Science.gov

Sample records for piezoelectric field enhanced

  1. Piezoelectrically Enhanced Photocathodes

    NASA Technical Reports Server (NTRS)

    Beach, Robert A.; Nikzad, Shouleh; Bell, Lloyd Douglas; Strittmatter, Robert

    2011-01-01

    Doping of photocathodes with materials that have large piezoelectric coefficients has been proposed as an alternative means of increasing the desired photoemission of electrons. Treating cathode materials to increase emission of electrons is called "activation" in the art. It has been common practice to activate photocathodes by depositing thin layers of suitable metals (usually, cesium). Because cesium is unstable in air, fabrication of cesiated photocathodes and devices that contain them must be performed in sealed tubes under vacuum. It is difficult and costly to perform fabrication processes in enclosed, evacuated spaces. The proposed piezoelectrically enhanced photocathodes would have electron-emission properties similar to those of cesiated photocathodes but would be stable in air, and therefore could be fabricated more easily and at lower cost. Candidate photocathodes include nitrides of elements in column III of the periodic table . especially compounds of the general formula Al(x)Ga(1.x)N (where 0< or = x < or =.1). These compounds have high piezoelectric coefficients and are suitable for obtaining response to ultraviolet light. Fabrication of a photocathode according to the proposal would include inducement of strain in cathode layers during growth of the layers on a substrate. The strain would be induced by exploiting structural mismatches among the various constituent materials of the cathode. Because of the piezoelectric effect in this material, the strain would give rise to strong electric fields that, in turn, would give rise to a high concentration of charge near the surface. Examples of devices in which piezoelectrically enhanced photocathodes could be used include microchannel plates, electron- bombarded charge-coupled devices, image tubes, and night-vision goggles. Piezoelectrically enhanced photocathode materials could also be used in making highly efficient monolithic photodetectors. Highly efficient and stable piezoelectrically enhanced

  2. Piezoelectrically enhanced photocathode

    NASA Technical Reports Server (NTRS)

    Beach, Robert A. (Inventor); Nikzad, Shouleh (Inventor); Strittmatter, Robert P. (Inventor); Bell, Lloyd Douglas (Inventor)

    2009-01-01

    A photocathode, for generating electrons in response to incident photons in a photodetector, includes a base layer having a first lattice structure and an active layer having a second lattice structure and epitaxially formed on the base layer, the first and second lattice structures being sufficiently different to create a strain in the active layer with a corresponding piezoelectrically induced polarization field in the active layer, the active layer having a band gap energy corresponding to a desired photon energy.

  3. Radial Field Piezoelectric Diaphragms

    NASA Technical Reports Server (NTRS)

    Bryant, R. G.; Effinger, R. T., IV; Copeland, B. M., Jr.

    2002-01-01

    A series of active piezoelectric diaphragms were fabricated and patterned with several geometrically defined Inter-Circulating Electrodes "ICE" and Interdigitated Ring Electrodes "ICE". When a voltage potential is applied to the electrodes, the result is a radially distributed electric field that mechanically strains the piezoceramic along the Z-axis (perpendicular to the applied electric field). Unlike other piezoelectric bender actuators, these Radial Field Diaphragms (RFDs) strain concentrically yet afford high displacements (several times that of the equivalent Unimorph) while maintaining a constant circumference. One of the more intriguing aspects is that the radial strain field reverses itself along the radius of the RFD while the tangential strain remains relatively constant. The result is a Z-deflection that has a conical profile. This paper covers the fabrication and characterization of the 5 cm. (2 in.) diaphragms as a function of poling field strength, ceramic thickness, electrode type and line spacing, as well as the surface topography, the resulting strain field and displacement as a function of applied voltage at low frequencies. The unique features of these RFDs include the ability to be clamped about their perimeter with little or no change in displacement, the environmentally insulated packaging, and a highly repeatable fabrication process that uses commodity materials.

  4. Spatial bandwidth enlargement and field enhancement of shear horizontal waves in finite graded piezoelectric layered media

    NASA Astrophysics Data System (ADS)

    Xu, Yanlong

    2015-09-01

    Shear horizontal (SH) wave propagation in finite graded piezoelectric layered media is investigated by transfer matrix method. Different from the previous studies on SH wave propagation in completely periodic layered media, calculations on band structure and transmission in this paper show that the graded layered media possess very large band gaps. Harmonic wave simulation by finite element method (FEM) confirms that the reason of bandwidth enlargement is that waves within the band gap ranges are spatially enhanced and stopped by the corresponding graded units. The study suggests that the graded structure possesses the property of manipulating elastic waves spatially, which shows potential applications in strengthening energy trapping and harvesting.

  5. Piezoelectric enhancement under negative pressure

    NASA Astrophysics Data System (ADS)

    Kvasov, Alexander; McGilly, Leo J.; Wang, Jin; Shi, Zhiyong; Sandu, Cosmin S.; Sluka, Tomas; Tagantsev, Alexander K.; Setter, Nava

    2016-07-01

    Enhancement of ferroelectric properties, both spontaneous polarization and Curie temperature under negative pressure had been predicted in the past from first principles and recently confirmed experimentally. In contrast, piezoelectric properties are expected to increase by positive pressure, through polarization rotation. Here we investigate the piezoelectric response of the classical PbTiO3, Pb(Zr,Ti)O3 and BaTiO3 perovskite ferroelectrics under negative pressure from first principles and find significant enhancement. Piezoelectric response is then tested experimentally on free-standing PbTiO3 and Pb(Zr,Ti)O3 nanowires under self-sustained negative pressure, confirming the theoretical prediction. Numerical simulations verify that negative pressure in nanowires is the origin of the enhanced electromechanical properties. The results may be useful in the development of highly performing piezoelectrics, including lead-free ones.

  6. Piezoelectric enhancement under negative pressure.

    PubMed

    Kvasov, Alexander; McGilly, Leo J; Wang, Jin; Shi, Zhiyong; Sandu, Cosmin S; Sluka, Tomas; Tagantsev, Alexander K; Setter, Nava

    2016-01-01

    Enhancement of ferroelectric properties, both spontaneous polarization and Curie temperature under negative pressure had been predicted in the past from first principles and recently confirmed experimentally. In contrast, piezoelectric properties are expected to increase by positive pressure, through polarization rotation. Here we investigate the piezoelectric response of the classical PbTiO3, Pb(Zr,Ti)O3 and BaTiO3 perovskite ferroelectrics under negative pressure from first principles and find significant enhancement. Piezoelectric response is then tested experimentally on free-standing PbTiO3 and Pb(Zr,Ti)O3 nanowires under self-sustained negative pressure, confirming the theoretical prediction. Numerical simulations verify that negative pressure in nanowires is the origin of the enhanced electromechanical properties. The results may be useful in the development of highly performing piezoelectrics, including lead-free ones. PMID:27396411

  7. Field-enhanced piezoelectric deformation during the high temperature/low temperature rhombohedral (FERh/FERL) phase transformation for tin modified lead zirconate titanate ceramics

    NASA Astrophysics Data System (ADS)

    Yang, Pin; Moore, Roger H.; Burns, George R.

    2002-06-01

    An unusual field-enhanced piezoelectric deformation near the FERH/FERL structural phase transformation was observed in a tin modified lead zirconate titanate solid solution. In addition to the typical field-induced domain reorientation and the piezoelectric strain, this additional field-enhanced deformation only observed near the phase transformation increases linearly with external electric field strength. A 78% increase in field-enhanced strain was observed at a field strength of 32 kV/cm. Comparison of the dielectric susceptibility at low and high field conditions suggests that the observed unusual behavior is created by a field-induced lattice softening during the structural phase transformation. Experimental observations on the field-induced softening phenomena are reported.

  8. Piezoelectric Field Enhanced Second-Order Nonlinear Optical Susceptibilities in Wurtzite GaN/AlGaN Quantum Wells

    NASA Technical Reports Server (NTRS)

    Liu, Ansheng; Chuang, S.-L.; Ning, C. Z.; Woo, Alex (Technical Monitor)

    1999-01-01

    Second-order nonlinear optical processes including second-harmonic generation, optical rectification, and difference-frequency generation associated with intersubband transitions in wurtzite GaN/AlGaN quantum well (QW) are investigated theoretically. Taking into account the strain-induced piezoelectric (PZ) effects, we solve the electronic structure of the QW from coupled effective-mass Schrodinger equation and Poisson equation including the exchange-correlation effect under the local-density approximation. We show that the large PZ field in the QW breaks the symmetry of the confinement potential profile and leads to large second-order susceptibilities. We also show that the interband optical pump-induced electron-hole plasma results in an enhancement in the maximum value of the nonlinear coefficients and a redshift of the peak position in the nonlinear optical spectrum. By use of the difference-frequency generation, THz radiation can be generated from a GaN/Al(0.75)Ga(0.25)N with a pump laser of 1.55 micron.

  9. Piezoelectric field in strained GaAs.

    SciTech Connect

    Chow, Weng Wah; Wieczorek, Sebastian Maciej

    2005-11-01

    This report describes an investigation of the piezoelectric field in strained bulk GaAs. The bound charge distribution is calculated and suitable electrode configurations are proposed for (1) uniaxial and (2) biaxial strain. The screening of the piezoelectric field is studied for different impurity concentrations and sample lengths. Electric current due to the piezoelectric field is calculated for the cases of (1) fixed strain and (2) strain varying in time at a constant rate.

  10. Enhanced sensitivity of piezoelectric pressure sensor with microstructured polydimethylsiloxane layer

    NASA Astrophysics Data System (ADS)

    Choi, Wook; Lee, Junwoo; Kyoung Yoo, Yong; Kang, Sungchul; Kim, Jinseok; Hoon Lee, Jeong

    2014-03-01

    Highly sensitive detection tools that measure pressure and force are essential in palpation as well as real-time pressure monitoring in biomedical applications. So far, measurement has mainly been done by force sensing resistors and field effect transistor (FET) sensors for monitoring biological pressure and force sensing. We report a pressure sensor by the combination of a piezoelectric sensor layer integrated with a microstructured Polydimethylsiloxane (μ-PDMS) layer. We propose an enhanced sensing tool to be used for analyzing gentle touches without the external voltage source that is used in FET sensors, by incorporating a microstructured PDMS layer in a piezoelectric sensor. By measuring the directly induced electrical charge from the microstructure-enhanced piezoelectric signal, we observed a 3-fold increased sensitivity in a signal response. Both fast signal relaxation from force removal and wide dynamic range from 0.23 to 10 kPa illustrate the good feasibility of the thin film piezoelectric sensor for mimicking human skin.

  11. A field theory of piezoelectric media containing dislocations

    SciTech Connect

    Taupin, V. Fressengeas, C.; Ventura, P.; Lebyodkin, M.

    2014-04-14

    A field theory is proposed to extend the standard piezoelectric framework for linear elastic solids by accounting for the presence and motion of dislocation fields and assessing their impact on the piezoelectric properties. The proposed theory describes the incompatible lattice distortion and residual piezoelectric polarization fields induced by dislocation ensembles, as well as the dynamic evolution of these fields through dislocation motion driven by coupled electro-mechanical loading. It is suggested that (i) dislocation mobility may be enhanced or inhibited by the electric field, depending on the polarity of the latter, (ii) plasticity mediated by dislocation motion allows capturing long-term time-dependent properties of piezoelectric polarization. Due to the continuity of the proposed electro-mechanical framework, the stress/strain and polarization fields are smooth even in the dislocation core regions. The theory is applied to gallium nitride layers for validation. The piezoelectric polarization fields associated with bulk screw/edge dislocations are retrieved and surface potential modulations are predicted. The results are extended to dislocation loops.

  12. Enhanced piezoelectric response in the artificial ferroelectric polymer multilayers

    SciTech Connect

    Zhao, X. L.; Wang, J. L. E-mail: lin-tie@mail.sitp.ac.cn; Tian, B. B.; Liu, B. L.; Wang, X. D.; Sun, S.; Zou, Y. H.; Lin, T. E-mail: lin-tie@mail.sitp.ac.cn; Sun, J. L.; Meng, X. J.; Chu, J. H.

    2014-12-01

    An actuator with a high piezoelectric response, the ferroelectric polymer multilayer actuator, is described. The ferroelectric polymer multilayers consisting of alternative ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer and relaxor poly(vinylidene fluoride-trifluoroethylene-chlorofloroethylene) (P(VDF-TrFE-CFE)) terpolymer with different periodicities and fixed total thickness are prepared by the Langmuir-Blodgett technique. Both X-ray diffraction and Raman spectroscopic measurements indicate that the structure of the multilayer with thin alternating layer is similar to that of the ferroelectric copolymer. Compared with that of the copolymer, it is found that the piezoelectric coefficient of the multilayer could be improved by 57%. We attributed the enhanced piezoelectric response of the multilayers to the internal electric fields that arises from the electrostatic couplings between different layers.

  13. Radial-Electric-Field Piezoelectric Diaphragm Pumps

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G.; Working, Dennis C.; Mossi, Karla; Castro, Nicholas D.; Mane, Pooma

    2009-01-01

    In a recently invented class of piezoelectric diaphragm pumps, the electrode patterns on the piezoelectric diaphragms are configured so that the electric fields in the diaphragms have symmetrical radial (along-the-surface) components in addition to through-the-thickness components. Previously, it was accepted in the piezoelectric-transducer art that in order to produce the out-of-plane bending displacement of a diaphragm needed for pumping, one must make the electric field asymmetrical through the thickness, typically by means of electrodes placed on only one side of the piezoelectric material. In the present invention, electrodes are placed on both sides and patterned so as to produce substantial radial as well as through-the-thickness components. Moreover, unlike in the prior art, the electric field can be symmetrical through the thickness. Tests have shown in a given diaphragm that an electrode configuration according to this invention produces more displacement than does a conventional one-sided electrode pattern. The invention admits of numerous variations characterized by various degrees of complexity. Figure 1 is a simplified depiction of a basic version. As in other piezoelectric diaphragm pumps of similar basic design, the prime mover is a piezoelectric diaphragm. Application of a suitable voltage to the electrodes on the diaphragm causes it to undergo out-of-plane bending. The bending displacement pushes a fluid out of, or pulls the fluid into, a chamber bounded partly by the diaphragm. Also as in other diaphragm pumps in general, check valves ensure that the fluid flows only in through one port and only out through another port.

  14. Enhanced piezoelectric performance from carbon fluoropolymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Baur, Cary; DiMaio, Jeffrey R.; McAllister, Elliot; Hossini, Reza; Wagener, Earl; Ballato, John; Priya, Shashank; Ballato, Arthur; Smith, Dennis W.

    2012-12-01

    The piezoelectric performance of polyvinylidene fluoride (PVDF) is shown to double through the controlled incorporation of carbon nanomaterial. Specifically, PVDF composites containing carbon fullerenes (C60) and single-walled carbon nanotubes (SWNT) are fabricated over a range of compositions and optimized for their Young's modulus, dielectric constant, and d31 piezoelectric coefficient. Thermally stimulated current measurements show a large increase in internal charge and polarization in the composites over pure PVDF. The electromechanical coupling coefficients (k31) at optimal loading levels are found to be 1.84 and 2 times greater than pure PVDF for the PVDF-C60 and PVDF-SWNT composites, respectively. Such property-enhanced nanocomposites could have significant benefit to electromechanical systems employed for structural sensing, energy scavenging, sonar, and biomedical imaging.

  15. Enhanced piezoelectric performance of composite sol-gel thick films evaluated using piezoresponse force microscopy.

    PubMed

    Liu, Yuanming; Lam, Kwok Ho; Kirk Shung, K; Li, Jiangyu; Zhou, Qifa

    2013-05-14

    Conventional composite sol-gel method has been modified to enhance the piezoelectric performance of ceramic thick films. Lead zirconate titanate (PZT) and lead magnesium niobate-lead titanate (PMN-PT) thick films were fabricated using the modified sol-gel method for ultrasonic transducer applications. In this work, piezoresponse force microscopy was employed to evaluate the piezoelectric characteristics of PZT and PMN-PT composite sol-gel thick films. The images of the piezoelectric response and the strain-electric field hysteresis loop behavior were measured. The effective piezoelectric coefficient (d33,eff) of the films was determined from the measured loop data. It was found that the effective local piezoelectric coefficient of both PZT and PMN-PT composite films is comparable to that of their bulk ceramics. The promising results suggest that the modified composite sol-gel method is a promising way to prepare the high-quality, crack-free ceramic thick films. PMID:23798771

  16. Enhance piezoelectric energy harvesting by stiffness compensation using magnetic effect

    NASA Astrophysics Data System (ADS)

    Xu, Jiawen; Tang, J.

    2013-04-01

    Piezoelectric transducers are widely employed in vibration-based energy harvesting schemes. The efficiency of piezoelectric transducers fundamentally hinges upon the electro-mechanical coupling effect. While at the material level such coupling is decided by material property, at the device level it is possible to vary and improve the energy conversion capability between the electrical and mechanical regimes by a variety of means. In this research, a new approach of compensating the effective flexibility of piezoelectric transducers by using non-contact magnetic effect is explored. It is shown that properly configured and positioned magnet arrays can induce approximately linear attraction force that can improve the electro-mechanical coupling of the piezoelectric energy harvester. Analytical and experimental studies are carried out to demonstrate the enhancement.

  17. A composite piezoelectric resonator with a lateral electric field

    NASA Astrophysics Data System (ADS)

    Zaitsev, B. D.; Shikhabudinov, A. M.; Borodina, I. A.; Teplykh, A. A.; Kuznetsova, I. E.

    2015-11-01

    A new method of suppressing parasitic oscillations in a piezoelectric resonator with excitation of the transverse electric field is proposed. The method is based on spatial separation of the high-frequency electric field of a source and the resonating piezoelectric plate by means of an air gap. In this case, the tangential components of field in the piezoelectric plate are practically not attenuated, while the normal components are significantly reduced. The method is implemented by means of a composite resonator consisting of a glass plate with rectangular electrodes, an air gap, and a plate of lithium niobate 1of 128 Y- X cut. It is shown that there is an optimal width of the air gap that provides a good quality of series and parallel resonance in a frequency range of 3-4 MHz with a maximum quality factor of ˜15000 in both cases.

  18. Nanoscale Atomic Displacements Ordering for Enhanced Piezoelectric Properties in Lead-Free ABO3 Ferroelectrics.

    PubMed

    Pramanick, Abhijit; Jørgensen, Mads R V; Diallo, Souleymane O; Christianson, Andrew D; Fernandez-Baca, Jaime A; Hoffmann, Christina; Wang, Xiaoping; Lan, Si; Wang, Xun-Li

    2015-08-01

    In situ synchrotron X-ray diffuse scattering and inelastic neutron scattering measurements from a prototype ABO3 ferroelectric single-crystal are used to elucidate how electric fields along a nonpolar direction can enhance its piezoelectric properties. The central mechanism is found to be a nanoscale ordering of B atom displacements, which induces increased lattice instability and therefore a greater susceptibility to electric-field-induced mechanical deformation. PMID:26076654

  19. Portable piezoelectric crystal detector for field monitoring of environmental pollutants

    SciTech Connect

    Ho, M.H.; Guilbault, G.G.; Rietz, B.

    1983-09-01

    A portable field monitor was constructed by using a coated piezoelectric crystal for direct monitoring of toluene in a Danish printing plant. Toluene vapor was adsorbed onto the Pluronic F-68 coating on a quartz crystal and a decrease in frequency was observed. Various substances which could interfere with toluene determination were tested. No interference from CO, NH/sub 3/, SO/sub 2/, HCl at 100 ppm are expected. Water vapor interfered and was selectively removed using a Nafion permeation tube. The readings from the piezoelectric detector were compared to two accepted procedures for monitoring toluene, the photoionization detector and the Drager tube. Results indicate that the piezoelectric detector gave data consistent with both other methods and with better relative standard deviations than the other two. 8 references, 2 figures, 1 table.

  20. Electromechanical analysis of tapered piezoelectric bimorph at high electric field

    NASA Astrophysics Data System (ADS)

    Chattaraj, Nilanjan; Ganguli, Ranjan

    2015-04-01

    Piezoelectric bimorph laminar actuator of tapered width exhibits better performance for out-of-plane deflection compared to the rectangular surface area, while consuming equal surface area. This paper contains electromechanical analysis and modeling of a tapered width piezoelectric bimorph laminar actuator at high electric field in static state. The analysis is based on the second order constitutive equations of piezoelectric material, assuming small strain and large electric field to capture its behavior at high electric field. Analytical expressions are developed for block force, output strain energy, output energy density, input electrical energy, capacitance and energy efficiency at high electric field. The analytical expressions show that for fixed length, thickness, and surface area of the actuator, how the block force and output strain energy gets improved in a tapered surface actuator compared to a rectangular surface. Constant thickness, constant length and constant surface area of the actuator ensure constant mass, and constant electrical capacitance. We consider high electric field in both series and parallel electrical connection for the analysis. Part of the analytical results is validated with the experimental results, which are reported in earlier literature.

  1. Energy harvesting from stray power-frequency magnetic field employing a piezoelectric unimorph based heterostructure

    NASA Astrophysics Data System (ADS)

    He, Wei; Lu, Yueran; Zhang, Jitao; Qu, Chiwen; Che, Gaofeng; Peng, Jiancai

    2016-03-01

    An energy harvester using a piezoelectric unimorph based heterostructure is presented to convert stray power-frequency (50 Hz or 60 Hz) magnetic field energy into electrical energy. The harvester consists a piezoelectric unimorph and a U-shaped mass structure. The U-shaped mass structure with two parallel bar magnets leads to a large rotary inertia for the given proof mass. An enhanced exciting torque is induced on the unimorph and the response of the harvester to the external magnetic field is strengthened. Under the resonant frequency of 50 Hz, the harvester produces a power of 154.6 µW with a matching load resistance of 199 kΩ at a magnetic field of 0.5 Oe. Through an up-conversion management circuit, the energy harvester can successfully drive a wireless sensor node with high power consumption (90 mW at transmitting and 18 mW at receiving) at a duration of 205 ms.

  2. Enhanced Magnetoelectric Coupling in Layered Structure of Piezoelectric Bimorph and Metallic Alloy

    NASA Astrophysics Data System (ADS)

    Petrov, V. M.; Bichurin, M. I.; Lavrentyeva, K. V.; Leontiev, V. S.

    2016-08-01

    We have investigated the enhanced magnetoelectric (ME) coupling in a layered structure of piezoelectric bimorph and magnetostrictive metallic alloy. The observed ME coefficient in the piezoelectric bimorph-based structure was found to be two times higher than in the traditional piezoelectric/magnetostrictive bilayer. The observed enhancement in ME coupling strength is related to equal signs of induced voltage in both lead zirconate titanate layers with opposite poling directions due to the flexural deformations. The piezoelectric bimorph-based structure has promising potential for sensor and technological applications.

  3. Electric field poling 2G V/m to improve piezoelectricity of PVDF thin film

    NASA Astrophysics Data System (ADS)

    Hartono, Ambran; Darwin, Ramli, Satira, Suparno; Djamal, Mitra; Herman

    2016-03-01

    Polyvinylidene fluoride (PVDF) is a polymer with unique characteristics i.e. piezoelectric and ferrroelectric properties. Piezoelectric propertiesof PVDF are determined by the fraction of β-phase structure. Several optimization methods have been developed to improve the piezoelectric properties of PVDF. One of our research efforts is to improve the piezoelectricity of PVDF by electric poling with high electric field 2G V/m. The application of high electric field performed on PVDF films with a thickness of 1 1m. Each sample was made with a deep coating method, with annealing temperature 70°C-110°C. Based on the XRD characterization, we have obtained value of β-fraction of samples after poling are: 56%, 61%, 77%, 81% and 83%, respectively. Therefore, high electric field poling has been able to improve the piezoelectric properties of PVDF films. The PVDF with good piezoelectric properties are potential can did a tes for piezoelectric sensors and actuators devices.

