this work, the effect of adaptation on P. stipitis fermentation using acidpretreated corn stover hydrolyzates without detoxification was examined. Two different types of adaptation were employed, liquid hydrolyzate and solid state agar adaptation. Fermentation of 12.5% total solids undetoxified acid-pretreated corn stover was performed in shake flasks at different rotation speeds. At low rotation speed (100 rpm), both liquid hydrolyzate and solid agar adaptation highly improved the sugar consumption rate as well as ethanol production rate compared to the wild-type strains. The fermentation rate was higher for solid agar-adapted strains compared to liquid hydrolyzate-adapted strains. At a higher rotation speed (150 rpm), there was a faster sugar consumption and ethanol production for both the liquid-adapted and the wild-type strains. However, improvements in the fermentation rate between the liquid-adapted and wild strains were less pronounced at the high rotation speed.

  18. Ethanol production from xylose with the yeast Pichia stipitis and simultaneous product recovery by gas stripping using a gas-lift loop fermentor with attached side-arm (GLSA)

    SciTech Connect

    Dominguez, J.M.; Cao, N.; Gong, C.S.; Tsao, G.T.

    2000-02-05

    The bioconversion of xylose into ethanol with the yeast Pichia stipitis CBS 5773 is inhibited when 20 g/L of ethanol are present in the fermentation broth. In order to avoid this limitation, the fermentation was carried out with simultaneous recovery of product by CO{sub 2} stripping. The fermentation was also improved by attaching a side-arm to the main body of a classical gas-lift loop fermentor. This side-arm increases the liquid circulation, mass transfer, and gas distribution, reducing the amount of oxygen in the inlet gas necessary to perform the fermentation of xylose under microaerobic conditions (K{sub L}a{approx_equal} 16 h{sup {minus}1}). The continuous stripping of ethanol from the fermentation broth in this new bioreactor system allowed the consumption of higher xylose concentrations than using Erlenmeyer shaker flasks, improved significantly the process productivity and provided a clean ethanol solution by using an ice-cooled condenser system. Finally, a fed-batch fermentation was carried out with a K{sub L}a = 15.8 h{sup {minus}1}. Starting with 248.2 g of xylose, 237.6 g of xylose was consumed to produce 88.1 g of ethanol which represents 72.6% of the theoretical yield.

  19. Reconstruction and visualization of carbohydrate, N-glycosylation pathways in Pichia pastoris CBS7435 using computational and system biology approaches.

    PubMed

    Srivastava, Akriti; Somvanshi, Pallavi; Mishra, Bhartendu Nath

    2013-06-01

    Pichia pastoris is an efficient expression system for production of recombinant proteins. To understand its physiology for building novel applications it is important to understand and reconstruct its metabolic network. The metabolic reconstruction approach connects genotype with phenotype. Here, we have attempted to reconstruct carbohydrate metabolism pathways responsible for high biomass density and N-glycosylation pathways involved in the post translational modification of proteins of P. pastoris CBS7435. Both these metabolic pathways play a crucial role in heterologous protein production. We report novel, missing and unannotated enzymes involved in the target metabolic pathways. A strong possibility of cellulose and xylose metabolic processes in P. pastoris CBS7435 suggests its use in the area of biofuels. The reconstructed metabolic networks can be used for increased yields and improved product quality, for designing appropriate growth medium, for production of recombinant therapeutics and for making biofuels. PMID:24432138

  20. Harnessing Candida tenuis and Pichia stipitis in whole-cell bioreductions of o-chloroacetophenone: stereoselectivity, cell activity, in situ substrate supply and product removal.

    PubMed

    Gruber, Christoph; Krahulec, Stefan; Nidetzky, Bernd; Kratzer, Regina

    2013-06-01

    Generally, recombinant and native microorganisms can be employed as whole-cell catalysts. The application of native hosts, however, shortens the process development time by avoiding multiple steps of strain construction. Herein, we studied the NAD(P)H-dependent reduction of o-chloroacetophenone by isolated xylose reductases and their native hosts Candida tenuis and Pichia stipitis. The natural hosts were benchmarked against Escherichia coli strains co-expressing xylose reductase and a dehydrogenase for co-enzyme recycling. Xylose-grown cells of C. tenuis and P. stipitis displayed specific o-chloroacetophenone reductase activities of 366 and 90 U gCDW (-1) , respectively, in the cell-free extracts. Fresh biomass was employed in batch reductions of 100 mM o-chloroacetophenone using glucose as co-substrate. Reaction stops at a product concentration of about 15 mM, which suggests sensitivity of the catalyst towards the formed product. In situ substrate supply and product removal by the addition of 40% hexane increased catalyst stability. Optimisation of the aqueous phase led to a (S)-1-(2-chlorophenyl)ethanol concentration of 71 mM (ee > 99.9%) obtained with 44 gCDW L(-1) of C. tenuis. The final difference in productivities between native C. tenuis and recombinant E. coli was < 1.7-fold. The optically pure product is a required key intermediate in the synthesis of a new class of chemotherapeutic substances (polo-like kinase 1 inhibitors). PMID:23589466

  1. Biovalorization potential of peels of Ananas cosmosus (L.) Merr. for ethanol production by Pichia stipitis NCIM 3498 & Pachysolen tannophilus MTCC 1077.

    PubMed

    Bhatia, Latika; Johri, Sonia

    2015-12-01

    Bioethanol, is a potential alternate source of energy, renewable and safe. Ethanol production from value added food and feedstock has also not shown growth as estimated. Of late, the second generation processes of production of ethanol, such as from lignocellulosic biomass out of agricultural/domestic waste has been gaining considerable momentum. Here, we explored a new approach for optimizing the conditions of physiochemical pretreatment as well as fermentation process using peels of Ananas cosmosus as substrate and immobilized yeast Pachysolen tannophilus MTCC.1077 and Pichia stipitis NCIM 3498. We have also studied the influence of process variables such as incubation temperature, inoculum concentration and different nutrients on ethanol production. Pulverized peels of A. cosmosus recorded 25 ± 0.31% cellulose, 28 ± 0.18% hemicellulose and 8 ± 0.07% of lignin on dry solid (DS) basis. Peels of A. cosmosus delignified with 1% H2SO4 yielded 18.89% glucose, 38.81% xylose and 29.31% fructose under thermochemical pretreatment using autoclave (121 degrees C, 20 min.), with a hydrolytic efficiency of 75.52 ± 0.45%. FTIR spectroscopy results not only indicated the penetration of H2SO4 in the amorphous region of the biomass and degradation of hemicelluloses but also showed the structural differences before and after pretreatment. The enzymes required for hydrolysis were prepared from culture supernatants of Trichoderma reesei NCIM 1052 using wheat bran as carbon source under submerged fermentation conditions on rotatory shaker incubator (at 28 degrees C for 10 days). Enzyme activity (U/ml) of crude cellulase produced by T. reesei NCIM 1052 was 311.1 μmole/ml/min. Delignified A. cosmosus peel yielded 51.71 ± 0.44 g/l glucose when enzymatically hydrolysed by crude cellulase at the substrate enzyme ratio of 1:5. Simultaneous saccharification and fermentation (SSF) of peels of A. cosmosus by crude cellulase and separately entrapped Pichia stipitis NCIM 3498 (now known

  2. Curation of the genome annotation of Pichia pastoris (Komagataella phaffii) CBS7435 from gene level to protein function.

    PubMed

    Valli, Minoska; Tatto, Nadine E; Peymann, Armin; Gruber, Clemens; Landes, Nils; Ekker, Heinz; Thallinger, Gerhard G; Mattanovich, Diethard; Gasser, Brigitte; Graf, Alexandra B

    2016-09-01

    As manually curated and non-automated BLAST analysis of the published Pichia pastoris genome sequences revealed many differences between the gene annotations of the strains GS115 and CBS7435, RNA-Seq analysis, supported by proteomics, was performed to improve the genome annotation. Detailed analysis of sequence alignment and protein domain predictions were made to extend the functional genome annotation to all P. pastoris sequences. This allowed the identification of 492 new ORFs, 4916 hypothetical UTRs and the correction of 341 incorrect ORF predictions, which were mainly due to the presence of upstream ATG or erroneous intron predictions. Moreover, 175 previously erroneously annotated ORFs need to be removed from the annotation. In total, we have annotated 5325 ORFs. Regarding the functionality of those genes, we improved all gene and protein descriptions. Thereby, the percentage of ORFs with functional annotation was increased from 48% to 73%. Furthermore, we defined functional groups, covering 25 biological cellular processes of interest, by grouping all genes that are part of the defined process. All data are presented in the newly launched genome browser and database available at www.pichiagenome.org In summary, we present a wide spectrum of curation of the P. pastoris genome annotation from gene level to protein function. PMID:27388471

  3. Effect of ozonolysis parameters on the inhibitory compound generation and on the production of ethanol by Pichia stipitis and acetone-butanol-ethanol by Clostridium from ozonated and water washed sugarcane bagasse.

    PubMed

    Travaini, Rodolfo; Barrado, Enrique; Bolado-Rodríguez, Silvia

    2016-10-01

    Sugarcane bagasse (SCB) was ozone pretreated and detoxified by water washing, applying a L9(3)(4) orthogonal array (OA) design of experiments to study the effect of pretreatment parameters (moisture content, ozone concentration, ozone/oxygen flow and particle size) on the generation of inhibitory compounds and on the composition of hydrolysates of ozonated-washed samples. Ozone concentration resulted the highest influence process parameter on delignification and sugar release after washing; while, for inhibitory compound formation, moisture content also had an important role. Ozone expended in pretreatment related directly with sugar release and inhibitory compound formation. Washing detoxification was effective, providing non-inhibitory hydrolysates. Maximum glucose and xylose release yields obtained were 84% and 67%, respectively, for ozonated-washed SCB. Sugar concentration resulted in the decisive factor for biofuels yields. Ethanol production achieved an 88% yield by Pichia stipitis, whereas Clostridium acetobutylicum produced 0.072gBUTANOL/gSUGAR and 0.188gABE/gSUGAR, and, Clostridium beijerinckii 0.165gBUTANOL/gSUGAR and 0.257gABE/gSUGAR. PMID:27428302

  4. Determination of kinetic parameters of fermentation processes by a continuous unsteady-state method: Application to the alcoholic fermentation of D-xylose by Pichia stipitis

    SciTech Connect

    Dominguez, H.; Nunez, M.J.; Lema, J.M. ); Chamy, R. )

    1993-05-01

    A quick technique for determination of kinetic parameters of fermentation processes is proposed and applied to the transformation of D-xylose into ethanol by Pichi stipitis. The commonly used method to evaluate these parameters is based on achieving several steady states. In the proposed procedure, [mu][sub m] and K[sub S] can be determined from only one steady state, by provoking a disturbance over it, after allowing the system to return to the original conditions. The main difference between the steady and unsteady state methods is the required fermentation time; while the former method lasted 350 h, the latter required a period 25 times lower. Kinetic and stoichiometric parameters were determined with both methods under anoxic and limited oxygen concentration conditions. Results from the two methods were compared, giving only 2% and 4.5% differences in the values of K[sub S] and [mu][sub m], respectively, under anoxic conditions; 12.5% for K[sub S] and a little over 4% for [mu][sub m] were the deviations under the latter ones.

  5. GRE2 from Scheffersomyces stipitis as an aldehyde reductase contributes tolerance to aldehyde inhibitors derived from lignocellulosic biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scheffersomyces (Pichia) stipitis is one of the most promising yeasts for industrial bioethanol production from lignocellulosic biomass. S. stipitis is able to in situ detoxify aldehyde inhibitors [such as furfural and 5-hydroxymethylfurfural (HMF)] to less toxic corresponding alcohols. However, the...

  6. GRE2 from Scheffersomyces stipitis as an aldehyde reductase contributes tolerance to aldehyde inhibitors derived from lignocellulosic biomass.

    PubMed

    Wang, Xu; Ma, Menggen; Liu, Z Lewis; Xiang, Quanju; Li, Xi; Liu, Na; Zhang, Xiaoping

    2016-08-01

    Scheffersomyces (Pichia) stipitis is one of the most promising yeasts for industrial bioethanol production from lignocellulosic biomass. S. stipitis is able to in situ detoxify aldehyde inhibitors (such as furfural and 5-hydroxymethylfurfural (HMF)) to less toxic corresponding alcohols. However, the reduction enzymes involved in this reaction remain largely unknown. In this study, we reported that an uncharacterized open reading frame PICST_72153 (putative GRE2) from S. stipitis was highly induced in response to furfural and HMF stresses. Overexpression of this gene in Saccharomyces cerevisiae improved yeast tolerance to furfural and HMF. GRE2 was identified as an aldehyde reductase which can reduce furfural to FM with either NADH or NADPH as the co-factor and reduce HMF to FDM with NADPH as the co-factor. This enzyme can also reduce multiple aldehydes to their corresponding alcohols. Amino acid sequence analysis indicated that it is a member of the subclass "intermediate" of the short-chain dehydrogenase/reductase (SDR) superfamily. Although GRE2 from S. stipitis is similar to GRE2 from S. cerevisiae in a three-dimensional structure, some differences were predicted. GRE2 from S. stipitis forms loops at D133-E137 and T143-N145 locations with two α-helices at E154-K157 and E252-A254 locations, different GRE2 from S. cerevisiae with an α-helix at D133-E137 and a β-sheet at T143-N145 locations, and two loops at E154-K157 and E252-A254 locations. This research provided guidelines for the study of other SDR enzymes from S. stipitis and other yeasts on tolerant mechanisms to aldehyde inhibitors derived from lignocellulosic biomass. PMID:27003269

  7. A constraint-based model of Scheffersomyces stipitis for improved ethanol production

    PubMed Central

    2012-01-01

    Background As one of the best xylose utilization microorganisms, Scheffersomyces stipitis exhibits great potential for the efficient lignocellulosic biomass fermentation. Therefore, a comprehensive understanding of its unique physiological and metabolic characteristics is required to further improve its performance on cellulosic ethanol production. Results A constraint-based genome-scale metabolic model for S. stipitis CBS 6054 was developed on the basis of its genomic, transcriptomic and literature information. The model iTL885 consists of 885 genes, 870 metabolites, and 1240 reactions. During the reconstruction process, 36 putative sugar transporters were reannotated and the metabolisms of 7 sugars were illuminated. Essentiality study was conducted to predict essential genes on different growth media. Key factors affecting cell growth and ethanol formation were investigated by the use of constraint-based analysis. Furthermore, the uptake systems and metabolic routes of xylose were elucidated, and the optimization strategies for the overproduction of ethanol were proposed from both genetic and environmental perspectives. Conclusions Systems biology modelling has proven to be a powerful tool for targeting metabolic changes. Thus, this systematic investigation of the metabolism of S. stipitis could be used as a starting point for future experiment designs aimed at identifying the metabolic bottlenecks of this important yeast. PMID:22998943

  8. The CBS Programs, Reflectively Speaking.

    ERIC Educational Resources Information Center

    Metcalf, Lawrence E.

    1978-01-01

    This critique of the television special "Is Anyone Out There Learning?" emphasizes three points: (1) CBS presented its own biases disguised as research; (2) television cannot teach literacy; and (3) CBS made education the scapegoat for our social crisis. All articles in this journal issue concern this television program. (SJL)

  9. NOCBS -- Use of CBS mail on satellites

    NASA Astrophysics Data System (ADS)

    Allan, P. M.

    Since the introduction of version 5 of VMS and the Coloured Books software (CBS), it has been possible to send CBS mail from within VMS mail by using an address of the form "CBS%nodename::username". This only works on cluster nodes that have CBS installed. The usual situation at Starlink sites that have VAXclusters is that CBS is installed on only one machine in the cluster.

  10. "The Strange Birth of 'CBS Reports'" Revisited.

    ERIC Educational Resources Information Center

    Baughman, James L.

    Aired by the Columbia Broadcasting System (CBS) during the 1960s, "CBS Reports" proved to be one of that network's most honored efforts at television news coverage. CBS chairman, William S. Paley, based his decision to air the show on the presence of a sponsor and in response to the prospect of an open-ended Federal Communications Commission (FCC)…

  11. Draft Genome Sequence of Rubrivivax gelatinosus CBS

    SciTech Connect

    Hu, P. S.; Lang, J.; Wawrousek, K.; Yu, J. P.; Maness, P. C.; Chen, J.

    2012-06-01

    Rubrivivax gelatinosus CBS, a purple nonsulfur photosynthetic bacterium, can grow photosynthetically using CO and N{sub 2} as the sole carbon and nitrogen nutrients, respectively. R. gelatinosus CBS is of particular interest due to its ability to metabolize CO and yield H{sub 2}. We present the 5-Mb draft genome sequence of R. gelatinosus CBS with the goal of providing genetic insight into the metabolic properties of this bacterium.

  12. Pichia guilliermondii

    NASA Astrophysics Data System (ADS)

    Sibirny, Andriy A.; Boretsky, Yuriy R.

    Pichia guilliermondii (asporogenous strains of this species are designated as Candida guilliermondii ) is the model organism of a group so named “ flavinogenic yeasts ” capable of riboflavin oversynthesis during starvation for iron. Besides, some strains of this species efficiently convert xylose to xylitol, an anti-caries sweetener. However, there are also pathogenic C. guilliermondii strains. This species has been used for studying enzymology of riboflavin synthesis due to overproduction of participating enzymes and intermediates under iron-limiting conditions as well as for identification of genes of negative and positive action involved in such a regulation. Besides, P. guilliermondii was used for identification and studying the properties of the systems for active transport of riboflavin in the cell (riboflavin permease) and out of the cell (riboflavin “ excretase ” ). The genetic line of P. guilliermondii with high fertility has been selected and the methods of classic genetics (hybridization and analysis of meiotic segregation) have been developed. More recently, tools for molecular genetic studies of P. guilliermondii have been developed which include collection of host strains, vectors with recessive and dominant markers, several transformation protocols including that for gene knock out. Recently, the genome of this yeast species was sequenced and become publicly available ( http://www.broad.mit.edu )

  13. Evolved strains of Scheffersomyces stipitis achieving high ethanol productivity on acid- and base-pretreated biomass hydrolyzate at high solids loading

    DOE PAGESBeta

    Slininger, Patricia J.; Shea-Andersh, Maureen A.; Thompson, Stephanie R.; Dien, Bruce S.; Kurtzman, Cletus P.; Balan, Venkatesh; da Costa Sousa, Leonardo; Uppugundla, Nirmal; Dale, Bruce E; Cotta, Michael A

    2015-04-09

    Lignocellulosic biomass is an abundant, renewable feedstock useful for the production of fuel-grade ethanol via the processing steps of pretreatment, enzyme hydrolysis, and microbial fermentation. Traditional industrial yeasts do not ferment xylose and are not able to grow, survive, or ferment in concentrated hydrolyzates that contain enough sugar to support economical ethanol recovery since they are laden with toxic byproducts generated during pretreatment. Repetitive culturing in two types of concentrated hydrolyzates was applied along with ethanol challenged xylose-fed continuous culture to force targeted evolution of the native pentose fermenting yeast Scheffersomyces (Pichia) stipitis strain NRRL Y-7124 maintained in the ARSmore » Culture Collection, Peoria, IL. Isolates collected from various enriched populations were screened and ranked based on relative xylose uptake rate and ethanol yield. Ranking on hydrolyzates with and without nutritional supplementation was used to identify those isolates with best performance across diverse conditions. Robust S. stipitis strains adapted to perform very well in enzyme hydrolyzates of high solids loading ammonia fiber expansion-pretreated corn stover (18% weight per volume solids) and dilute sulfuric acid-pretreated switchgrass (20% w/v solids) were obtained. Improved features include reduced initial lag phase preceding growth, significantly enhanced fermentation rates, improved ethanol tolerance and yield, reduced diauxic lag during glucose-xylose transition, and ability to accumulate >40 g/L ethanol in <167 h when fermenting hydrolyzate at low initial cell density of 0.5 absorbance units and pH 5 to 6.« less

  14. Genome Sequence of the Trichosporon asahii Environmental Strain CBS 8904

    PubMed Central

    Li, Hai Tao; Zhu, He; Zhou, Guang Peng; Wang, Meng; Wang, Lei

    2012-01-01

    This is the first report of the genome sequence of Trichosporon asahii environmental strain CBS 8904, which was isolated from maize cobs. Comparison of the genome sequence with that of clinical strain CBS 2479 revealed that they have >99% chromosomal and mitochondrial sequence identity, yet CBS 8904 has 368 specific genes. Analysis of clusters of orthologous groups predicted that 3,307 genes belong to 23 functional categories and 703 genes were predicted to have a general function. PMID:23193141

  15. Evolved strains of Scheffersomyces stipitis achieving high ethanol productivity on acid- and base-pretreated biomass hydrolyzate at high solids loading

    SciTech Connect

    Slininger, Patricia J.; Shea-Andersh, Maureen A.; Thompson, Stephanie R.; Dien, Bruce S.; Kurtzman, Cletus P.; Balan, Venkatesh; da Costa Sousa, Leonardo; Uppugundla, Nirmal; Dale, Bruce E; Cotta, Michael A

    2015-04-09

    Lignocellulosic biomass is an abundant, renewable feedstock useful for the production of fuel-grade ethanol via the processing steps of pretreatment, enzyme hydrolysis, and microbial fermentation. Traditional industrial yeasts do not ferment xylose and are not able to grow, survive, or ferment in concentrated hydrolyzates that contain enough sugar to support economical ethanol recovery since they are laden with toxic byproducts generated during pretreatment. Repetitive culturing in two types of concentrated hydrolyzates was applied along with ethanol challenged xylose-fed continuous culture to force targeted evolution of the native pentose fermenting yeast Scheffersomyces (Pichia) stipitis strain NRRL Y-7124 maintained in the ARS Culture Collection, Peoria, IL. Isolates collected from various enriched populations were screened and ranked based on relative xylose uptake rate and ethanol yield. Ranking on hydrolyzates with and without nutritional supplementation was used to identify those isolates with best performance across diverse conditions. Robust S. stipitis strains adapted to perform very well in enzyme hydrolyzates of high solids loading ammonia fiber expansion-pretreated corn stover (18% weight per volume solids) and dilute sulfuric acid-pretreated switchgrass (20% w/v solids) were obtained. Improved features include reduced initial lag phase preceding growth, significantly enhanced fermentation rates, improved ethanol tolerance and yield, reduced diauxic lag during glucose-xylose transition, and ability to accumulate >40 g/L ethanol in <167 h when fermenting hydrolyzate at low initial cell density of 0.5 absorbance units and pH 5 to 6.

  16. Asteroseismology of the DBV star CBS 114

    NASA Astrophysics Data System (ADS)

    Chen, Yan-Hui

    2016-08-01

    Asteroseismology is a unique and powerful tool to investigate the internal structure of stars. CBS 114 is the sixth known pulsating DBV star. It was observed by Handler, Metcalfe, & Wood at the South African Astronomical Observatory over three weeks in 2001. Then, it was observed by Metcalfe et al. for seven nights (2004 Feb. 19–25) on the 1.8 m telescope at the Bohyunsan Optical Astronomy Observatory and seven nights (2004 Feb. 21–27) on the 2.1 m telescope at the McDonald Observatory. Totally two triplets, four doublets, and five singlets were identified. The frequency splitting values are very different, from 5.2 μHz to 11.9 μHz, which may reflect differential rotations. We evolve grids of white dwarf models by MESA. Cores, added with He/C envelopes, of those white dwarf models are inserted into WDEC to evolve grids of DBV star models. With those DBV star models, we calculate eigenperiods. Those calculated periods are used to fit observed periods. A best-fitting model is selected. The parameters are T eff = 25000 K, M * = 0.740 M ⊙ and log(M He/M *) = —4.5. With the relatively large stellar mass, the effective temperature is close to the previous spectroscopic result. In addition, kinetic energy distributions are calculated for the best-fitting model. We find that the observed modes with large frequency splitting values are fitted by the calculated modes with a large amount of kinetic energy distributed in the C/O core. After preliminary analysis, we suggest that the C/O core may rotate at least two times faster than the helium layer for CBS 114.

  17. Co-expression of Endoxylanase and Endoglucanase in Scheffersomyces stipitis and Its Application in Ethanol Production.

    PubMed

    Puseenam, Aekkachai; Tanapongpipat, Sutipa; Roongsawang, Niran

    2015-12-01

    Scheffersomyces stipitis strain BCC15191 is considered as a biotechnologically valuable yeast for its ability to ferment glucose and xylose, the main sugar components in plant biomass, to ethanol. However, the wild strain lacks of endogenous cellulases and hemicellulases that limited biomass utilization. In order to improve biomass degrading ability of S. stipitis BCC15191, new integrative plasmids harboring constitutive TEF1 promoter and codon-optimized zeocin or hygromycin antibiotic resistance genes were developed. Aspergillus niger endoxylanase and Aspergillus aculeatus endoglucanase activities were demonstrated in transformant cells expressing codon-optimized genes. S. stipitis co-expressing endoxylanase and endoglucanase was able to grow in medium containing xylan and β-glucan as carbon sources and directly produced ethanol with yields of 2.7 g/L. It could also use pretreated corncob as a carbon source for ethanol production. These results suggested that recombinant S. stipilis is possible for consolidated bioprocessing of biomass. PMID:26378014

  18. Cloning and expression of Candida guilliermondii xylose reductase gene (xyl1) in Pichia pastoris.

    PubMed

    Handumrongkul, C; Ma, D P; Silva, J L

    1998-04-01

    A xylose reductase gene (xyl1) of Candida guilliermondii ATCC 20118 was cloned and characterized. The open reading frame of xyl1 contained 954 nucleotides encoding a protein of 317 amino acids with a predicted molecular mass of 36 kDa. The derived amino acid sequence of C. guilliermondii xylose reductase was 70.4% homologous to that of Pichia stipitis. The gene was placed under the control of an alcohol oxidase promoter (AOX1) and integrated into the genome of a methylotrophic yeast, Pichia pastoris. Methanol induced the expression of the 36-kDa xylose reductase in both intracellular and secreted expression systems. The expressed enzyme preferentially utilized NADPH as a cofactor and was functional both in vitro and in vivo. The different cofactor specificity between P. pastoris and C. guilliermondii xylose reductases might be due to the difference in the numbers of histidine residues and their locations between the two proteins. The recombinant was able to ferment xylose, and the maximum xylitol accumulation (7.8 g/l) was observed when the organism was grown under aerobic conditions. PMID:9615481

  19. Evaluation of CBS 600 carburized steel as a gear material

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.; Parker, R. J.; Zaretsky, E. V.

    1979-01-01

    Gear endurance tests were conducted with one lot of consumable-electrode vacuum-melted (CVM) AISI 9310 gears and one lot of air-melt CBS 600 gears. The gears were 8 pitch with a pitch diameter of 8.89 centimeters (3.5 in.). Bench-type rolling-element fatigue tests were also conducted with one lot of CVM AISI 9310, three lots of CVM CBS 600, and one of air-melt CBS 600 material. The rolling-element bars were 0.952 centimeter (0.375 in.) in diameter. The CBS 600 material exhibited pitting fatigue lives in both rolling-element specimens and gears at least equivalent to that of CVM AISI 9310. Tooth fracture failure occurred with the CBS 600 gears after overrunning a fatigue spall, but it did not occur with the CVM AISI 9310 gears. Tooth fracture in the CBS 600 was attributed to excessive carbon content in the case, excessive case depth, and a higher than normal core hardness.

  20. Pichia dushanensis sp. nov. and Hyphopichia paragotoi sp. nov., two sexual yeast species associated with insects and rotten wood.

    PubMed

    Ren, Yong-Cheng; Liu, Si-Tong; Li, Ying; Hui, Feng-Li

    2015-09-01

    Seven yeast strains were isolated from the gut of insect larvae and decayed wood, which were collected from three localities near Nanyang, Henan Province, China. These strains were identified as two novel species through comparison of sequences in the D1/D2 domains of the large subunit (LSU) rRNA gene and other taxonomic characteristics. Pichia dushanensis sp. nov. was closely related to species in the Pichia clade and produced one to four spheroid ascospores in a deliquescent ascus. The D1/D2 sequence of P. dushanensis sp. nov. differed from its closest relative, Issatchenkia (Pichia) sp. NRRL Y-12824, by 3.6% sequence divergence (16 substitutions and 4 gaps). The species also differed from its four closest known species, Candida rugopelliculosa, Pichia occidentalis, Pichia exigua and Candida phayaonensis, by 4.1-4.4% sequence divergence (22-24 substitutions and 0-2 gaps) in the D1/D2 sequences. Hyphopichia paragotoi sp. nov. belonged to the Hyphopichia clade, and its nearest phylogenetic neighbours were Candida gotoi, Candida pseudorhagii, Candida rhagii and Hyphopichia heimii with 3.2-4.2% sequence divergence (16-21 substitutions and 1 gap) in the D1/D2 sequences. In comparison with previously established species, H. paragotoi sp. nov. formed one hat-shaped ascospore in a persistent ascus. The type strain of P. dushanensis sp. nov. is NYNU 14658(T) ( = CICC 33049(T) = CBS 13912(T)), and the type strain of H. paragotoi sp. nov. is NYNU 14666(T) ( = CICC 33048(T) = CBS 13913(T)). PMID:25999593

  1. Characterization of a S-adenosyl-l-methionine (SAM)-accumulating strain of Scheffersomyces stipitis.

    PubMed

    Križanović, Stela; Butorac, Ana; Mrvčić, Jasna; Krpan, Maja; Cindrić, Mario; Bačun-Družina, Višnja; Stanzer, Damir

    2015-06-01

    S-adenosyl-l-methionine (SAM) is an important molecule in the cellular metabolism of mammals. In this study, we examined several of the physiological characteristics of a SAM-accumulating strain of the yeast Scheffersomyces stipitis (M12), including SAM production, ergosterol content, and ethanol tolerance. S. stipitis M12 accumulated up to 52.48 mg SAM/g dry cell weight. Proteome analyses showed that the disruption of C-24 methylation in ergosterol biosynthesis, a step mediated by C-24 sterol methyltransferase (Erg6p), results in greater SAM accumulation by S. stipitis M12 compared to the wild-type strain. A comparative proteome-wide analysis identified 25 proteins that were differentially expressed by S. stipitis M12. These proteins are involved in ribosome biogenesis, translation, the stress response, ubiquitin-dependent catabolic processes, the cell cycle, ethanol tolerance, posttranslational modification, peroxisomal membrane stability, epigenetic regulation, the actin cytoskeleton and cell morphology, iron and copper homeostasis, cell signaling, and energy metabolism. PMID:26496619

  2. Evaluation of UV-C mutagenized Scheffersomyces stipitis strains for ethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated fermentation capabilities of five strains of Scheffersomyces stipitis (WT-2-1, WT-1-11, 14-2-6, 22-1-1, and 22-1-12) that had been produced by UV-C mutagenesis and selection for improved xylose fermentation to ethanol using an integrated automated robotic work cell. They were incubated ...

  3. Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae

    PubMed Central

    2012-01-01

    Background Scheffersomyces stipitis is a Crabtree negative yeast, commonly known for its capacity to ferment pentose sugars. Differently from Crabtree positive yeasts such as Saccharomyces cerevisiae, the onset of fermentation in S. stipitis is not dependent on the sugar concentration, but is regulated by a decrease in oxygen levels. Even though S. stipitis has been extensively studied due to its potential application in pentoses fermentation, a limited amount of information is available about its metabolism during aerobic growth on glucose. Here, we provide a systems biology based comparison between the two yeasts, uncovering the metabolism of S. stipitis during aerobic growth on glucose under batch and chemostat cultivations. Results Starting from the analysis of physiological data, we confirmed through 13C-based flux analysis the fully respiratory metabolism of S. stipitis when growing both under glucose limited or glucose excess conditions. The patterns observed showed similarity to the fully respiratory metabolism observed for S. cerevisiae under chemostat cultivations however, intracellular metabolome analysis uncovered the presence of several differences in metabolite patterns. To describe gene expression levels under the two conditions, we performed RNA sequencing and the results were used to quantify transcript abundances of genes from the central carbon metabolism and compared with those obtained with S. cerevisiae. Interestingly, genes involved in central pathways showed different patterns of expression, suggesting different regulatory networks between the two yeasts. Efforts were focused on identifying shared and unique families of transcription factors between the two yeasts through in silico transcription factors analysis, suggesting a different regulation of glycolytic and glucoenogenic pathways. Conclusions The work presented addresses the impact of high-throughput methods in describing and comparing the physiology of Crabtree positive and Crabtree

  4. User's manual for CBS3DS, version 1.0

    NASA Astrophysics Data System (ADS)

    Reddy, C. J.; Deshpande, M. D.

    1995-10-01

    CBS3DS is a computer code written in FORTRAN 77 to compute the backscattering radar cross section of cavity backed apertures in infinite ground plane and slots in thick infinite ground plane. CBS3DS implements the hybrid Finite Element Method (FEM) and Method of Moments (MoM) techniques. This code uses the tetrahedral elements, with vector edge basis functions for FEM in the volume of the cavity/slot and the triangular elements with the basis functions for MoM at the apertures. By virtue of FEM, this code can handle any arbitrarily shaped three-dimensional cavities filled with inhomogeneous lossy materials; due to MoM, the apertures can be of any arbitrary shape. The User's Manual is written to make the user acquainted with the operation of the code. The user is assumed to be familiar with the FORTRAN 77 language and the operating environment of the computer the code is intended to run.

  5. Direct weak localization signature with ultracold atoms: the CBS revival

    NASA Astrophysics Data System (ADS)

    Josse, Vincent

    2016-05-01

    Ultracold atomic systems in presence of disorder have attracted a lot of interest over the past decade, in particular to study the physics of Anderson localization (AL) in a renewed perspective. Landmark experiments have been demonstrated, in 1D and 3D geometries. However many challenges remain and new ideas have emerged, as for instance the search for original signatures of Anderson localization in momentum space. Here I will describe our progresses along that line where a weak localization effect has been directly observed, i.e. the Coherent Backscattering (CBS) phenomenon. In particular I will report on the recent observation of suppression and revival of CBS when a controlled dephasing kick is applied to the system. This observation demonstrates a novel and general method, introduced by T. Micklitz and coworkers, to study probe phase coherence in disordered systems by manipulating time reversal symmetry.

  6. User's manual for CBS3DS, version 1.0

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.; Deshpande, M. D.

    1995-01-01

    CBS3DS is a computer code written in FORTRAN 77 to compute the backscattering radar cross section of cavity backed apertures in infinite ground plane and slots in thick infinite ground plane. CBS3DS implements the hybrid Finite Element Method (FEM) and Method of Moments (MoM) techniques. This code uses the tetrahedral elements, with vector edge basis functions for FEM in the volume of the cavity/slot and the triangular elements with the basis functions for MoM at the apertures. By virtue of FEM, this code can handle any arbitrarily shaped three-dimensional cavities filled with inhomogeneous lossy materials; due to MoM, the apertures can be of any arbitrary shape. The User's Manual is written to make the user acquainted with the operation of the code. The user is assumed to be familiar with the FORTRAN 77 language and the operating environment of the computer the code is intended to run.

  7. An efficient extrapolation to the (T)/CBS limit

    NASA Astrophysics Data System (ADS)

    Ranasinghe, Duminda S.; Barnes, Ericka C.

    2014-05-01

    We extrapolate to the perturbative triples (T)/complete basis set (CBS) limit using double ζ basis sets without polarization functions (Wesleyan-1-Triples-2ζ or "Wes1T-2Z") and triple ζ basis sets with a single level of polarization functions (Wesleyan-1-Triples-3ζ or "Wes1T-3Z"). These basis sets were optimized for 102 species representing the first two rows of the Periodic Table. The species include the entire set of neutral atoms, positive and negative atomic ions, as well as several homonuclear diatomic molecules, hydrides, rare gas dimers, polar molecules, such as oxides and fluorides, and a few transition states. The extrapolated Wes1T-(2,3)Z triples energies agree with (T)/CBS benchmarks to within ±0.65 mEh, while the rms deviations of comparable model chemistries W1, CBS-APNO, and CBS-QB3 for the same test set are ±0.23 mEh, ±2.37 mEh, and ±5.80 mEh, respectively. The Wes1T-(2,3)Z triples calculation time for the largest hydrocarbon in the G2/97 test set, C6H5Me+, is reduced by a factor of 25 when compared to W1. The cost-effectiveness of the Wes1T-(2,3)Z extrapolation validates the usefulness of the Wes1T-2Z and Wes1T-3Z basis sets which are now available for a more efficient extrapolation of the (T) component of any composite model chemistry.

  8. An efficient extrapolation to the (T)/CBS limit

    SciTech Connect

    Ranasinghe, Duminda S.; Barnes, Ericka C.

    2014-05-14

    We extrapolate to the perturbative triples (T)/complete basis set (CBS) limit using double ζ basis sets without polarization functions (Wesleyan-1-Triples-2ζ or “Wes1T-2Z”) and triple ζ basis sets with a single level of polarization functions (Wesleyan-1-Triples-3ζ or “Wes1T-3Z”). These basis sets were optimized for 102 species representing the first two rows of the Periodic Table. The species include the entire set of neutral atoms, positive and negative atomic ions, as well as several homonuclear diatomic molecules, hydrides, rare gas dimers, polar molecules, such as oxides and fluorides, and a few transition states. The extrapolated Wes1T-(2,3)Z triples energies agree with (T)/CBS benchmarks to within ±0.65 mE{sub h}, while the rms deviations of comparable model chemistries W1, CBS-APNO, and CBS-QB3 for the same test set are ±0.23 mE{sub h}, ±2.37 mE{sub h}, and ±5.80 mE{sub h}, respectively. The Wes1T-(2,3)Z triples calculation time for the largest hydrocarbon in the G2/97 test set, C{sub 6}H{sub 5}Me{sup +}, is reduced by a factor of 25 when compared to W1. The cost-effectiveness of the Wes1T-(2,3)Z extrapolation validates the usefulness of the Wes1T-2Z and Wes1T-3Z basis sets which are now available for a more efficient extrapolation of the (T) component of any composite model chemistry.

  9. The CBS domain: a protein module with an emerging prominent role in regulation.

    PubMed

    Baykov, Alexander A; Tuominen, Heidi K; Lahti, Reijo

    2011-11-18

    Regulatory CBS (cystathionine β-synthase) domains exist as two or four tandem copies in thousands of cytosolic and membrane-associated proteins from all kingdoms of life. Mutations in the CBS domains of human enzymes and membrane channels are associated with an array of hereditary diseases. Four CBS domains encoded within a single polypeptide or two identical polypeptides (each having a pair of CBS domains at the subunit interface) form a highly conserved disk-like structure. CBS domains act as autoinhibitory regulatory units in some proteins and activate or further inhibit protein function upon binding to adenosine nucleotides (AMP, ADP, ATP, S-adenosyl methionine, NAD, diadenosine polyphosphates). As a result of the differential effects of the nucleotides, CBS domain-containing proteins can sense cell energy levels. Significant conformational changes are induced in CBS domains by bound ligands, highlighting the structural basis for their effects. PMID:21958115

  10. Bioethanol production from mixed sugars by Scheffersomyces stipitis free and immobilized cells, and co-cultures with Saccharomyces cerevisiae.

    PubMed

    De Bari, Isabella; De Canio, Paola; Cuna, Daniela; Liuzzi, Federico; Capece, Angela; Romano, Patrizia

    2013-09-25

    Bioethanol can be produced from several biomasses including lignocellulosic materials. Besides 6-carbon sugars that represent the prevalent carbohydrates, some of these feedstocks contain significant amounts of 5-carbon sugars. One common limit of the major part of the xylose-fermenting yeasts is the diauxic shift between the uptake of glucose and xylose during the fermentation of mixed syrups. Thus, optimized fermentation strategies are required. In this paper the ability of Scheffersomyces stipitis strain NRRLY-11544 to ferment mixed syrups with a total sugar concentration in the range 40-80 g/L was investigated by using mono cultures, co-cultures with Saccharomyces cerevisiae strain Bakers Yeast Type II and single cultures immobilized in silica-hydrogel films. The experimental design for the fermentations with immobilized cells included the process analysis in function of two parameters: the fraction of the gel in the broth and the concentration of the cells loaded in the gel. Furthermore, for each total sugars level, the fermentative course of S. stipitis was analyzed at several glucose-to xylose ratios. The results indicated that the use of S. stipitis and S. cerevisiae in free co-cultures ensured faster processes than single cultures of S. stipitis either free or immobilized. However, the rapid production of ethanol by S. cerevisiae inhibited S. stipitis and caused a stuck of the process. Immobilization of S. stipitis in silica-hydrogel increased the relative consumption rate of xylose-to-glucose by 2-6 times depending on the composition of the fermentation medium. Furthermore the films performances appeared stable over three weeks of continuous operations. However, on the whole, the final process yields obtained with the immobilized cells were not meaningfully different from that of the free cells. This was probably due to concurrent fermentations operated by the cells released in the broth. Optimization of the carrier characteristics could improve the

  11. Occurrence and diversity of Pichia spp. in marine environments

    NASA Astrophysics Data System (ADS)

    Li, Jing; Chi, Zhenming; Wang, Xianghong; Wang, Lin; Sheng, Jun; Gong, Fang

    2008-08-01

    A total of 328 yeast strains from seawater, sediments, mud of salterns, the guts of marine fish and marine algae were obtained. The results of routine identification and molecular methods show that five yeast strains obtained in this study belonged to Pichia spp., including Pichia guilliermondii 1uv-small, Pichia ohmeri YF04d, Pichia fermentans YF12b, Pichia burtonii YF11A and Pichia anomala YF07b. Further studies revealed that Pichia anomala YF07b could produce killer toxin against pathogenic yeasts in crabs while Pichia guilliermondii 1uv-small could produce high activity of extracellular inulinase. It is advisable to test if Pichia ohmeri YF04d obtained in this study is related to central-venous-catheter-associated infection.

  12. Superoxide dismutase during glucose repression of Hansenula polymorpha CBS 4732.

    PubMed

    Hristozova, Tsonka; Rasheva, Tanya; Nedeva, Trayana; Kujumdzieva, Anna

    2002-01-01

    Hansenula polymorpha CBS 4732 was studied during cultivation on methanol and different glucose concentrations. Activities of Cu/Zn and Mn superoxide dismutase, catalase and methanol oxidase were investigated. During cultivation on methanol, increased superoxide dismutase and catalase activities and an induced methanol oxidase were achieved. Transfer of a methanol grown culture to medium with a high glucose concentration caused growth inhibition, low consumption of carbon, nitrogen and phosphate substrates, methanol oxidase inactivation as well as decrease of catalase activity (21.8 +/- 0.61 deltaE240 x min(-1) x mg protein(-1)). At the same time, a high value for superoxide dismutase enzyme was found (42.9 +/- 0.98 U x mg protein(-1), 25% of which was represented by Mn superoxide dismutase and 75% - by the Cu/Zn type). During derepression methanol oxidase was negligible (0.005 +/- 0.0001 U x mg protein(-1)), catalase tended to be the same as in the repressed culture, while superoxide dismutase activity increased considerably (63.67 +/- 1.72 U x mg protein(-1), 69% belonging to the Cu/Zn containing enzyme). Apparently, the cycle of growth inhibition and reactivation of Hansenula polymorpha CBS 4732 cells is strongly connected with the activity of the enzyme superoxide dismutase. PMID:12064733

  13. Betaine supplementation is less effective than methionine restriction in correcting phenotypes of CBS deficient mice.

    PubMed

    Gupta, Sapna; Wang, Liqun; Kruger, Warren D

    2016-01-01

    Cystathionine beta synthase (CBS) deficiency is a recessive inborn error of metabolism characterized by elevated serum total homocysteine (tHcy). Betaine supplementation, which can lower tHcy by stimulating homocysteine remethylation to methionine, is often given to CBS deficient patients in combination with other treatments such as methionine restriction and supplemental B-vitamins. However, the effectiveness of betaine supplementation by itself in the treatment of CBS deficiency has not been well explored. Here, we have examined the effect of a betaine supplemented diet on the Tg-I278T Cbs (-/-) mouse model of CBS deficiency and compared its effectiveness to our previously published data using a methionine restricted diet. Tg-I278T Cbs (-/-) mice on betaine, from the time of weaning until for 240 days of age, had a 40 % decrease in mean tHcy level and a 137 % increase in serum methionine levels. Betaine-treated Tg-I278T Cbs (-/-) mice also exhibited increased levels of betaine-dependent homocysteine methyl transferase (BHMT), increased levels of the lipogenic enzyme stearoyl-coenzyme A desaturase (SCD-1), and increased lipid droplet accumulation in the liver. Betaine supplementation largely reversed the hair loss phenotype in Tg-I278T Cbs (-/-) animals, but was far less effective than methionine restriction in reversing the weight-loss, fat-loss, and osteoporosis phenotypes. Surprisingly, betaine supplementation had several negative effects in control Tg-I278T Cbs (+/-) mice including decreased weight gain, lean mass, and bone mineral density. Our findings indicate that while betaine supplementation does have some beneficial effects, it is not as effective as methionine restriction for reversing the phenotypes associated with severe CBS deficiency in mice. PMID:26231230

  14. The Coaching Behavior Scale for Sport (CBS-S): A psychometric evaluation of the Swedish version.

    PubMed

    Carlsson, A; Lundqvist, C

    2016-01-01

    The present study validated a Swedish version of the 47-item Coaching Behavior Scale for Sport (CBS-S). Sample 1 consisted of 506 team sport athletes [262 men and 244 women; mean age: 22.20, standard deviation (SD) = 3.90] distributed across 41 coaches at the two highest national levels of various sports. Athletes completed the CBS-S and established questionnaires of coaching behaviors (LSS), self-confidence (CSAI-2R), and coach-athlete relationship (CART-Q). An additional sample of 39 basketball players (21 men and 18 women; mean age = 17.40, SD = 2.39) completed the CBS-S twice, approximately 4 weeks apart. Confirmatory factor analysis showed an acceptable model fit for the seven-factor version of the CBS-S, although two items of the negative personal rapport subscale displayed insufficient factor loadings. Correlations between the subscales of the CBS-S and established instruments were in accordance with theoretical expectations, supporting the concurrent validity. Cronbach's alpha (> 0.82) for all dimensions provided support for the reliability of the CBS-S, and test-retest correlations indicated moderate stability over time. Cultural differences in the assessment of coaching behaviors and the usability of the CBS-S by coaches for self-reflection and development are discussed. PMID:25440429

  15. Impact of culture nutrition on inhibitor tolerance and the conversion of high xylose concentrations to ethanol by Pichia stipitis NRRL Y-7124

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficient fermentation processes to produce ethanol from low-cost lignocellulosic biomass are sought to support the expansion of the biofuels industry. Stress-tolerant microorganisms are needed that are able to consume both hexose and pentose sugars and withstand, survive, and function in the prese...

  16. Impact of culture nutrition on tolerance of furan inhibitors and the conversion of high xylose concentrations to ethanol by Pichia stipitis NRRL Y-7124

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficient fermentation processes to produce ethanol from both the hexose and pentose sugars available in low-cost lignocellulosic biomass are sought to support the expansion of the biofuels industry. Such an expansion is expected to strengthen our nation by lessening dependence on foreign sources o...

  17. Cystathionine Beta-Synthase (CBS) Contributes to Advanced Ovarian Cancer Progression and Drug Resistance

    PubMed Central

    Giri, Karuna; Lanza, Ian R.; Nair, K. Sreekumar; Jennings, Nicholas B.; Rodriguez-Aguayo, Cristian; Lopez-Berestein, Gabriel; Basal, Eati; Weaver, Amy L.; Visscher, Daniel W.; Cliby, William; Sood, Anil K.; Bhattacharya, Resham; Mukherjee, Priyabrata

    2013-01-01

    Background Epithelial ovarian cancer is the leading cause of gynecologic cancer deaths. Most patients respond initially to platinum-based chemotherapy after surgical debulking, however relapse is very common and ultimately platinum resistance emerges. Understanding the mechanism of tumor growth, metastasis and drug resistant relapse will profoundly impact the therapeutic management of ovarian cancer. Methods/Principal Findings Using patient tissue microarray (TMA), in vitro and in vivo studies we report a role of of cystathionine-beta-synthase (CBS), a sulfur metabolism enzyme in ovarian carcinoma. We report here that the expression of cystathionine-beta-synthase (CBS), a sulfur metabolism enzyme, is common in primary serous ovarian carcinoma. The in vitro effects of CBS silencing can be reversed by exogenous supplementation with the GSH and H2S producing chemical Na2S. Silencing CBS in a cisplatin resistant orthotopic model in vivo by nanoliposomal delivery of CBS siRNA inhibits tumor growth, reduces nodule formation and sensitizes ovarian cancer cells to cisplatin. The effects were further corroborated by immunohistochemistry that demonstrates a reduction of H&E, Ki-67 and CD31 positive cells in si-RNA treated as compared to scrambled-RNA treated animals. Furthermore, CBS also regulates bioenergetics of ovarian cancer cells by regulating mitochondrial ROS production, oxygen consumption and ATP generation. This study reports an important role of CBS in promoting ovarian tumor growth and maintaining drug resistant phenotype by controlling cellular redox behavior and regulating mitochondrial bioenergetics. Conclusion The present investigation highlights CBS as a potential therapeutic target in relapsed and platinum resistant ovarian cancer. PMID:24236104

  18. Serotonin and Dopamine Protect from Hypothermia/Rewarming Damage through the CBS/ H2S Pathway

    PubMed Central

    Talaei, Fatemeh; Bouma, Hjalmar R.; Van der Graaf, Adrianus C.; Strijkstra, Arjen M.; Schmidt, Martina; Henning, Robert H.

    2011-01-01

    Biogenic amines have been demonstrated to protect cells from apoptotic cell death. Herein we show for the first time that serotonin and dopamine increase H2S production by the endogenous enzyme cystathionine-β-synthase (CBS) and protect cells against hypothermia/rewarming induced reactive oxygen species (ROS) formation and apoptosis. Treatment with both compounds doubled CBS expression through mammalian target of rapamycin (mTOR) and increased H2S production in cultured rat smooth muscle cells. In addition, serotonin and dopamine treatment significantly reduced ROS formation. The beneficial effect of both compounds was minimized by inhibition of their re-uptake and by pharmacological inhibition of CBS or its down-regulation by siRNA. Exogenous administration of H2S and activation of CBS by Prydoxal 5′-phosphate also protected cells from hypothermic damage. Finally, serotonin and dopamine pretreatment of rat lung, kidney, liver and heart prior to 24 h of hypothermia at 3°C followed by 30 min of rewarming at 37°C upregulated the expression of CBS, strongly reduced caspase activity and maintained the physiological pH compared to untreated tissues. Thus, dopamine and serotonin protect cells against hypothermia/rewarming induced damage by increasing H2S production mediated through CBS. Our data identify a novel molecular link between biogenic amines and the H2S pathway, which may profoundly affect our understanding of the biological effects of monoamine neurotransmitters. PMID:21829469

  19. Deletion of hxk1 gene results in derepression of xylose utilization in Scheffersomyces stipitis.

    PubMed

    Dashtban, Mehdi; Wen, Xin; Bajwa, Paramjit K; Ho, Chi-Yip; Lee, Hung

    2015-06-01

    A major problem in fermenting xylose in lignocellulosic substrates is the presence of glucose and mannose which inhibit xylose utilization. Previous studies showed that catabolite repression in some yeasts is associated with hexokinases and that deletion of one of these gene(s) could result in derepressed mutant strain(s). In this study, the hxk1 encoding hexokinase 1 in Scheffersomyces stipitis was disrupted. The ∆hxk1 SS6 strain retained the ability to utilize the main hexoses and pentoses commonly found in lignocellulosic hydrolysates as efficiently as the wild-type (WT) strain. SS6 also fermented the dominant sugars to ethanol; however, on xylose, the ∆hxk1 strain produced more xylitol and less ethanol than the WT. On mixed sugars, as expected the WT utilized glucose ahead of xylose and xylose utilization did not commence until all the glucose was consumed. In contrast, the ∆hxk1 mutant showed derepression in that it started to utilize xylose even when considerable glucose (about 1.72%, w/v) remained in the medium. Similarly, mannose did not repress xylose utilization by the ∆hxk1 mutant and xylose and mannose were simultaneously utilized. The results are of interest in efforts to engineer yeast strains capable of efficiently utilizing glucose and xylose simultaneously for lignocellulosic biomass conversion. PMID:25845305

  20. Hemicellulosic ethanol production by immobilized cells of Scheffersomyces stipitis: Effect of cell concentration and stirring

    PubMed Central

    Milessi, Thais S S; Antunes, Felipe A F; Chandel, Anuj K; da Silva, Silvio S

    2015-01-01

    Bioconversion of hemicellulosic hydrolysate into ethanol plays a pivotal role in the overall success of biorefineries. For the efficient fermentative conversion of hemicellulosic hydrolysates into ethanol, the use of immobilized cells system could provide the enhanced ethanol productivities with significant time savings. Here, we investigated the effect of 2 important factors (e.g., cell concentration and stirring) on ethanol production from sugarcane bagasse hydrolysate using the yeast Scheffersomyces stipitis immobilized in calcium alginate matrix. A 22 full factorial design of experiment was performed considering the process variables- immobilized cell concentration (3.0, 6.5 and 10.0 g/L) and stirring (100, 200 and 300 rpm). Statistical analysis showed that stirring has the major influence on ethanol production. Maximum ethanol production (8.90 g/l) with ethanol yield (Yp/s) of 0.33 g/g and ethanol productivity (Qp) of 0.185 g/l/h was obtained under the optimized process conditions (10.0 g/L of cells and 100 rpm). PMID:25488725

  1. A thermophilic endo-1,4-β-glucanase from Talaromyces emersonii CBS394.64 with broad substrate specificity and great application potentials.

    PubMed

    Wang, Kun; Luo, Huiying; Bai, Yingguo; Shi, Pengjun; Huang, Huoqing; Xue, Xianli; Yao, Bin

    2014-08-01

    Thermophilic cellulases are of significant interest to the efficient conversion of plant cell wall polysaccharides into simple sugars. In this study, a thermophilic and thermostable endo-1,4-β-glucanase, TeEgl5A, was identified in the thermophilic fungus Talaromyces emersonii CBS394.64 and functionally expressed in Pichia pastoris. Purified recombinant TeEgl5A exhibits optimal activity at pH 4.5 and 90 °C. It is highly stable at 70 °C and over a broad pH range of 1.0-10.0, and shows strong resistance to most metal ions, sodium dodecyl sulfate (SDS), and proteases. TeEgl5A has broad substrate specificity and exhibits high activity on substrates containing β-1,4-glycosidic bonds and β-1,3-glycosidic bonds (barley β-glucan, laminarin, lichenan, CMC-Na, carob bean gum, and birchwood xylan). Under simulated mashing conditions, addition of 60 U TeEgl5A reduced more viscosity (10.0 vs.7.6 %) than 80 U of Ultraflo XL from Novozymes. These properties make TeEgl5A a good candidate for extensive application in the detergent, textile, feed, and food industries. PMID:24668246

  2. Biochemical characterization of an acidophilic β-mannanase from Gloeophyllum trabeum CBS900.73 with significant transglycosylation activity and feed digesting ability.

    PubMed

    Wang, Caihong; Zhang, Jiankang; Wang, Yuan; Niu, Canfang; Ma, Rui; Wang, Yaru; Bai, Yingguo; Luo, Huiying; Yao, Bin

    2016-04-15

    Acidophilic β-mannanases have been attracting much attention due to their excellent activity under extreme acidic conditions and significant industrial applications. In this study, a β-mannanase gene of glycoside hydrolase family 5, man5A, was cloned from Gloeophyllum trabeum CBS900.73, and successfully expressed in Pichia pastoris. Purified recombinant Man5A was acidophilic with a pH optimum of 2.5 and exhibited great pH adaptability and stability (>80% activity over pH 2.0-6.0 and pH 2.0-10.0, respectively). It had a high specific activity (1356 U/mg) against locust bean gum, was able to degrade galactomannan and glucomannan in a classical four-site binding mode, and catalyzed the transglycosylation of mannotetrose to mannooligosaccharides with higher degree of polymerization. Besides, it had great resistance to pepsin and trypsin and digested corn-soybean meal based diet in a comparable way with a commercial β-mannanase under the simulated gastrointestinal conditions of pigs. This acidophilic β-mannanase represents a valuable candidate for wide use in various industries, especially in the feed. PMID:26616977

  3. Alcohol dehydrogenases from Scheffersomyces stipitis involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion.

    PubMed

    Ma, Menggen; Wang, Xu; Zhang, Xiaoping; Zhao, Xianxian

    2013-09-01

    Aldehyde inhibitors such as furfural and 5-hydroxymethylfurfural (HMF) are generated from biomass pretreatment. Scheffersomyces stipitis is able to reduce furfural and HMF to less toxic furanmethanol and furan-2,5-dimethanol; however, the enzymes involved in the reductive reaction still remain unknown. In this study, transcription responses of two known and five putative alcohol dehydrogenase genes from S. stipitis were analyzed under furfural and HMF stress conditions. All the seven alcohol dehydrogenase genes were also cloned and overexpressed for their activity analyses. Our results indicate that transcriptions of SsADH4 and SsADH6 were highly induced under furfural and HMF stress conditions, and the proteins encoded by them exhibited NADH- and/or NADPH-dependent activities for furfural and HMF reduction, respectively. For furfural reduction, NADH-dependent activity was also observed in SsAdh1p and NAD(P)H-dependent activities were also observed in SsAdh5p and SsAdh7p. For HMF reduction, NADPH-dependent activities were also observed in SsAdh5p and SsAdh7p. SsAdh4p displayed the highest NADPH-dependent specific activity and catalytic efficiency for reduction of both furfural and HMF among the seven alcohol dehydrogenases. Enzyme activities of all SsADH proteins were more stable under acidic condition. For most SsADH proteins, the optimum temperature for enzyme activities was 30 °C and more than 50 % enzyme activities remained at 60 °C. Reduction activities of formaldehyde, acetaldehyde, isovaleraldehyde, benzaldehyde, and phenylacetaldehyde were also observed in some SsADH proteins. Our results indicate that multiple alcohol dehydrogenases in S. stipitis are involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. PMID:23912116

  4. Endogenous CBS-H2S Pathway Contributes to the Development of CCI-Induced Neuropathic Pain.

    PubMed

    Gui, Yulong; Li, Aiyuan; Qiu, Bihui; Chen, Feng; Chen, Liang; Liu, Daming; Chen, Shuxian; Zhou, Wei; Zhou, Hong

    2016-06-01

    Studies showed a complex relationship between hydrogen sulfide (H2S) and neuropathic pain. In this study, the relationship between endogenous CBS-H2S pathway in L4-6 spinal cord and neuropathic pain was explored. A total of 163 adult Kunming mice were used in this study. CBS expression and H2S formation in L4-6 spinal cord were detected in the development of neuropathic pain firstly. Then, effect of AOAA, an CBS inhibitor, on treatment of neuropathic pain by chronic construction injury surgery (CCI) was detected. Pain thresholds and activation of NF-κB(p65), ERK1/2 and CREB were measured as biomarks of neuropathic pain. Results showed that CCI surgery significantly upregulated protein expression of CBS and H2S formation. Correlation analysis showed pain thresholds had negative relationships with protein expression of CBS and H2S formation. Treatment with AOAA, a CBS inhibitor, inhibited CCI-induced upregulation of CBS expression and H2S formation (P < 0.05). Further, AOAA significantly decreased activation of NF-κB(p65), ERK1/2 and CREB pathway, and reversed CCI-induced allodynia (P < 0.05). This indicated that CBS-H2S pathway promoted the development of neuropathic pain. CBS-H2S pathway could be a promising target for treatment of neuropathic pain. PMID:26961888

  5. Bioethanol production by recycled Scheffersomyces stipitis in sequential batch fermentations with high cell density using xylose and glucose mixture.

    PubMed

    Santos, Samantha Christine; de Sousa, Amanda Silva; Dionísio, Suzane Rodrigues; Tramontina, Robson; Ruller, Roberto; Squina, Fabio Márcio; Vaz Rossell, Carlos Eduardo; da Costa, Aline Carvalho; Ienczak, Jaciane Lutz

    2016-11-01

    Here, it is shown three-step investigative procedures aiming to improve pentose-rich fermentations performance, involving a simple system for elevated mass production by Scheffersomyces stipitis (I), cellular recycle batch fermentations (CRBFs) at high cell density using two temperature strategies (fixed at 30°C; decreasing from 30 to 26°C) (II), and a short-term adaptation action seeking to acclimatize the microorganism in xylose rich-media (III). Cellular propagation provided 0.52gdrycellweightgRS(-1), resulting in an expressive value of 45.9gdrycellweightL(-1). The yeast robustness in CRBF was proven by effective ethanol production, reaching high xylose consumption (81%) and EtOH productivity (1.53gL(-1)h(-1)). Regarding the short-term adaptation, S. stipitis strengthened its robustness, as shown by a 6-fold increase in xylose reductase (XR) activity. The short fermentation time (20h for each batch) and the fermentation kinetics for ethanol production from xylose are quite promising. PMID:27498013

  6. Identification and Comparative Analysis of CBS Domain-Containing Proteins in Soybean (Glycine max) and the Primary Function of GmCBS21 in Enhanced Tolerance to Low Nitrogen Stress

    PubMed Central

    Hao, Qingnan; Shang, Weijuan; Zhang, Chanjuan; Chen, Haifeng; Chen, Limiao; Yuan, Songli; Chen, Shuilian; Zhang, Xiaojuan; Zhou, Xinan

    2016-01-01

    Nitrogen is an important macronutrient required for plant growth, and is a limiting factor for crop productivity. Improving the nitrogen use efficiency (NUE) is therefore crucial. At present, the NUE mechanism is unclear and information on the genes associated with NUE in soybeans is lacking. cystathionine beta synthase (CBS) domain-containing proteins (CDCPs) may be implicated in abiotic stress tolerance in plants. We identified and classified a CBS domain–containing protein superfamily in soybean. A candidate gene for NUE, GmCBS21, was identified. GmCBS21 gene characteristics, the temporal expression pattern of the GmCBS21 gene, and the phenotype of GmCBS21 overexpression in transgenic Arabidopsis thaliana under low nitrogen stress were analyzed. The phenotypes suggested that the transgenic Arabidopsis thaliana seedlings performed better under the nitrogen-deficient condition. GmCBS21-overexpressing transgenic plants exhibit higher low nitrogen stress tolerance than WT plants, and this suggests its role in low nitrogen stress tolerance in plants. We conclude that GmCBS21 may serve as an excellent candidate for breeding crops with enhanced NUE and better yield. PMID:27128900

  7. Identification and Comparative Analysis of CBS Domain-Containing Proteins in Soybean (Glycine max) and the Primary Function of GmCBS21 in Enhanced Tolerance to Low Nitrogen Stress.

    PubMed

    Hao, Qingnan; Shang, Weijuan; Zhang, Chanjuan; Chen, Haifeng; Chen, Limiao; Yuan, Songli; Chen, Shuilian; Zhang, Xiaojuan; Zhou, Xinan

    2016-01-01

    Nitrogen is an important macronutrient required for plant growth, and is a limiting factor for crop productivity. Improving the nitrogen use efficiency (NUE) is therefore crucial. At present, the NUE mechanism is unclear and information on the genes associated with NUE in soybeans is lacking. cystathionine beta synthase (CBS) domain-containing proteins (CDCPs) may be implicated in abiotic stress tolerance in plants. We identified and classified a CBS domain-containing protein superfamily in soybean. A candidate gene for NUE, GmCBS21, was identified. GmCBS21 gene characteristics, the temporal expression pattern of the GmCBS21 gene, and the phenotype of GmCBS21 overexpression in transgenic Arabidopsis thaliana under low nitrogen stress were analyzed. The phenotypes suggested that the transgenic Arabidopsis thaliana seedlings performed better under the nitrogen-deficient condition. GmCBS21-overexpressing transgenic plants exhibit higher low nitrogen stress tolerance than WT plants, and this suggests its role in low nitrogen stress tolerance in plants. We conclude that GmCBS21 may serve as an excellent candidate for breeding crops with enhanced NUE and better yield. PMID:27128900

  8. Genome-Scale NAD(H/+) Availability Patterns as a Differentiating Feature between Saccharomyces cerevisiae and Scheffersomyces stipitis in Relation to Fermentative Metabolism

    PubMed Central

    Acevedo, Alejandro; Aroca, German; Conejeros, Raul

    2014-01-01

    Scheffersomyces stipitis is a yeast able to ferment pentoses to ethanol, unlike Saccharomyces cerevisiae, it does not present the so-called overflow phenomenon. Metabolic features characterizing the presence or not of this phenomenon have not been fully elucidated. This work proposes that genome-scale metabolic response to variations in NAD(H/+) availability characterizes fermentative behavior in both yeasts. Thus, differentiating features in S. stipitis and S. cerevisiae were determined analyzing growth sensitivity response to changes in available reducing capacity in relation to ethanol production capacity and overall metabolic flux span. Using genome-scale constraint-based metabolic models, phenotypic phase planes and shadow price analyses, an excess of available reducing capacity for growth was found in S. cerevisiae at every metabolic phenotype where growth is limited by oxygen uptake, while in S. stipitis this was observed only for a subset of those phenotypes. Moreover, by using flux variability analysis, an increased metabolic flux span was found in S. cerevisiae at growth limited by oxygen uptake, while in S. stipitis flux span was invariant. Therefore, each yeast can be characterized by a significantly different metabolic response and flux span when growth is limited by oxygen uptake, both features suggesting a higher metabolic flexibility in S. cerevisiae. By applying an optimization-based approach on the genome-scale models, three single reaction deletions were found to generate in S. stipitis the reducing capacity availability pattern found in S. cerevisiae, two of them correspond to reactions involved in the overflow phenomenon. These results show a close relationship between the growth sensitivity response given by the metabolic network and fermentative behavior. PMID:24489927

  9. Cloning of Pseudomonas sp. strain CBS3 genes specifying dehalogenation of 4-chlorobenzoate

    SciTech Connect

    Savard, P.; Peloquin, L.; Sylvestre, M.

    1986-10-01

    Halogenated benzoates have been used as models for the study of the biodegradation of herbicides and PCBs. The degradation of 4-chlorobenzoate (4-CBA) by Pseudomonas sp. strain CBS3 is thought to proceed first by the dehalogenation of 4-CBA to 4-hydroxybenzoate (4-HBA), which is then metabolized following the protocatechuate branch of the ..beta..-ketoadipate pathway. The cloning of the 4-CBA dehalogenation system was carried out by constructing a gene bank of Pseudomonas sp. strain CBS3 in Pseudomonas putida. Hybrid plasmid pPSA843 contains a 9.5-kilobase-pair fragment derived from the chromosome of Pseudomonas sp. strain CBS3. This plasmid confers on P. putida the ability to dehalogenate 4-CBA and grow on 4-CBA as the only source of carbon. However, pPSA843 did not complement mutants of P. putida unable to grow on 4-HBA (POB/sup -/), showing that the genes involved in the metabolism of 4-HBA were not cloned. Subcloning of Pseudomonas sp. strain CBS3 genes revealed that most of the insert is required for the dehalogenation of 4-CBA, suggesting that more than one gene product is involved in this dehalogenation.