  4. Silver nanowire dopant enhancing piezoelectricity of electrospun PVDF nanofiber web

    NASA Astrophysics Data System (ADS)

    Li, Baozhang; Zheng, Jianming; Xu, Chunye

    2013-08-01

    A highly sensitive flexible piezoelectric material is developed by using a composite nanofibers web of polymer and metal. The nanofibers webs are made by electrospinning a mixed solution of poly(vinylidene fluoride) (PVDF) and silver nanowires (AgNWs) in the co-solvent of dimethyl formamide and acetone. SEM images show that the obtained webs are composed of AgNWs doped PVDF fibers with diameters ranging from 200nm to 500nm. Our FTIR and XRD results indicate that doping AgNWs into PVDF fiber can enhance the contents of beta phase of the PVDF. UV-Vis spectrum shows a slightly red shift at 324 nm and 341 nm after the AgNWs doping into PVDF, proving the presence of interaction between AgNWs and the PVDF polymer chain. The piezoelectric constant d33 of the nanofibers webs tested with a homemade system, reveals a good agreement with FTIR and XRD characteristic, and the highest one is up to 29.8 pC/N for the nanofibers webs containing 1.5% AgNWs, which is close to that of poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE), 77/23). This study may provide a way to develop high-performance flexible sensors.

  5. Enhancing piezoelectricity through polarization-strain coupling in ferroelectric superlattices

    SciTech Connect

    Cooper, Valentino R; Rabe, Karin M.

    2009-01-01

    Short period ferroelectric/ferroelectric BaTiO3 (BTO)/PbTiO3 (PTO) superlattices are studied using density functional theory. Contrary to the trends in paraelectric/ferroelectric superlattices the polarization remains nearly constant for PTO concentrations below 50%. In addition, a significant decrease in the c/a ratio below the PTO values were observed. Using a superlattice effective Hamiltonian we predict an enhancement in the d33 piezoelectric coefficient peaking at ~75% PTO concentration due to the different polarization-strain coupling in PTO and BTO layers. Further analysis reveals that these trends are bulk properties which are a consequence of the reduced P brought about by the polarization saturation in the BTO layers.

  6. Contactless ultrasonic energy transfer for wireless systems: acoustic-piezoelectric structure interaction modeling and performance enhancement

    NASA Astrophysics Data System (ADS)

    Shahab, S.; Erturk, A.

    2014-12-01

    There are several applications of wireless electronic components with little or no ambient energy available to harvest, yet wireless battery charging for such systems is still of great interest. Example applications range from biomedical implants to sensors located in hazardous environments. Energy transfer based on the propagation of acoustic waves at ultrasonic frequencies is a recently explored alternative that offers increased transmitter-receiver distance, reduced loss and the elimination of electromagnetic fields. As this research area receives growing attention, there is an increased need for fully coupled model development to quantify the energy transfer characteristics, with a focus on the transmitter, receiver, medium, geometric and material parameters. We present multiphysics modeling and case studies of the contactless ultrasonic energy transfer for wireless electronic components submerged in fluid. The source is a pulsating sphere, and the receiver is a piezoelectric bar operating in the 33-mode of piezoelectricity with a fundamental resonance frequency above the audible frequency range. The goal is to quantify the electrical power delivered to the load (connected to the receiver) in terms of the source strength. Both the analytical and finite element models have been developed for the resulting acoustic-piezoelectric structure interaction problem. Resistive and resistive-inductive electrical loading cases are presented, and optimality conditions are discussed. Broadband power transfer is achieved by optimal resistive-reactive load tuning for performance enhancement and frequency-wise robustness. Significant enhancement of the power output is reported due to the use of a hard piezoelectric receiver (PZT-8) instead of a soft counterpart (PZT-5H) as a result of reduced material damping. The analytical multiphysics modeling approach given in this work can be used to predict and optimize the coupled system dynamics with very good accuracy and dramatically

  7. Piezoelectric Enhancement of Hybrid Organic/Inorganic Photovoltaic Device

    NASA Astrophysics Data System (ADS)

    Briscoe, Joe; Shoaee, Safa; Durrant, James R.; Dunn, Steve

    2013-12-01

    Solar cells are produced using solution processing that combine ZnO nanorods with the conjugated polymer poly(3-hexylthiophene) (P3HT). ZnO nanorods have an average length and diameter of 2.7 μm and 81 nm, and are well coated with P3HT. The solar cells have a power conversion efficiency of 1.24 %, which increases to 1.78 % when 10 kHz acoustic vibrations are applied to the device at 75 dB using a loudspeaker. Transient absorption studies demonstrate that the efficiency increase originates from a decrease in the non-geminate recombination rate in the system. It is proposed that electric fields at the ZnO:P3HT interface arising from the piezoelectric effect in ZnO increase the charge-carrier separation, producing this reduction in recombination and associated efficiency increase.

  8. The study of piezoelectric lateral-electric-field-excited resonator.

    PubMed

    Zaitsev, Boris; Kuznetsova, Iren; Shikhabudinov, Alexander; Teplykh, Andrey; Borodina, Irina

    2014-01-01

    The piezoelectric lateral-electric-field-excited resonator based on an X-cut lithium niobate plate has been investigated. Two rectangular electrodes were applied on one side of the plate so that the lateral electric field components were parallel to the crystallographic Y-axis and excited the longitudinal wave in the gap between the electrodes. The region around the electrodes was covered with a special absorbing varnish to suppress the spurious oscillations. The effect of the absorbing coating width on the resonant frequency and Q-factor of the lateral field-excited resonator was studied in detail with the series and parallel resonances for different width of the gap between the electrodes. As a result, we found experimentally the parameter regions of pure resonances and the boundaries of value variation for resonance frequency, Q-factor, and effective electromechanical coupling coefficient. PMID:24402903

  9. Power enhancement of piezoelectric transformers by adding heat transfer equipment.

    PubMed

    Su, Yu-Hao; Liu, Yuan-Ping; Vasic, Dejan; Wu, Wen-Jong; Costa, François; Lee, Chih-Kung

    2012-10-01

    It is known that piezoelectric transformers have several inherent advantages compared with conventional electromagnetic transformers. However, the maximum power capacity of piezoelectric transformers is not as large as electromagnetic transformers in practice, especially in the case of high output current. The theoretical power density of piezoelectric transformers calculated by stress boundary can reach 330 W/cm(3), but no piezoelectric transformer has ever reached such a high power density in practice. The power density of piezoelectric transformers is limited to 33 W/cm(3) in practical applications. The underlying reason is that the maximum passing current of the piezoelectric material (mechanical current) is limited by the temperature rise caused by heat generation. To increase this current and the power capacity, we proposed to add a thermal pad to the piezoelectric transformer to dissipate heat. The experimental results showed that the proposed techniques can increase by 3 times the output current of the piezoelectric transformer. A theoretical-phenomenological model which explains the relationship between vibration velocity and generated heat is also established to verify the experimental results. PMID:23143563

  10. Electroelastic field of a sphere located in the vicinity of a plane piezoelectric surface

    NASA Astrophysics Data System (ADS)

    Starkov, A. S.; Pakhomov, O. V.; Starkov, I. A.

    2016-01-01

    The electric field generated by a scanning probe microscope is determined. Analytical expressions for the electroelastic field in a piezoelectric sample and the external electric field are derived for a spherical probe. It is demonstrated that the coupling of elastic and electrostatic fields in the piezoelectric material leads to energy redistribution between such fields. This circumstance causes variations in the normal component of the electric field strength at the interface and the capacitance of a probe.

  11. Coupled mixed-field laminate theory and finite element for smart piezoelectric composite shell structures

    NASA Technical Reports Server (NTRS)

    Saravanos, Dimitris A.

    1996-01-01

    Mechanics for the analysis of laminated composite shells with piezoelectric actuators and sensors are presented. A new mixed-field laminate theory for piezoelectric shells is formulated in curvilinear coordinates which combines single-layer assumptions for the displacements and a layerwise representation for the electric potential. The resultant coupled governing equations for curvilinear piezoelectric laminates are described. Structural mechanics are subsequently developed and an 8-node finite-element is formulated for the static and dynamic analysis of adaptive composite structures of general laminations containing piezoelectric layers. Evaluations of the method and comparisons with reported results are presented for laminated piezoelectric-composite plates, a closed cylindrical shell with a continuous piezoceramic layer and a laminated composite semi-circular cantilever shell with discrete cylindrical piezoelectric actuators and/or sensors.

  12. 3D FEM analyses on flow field characteristics of the valveless piezoelectric pump

    NASA Astrophysics Data System (ADS)

    Huang, Jun; Zhang, Jianhui; Shi, Weidong; Wang, Yuan

    2016-06-01

    Due to the special transportation and heat transfer characteristics, the fractal-like Y-shape branching tube is used in valveless piezoelectric pumps as a no-moving-part valve. However, there have been little analyses on the flow resistance of the valveless piezoelectric pump, which is critical to the performance of the valveless piezoelectric pump with fractal-like Y-shape branching tubes. Flow field of the piezoelectric pump is analyzed by the finite element method, and the pattern of the velocity streamlines is revealed, which can well explain the difference of total flow resistances of the piezoelectric pump. Besides, simplified numerical method is employed to calculate the export flow rate of piezoelectric pump, and the flow field of the piezoelectric pump is presented. The FEM computation shows that the maximum flow rate is 16.4 mL/min. Compared with experimental result, the difference between them is just 55.5%, which verifies the FEM method. The reasons of the difference between dividing and merging flow resistance of the valveless piezoelectric pump with fractal-like Y-shape branching tubes are also investigated in this method. The proposed research provides the instruction to design of novel piezoelectric pump and a rapid method to analyse the pump flow rate.

  13. An adaptive piezoelectric vibration absorber enhanced by a negative capacitance applied to a shell structure

    NASA Astrophysics Data System (ADS)

    Gripp, J. A. B.; Góes, L. C. S.; Heuss, O.; Scinocca, F.

    2015-12-01

    Piezoelectric shunt damping is a well-known technique to damp mechanical vibrations of a structure, using a piezoelectric transducer to convert mechanical vibration energy into electrical energy, which is dissipated in an electrical resistance. Resonant shunts consisting of a resistance and an inductance connected to a piezoelectric transducer are used to damp structural vibrations in narrow frequency bands, but their performance is very sensitive to variations in structural modal frequencies and transducer capacitance. In order to overcome this drawback, a piezoelectric shunt damping technique with improved performance and robustness is presented in this paper. The design of the adaptive circuit considers the variation of the host structure’s natural frequency as a project parameter. This paper describes an adaptive resonant piezoelectric vibration absorber enhanced by a synthetic negative capacitance applied to a shell structure. The resonant shunt circuit autonomously adapts its inductance value by comparing the phase difference of the vibration velocity and the current flowing through the shunt circuit. Moreover, a synthetic negative capacitance is added to the shunt circuit to enhance the vibration attenuation provided by the piezoelectric absorber. The circuitry is implemented using analog components. Validation of the proposed method is done by bonding the piezoelectric absorber on a free-formed metallic shell.

  14. Surface mapping of field-induced piezoelectric strain at elevated temperature employing full-field interferometry.

    PubMed

    Stevenson, Tim; Quast, Tatjana; Bartl, Guido; Schmitz-Kempen, Thorsten; Weaver, Paul M

    2015-01-01

    Piezoelectric actuators and sensors are widely used for flow control valves, including diesel injectors, ultrasound generation, optical positioning, printing, pumps, and locks. Degradation and failure of material and electrical properties at high temperature typically limits these applications to operating temperatures below 200°C, based on the ubiquitous Pb(Zr,Ti)O3 ceramic. There are, however, many applications in sectors such as automotive, aerospace, energy and process control, and oil and gas, where the ability to operate at higher temperatures would open up new markets for piezoelectric actuation. Presented here is a review of recent progress and initial results toward a European effort to develop measurement techniques to characterize high-temperature materials. Full-field, multi-wavelength absolute length interferometry has, for the first time, been used to map the electric-field-induced piezoelectric strain across the surface of a PZT ceramic. The recorded variation as a function of temperature has been evaluated against a newly developed commercial single-beam system. Conventional interferometry allows measurement of the converse piezoelectric effect with high precision and resolution, but is often limited to a single point, average measurement and to limited sample environments because of optical aberrations in varying atmospheres. Here, the full-field technique allows the entire surface to be analyzed for strain and, in a bespoke sample chamber, for elevated temperatures. PMID:25585393

  15. Enhancing the piezoelectric performance of PVDF-TrFE thin films using zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Dodds, John S.; Meyers, Frederick N.; Loh, Kenneth J.

    2012-04-01

    Structural health monitoring (SHM) is crucial for detecting sudden and progressive damage and for preventing catastrophic structural failure. Piezoelectric materials have been widely adopted for their use as sensors and as actuators. Piezoceramics (such as lead zirconate titanate) offer high piezoelectricity but are mechanically brittle. Poly(vinylidene fluoride) (PVDF) piezopolymers are conformable to complex structural surfaces but exhibit lower piezoelectricity. So as to achieve a combination of these desirable properties, piezoelectric zinc oxide (ZnO) nanomaterials are proposed for embedment in flexible polymer matrices during fabrication to yield high-performance piezoelectric nanocomposites. The main objective of this research is to characterize the piezoelectricity of nanocomposites formed by embedding ZnO nanoparticles in a PVDF-trifluoroethylene (TrFE) matrix. Film fabrication is performed by dispersing ZnO into a PVDFTrFE solution and then by spin coating the solution onto a rigid substrate. A high electric field is applied to each of the films for poling, and the films' remnant polarization is quantified by measuring their ferroelectric response using a Sawyer-Tower circuit. Graphs of electric field compared to electric displacement can be obtained for determining the films' piezoelectricity. Finally, validation of their sensing performance is achieved by hammer impact testing.

  16. Experimental Characterization of Piezoelectric Radial Field Diaphragms for Fluidic Control

    NASA Technical Reports Server (NTRS)

    Bryant, R. G.; Kavli, S. E.; Thomas, R. A., Jr.; Darji, K. J.; Mossi, K. M.

    2004-01-01

    NASA has recently developed a new piezoelectric actuator, the Radial Field Diaphragm or RFD. This actuator uses a radially-directed electric field to generate concentric out-of-plane (Z-axis) motion that allows this packaged device to be used as a pump or valve diaphragm. In order to efficiently use this new active device, experimental determination of pressure, flow rate, mechanical work, power consumption and overall efficiency needs to be determined by actually building a pump. However, without an optimized pump design, it is difficult to assess the quality of the data, as these results are inherent to the actual pump. Hence, separate experiments must be conducted in order to generate independent results to help guide the design criteria and pump quality. This paper focuses on the experiments used to generate the RFD's operational parameters and then compares these results to the experimentally determined results of several types of ball pumps. Also discussed are how errors are inherently introduced into the experiments, the pump design, experimental hardware and their effects on the overall system efficiency.

  17. Energy harvesting from stray power-frequency magnetic field employing a piezoelectric unimorph based heterostructure

    NASA Astrophysics Data System (ADS)

    He, Wei; Lu, Yueran; Zhang, Jitao; Qu, Chiwen; Che, Gaofeng; Peng, Jiancai

    2016-03-01

    An energy harvester using a piezoelectric unimorph based heterostructure is presented to convert stray power-frequency (50 Hz or 60 Hz) magnetic field energy into electrical energy. The harvester consists a piezoelectric unimorph and a U-shaped mass structure. The U-shaped mass structure with two parallel bar magnets leads to a large rotary inertia for the given proof mass. An enhanced exciting torque is induced on the unimorph and the response of the harvester to the external magnetic field is strengthened. Under the resonant frequency of 50 Hz, the harvester produces a power of 154.6 µW with a matching load resistance of 199 kΩ at a magnetic field of 0.5 Oe. Through an up-conversion management circuit, the energy harvester can successfully drive a wireless sensor node with high power consumption (90 mW at transmitting and 18 mW at receiving) at a duration of 205 ms. Note to the reader: The article number 30902 in PDF file was a mistake and has been corrected in 30903 on May 11, 2016.

  18. Theoretical and experimental research on the influence of multiple piezoelectric effects on physical parameters of piezoelectric actuator

    NASA Astrophysics Data System (ADS)

    Shi, Liping; Zhou, Haimin; Huang, Jie; Tan, Jiliang

    2015-04-01

    Compared with the traditional actuator of machinery and electricity, the piezoelectric actuator has the advantages of a compact structure, small volume, no mechanical friction, athermancy and no electromagnetic interference. Therefore, it has high application value in the fields of MEMS, bioengineering, medical science and so on. This article draws conclusions from the influence of multiple piezoelectric effects on the physical parameters (dielectric coefficient, equivalent capacity, energy conversion and piezoelectric coefficient) of piezoelectric actuators. These data from theoretical and experimental research show the following: (1) The rate between the dielectric coefficient of piezoelectric in mechanical freedom and clamping is obtained from the secondary direct piezoelectric effect, which enhances the dielectric property, increases the dielectric coefficient and decreases the coefficient of dielectric isolation; (2) Under external field, En ( ex ) = E 1 , exterior stress T = 0, that is to say, under the boundary condition of mechanical freedom, piezoelectric can store electric energy and elasticity, which obtains power density, elastic density and an electromechanical coupling factor; (3) According to the piezoelectric strain Si ( 1 ) , piezoelectric displacement Dm ( 2 ) and piezoelectric strain Si ( 3 ) of multiple piezoelectric effects, when the dielectric coefficient of the first converse piezoelectric effect ɛ33 is 1326 and the dielectric coefficient of the secondary direct piezoelectric effect increases to 3336, the dielectric coefficient of the ceramic chip increases. When the piezoelectric coefficient of the first converse piezoelectric effect d33 is 595 and the piezoelectric coefficient of the secondary direct piezoelectric effect decreases to 240, the piezoelectric coefficient of the ceramic chip will decrease. It is of major significance both in the applications and in basic theory to research the influence of multiple piezoelectric effects on the

  19. Enhanced Stark Tuning of Single InAs (211 )B Quantum Dots due to Nonlinear Piezoelectric Effect in Zincblende Nanostructures

    NASA Astrophysics Data System (ADS)

    Germanis, S.; Katsidis, C.; Tsintzos, S.; Stavrinidis, A.; Konstantinidis, G.; Florini, N.; Kioseoglou, J.; Dimitrakopulos, G. P.; Kehagias, Th.; Hatzopoulos, Z.; Pelekanos, N. T.

    2016-07-01

    We report enhanced Stark tuning of single exciton lines in self-assembled (211 )B InAs quantum dots (QDs) as a consequence of pronounced piezoelectric effects in polar orientations, making this QD system particularly sensitive to relatively "small" applied external fields. The Stark shifts in the first hundreds of kilovolts per centimeter of applied external field are at least 2.5 times larger, compared to those observed in nonpiezoelectric (100) InAs QDs of similar size. To account quantitatively for the observed transition energies and Stark shifts, we utilize a graded In-composition potential profile, as deduced from local strain analysis performed on high-resolution transmission microscopy images of the QDs. Our results provide a direct demonstration of the importance of nonlinear piezoelectric effects in zincblende semiconductors.

  20. Effect of piezoelectric field on carrier dynamics in InGaN-based solar cells

    NASA Astrophysics Data System (ADS)

    Lee, Seunga; Honda, Yoshio; Amano, Hiroshi

    2016-01-01

    To understand the effect of piezoelectric fields on carrier dynamics, we numerically investigated a simple p-GaN/i-\\text{I}{{\\text{n}}x}\\text{G}{{\\text{a}}1-x}\\text{N} /n-GaN solar cell structure. A reliable simulation model was obtained by comparing the experimental and simulated results in advance. The same p-i-n InGaN structures were re-simulated with and without the piezoelectric field effect, as spontaneous polarization remained unchanged. The sample with the piezoelectric field effect showed higher short current density ({{J}\\text{sc}} ), a staircase-like feature in its I-V curve, and higher open circuit voltage ({{V}\\text{oc}} ) with a lower fill factor (F.F.) and reduced conversion efficiency (C.E.) than the sample with no piezoelectric fields. In addition, with increasing In fraction (x), the {{V}\\text{oc}} value gradually increased while the {{J}\\text{sc}} value significantly decreased, correspondingly leading to a reduction in C.E. and F.F. values of the structure with the piezoelectric field effect. To solve the current loss problem, we applied various piezoelectric field elimination techniques to the simulated structures.

  1. Enhanced piezoelectric properties of vertically aligned single-crystalline NKN nano-rod arrays

    NASA Astrophysics Data System (ADS)

    Kang, Min-Gyu; Oh, Seung-Min; Jung, Woo-Suk; Gyu Moon, Hi; Baek, Seung-Hyub; Nahm, Sahn; Yoon, Seok-Jin; Kang, Chong-Yun

    2015-05-01

    Piezoelectric materials capable of converting between mechanical and electrical energy have a great range of potential applications in micro- and nano-scale smart devices; however, their performance tends to be greatly degraded when reduced to a thin film due to the large clamping force by the substrate and surrounding materials. Herein, we report an effective method for synthesizing isolated piezoelectric nano-materials as means to relax the clamping force and recover original piezoelectric properties of the materials. Using this, environmentally friendly single-crystalline NaxK1-xNbO3 (NKN) piezoelectric nano-rod arrays were successfully synthesized by conventional pulsed-laser deposition and demonstrated to have a remarkably enhanced piezoelectric performance. The shape of the nano-structure was also found to be easily manipulated by varying the energy conditions of the physical vapor. We anticipate that this work will provide a way to produce piezoelectric micro- and nano-devices suitable for practical application, and in doing so, open a new path for the development of complex metal-oxide nano-structures.

  2. Enhanced piezoelectric properties of vertically aligned single-crystalline NKN nano-rod arrays.

    PubMed

    Kang, Min-Gyu; Oh, Seung-Min; Jung, Woo-Suk; Moon, Hi Gyu; Baek, Seung-Hyub; Nahm, Sahn; Yoon, Seok-Jin; Kang, Chong-Yun

    2015-01-01

    Piezoelectric materials capable of converting between mechanical and electrical energy have a great range of potential applications in micro- and nano-scale smart devices; however, their performance tends to be greatly degraded when reduced to a thin film due to the large clamping force by the substrate and surrounding materials. Herein, we report an effective method for synthesizing isolated piezoelectric nano-materials as means to relax the clamping force and recover original piezoelectric properties of the materials. Using this, environmentally friendly single-crystalline NaxK1-xNbO3 (NKN) piezoelectric nano-rod arrays were successfully synthesized by conventional pulsed-laser deposition and demonstrated to have a remarkably enhanced piezoelectric performance. The shape of the nano-structure was also found to be easily manipulated by varying the energy conditions of the physical vapor. We anticipate that this work will provide a way to produce piezoelectric micro- and nano-devices suitable for practical application, and in doing so, open a new path for the development of complex metal-oxide nano-structures. PMID:25955763

  3. Enhanced piezoelectric properties of vertically aligned single-crystalline NKN nano-rod arrays

    PubMed Central

    Kang, Min-Gyu; Oh, Seung-Min; Jung, Woo-Suk; Gyu Moon, Hi; Baek, Seung-Hyub; Nahm, Sahn; Yoon, Seok-Jin; Kang, Chong-Yun

    2015-01-01

    Piezoelectric materials capable of converting between mechanical and electrical energy have a great range of potential applications in micro- and nano-scale smart devices; however, their performance tends to be greatly degraded when reduced to a thin film due to the large clamping force by the substrate and surrounding materials. Herein, we report an effective method for synthesizing isolated piezoelectric nano-materials as means to relax the clamping force and recover original piezoelectric properties of the materials. Using this, environmentally friendly single-crystalline NaxK1-xNbO3 (NKN) piezoelectric nano-rod arrays were successfully synthesized by conventional pulsed-laser deposition and demonstrated to have a remarkably enhanced piezoelectric performance. The shape of the nano-structure was also found to be easily manipulated by varying the energy conditions of the physical vapor. We anticipate that this work will provide a way to produce piezoelectric micro- and nano-devices suitable for practical application, and in doing so, open a new path for the development of complex metal-oxide nano-structures. PMID:25955763

  4. Enhanced High Temperature Piezoelectrics Based on BiScO3-PbTiO3 Ceramics

    NASA Technical Reports Server (NTRS)

    Sehirlioglu, Alp; Sayir, Ali; Dynys, Fred

    2009-01-01

    High-temperature piezoelectrics are a key technology for aeronautics and aerospace applications such as fuel modulation to increase the engine efficiency and decrease emissions. The principal challenge for the insertion of piezoelectric materials is the limitation on upper use temperature which is due to low Curie-Temperature (TC) and increasing electrical conductivity. BiScO3-PbTiO3 (BS-PT) system is a promising candidate for improving the operating temperature for piezoelectric actuators due to its high TC (greater than 400 C). Bi2O3 was shown to be a good sintering aid for liquid phase sintering resulting in reduced grain size and increased resistivity. Zr doped and liquid phase sintered BS-PT ceramics exhibited saturated and square hysteresis loops with enhanced remenant polarization (37 microC per square centimeter) and coercive field (14 kV/cm). BS-PT doped with Mn showed enhanced field induced strain (0.27% at 50kV/cm). All the numbers indicated in parenthesis were collected at 100 C.

  5. Enhanced piezoelectric output voltage and Ohmic behavior in Cr-doped ZnO nanorods

    SciTech Connect

    Sinha, Nidhi; Ray, Geeta; Godara, Sanjay; Gupta, Manoj K.; Kumar, Binay

    2014-11-15

    Highlights: • Low cost highly crystalline Cr-doped ZnO nanorods were synthesized. • Enhancement in dielectric, piezoelectric and ferroelectric properties were observed. • A high output voltage was obtained in AFM. • Cr-doping resulted in enhanced conductivity and better Ohmic behavior in ZnO/Ag contact. - Abstract: Highly crystalline Cr-doped ZnO nanorods (NRs) were synthesized by solution technique. The size distribution was analyzed by high resolution tunneling electron microscope (HRTEM) and particle size analyzer. In atomic force microscope (AFM) studies, peak to peak 8 mV output voltage was obtained on the application of constant normal force of 25 nN. It showed high dielectric constant (980) with phase transition at 69 °C. Polarization vs. electric field (P–E) loops with remnant polarization (6.18 μC/cm{sup 2}) and coercive field (0.96 kV/cm) were obtained. In I–V studies, Cr-doping was found to reduce the rectifying behavior in the Ag/ZnO Schottky contact which is useful for field effect transistor (FET) and solar cell applications. With these excellent properties, Cr-doped ZnO NRs can be used in nanopiezoelectronics, charge storage and ferroelectric applications.

  6. Enhanced ferroelectric and piezoelectric properties in La-modified PZT ceramics

    NASA Astrophysics Data System (ADS)

    Kour, P.; Pradhan, S. K.; Kumar, Pawan; Sinha, S. K.; Kar, Manoranjan

    2016-06-01

    The effect of lanthanum (La) doping on ferroelectric and piezoelectric properties of lead zirconate titanate (PZT) sample has been investigated. Pb1- x La x Zr0.52Ti0.48O3 ceramics with x = 0.00, 0.02, 0.04, 0.06 and 0.10 were prepared by the sol-gel technique. Raman and Fourier transforms infrared spectroscopy have been employed to understand the structural modification due to ionic size mismatch. Raman spectra show the existence of both rhombohedral and tetragonal crystal symmetries. It also shows the dielectric relaxation with increase in La concentration in the sample. The increase in lattice strain due to La doping increases the remnant polarization and coercive field. The linear piezoelectric coefficient increases with the increase in La concentration. It reveals that La-substituted PZT is a better candidate for piezoelectric sensor applications as compared to that of PZT.

  7. Field Stability of Piezoelectric Shear Properties in PIN-PMN-PT Crystals Under Large Drive Field

    PubMed Central

    Zhang, Shujun; Li, Fei; Luo, Jun; Xia, Ru; Hackenberger, Wesley; Shrout, Thomas R.

    2013-01-01

    The coercive fields (EC) of Pb(In0.5Nb0.5)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) ternary single crystals were found to be 5 kV/cm, double the value of binary Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMNT) crystals, further increased to 6 to 9 kV/cm using Mn modifications. In addition to an increased EC, the acceptor modification resulted in the developed internal bias (Eint), on the order of ~1 kV/cm. The piezoelectric shear properties of unmodified and Mn-modified PIN-PMN-PT crystals with various domain configurations were investigated. The shear piezoelectric coefficients and electromechanical coupling factors for different domain configurations were found to be >2000 pC/N and >0.85, respectively, with slightly reduced properties observed in Mn-modified tetragonal crystals. Fatigue/cycling tests performed on shear-mode samples as a function of ac drive field level demonstrated that the allowable ac field levels (the maximum applied ac field before the occurrence of depolarization) were only ~2 kV/cm for unmodified crystals, less than half of their coercive field. Allowable ac drive levels were on the order of 4 to 6 kV/cm for Mn-modified crystals with rhombohedral/orthorhombic phase, further increased to 5 to 8 kV/cm in tetragonal crystals, because of their higher coercive fields. It is of particular interest that the allowable ac drive field level for Mn-modified crystals was found to be ≥60% of their coercive fields, because of the developed Eint, induced by the acceptor-oxygen vacancy defect dipoles. PMID:21342812

  8. Strong enhancement of piezoelectric constants in ScxAl1-xN: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Momida, Hiroyoshi; Teshigahara, Akihiko; Oguchi, Tamio

    2016-06-01

    We theoretically investigate the piezoelectricity of ScxAl1-xN in the entire range of x by first-principles calculations. We find that the piezoelectric constants of wurtzite-type ScxAl1-xN significantly enhance as x increases from 0 to 0.75. However, the energy stability analyses between structure phases show that the cubic-type phases become more stable than the wurtzite-type phases at x of approximately 0.5 and higher, interfering with the ability of wurtzite-type ScxAl1-xN to realize the maximum piezoelectricity. Moreover, our study on element combination dependences on piezoelectricity in A0.5B0.5N (A = Sc, Y, La and B = Al, Ga, In) indicates that Sc, Y, and La have the strongest effect on the enhancement of piezoelectric constants in AlN, GaN, and InN, respectively.

  9. Enhancement of the electrical-field-induced strain in lead-free Bi0.5(Na,K)0.5TiO3-based piezoelectric ceramics: Role of the phase transition

    NASA Astrophysics Data System (ADS)

    Quyet, Nguyen Van; Bac, Luong Huu; Dung, Dang Duc

    2015-04-01

    In this work, a strong enhancement of the electric-field-induced strain in Bi0.5(Na,K)0.5TiO3-based ceramics was observed via lithium(Li) addition. The Li-added Bi0.5(Na,K)0.5TiO3-based ceramics exhibited a strain of 0.40% under an electric field of 6 kV/mm, which was almost twice the value without the Li dopant (0.21%). We obtained the highest S max/ E max value of 668 pm/V for 4-mol% Li addition, which was due to the phase transition from pseudocubic to rhombohedral symmetry and/or to the distorted tetragonal structure. We suggest that controlling the phase transition in ferroelectric materials is a way to enhance the electric-field-induced giant strain and that the phase transition from the non-polar phase to the polar phase results in a giant electric-fieldinduced strain, which overcomes the result due to the phase transition from the polar phase to the non-polar phase and/or the distorted structure. We expect our work to open new ways to enhance the electric-filed-induced giant strain to a value that is comparable to the value for Pb(Zr,Ti)O3 (PZT)-based ceramics.

  10. Enhancement effects of two kinds of carbon black on piezoelectricity of PVDF-HFP composite films

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Hu, Ning; Wu, Liangke; Cui, Hao; Ying, Ji

    2015-12-01

    Two kinds of carbon black (CB) (i.e., CB#300 and CB#3350) were added into poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP), respectively, to improve its piezoelectricity. The results revealed that when 0.5 wt.% CB was added, the best performance of the PVDF-HFP/CB composite films was obtained. The calibrated open circuit voltage and the density of harvested power of 0.5 wt.% CB#3350 contained composite films were 204%, and 464% (AC) and 561% (DC) of those of neat PVDF-HFP films. Similarly, for 0.5 wt.% CB#300 contained films, they were 211%, and 475% (AC) and 624% (DC), respectively. The enhancement mechanisms of piezoelectricity were clarified by the observation of Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and scanning electron microscope (SEM). We found that the added CBs act as nucleate agents to promote the formation of elongated, oriented and fibrillar β-phase crystals during the fabrication process, which increase the piezoelectricity. Overdosed CBs lead to a lower crystallinity degree, resulting in the lower piezoelectricity. Compared with CB#3350, CB#300 performs slightly better, which may be ascribed to its higher specific surface area.

  11. Influence of piezoelectric fields on InGaN based intermediate band solar cells

    NASA Astrophysics Data System (ADS)

    Tang, H.; Liu, B.; Wang, T.

    2015-01-01

    As it is practically infeasible to fabricate multiple-junction InGaN based tandem solar cells due to an intrinsic limit, intermediate-band solar cells (IBSCs) provide an alternative option for the fabrication of single-junction solar cells with their performance potentially equivalent to that of multiple-junction solar cells. InGaN quantum dots (QD) could be used for designing an IBSC structure. More importantly, it is well-known that there exist very strong piezoelectric fields in an InGaN/GaN system with a high indium composition, which becomes more pronounced for InGaN based QDs. The built-in piezoelectric fields can lead to a significant increase in the open circuit voltage and thus improved performance of solar cells, which has not yet been considered in designing III-nitride based solar cells so far. An optimized InGaN based QD-IBSC structure has been designed, combining the major advantages from the IBSC structure and the benefits due to the strong piezoelectric fields. A conversion efficiency, open-circuit voltage and short-circuit current have been calculated, and a highest conversion efficiency of 55.4% is obtained. The combination of the single-junction IBSC structure and the piezoelectric fields paves the way for the fabrication of InGaN based single-junction solar cells with ultra-high energy efficiency.

  12. Piezoelectric Enhancement of (PbTiO3)m/(BaTiO3)n Ferroelectric Superlattices through Domain Engineering

    SciTech Connect

    Hong, Liang; Wu, Pingping; Li, Yulan; Gopalan, Venkatraman; Eom, C.B.; Schlom, Darrell G.; Chen, Long-Qing

    2014-11-20

    The phase diagram of (PbTiO3)m/(BaTiO3)n ferroelectric superlattices was computed using the phase-field approach as a function of layer volume fraction and biaxial strain to tune ferroelectric properties through domain engineering. Two interesting domain structures are found: one with mixed Bloch-Néel-Ising domain wall structures and the other with stabilized monoclinic phases. The polarization of the monoclinic phase is able to rotate from out-of-plane to in-plane or vice versa under an electric field, and thus facilitates the domain reversal of rhombohedral domains. This contributes significantly to both reduced coercive fields and enhanced piezoelectric responses.

  13. Enhanced piezoelectric property of porous lead zirconate titanate ceramics with one dimensional ordered pore structure

    SciTech Connect

    Guo Rui; Wang Changan; Yang Ankun; Fu Juntao

    2010-12-15

    Lead zirconate titanate (PZT) ceramics with one dimensional ordered pore structure (1-3 type porous PZT ceramics) were fabricated in this study. The special structure not only enhanced the piezoelectric and dielectric properties effectively but also further decreased the acoustic impedance. All samples exhibited excellent piezoelectric properties despite high porosities. The d{sub 33} value was 608 pC /N (remained 88% that of dense PZT) when the porosity was up to 68.7%. The d{sub 33} value was 690 pC /N (same as dense PZT) when the porosity was 41.7%. The lowest acoustic impedance (Z) reached 1.3 MRayls. These results are promising for improving performance in hydrophones applications.

  14. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring

    NASA Astrophysics Data System (ADS)

    Dagdeviren, Canan; Su, Yewang; Joe, Pauline; Yona, Raissa; Liu, Yuhao; Kim, Yun-Soung; Huang, Yongan; Damadoran, Anoop R.; Xia, Jing; Martin, Lane W.; Huang, Yonggang; Rogers, John A.

    2014-08-01

    The ability to measure subtle changes in arterial pressure using devices mounted on the skin can be valuable for monitoring vital signs in emergency care, detecting the early onset of cardiovascular disease and continuously assessing health status. Conventional technologies are well suited for use in traditional clinical settings, but cannot be easily adapted for sustained use during daily activities. Here we introduce a conformal device that avoids these limitations. Ultrathin inorganic piezoelectric and semiconductor materials on elastomer substrates enable amplified, low hysteresis measurements of pressure on the skin, with high levels of sensitivity (~0.005 Pa) and fast response times (~0.1 ms). Experimental and theoretical studies reveal enhanced piezoelectric responses in lead zirconate titanate that follow from integration on soft supports as well as engineering behaviours of the associated devices. Calibrated measurements of pressure variations of blood flow in near-surface arteries demonstrate capabilities for measuring radial artery augmentation index and pulse pressure velocity.

  15. Enhancement of piezoelectric response in Ga doped BiFeO3 epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Jaber, N.; Wolfman, J.; Daumont, C.; Négulescu, B.; Ruyter, A.; Feuillard, G.; Bavencoffe, M.; Fortineau, J.; Sauvage, T.; Courtois, B.; Bouyanfif, H.; Longuet, J. L.; Autret-Lambert, C.; Gervais, F.

    2015-06-01

    The piezoelectric properties of compositional spread (1 - x)BiFeO3-xGaFeO3 epitaxial thin films are investigated where Ga3+ substitution for Bi3+ is attempted in Bi1-xGaxFeO3 compounds. Ga content x was varied from 0 to 12% (atomic). Ferroelectric characterizations are reported at various length scales. Around 6.5% of Ga content, an enhancement of the effective piezoelectric coefficient d33 eff is observed together with a change of symmetry of the film. Measured d33 eff values in 135 nm thick films increased from 25 pm/V for undoped BiFeO3 to 55 pm/V for 6.5% Ga with no extrinsic contribution from ferroelastic domain rearrangement.

  16. Enhanced iterative learning control for a piezoelectric actuator system using wavelet transform filtering

    NASA Astrophysics Data System (ADS)

    Chien, Chiang-Ju; Lee, Fu-Shin; Wang, Jhen-Cheng

    2007-01-01

    For trajectory tracking of a piezoelectric actuator system, an enhanced iterative learning control (ILC) scheme based on wavelet transform filtering (WTF) is proposed in this research. The enhanced ILC scheme incorporates a state compensation in the ILC formula. Combining state compensation with iterative learning, the scheme enhances tracking accuracies substantially, in comparison to the conventional D-type ILC and a proportional control-aided D-type ILC. The wavelet transform is adopted to filter learnable tracking errors without phase shift. Based on both a time-frequency analysis of tracking errors and a convergence bandwidth analysis of ILC, a two-level WTF is chosen for ILC in this study. The enhanced ILC scheme using WTF was applied to track two desired trajectories, one with a single frequency and the other with multiple frequencies, respectively. Experimental results validate the efficacy of the enhanced ILC in terms of the speed of convergence and the level of long-term tracking errors.

  17. PMN-PT based quaternary piezoceramics with enhanced piezoelectricity and temperature stability

    NASA Astrophysics Data System (ADS)

    Luo, Nengneng; Zhang, Shujun; Li, Qiang; Yan, Qingfeng; He, Wenhui; Zhang, Yiling; Shrout, Thomas R.

    2014-05-01

    The phase structure, piezoelectric, dielectric, and ferroelectric properties of (0.80 - x)PMN-0.10PFN-0.10PZ-xPT were investigated systematically. The morphotropic phase boundary (MPB) was confirmed to be 0.30 < x < 0.34. Both MPB compositions of x = 0.32 and x = 0.33 exhibit high piezoelectric coefficients d33 = 640 pC/N and 580 pC/N, electromechanical couplings kp of 0.53 and 0.52, respectively. Of particular importance is that the composition with x = 0.33 was found to process high field-induced piezoelectric strain coefficient d33* of 680 pm/V, exhibiting a minimal temperature-dependent behavior, being less than 8% in the temperature range of 25-165 °C, which can be further confirmed by d31, with a variation of less than 9%. The temperature-insensitive d33* values can be explained by the counterbalance of the ascending dielectric permittivity and descending polarization with increasing temperature. These features make the PMN-PT based quaternary MPB compositions promising for actuator applications demanding high temperature stability.

  18. Stress-induced piezoelectric field in GaN-based 450-nm light-emitting diodes

    SciTech Connect

    Tawfik, Wael Z.; Hyeon, Gil Yong; Lee, June Key

    2014-10-28

    We investigated the influence of the built-in piezoelectric field induced by compressive stress on the characteristics of GaN-based 450-nm light-emitting diodes (LEDs) prepared on sapphire substrates of different thicknesses. As the sapphire substrate thickness was reduced, the compressive stress in the GaN layer was released, resulting in wafer bowing. The wafer bowing-induced mechanical stress altered the piezoelectric field, which in turn reduced the quantum confined Stark effect in the InGaN/GaN active region of the LED. The flat-band voltage was estimated by measuring the applied bias voltage that induced a 180° phase shift in the electro-reflectance (ER) spectrum. The piezoelectric field estimated by the ER spectra changed by ∼110 kV/cm. The electroluminescence spectral peak wavelength was blue-shifted, and the internal quantum efficiency was improved by about 22% at a high injection current of 100 mA. The LED on the 60-μm-thick sapphire substrate exhibited the highest light output power of ∼59 mW at an injection current of 100 mA, with the operating voltage unchanged.

  19. Stress-induced piezoelectric field in GaN-based 450-nm light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Tawfik, Wael Z.; Hyeon, Gil Yong; Lee, June Key

    2014-10-01

    We investigated the influence of the built-in piezoelectric field induced by compressive stress on the characteristics of GaN-based 450-nm light-emitting diodes (LEDs) prepared on sapphire substrates of different thicknesses. As the sapphire substrate thickness was reduced, the compressive stress in the GaN layer was released, resulting in wafer bowing. The wafer bowing-induced mechanical stress altered the piezoelectric field, which in turn reduced the quantum confined Stark effect in the InGaN/GaN active region of the LED. The flat-band voltage was estimated by measuring the applied bias voltage that induced a 180° phase shift in the electro-reflectance (ER) spectrum. The piezoelectric field estimated by the ER spectra changed by ˜110 kV/cm. The electroluminescence spectral peak wavelength was blue-shifted, and the internal quantum efficiency was improved by about 22% at a high injection current of 100 mA. The LED on the 60-μm-thick sapphire substrate exhibited the highest light output power of ˜59 mW at an injection current of 100 mA, with the operating voltage unchanged.

  20. Extreme thermal expansion, piezoelectricity, and other coupled field properties in composites with a negative stiffness phase

    NASA Astrophysics Data System (ADS)

    Wang, Y. C.; Lakes, R. S.

    2001-12-01

    Particulate composites with negative stiffness inclusions in a viscoelastic matrix are shown to have higher thermal expansion than that of either constituent and exceeding conventional bounds. It is also shown theoretically that other extreme linear coupled field properties including piezoelectricity and pyroelectricity occur in layer- and fiber-type piezoelectric composites, due to negative inclusion stiffness effects. The causal mechanism is a greater deformation in and near the inclusions than the composite as a whole. A block of negative stiffness material is unstable, but negative stiffness inclusions in a composite can be stabilized by the surrounding matrix and can give rise to extreme viscoelastic effects in lumped and distributed composites. In contrast to prior proposed composites with unbounded thermal expansion, neither the assumptions of void spaces nor slip interfaces are required in the present analysis.

  1. High fidelity phase locked PIV measurements analysing the flow fields surrounding an oscillating piezoelectric fan

    NASA Astrophysics Data System (ADS)

    Jeffers, Nicholas; Nolan, Kevin; Stafford, Jason; Donnelly, Brian

    2014-07-01

    Piezoelectric fans have been studied extensively and are seen as a promising technology for thermal management due to their ability to provide quiet, reliable cooling with low power consumption. The fluid mechanics of an unconfined piezoelectric fan are complex which is why the majority of the literature to date confines the fan in an attempt to simplify the flow field. This paper investigates the fluid mechanics of an unconfined fan operating in its first vibration frequency mode. The piezoelectric fan used in this study measures 12.7mm × 70mm and resonates at 92.5Hz in air. A custom built experimental facility was developed to capture the fan's flow field using phase locked Particle Image Velocimetry (PIV). The phase locked PIV results are presented in terms of vorticity and show the formation of a horse shoe vortex. A three dimensional A2 criterion constructed from interpolated PIV measurements was used to identify the vortex core in the vicinity of the fan. This analysis was used to clearly identify the formation of a horse shoe vortex that turns into a hairpin vortex before it breaks up due to a combination of vortex shedding and flow along the fan blade. The results presented in this paper contribute to both the fluid dynamics and heat transfer literature concerning first mode fan oscillation.

  2. Piezoelectric field in highly stressed GaN-based LED on Si (1 1 1) substrate

    NASA Astrophysics Data System (ADS)

    Tawfik, Wael Z.; Hyun, Gil Yong; Ryu, Sang-Wan; Ha, June Seok; Lee, June Key

    2016-05-01

    Stress states in GaN epilayers grown on Si (1 1 1) and c-plane sapphire, and their effects on built-in piezoelectric field induced by compressive stress in InGaN/GaN multi-quantum well (MQW) light-emitting diodes (LEDs) were investigated using the electroreflectance (ER) spectroscopic technique. Relatively large tensile stress is observed in GaN epilayers grown on Si (1 1 1), while a small compressive stress appears in the film grown on c-plane sapphire. The InGaN/GaN MQWs of LED on c-plane sapphire substrate has a higher piezoelectric field than the MQWs of LEDs on Si (1 1 1) substrate by about 1.04 MV/cm. The large tensile stress due to lattice mismatch with Si (1 1 1) substrate is regarded as external stress. The external tensile stress from the Si substrate effectively compensates for the compressive stress developed in the active region of the InGaN/GaN MQWs, thus reducing the quantum-confined Stark effect (QCSE) by attenuating the piezoelectric polarization from the InGaN layer.

  3. Piezoelectric response enhancement in the proximity of grain boundaries of relaxor-ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Brewer, Steven; Deng, Carmen; Callaway, Connor; Kalinin, Sergei V.; Vasudevan, Rama K.; Bassiri-Gharb, Nazanin

    2016-06-01

    The influence of surface morphology on the local piezoelectric response of highly (100)-textured 0.70PbMg2/3Nb1/3O3-0.30PbTiO3 thin films is studied using piezoresponse force microscopy in band-excitation mode. The local electromechanical response is mostly suppressed in direct proximity of the grain boundaries. However, within 100-200 nm of the grain boundary, the piezoresponse is substantially enhanced, before decaying again within a region at the center of the grain itself. Nested piezoresponse hysteresis curves confirm the influence of topography descriptors on parameters affecting the hysteresis loop shape. The enhancement of the electromechanical response is rationalized through reduced lateral clamping in the grains with deep trenched boundaries, as well as an expected lower energy for complex domain wall structures, due to curved ferroelectric surfaces. The lower piezoresponse at the center of the grain is assigned to the lateral clamping by the surrounding piezoelectric material.

  4. Array of piezoelectric lateral electric field excited resonators.

    PubMed

    Borodina, I A; Zaitsev, B D; Teplykh, A A; Shikhabudinov, A M; Kuznetsova, I E

    2015-09-01

    An array containing two resonators placed on X-cut lithium niobate plate has been experimentally investigated. The resonator's lateral electric field was directed along the Y-crystallographic axis. It has been shown that stable resonance exists for a longitudinal acoustic wave propagating along the X-axis in the area between the electrodes. A layer of special damping coating was deposited around the resonators and on the part of electrodes to suppress parasitic oscillations induced mainly by Lamb waves. Frequency dependences of the real and imaginary parts of electric impedance/admittance were measured for every resonator to find resonant frequency and Q-factor with series and parallel resonances. The optimal values of width of electrode coating for every resonator were revealed which provide good resonance quality. The measurements of parameter S12, which characterizes a degree of acoustical coupling between the resonators, have shown its value to be higher than 50dB in the absolute value in all the cases considered. This means that the resonators under study are entirely acoustically decoupled. Thus it has been demonstrated that the damping layer not only provides a sufficiently good quality of every resonator's resonance, but it also assures their entire acoustical decoupling. PMID:26060097

  5. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring.