  10. Draft Genome of Debaryomyces fabryi CBS 789T, Isolated from a Human Interdigital Mycotic Lesion

    PubMed Central

    Tafer, Hakim; Sterflinger, Katja

    2016-01-01

    The yeast genus Debaryomyces comprises species isolated from various natural habitats, man-made environments, and clinical materials. Here, the draft genome of D. fabryi CBS 789T, isolated from a human interdigital mycotic lesion, is presented. PMID:26847909

  11. Draft Genome of Debaryomyces fabryi CBS 789T, Isolated from a Human Interdigital Mycotic Lesion.

    PubMed

    Tafer, Hakim; Sterflinger, Katja; Lopandic, Ksenija

    2016-01-01

    The yeast genus Debaryomyces comprises species isolated from various natural habitats, man-made environments, and clinical materials. Here, the draft genome of D. fabryi CBS 789(T), isolated from a human interdigital mycotic lesion, is presented. PMID:26847909

  12. A convenient enantioselective CBS-reduction of arylketones in flow-microreactor systems.

    PubMed

    De Angelis, Sonia; De Renzo, Maddalena; Carlucci, Claudia; Degennaro, Leonardo; Luisi, Renzo

    2016-05-01

    A convenient, versatile, and green CBS-asymmetric reduction of aryl and heteroaryl ketones has been developed by using the microreactor technology. The study demonstrates that it is possible to handle borane solution safely within microreactors and that the reaction performs well using 2-MeTHF as a greener solvent. PMID:27086654

  13. Draft Genome Sequence of the Animal and Human Pathogen Malassezia pachydermatis Strain CBS 1879

    PubMed Central

    Triana, Sergio; González, Andrés; Ohm, Robin A.; Wösten, Han A. B.; de Cock, Hans; Restrepo, Silvia

    2015-01-01

    Malassezia pachydermatis is a basidiomycetous yeast that causes infections in humans and animals. Here, we report the genome sequence of Malassezia pachydermatis strain CBS 1879, which will facilitate the study of mechanisms underlying pathogenicity of the only non-lipid-dependent Malasezzia species. PMID:26472839

  14. Hansenula polymorpha (Pichia angusta): Biology and Applications

    NASA Astrophysics Data System (ADS)

    Kunze, Gotthard; Kang, Hyun Ah; Gellissen, Gerd

    Hansenula polymorpha (Pichia angusta) belongs to a limited number of methylotrophic yeast species. It is able to assimilate nitrate and can grow on a range of carbon sources. Furthermore, H. polymorpha is a thermo-tolerant microorganism with some strains growing at temperatures up to 50° C and more. These unusual characteristics render H. polymorpha attractive as a model organism to study the development and functions of peroxisomes and the biochemistry of nitrate assimilation. H. polymorpha provides an established platform for heterologous gene expression and is distinguished by an impressive track record as producer of recom-binant proteins that include commercially available pharmaceuticals like hepatitis B vaccine, insulin and the IFN α-2a

  15. CCSD(T)/CBS fragment-based calculations of lattice energy of molecular crystals.

    PubMed

    Červinka, Ctirad; Fulem, Michal; Růžička, Květoslav

    2016-02-14

    A comparative study of the lattice energy calculations for a data set of 25 molecular crystals is performed using an additive scheme based on the individual energies of up to four-body interactions calculated using the coupled clusters with iterative treatment of single and double excitations and perturbative triples correction (CCSD(T)) with an estimated complete basis set (CBS) description. The CCSD(T)/CBS values on lattice energies are used to estimate sublimation enthalpies which are compared with critically assessed and thermodynamically consistent experimental values. The average absolute percentage deviation of calculated sublimation enthalpies from experimental values amounts to 13% (corresponding to 4.8 kJ mol(-1) on absolute scale) with unbiased distribution of positive to negative deviations. As pair interaction energies present a dominant contribution to the lattice energy and CCSD(T)/CBS calculations still remain computationally costly, benchmark calculations of pair interaction energies defined by crystal parameters involving 17 levels of theory, including recently developed methods with local and explicit treatment of electronic correlation, such as LCC and LCC-F12, are also presented. Locally and explicitly correlated methods are found to be computationally effective and reliable methods enabling the application of fragment-based methods for larger systems. PMID:26874495

  16. CCSD(T)/CBS fragment-based calculations of lattice energy of molecular crystals

    NASA Astrophysics Data System (ADS)

    Červinka, Ctirad; Fulem, Michal; Růžička, Květoslav

    2016-02-01

    A comparative study of the lattice energy calculations for a data set of 25 molecular crystals is performed using an additive scheme based on the individual energies of up to four-body interactions calculated using the coupled clusters with iterative treatment of single and double excitations and perturbative triples correction (CCSD(T)) with an estimated complete basis set (CBS) description. The CCSD(T)/CBS values on lattice energies are used to estimate sublimation enthalpies which are compared with critically assessed and thermodynamically consistent experimental values. The average absolute percentage deviation of calculated sublimation enthalpies from experimental values amounts to 13% (corresponding to 4.8 kJ mol-1 on absolute scale) with unbiased distribution of positive to negative deviations. As pair interaction energies present a dominant contribution to the lattice energy and CCSD(T)/CBS calculations still remain computationally costly, benchmark calculations of pair interaction energies defined by crystal parameters involving 17 levels of theory, including recently developed methods with local and explicit treatment of electronic correlation, such as LCC and LCC-F12, are also presented. Locally and explicitly correlated methods are found to be computationally effective and reliable methods enabling the application of fragment-based methods for larger systems.

  17. Isolation and properties of genetically defined strains of the methylotrophic yeast Hansenula polymorpha CBS4732.

    PubMed

    Lahtchev, Kantcho L; Semenova, Vika D; Tolstorukov, Ilia I; van der Klei, Ida; Veenhuis, Marten

    2002-02-01

    Genetically defined strains of the yeast Hansenula polymorpha were constructed from a clone of H. polymorpha CBS4732 with very low mating and sporulation abilities. Mating, spore viability, and the percentage of four-spore-containing asci were increased to a level at which tetrad analysis was possible. Auxotrophic mutations in 30 genes were isolated and used to construct strains with multiple markers for mapping studies, transformation with plasmid DNA, and mutant screening. Various other types of mutants were isolated and characterized, among them mutants that displayed an altered morphology, methanol-utilization deficient mutants and strains impaired in the biosynthesis of alcohol oxidase and catalase. Also, the mutability of H. polymorpha CBS4732 vs H. polymorpha NCYC495 was compared. The data revealed clear differences in frequencies of appearance and mutational spectra of some mutants isolated. Many of the mutants isolated had good mating abilities, and diploids resulting from their crossing displayed high sporulation frequencies and high spore viability. Most of the markers used revealed normal Mendelian segregation during meiosis. The frequency of tetratype spore formation was lower than in Saccharomyces cerevisiae suggesting a lower frequency of recombination during the second meiotic division. The properties of genetically defined strains of H. polymorpha CBS4732 as well as their advantages for genetics and molecular studies are discussed. PMID:11807564

  18. CO-CBS-H2 S Axis: From Vascular Mediator to Cancer Regulator.

    PubMed

    Suematsu, Makoto; Nakamura, Takashi; Tokumoto, Yasuhito; Yamamoto, Takehiro; Kajimura, Mayumi; Kabe, Yasuaki

    2016-04-01

    CO is a gaseous mediator generated by HO. Our previous studies revealed that CO generated from inducible HO-1 or from constitutive HO-2 modulates function of different heme proteins or enzymes through binding to their prosthetic ferrous heme to alter their structures, regulating biological function of cells and organs. Such CO-directed target macromolecules include sGC and CBS. In the liver, CO serves as a sinusoidal dilator through its action on sGC in hepatic stellate cells, while the same gas accounts for vasoconstrictor that inhibits H2 S generated by CO-sensitive CBS in astrocytes. Since molecular O2 is a substrate for HO, the latter mechanism contributes to hypoxic vasodilation in neurovascular units. We have recently uncovered that stress-inducible CO in and around cancer cells suppresses CBS to result in decreased methylation of PFKFB3, the enzyme regulating PFK-1, leading to a shift of glucose biotransformation from glycolysis toward pentose phosphate pathway; such a metabolic remodeling causes chemoresistance through increasing NADPH and reduced glutathione under stress conditions for cancer cells. This article reviews the intriguing networks of CO-sensitive metabolic regulatory mechanisms in microcirculation and cancer. PMID:26537442

  19. In vivo unnatural amino acid expression in the methylotrophic yeast Pichia pastoris

    SciTech Connect

    Young, Travis; Schultz, Peter G

    2014-02-11

    The invention provides orthogonal translation systems for the production of polypeptides comprising unnatural amino acids in methyltrophic yeast such as Pichia pastoris. Methods for producing polypeptides comprising unnatural amino acids in methyltrophic yeast such as Pichia pastoris are also provided.

  20. centrosomin's beautiful sister (cbs) encodes a GRIP-domain protein that marks Golgi inheritance and functions in the centrosome cycle in Drosophila.

    PubMed

    Eisman, Robert C; Stewart, Natasha; Miller, David; Kaufman, Thomas C

    2006-08-15

    The mechanism of inheritance of the Golgi complex is an important problem in cell biology. In this study, we examine the localization and function of a Golgi protein encoded by centrosomin's beautiful sister (cbs) during cleavage in Drosophila melanogaster. Cbs contains a GRIP domain that is 57% identical to vertebrate Golgin-97. Cbs undergoes a dramatic relocalization during mitosis from the cytoplasm to an association with chromosomes from late prometaphase to early telophase, by a transport mechanism that requires the GRIP domain and Arl1, the product of the Arf72A locus. Additionally, Cbs remains independent of the endoplasmic reticulum throughout cleavage. The use of RNAi, Arf72A mutant analysis and ectopic expression of the GRIP domain, shows that cycling of Cbs during mitosis is required for the centrosome cycle. The effects on the centrosome cycle depend on Cbs concentration and Cbs transport from the cytoplasm to DNA. When Cbs levels are reduced centrosomes fail to mature, and when Cbs transport is impeded by ectopic expression of the GRIP domain, centrosomes undergo hypertrophy. We propose that, Cbs is a trans-Golgi protein that links Golgi inheritance to the cell cycle and the Drosophila Golgi is more vertebrate-like than previously recognized. PMID:16882688

  1. The association between the 844ins68 polymorphism in the CBS gene and breast cancer

    PubMed Central

    Figuera-Villanueva, Luis Eduardo; Ramos-Silva, Adriana; Salas-González, Efraín; Puebla-Pérez, Ana María; Peralta-Leal, Valeria; García-Ortiz, José Elías; Dávalos-Rodríguez, Ingrid Patricia; Zúñiga-González, Guillermo Moisés

    2014-01-01

    Introduction The cystathionine beta synthase (CBS) gene plays an important role in homocysteine metabolism because it catalyzes the first step of the transsulfuration pathway, during which homocysteine is converted to cystathionine. Polymorphisms of CBS have been associated with cancer. Material and methods We examined the role of the 844ins68 polymorphism by comparing the genotypes of 371 healthy Mexican women with the genotypes of 323 Mexican women with breast cancer (BC). Results The observed genotype frequencies for controls and BC patients were 1% and 2% for Ins/Ins, 13% and 26% for W/Ins, and 86% and 72% for W/W, respectively. We found that the odds ratio (OR) was 2.2, with a 95% confidence interval (95% CI) of 1.5–3.3, p = 0.0001. The association was also evident when comparing the distribution of the W/Ins-Ins/Ins genotypes in patients in the following categories: 1) menopause and high γ-glutamyltransferase (GGT) levels (OR of 2.17, 95% CI: 1.17–4.26, p = 0.02), 2) chemotherapy response and high lactate dehydrogenase (LDH) levels (OR 2.2, 95% CI: 1.08–4.4, p = 0.027), 3) chemotherapy response and high GGT levels (OR 2.46, 95% CI: 1.2–4.8, p = 0.007), and 4) body mass index (BMI) and III–IV tumor stage (OR 3.2, 95% CI: 1.2–8.3, p = 0.013). Conclusions We conclude that the genotypes W/Ins-Ins/Ins of the 844ins68 polymorphism in the CBS gene contribute significantly to BC susceptibility in the analyzed sample from the Mexican population. PMID:25624861

  2. Polymorphisms in MTHFR, MS and CBS Genes and Homocysteine Levels in a Pakistani Population

    PubMed Central

    Yakub, Mohsin; Moti, Naushad; Parveen, Siddiqa; Chaudhry, Bushra; Azam, Iqbal; Iqbal, Mohammad Perwaiz

    2012-01-01

    Background Hyperhomocysteinemia (>15 µmol/L) is highly prevalent in South Asian populations including Pakistan. In order to investigate the genetic determinants of this condition, we studied 6 polymorphisms in genes of 3 enzymes - methylenetetrahydrofolate reductase (MTHFR; C677T; A1298C), methionine synthase (MS; A2756G), cystathionine-β-synthase (CBS; T833C/844ins68, G919A) involved in homocysteine metabolism and investigated their interactions with nutritional and environmental factors in a Pakistani population. Methodology/Principal Findings In a cross-sectional survey, 872 healthy adults (355 males and 517 females; age 18–60 years) were recruited from a low-income urban population in Karachi. Fasting venous blood was obtained and assessed for plasma/serum homocysteine; folate, vitamin B12, pyridoxal phosphate and blood lead. DNA was isolated and genotyping was performed by PCR-RFLP (restriction-fragment-length- polymorphism) based assays. The average changes in homocysteine levels for MTHFR 677CT and TT genotypes were positive [β(SE β), 2.01(0.63) and 16.19(1.8) µmol/L, respectively]. Contrary to MTHFR C677T polymorphism, the average changes in plasma homocysteine levels for MS 2756AG and GG variants were negative [β(SE β), −0.56(0.58) and −0.83(0.99) µmol/L, respectively]. The average change occurring for CBS 844ins68 heterozygous genotype (ancestral/insertion) was −1.88(0.81) µmol/L. The combined effect of MTHFR C677T, MS A2756G and CBS 844ins68 genotypes for plasma homocysteine levels was additive (p value <0.001). Odds of having hyperhomocysteinemia with MTHFR 677TT genotype was 10-fold compared to MTHFR 677CC genotype [OR (95%CI); 10.17(3.6–28.67)]. Protective effect towards hyperhomocysteinemia was observed with heterozygous (ancestral/insertion) genotype of CBS 844ins68 compared to homozygous ancestral type [OR (95% CI); 0.58 (0.34–0.99)]. Individuals with MTHFR 677CT or TT genotypes were at a greater risk of hyperhomocysteinemia in

  3. Electrochemical oxidation stability of anions for modern battery electrolytes: a CBS and DFT study.

    PubMed

    Jónsson, Erlendur; Johansson, Patrik

    2015-02-01

    The electrochemical stability vs. oxidation is a crucial property of anions in order to be suitable as components in lithium-ion batteries. Here the applicability of a number of computational approaches and methods to assess this property, employing a wide selection of DFT functionals, has been studied using the CCSD(T)/CBS method as the reference. In all, the vertical anion oxidation potential, ΔEv, is a fair way to calculate the stability vs. oxidation, however, a functional of at least hybrid quality is recommended. In addition, the chemical hardness, η, is identified as a novel approach to calculate the stability vs. oxidation. PMID:25557392

  4. Effect of oxygenation and temperature on glucose-xylose fermentation in Kluyveromyces marxianus CBS712 strain

    PubMed Central

    2014-01-01

    Background The yeast Kluyveromyces marxianus features specific traits that render it attractive for industrial applications. These include production of ethanol which, together with thermotolerance and the ability to grow with a high specific growth rate on a wide range of substrates, could make it an alternative to Saccharomyces cerevisiae as an ethanol producer. However, its ability to co-ferment C5 and C6 sugars under oxygen-limited conditions is far from being fully characterized. Results In the present study, K. marxianus CBS712 strain was cultivated in defined medium with glucose and xylose as carbon source. Ethanol fermentation and sugar consumption of CBS712 were investigated under different oxygen supplies (1.75%, 11.00% and 20.95% of O2) and different temperatures (30°C and 41°C). By decreasing oxygen supply, independently from the temperature, both biomass production as well as sugar utilization rate were progressively reduced. In all the tested conditions xylose consumption followed glucose exhaustion. Therefore, xylose metabolism was mainly affected by oxygen depletion. Loss in cell viability cannot explain the decrease in sugar consumption rates, as demonstrated by single cell analyses, while cofactor imbalance is commonly considered as the main cause of impairment of the xylose reductase (KmXR) - xylitol dehydrogenase (KmXDH) pathway. Remarkably, when these enzyme activities were assayed in vitro, a significant decrease was observed together with oxygen depletion, not ascribed to reduced transcription of the corresponding genes. Conclusions In the present study both oxygen supply and temperature were shown to be key parameters affecting the fermentation capability of sugars in the K. marxianus CBS712 strain. In particular, a direct correlation was observed between the decreased efficiency to consume xylose with the reduced specific activity of the two main enzymes (KmXR and KmXDH) involved in its catabolism. These data suggest that, in addition to

  5. Two new asterriquinols from Aspergillus sp. CBS-P-2 with anti-inflammatory activity.

    PubMed

    An, Xiao; Feng, Bao-Min; Chen, Gang; Chen, Shao-Fei; Wang, Hai-Feng; Pei, Yue-Hu

    2016-08-01

    Two new bisindolylbenzenoid alkaloids asterriquinol E (1) and asterriquinol F (2), together with four known compounds (3-6) were isolated from the fermentation products of the fungus Aspergillus sp. CBS-P-2. Their structures were established on the basis of extensive spectroscopic analysis, including HR-ESI-MS, UV, IR, 1D, and 2D NMR (HSQC, HMBC, and NOESY) methods. The stereochemical structure of 2 was confirmed via the CD data of the in situ formed [Rh2(OCOCF3)4] complex method. All of the isolated compounds were tested for inhibitory activity against LPS (lipopolysaccharide)-induced nitric oxide production in microglia. PMID:26988164

  6. Crystallization and preliminary X-ray crystallographic analysis of the β-N-acetylglucosaminidase CbsA from Thermotoga neapolitana.

    PubMed

    Yoon, Bo-Young; Jiao, Li; Moon, Hyung Ryong; Cha, Jaeho; Ha, Nam-Chul

    2012-01-01

    The β-N-acetylglucosaminidase CbsA was cloned from the thermophilic Gram-negative bacterium Thermotoga neapolitana. Although CbsA contains a family 3 glycoside hydrolase-type (GH3-type) catalytic domain, it can be distinguished from other GH3-type β-N-acetylglucosaminidases by its high activity towards chitobiose. The homodimeric CbsA contains a unique domain at the C-terminus for which the three-dimensional structure is not yet known. In this study, CbsA was overexpressed and the recombinant protein was purified using Ni-NTA affinity and gel-filtration chromatography. The purified CbsA protein was crystallized using the vapour-diffusion method. A diffraction data set was collected to a resolution of 2.0 Å at 100 K. The crystal belonged to space group R32. To obtain initial phases, the crystallization of selenomethionyl-substituted protein and the production of heavy-atom derivative crystals are in progress. PMID:22232172

  7. Galactose utilization sheds new light on sugar metabolism in the sequenced strain Dekkera bruxellensis CBS 2499.

    PubMed

    Moktaduzzaman, Md; Galafassi, Silvia; Capusoni, Claudia; Vigentini, Ileana; Ling, Zhihao; Piškur, Jure; Compagno, Concetta

    2015-03-01

    Dekkera bruxellensis and Saccharomyces cerevisiae are considered two phylogenetically distant relatives, but they share several industrial relevant traits such as the ability to produce ethanol under aerobic conditions (Crabtree effect), high tolerance towards ethanol and acids, and ability to grow without oxygen. Beside a huge adaptability, D. bruxellensis exhibits a broader spectrum in utilization of carbon and nitrogen sources in comparison to S. cerevisiae. With the aim to better characterize its carbon source metabolism and regulation, the usage of galactose and the role that glucose plays on sugar metabolism were investigated in D. bruxellensis CBS 2499. The results indicate that in this yeast galactose is a non-fermentable carbon source, in contrast to S. cerevisiae that can ferment it. In particular, its metabolism is affected by the nitrogen source. Interestingly, D. bruxellensis CBS 2499 exhibits the 'short-term Crabtree effect', and the expression of genes involved in galactose utilization and in respiratory metabolism is repressed by glucose, similarly to what occurs in S. cerevisiae. PMID:25673757

  8. 21 CFR 573.750 - Pichia pastoris dried yeast.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Pichia pastoris dried yeast. 573.750 Section 573.750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.750...

  9. Endurance and failure characteristics of modified Vasco X-2, CBS 600 and AISI 9310 spur gears. [aircraft construction materials

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.; Zaretsky, E. V.

    1980-01-01

    Gear endurance tests and rolling-element fatigue tests were conducted to compare the performance of spur gears made from AISI 9310, CBS 600 and modified Vasco X-2 and to compare the pitting fatigue lives of these three materials. Gears manufactured from CBS 600 exhibited lives longer than those manufactured from AISI 9310. However, rolling-element fatigue tests resulted in statistically equivalent lives. Modified Vasco X-2 exhibited statistically equivalent lives to AISI 9310. CBS 600 and modified Vasco X-2 gears exhibited the potential of tooth fracture occurring at a tooth surface fatigue pit. Case carburization of all gear surfaces for the modified Vasco X-2 gears results in fracture at the tips of the gears.

  10. Crystallization and preliminary crystallographic analysis of merohedrally twinned crystals of MJ0729, a CBS-domain protein from Methanococcus jannaschii

    SciTech Connect

    Fernández-Millán, Pablo; Kortazar, Danel; Lucas, María; Martínez-Chantar, María Luz; Astigarraga, Egoitz; Fernández, José Andrés; Albert, Armando; Martínez-Cruz, Luis Alfonso

    2008-07-01

    Trigonal crystals of MJ0729 showing different degrees of merohedral twinning that may vary from perfect hemihedral twinning to perfect tetartohedral twinning were obtained upon slight variation of the pH. CBS domains are small protein motifs, usually associated in tandem, that are implicated in binding to adenosyl groups. Several genetic diseases in humans have been associated with mutations in CBS sequences, which has made them very promising targets for rational drug design. Trigonal crystals of the CBS-domain protein MJ0729 from Methanococcus jannaschii were grown by the vapour-diffusion method at acidic pH. Preliminary analysis of nine X-ray diffraction data sets using Yeates statistics and Britton plots showed that slight variation in the pH as well as in the buffer used in the crystallization experiments led to crystals with different degrees of merohedral twinning that may vary from perfect hemihedral twinning to perfect tetartohedral twinning.

  11. Crystallization and preliminary crystallographic analysis of merohedrally twinned crystals of MJ0729, a CBS-domain protein from Methanococcus jannaschii

    PubMed Central

    Fernández-Millán, Pablo; Kortazar, Danel; Lucas, María; Martínez-Chantar, María Luz; Astigarraga, Egoitz; Fernández, José Andrés; Sabas, Olatz; Albert, Armando; Mato, Jose M.; Martínez-Cruz, Luis Alfonso

    2008-01-01

    CBS domains are small protein motifs, usually associated in tandem, that are implicated in binding to adenosyl groups. Several genetic diseases in humans have been associated with mutations in CBS sequences, which has made them very promising targets for rational drug design. Trigonal crystals of the CBS-domain protein MJ0729 from Methanococcus jannaschii were grown by the vapour-diffusion method at acidic pH. Preliminary analysis of nine X-ray diffraction data sets using Yeates statistics and Britton plots showed that slight variation in the pH as well as in the buffer used in the crystallization experiments led to crystals with different degrees of merohedral twinning that may vary from perfect hemihedral twinning to perfect tetartohedral twinning. PMID:18607087

  12. Cystathionine β-synthase (CBS) domains confer multiple forms of Mg2+-dependent cooperativity to family II pyrophosphatases.

    PubMed

    Salminen, Anu; Anashkin, Viktor A; Lahti, Matti; Tuominen, Heidi K; Lahti, Reijo; Baykov, Alexander A

    2014-08-15

    Regulated family II pyrophosphatases (CBS-PPases) contain a nucleotide-binding insert comprising a pair of cystathionine β-synthase (CBS) domains, termed a Bateman module. By binding with high affinity to the CBS domains, AMP and ADP usually inhibit the enzyme, whereas ATP activates it. Here, we demonstrate that AMP, ADP, and ATP bind in a positively cooperative manner to CBS-PPases from four bacteria: Desulfitobacterium hafniense, Clostridium novyi, Clostridium perfringens, and Eggerthella lenta. Enzyme interaction with substrate as characterized by the Michaelis constant (Km) also exhibited positive catalytic cooperativity that decreased in magnitude upon nucleotide binding. The degree of both types of cooperativity increased with increasing concentration of the cofactor Mg(2+) except for the C. novyi PPase where Mg(2+) produced the opposite effect on kinetic cooperativity. Further exceptions from these general rules were ADP binding to C. novyi PPase and AMP binding to E. lenta PPase, neither of which had any effect on activity. A genetically engineered deletion variant of D. hafniense PPase lacking the regulatory insert was fully active but differed from the wild-type enzyme in that it was insensitive to nucleotides and bound substrate non-cooperatively and with a smaller Km value. These results indicate that the regulatory insert acts as an internal inhibitor and confers dual positive cooperativity to CBS domain-containing PPases, making them highly sensitive regulators of the PPi level in response to the changes in cell energy status that control adenine nucleotide distribution. These regulatory features may be common among other CBS domain-containing proteins. PMID:24986864

  13. Expression analysis for genes involved in arachidonic acid biosynthesis in Mortierella alpina CBS 754.68

    PubMed Central

    Samadlouie, Hamid-Reza; Hamidi-Esfahani, Zohreh; Alavi, Seyed-Mehdi; Varastegani, Boshra

    2014-01-01

    The time courses for production of fungal biomass, lipid, phenolic and arachidonic acid (ARA) as well as expression of the genes involved in biosynthesis of ARA and lipid were examined in Mortierella alpina CBS 754.68. A significant increase in the arachidonic acid content in lipids that coincided with reduced levels of lipid was obtained. Reduced gene expression occurred presumably due to the steady reduction of carbon and nitrogen resources. However, these energy resources were inefficiently compensated by the breakdown of the accumulated lipids that in turn, induced up-regulated expression of the candidate genes. The results further indicated that the expression of the GLELO encoding gene is a rate-limiting step in the biosynthesis of ARA in the early growth phase. PMID:25242926

  14. Open Science CBS Neuroimaging Repository: Sharing ultra-high-field MR images of the brain.

    PubMed

    Tardif, Christine Lucas; Schäfer, Andreas; Trampel, Robert; Villringer, Arno; Turner, Robert; Bazin, Pierre-Louis

    2016-01-01

    Magnetic resonance imaging at ultra high field opens the door to quantitative brain imaging at sub-millimeter isotropic resolutions. However, novel image processing tools to analyze these new rich datasets are lacking. In this article, we introduce the Open Science CBS Neuroimaging Repository: a unique repository of high-resolution and quantitative images acquired at 7 T. The motivation for this project is to increase interest for high-resolution and quantitative imaging and stimulate the development of image processing tools developed specifically for high-field data. Our growing repository currently includes datasets from MP2RAGE and multi-echo FLASH sequences from 28 and 20 healthy subjects respectively. These datasets represent the current state-of-the-art in in-vivo relaxometry at 7 T, and are now fully available to the entire neuroimaging community. PMID:26318051

  15. Funding 3D-CBS:. Changing the Role of PET for Cancer Screening

    NASA Astrophysics Data System (ADS)

    Crosetto, Dario B.

    2010-04-01

    The role of Positron Emission Technology (PET) should be changed with use of the 30-CBS (Three Dimensional Complete Body screening) for maximizing the capture of signals that will detect minimum abnormal metabolism (or other biological processes), achievable by capturing simultaneously and accurately as many signals as possible from the tumor markers from all organs of the body in order to identify the smallest anomaly, at the lowest cost per signal captured and requiring the minimum radiation to the patient. This paper provides scientific arguments for setting new parameters for industry to establish the correct relation between the goal of obtaining substantial reduction in cancer deaths and the implementation of innovations and technology that will provide the expected results through early cancer detection.

  16. Geosmin and Related Volatiles in Bioreactor-Cultured Streptomyces citreus CBS 109.60

    PubMed Central

    Pollak, F. C.; Berger, R. G.

    1996-01-01

    Streptomyces citreus CBS 109.60 produced geosmin and a complex pattern of other volatile compounds during cultivation in a 2.5-liter laboratory bioreactor. Volatiles were isolated from disrupted cells, from the culture medium, and from the waste air of the bioreactor by adsorption on Lewatit OC 1064MD. Quantitative and qualitative analyses were carried out using capillary gas chromatography and coupled gas chromatography-mass spectroscopy. S. citreus produced 56 volatile compounds, which were mainly terpenoids but also included aliphatic ketones, alcohols, esters, pyrazines, furan(on)es, and aromatic types during the growth phase. The major components were geosmin and a germacradienol. A biosynthetic pathway for geosmin including eudesmanolides is proposed. PMID:16535293

  17. Surface fatigue life and failure characteristics of EX-53, CBS 1000M, and AISI 9310 gear materials

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.

    1985-01-01

    Spur gear endurance tests and rolling-element surface fatigue tests are conducted to investigate EX-53 and CBS 1000M steels for use as advanced application gear materials, to determine their endurance characteristics, and to compare the results with the standard AISI 9310 gear material. The gear pitch diameter is 8.89 cm (3.50 in). Gear test conditions are an oil inlet temperature of 320 K (116 F), an oil outlet temperature of 350 K (170 F), a maximum Hertz stress of 1.71 GPa (248 ksi), and a speed of 10,000 rpm. Bench-type rolling-element fatigue tests are conducted at ambient temperature with a bar specimen speed of 12,500 rpm and a maximum Hertz stress of 4.83 GPa (700 ksi). The EX-53 test gears have a surface fatigue life of twice that of the AISI 9310 spur gears. The CBS 1000M test gears have a surface fatigue life of more than twice that of the AISI 9310 spur gears. However, the CBS 1000M gears experience a 30-percent tooth fracture failure which limits its use as a gear material. The rolling-contact fatigue lines of RC bar specimens of EX-53 and ASISI 9310 are approximately equal. However, the CBS 1000M RC specimens have a surface fatigue life of about 50 percent that of the AISI 9310.

  18. An assessment of selected properties of the fluorescent tracer, Tinopal CBS-X related to conservative behavior, and suggested improvements

    NASA Astrophysics Data System (ADS)

    Licha, Tobias; Niedbala, Anne; Bozau, Elke; Geyer, Tobias

    2013-03-01

    SummaryA conservative or well known reactive behavior of water tracers is a prerequisite in the quantitative evaluation of their tracer breakthrough curves. The fluorescent dye, Tinopal CBS-X, is one of the few licensed fluorescent dyes for water tracing with safe use. Its main advantage is its blue fluorescence, which is barely visible to the human eye and thus can be used when coloring water must be avoided. However, scientists have described the recovery of this dye as poor to very poor in field tracer experiments. Hence, this study focuses on examining the interaction of the main water chemistry with Tinopal CBS-X by determining the solubility products of the dye with most common cations. The findings of this investigation reveal that the tracer forms precipitates of very low aqueous solubility with di- and trivalent cations (pKsp 6.4-16.8). As a consequence, Tinopal CBS-X is not a conservative tracer and respective tracer breakthrough curves will exhibit strong tailings at least in part, as result of precipitations formed. The addition of a chemical modifier, EDTA, is suggested to enhance the solubility of Tinopal CBS-X in order to overcome its non-conservative behavior. Equations for estimating the amount of EDTA necessary are provided. In the light of these results, earlier reported tracer breakthrough curves are revisited and re-interpreted.

  19. Dynamic model-based analysis of furfural and HMF detoxification by pure and mixed batch cultures of S. cerevisiae and S. stipitis.

    PubMed

    Hanly, Timothy J; Henson, Michael A

    2014-02-01

    Inhibitory compounds that result from biomass hydrolysis are an obstacle to the efficient production of second-generation biofuels. Fermentative microorganisms can reduce compounds such as furfural and 5-hydroxymethyl furfural (HMF), but detoxification is accompanied by reduced growth rates and ethanol yields. In this study, we assess the effects of these furan aldehydes on pure and mixed yeast cultures consisting of a respiratory deficient mutant of Saccharomyces cerevisiae and wild-type Scheffersomyces stipitis using dynamic flux balance analysis. Uptake kinetics and stoichiometric equations for the intracellular reduction reactions associated with each inhibitor were added to genome-scale metabolic reconstructions of the two yeasts. Further modification of the S. cerevisiae metabolic network was necessary to satisfactorily predict the amount of acetate synthesized during HMF reduction. Inhibitory terms that captured the adverse effects of the furan aldehydes and their corresponding alcohols on cell growth and ethanol production were added to attain qualitative agreement with batch experiments conducted for model development and validation. When the two yeasts were co-cultured in the presence of the furan aldehydes, inoculums that reduced the synthesis of highly toxic acetate produced by S. cerevisiae yielded the highest ethanol productivities. The model described here can be used to generate optimal fermentation strategies for the simultaneous detoxification and fermentation of lignocellulosic hydrolysates by S. cerevisiae and/or S. stipitis. PMID:23983023

  20. Nitrotyrosinylation, Remodeling and Endothelial-Myocyte Uncoupling in iNOS, Cystathionine Beta Synthase (CBS) Knockouts and iNOS/CBS Double Knockout Mice

    PubMed Central

    Kundu, Soumi; Kumar, Munish; Sen, Utpal; Mishra, Paras K.; Tyagi, Neetu; Metreveli, Naira; Lominadze, David; Rodriguez, Walter; Tyagi, Suresh C.

    2009-01-01

    Increased levels of homocysteine (Hcy), recognized as hyperhomocysteinemia (HHcy), were associated with cardiovascular diseases. There was controversy regarding the detrimental versus cardio protective role of inducible nitric oxide synthase (iNOS) in ischemic heart disease. The aim of this study was to test the hypothesis that the Hcy generated nitrotyrosine by inducing the endothelial nitric oxide synthase, causing endothelial-myocyte (E–M) coupling. To differentiate the role of iNOS versus constitutive nitric oxide synthase (eNOS and nNOS) in Hcy-mediated nitrotyrosine generation and matrix remodeling in cardiac dysfunction, left ventricular (LV) tissue was analyzed from cystathionine beta synthase (CBS) heterozygote knockout, iNOS homozygote knockout, CBS−/+/iNOS−/− double knockout, and wild-type (WT) mice. The levels of nitrotyrosine, MMP-2 and -9 (zymographic analysis), and fibrosis (by trichrome stain) were measured. The endothelial-myocyte function was determined in cardiac rings. In CBS−/+ mice, homocysteine was elevated and in iNOS−/− mice, nitric oxide was significantly reduced. The nitrotyrosine and matrix metalloproteinase-9 (MMP-9) levels were elevated in double knockout and CBS−/+ as compared to WT mice. Although MMP-2 levels were similar in CBS−/+, iNOS−/−, and CBS−/+/iNOS−/−, the levels were three- to fourfold higher than WT. The levels of collagen were similar in CBS−/+ and iNOS−/−, but they were threefold higher than WT. Interesting, the levels of collagen increased sixfold in double knockouts, compared to WT, suggesting synergism between high Hcy and lack of iNOS. Left ventricular hypertrophy was exaggerated in the iNOS−/− and double knockout, and mildly increased in the CBS−/+, compared to WT mice. The endothelial-dependent relaxation was attenuated to the same extent in the CBS−/+ and iNOS−/−, compared to WT, but it was robustly blunted in double knockouts. The results concluded that homocysteine

  1. Applications of recombinant Pichia pastoris in the healthcare industry

    PubMed Central

    Weinacker, Daniel; Rabert, Claudia; Zepeda, Andrea B.; Figueroa, Carolina A.; Pessoa, Adalberto; Farías, Jorge G.

    2013-01-01

    Since the 1970s, the establishment and development of the biotech industry has improved exponentially, allowing the commercial production of biopharmaceutical proteins. Nowadays, new recombinant protein production is considered a multibillion-dollar market, in which about 25% of commercial pharmaceuticals are biopharmaceuticals. But to achieve a competitive production process is not an easy task. Any production process has to be highly productive, efficient and economic. Despite that the perfect host is still not discovered, several research groups have chosen Pichia pastoris as expression system for the production of their protein because of its many features. The attempt of this review is to embrace several research lines that have adopted Pichia pastoris as their expression system to produce a protein on an industrial scale in the health care industry. PMID:24688491

  2. Characterization of wheat germin (oxalate oxidase) expressed by Pichia pastoris

    SciTech Connect

    Pan, Heng-Yen; Whittaker, Mei M.; Bouveret, Romaric; Berna, Anne; Bernier, Francois; Whittaker, James W. . E-mail: jim@ebs.ogi.edu

    2007-05-18

    High-level secretory expression of wheat (Triticum aestivum) germin/oxalate oxidase was achieved in Pichia pastoris fermentation cultures as an {alpha}-mating factor signal peptide fusion, based on the native wheat cDNA coding sequence. The oxalate oxidase activity of the recombinant enzyme is substantially increased (7-fold) by treatment with sodium periodate, followed by ascorbate reduction. Using these methods, approximately 1 g (4 x 10{sup 4} U) of purified, activated enzyme was obtained following eight days of induction of a high density Pichia fermentation culture, demonstrating suitability for large-scale production of oxalate oxidase for biotechnological applications. Characterization of the recombinant protein shows that it is glycosylated, with N-linked glycan attached at Asn47. For potential biomedical applications, a nonglycosylated (S49A) variant was also prepared which retains essentially full enzyme activity, but exhibits altered protein-protein interactions.

  3. Applications of recombinant Pichia pastoris in the healthcare industry.

    PubMed

    Weinacker, Daniel; Rabert, Claudia; Zepeda, Andrea B; Figueroa, Carolina A; Pessoa, Adalberto; Farías, Jorge G

    2013-12-01

    Since the 1970s, the establishment and development of the biotech industry has improved exponentially, allowing the commercial production of biopharmaceutical proteins. Nowadays, new recombinant protein production is considered a multibillion-dollar market, in which about 25% of commercial pharmaceuticals are biopharmaceuticals. But to achieve a competitive production process is not an easy task. Any production process has to be highly productive, efficient and economic. Despite that the perfect host is still not discovered, several research groups have chosen Pichia pastoris as expression system for the production of their protein because of its many features. The attempt of this review is to embrace several research lines that have adopted Pichia pastoris as their expression system to produce a protein on an industrial scale in the health care industry. PMID:24688491

  4. Development of yeasts for xylose fermentation

    SciTech Connect

    Jeffries, T.W.; Yang, V.; Marks, J.; Amartey, S.; Kenealy, W.R.; Cho, J.Y.; Dahn, K.; Davis, B.P.

    1993-12-31

    Xylose is an abundant sugar in hardwoods and agricultural residues. Its use is essential for any economical conversion of lignocellulose to ethanol. Only a few yeasts ferment xylose effectively. Our results show that the best strains are Candida shehatae ATCC 2984 and Pichia stipitis CBS 6054. Wild type strains of C. shehatae ATCC 22984 will produce 56 g/L of ethanol from xylose within 48 h in a fed batch fermentation. We have obtained improved mutants of P.stipitis by selecting for growth on L-xylose and L-arabinose. Mutant strains produce up to 55% more ethanol than the parent and exhibit higher specific fermentation rates. We have also developed an effective transformation system that enables the introduction and expression of heterologous DNA on integrating and autonomous vectors. The transformation system for P. stipitis is based on its URA3 gene as a selectable marker and an autonomous replication sequence (ARS) which we isolated from the parent. We are using integrating and ARS vectors to metabolically engineer P. stipitis by altering the regulation and expression of key enzymes. As model systems we are examining the expression of alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC) that are present in limiting amounts or induced only under non-growth conditions.

  5. Improving the expression of mini-proinsulin in Pichia pastoris.

    PubMed

    País-Chanfrau, José M; García, Yuneski; Licor, Lisandra; Besada, Vladimir; Castellanos-Serra, Lila; Cabello, Cecilia I; Hernández, Lester; Mansur, Manuel; Plana, Liuba; Hidalgo, Abdel; Támbara, Yanet; del C Abrahantes-Pérez, María; del Toro, Yoandris; Valdés, Jorge; Martínez, Eduardo

    2004-08-01

    Increased expression of recombinant mini-proinsulin in Pichia pastoris in 2.5 l bioreactors was achieved by increasing the cultivation pH from 5.1 to 6.3, by decreasing the temperature from 28 to 22 degrees C, and by periodical addition of ammonium sulfate and EDTA to the culture broth. Using this procedure, mini-proinsulin reached nearly 0.3 g l(-1) in the culture supernatant after 160 h of growth. PMID:15483385

  6. Cloning and Expression of Yak Active Chymosin in Pichia pastoris.

    PubMed

    Luo, Fan; Jiang, Wei Hua; Yang, Yuan Xiao; Li, Jiang; Jiang, Ming Feng

    2016-09-01

    Rennet, a complex of enzymes found in the stomachs of ruminants, is an important component for cheese production. In our study, we described that yak chymosin gene recombinant Pichia pastoris strain could serve as a novel source for rennet production. Yaks total RNA was extracted from the abomasum of an unweaned yak. The yak preprochymosin, prochymosin, and chymosin genes from total RNA were isolated using gene specific primers based on cattle chymosin gene sequence respectively and analyzed their expression pattern byreal time-polymerase chain reaction. The result showed that the chymosin gene expression level of the sucking yaks was 11.45 times higher than one of adult yaks and yak chymosin belongs to Bovidae family in phylogenetic analysis. To express each, the preprochymosin, prochymosin, and chymosin genes were ligated into the expression vector pPICZαA, respectively, and were expressed in Pichia pastoris X33. The results showed that all the recombinant clones of P. pastoris containing the preprochymosin, prochymosin or chymosin genes could produce the active form of recombinant chymosin into the culture supernatant. Heterologous expressed prochymosin (14.55 Soxhlet unit/mL) had the highest enzyme activity of the three expressed chymosin enzymes. Therefore, we suggest that the yak chymosin gene recombinant Pichia pastoris strain could provide an alternative source of rennet production. PMID:27004812

  7. Cloning and Expression of Yak Active Chymosin in Pichia pastoris

    PubMed Central

    Luo, Fan; Jiang, Wei Hua; Yang, Yuan Xiao; Li, Jiang; Jiang, Ming Feng

    2016-01-01

    Rennet, a complex of enzymes found in the stomachs of ruminants, is an important component for cheese production. In our study, we described that yak chymosin gene recombinant Pichia pastoris strain could serve as a novel source for rennet production. Yaks total RNA was extracted from the abomasum of an unweaned yak. The yak preprochymosin, prochymosin, and chymosin genes from total RNA were isolated using gene specific primers based on cattle chymosin gene sequence respectively and analyzed their expression pattern byreal time-polymerase chain reaction. The result showed that the chymosin gene expression level of the sucking yaks was 11.45 times higher than one of adult yaks and yak chymosin belongs to Bovidae family in phylogenetic analysis. To express each, the preprochymosin, prochymosin, and chymosin genes were ligated into the expression vector pPICZαA, respectively, and were expressed in Pichia pastoris X33. The results showed that all the recombinant clones of P. pastoris containing the preprochymosin, prochymosin or chymosin genes could produce the active form of recombinant chymosin into the culture supernatant. Heterologous expressed prochymosin (14.55 Soxhlet unit/mL) had the highest enzyme activity of the three expressed chymosin enzymes. Therefore, we suggest that the yak chymosin gene recombinant Pichia pastoris strain could provide an alternative source of rennet production. PMID:27004812

  8. Transcriptional Regulation of Aerobic Metabolism in Pichia pastoris Fermentation

    PubMed Central

    Zhang, Biao; Li, Baizhi; Chen, Dai; Zong, Jie; Sun, Fei; Qu, Huixin; Liang, Chongyang

    2016-01-01

    In this study, we investigated the classical fermentation process in Pichia pastoris based on transcriptomics. We utilized methanol in pichia yeast cell as the focus of our study, based on two key steps: limiting carbon source replacement (from glycerol to methonal) and fermentative production of exogenous proteins. In the former, the core differential genes in co-expression net point to initiation of aerobic metabolism and generation of peroxisome. The transmission electron microscope (TEM) results showed that yeast gradually adapted methanol induction to increased cell volume, and decreased density, via large number of peroxisomes. In the fermentative production of exogenous proteins, the Gene Ontology (GO) mapping results show that PAS_chr2-1_0582 played a vital role in regulating aerobic metabolic drift. In order to confirm the above results, we disrupted PAS_chr2-1_0582 by homologous recombination. Alcohol consumption was equivalent to one fifth of the normal control, and fewer peroxisomes were observed in Δ0582 strain following methanol induction. In this study we determined the important core genes and GO terms regulating aerobic metabolic drift in Pichia, as well as developing new perspectives for the continued development within this field. PMID:27537181

  9. Transcriptional Regulation of Aerobic Metabolism in Pichia pastoris Fermentation.

    PubMed

    Zhang, Biao; Li, Baizhi; Chen, Dai; Zong, Jie; Sun, Fei; Qu, Huixin; Liang, Chongyang

    2016-01-01

    In this study, we investigated the classical fermentation process in Pichia pastoris based on transcriptomics. We utilized methanol in pichia yeast cell as the focus of our study, based on two key steps: limiting carbon source replacement (from glycerol to methonal) and fermentative production of exogenous proteins. In the former, the core differential genes in co-expression net point to initiation of aerobic metabolism and generation of peroxisome. The transmission electron microscope (TEM) results showed that yeast gradually adapted methanol induction to increased cell volume, and decreased density, via large number of peroxisomes. In the fermentative production of exogenous proteins, the Gene Ontology (GO) mapping results show that PAS_chr2-1_0582 played a vital role in regulating aerobic metabolic drift. In order to confirm the above results, we disrupted PAS_chr2-1_0582 by homologous recombination. Alcohol consumption was equivalent to one fifth of the normal control, and fewer peroxisomes were observed in Δ0582 strain following methanol induction. In this study we determined the important core genes and GO terms regulating aerobic metabolic drift in Pichia, as well as developing new perspectives for the continued development within this field. PMID:27537181

  10. Phylogeny of the ascomycetous yeasts and the renaming of Pichia anomala to Wickerhamomyces anomalus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pichia anomala was reclassified as Wickerhamomyces anomalus following multigene phylogenetic analysis. In this review, the phylogeny of the ascomycetous yeasts is discussed, with emphasis on the genus Pichia. The genus, as defined from phenotype, had nearly 100 assigned species, but the number of ...

  11. Development of a fed-batch process for a recombinant Pichia pastoris Δoch1 strain expressing a plant peroxidase.

    PubMed

    Gmeiner, Christoph; Saadati, Amirhossein; Maresch, Daniel; Krasteva, Stanimira; Frank, Manuela; Altmann, Friedrich; Herwig, Christoph; Spadiut, Oliver

    2015-01-01

    Pichia pastoris is a prominent host for recombinant protein production, amongst other things due to its capability of glycosylation. However, N-linked glycans on recombinant proteins get hypermannosylated, causing problems in subsequent unit operations and medical applications. Hypermannosylation is triggered by an α-1,6-mannosyltransferase called OCH1. In a recent study, we knocked out OCH1 in a recombinant P. pastoris CBS7435 Mut(S) strain (Δoch1) expressing the biopharmaceutically relevant enzyme horseradish peroxidase. We characterized the strain in the controlled environment of a bioreactor in dynamic batch cultivations and identified the strain to be physiologically impaired. We faced cell cluster formation, cell lysis and uncontrollable foam formation.In the present study, we investigated the effects of the 3 process parameters temperature, pH and dissolved oxygen concentration on 1) cell physiology, 2) cell morphology, 3) cell lysis, 4) productivity and 5) product purity of the recombinant Δoch1 strain in a multivariate manner. Cultivation at 30°C resulted in low specific methanol uptake during adaptation and the risk of methanol accumulation during cultivation. Cell cluster formation was a function of the C-source rather than process parameters and went along with cell lysis. In terms of productivity and product purity a temperature of 20°C was highly beneficial. In summary, we determined cultivation conditions for a recombinant P. pastoris Δoch1 strain allowing high productivity and product purity. PMID:25567661

  12. Chaetochromones A and B, two new polyketides from the fungus Chaetomium indicum (CBS.860.68).

    PubMed

    Lu, Keyang; Zhang, Yisheng; Li, Li; Wang, Xuewei; Ding, Gang

    2013-01-01

    Chaetochromones A (1) and B (2), two novel polyketides, were isolated from the crude extract of fungus Chaetomium indicum (CBS.860.68) together with three known analogues PI-3(3), PI-4 (4) and SB236050 (5). The structures of these compounds were determined by HRESI-MS and NMR experiments. Chaetochromones A (1) and B (2) are a member of the polyketides family, which might originate from a similar biogenetic pathway as the known compounds PI-3 (3), PI-4 (4) and SB236050 (5). The biological activities of these secondary metabolites were evaluated against eight plant pathogens, including Alternaria alternata, Ilyonectria radicicola, Trichoderma viride pers, Aspergillus niger, Fusarium verticillioide, Irpex lacteus (Fr.), Poria placenta (Fr.) Cooke and Coriolus versicolor (L.) Quél. Compound 1 displayed moderate inhibitory rate (>60%) against the brown rot fungus Poria placenta (Fr.) Cooke, which causes significant wood decay. In addition, the cytotoxic activities against three cancer cell lines A549, MDA-MB-231, PANC-1 were also tested, without any inhibitory activities being detected. PMID:24013408

  13. Development of AN Innovative Three-Dimensional Complete Body Screening Device - 3D-CBS

    NASA Astrophysics Data System (ADS)

    Crosetto, D. B.

    2004-07-01

    This article describes an innovative technological approach that increases the efficiency with which a large number of particles (photons) can be detected and analyzed. The three-dimensional complete body screening (3D-CBS) combines the functional imaging capability of the Positron Emission Tomography (PET) with those of the anatomical imaging capability of Computed Tomography (CT). The novel techniques provide better images in a shorter time with less radiation to the patient. A primary means of accomplishing this is the use of a larger solid angle, but this requires a new electronic technique capable of handling the increased data rate. This technique, combined with an improved and simplified detector assembly, enables executing complex real-time algorithms and allows more efficiently use of economical crystals. These are the principal features of this invention. A good synergy of advanced techniques in particle detection, together with technological progress in industry (latest FPGA technology) and simple, but cost-effective ideas provide a revolutionary invention. This technology enables over 400 times PET efficiency improvement at once compared to two to three times improvements achieved every five years during the past decades. Details of the electronics are provided, including an IBM PC board with a parallel-processing architecture implemented in FPGA, enabling the execution of a programmable complex real-time algorithm for best detection of photons.

  14. Ethanol production using whole plant biomass of Jerusalem artichoke by Kluyveromyces marxianus CBS1555.

    PubMed

    Kim, Seonghun; Park, Jang Min; Kim, Chul Ho

    2013-03-01

    Jerusalem artichoke is a low-requirement sugar crop containing cellulose and hemicellulose in the stalk and a high content of inulin in the tuber. However, the lignocellulosic component in Jerusalem artichoke stalk reduces the fermentability of the whole plant for efficient bioethanol production. In this study, Jerusalem artichoke stalk was pretreated sequentially with dilute acid and alkali, and then hydrolyzed enzymatically. During enzymatic hydrolysis, approximately 88 % of the glucan and xylan were converted to glucose and xylose, respectively. Batch and fed-batch simultaneous saccharification and fermentation of both pretreated stalk and tuber by Kluyveromyces marxianus CBS1555 were effectively performed, yielding 29.1 and 70.2 g/L ethanol, respectively. In fed-batch fermentation, ethanol productivity was 0.255 g ethanol per gram of dry Jerusalem artichoke biomass, or 0.361 g ethanol per gram of glucose, with a 0.924 g/L/h ethanol productivity. These results show that combining the tuber and the stalk hydrolysate is a useful strategy for whole biomass utilization in effective bioethanol fermentation from Jerusalem artichoke. PMID:23322254

  15. PSP-CBS with Dopamine Deficiency in a Female with a FMR1 Premutation.

    PubMed

    Paucar, Martin; Beniaminov, Stanislav; Paslawski, Wojciech; Svenningsson, Per

    2016-10-01

    Premutations in the fragile X mental retardation 1 (FMR1) gene cause fragile X-associated tremor/ataxia syndrome (FXTAS) and FMR1-related primary ovarian insufficiency (POI). Female FMR1 premutation carriers rarely develop motor features. Dual pathology is an emerging phenomenon among FMR1 premutation carriers. Here, we describe a family affected by FMR1-related disorders in which the female index case has developed a rapidly progressive and disabling syndrome of atypical parkinsonism. This syndrome consists of early onset postural instability, echolalia, dystonia, and varying types of apraxia like early onset orobuccal apraxia and oculomotor apraxia. She has also developed supranuclear gaze palsy, increased latency of saccade initiation, and slow saccades. These features are compatible with progressive supranuclear palsy (PSP) of a corticobasal syndrome (CBS) variant. Imaging displays a marked reduction of presynaptic dopaminergic uptake and cerebrospinal fluid analysis showed reduced dopamine metabolism; however, the patient is unresponsive to levodopa. Midbrain atrophy ("hummingbird sign") and mild cerebellar atrophy were found on brain MRI. Her father was affected by a typical FXTAS presentation but also displayed dopamine deficiency along with the hummingbird sign. The mechanisms by which FMR1 premutations predispose to atypical parkinsonism and dopamine deficiency await further elucidation. PMID:27230899

  16. A missense mutation in the cystathionine {beta}-synthase (CBS) gene associated with pyridoxine (B{sub 6}) responsive homocystinuria

    SciTech Connect

    Shih, V.E.; Fringer, J.M.; Mandell, R.

    1994-09-01

    CBS deficiency is an autosomal recessive disorder characterized by homocystinuria and multisystem clinical disease. B{sub 6} responsive patients usually have a milder clinical phenotype than B{sub 6} nonresponsive patients. In our ongoing studies of the molecular defects in CBS deficiency, we reported a T-833 to C transition causing a substitution of threonine for isoleucine at position 278 (I278T). By PCR amplification and sequencing of exon 8 from genomic DNA we have now identified 2 index patients who are homozygous and 5 who are heterozygous for this mutation in a group of 32 patients with CBS deficiency. The mutation was detected in 7 of 10 unrelated families with in vivo B{sub 6} responsiveness, including one with a partial response, and in 0 of 22 B{sub 6} nonresponsive patients. The mutations on the other allele in the compound heterozygotes are still under investigation. We have now observed the I278T mutation in 9 of 20 independent alleles of varied ethnic backgrounds in the subgroup of B{sub 6} responsive patients. These findings, together with the previous report of this mutation in one allele of a B{sub 6} responsive patient, suggest that the I278T mutation is associated with B{sub 6} responsiveness in CBS deficiency. In compound heterozygotes, the degree of B{sub 6} responsiveness may also depend upon the nature of the other mutant allele and/or the interaction between the polypeptide subunits produced by the two mutant allelic genes.

  17. The asteroseismological potential of the pulsating DB white dwarf stars CBS 114 and PG 1456+103

    NASA Astrophysics Data System (ADS)

    Handler, G.; Metcalfe, T. S.; Wood, M. A.

    2002-09-01

    We have acquired 65 h of single-site time-resolved CCD photometry of the pulsating DB white dwarf star (DBV) CBS 114 and 62 h of two-site high-speed CCD photometry of another DBV, PG 1456+103. The pulsation spectrum of PG 1456+103 is complicated and variable on time-scales of approximately 1 week and could only partly be deciphered with our measurements. The modes of CBS 114 are more stable in time and we were able to arrive at a frequency solution somewhat affected by aliasing, but still satisfactory, involving seven independent modes and two combination frequencies. These frequencies also explain the discovery data of the star, taken 13 yr earlier. We find a mean period spacing of 37.1 +/- 0.7 s significant at the 98 per cent level between the independent modes of CBS 114 and argue that they are caused by non-radial g-mode pulsations of spherical degree l= 1. We performed a global search for asteroseismological models of CBS 114 using a genetic algorithm, and we examined the susceptibility of the results to the uncertainties of the observational frequency determinations and mode identifications (we could not provide m values). The families of possible solutions are identified correctly even without knowledge of m. Our best-fitting model suggests Teff= 21 000 K, M*= 0.730 Msolar and log(MHe/M*) =-6.66, XO= 0.61. The latter value of the central oxygen mass fraction implies a rate for the 12C(α,γ)16O nuclear reaction near S300= 180 keV b, consistent with laboratory measurements.

  18. Cognitive impairment in ALS patients and validation of the Spanish version of the ALS-CBS test.

    PubMed

    Turon-Sans, Janina; Gascon-Bayarri, Jordi; Reñé, Ramon; Rico, Imma; Gámez, Cristina; Paipa, Andres; Povedano, Monica

    2016-01-01

    Our aim was to develop and validate the Spanish version of the Amyotrophic Lateral Sclerosis Cognitive Behavioural Screen (ALS-CBS) and investigate behavioural/cognitive impairment in our ALS patients. We enrolled 50 patients with definite or probable ALS, evaluated by the Motor Neuron Disease Unit (using El Escorial criteria) and Dementia Unit, and assessed with the Spanish ALS-CBS. The patients' cognitive/behavioural status was classified according to current criteria. Patients were classified into each diagnostic category: ALS-no impairment, 36%; ALS-mild cognitive impairment, 34%; ALS-mild behavioural impairment, 6%; ALS-mild cognitive/behavioural impairment, 12%; ALS-frontotemporal dementia, 12%. Cognitive impairment was more common in bulbar (90.9%) than spinal (48.7%) forms (p < 0.012). The Spanish ALS-CBS was validated. Performance to differentiate normal vs. impaired individuals was: 1) cognition (cut-off 15; AUC, 84.7%): sensitivity 86.2%, specificity 62%, positive predictive value 75.8%, negative predictive value 76.5%; 2) behaviour (cut-off 36; AUC, 83.3%): sensitivity 93.3%, specificity 74.3%, positive predictive value 61%, negative predictive value 96.3%. Performance to differentiate between patients with and without dementia: 1) cognition (cut-off 8; AUC, 87.3%): sensitivity 83.3%, specificity 75%, positive predictive value 31.3%, negative predictive value 97.1%; 2) behaviour (cut-off 35; AUC, 80.9%): sensitivity 83.3%, specificity 69%, positive predictive value 25%, negative predictive value 96.7%. In conclusion, cognitive impairment is common in ALS patients, particularly in bulbar forms. The Spanish version of the ALS-CBS is useful for screening cognitive/behavioural impairment in this population. PMID:26726932

  19. Purification, crystallization and preliminary crystallographic analysis of the CBS-domain pair of cyclin M2 (CNNM2)

    PubMed Central

    Gómez-García, Inmaculada; Stuiver, Marchel; Ereño, June; Oyenarte, Iker; Corral-Rodríguez, María Angeles; Müller, Dominik; Martínez-Cruz, Luis Alfonso

    2012-01-01

    This work describes the purification and preliminary crystallographic analysis of the CBS-domain pair of the murine CNNM2 magnesium transporter (formerly known as ancient domain protein 2; ACDP2), which consists of a pair of cystathionine β-synthase (CBS) motifs and has 100% sequence identity to its human homologue. CNNM proteins represent the least-studied members of the eight different types of magnesium transporters identified to date in mammals. In humans, the CNNM family is encoded by four genes: CNNM1–4. CNNM1 acts as a cytosolic copper chaperone, whereas CNNM2 and CNNM4 have been associated with magnesium handling. Interestingly, mutations in the CNNM2 gene cause familial dominant hypomagnesaemia (MIM:607803), a rare human disorder characterized by renal and intestinal magnesium (Mg2+) wasting, which may lead to symptoms of Mg2+ depletion such as tetany, seizures and cardiac arrhythmias. This manuscript describes the preliminary crystallographic analysis of two different crystal habits of a truncated form of the protein containing its regulatory CBS-domain pair, which has been reported to host the pathological mutation T568I in humans. The crystals belonged to space groups P21212 and I222 (or I212121) and diffracted X-­rays to 2.0 and 3.6 Å resolution, respectively, using synchrotron radiation. PMID:23027747

  20. Purification, crystallization and preliminary crystallographic analysis of the CBS pair of the human metal transporter CNNM4

    PubMed Central

    Gómez García, Inmaculada; Oyenarte, Iker; Martínez-Cruz, Luis Alfonso

    2011-01-01

    This work describes the purification and preliminary crystallographic analysis of the CBS-pair regulatory domain of the human ancient domain protein 4 (ACDP4), also known as CNNM4. ACDP proteins represent the least-studied members of the eight different types of magnesium transporters that have been identified in mammals to date. In humans the ACDP family includes four members: CNNM1–4. CNNM1 acts as a cytosolic copper chaperone and has been associated with urofacial syndrome, whereas CNNM2 and CNNM4 have been identified as magnesium transporters. Interestingly, mutations in the CNNM4 gene have clinical consequences that are limited to retinal function and biomineralization and are considered to be the cause of Jalili syndrome, which consists of autosomal recessive cone-rod dystrophy and amelogenesis imperfecta. The truncated protein was overexpressed, purified and crystallized in the orthorhombic space group C222. The crystals diffracted X-rays to 3.6 Å resolution using synchrotron radiation. Matthews volume calculations suggested the presence of two molecules in the asymmetric unit, which were likely to correspond to a CBS module of the CBS pair of CNNM4. PMID:21393841

  1. Structural basis for substrate activation and regulation by cystathionine beta-synthase (CBS) domains in cystathionine [beta]-synthase

    SciTech Connect

    Koutmos, Markos; Kabil, Omer; Smith, Janet L.; Banerjee, Ruma

    2011-08-17

    The catalytic potential for H{sub 2}S biogenesis and homocysteine clearance converge at the active site of cystathionine {beta}-synthase (CBS), a pyridoxal phosphate-dependent enzyme. CBS catalyzes {beta}-replacement reactions of either serine or cysteine by homocysteine to give cystathionine and water or H{sub 2}S, respectively. In this study, high-resolution structures of the full-length enzyme from Drosophila in which a carbanion (1.70 {angstrom}) and an aminoacrylate intermediate (1.55 {angstrom}) have been captured are reported. Electrostatic stabilization of the zwitterionic carbanion intermediate is afforded by the close positioning of an active site lysine residue that is initially used for Schiff base formation in the internal aldimine and later as a general base. Additional stabilizing interactions between active site residues and the catalytic intermediates are observed. Furthermore, the structure of the regulatory 'energy-sensing' CBS domains, named after this protein, suggests a mechanism for allosteric activation by S-adenosylmethionine.

  2. A novel transgenic mouse model of CBS-deficient homocystinuria does not incur hepatic steatosis or fibrosis and exhibits a hypercoagulative phenotype that is ameliorated by betaine treatment

    PubMed Central

    Maclean, Kenneth N.; Sikora, Jakub; Kožich, Viktor; Jiang, Hua; Greiner, Lori S.; Kraus, Eva; Krijt, Jakub; Overdier, Katherine H.; Collard, Renata; Brodsky, Gary L.; Meltesen, Lynne; Crnic, Linda S.; Allen, Robert H.; Stabler, Sally P.; Elleder, Milan; Rozen, Rima; Patterson, David; Kraus, Jan P.

    2010-01-01

    Cystathionine beta-synthase (CBS) catalyzes the condensation of homocysteine (Hcy) and serine to cystathionine, which is then hydrolyzed to cysteine by cystathionine gamma-lyase. Inactivation of CBS results in CBS-deficient homocystinuria more commonly referred to as classical homocystinuria, which, if untreated, results in mental retardation, thromboembolic complications, and a range of connective tissue disorders. The molecular mechanisms that underlie the pathology of this disease are poorly understood. We report here the generation of a new mouse model of classical homocystinuria in which the mouse cbs gene is inactivated and that exhibits low-level expression of the human CBS transgene under the control of the human CBS promoter. This mouse model, designated “human only” (HO), exhibits severe elevations in both plasma and tissue levels of Hcy, methionine, S-adenosylmethionine, and S-adenosylhomocysteine and a concomitant decrease in plasma and hepatic levels of cysteine. HO mice exhibit mild hepatopathy but, in contrast to previous models of classical homocystinuria, do not incur hepatic steatosis, fibrosis, or neonatal death with approximately 90% of HO mice living for at least 6 months. Tail bleeding determinations indicate that HO mice are in a hypercoagulative state that is significantly ameliorated by betaine treatment in a manner that recapitulates the disease as it occurs in humans. Our findings indicate that this mouse model will be a valuable tool in the study of pathogenesis in classical homocystinuria and the rational design of novel treatments. PMID:20638879

  3. Effect of S-adenosyl-L-methionine (SAM), an allosteric activator of cystathionine-β-synthase (CBS) on colorectal cancer cell proliferation and bioenergetics in vitro

    PubMed Central

    Módis, Katalin; Coletta, Ciro; Asimakopoulou, Antonia; Szczesny, Bartosz; Chao, Celia; Papapetropoulos, Andreas; Hellmich, Mark R.; Szabo, Csaba

    2014-01-01

    Recent data show that colon cancer cells selectively overexpress cystathionine-β-synthase (CBS), which produces hydrogen sulfide (H2S), to maintain cellular bioenergetics, support tumor growth and stimulate angiogenesis and vasorelaxation in the tumor microenvironment. The purpose of the current study was to investigate the effect of the allosteric CBS activator S-adenosyl-L-methionine (SAM) on the proliferation and bioenergetics of the CBS-expressing colon cancer cell line HCT116. The non-transformed, non-tumorigenic colon epithelial cell line NCM356 was used as control. For assessment of cell proliferation, the xCELLigence system was used. Bioenergetic function was measured by Extracellular Flux Analysis. Experiments using human recombinant CBS or HCT116 homogenates complemented the cell-based studies. SAM markedly enhanced CBS-mediated H2S production in vitro, especially when a combination of cysteine and homocysteine was used as substrates. Addition of SAM (0.1 – 3 mM) to HCT116 cells induced a concentration-dependent increase H2S production. SAM exerted time-and concentration-dependent modulatory effects on cell proliferation. At 0.1–1 mM SAM increased HCT116 proliferation between 0–12 h, while the highest SAM concentration (3 mM) inhibited proliferation. Over a longer time period (12–24 h), only the lowest concentration of SAM used (0.1 mM) stimulated cell proliferation; higher SAM concentrations produced a concentration-dependent inhibition. The short-term stimulatory effects of SAM were attenuated by the CBS inhibitor aminooxyacetic acid (AOAA) or by stable silencing of CBS. In contrast, the inhibitory effects of SAM on cell proliferation was unaffected by CBS inhibition or CBS silencing. In contrast to HCT116 cells, the lower rate of proliferation of the low-CBS expressor NCM356 cells was unaffected by SAM. Short-term (1h) exposure of HCT116 cells to SAM induced a concentration-dependent increase in oxygen consumption and bioenergetic function at

  4. Expression and purification of mammalian calreticulin in Pichia pastoris.

    PubMed

    Andrin, C; Corbett, E F; Johnson, S; Dabrowska, M; Campbell, I D; Eggleton, P; Opas, M; Michalak, M

    2000-11-01

    Calreticulin is a 46-kDa Ca(2+)-binding chaperone of the endoplasmic reticulum membranes. The protein binds Ca(2+) with high capacity, affects intracellular Ca(2+) homeostasis, and functions as a lectin-like chaperone. In this study, we describe expression and purification procedures for the isolation of recombinant rabbit calreticulin. The calreticulin was expressed in Pichia pastoris and purified to homogeneity by DEAE-Sepharose and Resource Q FPLC chromatography. The protein was not retained in the endoplasmic reticulum of Pichia pastoris but instead it was secreted into the external media. The purification procedures reported here for recombinant calreticulin yield homogeneous preparations of the protein by SDS-PAGE and mass spectroscopy analysis. Purified calreticulin was identified by its NH(2)-terminal amino acid sequences, by its Ca(2+) binding, and by its reactivity with anti-calreticulin antibodies. The protein contained one disulfide bond between (88)Cys and (120)Cys. CD spectral analysis and Ca(2+)-binding properties of the recombinant protein indicated that it was correctly folded. PMID:11049745

  5. Identification of Pseudozyma graminicola CBS 10092 as a producer of glycolipid biosurfactants, mannosylerythritol lipids.