    PubMed

    Dagdeviren, Canan; Su, Yewang; Joe, Pauline; Yona, Raissa; Liu, Yuhao; Kim, Yun-Soung; Huang, YongAn; Damadoran, Anoop R; Xia, Jing; Martin, Lane W; Huang, Yonggang; Rogers, John A

    2014-01-01

    The ability to measure subtle changes in arterial pressure using devices mounted on the skin can be valuable for monitoring vital signs in emergency care, detecting the early onset of cardiovascular disease and continuously assessing health status. Conventional technologies are well suited for use in traditional clinical settings, but cannot be easily adapted for sustained use during daily activities. Here we introduce a conformal device that avoids these limitations. Ultrathin inorganic piezoelectric and semiconductor materials on elastomer substrates enable amplified, low hysteresis measurements of pressure on the skin, with high levels of sensitivity (~0.005 Pa) and fast response times (~0.1 ms). Experimental and theoretical studies reveal enhanced piezoelectric responses in lead zirconate titanate that follow from integration on soft supports as well as engineering behaviours of the associated devices. Calibrated measurements of pressure variations of blood flow in near-surface arteries demonstrate capabilities for measuring radial artery augmentation index and pulse pressure velocity. PMID:25092496

  6. Large strain under a low electric field in lead-free bismuth-based piezoelectrics

    NASA Astrophysics Data System (ADS)

    Ullah, Aman; Won Ahn, Chang; Ullah, Amir; Won Kim, Ill

    2013-07-01

    In this letter, the composition and electric field dependent strain behavior of (1 - x)Bi0.5(Na0.78K0.22)0.5TiO3-xBi(Mg0.5Ti0.5)O3 (BNKT-BMT) were investigated to develop lead-free piezoelectric materials with a large strain response at a low driving field for actuator applications. A large strain of 0.35% (Smax/Emax = 636 pm/V) at an applied field of 55 kV/cm was obtained with a composition of 4 mol. % BMT. In particular, the electric field required to deliver large strains was reduced to a level that revealed not only a large Smax/Emax of 542 pm/V at a driving field as low as 35 kV/cm, but also remarkably suppressed the large hysteresis.

  7. Fracture and buckling of piezoelectric nanowires subject to an electric field

    SciTech Connect

    Zhang, Jin; Wang, Chengyuan Adhikari, Sondipon

    2013-11-07

    Fracture and buckling are major failure modes of thin and long nanowires (NWs), which could be affected significantly by an electric field when piezoelectricity is involved in the NWs. This paper aims to examine the issue based on the molecular dynamics simulations, where the gallium nitride (GaN) NWs are taken as an example. The results show that the influence of the electric field is strong for the fracture and the critical buckling strains, detectable for the fracture strength but almost negligible for the critical buckling stress. In addition, the reversed effects are achieved for the fracture and the critical buckling strains. Subsequently, the Timoshenko beam model is utilized to account for the effect of the electric field on the axial buckling of the GaN NWs, where nonlocal effect is observed and characterized by the nonlocal coefficient e{sub 0}a=1.1 nm. The results show that the fracture and buckling of piezoelectric NWs can be controlled by applying an electric field.

  8. Conformational dynamics and aggregation behavior of piezoelectric diphenylalanine peptides in an external electric field.

    PubMed

    Kelly, Catherine M; Northey, Thomas; Ryan, Kate; Brooks, Bernard R; Kholkin, Andrei L; Rodriguez, Brian J; Buchete, Nicolae-Viorel

    2015-01-01

    Aromatic peptides including diphenylalanine (FF) have the capacity to self-assemble into ordered, biocompatible nanostructures with piezoelectric properties relevant to a variety of biomedical applications. Electric fields are commonly applied to align FF nanotubes, yet little is known about the effect of the electric field on the assembly process. Using all-atom molecular dynamics with explicit water molecules, we examine the response of FF monomers to the application of a constant external electric field over a range of intensities. We probe the aggregation mechanism of FF peptides, and find that the presence of even relatively weak fields can accelerate ordered aggregation, primarily by facilitating the alignment of individual molecular dipole moments. This is modulated by the conformational response of individual FF peptides (e.g., backbone stretching) and by the cooperative alignment of neighboring FF and water molecules. These observations may facilitate future studies on the controlled formation of nanostructured aggregates of piezoelectric peptides and the understanding of their electro-mechanical properties. PMID:25240398

  9. Resonance magnetoelectric effect without a bias field in a piezoelectric langatate-hysteretic ferromagnet monolithic structure

    NASA Astrophysics Data System (ADS)

    Burdin, D. A.; Fetisov, L. Y.; Fetisov, Y. K.; Chashin, D. V.; Ekonomov, N. A.

    2014-09-01

    The frequency, field, temperature, and amplitude characteristics of the direct magnetoelectric effect are studied in a planar monolithic structure consisting of a piezoelectric langatate crystal and a layer of electrolytic nickel. A relation between the magnetic and magnetoelectric properties of the structure is demonstrated, which explains the effects observed in structures with hysteretic layers. At the planar acoustic resonance frequency of the structure (about 70 kHz), the effect amounting to 23 V/(Oe cm) in the absence of a bias field is discovered. In the temperature interval 150-400 K, the amount of the effect changes nearly twofold, the resonance frequency changes by about 1%, and the Q factor on cooling rises to about 8 × 103. The field sensitivity of the structure is on the order of 1 V/Oe, which makes it possible to detect magnetic fields with an amplitude down to ˜10-6 Oe.

  10. Piezoelectric response of a PZT thin film to magnetic fields from permanent magnet and coil combination

    NASA Astrophysics Data System (ADS)

    Guiffard, B.; Seveno, R.

    2015-01-01

    In this study, we report the magnetically induced electric field E 3 in Pb(Zr0.57Ti0.43)O3 (PZT) thin films, when they are subjected to both dynamic magnetic induction (magnitude B ac at 45 kHz) and static magnetic induction ( B dc) generated by a coil and a single permanent magnet, respectively. It is found that highest sensitivity to B dc——is achieved for the thin film with largest effective electrode. This magnetoelectric (ME) effect is interpreted in terms of coupling between eddy current-induced Lorentz forces (stress) in the electrodes of PZT and piezoelectricity. Such coupling was evidenced by convenient modelling of experimental variations of electric field magnitude with both B ac and B dc induction magnitudes, providing imperfect open circuit condition was considered. Phase angle of E 3 versus B dc could also be modelled. At last, the results show that similar to multilayered piezoelectric-magnetostrictive composite film, a PZT thin film made with a simple manufacturing process can behave as a static or dynamic magnetic field sensor. In this latter case, a large ME voltage coefficient of under B dc = 0.3 T was found. All these results may provide promising low-cost magnetic energy harvesting applications with microsized systems.

  11. Enhanced ferroeletric and piezoelectric properties of Nd3+ doped PZT nanoceramics

    NASA Astrophysics Data System (ADS)

    Kour, Paramjit; Pradhan, Sudipta Kishore; Kumar, Pawan; Sinha, Sanjay Kumar; Kar, Manoranjan

    2016-05-01

    The sol gel technique was used to prepare Pb1-xNdx Zr0.52Ti0.48O3 with x = 0.02, 0.04, 0.06 and 0.10 samples. Room temperature Raman spectra of all the sample were recorded in the range of wave number 30-1000 cm-1. It suggests that the increase in contribution of tetragonal crystallographic phase with the increase in Nd concentration in the sample. FTIR study shows the presence of characteristic bending and streching vibrations of perovskite (ABO3) structure. Ferroelectric and piezoelectric properties were enhanced by the Nd substitution at Pb site of PbZr0.52Ti0.48O3.

  12. Enhanced buckled-beam piezoelectric energy harvesting using midpoint magnetic force

    NASA Astrophysics Data System (ADS)

    Zhu, Yang; Zu, Jean W.

    2013-07-01

    Aiming to improve the functionality of a buckled-beam piezoelectric energy harvester, a midpoint magnetic force is utilized to enable snap-through motions under low-frequency (<30 Hz) small-amplitude (0.2 g-0.8 g) excitations. The noncontact midpoint magnetic force is introduced through a local magnetic levitation system created by neodymium magnets and is capable of triggering the second buckling mode that helps the beam easily snap through between equilibriums when subjected to excitations. Significant enhancements, along with distinct nonlinear phenomena, are observed at low frequencies in terms of large-amplitude voltage output and extended frequency bandwidth. Frequency tuning is also achievable by adjusting the separation distance between magnets.

  13. Piezoelectric response of single-crystal PbZr1-xTixO3 near morphotropic phase boundary predicted by phase-field simulation

    SciTech Connect

    Cao, Ye; Sheng, Guang; Zhang , J.X.; Choudhury, S.; Li, Yulan; Randall, C. A.; Chen , L.Q.

    2010-12-20

    The piezoelectric property of hypothetic single-crystal PbZr1-xTixO3 (PZT) is studied using phase-field simulations. The dependence of piezoelectric coefficient (d33) on PbTiO3 compositions (x) near the morphotropic phase boundary (MPB) of PZT was obtained. It is shown that d33 reaches a peak of 720 pC/N at x = 0.47 which is more than 3 times of that for the ceramic counterpart. By analyzing the domain structure of the poled PZT single crystals, we can conclude that the enhancement of d33 near the MPB composition is attributed to the existence of multi-phase and multi-domain.

  14. High piezoelectric properties of cement piezoelectric composites containing kaolin

    NASA Astrophysics Data System (ADS)

    Pan, Huang Hsing; Yang, Ruei-Hao; Cheng, Yu-Chieh

    2015-04-01

    To obtain high piezoelectric properties, PZT/cement composites with kaolin were fabricated and polarized by 1.5kV/mm electric field for 40 min, where lead zirconate titanate (PZT) inclusion with 50% by volume was used. After the polarization, piezoelectric properties of the composite were measured daily till 100 days. Results indicated that relative dielectric constant (ɛr) and piezoelectric strain constant (d33) increase with aging day, and approach to asymptotic values after 70 days. Temperature treatment to the composite is a dominate factor to enhance piezoelectric properties. The d33 and ɛr values of PZT/cement composites treated at the ambient temperature (23℃) were 57pC/N and 275 at the 70th aging day respectively, and then reached 106pC/N and 455 in turn with 150℃ treatment. The composite contains 4% kaolin having the highest value of d33=111pC/N and ɛr=500 at 90 days because the porosity is the less than the others. Cement piezoelectric composites containing kaolin own the higher d33 and ɛr value, compared with the other reported composites with 50% PZT. The porosity, the electromechanical coupling factor and impedance-frequency spectra of the cement piezoelectric composites were also discussed.

  15. Output power enhancement from ZnO nanorods piezoelectric nanogenerators by Si microhole arrays

    NASA Astrophysics Data System (ADS)

    Baek, Seong-Ho; Roqibul Hasan, Md; Park, Il-Kyu

    2016-02-01

    We demonstrate the enhancement of output power from a ZnO nanorod (NR)-based piezoelectric nanogenerator by using Si microhole (Si-μH) arrays. The depth-controlled Si-μH arrays were fabricated by using the deep reactive ion etching method. The ZnO NRs were grown along the Si-μH surface, in holes deeper than 20 μm. The polymer layer, polydimethylsiloxane, which acts a stress diffuser and electrical insulator, was successfully penetrated into the deep Si-μH arrays. Optical investigations show that the crystalline quality of the ZnO NRs on the Si-μH arrays was not degraded, even though they were grown on the deeper Si-μH arrays. As the depth of the Si-μH arrays increase from 0 to 20 μm, the output voltage was enhanced by around 8.1 times while the current did not increase. Finally, an output power enhancement of ten times was obtained. This enhancement of the output power was consistent with the increase in the surface area, and was mainly attributed to the accumulation of the potentials generated by the series-connected ZnO NR-based nanogenerators, whose number increases as the depth of the Si-μH increases.

  16. Conformational dynamics and aggregation behavior of piezoelectric diphenylalanine peptides in an external electric field

    PubMed Central

    Kelly, Catherine M.; Northey, Thomas; Ryan, Kate; Brooks, Bernard R.; Kholkin, Andrei; Rodriguez, Brian J.; Buchete, Nicolae-Viorel

    2014-01-01

    Aromatic peptides such as diphenylalanine (FF) have the characteristic capacity to self-assemble into ordered nanostructures such as peptide nanotubes, which are biocompatible, thermally and chemically stable, and have strong piezoelectric activity and high mechanical strength. The physical properties of FF aggregates open up a variety of potential biomedical applications. Electric fields are commonly applied to align FF nanotubes, yet little is known about the effect of the electric field on the assembly process. Using all-atom molecular dynamics with explicit water molecules, we probe the conformational dynamics of individual, solvated FF molecules with both charged and neutral ends, to account for different possible pH conditions. With charged ends, the FF molecules show more complex dynamics, experiencing three main conformational states (cis, trans and extended). We first examine the structural response of FF monomers to the application of a constant external electric field over a range of intensities. We also probe the aggregation mechanism of FF peptides, both with and without an externally applied electric field, and find that the presence of even relatively weak fields can accelerate the formation of ordered FF aggregates, primarily by facilitating the alignment of individual molecular dipole moments. The correlation between the strength of the external electric field and the local dipolar interactions is modulated both by the conformational response of individual FF peptides (e.g. backbone stretching, hydrogen bonds and relative alignment of aromatic sidechains) and by the response of neighboring FF and water molecules. These field-dependent observations may facilitate future studies on the controlled formation of nano-structured aggregates of piezoelectric peptides and the understanding of their specific electromechanical properties. PMID:25240398

  17. Piezoelectrically assisted ultrafiltration

    SciTech Connect

    Ahner, N.; Gottschlich, D.; Narang, S.; Roberts, D.; Sharma, S.; Ventura, S.

    1993-01-01

    The authors have demonstrated the feasibility of using piezoelectrically assisted ultrafiltration to reduce membrane fouling and enhance the flux through ultrafiltration membranes. A preliminary economic evaluation, accounting for the power consumption of the piezoelectric driver and the extent of permeate flow rate enhancement, has also shown that piezoelectrically assisted ultrafiltration is cost effective and economically competitive in comparison with traditional separation processes. Piezoelectric transducers, such as a piezoelectric lead zirconate titanate (PZT) disc or a piezoelectric horn, driven by moderate power, significantly enhance the permeate flux on fouled membranes, presumably because they promote local turbulence. Several experiments were conducted on polysulfone and regenerated cellulose UF membranes fouled during filtration of model feed solutions. Solutions of poly(ethylene glycol) and of high-molecular weight dextran were used as models. The authors found that they could significantly increase the permeate flux by periodically driving the piezoelectric transducer, horn or PZT disc, by application of moderate power over short periods of time, from 20 to 90 seconds. Enhancements as high as a factor of 8 were recorded within a few seconds, and enhanced permeate fluxes were maintained over a prolonged period (up to 3 hours). The prolonged flux enhancement makes it feasible to drive the piezoelectric transducer intermittently, thereby reducing the power consumption of the piezoelectric driver. As piezoelectric drivers of sonically assisted ultrafiltration, PZT disc transducers are preferred over the piezoelectric horn because of their small size and ease of adaptability to ultrafiltration test cells. The horn transmits sonic energy to the UF membrane through a titanium element driven by a separate piezoelectric transducer, but a piezoelectric ceramic disc transmits energy directly to the UF membrane.

  18. Energy trapping in high-frequency vibrations of piezoelectric plates with partial mass layers under lateral electric field excitation.

    PubMed

    Liu, Bo; Jiang, Qing; Xie, Huimin; Yang, Jiashi

    2011-04-01

    We study coupled face-shear (FS) and thickness-twist (TT) motions of a piezoelectric plate of monoclinic crystals with mass layers on the central parts of the plate surfaces. The plate is driven by a lateral electric field. Mindlin's first-order theory of piezoelectric plates is used. An analytical solution is obtained. Numerical results are presented for an AT-cut quartz plate, including the motional capacitance of the plate as a resonator and the vibration modes trapped under the mass layers in the central portion of the plate. The relationship between the dimension of the mass layers and the number of trapped modes is examined. PMID:21145572

  19. Lead-Free Piezoceramics: Revealing the Role of the Rhombohedral-Tetragonal Phase Coexistence in Enhancement of the Piezoelectric Properties.

    PubMed

    Rubio-Marcos, Fernando; López-Juárez, Rigoberto; Rojas-Hernandez, Rocio E; del Campo, Adolfo; Razo-Pérez, Neftalí; Fernandez, Jose F

    2015-10-21

    Until now, lead zirconate titanate (PZT) based ceramics are the most widely used in piezoelectric devices. However, the use of lead is being avoided due to its toxicity and environmental risks. Indeed, the attention in piezoelectric devices has been moved to lead-free ceramics, especially on (K,Na)NbO3-based materials, due to growing environmental concerns. Here we report a systematic evaluation of the effects of the compositional modifications induced by replacement of the B-sites with Sb(5+) ions in 0.96[(K0.48Na0.52)0.95Li0.05Nb1-xSbxO3]-0.04[BaZrO3] lead-free piezoceramics. We show that this compositional design is the driving force for the development of the high piezoelectric properties. So, we find that this phenomenon can be explained by the stabilization of a Rhombohedral-Tetragonal (R-T) phase boundary close to room temperature, that facilities the polarization process of the system and exhibits a significantly high piezoelectric response with a d33 value as high as ∼400 pC/N, which is comparable to part soft PZTs. As a result, we believe that the general strategy and design principles described in this study open the possibility of obtaining (K,Na)NbO3-based lead-free ceramics with enhanced properties, expanding their application range. PMID:26436199

  20. Piezoelectric ZnO-nanorod-structured pressure sensors using GaN-based field-effect-transistor

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Ting; Chiu, Ying-Shuo

    2015-02-01

    To utilize the piezoelectric property of ZnO nanorods, the ZnO nanorod array was grown on the AlGaN/GaN field-effect-transistor as the pressure sensors. The drain-source current of the ZnO nanorod-structured-AlGaN/GaN FET pressure sensors can be effectively modulated by the induced gate voltage caused from the piezoelectric phenomenon of ZnO nanorods under different pressures. The pressure sensors revealed the linearly response current under the pressure from 19.6 mN/mm2 to 490 mN/mm2. The ratio of the response current achieved 2.67% under the pressure of 490 mN/mm2. The induced piezoelectric potential under different pressure was also calculated and obtained in this work.

  1. Blast-induced electromagnetic fields in the brain from bone piezoelectricity.

    PubMed

    Lee, Ka Yan Karen; Nyein, Michelle K; Moore, David F; Joannopoulos, J D; Socrate, Simona; Imholt, Timothy; Radovitzky, Raul; Johnson, Steven G

    2011-01-01

    In this paper, we show that bone piezoelectricity-a phenomenon in which bone polarizes electrically in response to an applied mechanical stress and produces a short-range electric field-may be a source of intense blast-induced electric fields in the brain, with magnitudes and timescales comparable to fields with known neurological effects. We compute the induced charge density in the skull from stress data on the skull from a finite-element full-head model simulation of a typical IED-scale blast wave incident on an unhelmeted human head as well as a human head protected by a kevlar helmet, and estimate the resulting electric fields in the brain in both cases to be on the order of 10 V/m in millisecond pulses. These fields are more than 10 times stronger than the IEEE safety guidelines for controlled environments (IEEE Standards Coordinating Committee 28, 2002) and comparable in strength and timescale to fields from repetitive Transcranial Magnetic Stimulation (rTMS) that are designed to induce neurological effects (Wagner et al., 2006a). They can be easily measured by RF antennas, and may provide the means to design a diagnostic tool that records a quantitative measure of the head's exposure to blast insult. PMID:20547228

  2. Customization of the acoustic field produced by a piezoelectric array through interelement delays

    PubMed Central

    Chitnis, Parag V.; Barbone, Paul E.; Cleveland, Robin O.

    2008-01-01

    A method for producing a prescribed acoustic pressure field from a piezoelectric array was investigated. The array consisted of 170 elements placed on the inner surface of a 15 cm radius spherical cap. Each element was independently driven by using individual pulsers each capable of generating 1.2 kV. Acoustic field customization was achieved by independently controlling the time when each element was excited. The set of time delays necessary to produce a particular acoustic field was determined by using an optimization scheme. The acoustic field at the focal plane was simulated by using the angular spectrum method, and the optimization searched for the time delays that minimized the least squared difference between the magnitudes of the simulated and desired pressure fields. The acoustic field was shaped in two different ways: the −6 dB focal width was increased to different desired widths and the ring-shaped pressure distributions of various prescribed diameters were produced. For both cases, the set of delays resulting from the respective optimization schemes were confirmed to yield the desired pressure distributions by using simulations and measurements. The simulations, however, predicted peak positive pressures roughly half those obtained from the measurements, which was attributed to the exclusion of nonlinearity in the simulations. PMID:18537369

  3. Enhanced active piezoelectric 0-3 nanocomposites fabricated through electrospun nanowires

    SciTech Connect

    Feenstra, Joel; Sodano, Henry A.

    2008-06-15

    The use of monolithic piezoceramic materials in sensing and actuation applications has become quite common over the past decade. However, these materials have several properties that limit their application in practical systems. These materials are very brittle due to the ceramic nature of the monolithic material, making them vulnerable to accidental breakage during handling and bonding procedures. In addition, they have very poor ability to conform to curved surfaces and result in large add-on mass associated with using a typically lead-based ceramic. These limitations have motivated the development of alternative methods of applying the piezoceramic material, including piezoceramic fiber composites and piezoelectric 0-3 composites (also known as piezoelectric paint). Piezoelectric paint is desirable because it can be spayed or painted on and can be used with abnormal surfaces. However, the piezoelectric paint developed in prior studies has resulted in low coupling, limiting its application. In order to increase the coupling of the piezoelectric paint, this effort has investigated the use of piezoelectric nanowires rather than spherical piezoelectric particle, which are difficult to strain when embedded in a polymer matrix. The piezoceramic wires were electrospun from a barium titanate (BaTiO{sub 3}) sol gel to produce fibers with 500-1000 nm diameters and subsequently calcinated to acquire perovskite BaTiO{sub 3}. An active nanocomposite paint was formed using the resulting piezoelectric wires and was compared to the same paint with piezoelectric nanoparticles. The results show that the piezoceramic wires produce 0-3 nanocomposites with as high as 300% increase in electromechanical coupling.

  4. Aluminium nitride piezoelectric thin films reactively deposited in closed field unbalanced magnetron sputtering for elevated temperature 'smart' tribological applications

    NASA Astrophysics Data System (ADS)

    Hasheminiasari, Masood

    "Smart" high temperature piezoelectric aluminum nitride (AlN) thin films were synthesized by reactive magnetron sputtering using DC; pulsed-DC, and deep oscillation modulated pulsed power (DOMPP) systems on variety of substrate materials. Process optimization was performed to obtain highly c-axis texture films with improved piezoelectric response via studying the interplay between process parameters, microstructure and properties. AlN thin films were sputtered with DC and pulsed-DC systems to investigate the effect of various deposition parameters such as reactive gas ratio, working pressure, target power, pulsing frequency, substrate bias, substrate heating and seed layers on the properties and performance of the film device. The c-axis texture, orientation, microstructure, and chemical composition of AlN films were characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). A Michelson laser interferometer was designed and built to obtain the converse piezoelectric response of the deposited AlN thin films. Thin films with narrow AlN-(002) rocking curve of 2.5° were obtained with preliminary studies of DOMPP reactive sputtering. In-situ high temperature XRD showed excellent thermal stability and oxidation resistance of AlN films up to 1000 °C. AlN films with optimized processing parameters yielded an inverse piezoelectric coefficient, d33 of 4.9 pm/V close to 90 percent of its theoretical value.

  5. The field induced e{sub 31,f} piezoelectric and Rayleigh response in barium strontium titanate thin films

    SciTech Connect

    Garten, L. M. Trolier-McKinstry, S.

    2014-09-29

    The electric field induced e{sub 31,f} piezoelectric response and tunability of Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} (70:30) and Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} (60:40) thin films on MgO and silicon was measured. The relative dielectric tunabilities for the 70:30 and 60:40 compositions on MgO were 83% and 70%, respectively, with a dielectric loss of less than 0.011 and 0.004 at 100 kHz. A linear increase in induced piezoelectricity to −3.0 C/m{sup 2} and −1.5 C/m{sup 2} at 110 kV/cm was observed in Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} on MgO and Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} on Si. Hysteresis in the piezoelectric and dielectric response of the 70:30 composition films was consistent with the positive irreversible dielectric Rayleigh coefficient. Both indicate a ferroelectric contribution to the piezoelectric and dielectric response over 40–80 °C above the global paraelectric transition temperature.