    PubMed

    Morita, Tomotake; Konishi, Masaaki; Fukuoka, Tokuma; Imura, Tomohiro; Yamamoto, Shuhei; Kitagawa, Masaru; Sogabe, Atsushi; Kitamoto, Dai

    2008-01-01

    A basidiomycetous yeast, Pseudozyma graminicola CBS 10092, was found to accumulate a large amount of glycolipids in the cultured medium when grown on soybean oil as the sole carbon source. Based on thin layer chromatography, the extracellular glycolipids gave spots corresponding to those of mannosylerythritol lipids (MELs), which are highly functional and promising biosurfactants. From the structural characterization by 1H and 13C NMR, the main product was identified as 4-O-[(4'-mono-O-acetyl-2', 3'-di-O-alka(e)noyl)-beta-D-mannopyranosyl]-D-erythritol, which is a highly hydrophilic derivative of MELs known as MEL-C. According to high-performance liquid chromatography analysis, the main product, MEL-C, comprised approximately 85% of all the MELs, and the total amount reached approximately 10 g/L for 7 days. The fatty acids of the present MEL-C consisted of mainly C6, C8 and C14 acids, considerably different from those of MEL-C produced by other Pseudozyma strains such as P. antarctica and P. shanxiensis. The observed critical micelle concentration (CMC) and the surface-tension at CMC of the MEL-C were 4.0 x 10(-6) M and 24.2 mN/m, respectively, while those of MEL-A, the most intensively studied MEL, were 2.7 x 10(-6) M and 28.4 mN/m, respectively. This implied that the MEL-C has higher hydrophilicity than conventional MELs hitherto reported. In addition, on a water-penetration scan, the MEL-C efficiently formed the lamella phase (Lalpha) at a wide range of concentrations, indicating its excellent self-assembling properties. From these results, the newly identified MELs produced by P. graminicola are likely to have great potential for use in oil-in-water type emulsifiers and/or washing detergents, and would thus facilitate a broad range of applications for the promising yeast biosurfactants. PMID:18198469

  6. Production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma siamensis CBS 9960 and their interfacial properties.

    PubMed

    Morita, Tomotake; Konishi, Masaaki; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2008-05-01

    The search for a novel producer of glycolipid biosurfactants, mannosylerythritol lipids (MELs), was undertaken on the basis of the analysis of ribosomal DNA sequences of yeast strains of the genus Pseudozyma. In the course of the investigation, Pseudozyma siamensis CBS 9960, which is closely related to Pseudozyma shanxiensis, a known MEL-C producer but with a different morphology, was found to accumulate a large amount of glycolipids. On thin layer chromatography, the extracellular glycolipids showed nearly the same spots as those of the MELs produced by P. shanxiensis. However, the result of high-performance liquid chromatography analysis revealed that the present strain has a much higher glycolipid production yield than P. shanxiensis. From the structural characterization by (1)H and (13)C NMR, the major glycolipid (more than 84% of the total) was identified as a mixture of 4-O-[(2',4'-di-O-acetyl-3'-O-alka(e)noyl)-beta-D-mannopyranosyl]-D-erythritol and 4-O-[(4'-O-acetyl-3'-O-alka(e)noyl-2'-O-butanoyl)-beta-D-mannopyranosyl]-D-erythritol, both of which are types of MEL-C. The present MEL-C possessed a short-chain acid (C(2) or C(4)) at the C-2' position and a long-chain acid (C(16)) at the C-3' position of the mannose moiety, and thus, the hydrophobic part was considerably different from that of conventional MELs, which mainly possess two medium-chain acids (C(10)) at the C-2' and C-3' positions. Under optimal growth conditions with safflower oil in a shake culture, the total amount of MELs reached approximately 19 g/l after 9 d at 25 degrees C. We further investigated the interfacial properties of the present MEL-C, considering its unique hydrophobic structure. The observed critical micelle concentration (CMC) and the surface tension at the CMC of the MEL were 4.5 x 10(-6) M and 30.7 mN/m, respectively. In addition, on a water penetration scan, the MEL efficiently formed the liquid crystal phases such as hexagonal (H) and lamella (L(a)) at a wide range of

  7. Production of volatile phenols by Pichia manshurica and Pichia membranifaciens isolated from spoiled wines and cellar environment in Patagonia.

    PubMed

    Saez, Julieta S; Lopes, Christian A; Kirs, Verónica E; Sangorrín, Marcela

    2011-05-01

    In order to detect spoilage yeast species in wines showing off-odors, different yeast isolation protocols were evaluated. Independently of the isolation method, only Saccharomyces cerevisiae and Pichia manshurica were detected. The spoilage capacity of P. manshurica regional isolates was evaluated in red wine and the production of volatile phenols was evidenced. To evaluate the possible source of contamination, yeasts from both grapes and cellar surfaces were obtained. Hanseniaspora uvarum and Zygoascus hellenicus were detected in both sound and damaged grapes from sunny areas. The most frequent species in cellar surfaces was Candida boidinii, Pichia membranifaciens and P. manshurica were detected in filters. The intra-specific genetic characterization of the P. manshurica isolates by mtDNA-RFLP demonstrated that the same strain was detected in both wine and filter. Most P. membranifaciens isolates produced 4-EP (maximum level of 1.895 mg/L) and particularly high levels of 4-EG (maximum level of 10.260 mg/L) were produced by P. manshurica isolates in synthetic wine-like medium. In this work the capacity of P. manshurica and P. membranifaciens species to produce volatile phenols was shown for the first time. PMID:21356458

  8. Comparative genomics of citric-acid producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    SciTech Connect

    Andersen, Mikael R.; Salazar, Margarita; Schaap, Peter; van de Vondervoort, Peter; Culley, David E.; Thykaer, Jette; Frisvad, Jens C.; Nielsen, Kristian F.; Albang, Richard; Albermann, Kaj; Berka, Randy; Braus, Gerhard; Braus-Stromeyer, Susanna A.; Corrochano, Luis; Dai, Ziyu; van Dijck, Piet; Hofmann, Gerald; Lasure, Linda L.; Magnuson, Jon K.; Menke, Hildegard; Meijer, Martin; Meijer, Susan; Nielsen, Jakob B.; Nielsen, Michael L.; van Ooyen, Albert; Pel, Herman J.; Poulsen, Lars; Samson, Rob; Stam, Hein; Tsang, Adrian; van den Brink, Johannes M.; ATkins, Alex; Aerts, Andrea; Shapiro, Harris; Pangilinan, Jasmyn; Salamov, Asaf; Lou, Yigong; Lindquist, Erika; Lucas, Susan; Grimwood, Jane; Grigoriev, Igor V.; Kubicek, Christian P.; Martinez, Diego; van Peij, Noel; Roubos, Johannes A.; Nielsen, Jens B.; Baker, Scott E.

    2011-06-01

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compels additional exploration. We therefore undertook whole genome sequencing of the acidogenic A. niger wild type strain (ATCC 1015), and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was utilized to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 megabase of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis revealed up-regulation of the electron transport chain, specifically the alternative oxidative pathway in ATCC 1015, while CBS 513.88 showed significant up regulation of genes associated with biosynthesis of amino acids that are abundant in glucoamylase A, tRNA-synthases and protein transporters.

  9. Comparative genomics of citric-acid producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    SciTech Connect

    Grigoriev, Igor V.; Baker, Scott E.; Andersen, Mikael R.; Salazar, Margarita P.; Schaap, Peter J.; Vondervoot, Peter J.I. van de; Culley, David; Thykaer, Jette; Frisvad, Jens C.; Nielsen, Kristen F.; Albang, Richard; Albermann, Kaj; Berka, Randy M.; Braus, Gerhard H.; Braus-Stromeyer, Susanna A.; Corrochano, Luis M.; Dai, Ziyu; Dijck, Piet W.M. van; Hofmann, Gerald; Lasure, Linda L.; Magnusson, Jon K.; Meijer, Susan L.; Nielsen, Jakob B.; Nielsen, Michael L.; Ooyen, Albert J.J. van; Panther, Kathyrn S.; Pel, Herman J.; Poulsen, Lars; Samson, Rob A.; Stam, Hen; Tsang, Adrian; Brink, Johannes M. van den; Atkins, Alex; Aerts, Andrea; Shapiro, Harris; Pangilinan, Jasmyn; Salamov, Asaf; Lou, Yigong; Lindquist, Erika; Lucas, Susan; Grimwood, Jane; Kubicek, Christian P.; Martinez, Diego; Peij, Noel N.M.E. van; Roubos, Johannes A.; Nielsen, Jens

    2011-04-28

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compels additional exploration. We therefore undertook whole genome sequencing of the acidogenic A. niger wild type strain (ATCC 1015), and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was utilized to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 megabase of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis revealed up-regulation of the electron transport chain, specifically the alternative oxidative pathway in ATCC 1015, while CBS 513.88 showed significant up-regulation of genes relevant to glucoamylase A production, such as tRNA-synthases and protein transporters. Our results and datasets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi.[Supplemental materials (10 figures, three text documents and 16 tables) have been made available

  10. Determination of Tinopal CBS-X in rice papers and rice noodles using HPLC with fluorescence detection and LC-MS/MS.

    PubMed

    Ko, Kyung Yuk; Lee, Chae A; Choi, Jae Chon; Kim, Meehye

    2014-01-01

    To date there have been no reports of methods to determine Tinopal CBS-X. We developed a rapid and simple method to determine the Tinopal CBS-X content in rice noodles and rice papers using HPLC equipped with fluorescence detection. Heating the rice noodles and rice papers to 80°C after adding 75% methanol solution induced the release of Tinopal CBS-X from processed rice products. Tinopal CBS-X was separated using an isocratic mobile phase comprising 50% acetonitrile/water containing 0.4% tetrabutyl ammonium hydrogen sulphate at pH 8.0. The samples suspected to be positive by HPLC analysis were then confirmed by LC-MS/MS analysis. This study also investigated the Tinopal CBS-X content of three rice noodle products and two rice papers. The limits of quantification for rice papers and rice noodles were 1.58 and 1.51 µg kg(-1), respectively, and their correlation curves showed good linearity with r(2) ≥ 0.9997 and ≥ 0.9998, respectively. Moreover, rice papers had recoveries of 70.3-83.3% with precision ranging from 5.0% to 7.9%, whereas rice noodles had slightly lower recoveries of 63.4-78.7% and precisions of 8.5-11.5%. Only one rice noodle product contained Tinopal CBS-X, at around 2.1 mg kg(-1), whereas it was not detected in four other samples. Consequently, Tinopal CBS-X from rice noodles and rice papers can be successfully detected using the developed pre-treatment and ion-pairing HPLC system coupled with fluorescence detection. PMID:25035935

  11. Protein secretion in Pichia pastoris and advances in protein production.

    PubMed

    Damasceno, Leonardo M; Huang, Chung-Jr; Batt, Carl A

    2012-01-01

    Yeast expression systems have been successfully used for over 20 years for the production of recombinant proteins. With the growing interest in recombinant protein expression for various uses, yeast expression systems, such as the popular Pichia pastoris, are becoming increasingly important. Although P. pastoris has been successfully used in the production of many secreted and intracellular recombinant proteins, there is still room for improvement of this expression system. In particular, secretion of recombinant proteins is still one of the main reasons for using P. pastoris. Therefore, endoplasmic reticulum protein folding, correct glycosylation, vesicular transport to the plasma membrane, gene dosage, secretion signal sequences, and secretome studies are important considerations for improved recombinant protein production. PMID:22057543

  12. Expression of Eukaryotic Membrane Proteins in Pichia pastoris.

    PubMed

    Hartmann, Lucie; Kugler, Valérie; Wagner, Renaud

    2016-01-01

    A key point when it comes to heterologous expression of eukaryotic membrane proteins (EMPs) is the choice of the best-suited expression platform. The yeast Pichia pastoris has proven to be a very versatile system showing promising results in a growing number of cases. Indeed, its particular methylotrophic characteristics combined to the very simple handling of a eukaryotic microorganism that possesses the majority of mammalian-like machineries make it a very competitive expression system for various complex proteins, in amounts compatible with functional and structural studies. This chapter describes a set of robust methodologies routinely used for the successful expression of a variety of EMPs, going from yeast transformation with the recombinant plasmid to the analysis of the quality and quantity of the proteins produced. PMID:27485335

  13. Methanol inducible genes obtained from pichia and methods of use

    SciTech Connect

    Stroman, D.W.; Brust, P.F.; Ellis, S.B.; Gingeras, T.R.; Harpold, M.M.; Tschopp, J.F.

    1989-02-28

    A method is described for isolating the p76 gene from a methanol assimilating yeast, the method comprising: (a) digesting total DNA with at least one restriction enzyme to give digested DNA; (b) size fractionating the digested DNA by agarose electrophoresis; (c) denaturating and binding the size fractionated DNA from step (b) to nitrocellulose filter to give bound DNA; (d) hybridizing the bound DNA with labeled p76 gene from Pichia pastoris; (e) identifying the unique size fragment of bound DNA which cross-hybridizes with the labeled p76 gene from P. pastoris; (f) size fractionating additional DNA which has been digested in accordance with step (a) to recover for cloning the unique size fragment of DNA identified in step (e).

  14. Production and Analysis of Perdeuterated Lipids from Pichia pastoris Cells

    PubMed Central

    de Ghellinck, Alexis; Schaller, Hubert; Laux, Valérie; Haertlein, Michael; Sferrazza, Michele; Maréchal, Eric; Wacklin, Hanna; Jouhet, Juliette; Fragneto, Giovanna

    2014-01-01

    Probing molecules using perdeuteration (i.e deuteration in which all hydrogen atoms are replaced by deuterium) is extremely useful in a wide range of biophysical techniques. In the case of lipids, the synthesis of the biologically relevant unsaturated perdeuterated lipids is challenging and not usually pursued. In this work, perdeuterated phospholipids and sterols from the yeast Pichia pastoris grown in deuterated medium are extracted and analyzed as derivatives by gas chromatography and mass spectrometry respectively. When yeast cells are grown in a deuterated environment, the phospholipid homeostasis is maintained but the fatty acid unsaturation level is modified while the ergosterol synthesis is not affected by the deuterated culture medium. Our results confirm that the production of well defined natural unsaturated perdeuterated lipids is possible and gives also new insights about the process of desaturase enzymes. PMID:24747350

  15. [Overexpression of Penicillium expansum lipase gene in Pichia pastoris].

    PubMed

    Yuan, Cai; Lin, Lin; Shi, Qiao-Qin; Wu, Song-Gang

    2003-03-01

    The alkaline lipase gene of Penicillium expansum (PEL) was coloned into the yeast integrative plasmid pPIC3.5K, which was then transformed into His4 mutant yeast GS115. Recombinant Pichia strains were obtained by minimal olive oil-methanol plates screening and confirmed by PCR. The expression producus of PEL gene was analysis by SDS-PAGE and olive oil plate, the result indicated that PEL gene was functionally overexpressed in Pichia pastoris and up to 95% of the secreted protein. Recombinant lipase had a molecular mass of 28kD, showing a range similar to that of PEL, could hydrolyze olive oil and formed clear halos in the olive oil plates. Four different strategies (different media, pH, glycerol and methanol concentration) were applied to optimize the cultivation conditions, the activity of lipase was up to 260 u/mL under the optimal cultivation conditions. It is pointed out that the absence of the expensive biotin and yeast nitrogen base in the medium increased the lipase production. The possible reason of this result is absence of yeast nitrogen base increased the medium pH during cultivation, and PEL shows a higher stability at this condition. The lipase activity of the supernatant from the culture grown at pH 7 was higher than the one from the culture in the same medium at pH 6.0 is due to the pH stability of PEL too. The results also showed that the methanol and glycerol concentration had a marked effect on the production of lipase. PMID:15966328

  16. Cellobiose hydrolysis using Pichia etchellsii cells immobilized in calcium alginate

    SciTech Connect

    Jain, D.; Ghose, T.K.

    1984-01-01

    The rate of cellulose degradation, limited by inhibition by cellobiose, can be increased by hydrolysis of cellobiose to glucose using immobilized ..beta..-glucosidase. Production of ..beta..-glucosidase in four yeasts was studied and a maximum activity of 1.22 IU/mg cells was obtained in cells of Pichia etchellsii when grown on 3% cellobiose as the sole carbon source. Immobilization of ..beta..-glucosidase containing cells of Pichia etchellsii on various solid supports was conducted and immobilization by entrapment in calcium alginate gel beads was found to be the most simple and efficient method. The immobilized preparation was found to be limited by pore diffusion but exhibited no film-diffusion resistance during packed bed reactor operation. Good plug flow characteristics were observed in the packed bed column indicated by a low dispersion number of 0.1348. A model for reaction with pore diffusion for a noncompetitive type of inhibited system was developed and applied to the cellobiose hydrolysis system. The rate of reaction with diffusional limitations was determined by using the model and effectiveness factors were calculated for different particle sizes. An effectiveness factor of 0.49 was obtained for a particle diameter of 2.5 mm. The modified rate expression using the effectiveness factor represented batch and packed bed reactor operation satisfactorily. The productivity in the packed bed column was found to fall rapidly with increase in conversion rate indicating that the operating conditions of the column would have to be a compromise between high conversion rates and reasonable productivity. A half-life of over seven days was obtained at the operating temperature of 45/sup 0/C in continuous operation of the packed bed reactor. However, the half-life in the column was found to be greatly affected by temperature, increasing to over seve

  17. Expression of Recombinant Proteins in the Methylotrophic Yeast Pichia pastoris

    PubMed Central

    Weidner, Maria; Taupp, Marcus; Hallam, Steven J.

    2010-01-01

    Protein expression in the microbial eukaryotic host Pichia pastoris offers the possibility to generate high amounts of recombinant protein in a fast and easy to use expression system. As a single-celled microorganism P. pastoris is easy to manipulate and grows rapidly on inexpensive media at high cell densities. Being a eukaryote, P. pastoris is able to perform many of the post-translational modifications performed by higher eukaryotic cells and the obtained recombinant proteins undergo protein folding, proteolytic processing, disulfide bond formation and glycosylation [1]. As a methylotrophic yeast P. pastoris is capable of metabolizing methanol as its sole carbon source. The strong promoter for alcohol oxidase, AOX1, is tightly regulated and induced by methanol and it is used for the expression of the gene of interest. Accordingly, the expression of the foreign protein can be induced by adding methanol to the growth medium [2; 3]. Another important advantage is the secretion of the recombinant protein into the growth medium, using a signal sequence to target the foreign protein to the secretory pathway of P. pastoris. With only low levels of endogenous protein secreted to the media by the yeast itself and no added proteins to the media, a heterologous protein builds the majority of the total protein in the medium and facilitates following protein purification steps [3; 4]. The vector used here (pPICZαA) contains the AOX1 promoter for tightly regulated, methanol-induced expression of the gene of interest; the α-factor secretion signal for secretion of the recombinant protein, a Zeocin resistance gene for selection in both E. coli and Pichia and a C-terminal peptide containing the c-myc epitope and a polyhistidine (6xHis) tag for detection and purification of a recombinant protein. We also show western blot analysis of the recombinant protein using the specific Anti-myc-HRP antibody recognizing the c-myc epitope on the parent vector. PMID:20186119

  18. Past, present and future research directions with Pichia anomala.

    PubMed

    Passoth, Volkmar; Olstorpe, Matilda; Schnürer, Johan

    2011-01-01

    The first International Pichia anomala Symposium provided a survey of past, recent and ongoing research on this yeast. The research community working with this yeast has focussed on several areas. Based on molecular data, a revision of the taxonomy is required: the name P. anomala is no longer applicable, as the genus Pichia is polyphyletic. The current debate centres on whether the yeast should be designated as Wickerhamomyces anomalus or if the previous name, Hansenula anomala, should be re-instated. The anti-microbial activities of this yeast received considerable attention during the symposium. H. anomala has been extensively studied as a biopreservation agent in many different post-harvest systems. Several mechanisms account for its anti-microbial activities, including the production of killer proteins and toxic volatile metabolites. Anti-idiotypic antibodies generating an "internal image" of a killer protein have been found to possess therapeutic activity against a broad range of microorganisms. A great diversity of H. anomala strains was reported at the symposium. Strains have been isolated from several food and feed systems and even from the intestine and reproductive organs of a malaria vector (Anopheles stephensi). Feed and food supplemented with certain H. anomala strains show an improved quality due, for example, to the addition of advantageous proteins and phytase activity. However, a number of apparent opportunistic pathogenic strains have also been isolated. Strain differentiation, especially the recognition of potentially pathogenic isolates, is an important challenge for the future commercialisation of this yeast. Future industrial and agricultural application of this yeast also raises questions of the economics of large-scale production, its survival during storage (formulation) and of safety regulations, all of which require further investigation. PMID:20924674

  19. Glycoengineered Pichia produced anti-HER2 is comparable to trastuzumab in preclinical study

    PubMed Central

    Zhang, Ningyan; Liu, Liming; Dumitru, Calin Dan; Cummings, Nga Rewa Houston; Cukan, Michael; Jiang, Youwei; Li, Yuan; Li, Fang; Mitchell, Teresa; Mallem, Muralidhar R; Ou, Yangsi; Patel, Rohan N; Vo, Kim; Wang, Hui; Burnina, Irina; Choi, Byung-Kwon; Huber, Hans; Stadheim, Terrance A

    2011-01-01

    Mammalian cell culture systems are used predominantly for the production of therapeutic monoclonal antibody (mAb) products. A number of alternative platforms, such as Pichia engineered with a humanized N-linked glycosylation pathway, have recently been developed for the production of mAbs. The glycosylation profiles of mAbs produced in glycoengineered Pichia are similar to those of mAbs produced in mammalian systems. This report presents for the first time the comprehensive characterization of an anti-human epidermal growth factor receptor 2 (HER2) mAb produced in glycoengineered Pichia, and a study comparing the anti-HER2 from Pichia, which had an amino acid sequence identical to trastuzumab, with trastuzumab. The comparative study covered a full spectrum of preclinical evaluation, including bioanalytical characterization, in vitro biological functions, in vivo anti-tumor efficacy and pharmacokinetics in both mice and non-human primates. Cell signaling and proliferation assays showed that anti-HER2 from Pichia had antagonist activities comparable to trastuzumab. However, Pichia-produced material showed a 5-fold increase in binding affinity to FcγIIIA and significantly enhanced antibody dependent cell-mediated cytotoxicity (ADCC) activity, presumably due to the lack of fucose on N-glycans. In a breast cancer xenograft mouse model, anti-HER2 was comparable to trastuzumab in tumor growth inhibition. Furthermore, comparable pharmacokinetic profiles were observed for anti-HER2 and trastuzumab in both mice and cynomolgus monkeys. We conclude that glycoengineered Pichia provides an alternative production platform for therapeutic mAbs and may be of particular interest for production of antibodies for which ADCC is part of the clinical mechanism of action. PMID:21487242

  20. Sorption of a fluorescent whitening agent (Tinopal CBS) onto modified cellulose fibers in the presence of surfactants and salt.

    PubMed

    Iamazaki, Eduardo T; Atvars, Teresa D Z

    2007-12-18

    The combined effect of salt (10 mmol L(-1)) and surfactants on the sorption of the fluorescent brightener 4,4'-distyrylbiphenyl sodium sulfonate (Tinopal CBS) onto modified cellulose fibers was studied. Sorption efficiencies with both cationic and anionic surfactants were evaluated. Emission spectroscopy was used for quantitative analysis since Tinopal has an intense fluorescence. The sorption efficiency of the brightener is greater for solutions containing a cationic surfactant (DTAC) below the critical micelle concentration (cmc), while for an anionic surfactant (SDS) above its cmc the efficiency is greater. The profile of the sorption isotherms were interpreted in terms of the evolution of surfactant aggregation at the fiber/solution interface. Salt influences the efficiency of the Tinopal sorption on the modified cellulose fibers either because it decreases the cmc of the surfactants or because the ions screen the surface charges of the fiber which decreases the electrostatic interaction among the charged headgroup of the surfactant and the charged fiber surface. PMID:18020381

  1. Purification, crystallization and preliminary crystallographic analysis of the CBS-domain protein MJ1004 from Methanocaldococcus jannaschii

    PubMed Central

    Oyenarte, Iker; Lucas, María; Gómez García, Inmaculada; Martínez-Cruz, Luis Alfonso

    2011-01-01

    The purification and preliminary crystallographic analysis of the archaeal CBS-domain protein MJ1004 from Methanocaldococcus jannaschii are described. The native protein was overexpressed, purified and crystallized in the monoclinic space group P21, with unit-cell parameters a = 54.4, b = 53.8, c = 82.6 Å, β = 106.1°. The crystals diffracted X-rays to 2.7 Å resolution using synchrotron radiation. Matthews-volume calculations suggested the presence of two molecules in the asymmetric unit that are likely to correspond to a dimeric species, which is also observed in solution. PMID:21393835

  2. Nitrile bioconversion by Microbacterium imperiale CBS 498-74 resting cells in batch and ultrafiltration membrane bioreactors.

    PubMed

    Cantarella, M; Cantarella, L; Gallifuoco, A; Spera, A

    2006-03-01

    The biohydration of acrylonitrile, propionitrile and benzonitrile catalysed by the NHase activity contained in resting cells of Microbacterium imperiale CBS 498-74 was operated at 5, 10 and 20 degrees C in laboratory-scale batch and membrane bioreactors. The bioreactions were conducted in buffered medium (50 mM Na(2)HPO(4)/NaH(2)PO(4), pH 7.0) in the presence of distilled water or tap-water, to simulate a possible end-pipe biotreatment process. The integral bioreactor performances were studied with a cell loading (dry cell weight; DCW) varying from 0.1 mg(DCW) per reactor to 16 mg(DCW) per reactor, in order to realize near 100% bioconversion of acrylonitrile, propionitrile and benzonitrile without consistent loss of NHase activity. PMID:15739103

  3. Over-Expression of Rice CBS Domain Containing Protein, OsCBSX3, Confers Rice Resistance to Magnaporthe oryzae Inoculation

    PubMed Central

    Mou, Shaoliang; Shi, Lanping; Lin, Wei; Liu, Yanyan; Shen, Lei; Guan, Deyi; He, Shuilin

    2015-01-01

    Cystathionine β-synthase (CBS) domain containing proteins (CDCPs) constitute a big family in plants and some members in this family have been implicated in a variety of biological processes, but the precise functions and the underlying mechanism of the majority of this family in plant immunity remain to be elucidated. In the present study, a CBS domain containing protein gene, OsCBSX3, is functionally characterized in rice resistance against Magnaporthe oryzae (M. oryzae). By quantitative real-time PCR, transcripts of OsCBSX3 are up-regulated significantly by inoculation of M. oryzae and the exogenously applied salicylic acid (SA) and methyl jasmonate (MeJA). OsCBSX3 is exclusively localized to the plasma membrane by transient expression of OsCBSX3 fused to green fluorescent protein (GFP) through approach of Agrobacterium infiltration in Nicotiana benthamiana leaves. The plants of homozygous T3 transgenic rice lines of over-expressing OsCBSX3 exhibit significant enhanced resistance to M. oryzae inoculation, manifested by decreased disease symptoms, and inhibition of pathogen growth detected in DNA. Consistently, the over-expression of OsCBSX3 enhances the transcript levels of immunity associated marker genes including PR1a, PR1b, PR5, AOS2, PAL, NH1, and OsWRKY13 in plants inoculated with M. oryzae. These results suggest that OsCBSX3 acts as a positive regulator in resistance of rice to M. oryzae regulated by SA and JA-mediated signaling pathways synergistically. PMID:26184180

  4. Over-Expression of Rice CBS Domain Containing Protein, OsCBSX3, Confers Rice Resistance to Magnaporthe oryzae Inoculation.

    PubMed

    Mou, Shaoliang; Shi, Lanping; Lin, Wei; Liu, Yanyan; Shen, Lei; Guan, Deyi; He, Shuilin

    2015-01-01

    Cystathionine β-synthase (CBS) domain containing proteins (CDCPs) constitute a big family in plants and some members in this family have been implicated in a variety of biological processes, but the precise functions and the underlying mechanism of the majority of this family in plant immunity remain to be elucidated. In the present study, a CBS domain containing protein gene, OsCBSX3, is functionally characterized in rice resistance against Magnaporthe oryzae (M. oryzae). By quantitative real-time PCR, transcripts of OsCBSX3 are up-regulated significantly by inoculation of M. oryzae and the exogenously applied salicylic acid (SA) and methyl jasmonate (MeJA). OsCBSX3 is exclusively localized to the plasma membrane by transient expression of OsCBSX3 fused to green fluorescent protein (GFP) through approach of Agrobacterium infiltration in Nicotiana benthamiana leaves. The plants of homozygous T3 transgenic rice lines of over-expressing OsCBSX3 exhibit significant enhanced resistance to M. oryzae inoculation, manifested by decreased disease symptoms, and inhibition of pathogen growth detected in DNA. Consistently, the over-expression of OsCBSX3 enhances the transcript levels of immunity associated marker genes including PR1a, PR1b, PR5, AOS2, PAL, NH1, and OsWRKY13 in plants inoculated with M. oryzae. These results suggest that OsCBSX3 acts as a positive regulator in resistance of rice to M. oryzae regulated by SA and JA-mediated signaling pathways synergistically. PMID:26184180

  5. Glycosylation characterization of recombinant human erythropoietin produced in glycoengineered Pichia pastoris by mass spectrometry.

    PubMed

    Gong, Bing; Burnina, Irina; Stadheim, Terrance A; Li, Huijuan

    2013-12-01

    Glycosylation plays a critical role in the in vivo efficacy of both endogenous and recombinant erythropoietin (EPO). Using mass spectrometry, we characterized the N-/O-linked glycosylation of recombinant human EPO (rhEPO) produced in glycoengineered Pichia pastoris and compared with the glycosylation of Chinese hamster ovary (CHO) cell-derived rhEPO. While the three predicted N-linked glycosylation sites (Asn24, Asn38 and Asn83) showed complete site occupancy, Pichia- and CHO-derived rhEPO showed distinct differences in the glycan structures with the former containing sialylated bi-antennary glycoforms and the latter containing a mixture of sialylated bi-, tri- and tetra-antennary structures. Additionally, the N-linked glycans from Pichia-produced rhEPO were similar across all three sites. A low level of O-linked mannosylation was detected on Pichia-produced rhEPO at position Ser126, which is also the O-linked glycosylation site for endogenous human EPO and CHO-derived rhEPO. In summary, the mass spectrometric analyses revealed that rhEPO derived from glycoengineered Pichia has a highly uniform bi-antennary N-linked glycan composition and preserves the orthogonal O-linked glycosylation site present on endogenous human EPO and CHO-derived rhEPO. PMID:24338886

  6. Expression and Purification of C-Peptide Containing Insulin Using Pichia pastoris Expression System

    PubMed Central

    Baeshen, Mohammed N.; Bouback, Thamer A. F.; Alzubaidi, Mubarak A.; Alabbas, Omar T. O.; Alshahrani, Sultan M.; Aljohani, Ahmed A. M.; Munshi, Rayan A. A.; Al-Hejin, Ahmed; Redwan, Elrashdy M.; Ramadan, Hassan A. I.; Saini, Kulvinder S.; Baeshen, Nabih A.

    2016-01-01

    Increase in the incidence of Insulin Dependent Diabetes Mellitus (IDDM) among people from developed and developing countries has created a large global market for insulin. Moreover, exploration of new methods for insulin delivery including oral or inhalation route which require very high doses would further increase the demand of cost-effective recombinant insulin. Various bacterial and yeast strains have been optimized to overproduce important biopharmaceuticals. One of the approaches we have taken is the production of recombinant human insulin along with C-peptide in yeast Pichia pastoris. We procured a cDNA clone of insulin from Origene Inc., USA. Insulin cDNA was PCR amplified and cloned into yeast vector pPICZ-α. Cloned insulin cDNA was confirmed by restriction analysis and DNA sequencing. pPICZ-α-insulin clone was transformed into Pichia pastoris SuperMan5 strain. Several Zeocin resistant clones were obtained and integration of insulin cDNA in Pichia genome was confirmed by PCR using insulin specific primers. Expression of insulin in Pichia clones was confirmed by ELISA, SDS-PAGE, and Western blot analysis. In vivo efficacy studies in streptozotocin induced diabetic mice confirmed the activity of recombinant insulin. In conclusion, a biologically active human proinsulin along with C-peptide was expressed at high level using Pichia pastoris expression system. PMID:27579308

  7. Expression and Purification of C-Peptide Containing Insulin Using Pichia pastoris Expression System.

    PubMed

    Baeshen, Mohammed N; Bouback, Thamer A F; Alzubaidi, Mubarak A; Bora, Roop S; Alotaibi, Mohammed A T; Alabbas, Omar T O; Alshahrani, Sultan M; Aljohani, Ahmed A M; Munshi, Rayan A A; Al-Hejin, Ahmed; Ahmed, Mohamed M M; Redwan, Elrashdy M; Ramadan, Hassan A I; Saini, Kulvinder S; Baeshen, Nabih A

    2016-01-01

    Increase in the incidence of Insulin Dependent Diabetes Mellitus (IDDM) among people from developed and developing countries has created a large global market for insulin. Moreover, exploration of new methods for insulin delivery including oral or inhalation route which require very high doses would further increase the demand of cost-effective recombinant insulin. Various bacterial and yeast strains have been optimized to overproduce important biopharmaceuticals. One of the approaches we have taken is the production of recombinant human insulin along with C-peptide in yeast Pichia pastoris. We procured a cDNA clone of insulin from Origene Inc., USA. Insulin cDNA was PCR amplified and cloned into yeast vector pPICZ-α. Cloned insulin cDNA was confirmed by restriction analysis and DNA sequencing. pPICZ-α-insulin clone was transformed into Pichia pastoris SuperMan 5 strain. Several Zeocin resistant clones were obtained and integration of insulin cDNA in Pichia genome was confirmed by PCR using insulin specific primers. Expression of insulin in Pichia clones was confirmed by ELISA, SDS-PAGE, and Western blot analysis. In vivo efficacy studies in streptozotocin induced diabetic mice confirmed the activity of recombinant insulin. In conclusion, a biologically active human proinsulin along with C-peptide was expressed at high level using Pichia pastoris expression system. PMID:27579308

  8. Hygromycin-resistance vectors for gene expression in Pichia pastoris.

    PubMed

    Yang, Junjie; Nie, Lei; Chen, Biao; Liu, Yingmiao; Kong, Yimeng; Wang, Haibin; Diao, Liuyang

    2014-04-01

    Pichia pastoris is a common host organism for heterologous protein expression and metabolic engineering. Zeocin-, G418-, nourseothricin- and blasticidin-resistance genes are the only dominant selectable markers currently available for selecting P. pastoris transformants. We describe here new P. pastoris expression vectors that confer a hygromycin resistance base on the Klebsiella pneumoniae hph gene. To demonstrate the application of the vectors for intracellular and secreted protein expression, green fluorescent protein (GFP) and human serum albumin (HSA) were cloned into the vectors and transformed into P. pastoris cells. The resulting strains expressed GFP and HSA constitutively or inducibly. The hygromycin resistance marker was also suitable for post-transformational vector amplication (PTVA) for obtaining strains with high plasmid copy numbers. A strain with multiple copies of the HSA expression cassette after PTVA had increased HSA expression compared with a strain with a single copy of the plasmid. To demonstrate compatibility of the new vectors with other vectors bearing antibiotic-resistance genes, P. pastoris was transformed with the Saccharomyces cerevisiae genes GSH1, GSH2 or SAM2 on plasmids containing genes for resistance to Zeocin, G418 or hygromycin. The resulting strain produced glutathione and S-adenosyl-L-methionine at levels approximately twice those of the parent strain. The new hygromycin-resistance vectors allow greater flexibility and potential applications in recombinant protein production and other research using P. pastoris. PMID:24822243

  9. Constitutive expression of Botrytis aclada laccase in Pichia pastoris.

    PubMed

    Kittl, Roman; Gonaus, Christoph; Pillei, Christian; Haltrich, Dietmar; Ludwig, Roland

    2012-01-01

    The heterologous expression of laccases is important for their large-scale production and genetic engineering--a prerequisite for industrial application. Pichia pastoris is the preferred expression host for fungal laccases. The recently cloned laccase from the ascomycete Botrytis aclada (BaLac) has been efficiently expressed in P. pastoris under the control of the inducible alcohol oxidase (AOX1) promoter. In this study, we compare these results to the constitutive expression in the same organism using the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter. The results show that the amounts of BaLac produced with the GAP system (517 mgL(-1)) and the AOX1 system (495 mgL(-1)) are comparable. The constitutive expression is, however, faster, and the specific activity of BaLac in the culture supernatant is higher (41.3 Umg(-1) GAP, 14.2 Umg(-1) AOX1). In microtiter plates, the constitutive expression provides a clear advantage due to easy manipulation (simple medium, no methanol feeding) and fast enzyme production (high-throughput screening assays can already be performed after 48 h). PMID:22705842

  10. Constitutive expression of Botrytis aclada laccase in Pichia pastoris

    PubMed Central

    Kittl, Roman; Gonaus, Christoph; Pillei, Christian; Haltrich, Dietmar; Ludwig, Roland

    2012-01-01

    The heterologous expression of laccases is important for their large-scale production and genetic engineering—a prerequisite for industrial application. Pichia pastoris is the preferred expression host for fungal laccases. The recently cloned laccase from the ascomycete Botrytis aclada (BaLac) has been efficiently expressed in P. pastoris under the control of the inducible alcohol oxidase (AOX1) promoter. In this study, we compare these results to the constitutive expression in the same organism using the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter. The results show that the amounts of BaLac produced with the GAP system (517 mgL-1) and the AOX1 system (495 mgL-1) are comparable. The constitutive expression is, however, faster, and the specific activity of BaLac in the culture supernatant is higher (41.3 Umg-1 GAP, 14.2 Umg-1 AOX1). In microtiter plates, the constitutive expression provides a clear advantage due to easy manipulation (simple medium, no methanol feeding) and fast enzyme production (high-throughput screening assays can already be performed after 48 h). PMID:22705842

  11. Electrochemical studies of a truncated laccase produced in Pichia pastoris

    SciTech Connect

    Gelo-Pujic, M.; Kim, H.H.; Butlin, N.G.; Palmore, G.T.R.

    1999-12-01

    The cDNA that encodes an isoform is laccase from Trametes versicolor (LCCI), as well as a truncated version (LCCIa), was subcloned and expressed by using the yeast Pichia pastoris as the heterologous host. The amino acid sequence of LCCIa is identical to that of LCCI except that the final 11 amino acids at the C terminus of LCCI are replaced with a single cysteine residue. This modification was introduced for the purpose of improving the kinetics of electron transfer between an electrode and the copper-containing active site of laccase. The two laccases (LCCI and LCCIa) are compared in terms of their relative activity with two substrates that have different redox potentials. Results from electrochemical studies on solutions containing LCCI and LCCIa indicate that the redox potential of the active site of LCCIa is shifted to more negative values (411 mV versus normal hydrogen electrode voltage) than that found in other fungal laccases. In addition, replacing the 11 codons at the C terminus of the laccase gene with a single cysteine codon influences the rate of heterogeneous electron transfer between and electrode and the copper-containing active site. These results demonstrate for the first time that the rate of electron transfer between an oxidoreductase and an electrode can be enhanced by changes to the primary structure of a protein via site-directed mutagenesis.

  12. Crystal Structure of Alcohol Oxidase from Pichia pastoris

    PubMed Central

    Valerius, Oliver; Feussner, Ivo; Ficner, Ralf

    2016-01-01

    FAD-dependent alcohol oxidases (AOX) are key enzymes of methylotrophic organisms that can utilize lower primary alcohols as sole source of carbon and energy. Here we report the crystal structure analysis of the methanol oxidase AOX1 from Pichia pastoris. The crystallographic phase problem was solved by means of Molecular Replacement in combination with initial structure rebuilding using Rosetta model completion and relaxation against an averaged electron density map. The subunit arrangement of the homo-octameric AOX1 differs from that of octameric vanillyl alcohol oxidase and other dimeric or tetrameric alcohol oxidases, due to the insertion of two large protruding loop regions and an additional C-terminal extension in AOX1. In comparison to other alcohol oxidases, the active site cavity of AOX1 is significantly reduced in size, which could explain the observed preference for methanol as substrate. All AOX1 subunits of the structure reported here harbor a modified flavin adenine dinucleotide, which contains an arabityl chain instead of a ribityl chain attached to the isoalloxazine ring. PMID:26905908

  13. Characterization of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Malone, Christine C.; Ciszak, Eva; Karr, Laurel J.

    1999-01-01

    A soluble form of human bone alkaline phosphatase has been expressed in a recombinant strain of the methylotrophic yeast Pichia pastoris. We constructed a plasmid containing cDNA encoding for human bone alkaline phosphatase, with the hydrophobic carboxyl terminal portion deleted. Alkaline phosphatase was secreted into the medium to a level of 32mg/L when cultured in shake flasks, and enzyme activity was 12U/mg, as measured by a spectrophotometric assay. By conversion to a fermentation system, a yield of 880mg/L has been achieved with an enzyme activity of 968U/mg. By gel electrophoresis analysis, it appears that greater than 50% of the total protein in the fermentation media is alkaline phosphatase. Although purification procedures are not yet completely optimized, they are expected to include filtration, ion exchange and affinity chromatography. Our presentation will focus on the purification and crystallization results up to the time of the conference. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  14. Biotechnological advances towards an enhanced peroxidase production in Pichia pastoris.

    PubMed

    Krainer, Florian W; Gerstmann, Michaela A; Darnhofer, Barbara; Birner-Gruenberger, Ruth; Glieder, Anton

    2016-09-10

    Horseradish peroxidase (HRP) is a high-demand enzyme for applications in diagnostics, bioremediation, biocatalysis and medicine. Current HRP preparations are isolated from horseradish roots as mixtures of biochemically diverse isoenzymes. Thus, there is a strong need for a recombinant production process enabling a steady supply with enzyme preparations of consistent high quality. However, most current recombinant production systems are limited at titers in the low mg/L range. In this study, we used the well-known yeast Pichia pastoris as host for recombinant HRP production. To enhance recombinant enzyme titers we systematically evaluated engineering approaches on the secretion process, coproduction of helper proteins, and compared expression from the strong methanol-inducible PAOX1 promoter, the strong constitutive PGAP promoter, and a novel bidirectional promoter PHTX1. Ultimately, coproduction of HRP and active Hac1 under PHTX1 control yielded a recombinant HRP titer of 132mg/L after 56h of cultivation in a methanol-independent and easy-to-do bioreactor cultivation process. With regard to the many versatile applications for HRP, the establishment of a microbial host system suitable for efficient recombinant HRP production was highly overdue. The novel HRP production platform in P. pastoris presented in this study sets a new benchmark for this medically relevant enzyme. PMID:27432633

  15. Cloning and expression of buffalo active chymosin in Pichia pastoris.

    PubMed

    Vallejo, Juan Andres; Ageitos, Jose Manuel; Poza, Margarita; Villa, Tomas G

    2008-11-26

    To date, only recombinant chymosin has been obtained in its active form from supernatants of filamentous fungi, which are not as good candidates as yeasts for large-scale fermentations. Since Bos taurus chymosin was cloned and expressed, the world demand for this protease has increased to such an extent that the cheesemaking industry has been looking for novel sources of chymosin. In this sense because buffalo chymosin has properties that are more stable than those of B. taurus chymosin, it may occupy a space of its own in the chymosin market. The main objective of the present work was the production of active recombinant buffalo chymosin in the culture supernatant of Pichia pastoris . This yeast has demonstrated its usefulness as an excellent large-scale fermentation tool for the secretion of recombinant foreign proteins. RNA was extracted from the abomasum of a suckling calf water buffalo ( Bubalus arnee bubalis ). Preprochymosin, prochymosin, and chymosin DNA sequences were isolated and expressed into P. pastoris. Only the recombinant clones of P. pastoris containing the prochymosin sequence gene were able to secrete the active form of the chymosin to the culture supernatant. This paper describes for the first time the production of active recombinant chymosin in P. pastoris without the need of a previous in vitro activation. The new recombinant yeast strain could represent a novel and excellent source of rennet for the cheesemaking industry. PMID:18975968

  16. Crystal Structure of Alcohol Oxidase from Pichia pastoris.

    PubMed

    Koch, Christian; Neumann, Piotr; Valerius, Oliver; Feussner, Ivo; Ficner, Ralf

    2016-01-01

    FAD-dependent alcohol oxidases (AOX) are key enzymes of methylotrophic organisms that can utilize lower primary alcohols as sole source of carbon and energy. Here we report the crystal structure analysis of the methanol oxidase AOX1 from Pichia pastoris. The crystallographic phase problem was solved by means of Molecular Replacement in combination with initial structure rebuilding using Rosetta model completion and relaxation against an averaged electron density map. The subunit arrangement of the homo-octameric AOX1 differs from that of octameric vanillyl alcohol oxidase and other dimeric or tetrameric alcohol oxidases, due to the insertion of two large protruding loop regions and an additional C-terminal extension in AOX1. In comparison to other alcohol oxidases, the active site cavity of AOX1 is significantly reduced in size, which could explain the observed preference for methanol as substrate. All AOX1 subunits of the structure reported here harbor a modified flavin adenine dinucleotide, which contains an arabityl chain instead of a ribityl chain attached to the isoalloxazine ring. PMID:26905908

  17. Molecular optimization of rabies virus glycoprotein expression in Pichia pastoris.

    PubMed

    Ben Azoun, Safa; Belhaj, Aicha Eya; Göngrich, Rebecca; Gasser, Brigitte; Kallel, Héla

    2016-05-01

    In this work, different approaches were investigated to enhance the expression rabies virus glycoprotein (RABV-G) in the yeast Pichia pastoris; this membrane protein is responsible for the synthesis of rabies neutralizing antibodies. First, the impact of synonymous codon usage bias was examined and an optimized RABV-G gene was synthesized. Nevertheless, data showed that the secretion of the optimized RABV-G gene was not tremendously increased as compared with the non-optimized one. In addition, similar levels of RABV-G were obtained when α-factor mating factor from Saccharomyces cerevisiae or the acid phosphatase PHO1 was used as a secretion signal. Therefore, sequence optimization and secretion signal were not the major bottlenecks for high-level expression of RABV-G in P. pastoris. Unfolded protein response (UPR) was induced in clones containing high copy number of RABV-G expression cassette indicating that folding was the limiting step for RABV-G secretion. To circumvent this limitation, co-overexpression of five factors involved in oxidative protein folding was investigated. Among these factors only PDI1, ERO1 and GPX1 proved their benefit to enhance the expression. The highest expression level of RABV-G reached 1230 ng ml(-1) . Competitive neutralizing assay confirmed that the recombinant protein was produced in the correct conformational form in this host. PMID:26880068

  18. Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris

    PubMed Central

    Marx, Hans; Mattanovich, Diethard; Sauer, Michael

    2008-01-01

    Background High cell density cultures of Pichia pastoris grown on methanol tend to develop yellow colored supernatants, attributed to the release of free flavins. The potential of P. pastoris for flavin overproduction is therefore given, but not pronounced when the yeast is grown on glucose. The aim of this study is to characterize the relative regulatory impact of each riboflavin synthesis gene. Deeper insight into pathway control and the potential of deregulation is established by overexpression of the single genes as well as a combined deregulation of up to all six riboflavin synthesis genes. Results Overexpression of the first gene of the riboflavin biosynthetic pathway (RIB1) is already sufficient to obtain yellow colonies and the accumulation of riboflavin in the supernatant of shake flask cultures growing on glucose. Sequential deregulation of all the genes, by exchange of their native promoter with the strong and constitutive glyceraldehyde-3-phosphate dehydrogenase promoter (PGAP) increases the riboflavin accumulation significantly. Conclusion The regulation of the pathway is distributed over more than one gene. High cell density cultivations of a P. pastoris strain overexpressing all six RIB genes allow the accumulation of 175 mg/L riboflavin in the supernatant. The basis for rational engineering of riboflavin production in P. pastoris has thus been established. PMID:18664246

  19. [Variability in the flavinogenic activity of Pichia guilliermondi yeasts].

    PubMed

    Shavlovskiĭ, G M; Ksheminskaia, G P; Gumetskiĭ, R Ia

    1975-01-01

    The natural and induced variability of the flavinogenic activity was studied in the strain of Pichia guilliermondii ATCC 9058. The flavinogenic activity of the collection strain showed normal distribution; the amount of riboflavin(RF) accumulated in the medium differed several times in the extreme variants. In the clones with the maximum and minimum accumulation of RF, the distribution of the variants was asymmetric, due to the appearance of the cells with an average flavinogenic activity. The clones have acquired almost the same flavinogenic activity after being transferred eight times on a fresh medium. The asymmetric distribution of the variants according to their flavinogenic activity was found also in the case of the clones obtained from the UV-irradiated cells. The mutants have been isolated, which synthesized 3-30 times more RF than the parent strain in the presence of iron doses optimal for the growth. Five mutants that were most active in producing RF differed in the sensitivity of their flavinogenesis to high concentrations of iron, yeast autolysate, and carbon sources. PMID:1160648

  20. Deciphering the Hybridisation History Leading to the Lager Lineage Based on the Mosaic Genomes of Saccharomyces bayanus Strains NBRC1948 and CBS380T

    PubMed Central

    Nguyen, Huu-Vang; Legras, Jean-Luc; Neuvéglise, Cécile; Gaillardin, Claude

    2011-01-01

    Saccharomyces bayanus is a yeast species described as one of the two parents of the hybrid brewing yeast S. pastorianus. Strains CBS380T and NBRC1948 have been retained successively as pure-line representatives of S. bayanus. In the present study, sequence analyses confirmed and upgraded our previous finding: S. bayanus type strain CBS380T harbours a mosaic genome. The genome of strain NBRC1948 was also revealed to be mosaic. Both genomes were characterized by amplification and sequencing of different markers, including genes involved in maltotriose utilization or genes detected by array-CGH mapping. Sequence comparisons with public Saccharomyces spp. nucleotide sequences revealed that the CBS380T and NBRC1948 genomes are composed of: a predominant non-cerevisiae genetic background belonging to S. uvarum, a second unidentified species provisionally named S. lagerae, and several introgressed S. cerevisiae fragments. The largest cerevisiae-introgressed DNA common to both genomes totals 70kb in length and is distributed in three contigs, cA, cB and cC. These vary in terms of length and presence of MAL31 or MTY1 (maltotriose-transporter gene). In NBRC1948, two additional cerevisiae-contigs, cD and cE, totaling 12kb in length, as well as several smaller cerevisiae fragments were identified. All of these contigs were partially detected in the genomes of S. pastorianus lager strains CBS1503 (S. monacensis) and CBS1513 (S. carlsbergensis) explaining the noticeable common ability of S. bayanus and S. pastorianus to metabolize maltotriose. NBRC1948 was shown to be inter-fertile with S. uvarum CBS7001. The cross involving these two strains produced F1 segregants resembling the strains CBS380T or NRRLY-1551. This demonstrates that these S. bayanus strains were the offspring of a cross between S. uvarum and a strain similar to NBRC1948. Phylogenies established with selected cerevisiae and non-cerevisiae genes allowed us to decipher the complex hybridisation events linking S

  1. Deciphering the hybridisation history leading to the Lager lineage based on the mosaic genomes of Saccharomyces bayanus strains NBRC1948 and CBS380.

    PubMed

    Nguyen, Huu-Vang; Legras, Jean-Luc; Neuvéglise, Cécile; Gaillardin, Claude

    2011-01-01

    Saccharomyces bayanus is a yeast species described as one of the two parents of the hybrid brewing yeast S. pastorianus. Strains CBS380(T) and NBRC1948 have been retained successively as pure-line representatives of S. bayanus. In the present study, sequence analyses confirmed and upgraded our previous finding: S. bayanus type strain CBS380(T) harbours a mosaic genome. The genome of strain NBRC1948 was also revealed to be mosaic. Both genomes were characterized by amplification and sequencing of different markers, including genes involved in maltotriose utilization or genes detected by array-CGH mapping. Sequence comparisons with public Saccharomyces spp. nucleotide sequences revealed that the CBS380(T) and NBRC1948 genomes are composed of: a predominant non-cerevisiae genetic background belonging to S. uvarum, a second unidentified species provisionally named S. lagerae, and several introgressed S. cerevisiae fragments. The largest cerevisiae-introgressed DNA common to both genomes totals 70kb in length and is distributed in three contigs, cA, cB and cC. These vary in terms of length and presence of MAL31 or MTY1 (maltotriose-transporter gene). In NBRC1948, two additional cerevisiae-contigs, cD and cE, totaling 12kb in length, as well as several smaller cerevisiae fragments were identified. All of these contigs were partially detected in the genomes of S. pastorianus lager strains CBS1503 (S. monacensis) and CBS1513 (S. carlsbergensis) explaining the noticeable common ability of S. bayanus and S. pastorianus to metabolize maltotriose. NBRC1948 was shown to be inter-fertile with S. uvarum CBS7001. The cross involving these two strains produced F1 segregants resembling the strains CBS380(T) or NRRLY-1551. This demonstrates that these S. bayanus strains were the offspring of a cross between S. uvarum and a strain similar to NBRC1948. Phylogenies established with selected cerevisiae and non-cerevisiae genes allowed us to decipher the complex hybridisation events

  2. High-Level Expression of Recombinant Bovine Lactoferrin in Pichia pastoris with Antimicrobial Activity

    PubMed Central

    Iglesias-Figueroa, Blanca; Valdiviezo-Godina, Norberto; Siqueiros-Cendón, Tania; Sinagawa-García, Sugey; Arévalo-Gallegos, Sigifredo; Rascón-Cruz, Quintín

    2016-01-01

    In this study, bovine lactoferrin (bLf), an iron-binding glycoprotein considered an important nutraceutical protein because of its several properties, was expressed in Pichia pastoris KM71-H under AOX1 promoter control, using pJ902 as the recombinant plasmid. Dot blotting analysis revealed the expression of recombinant bovine lactoferrin (rbLf) in Pichia pastoris. After Bach fermentation and purification by molecular exclusion, we obtained an expression yield of 3.5 g/L of rbLf. rbLf and predominantly pepsin-digested rbLf (rbLfcin) demonstrated antibacterial activity against Escherichia coli (E. coli) BL21DE3, Staphylococcus aureus (S. aureus) FRI137, and, in a smaller percentage, Pseudomonas aeruginosa (Ps. Aeruginosa) ATCC 27833. The successful expression and characterization of functional rbLf expressed in Pichia pastoris opens a prospect for the development of natural antimicrobial agents produced recombinantly. PMID:27294912

  3. High-Level Expression of Recombinant Bovine Lactoferrin in Pichia pastoris with Antimicrobial Activity.

    PubMed

    Iglesias-Figueroa, Blanca; Valdiviezo-Godina, Norberto; Siqueiros-Cendón, Tania; Sinagawa-García, Sugey; Arévalo-Gallegos, Sigifredo; Rascón-Cruz, Quintín

    2016-01-01

    In this study, bovine lactoferrin (bLf), an iron-binding glycoprotein considered an important nutraceutical protein because of its several properties, was expressed in Pichia pastoris KM71-H under AOX1 promoter control, using pJ902 as the recombinant plasmid. Dot blotting analysis revealed the expression of recombinant bovine lactoferrin (rbLf) in Pichia pastoris. After Bach fermentation and purification by molecular exclusion, we obtained an expression yield of 3.5 g/L of rbLf. rbLf and predominantly pepsin-digested rbLf (rbLfcin) demonstrated antibacterial activity against Escherichia coli (E. coli) BL21DE3, Staphylococcus aureus (S. aureus) FRI137, and, in a smaller percentage, Pseudomonas aeruginosa (Ps. Aeruginosa) ATCC 27833. The successful expression and characterization of functional rbLf expressed in Pichia pastoris opens a prospect for the development of natural antimicrobial agents produced recombinantly. PMID:27294912

  4. Single Amino Acid Substitutions in HXT2.4 from Scheffersomyces stipitis Lead to Improved Cellobiose Fermentation by Engineered Saccharomyces cerevisiae

    PubMed Central

    Ha, Suk-Jin; Kim, Heejin; Lin, Yuping; Jang, Myoung-Uoon; Galazka, Jonathan M.; Kim, Tae-Jip; Cate, Jamie H. D.

    2013-01-01

    Saccharomyces cerevisiae cannot utilize cellobiose, but this yeast can be engineered to ferment cellobiose by introducing both cellodextrin transporter (cdt-1) and intracellular β-glucosidase (gh1-1) genes from Neurospora crassa. Here, we report that an engineered S. cerevisiae strain expressing the putative hexose transporter gene HXT2.4 from Scheffersomyces stipitis and gh1-1 can also ferment cellobiose. This result suggests that HXT2.4p may function as a cellobiose transporter when HXT2.4 is overexpressed in S. cerevisiae. However, cellobiose fermentation by the engineered strain expressing HXT2.4 and gh1-1 was much slower and less efficient than that by an engineered strain that initially expressed cdt-1 and gh1-1. The rate of cellobiose fermentation by the HXT2.4-expressing strain increased drastically after serial subcultures on cellobiose. Sequencing and retransformation of the isolated plasmids from a single colony of the fast cellobiose-fermenting culture led to the identification of a mutation (A291D) in HXT2.4 that is responsible for improved cellobiose fermentation by the evolved S. cerevisiae strain. Substitutions for alanine (A291) of negatively charged amino acids (A291E and A291D) or positively charged amino acids (A291K and A291R) significantly improved cellobiose fermentation. The mutant HXT2.4(A291D) exhibited 1.5-fold higher Km and 4-fold higher Vmax values than those from wild-type HXT2.4, whereas the expression levels were the same. These results suggest that the kinetic properties of wild-type HXT2.4 expressed in S. cerevisiae are suboptimal, and mutations of A291 into bulky charged amino acids might transform HXT2.4p into an efficient transporter, enabling rapid cellobiose fermentation by engineered S. cerevisiae strains. PMID:23263959

  5. Toxicological Evaluation of Lactase Derived from Recombinant Pichia pastoris

    PubMed Central

    Liu, Yifei; Chen, Delong; Luo, Yunbo; Huang, Kunlun; Zhang, Wei; Xu, Wentao

    2014-01-01

    A recombinant lactase was expressed in Pichia pastoris, resulting in enzymatic activity of 3600 U/mL in a 5 L fermenter. The lactase product was subjected to a series of toxicological tests to determine its safety for use as an enzyme preparation in the dairy industry. This recombinant lactase had the highest activity of all recombinant strains reported thus far. Acute oral toxicity, mutagenicity, genotoxic, and subchronic toxicity tests performed in rats and mice showed no death in any groups. The lethal dose 50% (LD50) based on the acute oral toxicity study is greater than 30 mL/kg body weight, which is in accordance with the 1500 L milk consumption of a 50 kg human daily. The lactase showed no mutagenic activity in the Ames test or a mouse sperm abnormality test at levels of up to 5 mg/plate and 1250 mg/kg body weight, respectively. It also showed no genetic toxicology in a bone marrow cell micronucleus test at levels of up to 1250 mg/kg body weight. A 90-day subchronic repeated toxicity study via the diet with lactase levels up to 1646 mg/kg (1000-fold greater than the mean human exposure) did not show any treatment-related significant toxicological effects on body weight, food consumption, organ weights, hematological and clinical chemistry, or histopathology compared to the control groups. This toxicological evaluation system is comprehensive and can be used in the safety evaluation of other enzyme preparations. The lactase showed no acute, mutagenic, genetic, or subchronic toxicity under our evaluation system. PMID:25184300

  6. Catabolite inactivation in the methylotrophic yeast Pichia pastoris

    SciTech Connect

    Murray, W.D.; Duff, S.J.B. ); Beveridge, T.J. )

    1990-08-01

    Inactivation of the alcohol oxidase enzyme system of Pichia pastoris, during the whole-cell bioconversion of ethanol to acetaldehyde, was due to catabolite inactivation. Electron microscopy showed that methanol-grown cells contained peroxisomes but were devoid of these microbodies after the bioconversion. Acetaldehyde in the presence of O{sub 2} was the effector of catabolite inactivation. The process was initiated by the appearance of free acetaldehyde, and was characterized by an increase in the level of cyclic AMP, that coincided with a rapid 55% drop in alcohol oxidase activity. Further enzyme inactivation, believed to be due to proteolytic degradation, then proceeded at a constant but slower rate and was complete 21 h after acetaldehyde appearance. The rate of catabolite inactivation was dependent on acetaldehyde concentration up to 0.14 mM. It was temperature dependent and occurred within 24 h at 37{degree}C and by 6 days at 15{degree}C but not at 3{degree}C. Alcohol oxidase activity was psychrotolerant, with only a 17% decrease in initial specific activity over a temperature drop from 37 to 3{degree}C. In contrast, protease activity was inhibited at temperatures below 15{degree}C. When the bioconversion was run at 3{degree}C, catabolite inactivation was prevented. In the presence of 3 M Tris hydrochloride buffer, 123 g of acetaldehyde per liter was produced at 3{degree}C, compared with 58 g/liter at 30{degree}C. By using 0.5 M Tris in a cyclic-batch procedure, 140.6 g of acetaldehyde was produced.

  7. Cellobiose hydrolysis using Pichia etchellsii cells immobilized in calcium alginate

    SciTech Connect

    Jain, D.; Ghose, T.K.

    1984-04-01

    Cellulose degradation rates can be increased by the hydrolysis of cellobiose using immobilized beta-glucosidase. Production of beta-glucosidase in four yeasts was studied and a maximum activity of 1.22 IU/mg cells was obtained in cells of Pichia etchellsii grown on 3% cellobiose. The immobilization of beta-glucosidase containing cells on various solid supports was studied and entrapment in calcium alginate gel beads was found to be the best method. After ten sequential batch uses of the preparation, 96.5% of the initial activity was retained. The pH and temperature optima for free and immobilized cells were pH 6.5 (0.05M Maleate buffer) and 50/sup 0/C however, the enzyme has a better thermal stability at 45/sup 0/C. Beads stored at 4/sup 0/C for six months retain 80% of their activity. Kinetic studies performed on free and immobilized cells show that glucose is a noncompetitive product inhibitor. The immobilized preparation was limited by pore diffusion but exhibited no film-diffusion resistance during packed bed reactor operation. Good plug flow characteristics were observed. A model for reaction with pore diffusion for a noncompetitive type of inhibited system was developed and applied to this system. The reation rate with diffusional limitations was determined by using the model and effectiveness factors were calculated for different particle sizes. The modified rate expression using the effectiveness factor represented batch and packed bed reactor operation satisfactorily. The productivity in the packed bed column fell rapidly with an increase in conversion rate indicating that the operating conditions of the column would have to balance high conversion rates with acceptable productivity. The half-life in the column was affected by temperature, increasing to over seventeen days at 40/sup 0/C and decreasing to less than two days at 50/sup 0/C.

  8. Expression and characterization of camel chymosin in Pichia pastoris.

    PubMed

    Wang, Nan; Wang, Kevin Yueju; Li, GangQiang; Guo, WenFang; Liu, DeHu

    2015-07-01

    Chymosin efficiently coagulates milk and so is widely used in commercial cheese production. Traditional chymosin production requires the slaughter of a large numbers of unweaned calves. In the present study, a full-length camel prochymosin gene was synthesized and cloned into the pPIC9K vector, which was then inserted into the yeast strain, Pichia pastoris GS115. Expression of the chymosin gene in yeast was under the control of an AOX1 inducible promoter. The yeast system produced approximately 37mg/L of recombinant enzyme under lab conditions. SDS-PAGE of the raw supernatant revealed two molecular bands, which were approximately 42kDa and 45kDa in size. The 45kDa band disappeared after treatment of the supernatant with N-glycosidase F (PNGase F), indicating that the recombinant protein was partially glycosylated. When subjected to a low pH, recombinant prochymosin was converted into mature and active chymosin. The active chymosin was capable of specifically hydrolyzing κ-casein. A pH of 5.04, and temperature range of 45-50°C, was optimum for milk clotting activity. Maximum milk clotting activity was detected with the inclusion of 20-40mM CaCl2. The recombinant enzyme was highly active and stable over a wide pH range (from 2.5 to 6.5) at 20°C for 8h. Thermostability of the recombinant enzyme was also analyzed. Pilot-scale production (300mg/L) was attained using a 5L fermenter. We demonstrated that expression of the camel chymosin gene in P. pastoris could represent an excellent system for producing active camel chymosin for potential use in the commercial production of cheese. PMID:25837439

  9. Toxicological evaluation of lactase derived from recombinant Pichia pastoris.

    PubMed

    Zou, Shiying; He, Xiaoyun; Liu, Yifei; Chen, Delong; Luo, Yunbo; Huang, Kunlun; Zhang, Wei; Xu, Wentao

    2014-01-01

    A recombinant lactase was expressed in Pichia pastoris, resulting in enzymatic activity of 3600 U/mL in a 5 L fermenter. The lactase product was subjected to a series of toxicological tests to determine its safety for use as an enzyme preparation in the dairy industry. This recombinant lactase had the highest activity of all recombinant strains reported thus far. Acute oral toxicity, mutagenicity, genotoxic, and subchronic toxicity tests performed in rats and mice showed no death in any groups. The lethal dose 50% (LD50) based on the acute oral toxicity study is greater than 30 mL/kg body weight, which is in accordance with the 1500 L milk consumption of a 50 kg human daily. The lactase showed no mutagenic activity in the Ames test or a mouse sperm abnormality test at levels of up to 5 mg/plate and 1250 mg/kg body weight, respectively. It also showed no genetic toxicology in a bone marrow cell micronucleus test at levels of up to 1250 mg/kg body weight. A 90-day subchronic repeated toxicity study via the diet with lactase levels up to 1646 mg/kg (1000-fold greater than the mean human exposure) did not show any treatment-related significant toxicological effects on body weight, food consumption, organ weights, hematological and clinical chemistry, or histopathology compared to the control groups. This toxicological evaluation system is comprehensive and can be used in the safety evaluation of other enzyme preparations. The lactase showed no acute, mutagenic, genetic, or subchronic toxicity under our evaluation system. PMID:25184300

  10. Immobilization of Pichia pastoris cells containing alcohol oxidase activity

    PubMed Central

    Maleknia, S; Ahmadi, H; Norouzian, D

    2011-01-01

    Background and Objectives The attempts were made to describe the development of a whole cell immobilization of P. pastoris by entrapping the cells in polyacrylamide gel beads. The alcohol oxidase activity of the whole cell Pichia pastoris was evaluated in comparison with yeast biomass production. Materials and Methods Methylotrophic yeast P. pastoris was obtained from Collection of Standard Microorganisms, Department of Bacterial Vaccines, Pasteur Institute of Iran (CSMPI). Stock culture was maintained on YPD agar plates. Alcohol oxidase was strongly induced by addition of 0.5% methanol as the carbon source. The cells were harvested by centrifugation then permeabilized. Finally the cells were immobilized in polyacrylamide gel beads. The activity of alcohol oxidase was determined by method of Tane et al. Results At the end of the logarithmic phase of cell culture, the alcohol oxidase activity of the whole cell P. Pastoris reached the highest level. In comparison, the alcohol oxidase activity was measured in an immobilized P. pastoris when entrapped in polyacrylamide gel beads. The alcohol oxidase activity of cells was induced by addition of 0.5% methanol as the carbon source. The cells were permeabilized by cetyltrimethylammonium bromide (CTAB) and immobilized. CTAB was also found to increase the gel permeability. Alcohol oxidase activity of immobilized cells was then quantitated by ABTS/POD spectrophotometric method at OD 420. There was a 14% increase in alcohol oxidase activity in immobilized cells as compared with free cells. By addition of 2-butanol as a substrate, the relative activity of alcohol oxidase was significantly higher as compared with other substrates added to the reaction media. Conclusion Immobilization of cells could eliminate lengthy and expensive procedures of enzyme separation and purification, protect and stabilize enzyme activity, and perform easy separation of the enzyme from the reaction media. PMID:22530090

  11. Calcitriol prevents peripheral RSC96 Schwann neural cells from high glucose & methylglyoxal-induced injury through restoration of CBS/H2S expression.