  6. Liquid sensor based on a piezoelectric lateral electric field-excited resonator.

    PubMed

    Zaitsev, Boris D; Shikhabudinov, Alexander M; Teplykh, Andrey A; Kuznetsova, Iren E

    2015-12-01

    The influence of viscous and conducting liquid on the characteristics of a piezoelectric lateral electric field-excited resonator based on the X-cut lithium niobate plate has been investigated. It has been found that the contact of a free surface of such resonator with conducting or viscous liquid leads to the substantial variation of its electrical impedance/admittance. The analysis has shown the modulus of electrical impedance or admittance at any frequency near the parallel or series resonance to be a parameter unambiguously associated with the conductivity or the viscosity. This parameter is more sensitive to the variation of the liquid conductivity or viscosity as compared to the widely used for this purpose resonant frequency whose variation area is essentially smaller. By this means the liquid conductivity and viscosity affects unambiguously on the change of electrical impedance and admittance modulus whose measurement at a fixed frequency should present no problem in practice. Consequently, the lateral field excited resonator we have described may be employed as a liquid conductivity and viscosity meter with an appropriate graduation. PMID:26216121

  7. The magnetoresonance operation of microwiggler on the piezoelectrics with a strong magnetic guide field

    SciTech Connect

    Choi, J.S.; So, C.H.; Moon, J.D.

    1995-12-31

    We proposed that a new type of the electrostatic microwiggler with a wiggler period (0.1 mm {le}1{sub w}{le}1 mm) and the wiggler field strength (E{sub w}{le} 100 kV/m) can be produced on the surface of a PZT when a high power and high frequency ultrasonic wave travels through a PZT bar. Numerical simulations in the linear and nonlinear gain regime show that a weak microwiggler (E{sub w}100 kV/m,{lambda}{sub w}{approx}100 periods), operating in magnetoresonance with a strong guide field (B{sub o}{approx} 3.6T), can generate a millimeter and submillimeter radiations with medium electronic efficiency of few percents. It is shown that the maximum output power of the compact FEL using the wiggler system generated on the surface of the piezoelectric material may be upto a few Watts with a relatively low energy and low current electron beam (Ew {approx}100 keV and I{sub b}1 mA).

  8. Enhanced piezoelectricity in plastically deformed nearly amorphous Bi12TiO20-BaTiO3 nanocomposites

    NASA Astrophysics Data System (ADS)

    Yu, Dan; Zhao, Minglei; Wang, Chunlei; Wang, Lihai; Su, Wenbin; Gai, Zhigang; Wang, Chunming; Li, Jichao; Zhang, Jialiang

    2016-07-01

    Bulk Bi12TiO20-BaTiO3 (BTO-BT) nanocomposites are fabricated through the high-temperature interfacial reaction between nanometer-sized BaTiO3 particles and melting Bi12TiO20. Although the obtained BTO-BT nanocomposites are nearly amorphous and display very weak ferroelectricity, they exhibit relatively strong piezoelectricity without undergoing the electrical poling process. The volume fraction of crystalline Bi12TiO20 is reduced to less than 10%, and the piezoelectric constant d33 is enhanced to 13 pC/N. Only the presence of the macroscopic polar amorphous phases can explain this unusual thermal stable piezoelectricity. Combining the results from X-ray diffraction, Raman spectroscopy, and thermal annealing, it can be confirmed that the formation of macroscopic polar amorphous phases is closely related to the inhomogeneous plastic deformation of the amorphous Bi12TiO20 during the sintering process. These results highlight the key role of plastically deformed amorphous Bi12TiO20 in the Bi12TiO20-based polar composites, and the temperature gradient driven coupling between the plastic strain gradient and polarization in amorphous phases is the main poling mechanism for this special type of bulk polar material.

  9. Resonance-induced enhancement of the energy harvesting performance of piezoelectric flags

    NASA Astrophysics Data System (ADS)

    Xia, Yifan; Michelin, Sébastien; Doaré, Olivier

    2015-12-01

    The spontaneous flapping of a flag can be used to produce electrical energy from a fluid flow when coupled to a generator. In this paper, the energy harvesting performance of a flag covered by a single pair of polyvinylidene difluoride piezoelectric electrodes is studied both experimentally and numerically. The electrodes are connected to a resistive-inductive circuit that forms a resonant circuit with the piezoelectric's intrinsic capacitance. Compared with purely resistive circuits, the resonance between the circuit and the flag's flapping motion leads to a significant increase in the harvested energy. Our experimental study also validates our fluid-solid-electric nonlinear numerical model.

  10. Converse Piezoelectricity

    NASA Astrophysics Data System (ADS)

    Springborg, Michael; Kirtman, Bernard

    2013-03-01

    Piezoelectricity results from a coupling between responses to mechanical and electric perturbations and leads to changes in the polarization due to strain or stress or, alternatively, the occurrence of strain as a function of an applied external, electrostatic field (i.e., converse piezoelectricity). Theoretical studies of those properties for extended systems require accordingly that their dipole moment or polarization can be calculated. However, whereas the definition of the operator for the dipole moment for any finite system is trivial, it is only within the last 2 decades that the expressions for the equivalent operator in the independent-particle approximation for the infinite and periodic system have been presented. Here, we demonstrate that the so called branch dependence of the polarization for the infinite, periodic system is related to physical observables in contrast to what often is assumed. This is related to the finding that converse piezoelectric properties depend both on the surfaces of the samples of interest even for samples with size well above the thermodynamic limit. However, we shall demonstrate that these properties can be calculated without explicitly taking the surfaces into account. Both the foundations and results for real system shall be presented.

  11. High-sensitivity piezoelectric tube sensor for shear-force detection in scanning near-field optical microscopy

    NASA Astrophysics Data System (ADS)

    Lindfors, K.; Kapulainen, M.; Ryytty, P.; Kaivola, M.

    2004-11-01

    An easy-to-implement non-optical shear-force detection setup for tip-sample distance regulation in scanning near-field optical microscopy is demonstrated. The detection method is based on attaching the near-field probe to a piezoelectric tube resulting in excellent mechanical contact between tip and detector. The main advantages of the method are good signal-to-background contrast and thus potential for high sensitivity. The method is demonstrated by obtaining approach curves of silicon surfaces. The suitability for optical experiments is further shown by measuring the near-field intensity distribution of the emission of a semiconductor laser.

  12. Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor

    PubMed Central

    Gao, Zhiyuan; Zhou, Jun; Gu, Yudong; Fei, Peng; Hao, Yue; Bao, Gang; Wang, Zhong Lin

    2009-01-01

    We have investigated the effects of piezoelectric potential in a ZnO nanowire on the transport characteristics of the nanowire based field effect transistor through numerical calculations and experimental observations. Under different straining conditions including stretching, compressing, twisting, and their combination, a piezoelectric potential is created throughout the nanowire to modulate∕alternate the transport property of the metal-ZnO nanowire contacts, resulting in a switch between symmetric and asymmetric contacts at the two ends, or even turning an Ohmic contact type into a diode. The commonly observed natural rectifying behavior of the as-fabricated ZnO nanowire can be attributed to the strain that was unpurposely created in the nanowire during device fabrication and material handling. This work provides further evidence on piezopotential governed electronic transport and devices, e.g., piezotronics. PMID:19657403

  13. Induced piezoelectricity in isotropic biomaterial.

    PubMed

    Zimmerman, R L

    1976-12-01

    Isotropic material can be made to exhibit piezoelectric effects by the application of a constant electric field. For insulators, the piezoelectric strain constant is proportional to the applied electric field and for semiconductors, an additional out-of-phase component of piezoelectricity is proportional to the electric current density in the sample. The two induced coefficients are proportional to the strain-dependent dielectric constant (depsilon/dS + epsilon) and resistivity (drho/dS - rho), respectively. The latter is more important at frequencies such that rhoepsilonomega less than 1, often the case in biopolymers. Signals from induced piezoelectricity in nature may be larger than those from true piezoelectricity. PMID:990389

  14. Enhanced high-temperature piezoelectric properties of traditional Pb(Zr,Ti)O3 ceramics by a small amount substitution of KNbO3

    NASA Astrophysics Data System (ADS)

    Pan, Zhao; Chen, Jun; Fan, Longlong; Rong, Yangchun; Zheng, Shaoying; Liu, Laijun; Fang, Liang; Xing, Xianran

    2014-12-01

    Crystal structure, piezoelectric, and dielectric properties were investigated on the (1-x)Pb(Zr0.54Ti0.46)O3-xKNbO3 system. The piezoelectric properties have been significantly improved by substituting a small amount of KNbO3. In the morphotropic phase boundary (x = 0.015), the compound not only shows enhanced piezoelectric coefficient d33 = 450 pC/N, which is two times larger than that of unmodified Pb(Zr,Ti)O3 (d33 = 223 pC/N), but also the Curie temperature (TC = ˜380 °C) is still well maintained at a high level. This phenomenon challenges our general knowledge that in piezoelectric materials the Curie temperature and piezoelectric properties are mutually contradictory. It should be noted that a giant total strain as high as 0.73% is also observed. The high thermal depoling temperature more than 300 °C combined with the excellent piezoelectric properties suggest it as a potential candidate for high temperature actuators and sensors applications.

  15. (100)-Textured KNN-based thick film with enhanced piezoelectric property for intravascular ultrasound imaging

    PubMed Central

    Zhu, Benpeng; Zhang, Zhiqiang; Ma, Teng; Yang, Xiaofei; Li, Yongxiang; Shung, K. Kirk; Zhou, Qifa

    2015-01-01

    Using tape-casting technology, 35 μm free-standing (100)-textured Li doped KNN (KNLN) thick film was prepared by employing NaNbO3 (NN) as template. It exhibited similar piezoelectric behavior to lead containing materials: a longitudinal piezoelectric coefficient (d33) of ∼150 pm/V and an electromechanical coupling coefficient (kt) of 0.44. Based on this thick film, a 52 MHz side-looking miniature transducer with a bandwidth of 61.5% at −6 dB was built for Intravascular ultrasound (IVUS) imaging. In comparison with 40 MHz PMN-PT single crystal transducer, the rabbit aorta image had better resolution and higher noise-to-signal ratio, indicating that lead-free (100)-textured KNLN thick film may be suitable for IVUS (>50 MHz) imaging. PMID:25991874

  16. (100)-Textured KNN-based thick film with enhanced piezoelectric property for intravascular ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Benpeng; Zhang, Zhiqiang; Ma, Teng; Yang, Xiaofei; Li, Yongxiang; Shung, K. Kirk; Zhou, Qifa

    2015-04-01

    Using tape-casting technology, 35 μm free-standing (100)-textured Li doped KNN (KNLN) thick film was prepared by employing NaNbO3 (NN) as template. It exhibited similar piezoelectric behavior to lead containing materials: a longitudinal piezoelectric coefficient (d33) of ˜150 pm/V and an electromechanical coupling coefficient (kt) of 0.44. Based on this thick film, a 52 MHz side-looking miniature transducer with a bandwidth of 61.5% at -6 dB was built for Intravascular ultrasound (IVUS) imaging. In comparison with 40 MHz PMN-PT single crystal transducer, the rabbit aorta image had better resolution and higher noise-to-signal ratio, indicating that lead-free (100)-textured KNLN thick film may be suitable for IVUS (>50 MHz) imaging.

  17. Piezoelectric effect enhancing decay time of p-NiO/n-ZnO ultraviolet photodetector

    NASA Astrophysics Data System (ADS)

    Luo, Yingmin; Yin, Bing; Zhang, Heqiu; Qiu, Yu; Lei, Jixue; Chang, Yue; Zhao, Yu; Ji, Jiuyu; Hu, Lizhong

    2016-01-01

    An ultraviolet photodetector based on p-NiO/n-ZnO heterojunction was fabricated using thermal oxidation and hydrothermal growth processes. The properties of the UV photoresponse under various strains were investigated. The results showed that the magnitude and the sign of the strain (tension/compression) have a great influence on the decay time by coupling piezoelectric and surface oxygen adsorption/desorption effects. These results demonstrate an effective approach for designing and fabricating strain modulated fast reset UV photodetectors.

  18. Numerical Model of Lateral Electric Field Excited Resonator on Piezoelectric Plate Bordered with Viscous and Conductive Liquid

    NASA Astrophysics Data System (ADS)

    Teplykh, Andrey; Zaitsev, Boris; Kuznetsova, Iren

    The numerical method of calculation of characteristics of lateral electric field excited resonator contacting with viscous and conducting liquid and results of these calculations are described. The method based on finite element analysis allows to find the distribution of mechanical and electrical fields in piezoelectric plate and liquid and to calculate the frequency dependencies of electrical impedance and admittance of resonator. It has been shown that values of real parts of impedance and admittance on resonant frequencies unambiguously correspond to viscosity and conductivity of liquid.

  19. Morphological evolution and migration of void in bi-piezoelectric interface based on nonlocal phase field method

    NASA Astrophysics Data System (ADS)

    Li, H. B.; Wang, X.

    2016-05-01

    This paper reports the result of investigation into the morphological evolution and migration of void in bi-piezoelectric material interface by utilizing nonlocal phase field model and finite element method (FEM), where the small scale effect containing the long-range forces among atoms is considered. The nonlocal elastic strain energy and the nonlocal electric energy around the void are firstly calculated by the finite element method. Then based on the finite difference method (FDM), the thermodynamic equilibrium equation containing the surface energy and anisotropic diffusivity is solved to simulate the morphological evolution and migration of elliptical void in bi-piezoelectric films interface. Results show that the way of load condition plays a significant role in the evolution process, and the boundary of void's long axis gradually collapses toward the center of ellipse. In addition, the evolutionary speed of left boundary gradually decreases with scale effect coefficient growth. This work can provide references for the safety evaluation of piezoelectric materials in micro electro mechanical system.

  20. Piezoelectric Polymers

    NASA Technical Reports Server (NTRS)

    Harrison, J. S.; Ounaies, Z.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The purpose of this review is to detail the current theoretical understanding of the origin of piezoelectric and ferroelectric phenomena in polymers; to present the state-of-the-art in piezoelectric polymers and emerging material systems that exhibit promising properties; and to discuss key characterization methods, fundamental modeling approaches, and applications of piezoelectric polymers. Piezoelectric polymers have been known to exist for more than forty years, but in recent years they have gained notoriety as a valuable class of smart materials.

  1. Direct observation of piezoelectric fields in GaN/ InGaN/GaN strained quantum wells

    PubMed

    Barnard; Cherns

    2000-01-01

    Off-axis electron holography is used to examine a single thin InGaN quantum well in GaN viewed in cross-section. The results show a phase offset across the well, which, under weakly diffracting conditions, is an approximately linear function of specimen thickness. This phase offset is ascribed to a change AV0 in the specimen mean inner potential V0 caused by a piezoelectric field induced by misfit strains in the InGaN layer. This paper examines the dependence of the phase offset on the diffracting conditions and on thin foil relaxation effects. It is shown that relaxation is negligible for the film thicknesses involved. Using a range of weakly diffracting conditions, the phase offset is measured as deltaV0/V0 = 0.042+/-0.012. Zone axis convergent beam electron diffraction patterns were taken and compared to simulations to determine the crystal polarity, showing the magnitude of the inner potential increased in the [0001] direction. By using dark-field displacement fringes to measure the InGaN layer thickness, and recent estimates of V0, the magnitude of the piezoelectric field is determined. This paper assesses the accuracy and limitations of electron holography for the studies of electric fields in other GaN structures. PMID:11108051

  2. A Study of Piezoelectric Field Related Strain Difference in GaN-Based Blue Light-Emitting Diodes Grown on Silicon(111) and Sapphire Substrates.

    PubMed

    Jeon, K S; Sung, J H; Lee, M W; Song, H Y; Shin, H Y; Park, W H; Jang, Y I; Kang, M G; Choi, Y H; Lee, J S; Ko, D H; Ryu, H Y

    2016-02-01

    We investigate the strain difference in InGaN/GaN multiple quantum wells of blue light-emitting diode (LED) structures grown on silicon(1 11) and c-plane sapphire substrates by comparing the strength of piezo-electric fields in MQWs. The piezo-electric fields for two LED samples grown on silicon and sapphire substrates are measured by using the reverse-bias electro-reflectance (ER) spectroscopy. The flat-band voltage is obtained by measuring the applied reverse bias voltage that induces a phase inversion in the ER spectra, which is used to calculate the strength of piezo-electric fields. The piezo-electric field is determined to be 1.36 MV/cm for the LED on silicon substrate and 1.83 MV/cm for the LED on sapphire substrate. The ER measurement results indicate that the strain-induced piezo-electric field is greatly reduced in the LED grown on silicon substrates consistent with previous strain measurement results by micro-Raman spectroscopy and high-resolution transmission electron microscopy. PMID:27433673

  3. Piezoelectric valve

    SciTech Connect

    Petrenko, Serhiy Fedorovich

    2013-01-15

    A motorized valve has a housing having an inlet and an outlet to be connected to a pipeline, a saddle connected with the housing, a turn plug having a rod, the turn plug cooperating with the saddle, and a drive for turning the valve body and formed as a piezoelectric drive, the piezoelectric drive including a piezoelectric generator of radially directed standing acoustic waves, which is connected with the housing and is connectable with a pulse current source, and a rotor operatively connected with the piezoelectric generator and kinematically connected with the rod of the turn plug so as to turn the turn plug when the rotor is actuated by the piezoelectric generator.

  4. Measurement of the internal stress and electric field in a resonating piezoelectric transformer for high-voltage applications using the electro-optic and photoelastic effects.

    PubMed

    VanGordon, James A; Kovaleski, Scott D; Norgard, Peter; Gall, Brady B; Dale, Gregory E

    2014-02-01

    The high output voltages from piezoelectric transformers are currently being used to accelerate charged particle beams for x-ray and neutron production. Traditional methods of characterizing piezoelectric transformers (PTs) using electrical probes can decrease the voltage transformation ratio of the device due to the introduction of load impedances on the order of hundreds of kiloohms to hundreds of megaohms. Consequently, an optical diagnostic was developed that used the photoelastic and electro-optic effects present in piezoelectric materials that are transparent to a given optical wavelength to determine the internal stress and electric field. The combined effects of the piezoelectric, photoelastic, and electro-optic effects result in a time-dependent change the refractive indices of the material and produce an artificially induced, time-dependent birefringence in the piezoelectric material. This induced time-dependent birefringence results in a change in the relative phase difference between the ordinary and extraordinary wave components of a helium-neon laser beam. The change in phase difference between the wave components was measured using a set of linear polarizers. The measured change in phase difference was used to calculate the stress and electric field based on the nonlinear optical properties, the piezoelectric constitutive equations, and the boundary conditions of the PT. Maximum stresses of approximately 10 MPa and electric fields of as high as 6 kV/cm were measured with the optical diagnostic. Measured results were compared to results from both a simple one-dimensional (1D) model of the piezoelectric transformer and a three-dimensional (3D) finite element model. Measured stresses and electric fields along the length of an operating length-extensional PT for two different electrical loads were within at least 50 % of 3D finite element simulated results. Additionally, the 3D finite element results were more accurate than the results from the 1D model

  5. Measurement of the internal stress and electric field in a resonating piezoelectric transformer for high-voltage applications using the electro-optic and photoelastic effects

    SciTech Connect

    VanGordon, James A.; Kovaleski, Scott D. Norgard, Peter; Gall, Brady B.; Dale, Gregory E.

    2014-02-15

    The high output voltages from piezoelectric transformers are currently being used to accelerate charged particle beams for x-ray and neutron production. Traditional methods of characterizing piezoelectric transformers (PTs) using electrical probes can decrease the voltage transformation ratio of the device due to the introduction of load impedances on the order of hundreds of kiloohms to hundreds of megaohms. Consequently, an optical diagnostic was developed that used the photoelastic and electro-optic effects present in piezoelectric materials that are transparent to a given optical wavelength to determine the internal stress and electric field. The combined effects of the piezoelectric, photoelastic, and electro-optic effects result in a time-dependent change the refractive indices of the material and produce an artificially induced, time-dependent birefringence in the piezoelectric material. This induced time-dependent birefringence results in a change in the relative phase difference between the ordinary and extraordinary wave components of a helium-neon laser beam. The change in phase difference between the wave components was measured using a set of linear polarizers. The measured change in phase difference was used to calculate the stress and electric field based on the nonlinear optical properties, the piezoelectric constitutive equations, and the boundary conditions of the PT. Maximum stresses of approximately 10 MPa and electric fields of as high as 6 kV/cm were measured with the optical diagnostic. Measured results were compared to results from both a simple one-dimensional (1D) model of the piezoelectric transformer and a three-dimensional (3D) finite element model. Measured stresses and electric fields along the length of an operating length-extensional PT for two different electrical loads were within at least 50 % of 3D finite element simulated results. Additionally, the 3D finite element results were more accurate than the results from the 1D model

  6. Piezoelectric cantilever sensors

    NASA Technical Reports Server (NTRS)

    Shih, Wan Y. (Inventor); Shih, Wei-Heng (Inventor); Shen, Zuyan (Inventor)

    2008-01-01

    A piezoelectric cantilever with a non-piezoelectric, or piezoelectric tip useful as mass and viscosity sensors. The change in the cantilever mass can be accurately quantified by monitoring a resonance frequency shift of the cantilever. For bio-detection, antibodies or other specific receptors of target antigens may be immobilized on the cantilever surface, preferably on the non-piezoelectric tip. For chemical detection, high surface-area selective absorbent materials are coated on the cantilever tip. Binding of the target antigens or analytes to the cantilever surface increases the cantilever mass. Detection of target antigens or analytes is achieved by monitoring the cantilever's resonance frequency and determining the resonance frequency shift that is due to the mass of the adsorbed target antigens on the cantilever surface. The use of a piezoelectric unimorph cantilever allows both electrical actuation and electrical sensing. Incorporating a non-piezoelectric tip (14) enhances the sensitivity of the sensor. In addition, the piezoelectric cantilever can withstand damping in highly viscous liquids and can be used as a viscosity sensor in wide viscosity range.

  7. Enhanced optical, dielectric and piezoelectric behavior in dye doped zinc tris-thiourea sulphate (ZTS) single crystals

    NASA Astrophysics Data System (ADS)

    Bhandari, Sonia; Sinha, Nidhi; Ray, Geeta; Kumar, Binay

    2014-01-01

    Pure and 0.1 mol% amaranth dye doped zinc tris-thiourea sulphate (ZTS) crystals were grown by slow evaporation technique. Orthorhombic structures with changed morphology were observed. Various functional groups present were identified by FTIR and Raman analysis. UV-Vis spectra shows wide transmittance and increased optical band gap from 4.54 to 4.59 eV, with lower extinction coefficient in doped case. In photoluminescence measurement, an intense peak at 416 nm was observed for doped ZTS. Dielectric constant value increases from 3.28 to 9.40 at 1 kHz with doping. Piezoelectric coefficient d33 is also enhanced from 0.24 to 3 pC/N.

  8. Enhanced switching characteristics and piezoelectric response in epitaxial BiFeO3-TbMnO3 thin films

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wang, Yiping; Nie, Pengxiao; Hu, Querui; Yang, Ying; Yuan, Guoliang

    2015-06-01

    High-quality (001) oriented epitaxial 0.9BiFeO3-0.1TbMnO3 thin films were grown on La2/3Sr1/3MnO3 and SrRuO3 buffered SrTiO3 substrate using pulsed laser deposition. X-ray diffraction showed that the films are single-phase perovskite without secondary impurity phases. Domain structures and upward ferroelectric self-poling phenomenon were distinctly observed in both films with compressive epitaxial strains. Furthermore, the upward self-poling disappears in polycrystalline 0.9BiFeO3-0.1TbMnO3 thin film on Pt/TiO2/SiO2/Si substrates. Through local switching spectroscopy measurements, the evidence of enhanced ferroelectric switching and piezoelectric response characteristics have been provided.