    PubMed

    Zhang, Hui; Zhuang, Xiao-dong; Meng, Fu-hui; Chen, Li; Dong, Xiao-bian; Liu, Guo-Hui; Li, Jian-hua; Dong, Qi; Xu, Ji-de; Yang, Chun-tao

    2016-01-01

    A meta-analysis has suggested that vitamin D deficiency is involved in diabetic peripheral neuropathy (DPN) and the levels of hydrogen sulfide (H2S) are also decreased in type 2 diabetes. The injection of vitamin D induces cystathionine-β-synthase (CBS) expression and H2S generation. However, it remains unclear whether the supplementation of vitamin D prevents DPN through improvement of CBS/H2S expression. In the present study, RSC96 cells, a rat Schwann cell line, were exposed to high glucose and methylglyoxal (HG&MG) to simulate diabetic peripheral nerve injury in vivo. Before the exposure to HG&MG, the cells were preconditioned with calcitriol (CCT), an active form of vitamin D, and then CCT-mediated neuroprotection was investigated in respect of cellular viability, superoxide anion (O2(-)) generation, inducible nitric oxide (NO) synthase (iNOS)/NO expression, mitochondrial membrane potential (MMP), as well as CBS expression and activity. It was found that both high glucose and MGO decreased cell viability and co-treatment with the two induced a more serious injury in RSC96 cells. Therefore, the exposure to HG&MG was used in the present study. The exposure to HG&MG markedly induced iNOS expression, NO and O2(-) generation, as well as MMP loss. In addition, the exposure to HG&MG depressed CBS expression and activity in RSC96 cells. However, the preconditioning with CCT significantly antagonized HG&MG-induced cell injury including the decreased viability, iNOS overexpression, NO and O2(-) accumulation, as well as MMP loss. CCT also partially restored the decreased CBS expression and activity triggered by HG&MG, while the inhibition of CBS with hydroxylamine attenuated CCT-mediated neuroprotection. Moreover, the exogenous donation of H2S produced similar cellular protective effects to CCT. The data indicate that the supplementation of vitamin D prevents HG&MG-induced peripheral nerve injury involving the restoration of endogenous H2S system, which may provide a

  12. Cold exposure affects carbohydrates and lipid metabolism, and induces Hog1p phosphorylation in Dekkera bruxellensis strain CBS 2499.

    PubMed

    Galafassi, Silvia; Toscano, Marco; Vigentini, Ileana; Zambelli, Paolo; Simonetti, Paolo; Foschino, Roberto; Compagno, Concetta

    2015-05-01

    Dekkera bruxellensis is a yeast known to affect the quality of wine and beer. This species, due to its high ethanol and acid tolerance, has been reported also to compete with Saccharomyces cerevisiae in distilleries producing fuel ethanol. In order to understand how this species responds when exposed to low temperatures, some mechanisms like synthesis and accumulation of intracellular metabolites, changes in lipid composition and activation of the HOG-MAPK pathway were investigated in the genome sequenced strain CBS 2499. We show that cold stress caused intracellular accumulation of glycogen, but did not induce accumulation of trehalose and glycerol. The cellular fatty acid composition changed after the temperature downshift, and a significant increase of palmitoleic acid was observed. RT-PCR analysis revealed that OLE1 encoding for Δ9-fatty acid desaturase was up-regulated, whereas TPS1 and INO1 didn't show changes in their expression. In D. bruxellensis Hog1p was activated by phosphorylation, as described in S. cerevisiae, highlighting a conserved role of the HOG-MAP kinase signaling pathway in cold stress response. PMID:25697274

  13. Stabilized MLPG-VF-based method with CBS scheme for laminar flow at high Reynolds and Rayleigh numbers

    NASA Astrophysics Data System (ADS)

    Enjilela, Vali; Salimi, Davood; Tavasoli, Ali; Lotfi, Mohsen

    2016-02-01

    In the present work, the meshless local Petrov-Galerkin vorticity-stream function (MLPG-VF) method is extended to solve two-dimensional laminar fluid flow and heat transfer equations for high Reynolds and Rayleigh numbers. The characteristic-based split (CBS) scheme which uses unity test function is employed for discretization, and the moving least square (MLS) method is used for interpolation of the field variables. Four test cases are considered to evaluate the present algorithm, namely lid-driven cavity flow with Reynolds numbers up to and including 104, flow over a backward-facing step at Reynolds number of 800, natural convection in a square cavity for Rayleigh numbers up to and including 108, and natural convection in a concentric square outer cylinder and circular inner cylinder annulus for Rayleigh numbers up to and including 107. In each case, the result obtained using the proposed algorithm is either compared with the results from the literatures or with those obtained using conventional numerical techniques. The present algorithm shows stable results at lower or equal computational cost compared to the other upwinding schemes usually employed in the MLPG method. Close agreements between the compared results as well as higher accuracy of the proposed method show the ability of this stabilized algorithm.

  14. Biotechnological Strains of Komagataella (Pichia) pastoris are Komagataella phaffii as Determined from Multigene Sequence Analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pichia pastoris was reassigned earlier to the genus Komagataella following phylogenetic analysis of gene sequences. Since that time, two additional species of Komagataella have been described, K. pseudopastoris and K. phaffii. Because these three species are unlikely to be resolved from the standa...

  15. Expression of Cellobiose Dehydrogenase from Neurospora crassa in Pichia pastoris and its purification and characterization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A gene encoding cellobiose dehydrogenase (CDH) from Neurospora crassa strain FGSC 2489 has been cloned and expressed in the heterologous host Pichia pastoris, under the control of the AOX1 methanol inducible promoter. Recombinant CDH without the native signal sequence and fused with a his6-tag (rNC-...

  16. Differential gene expression during the pathogenic interaction between Pichia fermentans and peach fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A biofilm-forming strain of Pichia fermentans was found to be a very strong antagonist against brown rot and grey mold in artificially wounded apple fruit when co-inoculated with either Monilinia fructicola or Botrytis cinerea, respectively. The same strain of yeast; however, was an aggressive path...

  17. Genome Sequence of Pichia kudriavzevii M12, a Potential Producer of Bioethanol and Phytase

    PubMed Central

    Gan, Han Ming; Ling, How Lie; Rashid, Noor Aini Abdul

    2012-01-01

    A draft genome sequence of Pichia kudriavzevii M12 is presented here. The genome reveals the presence of genes encoding enzymes involved in xylose utilization and the pentose phosphate pathway for bioethanol production. Strain M12 is also a potential producer of phytases, enzymes useful in food processing and agriculture. PMID:23027839

  18. A high-throughput protein expression system in Pichia pastoris using a newly developed episomal vector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We describe here the construction of a Gateway-compatible vector, pBGP1-DEST, for rapid and convenient preparation of expression plasmids for production of secretory proteins in Pichia pastoris. pBGP1-DEST directs the synthesis of a fusion protein consisting of the N-terminal signal and pro-sequence...

  19. Surface display and bioactivity of Bombyx mori acetylcholinesterase on Pichia pastoris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To construct the Pichia pastoris (P. pastoris) cell surface display system of Bombyx mori acetylcholinesterase (BmAChE), the gene for the anchor protein (AGa1) was obtained from Saccharomyces cerevisiae and was fused with the modified Bombyx mori acetylcholinesterase gene (bmace) and transformed int...

  20. Efficacy of Pichia anomala WLR-076 to control aflatoxin on corn in Texas, 2005

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The experiments were conducted at three Texas Agricultural Experiment Stations on yellow corn hybrids to test the biocontrol yeast, Pichia anomala WRL-076. There were five replicates per treatment arranged in a randomized complete block design. The treatments were: (1) P. anomala WLR-076 applied ...

  1. Functional expression of a blood tolerant laccase in Pichia pastoris

    PubMed Central

    2013-01-01

    Background Basidiomycete high-redox potential laccases (HRPLs) working in human physiological fluids (pH 7.4, 150 mM NaCl) arise great interest in the engineering of 3D-nanobiodevices for biomedical uses. In two previous reports, we described the directed evolution of a HRPL from basidiomycete PM1 strain CECT 2971: i) to be expressed in an active, soluble and stable form in Saccharomyces cerevisiae, and ii) to be active in human blood. In spite of the fact that S. cerevisiae is suited for the directed evolution of HRPLs, the secretion levels obtained in this host are not high enough for further research and exploitation. Thus, the search for an alternative host to over-express the evolved laccases is mandatory. Results A blood-active laccase (ChU-B mutant) fused to the native/evolved α-factor prepro-leader was cloned under the control of two different promoters (PAOX1 and PGAP) and expressed in Pichia pastoris. The most active construct, which contained the PAOX1 and the evolved prepro-leader, was fermented in a 42-L fed-batch bioreactor yielding production levels of 43 mg/L. The recombinant laccase was purified to homogeneity and thoroughly characterized. As happened in S. cerevisiae, the laccase produced by P. pastoris presented an extra N-terminal extension (ETEAEF) generated by an alternative processing of the α-factor pro-leader at the Golgi compartment. The laccase mutant secreted by P. pastoris showed the same improved properties acquired after several cycles of directed evolution in S. cerevisiae for blood-tolerance: a characteristic pH-activity profile shifted to the neutral-basic range and a greatly increased resistance against inhibition by halides. Slight biochemical differences between both expression systems were found in glycosylation, thermostability and turnover numbers. Conclusions The tandem-yeast system based on S. cerevisiae to perform directed evolution and P. pastoris to over-express the evolved laccases constitutes a promising approach for

  2. Urothelium muscarinic activation phosphorylates CBS(Ser227) via cGMP/PKG pathway causing human bladder relaxation through H2S production.

    PubMed

    d'Emmanuele di Villa Bianca, Roberta; Mitidieri, Emma; Fusco, Ferdinando; Russo, Annapina; Pagliara, Valentina; Tramontano, Teresa; Donnarumma, Erminia; Mirone, Vincenzo; Cirino, Giuseppe; Russo, Giulia; Sorrentino, Raffaella

    2016-01-01

    The urothelium modulates detrusor activity through releasing factors whose nature has not been clearly defined. Here we have investigated the involvement of H2S as possible mediator released downstream following muscarinic (M) activation, by using human bladder and urothelial T24 cell line. Carbachol stimulation enhances H2S production and in turn cGMP in human urothelium or in T24 cells. This effect is reversed by cysthationine-β-synthase (CBS) inhibition. The blockade of M1 and M3 receptors reverses the increase in H2S production in human urothelium. In T24 cells, the blockade of M1 receptor significantly reduces carbachol-induced H2S production. In the functional studies, the urothelium removal from human bladder strips leads to an increase in carbachol-induced contraction that is mimicked by CBS inhibition. Instead, the CSE blockade does not significantly affect carbachol-induced contraction. The increase in H2S production and in turn of cGMP is driven by CBS-cGMP/PKG-dependent phosphorylation at Ser(227) following carbachol stimulation. The finding of the presence of this crosstalk between the cGMP/PKG and H2S pathway downstream to the M1/M3 receptor in the human urothelium further implies a key role for H2S in bladder physiopathology. Thus, the modulation of the H2S pathway can represent a feasible therapeutic target to develop drugs for bladder disorders. PMID:27509878

  3. Sex-specific association of sequence variants in CBS and MTRR with risk for promoter hypermethylation in the lung epithelium of smokers.

    PubMed

    Flores, Kristina G; Stidley, Christine A; Mackey, Amanda J; Picchi, Maria A; Stabler, Sally P; Siegfried, Jill M; Byers, Tim; Berwick, Marianne; Belinsky, Steven A; Leng, Shuguang

    2012-08-01

    Gene promoter hypermethylation is now regarded as a promising biomarker for the risk and progression of lung cancer. The one-carbon metabolism pathway is postulated to affect deoxyribonucleic acid (DNA) methylation because it is responsible for the generation of S-adenosylmethionine (SAM), the methyl donor for cellular methylation reactions. This study investigated the association of single nucleotide polymorphisms (SNPs) in six one-carbon metabolism-related genes with promoter hypermethylation in sputum DNA from non-Hispanic white smokers in the Lovelace Smokers Cohort (LSC) (n = 907). Logistic regression was used to assess the association of SNPs with hypermethylation using a high/low methylation cutoff. SNPs in the cystathionine beta synthase (CBS) and 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR) genes were significantly associated with high methylation in males [CBS rs2850146 (-8283G > C), OR = 4.9; 95% CI: 1.98, 12.2, P = 0.0006] and low methylation in females [MTRR rs3776467 (7068A > G), OR = 0.57, 95% CI: 0.42, 0.77, P = 0.0003]. The variant allele of rs2850146 was associated with reduced gene expression and increased plasma homocysteine (Hcy) concentrations. Three plasma metabolites, Hcy, methionine and dimethylglycine, were associated with increased risk for gene methylation. These studies suggest that SNPs in CBS and MTRR have sex-specific associations with aberrant methylation in the lung epithelium of smokers that could be mediated by the affected one-carbon metabolism and transsulfuration in the cells. PMID:22665368

  4. Chemical Composition and Medicinal Value of the New Ganoderma tsugae var. jannieae CBS-120304 Medicinal Higher Basidiomycete Mushroom.

    PubMed

    Chan, Jannie Siew Lee; Asatiani, Mikheil D; Sharvit, Lital E; Trabelcy, Beny; Barseghyan, Gayane S; Wasser, Solomon P

    2015-01-01

    In this research, the chemical composition and anticancer and antioxidant activity of the new medicinal mushroom Ganoderma tsugae var. jannieae CBS-120304 were evaluated. The chemical composition assay includes amounts of total carbohydrates and proteins, amino acids, fatty acids, micro- and macroelements, and vitamins. The investigated medicinal mushroom seemed to be a rich source of nutritional components. Mycelium accumulated more than 2-fold more total protein compared with the fruiting body and reached 37% and 16% of dry weight, respectively. Carbohydrate content in the fruiting body seemed to be conspicuously higher than in the mycelium (50% of dry weight) and reached 80% of dry weight. Quantification of the identified fatty acids indicated that, in general, palmitic acid, oleic acid, and linoleic acid were the major fatty acids. Toxic elements, such as silver, arsenic, cadmium, and mercury, were found only in trace amounts in mycelium and were not detected in the fruiting body. Furthermore, the 1,1-diphenyl-2-picrylhydrazyl free radical scavenging assay was used to evaluate antioxidant activity. The highest radical scavenging activity was 9.0 mg/mL (65.9%) by ethanol extract. In addition, mycelial extracts were tested to inhibit MCF7 breast cancer cells. Ganoderma tsugae var. jannieae ethyl acetate extract (GTEAE) extract showed high potential by inhibiting reporter activity by more than 70%. Results demonstrated that GTEAE had a strong effect on inhibitory protein κΒα level in the higher concentration used (200 gg/mL), which could be compared with the effect of parthenolide. Furthermore, GTEAE demonstrated strong inhibition of IκΒα phosphorylation. PMID:26559860

  5. Study on Environmental Causes and SNPs of MTHFR, MS and CBS Genes Related to Congenital Heart Disease

    PubMed Central

    Liu, Yan; Huang, Peng; Lin, Ning; Sun, Xiaoru; Yu, Rongbin; Zhang, Yuanyuan; Qin, Yuming; Wang, Lijuan

    2015-01-01

    Purpose Congenital heart diseases (CHD) are among the most common birth defects in China. Environmental causes and folate metabolism changes may alter susceptibility to CHD. The aim of this study is to evaluate the relevant risk-factors of children with CHD and their mothers. Methods 138 children with CHD and 207 normal children for controls were recruited. Their mothers were also enlisted in this study and interviewed following a questionnaire about their pregnant history and early pregnancy situation. Five single nucleotide polymorphisms (SNPs) in methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MS) and cystathionine β-synthase (CBS) of mothers and children were genotyped. Results There were significant differences in the gender of children, occupation of mothers, family history with CHD, history of abortion, history of adverse pregnancy, early pregnancy health, fetus during pregnancy, pesticide exposure and drug exposure in CHD group and control group ( P < 0.05). Logistic regression analyses showed that after adjustment for above factors, MTHFR rs1801131 were significantly associated with their offspring CHD risk in mothers. Compared with the mothers whose MTHFR were rs1801131 AA and AC genotypes, the mothers who got a mutation of MTHFR rs1801131 CC genotypes had a 267% increase in risk of given birth of a CHD children (OR=3.67,95%CI=1.12-12.05). Meanwhile, MTHFR rs1801131 were significantly associated with CHD susceptibility in children (OR = 1.42, 95% CI = 1.00-2.44 in additive model). Conclusions Besides mothers’ social and fertility characteristics, our results suggested that the genetic variants in folate metabolism pathway might be one of the most related risk-factors of CHD. MTHFR rs1801131 were identified as loci in Chinese population that were involved in CHD. PMID:26035828

  6. [Optimization on the production of analgesic peptide from Buthus martensii Karsch in Pichia pastoris].

    PubMed

    Yang, Jin-ling; He, Hui-xia; Zhu, Hui-xin; Cheng, Ke-di; Zhu, Ping

    2009-01-01

    The technology of liquid fermentation for producing the recombinant analgesic peptide BmK AngM1 from Buthus martensii Karsch in Pichia pastoris was studied by single-factor and orthogonal test. The results showed that the optimal culture conditions were as follows: 1.2% methanol, 0.6% casamino acids, initial pH 6.0, and three times of basal inoculation volume. Under the above culture conditions, the expression level of recombinant BmK AngM1 in Pichia pastoris was above 500 mg x L(-1), which was more than three times of the control. The study has laid a foundation for the large-scale preparation of BmK AngM1 to meet the needs of theoretical research of BmK AngM1 and development of new medicines. PMID:19350829

  7. Cloning and functional expression of a mungbean defensin VrD1 in Pichia pastoris.

    PubMed

    Chen, Ji-Jr; Chen, Gan-Hong; Hsu, Hui-Ching; Li, Shin-Shing; Chen, Ching-San

    2004-04-21

    It was shown previously that a bacterially expressed mungbean defensin VrCRP exhibited both antifungal and insecticidal activities. To isolate this protein in a large quantity for its characterization, the defensin cDNA was expressed in Pichia pastoris and the recombinant defensin (rVrD1) was purified. The recombinant VrD1 was shown to inhibit the growth of fungi such as Fusarium oxysporum, Pyricularia oryza, Rhizoctonia solani, and Trichophyton rubrum and development of bruchid larva. The protein also inhibits in vitro protein synthesis. These biological activities are similar to that of the bacterially expressed defensin. Functional expression of VrD1 in Pichia pastoris provides a highly feasible system to study the structure-function relationship of VrD1 using the mutagenesis approach. PMID:15080630

  8. Isolation and characterization of Pichia heedii mutants defective in xylose uptake

    SciTech Connect

    Does, A.L.; Bisson, L.F. )

    1990-11-01

    To investigate the role of xylose uptake in xylose metabolism in yeasts, we isolated a series of mutated strains of the yeast Pichia heedii which are defective in xylose utilization. Four of these demonstrated defects in xylose uptake. Overlaps between the functional or regulatory mechanisms for glucose and xylose uptake may exist in this yeast since some of the mutants defective in xylose uptake were also defective in glucose transport. None of the mutants were defective in xylose reductase or xylitol dehydrogenase activities.

  9. Biological production of acetaldehyde from ethanol using non-growing Pichia pastoris whole cells

    SciTech Connect

    Chiang, Heien-Kun; Foutch, G.L.; Fish, W.W.

    1991-12-31

    Acetaldehyde has been produced biologically using whole-cell Pichia Pass in a semibatch fermentor. Ethanol and air were fed continuously, and the product, acetaldehyde, was removed by the air stream. Operation of the reactor exceeded 100 h, maintaining high alcohol oxidase activity. Low cell-mass concentration (9.9 g/L) minimized product inhibition. Ethanol concentration in the broth, oxygen concentration in the air, and pH were evaluated for their effects on the fermentation process.

  10. Expression of endoglucanases in Pichia pastoris under control of the GAP promoter

    PubMed Central

    2014-01-01

    Background Plant-derived biomass is a potential alternative to fossil feedstocks for a greener economy. Enzymatic saccharification of biomass has been studied extensively and endoglucanases have been found to be a prerequisite for quick initial liquefaction of biomass under industrial conditions. Pichia pastoris, widely used for heterologous protein expression, can be utilized for fungal endoglucanase production. The recently marketed PichiaPink™ expression system allows for rapid clone selection, and employs the methanol inducible AOX1 promoter to ensure high protein expression levels. However, methanol is toxic and poses a fire hazard, issues which become more significant at an industrial scale. It is possible to eliminate these risks and still maintain high productivity by switching to the constitutive GAP promoter. Results In the present study, a plasmid carrying the constitutive GAP promoter was created for PichiaPink™. We then studied expression of two endoglucanases, AfCel12A from Aspergillus fumigatus and TaCel5A from Thermoascus aurantiacus, regulated by either the AOX1 promoter or the GAP promoter. Initial experiments in tubes and small bioreactors showed that the levels of AfCel12A obtained with the constitutive promoter were similar or higher, compared to the AOX1 promoter, whereas the levels of TaCel5A were somewhat lower. After optimization of cultivation conditions using a 15-l bioreactor, the recombinant P. pastoris strains utilizing the GAP promoter produced ca. 3–5 g/l of total secreted protein, with CMCase activity equivalent to 1200 nkat/ml AfCel12A and 170 nkat/ml TaCel5A. Conclusions We present a strategy for constitutive recombinant protein expression in the novel PichiaPink™ system. Both AfCel12A and TaCel5A were successfully expressed constitutively in P. pastoris under the GAP promoter. Reasonable protein levels were reached after optimizing cultivation conditions. PMID:24742273

  11. Biosynthesis of silver and zinc oxide nanoparticles using Pichia fermentans JA2 and their antimicrobial property

    NASA Astrophysics Data System (ADS)

    Chauhan, Ritika; Reddy, Arpita; Abraham, Jayanthi

    2015-01-01

    The development of eco-friendly alternative to chemical synthesis of metal nanoparticles is of great challenge among researchers. The present study aimed to investigate the biological synthesis, characterization, antimicrobial study and synergistic effect of silver and zinc oxide nanoparticles against clinical pathogens using Pichia fermentans JA2. The extracellular biosynthesis of silver and zinc oxide nanoparticles was investigated using Pichia fermentans JA2 isolated from spoiled fruit pulp bought in Vellore local market. The crystalline and stable metallic nanoparticles were characterized evolving several analytical techniques including UV-visible spectrophotometer, X-ray diffraction pattern analysis and FE-scanning electron microscope with EDX-analysis. The biosynthesized metallic nanoparticles were tested for their antimicrobial property against medically important Gram positive, Gram negative and fungal pathogenic microorganisms. Furthermore, the biosynthesized nanoparticles were also evaluated for their increased antimicrobial activities with various commercially available antibiotics against clinical pathogens. The biosynthesized silver nanoparticles inhibited most of the Gram negative clinical pathogens, whereas zinc oxide nanoparticles were able to inhibit only Pseudomonas aeruginosa. The combined effect of standard antibiotic disc and biosynthesized metallic nanoparticles enhanced the inhibitory effect against clinical pathogens. The biological synthesis of silver and zinc oxide nanoparticles is a novel and cost-effective approach over harmful chemical synthesis techniques. The metallic nanoparticles synthesized using Pichia fermentans JA2 possess potent inhibitory effect that offers valuable contribution to pharmaceutical associations.

  12. Pichia pastoris expressed EtMic2 protein as a potential vaccine against chicken coccidiosis.

    PubMed

    Zhang, Jie; Chen, Peipei; Sun, Hui; Liu, Qing; Wang, Longjiang; Wang, Tiantian; Shi, Wenyan; Li, Hongmei; Xiao, Yihong; Wang, Pengfei; Wang, Fangkun; Zhao, Xiaomin

    2014-09-15

    Chicken coccidiosis caused by Eimeria species leads to tremendous economic losses to the avian industry worldwide. Identification of parasite life cycle specific antigens is a critical step in recombinant protein vaccine development against Eimeria infections. In the present study, we amplified and cloned the microneme-2 (EtMIC2) gene from Eimeria tenella wild type strain SD-01, and expressed the EtMic2 protein using Pichia pastoris and Escherichia coli expression systems, respectively. The EtMic2 proteins expressed by P. pastoris and E. coli were used as vaccines to immunize chickens and their protective efficacies were compared and evaluated. The results indicated that both P. pastoris and E. coli expressed EtMic2 proteins exhibited good immunogenicity in stimulating host immune responses and the Pichia expressed EtMic2 provided better protection than the E. coli expressed EtMic2 did by significantly increasing growth rate, inducing high specific antibody response, reducing the oocyst output and cecal lesions. Particularly, the Pichia expressed EtMic2 protein exhibited much better ability in inducing cell mediated immune response than the E. coli expressed EtMic2. PMID:25047705

  13. A Rapid Method for Determining the Concentration of Recombinant Protein Secreted from Pichia pastoris

    NASA Astrophysics Data System (ADS)

    Sun, L. W.; Zhao, Y.; Niu, L. P.; Jiang, R.; Song, Y.; Feng, H.; feng, K.; Qi, C.

    2011-02-01

    Pichia secretive expression system is one of powerful eukaryotic expression systems in genetic engineering, which is especially suitable for industrial utilization. Because of the low concentration of the target protein in initial experiment, the methods and conditions for expression of the target protein should be optimized according to the protein yield repetitively. It is necessary to set up a rapid, simple and convenient analysis method for protein expression levels instead of the generally used method such as ultrafiltration, purification, dialysis, lyophilization and so on. In this paper, acetone precipitation method was chosen to concentrate the recombinant protein firstly after comparing with four different protein precipitation methods systematically, and then the protein was analyzed by SDS-Polyacrylamide Gel Electrophoresis. The recombinant protein was determined with the feature of protein band by the Automated Image Capture and 1-D Analysis Software directly. With this method, the optimized expression conditions of basic fibroblast growth factor secreted from pichia were obtained, which is as the same as using traditional methods. Hence, a convenient tool to determine the optimized conditions for the expression of recombinant proteins in Pichia was established.

  14. A functional Kv1.2-hERG chimaeric channel expressed in Pichia pastoris

    NASA Astrophysics Data System (ADS)

    Dhillon, Mandeep S.; Cockcroft, Christopher J.; Munsey, Tim; Smith, Kathrine J.; Powell, Andrew J.; Carter, Paul; Wrighton, David C.; Rong, Hong-Lin; Yusaf, Shahnaz P.; Sivaprasadarao, Asipu

    2014-02-01

    Members of the six-transmembrane segment family of ion channels share a common structural design. However, there are sequence differences between the members that confer distinct biophysical properties on individual channels. Currently, we do not have 3D structures for all members of the family to help explain the molecular basis for the differences in their biophysical properties and pharmacology. This is due to low-level expression of many members in native or heterologous systems. One exception is rat Kv1.2 which has been overexpressed in Pichia pastoris and crystallised. Here, we tested chimaeras of rat Kv1.2 with the hERG channel for function in Xenopus oocytes and for overexpression in Pichia. Chimaera containing the S1-S6 transmembrane region of HERG showed functional and pharmacological properties similar to hERG and could be overexpressed and purified from Pichia. Our results demonstrate that rat Kv1.2 could serve as a surrogate to express difficult-to-overexpress members of the six-transmembrane segment channel family.

  15. A functional Kv1.2-hERG chimaeric channel expressed in Pichia pastoris

    PubMed Central

    Dhillon, Mandeep S.; Cockcroft, Christopher J.; Munsey, Tim; Smith, Kathrine J.; Powell, Andrew J.; Carter, Paul; Wrighton, David C.; Rong, Hong-lin; Yusaf, Shahnaz P.; Sivaprasadarao, Asipu

    2014-01-01

    Members of the six-transmembrane segment family of ion channels share a common structural design. However, there are sequence differences between the members that confer distinct biophysical properties on individual channels. Currently, we do not have 3D structures for all members of the family to help explain the molecular basis for the differences in their biophysical properties and pharmacology. This is due to low-level expression of many members in native or heterologous systems. One exception is rat Kv1.2 which has been overexpressed in Pichia pastoris and crystallised. Here, we tested chimaeras of rat Kv1.2 with the hERG channel for function in Xenopus oocytes and for overexpression in Pichia. Chimaera containing the S1–S6 transmembrane region of HERG showed functional and pharmacological properties similar to hERG and could be overexpressed and purified from Pichia. Our results demonstrate that rat Kv1.2 could serve as a surrogate to express difficult-to-overexpress members of the six-transmembrane segment channel family. PMID:24569544

  16. [A flavinogenic mutant of the yeast Pichia guilliermondii with impaired iron transport].

    PubMed

    Shavlovskiĭ, G M; Fedorovich, D V; Zviagil'skais, R A

    1976-01-01

    A mutant of the yeast Pichia guilliermondii was produced by means of UV; the mutant was capable of riboflavin overproduction in the presence of high concentrations of iron in the medium. The content of total and non-hemin iron and cytochrome c, and the activity of catalase, were lower in the cells of the mutant than in the parent cells, while the activity of riboflavin synthetase was higher. The content of iron in the cells increased when the mutant was cultivated on media with citric acid, siderochromes of Klebsiella aerogenes, Neurospora crassa, Rhodotorula glutinis, cultural broth of Pichia ohmeri, and autolysate of brewer's yeast, whereas the flavinogenous activity of the cells decreased. Rotenone inhibited respiration of the intact cells of the mutant producing elevated amounts of riboflavin; therefore, flavinogenesis was not regulated by non-hemin iron on the first segment of the respiratory chain. Overproduction of riboflavin in the mutant of Pichia guilliermondii was proved to be a recessive property. PMID:933879

  17. Removal of gating in voltage-dependent ClC-2 chloride channel by point mutations affecting the pore and C-terminus CBS-2 domain

    PubMed Central

    Yusef, Yamil R; Zúñiga, Leandro; Catalán, Marcelo; Niemeyer, María Isabel; Cid, L Pablo; Sepúlveda, Francisco V

    2006-01-01

    Functional and structural studies demonstrate that Cl− channels of the ClC family have a dimeric double-barrelled structure, with each monomer contributing an identical pore. Studies with ClC-0, the prototype ClC channel, show the presence of independent mechanisms gating the individual pores or both pores simultaneously. A single-point mutation in the CBS-2 domain of ClC-0 has been shown to abolish slow gating. We have taken advantage of the high conservation of CBS domains in ClC channels to test for the presence of a slow gate in ClC-2 by reproducing this mutation (H811A). ClC-2-H811A showed faster opening kinetics and opened at more positive potentials than ClC-2. There was no difference in [Cl−]i dependence. Additional neutralization of a putative pore gate glutamate side chain (E207V) abolished all gating. Resolving slow and fast gating relaxations, however, revealed that the H811A mutation affected both fast and slow gating processes in ClC-2. This suggests that slow and fast gating in ClC-2 are coupled, perhaps with slow gating contributing to the operation of the pore E207 as a protopore gate. PMID:16469788

  18. Removal of gating in voltage-dependent ClC-2 chloride channel by point mutations affecting the pore and C-terminus CBS-2 domain.

    PubMed

    Yusef, Yamil R; Zúñiga, Leandro; Catalán, Marcelo; Niemeyer, María Isabel; Cid, L Pablo; Sepúlveda, Francisco V

    2006-04-01

    Functional and structural studies demonstrate that Cl(-) channels of the ClC family have a dimeric double-barrelled structure, with each monomer contributing an identical pore. Studies with ClC-0, the prototype ClC channel, show the presence of independent mechanisms gating the individual pores or both pores simultaneously. A single-point mutation in the CBS-2 domain of ClC-0 has been shown to abolish slow gating. We have taken advantage of the high conservation of CBS domains in ClC channels to test for the presence of a slow gate in ClC-2 by reproducing this mutation (H811A). ClC-2-H811A showed faster opening kinetics and opened at more positive potentials than ClC-2. There was no difference in [Cl(-)](i) dependence. Additional neutralization of a putative pore gate glutamate side chain (E207V) abolished all gating. Resolving slow and fast gating relaxations, however, revealed that the H811A mutation affected both fast and slow gating processes in ClC-2. This suggests that slow and fast gating in ClC-2 are coupled, perhaps with slow gating contributing to the operation of the pore E207 as a protopore gate. PMID:16469788

  19. Breaking the bottleneck: Use of molecular tailoring approach for the estimation of binding energies at MP2/CBS limit for large water clusters

    NASA Astrophysics Data System (ADS)

    Singh, Gurmeet; Nandi, Apurba; Gadre, Shridhar R.

    2016-03-01

    A pragmatic method based on the molecular tailoring approach (MTA) for estimating the complete basis set (CBS) limit at Møller-Plesset second order perturbation (MP2) theory accurately for large molecular clusters with limited computational resources is developed. It is applied to water clusters, (H2O)n (n = 7, 8, 10, 16, 17, and 25) optimized employing aug-cc-pVDZ (aVDZ) basis-set. Binding energies (BEs) of these clusters are estimated at the MP2/aug-cc-pVNZ (aVNZ) [N = T, Q, and 5 (whenever possible)] levels of theory employing grafted MTA (GMTA) methodology and are found to lie within 0.2 kcal/mol of the corresponding full calculation MP2 BE, wherever available. The results are extrapolated to CBS limit using a three point formula. The GMTA-MP2 calculations are feasible on off-the-shelf hardware and show around 50%-65% saving of computational time. The methodology has a potential for application to molecular clusters containing ˜100 atoms.

  20. Theoretical Calculation of Jet Fuel Thermochemistry. 1; Tetrahydrodicylopentadiene (JP10) Thermochemistry Using the CBS-QB3 and G3(MP2)//B3LYP Methods

    NASA Technical Reports Server (NTRS)

    Zehe, Michael J.; Jaffe, Richard L.

    2010-01-01

    High-level ab initio calculations have been performed on the exo and endo isomers of gas-phase tetrahydrodicyclopentadiene (THDCPD), a principal component of the jet fuel JP10, using the Gaussian Gx and Gx(MPx) composite methods, as well as the CBS-QB3 method, and using a variety of isodesmic and homodesmotic reaction schemes. The impetus for this work is to help resolve large discrepancies existing between literature measurements of the formation enthalpy Delta (sub f)H deg (298) for exo-THDCPD. We find that use of the isodesmic bond separation reaction C10H16 + 14CH4 yields 12C2H6 yields results for the exo isomer (JP10) in between the two experimentally accepted values, for the composite methods G3(MP2), G3(MP2)//B3LYP, and CBS-QB3. Application of this same isodesmic bond separation scheme to gas-phase adamantane yields a value for Delta (sub f)H deg (298) within 5 kJ/mol of experiment. Isodesmic bond separation calculations for the endo isomer give a heat of formation in excellent agreement with the experimental measurement. Combining our calculated values for the gas-phase heat of formation with recent measurements of the heat of vaporization yields recommended values for Delta (sub f)H deg (298)liq of -126.4 and -114.7 kJ/mol for the exo and endo isomers, respectively.

  1. High-level extracellular production and characterization of Candida antarctica lipase B in Pichia pastoris.

    PubMed

    Eom, Gyeong Tae; Lee, Seung Hwan; Song, Bong Keun; Chung, Keun-Wo; Kim, Young-Wun; Song, Jae Kwang

    2013-08-01

    The gene encoding lipase B from Candida antarctica (CalB) was expressed in Pichia pastoris after it was synthesized by the recursive PCR and cloned into the Pichia expression plasmid, pPICZαA. The CalB was successfully secreted in the recombinant P. pastoris strain X-33 with an apparent molecular weight of 34 kDa. For 140 h flask culture, the dry cell weight and the extracellular lipase activity reached at 5.4 g/l and 57.9 U/l toward p-nitrophenyl palmitate, respectively. When we performed the fed-batch fermentation using a methanol feeding strategy for 110 h, the dry cell weight and the extracellular lipase activity were increased to 135.7 g/l and 11,900 U/l; the CalB protein concentration was 1.18 g/l of culture supernatant. The characteristics of CalB recovered from the P. pastoris culture were compared with the commercial form of CalB produced in Aspergillus oryzae. The kinetic constants and specific activity, the effects of activity and stability on temperature and pH, the glycosylation extent, the degree of immobilization on macroporous resin and the yield of esterification reaction between oleic acid and n-butanol were almost identical to each other. Therefore, we successfully proved that the Pichia-based expression system for CalB in this study was industrially promising compared with one of the most efficient production systems. PMID:23571105

  2. Response Surface Optimization of Bioethanol Production from Sugarcane Molasses by Pichia veronae Strain HSC-22

    PubMed Central

    Hamouda, Hamed I.; Nassar, Hussein N.; Madian, Hekmat R.; Abu Amr, Salem S.; El-Gendy, Nour Sh.

    2015-01-01

    Pichia veronae strain HSC-22 (accession number KP012558) showed a good tolerance to relatively high temperature, ethanol and sugar concentrations. Response surface optimization based on central composite design of experiments predicted the optimal values of the influencing parameters that affect the production of bioethanol from sugarcane molasses to be as follows: initial pH 5, 25% (w : v) initial molasses concentration, 35°C, 116 rpm, and 60 h. Under these optimum operating conditions the maximum bioethanol production on a batch fermenter scale was recorded as 32.32 g/L with 44% bioethanol yield. PMID:26779347

  3. Low-pressure airlift fermenter for single cell protein production: II. Continuous culture of Pichia yeast

    SciTech Connect

    Chen, N.Y.; Srinivasan, S.; Leavitt, R.I.; Coty, V.F.; Kondis, E.F.

    1987-03-01

    Experiments using Pichia yeast grown on n-paraffins have been conducted in laboratory 10-l airlift fermenters and in a 640-l module of commercial scale. Results confirmed the design concept with low-pressure air. However, in the absence of mass transport constraints, the build up of toxic factors in the fermenter appeared to a major variable limiting cell productivity. Foaming in the large fermenter also presented a serious problem, which must be solved before low-pressure airlift fermenters become practical. 14 references.

  4. Large-scale production in Pichia pastoris of the recombinant vaccine Gavac against cattle tick.

    PubMed

    Canales, M; Enríquez, A; Ramos, E; Cabrera, D; Dandie, H; Soto, A; Falcón, V; Rodríguez, M; de la Fuente, J

    1997-03-01

    A gene coding for the Bm86 tick protein was recently cloned, expressed in Pichia pastoris and shown to induce an inmunological response in cattle against ticks. Moreover, the Gavac vaccine (Heber Biotec S.A., Havana, Cuba), which contains this recombinant protein, has proved to control the Boophilus microplus populations under field conditions. This paper reviews the development and large-scale production of this vaccine, the efficacy of the resulting product and the strategy followed in designing its production plant. The production plant fulfills biosafety requirements and GMP. PMID:9141213

  5. Biochemical characterization of the recombinant Boophilus microplus Bm86 antigen expressed by transformed Pichia pastoris cells.

    PubMed

    Montesino, R; Cremata, J; Rodríguez, M; Besada, V; Falcón, V; de la Fuente, J

    1996-02-01

    In the present paper we report the biochemical characteristics of the recombinant tick (Boophilus microplus) gut antigen Bm86 that previously has been cloned, expressed and recovered at high levels in the methylotrophic yeast Pichia pastoris. The results demonstrate that rBm86 had a modification at position 92 (Thr replaced by Ile) and aggregated, forming particles ranging between 17 and 40 nm. The rBm86 was N-glycosylated, having at least two non-glycosylated sequons (Asn-329 and Asn-363) and a ratio of only 0.4/65 (free Cys/total Cys)/mol of protein. PMID:8867893

  6. Simplified high-throughput screening of AOX1-expressed laccase enzyme in Pichia pastoris.

    PubMed

    Kenzom, T; Srivastava, P; Mishra, S

    2015-11-15

    The heterologous protein expression in Pichia pastoris under the control of alcohol oxidase (AOX1)promoter comprises two steps, the growth and induction phases, which are time-consuming and technically demanding. Here, we describe an alternate method where expression is carried out directly in the methanol-containing medium. Using this method, we were successful in screening high-activity laccase clones from a library of laccase mutants generated by random mutagenesis. This simplified method not only saves time but also is highly efficient and can be used for screening a large number of clones. PMID:26299646

  7. Cloning, nucleotide sequence, and expression of the plasmid-encoded genes for the two-component 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS.

    PubMed

    Haak, B; Fetzner, S; Lingens, F

    1995-02-01

    The two-component nonheme iron dioxygenase system 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS catalyzes the double hydroxylation of 2-halobenzoates with concomitant release of halogenide and carbon dioxide, yielding catechol. The gene cluster encoding this enzyme, cbdABC, was localized on a 70-kbp conjugative plasmid designated pBAH1. The nucleotide sequences of cbdABC and flanking regions were determined. In the deduced amino acid sequence of the large subunit of the terminal oxygenase component (CbdA), a conserved motif proposed to bind the Rieske-type [2Fe-2S] cluster was identified. In the NADH:acceptor reductase component (CbdC), a putative binding site for a chloroplast-type [2Fe-2S] center and possible flavin adenine dinucleotide- and NAD-binding domains were identified. The cbdABC sequences show significant homology to benABC, which encode benzoate 1,2-dioxygenase from Acinetobacter calcoaceticus (52% identity at the deduced amino acid level), and to xylXYZ, which encode toluate 1,2-dioxygenase from Pseudomonas putida mt-2 (51% amino acid identity). Recombinant pkT231 harboring cbdABC and flanking regions complemented a plasmid-free mutant of wild-type P. cepacia 2CBS for growth on 2-chlorobenzoate, and it also allowed recombinant P. putida KT2440 to metabolize 2-chlorobenzoate. Functional NADH:acceptor reductase and oxygenase components of 2-halobenzoate 1,2-dioxygenase were enriched from recombinant Pseudomonas clones. PMID:7530709

  8. Cloning, nucleotide sequence, and expression of the plasmid-encoded genes for the two-component 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS.

    PubMed Central

    Haak, B; Fetzner, S; Lingens, F

    1995-01-01

    The two-component nonheme iron dioxygenase system 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS catalyzes the double hydroxylation of 2-halobenzoates with concomitant release of halogenide and carbon dioxide, yielding catechol. The gene cluster encoding this enzyme, cbdABC, was localized on a 70-kbp conjugative plasmid designated pBAH1. The nucleotide sequences of cbdABC and flanking regions were determined. In the deduced amino acid sequence of the large subunit of the terminal oxygenase component (CbdA), a conserved motif proposed to bind the Rieske-type [2Fe-2S] cluster was identified. In the NADH:acceptor reductase component (CbdC), a putative binding site for a chloroplast-type [2Fe-2S] center and possible flavin adenine dinucleotide- and NAD-binding domains were identified. The cbdABC sequences show significant homology to benABC, which encode benzoate 1,2-dioxygenase from Acinetobacter calcoaceticus (52% identity at the deduced amino acid level), and to xylXYZ, which encode toluate 1,2-dioxygenase from Pseudomonas putida mt-2 (51% amino acid identity). Recombinant pkT231 harboring cbdABC and flanking regions complemented a plasmid-free mutant of wild-type P. cepacia 2CBS for growth on 2-chlorobenzoate, and it also allowed recombinant P. putida KT2440 to metabolize 2-chlorobenzoate. Functional NADH:acceptor reductase and oxygenase components of 2-halobenzoate 1,2-dioxygenase were enriched from recombinant Pseudomonas clones. PMID:7530709

  9. The hybrid four-CBS-domain KINβγ subunit functions as the canonical γ subunit of the plant energy sensor SnRK1.

    PubMed

    Ramon, Matthew; Ruelens, Philip; Li, Yi; Sheen, Jen; Geuten, Koen; Rolland, Filip

    2013-07-01

    The AMPK/SNF1/SnRK1 protein kinases are a family of ancient and highly conserved eukaryotic energy sensors that function as heterotrimeric complexes. These typically comprise catalytic α subunits and regulatory β and γ subunits, the latter function as the energy-sensing modules of animal AMPK through adenosine nucleotide binding. The ability to monitor accurately and adapt to changing environmental conditions and energy supply is essential for optimal plant growth and survival, but mechanistic insight in the plant SnRK1 function is still limited. In addition to a family of γ-like proteins, plants also encode a hybrid βγ protein that combines the Four-Cystathionine β-synthase (CBS)-domain (FCD) structure in γ subunits with a glycogen-binding domain (GBD), typically found in β subunits. We used integrated functional analyses by ectopic SnRK1 complex reconstitution, yeast mutant complementation, in-depth phylogenetic reconstruction, and a seedling starvation assay to show that only the hybrid KINβγ protein that recruited the GBD around the emergence of the green chloroplast-containing plants, acts as the canonical γ subunit required for heterotrimeric complex formation. Mutagenesis and truncation analysis further show that complex interaction in plant cells and γ subunit function in yeast depend on both a highly conserved FCD and a pre-CBS domain, but not the GBD. In addition to novel insight into canonical AMPK/SNF/SnRK1 γ subunit function, regulation and evolution, we provide a new classification of plant FCD genes as a convenient and reliable tool to predict regulatory partners for the SnRK1 energy sensor and novel FCD gene functions. PMID:23551663

  10. In vivo synthesis of mammalian-like, hybrid-type N-glycans in Pichia pastoris.

    PubMed

    Vervecken, Wouter; Kaigorodov, Vladimir; Callewaert, Nico; Geysens, Steven; De Vusser, Kristof; Contreras, Roland

    2004-05-01

    The Pichia pastoris N-glycosylation pathway is only partially homologous to the pathway in human cells. In the Golgi apparatus, human cells synthesize complex oligosaccharides, whereas Pichia cells form mannose structures that can contain up to 40 mannose residues. This hypermannosylation of secreted glycoproteins hampers the downstream processing of heterologously expressed glycoproteins and leads to the production of protein-based therapeutic agents that are rapidly cleared from the blood because of the presence of terminal mannose residues. Here, we describe engineering of the P. pastoris N-glycosylation pathway to produce nonhyperglycosylated hybrid glycans. This was accomplished by inactivation of OCH1 and overexpression of an alpha-1,2-mannosidase retained in the endoplasmic reticulum and N-acetylglucosaminyltransferase I and beta-1,4-galactosyltransferase retained in the Golgi apparatus. The engineered strain synthesized a nonsialylated hybrid-type N-linked oligosaccharide structure on its glycoproteins. The procedures which we developed allow glycan engineering of any P. pastoris expression strain and can yield up to 90% homogeneous protein-linked oligosaccharides. PMID:15128513

  11. High-level expression of human tumour suppressor P53 in the methylotrophic yeast: Pichia pastoris.

    PubMed

    Abdelmoula-Souissi, Salma; Rekik, Leila; Gargouri, Ali; Mokdad-Gargouri, Raja

    2007-08-01

    The human tumour suppressor P53 is a key protein involved in tumour suppression. P53 acts as a "guardian of genome" by regulating many target genes involved in cell cycle regulation, DNA repair and apoptosis. We report the P53 expression by the methylotrophic yeast Pichia pastoris using the methanol inducible AOX1 promoter. We have produced the rP53 in intracellular form as well as secreted using the Saccharomyces cerevisiae alpha-mating factor prepro-leader sequence in two genetic contexts of Pichia, Mut(s) and Mut(+). The intracellular P53 was successfully produced by Mut(s) (KM71) as well as Mut(+) (X33) strains, however, the secreted form was mainly observed in the Mut(s) strain, despite a higher number of p53 copies integrated in the Mut(+) strain. Interestingly, in Mut(s) phenotype, the medium pH influences markedly the rP53 production since it was higher at pH 7 than 6. PMID:17482479

  12. Heterologous, Expression, and Characterization of Thermostable Glucoamylase Derived from Aspergillus flavus NSH9 in Pichia pastoris

    PubMed Central

    Karim, Kazi Muhammad Rezaul; Hossain, Md. Anowar; Sing, Ngieng Ngui; Mohd Sinang, Fazia; Hussain, Mohd Hasnain Md.; Roslan, Hairul Azman

    2016-01-01

    A novel thermostable glucoamylase cDNA without starch binding domain (SBD) of Aspergillus flavus NSH9 was successfully identified, isolated, and overexpressed in Pichia pastoris GS115. The complete open reading frame of glucoamylase from Aspergillus flavus NSH9 was identified by employing PCR that encodes 493 amino acids lacking in the SBD. The first 17 amino acids were presumed to be a signal peptide. The cDNA was cloned into Pichia pastoris and the highest expression of recombinant glucoamylase (rGA) was observed after 8 days of incubation period with 1% methanol. The molecular weight of the purified rGA was about 78 kDa and exhibited optimum catalytic activity at pH 5.0 and temperature of 70°C. The enzyme was stable at higher temperature with 50% of residual activity observed after 20 min at 90°C and 100°C. Low concentration of metal (Mg++, Fe++, Zn++, Cu++, and Pb++) had positive effect on rGA activity. This rGA has the potential for use and application in the saccharification steps, due to its thermostability, in the starch processing industries. PMID:27504454

  13. Biomarkers to evaluate the effects of temperature and methanol on recombinant Pichia pastoris

    PubMed Central

    Zepeda, Andrea B.; Figueroa, Carolina A.; Abdalla, Dulcineia S.P.; Maranhão, Andrea Q.; Ulloa, Patricio H.; Pessoa, Adalberto; Farías, Jorge G.

    2014-01-01

    Pichia pastoris is methylotrophic yeast used as an efficient expression system for heterologous protein production. In order to evaluate the effects of temperature (10 and 30 °C) and methanol (1 and 3% (v/v)) on genetically-modified Pichia pastoris, different biomarkers were evaluated: Heat stress (HSF-1 and Hsp70), oxidative stress (OGG1 and TBARS) and antioxidant (GLR). Three yeast cultures were performed: 3X = 3% methanol-10 °C, 4X = 3% methanol-30 °C, and 5X = 1% methanol-10°C. The expression level of HIF-1α, HSF-1, HSP-70 and HSP-90 biomarkers were measured by Western blot and in situ detection was performed by immunocytochemistry. Ours results show that at 3% methanol −30 °C there is an increase of mitochondrial OGG1 (mtOGG1), Glutathione Reductase (GLR) and TBARS. In addition, there was a cytosolic expression of HSF-1 and HSP-70, which indicates a deprotection against nucleolar fragmentation (apoptosis). On the other hand, at 3% methanol −10 °C and 1% and at methanol −10 °C conditions there was nuclear expression of OGG1, lower levels of TBARS and lower expression of GLR, cytosolic expression of HSF-1 and nuclear expression HSP-70. In conclusion, our results suggest that 3% methanol-30 °C is a condition that induces a strong oxidative stress and risk factors of apoptosis in modified-genetically P. pastoris. PMID:25242930

  14. In situ microscopy for online monitoring of cell concentration in Pichia pastoris cultivations.

    PubMed

    Marquard, D; Enders, A; Roth, G; Rinas, U; Scheper, T; Lindner, P

    2016-09-20

    In situ Microscopy (ISM) is an optical non-invasive technique to monitor cells in bioprocesses in real-time. Pichia pastoris is one of the most promising protein expression systems. This yeast combines fast growth on simple media and important eukaryotic features such as glycosylation. In this work, the ISM technology was applied to Pichia pastoris cultivations for online monitoring of the cell concentration during cultivation. Different ISM settings were tested. The acquired images were analyzed with two image processing algorithms. In seven cultivations the cell concentration was monitored by the applied algorithms and offline samples were taken to determine optical density (OD) and dry cell mass (DCM). Cell concentrations up to 74g/L dry cell mass could be analyzed via the ISM. Depending on the algorithm and the ISM settings, an accuracy between 0.3 % and 12 % was achieved. The overall results show that for a robust measurement a combination of the two described algorithms is required. PMID:27485811

  15. Biomarkers to evaluate the effects of temperature and methanol on recombinant Pichia pastoris.

    PubMed

    Zepeda, Andrea B; Figueroa, Carolina A; Abdalla, Dulcineia S P; Maranhão, Andrea Q; Ulloa, Patricio H; Pessoa, Adalberto; Farías, Jorge G

    2014-01-01

    Pichia pastoris is methylotrophic yeast used as an efficient expression system for heterologous protein production. In order to evaluate the effects of temperature (10 and 30 °C) and methanol (1 and 3% (v/v)) on genetically-modified Pichia pastoris, different biomarkers were evaluated: Heat stress (HSF-1 and Hsp70), oxidative stress (OGG1 and TBARS) and antioxidant (GLR). Three yeast cultures were performed: 3X = 3% methanol-10 °C, 4X = 3% methanol-30 °C, and 5X = 1% methanol-10°C. The expression level of HIF-1α, HSF-1, HSP-70 and HSP-90 biomarkers were measured by Western blot and in situ detection was performed by immunocytochemistry. Ours results show that at 3% methanol -30 °C there is an increase of mitochondrial OGG1 (mtOGG1), Glutathione Reductase (GLR) and TBARS. In addition, there was a cytosolic expression of HSF-1 and HSP-70, which indicates a deprotection against nucleolar fragmentation (apoptosis). On the other hand, at 3% methanol -10 °C and 1% and at methanol -10 °C conditions there was nuclear expression of OGG1, lower levels of TBARS and lower expression of GLR, cytosolic expression of HSF-1 and nuclear expression HSP-70. In conclusion, our results suggest that 3% methanol-30 °C is a condition that induces a strong oxidative stress and risk factors of apoptosis in modified-genetically P. pastoris. PMID:25242930

  16. Overexpression and biochemical characterization of a thermostable phytase from Bacillus subtilis US417 in Pichia pastoris.

    PubMed

    Hmida-Sayari, Aïda; Elgharbi, Fatma; Farhat, Ameny; Rekik, Hatem; Blondeau, Karine; Bejar, Samir

    2014-09-01

    The overexpression of the native gene encoding the thermostable Bacillus subtilis US417 phytase using Pichia pastoris system is described. The phytase gene, in which the sequence encoding the signal peptide was replaced by that of the α-factor of Saccharomyces cerevisiae, was placed under the control of the methanol-inducible promoter of the alcohol oxidase 1 gene and expressed in Pichia pastoris. Small-scale expression experiments and activity assays were used to screen positive colonies. A recombinant strain was selected and produces 43 and 227 U/mL of phytase activity in shake flasks and in high-cell-density fermentation, respectively. The purified phytase was glycosylated protein and varied in size (50-65 kDa). It has a molecular mass of 43 kDa when it was deglycosylated. The purified r-PHY maintains 100% of its activity after 10 min incubation at 75 °C and pH 7.5. This thermostable phytase, which is also active over broad pH ranges, may be useful as feed additives, since it can resist the temperature used in the feed-pelleting process. PMID:24859267

  17. Codon optimization, expression, purification, and functional characterization of recombinant human IL-25 in Pichia pastoris.

    PubMed

    Liu, Yushan; Wu, Chengsheng; Wang, Jinyu; Mo, Wei; Yu, Min

    2013-12-01

    Interleukin (IL)-25 (also known as IL-17E) is a distinct member of the IL-17 cytokine family which induces IL-4, IL-5, and IL-13 expression and promotes pathogenic T helper (Th)-2 cell responses in various organs. IL-25 has been shown to have crucial role between innate and adaptive immunity and also a key component of the protection of gastrointestinal helminthes. In this study, to produce bioactive recombinant human IL-25 (rhIL-25), the cDNA of mature IL-25 was performed codon optimization based on methylotropic yeast Pichia pastoris codon bias and cloned into the expression vector pPICZαA. The recombinant vector was transformed into P. pichia strain X-33 and selected by zeocin resistance. Benchtop fermentation and simple purification strategy were established to purify the rhIL-25 with about 17 kDa molecular mass. Functional analysis showed that purified rhIL-25 specifically bond to receptor IL-17BR and induce G-CSF production in vitro. Further annexin V-FITC/PI staining assay indicated that rhIL-25 induced apoptosis in two breast cancer cells, MDA-MB-231 and HBL-100. This study provides a new strategy for the large-scale production of bioactive IL-25 for biological and therapeutic applications. PMID:24100683

  18. Heterologous, Expression, and Characterization of Thermostable Glucoamylase Derived from Aspergillus flavus NSH9 in Pichia pastoris.

    PubMed

    Karim, Kazi Muhammad Rezaul; Husaini, Ahmad; Hossain, Md Anowar; Sing, Ngieng Ngui; Mohd Sinang, Fazia; Hussain, Mohd Hasnain Md; Roslan, Hairul Azman

    2016-01-01

    A novel thermostable glucoamylase cDNA without starch binding domain (SBD) of Aspergillus flavus NSH9 was successfully identified, isolated, and overexpressed in Pichia pastoris GS115. The complete open reading frame of glucoamylase from Aspergillus flavus NSH9 was identified by employing PCR that encodes 493 amino acids lacking in the SBD. The first 17 amino acids were presumed to be a signal peptide. The cDNA was cloned into Pichia pastoris and the highest expression of recombinant glucoamylase (rGA) was observed after 8 days of incubation period with 1% methanol. The molecular weight of the purified rGA was about 78 kDa and exhibited optimum catalytic activity at pH 5.0 and temperature of 70°C. The enzyme was stable at higher temperature with 50% of residual activity observed after 20 min at 90°C and 100°C. Low concentration of metal (Mg(++), Fe(++), Zn(++), Cu(++), and Pb(++)) had positive effect on rGA activity. This rGA has the potential for use and application in the saccharification steps, due to its thermostability, in the starch processing industries. PMID:27504454

  19. A multi-bioreactor system for optimal production of malaria vaccines with Pichia pastoris.

    PubMed

    Fricke, Jens; Pohlmann, Kristof; Tatge, Frithjof; Lang, Roman; Faber, Bart; Luttmann, Reiner

    2011-04-01

    The successful development of optimal multistage production processes for recombinant products with Pichia pastoris needs to meet three pre-conditions. These pre-conditions are (i) strategies for performing fully automated and observable processes, (ii) characterization of the host cell-specific reaction parameters in order to make an adapted process layout for feeding and aeration strategies, and (iii) knowledge of optimal operation parameter conditions for maximizing the expression productivity of target protein amount and/or quality. In this report, an approach of a fully automated multi-bioreactor plant is described that meets all these requirements. The expression and secretion of a potential malaria vaccine with Pichia pastoris was chosen as an example to demonstrate the quality of the bioreactor system. Methods for the simultaneous identification of reaction kinetics were developed for strain characterization. Process optimization was carried out by applying a sequential/parallel Design of Experiments. In the view of Process Analytical Technology (PAT)-applications and in order to develop fully automated and globally observable production processes, methods for quasi on-line monitoring of recombinant protein secretion titers and the immunological quality of the products are also discussed in detail. PMID:21472987

  20. Fluorescent viability stains to probe the metabolic status of aflatoxigenic fungus in dual culture of Aspergillus flavus and Pichia anomala

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The metabolic activity of aflatoxigenic fungus, Aspergillus flavus co-cultured with a biocontrol yeast, Pichia anomala was examined using several vital stains. Both the FUN-1 stain and the combined use of DiBAC4(5) with CDFA-AM stains demonstrated that P. anomala inactivated the ATP generating syst...

  1. Identification of genes involved in the pathogenic interaction between an antagonistic strain of Pichia fermentans and peach fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A biofilm-forming strain of Pichia fermentans was very effective in reducing brown rot and grey rot in artificially wounded apple fruit when co-inoculated with either Monilinia fructicola or Botrytis cinerea, respectively. The same strain, however, was an aggressive pathogen when inoculated on peach...

  2. Intracellular trehalose and sorbitol synergistically promoting cell viability of a biocontrol yeast Pichia anomala for aflatoxin reduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pichia anomala WRL-076 was discovered by a visual screening bioassay for its antagonism against Aspergillus flavus. The yeast was shown to significantly inhibit aflatoxin production and the growth of A. flavus. P. anomala is a potential biocontrol agent for reduction of mycotoxin in the food chain...

  3. Enzymatic Synthesis of Structured Lipids using a Novel Cold-Active Lipase from Pichia lynferdii NRRL Y-7723

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Structured lipids (SL) were synthesized by the acidolysis of borage oil with caprylic acid using lipases. Six commercial lipases from different sources and a novel lipase from Pichia lynferdii NRRL Y-7723 were screened for their acidolysis activities and Lipozyme RM IM and NRRL Y-7723 lipase were s...

  4. Liquid formulations sustaining the viability of a superior yeast strain Pichia anomala WRL-076 for mycotoxin control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pichia anomala WRL-076 was discovered by a visual screening bioassay for its antagonism against A. flavus. The yeast could effectively inhibit aflatoxin production and growth of A. flavus. An important requirement for the use of biocontrol agents is the production of large quantities of the micro...

  5. Codon modification for the DNA sequence of a single-chain Fv antibody against clenbuterol and expression in Pichia pastoris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To improve expression efficiency of the recombinant single-chain variable fragment (scFv) against clenbuterol (CBL) obtained from mouse in the methylotrophic yeast Pichia pastoris (P. pastoris) GS115, the DNA sequence encoding for CBL-scFv was designed and synthesized based on the codon bias of P. p...

  6. Nutrient limitation leads to penetrative growth into agar and affects aroma formation in Pichia fabianii, P. kudriavzevii and Saccharomyces cerevisiae.

    PubMed

    van Rijswijck, Irma M H; Dijksterhuis, Jan; Wolkers-Rooijackers, Judith C M; Abee, Tjakko; Smid, Eddy J

    2015-01-01

    Among fermentative yeast species, Saccharomyces cerevisiae is most frequently used as a model organism, although other yeast species may have special features that make them interesting candidates to apply in food-fermentation processes. In this study, we used three yeast species isolated from fermented masau (Ziziphus mauritiana) fruit, S. cerevisiae 131, Pichia fabianii 65 and Pichia kudriavzevii 129, and determined the impact of nitrogen and/or glucose limitation on surface growth mode and the production of volatile organic compounds (VOCs). All three species displayed significant changes in growth mode in all nutrient-limited conditions, signified by the formation of metafilaments or pseudohyphae. The timing of the transition was found to be species-specific. Transition in growth mode is suggested to be linked to the production of certain fusel alcohols, such as phenylethyl alcohol, which serve as quorum-sensing molecules. Interestingly, we did not observe concomitant increased production of phenylethyl alcohol and filamentous growth. Notably, a broader range of esters was found only for the Pichia spp. grown on nitrogen-limited agar for 21 days compared to nutrient-rich agar, and when grown on glucose- and glucose- plus nitrogen-limited agar. Our data suggest that for the Pichia spp., the formation of esters may play an important role in the switch in growth mode upon nitrogen limitation. Further biological or ecological implications of ester formation are discussed. PMID:25308873

  7. Lipid, Oxidative and Inflammatory Profile and Alterations in the Enzymes Paraoxonase and Butyrylcholinesterase in Plasma of Patients with Homocystinuria Due CBS Deficiency: The Vitamin B12 and Folic Acid Importance.

    PubMed

    Vanzin, Camila Simioni; Mescka, Caroline Paula; Donida, Bruna; Hammerschimidt, Tatiane Grazieli; Ribas, Graziela S; Kolling, Janaína; Scherer, Emilene B; Vilarinho, Laura; Nogueira, Célia; Coitinho, Adriana Simon; Wajner, Moacir; Wyse, Angela T S; Vargas, Carmen Regla

    2015-08-01

    Cystathionine-β-synthase (CBS) deficiency is the main cause of homocystinuria. Homocysteine (Hcy), methionine, and other metabolites of Hcy accumulate in the body of affected patients. Despite the fact that thromboembolism represents the major cause of morbidity in CBS-deficient patients, the mechanisms of cardiovascular alterations found in homocystinuria remain unclear. In this work, we evaluated the lipid and inflammatory profile, oxidative protein damage, and the activities of the enzymes paraoxonase (PON1) and butyrylcholinesterase (BuChE) in plasma of CBS-deficient patients at diagnosis and during the treatment (protein-restricted diet supplemented with pyridoxine, folic acid, betaine, and vitamin B12). We also investigated the effect of folic acid and vitamin B12 on these parameters. We found a significant decrease in HDL cholesterol and apolipoprotein A1 (ApoA-1) levels, as well as in PON1 activity in both untreated and treated CBS-deficient patients when compared to controls. BuChE activity and IL-6 levels were significantly increased in not treated patients. Furthermore, significant positive correlations between PON1 activity and sulphydryl groups and between IL-6 levels and carbonyl content were verified. Moreover, vitamin B12 was positively correlated with PON1 and ApoA-1 levels, while folic acid was inversely correlated with total Hcy concentration, demonstrating the importance of this treatment. Our results also demonstrated that CBS-deficient patients presented important alterations in biochemical parameters, possibly caused by the metabolites of Hcy, as well as by oxidative stress, and that the adequate adherence to the treatment is essential to revert or prevent these alterations. PMID:25805165

  8. Methods for efficient high-throughput screening of protein expression in recombinant Pichia pastoris strains.

    PubMed

    Camattari, Andrea; Weinhandl, Katrin; Gudiminchi, Rama K

    2014-01-01

    The methylotrophic yeast Pichia pastoris is becoming one of the favorite industrial workhorses for protein expression. Due to the widespread use of integration vectors, which generates significant clonal variability, screening methods allowing assaying hundreds of individual clones are of particular importance. Here we describe methods to detect and analyze protein expression, developed in a 96-well format for high-throughput screening of recombinant P. pastoris strains. The chapter covers essentially three common scenarios: (1) an enzymatic assay for proteins expressed in the cell cytoplasm, requiring cell lysis; (2) a whole-cell assay for a fungal cytochrome P450; and (3) a nonenzymatic assay for detection and quantification of tagged protein secreted into the supernatant. PMID:24744029

  9. Mutant strains of Pichia pastoris with enhanced secretion of recombinant proteins.

    PubMed

    Larsen, Sasha; Weaver, Jun; de Sa Campos, Katherine; Bulahan, Rhobe; Nguyen, Jackson; Grove, Heather; Huang, Amy; Low, Lauren; Tran, Namphuong; Gomez, Seth; Yau, Jennifer; Ilustrisimo, Thomas; Kawilarang, Jessica; Lau, Jonathan; Tranphung, Maivi; Chen, Irene; Tran, Christina; Fox, Marcia; Lin-Cereghino, Joan; Lin-Cereghino, Geoff P

    2013-11-01

    Although Pichia pastoris is a popular protein expression system, it exhibits limitations in its ability to secrete heterologous proteins. Therefore, a REMI (restriction enzyme mediated insertion) strategy was utilized to select mutant beta-g alactosidase s upersecretion (bgs) strains that secreted increased levels of a β-galactosidase reporter. Many of the twelve BGS genes may have functions in intracellular signaling or vesicle transport. Several of these strains also appeared to contain a more permeable cell wall. Preliminary characterization of four bgs mutants showed that they differed in the ability to enhance the export of other reporter proteins. bgs13, which has a disruption in a gene homologous to Saccharomyces cerevisiae protein kinase C (PKC1), gave enhanced secretion of most recombinant proteins that were tested, raising the possibility that it has the universal super-secreter phenotype needed in an industrial production strain of P. pastoris. PMID:23881328

  10. Recent advances in the expression of foreign genes in Pichia pastoris.

    PubMed

    Cregg, J M; Vedvick, T S; Raschke, W C

    1993-08-01

    The Pichia pastoris heterologous gene expression system has been utilized to produce attractive levels of a variety of intracellular and extracellular proteins of interest. Recent advances in our understanding and application of the system have improved its utility even further. These advances include: (1) methods for the construction of P. pastoris strains with multiple copies of AOX1-promoter-driven expression cassettes; (2) mixed-feed culture strategies for high foreign protein volumetric productivity rates; (3) methods to reduce proteolysis of some products in high cell-density culture media; (4) tested procedures for purification of secreted products; and (5) detailed information on the structures of N-linked oligosaccharides on P. pastoris secreted proteins. In this review, these advances along with basic features of the P. pastoris system are described and discussed. PMID:7763913