  9. Active Piezoelectric Diaphragms

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G.; Effinger, Robert T., IV; Aranda, Isaiah, Jr.; Copeland, Ben M.; Covington, Ed W., III

    2002-01-01

    Several active piezoelectric diaphragms were fabricated by placing unelectroded piezoelectric disks between copper clad films patterned with Inter-Circulating Electrodes "ICE". When a voltage potential is applied to the electrodes, the result is radially distributed electric field that mechanically strains the piezo-ceramic along the Z-axis (perpendicular to the applied electric field), rather than the expected in-plane (XY-axis) direction. Unlike other out of plane piezoelectric actuators, which are benders, these Radial Field Diaphragms (RFDs) strain concentrically yet afford high displacements while maintaining a constant circumference. This paper covers the fabrication and characterization of these diaphragms as a function of poling field strength, ceramic diameter and line spacing, as well as the surface topography, the resulting strain field and displacement as a function of applied voltage ranging from DC to 10 Hz.

  10. Experimental study of the flow field induced by a resonating piezoelectric flapping wing

    NASA Astrophysics Data System (ADS)

    Bidakhvidi, M. Ahmadi; Shirzadeh, R.; Steenackers, G.; Vanlanduit, S.

    2013-11-01

    Flexible plate structures with integrated piezoelectric patches offer interesting possibilities when considered as actuation mechanisms for energy harvesting devices, cooling devices and propulsion devices of micro-aerial vehicles. Most of the studies reported in literature are based on the assumption of a 2D aerodynamic flow. However, the flow behind a finite span wing is significantly more complex than that of an infinite span wing. In order to corroborate this statement, the present experimental study contains high-speed particle image velocimetry measurements performed on a piezoelectric finite span wing oscillating in air, at 84.8 Hz. The paper focuses on the situation of low Keulegan-Carpenter numbers (KC < 3). The dimensionless KC number describes the relative importance of the drag forces over inertia forces for objects that oscillate in a fluid flow at rest. The evolution of the unsteady vortex structures near the plate is characterized for different conditions. This allows a better understanding of the unsteady aerodynamics of flapping flight. The accomplished experimental data analysis has shown that the flow phenomena are strongly dependent on the KC values.

  11. Band structure engineering via piezoelectric fields in strained anisotropic CdSe/CdS nanocrystals

    PubMed Central

    Christodoulou, Sotirios; Rajadell, Fernando; Casu, Alberto; Vaccaro, Gianfranco; Grim, Joel Q.; Genovese, Alessandro; Manna, Liberato; Climente, Juan I.; Meinardi, Francesco; Rainò, Gabriele; Stöferle, Thilo; Mahrt, Rainer F.; Planelles, Josep; Brovelli, Sergio; Moreels, Iwan

    2015-01-01

    Strain in colloidal heteronanocrystals with non-centrosymmetric lattices presents a unique opportunity for controlling optoelectronic properties and adds a new degree of freedom to existing wavefunction engineering and doping paradigms. We synthesized wurtzite CdSe nanorods embedded in a thick CdS shell, hereby exploiting the large lattice mismatch between the two domains to generate a compressive strain of the CdSe core and a strong piezoelectric potential along its c-axis. Efficient charge separation results in an indirect ground-state transition with a lifetime of several microseconds, almost one order of magnitude longer than any other CdSe/CdS nanocrystal. Higher excited states recombine radiatively in the nanosecond time range, due to increasingly overlapping excited-state orbitals. k̇p calculations confirm the importance of the anisotropic shape and crystal structure in the buildup of the piezoelectric potential. Strain engineering thus presents an efficient approach to highly tunable single- and multiexciton interactions, driven by a dedicated core/shell nanocrystal design. PMID:26219691

  12. Sodium potassium niobate-based lead-free piezoelectric ceramics: Bulk and freestanding thick films

    NASA Astrophysics Data System (ADS)

    Li, Huidong

    2008-10-01

    Due to the toxicity of lead, there is an urgent need to develop lead-free alternatives to replace the currently dominant lead-based piezoelectrics such as lead zirconate titanate (PZT). (Na0.5K0.5)NbO 3 (NKN)-based piezoelectrics are promising because of their relatively high Curie temperatures and piezoelectric coefficients among the non-lead piezoelectrics. However, it is difficult to sinter. In this thesis study, a colloidal coating method was developed to improve the sintering of NKN. With this coating method, NKN with good piezoelectric properties can be produced without cold isostatic pressing. To improve the piezoelectric performance of NKN, we performed antimony (Sb) doping studies for a NKN-LN solid solution using the coating approach. It was found that Sb doping greatly improved the density and the piezoelectric properties of the NKN-LiNbO3 solid solution and optimized performance was found at 4%Sb. The reasons for the improved piezoelectric properties and density were discussed. Recently, a large enhancement in the piezoelectric performance under electric fields was discovered in polycrystalline lead magnesium niobate-lead titanate (PMN-PT) when the material was made into freestanding film geometry. Here, for the first time, we show a similar effect was also observed in a lead-free system, (Na0.5K0.5)0.945Li0.055Nb 0.96Sb0.04O3. At 6-8 kV/cm, a giant --d 31 value of 1700 pm/V was achieved, 20 times higher than the value of bulk counterpart. The enhancement was found to result from the ease of domain motion imparted by the freestanding film geometry, and the magnitude of the enhancement can be affected by the electrode layer (a non-piezoelectric) thickness. The freestanding geometry provides a new approach to greatly improve the piezoelectric performance of the current lead-free systems.

  13. Piezoelectric wave motor

    DOEpatents

    Yerganian, Simon Scott

    2001-07-17

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  14. Piezoelectric wave motor

    DOEpatents

    Yerganian, Simon Scott

    2003-02-11

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase-shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in the direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  15. Flow-enhanced detection of biological pathogens using piezoelectric microcantilever arrays

    NASA Astrophysics Data System (ADS)

    McGovern, John-Paul

    The piezoelectric microcantilever sensor (PEMS) is an all-electrical resonant oscillator biosensor system capable of in-situ and label-free detection. With various insulation and antibody immobilization schemes, it is well-suited for sensitive, specific pathogen detection applications with limits of detection on the order of relevant lethal infectious dosages. Initial PEMS implementation demonstrated biodetection of just 36 total Bacillus anthracis (BA) spores in 0.8 ml of liquid. However, concerns of cross reactivity between the antibody and closely related species of the target pathogens casts doubts on the usefulness of antibody-based assays in terms of the specificity of detection. The goal of this thesis is to develop the PEMS as a method for in-situ, label-free, pathogen detection with better limits of detection than current antibody-based methods as well as high sensitivity and specificity, by exploring PEMS array detection and engineered fluidics specificity augmentation. Experimentation in an 8 mm wide channel revealed that optimal discriminatory detection of BA spores among close cousins (B. cereus (BC), thuringiensis (BT) and subtilis (BS)) was achieved at 14 ml/min. At this flow rate, the detection signals of BC, BT, and BS all fell to within the noise level of the sensor, while that of BA was still nearly optimal. Thus, it was deduced that the interaction forces of BC, BT, and BS were 100 pN. Implementation of array sensing systems enabled real-time, redundant biosensor assays and concurrent background determination by a reference PEMS. Consequentially, successful real-time detection of 10 BA spores/ml was achieved, and single Cryptosporidium parvum (CP) oocyst detection at 0.1 oocysts/ml was accomplished with step-wise resonance frequency shifts of 290 Hz and signal to noise ratios (SNR) greater than 5. In a 19 mm wide flow channel, optimal single oocyst detection efficiency was achieved at 2 ml/min. Optimal discrimination of CP from C. muris (CM

  16. Dual-enhancement of ferro-/piezoelectric and photoluminescent performance in Pr{sup 3+} doped (K{sub 0.5}Na{sub 0.5})NbO{sub 3} lead-free ceramics

    SciTech Connect

    Wei, Yongbin; Jia, Yanmin E-mail: ymjia@zjnu.edu.cn; Wu, Jiang; Shen, Yichao; Wu, Zheng E-mail: ymjia@zjnu.edu.cn; Luo, Haosu

    2014-07-28

    A mutual enhancement action between the ferro-/piezoelectric polarization and the photoluminescent performance of rare earth Pr{sup 3+} doped (K{sub 0.5}Na{sub 0.5})NbO{sub 3} (KNN) lead-free ceramics is reported. After Pr{sup 3+} doping, the KNN ceramics exhibit the maximum enhancement of ∼1.2 times in the ferroelectric remanent polarization strength and ∼1.25 times in the piezoelectric coefficient d{sub 33}, respectively. Furthermore, after undergoing a ferro-/piezoelectric polarization treatment, the maximum enhancement of ∼1.3 times in photoluminescence (PL) was observed in the poled 0.3% Pr{sup 3+} doped sample. After the trivalent Pr{sup 3+} unequivalently substituting the univalent (K{sub 0.5}Na{sub 0.5}){sup +}, A-sites ionic vacancies will occur to maintain charge neutrality, which may reduce the inner stress and ease the domain wall motions, yielding to the enhancement in ferro-/piezoelectric performance. The polarization-induced enhancement in PL is attributed to the decrease of crystal symmetry abound the Pr{sup 3+} ions after polarization. The dual-enhancement of the ferro-/piezoelectric and photoluminescent performance makes the Pr{sup 3+} doped KNN ceramic hopeful for piezoelectric/luminescent multifunctional devices.

  17. Enhancement of the performance of a hybrid nonlinear vibration energy harvester based on piezoelectric and electromagnetic transductions

    NASA Astrophysics Data System (ADS)

    Mahmoudi, S.; Kacem, N.; Bouhaddi, N.

    2014-07-01

    A multiphysics model of a hybrid piezoelectric-electromagnetic vibration energy harvester (VEH), including the main sources of nonlinearities, is developed. The continuum problem is derived on the basis of the extended Hamilton principle, and the modal Galerkin decomposition method is used in order to obtain a reduced-order model consisting of a nonlinear Duffing equation of motion coupled with two transduction equations. The resulting system is solved analytically using the method of multiple time scales and numerically by means of the harmonic balance method coupled with the asymptotic numerical continuation technique. Closed-form expressions for the moving magnet critical amplitude and the critical load resistance are provided in order to allow evaluation of the linear dynamic range of the proposed device. Several numerical simulations have been performed to highlight the performance of the hybrid VEH. In particular, the power density and the frequency bandwidth can be boosted, by up to 60% and 29% respectively, compared to those for a VEH with pure magnetic levitation thanks to the nonlinear elastic guidance. Moreover, the hybrid transduction permits enhancement of the power density by up to 84%.

  18. Piezoelectric and pyroelectric polymers

    SciTech Connect

    Davis, G.T.

    1995-12-01

    Many polar polymers can be made to exhibit piezoelectric and pyroelectric properties by permanently aligning their dipoles in an electric field. The largest response is found in semi-crystalline polymers which exhibit a polar crystal phase which is amenable to reorientation in an applied electric field. The properties of poly(vinylidenefluoride), copolymers of vinyl idenefluoride and trifluoroethylene, nylon 7 and nylon 11 are compared. Polarization distribution across the thickness of such polymer films are discussed and novel techniques for the construction of piezoelectric bimorphs from the above copolymers are presented.

  19. Piezoelectric Motors and Transformers

    NASA Astrophysics Data System (ADS)

    Uchino, K.

    Piezoelectric ceramics forms a new field between electronic and structural ceramics [1-4]. Application fields are classified into three categories: positioners, motors, and vibration suppressors. From the market research result for 80 Japanese component industries in 1992, tiny motors in the range of 5-8 mm are required in large numbers for office and portable equipment; the conventional electromagnetic (EM) motors are rather difficult to produce in this size with sufficient energy efficiency, while Silicon MEMS actuators are too small to be used in practice. Piezoelectric ultrasonic motors whose efficiency is insensitive to size are superior in the millimeter motor area. The manufacturing precision of optical instruments such as lasers and cameras, and the positioning accuracy for fabricating semiconductor chips are of the order of 0.1μm which is much smaller than the backlash of the EM motors. Vibration suppression in space structures and military vehicles also require compact but mighty piezoelectric actuators.

  20. Piezoelectric Film.

    ERIC Educational Resources Information Center

    Garrison, Steve

    1992-01-01

    Presents activities that utilize piezoelectric film to familiarize students with fundamental principles of electricity. Describes classroom projects involving chemical sensors, microbalances, microphones, switches, infrared sensors, and power generation. (MDH)

  1. Enhanced performance of wearable piezoelectric nanogenerator fabricated by two-step hydrothermal process

    NASA Astrophysics Data System (ADS)

    Qiu, Yu; Lei, Jixue; Yang, Dechao; Yin, Bing; Zhang, Heqiu; Bian, Jiming; Ji, Jiuyu; Liu, Yanhong; Zhao, Yu; Luo, Yingmin; Hu, Lizhong

    2014-03-01

    A simple two-step hydrothermal process was proposed for enhancing the performance of the nanogenerator on flexible and wearable terylene-fabric substrate. With this method, a significant enhancement in output voltage of the nanogenerator from ˜10 mV to 7 V was achieved, comparing with the one by conventional one-step process. In addition, another advantage with the devices synthesized by two-step hydrothermal process was that their output voltages are only sensitive to strain rather than strain rate. The devices with a high output voltage have the ability to power common electric devices and will have important applications in flexible electronics and wearable devices.

  2. Resonant magnetoelectric coupling in trilayers of ferromagnetic alloys and piezoelectric lead zirconate titanate: The influence of bias magnetic field

    NASA Astrophysics Data System (ADS)

    Srinivasan, G.; de Vreugd, C. P.; Laletin, V. M.; Paddubnaya, N.; Bichurin, M. I.; Petrov, V. M.; Filippov, D. A.

    2005-05-01

    We present the first data and theory for the bias magnetic field dependence of magnetoelectric coupling in the electromechanical resonance (EMR) region for ferromagnetic-piezoelectric heterostructures. Trilayers of Permendur, a Co-Fe-V alloy, and lead zirconate titanate were studied. Measurements of the magnetoelectric (ME) voltage coefficient αE indicate a strong ME coupling in the low-frequency range and a giant ME effect due to EMR at 200-300kHz for radial modes and at ˜2.7MHz for thickness modes. Data were obtained for the bias field H dependence of two key parameters, the EMR frequency fr and the ME coefficient αE,R at resonance. With increasing H , an increase in fr and a rapid rise and fall in αE,R are measured. In our model we consider two mechanisms for the magnetic field influence on ME interactions: (i) a shift in the EMR frequency due to changes in compliance coefficients ( ΔE effect) and (ii) variation in the piezomagnetic coefficient that manifests as a change in αE,R . Theoretical profiles of αE vs frequency and estimates of frequency shift based on the ΔE effect are in excellent agreement with the data.

  3. Q-factor enhancement for self-actuated self-sensing piezoelectric MEMS resonators applying a lock-in driven feedback loop

    NASA Astrophysics Data System (ADS)

    Kucera, M.; Manzaneque, T.; Sánchez-Rojas, J. L.; Bittner, A.; Schmid, U.

    2013-08-01

    This paper presents a robust Q-control approach based on an all-electrical feedback loop enhancing the quality factor of a resonant microstructure by using the self-sensing capability of a piezoelectric thin film actuator made of aluminium nitride. A lock-in amplifier is used to extract the feedback signal which is proportional to the piezoelectric current. The measured real part is used to replace the originally low-quality and noisy feedback signal to modulate the driving voltage of the piezoelectric thin-film actuator. Since the lock-in amplifier reduces the noise in the feedback signal substantially, the proposed enhancement loop avoids the disadvantage of a constant signal-to-noise ratio, which an analogue feedback circuit usually suffers from. The quality factor was increased from the intrinsic value of 1766 to a maximum of 34 840 in air. These promising results facilitate precise measurements for self-actuated and self-sensing MEMS cantilevers even when operated in static viscous media.

  4. Digital enhancement of flow field images

    NASA Technical Reports Server (NTRS)

    Kudlinski, Robert A.; Park, Stephen K.

    1988-01-01

    Most photographs of experimentally generated fluid flow fields have inherently poor photographic quality, specifically low contrast. Thus, there is a need to establish a process for quickly and accurately enhancing these photographs to provide improved versions for physical interpretation, analysis, and publication. A sequence of digital image processing techniques which have been demonstrated to effectively enhance such photographs is described.

  5. Enhanced performance of wearable piezoelectric nanogenerator fabricated by two-step hydrothermal process

    SciTech Connect

    Qiu, Yu; Lei, Jixue; Yin, Bing; Zhang, Heqiu; Ji, Jiuyu; Hu, Lizhong; Bian, Jiming; Liu, Yanhong; Zhao, Yu; Luo, Yingmin

    2014-03-17

    A simple two-step hydrothermal process was proposed for enhancing the performance of the nanogenerator on flexible and wearable terylene-fabric substrate. With this method, a significant enhancement in output voltage of the nanogenerator from ∼10 mV to 7 V was achieved, comparing with the one by conventional one-step process. In addition, another advantage with the devices synthesized by two-step hydrothermal process was that their output voltages are only sensitive to strain rather than strain rate. The devices with a high output voltage have the ability to power common electric devices and will have important applications in flexible electronics and wearable devices.

  6. Property measurements on piezoelectric single crystals and the implications for transducer design

    NASA Astrophysics Data System (ADS)

    Powers, James M.; Viehland, Dwight D.; Ewart, Lynn

    2001-07-01

    Piezoelectric single crystals of lead magnesium niobate in solid solution with lead titanate have generated great interest in the Navy sonar community because of the potential they offer for enhanced transducer performance. Two material properties, in particular, make the piezoelectric single crystals unique; their high 33-mode coupling factor and their low short circuit Young's modulus. Measurements of the large signal electromechanical and mechanical properties on single crystal samples are presented in this paper. These measurements elucidate the behavior of piezoelectric single crystals, including the effect of bias field on the Young's modulus. The ramifications of the measured material properties on transducer design are also discussed.

  7. Treatment with orthophosphoric acid enhances the thermal stability of the piezoelectricity in low-density polyethylene ferroelectrets

    NASA Astrophysics Data System (ADS)

    Rychkov, Dmitry; Alberto Pisani Altafim, Ruy; Qiu, Xunlin; Gerhard, Reimund

    2012-06-01

    Ferroelectrets have been fabricated from low-density polyethylene (LDPE) films by means of a template-based lamination. The temperature dependence of the piezoelectric d33 coefficient has been investigated. It was found that low-density polyethylene ferroelectrets have rather low thermal stability with the piezoelectric coefficient decaying almost to zero already at 100 °C. This behavior is attributed to the poor electret properties of the polyethylene films used for the fabrication of the ferroelectrets. In order to improve the charge trapping and the thermal stability of electret charge and piezoelectricity, LDPE ferroelectrets were treated with orthophosphoric acid. The treatment resulted in considerable improvements of the charge stability in LDPE films and in ferroelectret systems made from them. For example, the charge and piezoelectric-coefficient decay curves shifted to higher temperatures by 60 K and 40 K, respectively. It is shown that the decay of the piezoelectric coefficient in LDPE ferroelectrets is governed by the relaxation of less stable positive charges. The treatment also leads to noticeable changes in the chemical composition of the LDPE surface. Infrared spectroscopy reveals absorption bands attributed to phosphorus-containing structures, while scanning electron microscopy shows new island-like structures, 50-200 nm in diameter, on the modified surface.

  8. Enhanced piezoelectric and ferroelectric properties in the BaZrO3 substituted BiFeO3-PbTiO3

    NASA Astrophysics Data System (ADS)

    Fan, Longlong; Chen, Jun; Li, Sha; Kang, Huajun; Liu, Laijun; Fang, Liang; Xing, Xianran

    2013-01-01

    BiFeO3-PbTiO3 (BF-PT) compounds possess very high Curie temperature and tetragonality compared to other PbTiO3-based piezoceramics. The BaZrO3 (BZ), with weakly ferroelectric active cations, was introduced into the BiFeO3-PbTiO3 to reduce the tetragonality (c/a) and improve the piezoelectric property. For the (0.8-x)BiFeO3-0.2BaZrO3-xPbTiO3, the BaZrO3 substitution can effectively decrease the tetragonality (c/a) from 1.18 to 1.02 for those compositions near the morphotropic phase boundary. The piezoelectric property of BiFeO3-PbTiO3 can be much enhanced with an optimal piezoelectric constant ˜270 pC/N with a reduced TC of 270 °C. Both the temperature dependent dielectric properties and polarization loops verified the existence of antiferroelectric relaxor, which was not observed in previous reported BiFeO3-PbTiO3 based materials.

  9. A new global approach using a network of piezoelectric elements and energy redistribution for enhanced vibration damping of smart structure

    NASA Astrophysics Data System (ADS)

    Wu, Dan; Guyomar, Daniel; Richard, Claude

    2013-04-01

    A new global approach for improved vibration damping of smart structure, based on global energy redistribution by means of a network of piezoelectric elements is proposed. It is basically using semi-active Synchronized Switch Damping technique. SSD technique relies on a cumulative build-up of the voltage resulting from the continuous switching and it was shown that the performance is strongly related to this voltage. The increase of the piezoelectric voltage results in improvement of the damping performance. External voltage sources or improved switching sequences were previously designed to increase this voltage in the case of single piezoelectric element structure configurations. This paper deals with extended structure with many embedded piezoelectric elements. The proposed strategy consist of using an electric network made with non-linear component and switches in order to set up and control a low-loss energy transfer from source piezoelements extracting the vibration energy of the structure and oriented toward a given piezoelement in order to increase its operative energy for improving a given mode damping. This paper presents simulation of a clamped plate with four piezoelectric elements implemented in the Matlab/SimulinkTM environment and SimscapeTM library. The various simulation cases show the relationship between the damping performance on a given targeted mode and the established power flow. SSDD and SSDT are two proposed original networks. Performances are compared to the SSDI baseline. A damping increase of 18dB can be obtained even with a weakly coupled piezoelectric element in the multi-sine excitation case. This result proves the importance of new global non-linear multi-actuator strategies for improved vibration damping of extended smart structure.

  10. An enhanced primary shock calibration procedure to reduce the zero shift effect of piezoelectric transducers by using a virtual amplifier

    NASA Astrophysics Data System (ADS)

    Nozato, Hideaki; Ota, Akihiro; Kokuyama, Wataru; Volkers, Henrik; Bruns, Thomas

    2016-09-01

    The low-frequency response of a charge amplifier induces an accelerometer (a combination of a piezoelectric transducer and a charge amplifier) output voltage with zero shift. Hence, a virtual amplifier with same input–output characteristics as the charge amplifier was designed to reduce the zero shift effect. The charge shock sensitivities of a piezoelectric transducer were evaluated by applying the input acceleration to the virtual amplifier. The results of the study indicated that the charge shock sensitivities were comparable to the vibration calibration results.

  11. Nonlinear dynamic response and active control of fiber metal laminated plates with piezoelectric actuators and sensors in unsteady temperature field

    NASA Astrophysics Data System (ADS)

    Shao, Xuefei; Fu, Yiming; Chen, Yang

    2015-05-01

    Based on the higher order shear deformation theory and the geometric nonlinear theory, the nonlinear motion equations, to which the effects of the positive and negative piezoelectric and the thermal are introduced by piezoelectric fiber metal laminated (FML) plates in an unsteady temperature, are established by Hamilton’s variational principle. Then, the control algorithm of negative-velocity feedback is applied to realize the vibration control of the piezoelectric FML plates. During the solving process, firstly, the formal functions of the displacements that fulfilled the boundary conditions are proposed. Then, heat conduction equations and nonlinear differential equations are dealt with using the differential quadrature (DQ) and Galerkin methods, respectively. On the basis of the previous processing, the time domain is dispersed by the Newmark-β method. Finally, the whole problem can be investigated by the iterative method. In the numerical examples, the influence of the applied voltage, the temperature loading and geometric parameters on the nonlinear dynamic response of the piezoelectric FML plates is analyzed. Meanwhile, the effect of feedback control gain and the position of the piezoelectric layer, the initial deflection and the external temperature on the active control effect of the piezoelectric layers has been studied. The model development and the research results can serve as a basis for nonlinear vibration analysis of the FML structures.

  12. Enhanced mathematical modeling of the displacement amplification ratio for piezoelectric compliant mechanisms

    NASA Astrophysics Data System (ADS)

    Ling, Mingxiang; Cao, Junyi; Zeng, Minghua; Lin, Jing; Inman, Daniel J.

    2016-07-01

    Piezo-actuated, flexure hinge-based compliant mechanisms have been frequently used in precision engineering in the last few decades. There have been a considerable number of publications on modeling the displacement amplification behavior of rhombus-type and bridge-type compliant mechanisms. However, due to an unclear geometric approximation and mechanical assumption between these two flexures, it is very difficult to obtain an exact description of the kinematic performance using previous analytical models, especially when the designed angle of the compliant mechanisms is small. Therefore, enhanced theoretical models of the displacement amplification ratio for rhombus-type and bridge-type compliant mechanisms are proposed to improve the prediction accuracy based on the distinct force analysis between these two flexures. The energy conservation law and the elastic beam theory are employed for modeling with consideration of the translational and rotational stiffness. Theoretical and finite elemental results show that the prediction errors of the displacement amplification ratio will be enlarged if the bridge-type flexure is simplified as a rhombic structure to perform mechanical modeling. More importantly, the proposed models exhibit better performance than the previous models, which is further verified by experiments.

  13. Piezoelectric Nanoindentation

    SciTech Connect

    Rar, Andrei; Pharr, George Mathews; Oliver, Warren C.; Karapetian, Edgar; Kalinin, Sergei V

    2006-01-01

    Piezoelectric nanoindentation (PNI) has been developed to quantitatively address electromechanical coupling and pressure-induced dynamic phenomena in ferroelectric materials on the nanoscale. In PNI, an oscillating voltage is applied between the back side of the sample and the indenter tip, and the first harmonic of bias-induced surface displacement at the area of indenter contact is detected. PNI is implemented using a standard nanoindentation system equipped with a continuous stiffness measurement system. The piezoresponse of polycrystalline lead zirconate titanate (PZT) and BaTiO{sub 3} piezoceramics was studied during a standard nanoindentation experiment. For PZT, the response was found to be load independent, in agreement with theoretical predictions. In polycrystalline barium titanate, a load dependence of the piezoresponse was observed. The potential of piezoelectric nanoindentation for studies of phase transitions and local structure-property relations in piezoelectric materials is discussed.

  14. 1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour- mode MEMS resonators.

    PubMed

    Zuo, Chengjie; Van der Spiegel, Jan; Piazza, Gianluca

    2010-01-01

    This paper reports on the first demonstration of a 1.05-GHz microelectromechanical (MEMS) oscillator based on lateral-field-excited (LFE) piezoelectric AlN contourmode resonators. The oscillator shows a phase noise level of -81 dBc/Hz at 1-kHz offset frequency and a phase noise floor of -146 dBc/Hz, which satisfies the global system for mobile communications (GSM) requirements for ultra-high frequency (UHF) local oscillators (LO). The circuit was fabricated in the AMI semiconductor (AMIS) 0.5-microm complementary metaloxide- semiconductor (CMOS) process, with the oscillator core consuming only 3.5 mW DC power. The device overall performance has the best figure-of-merit (FoM) when compared with other gigahertz oscillators that are based on film bulk acoustic resonator (FBAR), surface acoustic wave (SAW), and CMOS on-chip inductor and capacitor (CMOS LC) technologies. A simple 2-mask process was used to fabricate the LFE AlN resonators operating between 843 MHz and 1.64 GHz with simultaneously high Q (up to 2,200) and kt 2 (up to 1.2%). This process further relaxes manufacturing tolerances and improves yield. All these advantages make these devices suitable for post-CMOS integrated on-chip direct gigahertz frequency synthesis in reconfigurable multiband wireless communications. PMID:20040430

  15. Topology optimization of piezoelectric nanostructures

    NASA Astrophysics Data System (ADS)

    Nanthakumar, S. S.; Lahmer, Tom; Zhuang, Xiaoying; Park, Harold S.; Rabczuk, Timon

    2016-09-01

    We present an extended finite element formulation for piezoelectric nanobeams and nanoplates that is coupled with topology optimization to study the energy harvesting potential of piezoelectric nanostructures. The finite element model for the nanoplates is based on the Kirchoff plate model, with a linear through the thickness distribution of electric potential. Based on the topology optimization, the largest enhancements in energy harvesting are found for closed circuit boundary conditions, though significant gains are also found for open circuit boundary conditions. Most interestingly, our results demonstrate the competition between surface elasticity, which reduces the energy conversion efficiency, and surface piezoelectricity, which enhances the energy conversion efficiency, in governing the energy harvesting potential of piezoelectric nanostructures.

  16. Field Enhancement using Noble Metal Structures

    NASA Astrophysics Data System (ADS)

    Liu, Benliang

    Resonance may be one of the most fundamental rules of nature. Electromagnetic resonance at nanometer scale could produce a giant field enhancement at optical frequency, providing a way to measure and control the process of atoms and molecules at single molecule scale. For example, the giant field enhancement would provide single molecule sensitivity for Raman scattering, which provides unique tools in measuring the quantity in extremely low concentration. In addition, light-emitting diodes could have high brightness but low input power that would be revolutionary in the optoelectronic industry. Although light enhancement is promising in several key technology areas, there are several challenges remain to be tackled. In particular, since the field enhancement is so strongly geometry dependent that slight modification of the geometry can lead to large variations in the outcome, a thorough understanding in how the geometry of the structure affects the field enhancement and creating proper methods to fabricate these structures reproducibly is of most importance. This thesis is devoted to design, fabrication and characterization of field enhancement generated on the surface of noble metals such as silver or gold with 1D structure. The s-polarized field enhancement arising from one-dimensional metal gratings is designed and optimized by using Rigorous Coupling Wave Analysis (RCWA). After optimization, the strongest enhancement factor is found to be 9.7 for 514nm wavelength light. The theoretical results arc confirmed by angle-dependent reflectivity measurements and the experimental results are found to support the theory. A novel single slit structure employing surface plasmon polaritons (SPPs) for enhancing the electric field is studied. SPPs are first generated on a 50 nm thick metal film using attenuated total reflection coupling, and they are subsequently coupled to the cavity mode induced by the single slit. As a result, the field enhancement is found at least 3

  17. Effect of poling process on piezoelectric properties of BCZT - 0.08 wt.% CeO2 lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Chandrakala, E.; Praveen, J. Paul; Das, Dibakar

    2016-05-01

    The properties of lead free piezoelectric materials can be tuned by suitable doping in the A and B sites of the perovskite structure. In the present study, cerium has been identified as a dopant to investigate the piezoelectric properties of lead-free BCZT system. BCZT - 0.08 wt.%CeO2 lead-free ceramics have been synthesized using sol-gel technique and the effects of CeO2 dopant on their phase structure and piezoelectric properties were investigated systematically. Poling conditions, such as temperature, electric field, and poling time have been optimized to get enhanced piezoelectric response. The optimized poling conditions (50°C, 3Ec and 30min) resulted in high piezoelectric charge coefficient d33 ~ 670pC/N, high electromechanical coupling coefficient kp ~ 60% and piezoelectric voltage coefficient g33 ~ 14 mV.m/N for BCZT - 0.08wt.% CeO2 ceramics.

  18. Elastic properties of spherically anisotropic piezoelectric composites

    NASA Astrophysics Data System (ADS)

    Wei, En-Bo; Gu, Guo-Qing; Poon, Ying-Ming

    2010-09-01

    Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed.

  19. Surfactant-enhanced alkaline flooding field project

    SciTech Connect

    French, T.R.

    1991-10-01

    The Tucker sand of Helper (KS) field is a candidate for surfactant-enhanced alkaline flooding. The geology of the Helper site is typical of many DOE Class I reservoirs. The Tucker sand of Helper field was deposited in a fluvial dominated deltaic environment. Helper oil can be mobilized with either chemical system 2 or chemical system 3, as described in this report. Oil fields in the Gulf Coast region are also good candidates for surfactant-enhanced alkaline flooding. The results from laboratory tests conducted in Berea sandstone cores with oil brine from Helper (KS) field are encouraging. The crude oil is viscous and non-acidic and, yet, was mobilized by the chemical formulations described in this report. Significant amounts of the oil were mobilized under simulated reservoir conditions. The results in Berea sandstone cores were encouraging and should be verified by tests with field core. Consumption of alkali, measured with field core, was very low. Surfactant loss appeared to be acceptable. Despite the good potential for mobilization of Helper oil, certain reservoir characteristics such as low permeability, compartmentalization, and shallow depth place constraints on applications of any chemical system in the Tucker sand. These constraints are typical of many DOE Class I reservoirs. Although Hepler field is not a perfect reservoir in which to apply surfactant- enhanced alkaline flooding, Hepler oil is particularly amenable to mobilization by surfactant-enhanced alkaline systems. A field test is recommended, dependent upon final evaluation of well logs and cores from the proposed pilot area. 14 refs., 21 figs., 10 tabs.

  20. Enhancing Biological Understanding through Undergraduate Field Research.

    ERIC Educational Resources Information Center

    Hammer, Samuel

    2001-01-01

    Describes a PEET (Partnerships for Enhancing Expertise in Taxonomy) project designed for undergraduate biology students at Boston University's College of General Studies. Reports that the project used a small group field research setting, facilitating critical thinking skills and group dynamics. Discusses the issue of how to introduce and…

  1. Giant electric-field-induced strain in lead-free piezoelectric materials.

    PubMed

    Chen, Lan; Yang, Yurong; Meng, X K

    2016-01-01

    First-principles calculations are performed to investigate the structures, electrical, and magnetic properties of compressive BiFeO3 films under electric-field and pressure perpendicular to the films. A reversible electric-field-induced strain up 10% is achieved in the compressive BiFeO3 films. The giant strain originates from rhombohedral-tetragonal (R-T) phase transition under electric-filed, and is recoverable from tetragonal-rhombohedral (T-R) phase transition by compressive stress. Additionally, the weak ferromagnetism in BiFeO3 films is largely changed in R-T phase transition under electric-filed and T-R phase transition under pressure - reminiscent of magnetoelectric effect and magnetoelastic effect. These results suggest exciting device opportunities arising from the giant filed-induced strain, large magnetoelectric effect and magnetoelastic effect. PMID:27139526

  2. Giant electric-field-induced strain in lead-free piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Chen, Lan; Yang, Yurong; Meng, X. K.

    2016-05-01

    First-principles calculations are performed to investigate the structures, electrical, and magnetic properties of compressive BiFeO3 films under electric-field and pressure perpendicular to the films. A reversible electric-field-induced strain up 10% is achieved in the compressive BiFeO3 films. The giant strain originates from rhombohedral-tetragonal (R-T) phase transition under electric-filed, and is recoverable from tetragonal-rhombohedral (T-R) phase transition by compressive stress. Additionally, the weak ferromagnetism in BiFeO3 films is largely changed in R-T phase transition under electric-filed and T-R phase transition under pressure – reminiscent of magnetoelectric effect and magnetoelastic effect. These results suggest exciting device opportunities arising from the giant filed-induced strain, large magnetoelectric effect and magnetoelastic effect.

  3. Giant electric-field-induced strain in lead-free piezoelectric materials

    PubMed Central

    Chen, Lan; Yang, Yurong; Meng, X. K.

    2016-01-01

    First-principles calculations are performed to investigate the structures, electrical, and magnetic properties of compressive BiFeO3 films under electric-field and pressure perpendicular to the films. A reversible electric-field-induced strain up 10% is achieved in the compressive BiFeO3 films. The giant strain originates from rhombohedral-tetragonal (R-T) phase transition under electric-filed, and is recoverable from tetragonal-rhombohedral (T-R) phase transition by compressive stress. Additionally, the weak ferromagnetism in BiFeO3 films is largely changed in R-T phase transition under electric-filed and T-R phase transition under pressure – reminiscent of magnetoelectric effect and magnetoelastic effect. These results suggest exciting device opportunities arising from the giant filed-induced strain, large magnetoelectric effect and magnetoelastic effect. PMID:27139526

  4. Additional Drive Circuitry for Piezoelectric Screw Motors

    NASA Technical Reports Server (NTRS)

    Smythe, Robert; Palmer, Dean; Gursel, Yekta; Reder, Leonard; Savedra, Raymond

    2004-01-01

    Modules of additional drive circuitry have been developed to enhance the functionality of a family of commercially available positioning motors (Picomotor . or equivalent) that provide linear motion controllable, in principle, to within increments .30 nm. A motor of this type includes a piezoelectric actuator that turns a screw. Unlike traditional piezoelectrically actuated mechanisms, a motor of this type does not rely on the piezoelectric transducer to hold position: the screw does not turn except when the drive signal is applied to the actuator.

  5. Lead-free piezoelectric system (Na0.5Bi0.5)TiO3-BaTiO3: Equilibrium structures and irreversible structural transformations driven by electric field and mechanical impact

    NASA Astrophysics Data System (ADS)

    Garg, Rohini; Rao, Badari Narayana; Senyshyn, Anatoliy; Krishna, P. S. R.; Ranjan, Rajeev

    2013-07-01

    The structure-property correlation in the lead-free piezoelectric (1-x)(Na0.5Bi0.5)TiO3-(x)BaTiO3 has been systematically investigated in detail as a function of composition (0field, and mechanical impact by Raman scattering, ferroelectric, piezoelectric measurement, x-ray, and neutron powder diffraction methods. Although x-ray diffraction study revealed three distinct composition ranges characterizing different structural features in the equilibrium state at room temperature: (i) monoclinic (Cc)+rhombohedral (R3c) for the precritical compositions, 0≤x≤0.05, (ii) cubiclike for 0.06≤x≤0.0675, and (iii) morphotropic phase boundary (MPB) like for 0.07≤x<0.10, Raman and neutron powder diffraction studies revealed identical symmetry for the cubiclike and the MPB compositions. The cubiclike structure undergoes irreversible phase separation by electric poling as well as by pure mechanical impact. This cubiclike phase exhibits relaxor ferroelectricity in its equilibrium state. The short coherence length (˜50 Å) of the out-of-phase octahedral tilts does not allow the normal ferroelectric state to develop below the dipolar freezing temperature, forcing the system to remain in a dipolar glass state at room temperature. Electric poling helps the dipolar glass state to transform to a normal ferroelectric state with a concomitant enhancement in the correlation length of the out-of-phase octahedral tilt.

  6. A nanoscale piezoelectric transformer for low-voltage transistors.

    PubMed

    Agarwal, Sapan; Yablonovitch, Eli

    2014-11-12

    A novel piezoelectric voltage transformer for low-voltage transistors is proposed. Placing a piezoelectric transformer on the gate of a field-effect transistor results in the piezoelectric transformer field-effect transistor that can switch at significantly lower voltages than a conventional transistor. The piezoelectric transformer operates by using one piezoelectric to squeeze another piezoelectric to generate a higher output voltage than the input voltage. Multiple piezoelectrics can be used to squeeze a single piezoelectric layer to generate an even higher voltage amplification. Coupled electrical and mechanical modeling in COMSOL predicts a 12.5× voltage amplification for a six-layer piezoelectric transformer. This would lead to more than a 150× reduction in the power needed for communications. PMID:25343519

  7. Silicon nanopillars for field enhanced surface spectroscopy

    SciTech Connect

    Wells, Sabrina M; Merkulov, Igor A; Kravchenko, Ivan I; Lavrik, Nickolay V; Sepaniak, Michael J

    2012-01-01

    Silicon nanowire and nanopillar structures have continued to draw increased attention in recent years due in part to their unique optical properties. Herein, electron beam lithography combined with reactive-ion etching is used to reproducibly create individual silicon nanopillars of various sizes, shapes, and heights. Finite difference time domain numerical analysis predicts enhancements in localized fields in the vicinity of appropriately-sized and coaxially-illuminated silicon nanopillars of approximately two orders of magnitude. By analyzing experimentally measured strength of the silicon Raman phonon line (500 cm-1), it was determined that nanopillars produced field enhancement that are consistent with these predictions. Additionally, we demonstrate that a thin layer of Zn phthalocyanine deposited on the nanopillar surface produced prominent Raman spectra yielding enhancement factors (EFs) better than 300. Finally, silicon nanopillars of cylindrical and elliptical shapes were labeled with different fluorophors and evaluated for their surface enhanced fluorescence (SEF) capability. The EF derived from analysis of the acquired fluorescence microscopy images indicate that silicon nanopillar structures can provide enhancement comparable or even stronger than those typically achieved using plasmonic SEF structures without the drawbacks of the metal-based substrates. It is anticipated that scaled up arrays of silicon nanopillars will enable SEF assays with extremely high sensitivity, while a broader impact of the reported phenomena are anticipated in photovoltaics, subwavelength light focusing, and fundamental nanophotonics.

  8. Controlling Metamaterial Field Enhancement at Terahertz Frequencies

    NASA Astrophysics Data System (ADS)

    Keiser, George; Seren, Huseyin; Zhang, Xin; Averitt, Richard

    2013-03-01

    With the advent of metamaterials has come an unprecedented ability to manipulate and engineer the index of refraction, n, and impedance, Z of materials. Engineering these far field properties has led to exciting developments such as negative index materials, electromagnetic cloaks, and perfect lensing. However, metamaterials can also be used to engineer designer microscopic charge distributions, current distributions, and polarizabilities. For instance, the on-resonance charge distribution in the capacitive gap of a split ring resonator (SRR) creates a localized region of high electric field enhancement that has seen prominent application in recent work. Here, we present a method to tune the magnitude of this resonant electric field enhancement. Via structural manipulation of the coupling between the SRR and a non-resonant closed conducting ring, we are able to increase and decrease the oscillator strength of the SRR and thus the field enhancement in the SRR's capacitive gap. We present numerical simulations and experimental measurements at terahertz frequencies to confirm this result.

  9. Effect of perpendicular magnetic anisotropy and Dzyaloshinskii-Moriya interaction on the enhancement of domain wall creep velocity in Pt/Co thin films by piezoelectric strain

    NASA Astrophysics Data System (ADS)

    Shepley, Philippa M.; Burnell, Gavin; Moore, Thomas A.

    We investigate piezoelectric strain control of domain wall creep motion in perpendicularly magnetized Pt/Co thin films. Domain wall (DW) motion has potential applications in data storage and spintronics, where the use of voltages rather than magnetic fields to control magnetization reversal could reduce power consumption. Materials with perpendicular magnetic anisotropy (PMA) are of particular interest due to their narrow domain walls and potential for efficient current-induced DW motion. Sputtered Ta/Pt/Co(t)/X films (t=0.78-1.0nm, X= Pt, Ir/Pt or Ir) on thin glass substrates were bonded to biaxial piezoelectric transducers, to which 150V was applied to produce a tensile out-of-plane strain of 9x10-4. This reduced the PMA by 10kJ/m3 and increased the DW creep velocity by up to 90%. DW energy can be calculated from the PMA and the Dzyaloshinskii-Moriya interaction (DMI) field. DW creep measurements of DMI field found no change with strain. The change in DW velocity with strain is linear with the change in DW energy for Pt/Co DWs with a mixed Bloch-Neel structure. Pt/Co/Pt films with higher DW velocity changes were found to have purely Bloch DWs. We conclude that the velocity of Bloch DWs is more sensitive to strain-induced changes than that of Bloch-Neel DWs. funded by EPSRC.

  10. A permendur-piezoelectric multiferroic composite for low-noise ultrasensitive magnetic field sensors

    NASA Astrophysics Data System (ADS)

    Sreenivasulu, G.; Laletin, U.; Petrov, V. M.; Petrov, V. V.; Srinivasan, G.

    2012-04-01

    Low-frequency and resonance magnetoelectric (ME) effects have been studied for a trilayer of permendur (alloy of Fe-Co-V) and lead zirconate titanate (PZT). The high permeability and high magnetostriction for permendur, key ingredients for magnetic field confinement, and ME response result in ME voltage coefficient of 23 V/cm Oe at low-frequency and 250 V/cm Oe at electromechanical resonance (EMR) for a sample with PZT fibers and inter-digital-electrodes. Theoretical ME coefficients are in agreement with the data. Measured magnetic noise floor of 25 pT/√Hz at 1 Hz and 100 fT/√Hz at EMR are comparable to best values reported for Metglas-PZT fiber sensors.

  11. Orientation field estimation for latent fingerprint enhancement.

    PubMed

    Feng, Jianjiang; Zhou, Jie; Jain, Anil K

    2013-04-01

    Identifying latent fingerprints is of vital importance for law enforcement agencies to apprehend criminals and terrorists. Compared to live-scan and inked fingerprints, the image quality of latent fingerprints is much lower, with complex image background, unclear ridge structure, and even overlapping patterns. A robust orientation field estimation algorithm is indispensable for enhancing and recognizing poor quality latents. However, conventional orientation field estimation algorithms, which can satisfactorily process most live-scan and inked fingerprints, do not provide acceptable results for most latents. We believe that a major limitation of conventional algorithms is that they do not utilize prior knowledge of the ridge structure in fingerprints. Inspired by spelling correction techniques in natural language processing, we propose a novel fingerprint orientation field estimation algorithm based on prior knowledge of fingerprint structure. We represent prior knowledge of fingerprints using a dictionary of reference orientation patches. which is constructed using a set of true orientation fields, and the compatibility constraint between neighboring orientation patches. Orientation field estimation for latents is posed as an energy minimization problem, which is solved by loopy belief propagation. Experimental results on the challenging NIST SD27 latent fingerprint database and an overlapped latent fingerprint database demonstrate the advantages of the proposed orientation field estimation algorithm over conventional algorithms. PMID:22826508

  12. Full Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction Systems

    NASA Technical Reports Server (NTRS)

    Su, Ji; Jiang, Xiaoning; Zu, Tian-Bing

    2011-01-01

    The Stacked HYBATS (Hybrid Actuation/Transduction system) demonstrates significantly enhanced electromechanical performance by using the cooperative contributions of the electromechanical responses of multilayer, stacked negative strain components and positive strain components. Both experimental and theoretical studies indicate that, for Stacked HYBATS, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The coupled resonance mode between positive strain and negative strain components of Stacked HYBATS is much stronger than the resonance of a single element actuation only when the effective lengths of the two kinds of elements match each other. Compared with the previously invented hybrid actuation system (HYBAS), the multilayer Stacked HYBATS can be designed to provide high mechanical load capability, low voltage driving, and a highly effective piezoelectric constant. The negative strain component will contract, and the positive strain component will expand in the length directions when an electric field is applied on the device. The interaction between the two elements makes an enhanced motion along the Z direction for Stacked-HYBATS. In order to dominate the dynamic length of Stacked-HYBATS by the negative strain component, the area of the cross-section for the negative strain component will be much larger than the total cross-section areas of the two positive strain components. The transverse strain is negative and longitudinal strain positive in inorganic materials, such as ceramics/single crystals. Different piezoelectric multilayer stack configurations can make a piezoelectric ceramic/single-crystal multilayer stack exhibit negative strain or positive strain at a certain direction without increasing the applied voltage. The difference of this innovation from the HYBAS is that all the elements can be made from one-of-a-kind materials. Stacked HYBATS can provide an extremely effective piezoelectric

  13. Harmonic demodulation and minimum enhancement factors in field-enhanced near-field optical microscopy.

    PubMed

    Scarpettini, A F; Bragas, A V

    2015-01-01

    Field-enhanced scanning optical microscopy relies on the design and fabrication of plasmonic probes which had to provide optical and chemical contrast at the nanoscale. In order to do so, the scattering containing the near-field information recorded in a field-enhanced scanning optical microscopy experiment, has to surpass the background light, always present due to multiple interferences between the macroscopic probe and sample. In this work, we show that when the probe-sample distance is modulated with very low amplitude, the higher the harmonic demodulation is, the better the ratio between the near-field signal and the interferometric background results. The choice of working at a given n harmonic is dictated by the experiment when the signal at the n + 1 harmonic goes below the experimental noise. We demonstrate that the optical contrast comes from the nth derivative of the near-field scattering, amplified by the interferometric background. By modelling the far and near field we calculate the probe-sample approach curves, which fit very well the experimental ones. After taking a great amount of experimental data for different probes and samples, we conclude with a table of the minimum enhancement factors needed to have optical contrast with field-enhanced scanning optical microscopy. PMID:25231792

  14. Enhanced visual fields in hammerhead sharks.

    PubMed

    McComb, D M; Tricas, T C; Kajiura, S M

    2009-12-01

    Several factors that influence the evolution of the unusual head morphology of hammerhead sharks (family Sphyrnidae) are proposed but few are empirically tested. In this study we tested the 'enhanced binocular field' hypothesis (that proposes enhanced frontal binocularity) by comparison of the visual fields of three hammerhead species: the bonnethead shark, Sphyrna tiburo, the scalloped hammerhead shark, Sphyrna lewini, and the winghead shark, Eusphyra blochii, with that of two carcharhinid species: the lemon shark, Negaprion brevirostris, and the blacknose shark, Carcharhinus acronotus. Additionally, eye rotation and head yaw were quantified to determine if species compensate for large blind areas anterior to the head. The winghead shark possessed the largest anterior binocular overlap (48 deg.) and was nearly four times larger than that of the lemon (10 deg.) and blacknose (11 deg.) sharks. The binocular overlap in the scalloped hammerhead sharks (34 deg.) was greater than the bonnethead sharks (13 deg.) and carcharhinid species; however, the bonnethead shark did not differ from the carcharhinids. These results indicate that binocular overlap has increased with lateral head expansion in hammerhead sharks. The hammerhead species did not demonstrate greater eye rotation in the anterior or posterior direction. However, both the scalloped hammerhead and bonnethead sharks exhibited greater head yaw during swimming (16.9 deg. and 15.6 deg., respectively) than the lemon (15.1 deg.) and blacknose (15.0 deg.) sharks, indicating a behavioral compensation for the anterior blind area. This study illustrates the larger binocular overlap in hammerhead species relative to their carcharhinid sister taxa and is consistent with the 'enhanced binocular field' hypothesis. PMID:19946079

  15. Quantum Enhanced Estimation of a Multidimensional Field

    NASA Astrophysics Data System (ADS)

    Baumgratz, Tillmann; Datta, Animesh

    2016-01-01

    We present a framework for the quantum enhanced estimation of multiple parameters corresponding to noncommuting unitary generators. Our formalism provides a recipe for the simultaneous estimation of all three components of a magnetic field. We propose a probe state that surpasses the precision of estimating the three components individually, and we discuss measurements that come close to attaining the quantum limit. Our study also reveals that too much quantum entanglement may be detrimental to attaining the Heisenberg scaling in the estimation of unitarily generated parameters.

  16. Piezoelectric Properties of Non-Polar Block Copolymers

    SciTech Connect

    Pester, Christian; Ruppel, Markus A; Schoberth, Heiko; Schmidt, K.; Liedel, Clemens; Van Rijn, Patrick; Littrell, Ken; Schindler, Kerstin; Hiltl, Stephanie; Czubak, Thomas; Mays, Jimmy; Urban, Volker S; Boker, Alexander

    2011-01-01

    Piezoelectric properties in non-polar block copolymers are a novelty in the field of electroactive polymers. The piezoelectric susceptibility of poly(styrene-b-isoprene) block copolymer lamellae is found to be up to an order of magnitude higher when compared to classic piezoelectric materials. The electroactive response increases with temperature and is found to be strongest in the disordered phase.

  17. Piezoelectric wind turbine

    NASA Astrophysics Data System (ADS)

    Kishore, Ravi Anant; Priya, Shashank

    2013-03-01

    In past few years, there has been significant focus towards developing small scale renewable energy based power sources for powering wireless sensor nodes in remote locations such as highways and bridges to conduct continuous health monitoring. These prior efforts have led to the development of micro-scale solar modules, hydrogen fuel cells and various vibration based energy harvesters. However, the cost effectiveness, reliability, and practicality of these solutions remain a concern. Harvesting the wind energy using micro-to-small scale wind turbines can be an excellent solution in variety of outdoor scenarios provided they can operate at few miles per hour of wind speed. The conventional electromagnetic generator used in the wind mills always has some cogging torque which restricts their operation above certain cut-in wind speed. This study aims to develop a novel piezoelectric wind turbine that utilizes bimorph actuators for electro-mechanical energy conversion. This device utilizes a Savonius rotor that is connected to a disk having magnets at the periphery. The piezoelectric actuators arranged circumferentially around the disk also have magnets at the tip which interacts with the magnetic field of the rotating disk and produces cyclical deflection. The wind tunnel experiments were conducted between 2-12 mph of wind speeds to characterize and optimize the power output of the wind turbine. Further, testing was conducted in the open environment to quantify the response to random wind gusts. An attempt was made towards integration of the piezoelectric wind turbine with the wireless sensor node.

  18. Design considerations to enhance the performances of thin circular piezoelectric energy harvester diaphragms in harsh liquid environments

    NASA Astrophysics Data System (ADS)

    Besse, N.; Pisano, A. P.; de Rooij, N. F.

    2013-12-01

    Thin circular piezoelectric energy harvester diaphragms undergoing large deflection in a harsh liquid environment are investigated in this paper. A material set combining AlN as transducer, SiC as electronics, Mo as wiring and Si as holder is considered. A highly accurate analytical model, which presents less than 5% error compared to FEM simulations in COMSOL, is first developed to study thoroughly flat diaphragms. Consequently, etching the wafer and adding a corrugation are proposed to reduce both the stress concentration at the edge and the influence of residual stress on the device behavior, respectively. Both ideas are predicted to increase the power density compared to the standard flat case by at least a factor of 5 to 10.

  19. Peak divergence in the curve of magnetoelectric coefficient versus dc bias magnetic field at resonance region for bi-layer magnetostrictive/piezoelectric composites

    SciTech Connect

    Zuo, Z. J.; Pan, D. A. Zhang, S. G.; Qiao, L. J.; Jia, Y. M.

    2013-12-15

    Magnetoelectric (ME) coefficient dependence on the bias magnetic field at resonance frequencies for the bi-layered bonded Terfenol-D/Pb(Zr,Ti)O{sub 3} composite was investigated. The resonance frequency decreases first and then increases with the bias magnetic field (H{sub DC}), showing a “V” shape in the range of 0 ∼ 5 kOe. Below the resonance frequency, the pattern of ME coefficient dependence on the H{sub DC} shows a single peak, but splits into a double-peak pattern when the testing frequency increases into a certain region. With increasing the frequency, a divergent evolution of the H{sub DC} patterns was observed. Domain motion and ΔE effect combined with magnetostriction-piezoelectric coupling effect were employed to explain this experimental result.

  20. Multisatellite Observations of Interplanetary Field Enhancements

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Weimer, D. R.; Jian, L. K.; Lai, H. R.; Luhmann, J. G.

    2008-12-01

    Interplanetary Field Enhancements (IFEs) are magnetic structures in the solar wind that have a cusp-shaped maximum in the field strength with a strong current sheet often near the central peak. These structures generally last an hour or more. They have a tendency to be seen more often at specific ecliptic longitudes, have been identified on occasion with particular small solar system bodies (asteroid 2201 Oljato and comet 122P/ De Vico) and attributed to the interaction of the solar wind with charged dust. On occasion they are detected nearly simultaneously by several spacecraft. Multispacecraft detection have been made with PVO, Venera-13 and Venera-14; with ISEE 1 and ISEE 3 and more recently with STEREO A and B, ACE and Wind. In this paper we use a delay matching algorithm developed by D. Weimer on the IFE of December 24, 2006 detected by 4 spacecraft. While the IFE is crossing the four spacecraft separated in Y by 90 Re and in X by 160 Re the measured delay was close to the calculated advection time. Along the apparent center line of the event the delay was close to 4 minutes. This event together with previous events are consistent with IFEs being magnetic structures that are convecting outward from the Sun with nearly, but slightly slower than, the solar wind velocity. We need to understand the occurrence rate of such structures and their physical cause because if this hypothesis is true, they may be responsible for accelerating dust out of the inner solar system.

  1. A compact ion source and accelerator based on a piezoelectric driver

    SciTech Connect

    Norgard, P.; Kovaleski, S. D.; VanGordon, J. A.; Baxter, E. A.; Gall, B. B.; Kwon, Jae Wan; Kim, Baek Hyun; Dale, G. E.

    2013-04-19

    Compact ion sources and accelerators using piezoelectric devices for the production of energetic ion beams are being evaluated. A coupled source-accelerator is being tested as a neutron source to be incorporated into oil-well logging diagnostics. Two different ion sources are being investigated, including a piezoelectric transformer-based plasma source and a silicon-based field ion source. The piezoelectric transformer plasma ion source uses a cylindrical, resonantly driven piezoelectric crystal to produce high voltage inside a confined volume filled with low pressure deuterium gas. The plasma generated in the confined chamber is ejected through a small aperture into an evacuated drift region. The silicon field ion source uses localized electric field enhancement produced by an array of sharp emitters etched into a silicon blank to produce ions through field desorption ionization. A second piezoelectric device of a different design is used to generate an accelerating potential on the order of 130 kV; this potential is applied to a deuterated target plate positioned perpendicular to the ion stream produced by either plasma source. This paper discusses the results obtained by the individual components as they relate to the final neutron source.

  2. Dielectric, piezoelectric and damping properties of novel 2-2 piezoelectric composites

    NASA Astrophysics Data System (ADS)

    Dongyu, Xu; Xin, Cheng; Banerjee, Sourav; Lei, Wang; Shifeng, Huang

    2015-02-01

    Here, a strip-shaped 2-2 cement/polymer-based piezoelectric composite was designed and fabricated. The dielectric, piezoelectric and electromechanical coupling properties of the composite were investigated as well as the coupling effects between the thickness and lateral modes of the piezoelectric composites. The dielectric and piezoelectric properties of the composites can be greatly influenced by variations of the piezoelectric ceramic volume fraction and the structural dimensions of the composites. Excellent properties have been achieved for ultrasonic transducer applications in civil engineering monitoring fields, such as large piezoelectric voltage constants, high thickness electromechanical coupling coefficients and low acoustic impedance. The damping property of the composites was especially studied. The maximum damping loss factor of the composites is between 0.28-0.32, and the glass transition temperature is between 55°-66 °C.

  3. Enhanced piezoelectricity and high temperature poling effect in (1-x)Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-xPbTiO{sub 3} ceramics via an ethylene glycol route

    SciTech Connect

    Tailor, H. N.; Ye, Z.-G.

    2010-05-15

    A solution chemical method utilizing ethylene glycol as solvent has been developed to prepare the ceramics of (1-x)Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-xPbTiO{sub 3}[(1-x)PMN-xPT] from a precursor powder that can be pressed and fired in one step to produce high quality ceramics with excellent piezoelectric properties. The ceramics reach a relative density of up to 97% of the theoretical value after direct calcinations. This high density is achieved without the need of additional sintering after calcination which is usually required in conventional solid state syntheses to produce ceramics. The ceramics exhibit a unipolar piezoelectric coefficient d{sub 33} of 848 pC/N, which is one of the highest values for any unmodified/untextured binary systems reported to date. Since the piezoelectric properties depend on composition and electric field, the effect of poling conditions was investigated. A critical temperature limit has been found, above which poling can dramatically impair the piezoelectric properties due to a field-induced increase in the monoclinic phase component around the morphotropic phase boundary.

  4. Response of intergrown microstructure to an electric field and its consequences in the lead-free piezoelectric bismuth sodium titanate

    SciTech Connect

    Liu Yun; Noren, Lasse; Studer, Andrew J.; Withers, Ray L.; Guo Yiping; Li Yongxiang; Yang Hui; Wang Jian

    2012-03-15

    We investigate the R3c average structure and micro-structure of the ceramic Bi{sub 0.5}Na{sub 0.5}TiO{sub 3} (BNT) in situ under applied electric fields using diffraction techniques. Electron diffraction implies the presence of significant octahedral tilt twin disorder, corresponding to the existence of a fine scale intergrown microstructural (IGMS) 'phase' within the R3c rhombohedral average structure matrix. A careful neutron refinement suggests not only that the off-centre displacements of the cations relative to the oxygens in the R3c regions increases systematically on application of an electric field but also that the phase fraction of the IGMS regions increases systematically. The latter change in phase fraction on application of the electric field enhances the polar displacement of the cations relative to the oxygen anions and affects the overall strain response. These IGMS regions form local polar nano regions that are not correlated with one another, resulting in polarisation relaxation and strain behaviour observed in BNT-containing materials. - Graphical abstract: The intergrown microstructure at very fine scales within the R3c rhombohedral phase matrix of BNT, originating from octahedral tilt twinning disorder, will increase with respect to an external field. Highlights: Black-Right-Pointing-Pointer The existence of an intergrown microstructural 'phase' within the average structure matrix. Black-Right-Pointing-Pointer This phase fraction of the intergrown microstructural regions changes. Black-Right-Pointing-Pointer Such regions form local polar nano regions that are not correlated with one another.

  5. Numerical simulation of piezoelectric effect of bone under ultrasound irradiation

    NASA Astrophysics Data System (ADS)

    Hosokawa, Atsushi

    2015-07-01

    The piezoelectric effect of bone under ultrasound irradiation was numerically simulated using an elastic finite-difference time-domain method with piezoelectric constitutive equations (PE-FDTD method). First, to demonstrate the validity of the PE-FDTD method, the ultrasound propagation in piezoelectric ceramics was simulated and then compared with the experimental results. The simulated and experimental waveforms propagating through the ceramics were in good agreement. Next, the piezoelectric effect of human cortical bone on the ultrasound propagation was investigated by PE-FDTD simulation. The simulated result showed that the difference between the waveforms propagating through the bone without and with piezoelectricity was negligible. Finally, the spatial distributions of the electric fields in a human femur induced by ultrasound irradiation were simulated. The electric fields were changed by a bone fracture, which depended on piezoelectric anisotropy. In conclusion, the PE-FDTD method is considered to be useful for investigating the piezoelectric effect of bone.

  6. Enhanced piezoelectricity and photoluminescence in Dy-doped Ba0.85Ca0.15Ti0.9Zr0.1O3 lead-free multifunctional ceramics

    NASA Astrophysics Data System (ADS)

    Lei, Fengying; Jiang, Na; Luo, Lingling; Guo, Yongquan; Zheng, Qiaoji; Lin, Dunmin

    2015-12-01

    Lead-free multifunctional ceramics of Ba0.85Ca0.15Ti0.9Zr0.1O3-x mol% Dy have been prepared by an ordinary sintering method and the effects of Dy2O3 doping on structure, piezoelectric, ferroelectric and photoluminescent properties of the ceramics have been studied. The ceramics possess a single phase perovskite structure. The grain growth of the ceramics is prohibited and the ferroelectric-paraelectric phase transition at TC becomes more diffusive after the addition of Dy2O3. Dy2O3 doping improves the piezoelectricity of the ceramics and the optimal piezoelectric properties d33 = 335 pC/N is obtained at x = 0.5. The addition of 2 mol% Dy enhances the photoluminescent properties of the ceramics and strong emissions at ˜ 478 nm and ˜ 575 nm are observed. Our study shows that the ceramics with low Dy2O3 levels exhibit simultaneously the strong piezoelectricity, ferroelectricity and photoluminescence and may have a potential application in mechano-electro-optic integration and coupling device.

  7. Enhanced piezoelectricity in (1 -x)Bi1.05Fe1-yAyO3-xBaTiO3 lead-free ceramics: site engineering and wide phase boundary region.

    PubMed

    Zheng, Ting; Jiang, Zhenggen; Wu, Jiagang

    2016-07-28

    Site engineering has been employed to modulate the piezoelectric activity of high temperature (1 -x)Bi1.05Fe1-yScyO3-xBaTiO3 lead-free ceramics fabricated by a conventional solid-state method together with a quenching technique. The effects of x and y content on the phase structure, microstructure, and electrical properties have been investigated in detail. A wide rhombohedral (R) to pseudo-cubic (C) phase boundary was formed in the ceramics with x = 0.30 and 0 ≤y≤ 0.07, thus leading to enhanced piezoelectricity (d33 = 120-180 pC N(-1)), ferroelectricity (Pr = 19-22 μC cm(-2)) and a high Curie temperature (TC = 478-520 °C). In addition, the influence of different element substitutions for Fe(3+) on phase structure and electrical behavior was also investigated. Improved piezoelectricity (d33 = 160-180 pC N(-1)) and saturated P-E loops can be simultaneously achieved in the ceramics with A = Sc, Ga, and Al due to the R-C phase boundary. As a result, site engineering may be an efficient way to modulate the piezoelectricity of BiFeO3-BaTiO3 lead-free ceramics. PMID:27357104

  8. Piezoelectric drive circuit

    DOEpatents

    Treu, C.A. Jr.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes. 7 figs.

  9. Piezoelectric drive circuit

    DOEpatents

    Treu, Jr., Charles A.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.

  10. "Mighty Worm" Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Bamford, Robert M.; Wada, Ben K.; Moore, Donald M.

    1994-01-01

    "Mighty Worm" piezoelectric actuator used as adjustable-length structural member, active vibrator or vibration suppressor, and acts as simple (fixed-length) structural member when inactive. Load force not applied to piezoelectric element in simple-structural-member mode. Piezoelectric element removed from load path when not in use.

  11. New strategy for enhancing in situ cell viability of cell-printing process via piezoelectric transducer-assisted three-dimensional printing.

    PubMed

    Koo, YoungWon; Kim, GeunHyung

    2016-06-01

    Tissue engineering has become one of the great applications of three-dimensional cell printing because of the possibility of fabricating complex cell-laden scaffolds. Three typical methods (inkjet, micro-extrusion, and laser-assisted bio-printing) have been used to fabricate structures. Of these, micro-extrusion is a comparatively easy method, but has some drawbacks such as low in situ cell viability after fabricating cell-laden structures because of the high wall shear stress in micro-sized nozzles. To overcome this shortcoming, we suggest an innovative cell printing method, which is assisted by a piezoelectric transducer (PZT). The PZT assistance in the dispensing process enhances the printing efficiency and cell viability by decreasing the wall shear stress within a nozzle because the PZT effect can lower the shear viscosity of the bioink via micro-scale vibration. In this study, 5 wt% cell-laden alginate was used as a bioink, and various PZT conditions (frequencies up to ∼400 Hz and amplitudes up to ∼40.5 μm) were simultaneously applied to the cell-printing process to examine the effectiveness of the PZT. The PZT-assisted cell-printing method was found to be highly effective in direct cell printing and could achieve cell-laden structures with high in situ cell viability. PMID:27203798

  12. Silicon/Carbon Nanotube/BaTiO₃ Nanocomposite Anode: Evidence for Enhanced Lithium-Ion Mobility Induced by the Local Piezoelectric Potential.

    PubMed

    Lee, Byoung-Sun; Yoon, Jihyun; Jung, Changhoon; Kim, Dong Young; Jeon, Seung-Yeol; Kim, Ki-Hong; Park, Jun-Ho; Park, Hosang; Lee, Kang Hee; Kang, Yoon-Sok; Park, Jin-Hwan; Jung, Heechul; Yu, Woong-Ryeol; Doo, Seok-Gwang

    2016-02-23

    We report on the synergetic effects of silicon (Si) and BaTiO3 (BTO) for applications as the anode of Li-ion batteries. The large expansion of Si during lithiation was exploited as an energy source via piezoelectric BTO nanoparticles. Si and BTO nanoparticles were dispersed in a matrix consisting of multiwalled carbon nanotubes (CNTs) using a high-energy ball-milling process. The mechanical stress resulting from the expansion of Si was transferred via the CNT matrix to the BTO, which can be poled, so that a piezoelectric potential is generated. We found that this local piezoelectric potential can improve the electrochemical performance of the Si/CNT/BTO nanocomposite anodes. Experimental measurements and simulation results support the increased mobility of Li-ions due to the local piezoelectric potential. PMID:26815662

  13. Magnetic-field enhancement beyond the skin-depth limit

    NASA Astrophysics Data System (ADS)

    Shin, Jonghwa; Park, Namkyoo; Fan, Shanhui; Lee, Yong-Hee

    2010-02-01

    Electric field enhancement has been actively studied recently and many metallic structures that are capable of locally enhancing electric field have been reported. The Babinet's principle can be utilized, especially in the form of Booker's extension, to transform the known electric field enhancing structures into magnetic field enhancing structures. The authors explain this transformation process and discuss the regime in which this principle breaks down. Unless the metals used can be well approximated with a PEC model, the principle's predictions fails to hold true. Authors confirm this aspect using numerical simulations based on realistic material parameters for actual metals. There is large discrepancy especially when the structural dimensions are comparable or less than the skin-depth at the wavelength of interest. An alternative way to achieve magnetic field enhancement is presented and the design of a connected bow-tie structure is proposed as an example. FDTD simulation results confirm the operation of the proposed structure.

  14. On the Binding Stress-Enhanced Sensitivity of (Pb(Mg1/3Nb2/3)O3)0.65-(PbTiO3) 0.35 (PMN-PT) Piezoelectric Plate Sensor (PEPS)

    NASA Astrophysics Data System (ADS)

    Wu, Wei

    (Pb(Mg1/3Nb2/3)O3)0.65-(PbTiO 3)0.35 (PMN-PT) piezoelectric plate sensor (PEPS) showed enhanced sensitivity in chemical and biological sensing applications which has been attributed to binding-induced crystalline orientation switching in the PMN-PT layer. However, so far there has been no direct demonstration of PEPS crystalline orientation switching upon target-analyte binding. Using biotin and streptavidin binding as a model detection system and by direct X-Ray diffraction observations after analyte binding we have unambiguously demonstrated that switching of the crystalline orientations of the PMN-PT layer indeed occurred. In addition, we have shown that PEPS sensitivity enhancement increased with an increasing transverse electromechanical coupling constant, -k31, of the PMN-PT layer--which is known to correlate with the crystalline orientation switching capability--by increasing the grain size of the PMN-PT layer or by applying a DC bias electric field. Finally, unprecedented high sensitivity of PEPS with high -k31, (i.e., -k31 > 0.3) were illustrated by the aM (10-18 M) sensitivity of in situ DNA hybridization detection without amplification and by the 100 fg/ml (10-13 g/ml) sensitivity of rapid, in situ protein detection in biological fluids such as troponin I detection in serum for early sign of myocardial infarction (heart attack), Her2 detection in serum for cancer treatment and monitoring, Tn antigen and anti-Tn antibody detection in serum for early cancer detection, and Toxins detection in stool for Clostridium difficile infection detection.

  15. Numerical simulation of piezoelectric effect under ultrasound irradiation with consideration of conductivity

    NASA Astrophysics Data System (ADS)

    Hosokawa, Atsushi

    2016-07-01

    Using a piezoelectric finite-difference time-domain (PE-FDTD) method, numerical simulation of the piezoelectric effect under ultrasound irradiation was performed considering conductivity. From the simulated results, it was shown that the ultrasound amplitude in piezoelectric ceramics decreased owing to piezoelectricity with the increase in conductivity. The simulated ultrasound waveform at a low conductivity agreed with the experimental waveform. The electric field induced in the ceramics decreased with conductivity, and the electric field at a high conductivity decreased with time, which represented piezoelectric relaxation. Moreover, the effect of conductivity on piezoelectricity in human cortical bone was investigated.

  16. Piezoelectric field effect on the optical properties of In0.21Ga0.79As/GaAs (113) MQW

    NASA Astrophysics Data System (ADS)

    Fraj, Ibtissem; Saidi, Faouzi; Bouzaiene, Lotfi; Sfaxi, Larbi; Maaref, Hassen

    2016-08-01

    Photoluminescence study PL has been performed for the In0.21Ga0.79As multiple quantum wells MQW grown by molecular beam epitaxy MBE on (001) and (113) A GaAs substrates. The electronic structure was obtained by solving the Schrödinger equation, including piezoelectric field and strain effect on the conduction and valence bands of the unequal QWs. We critically review the explanation of S-shape in temperature dependence of PL peak energy for polar Middle In0.21Ga0.79As QW at intermediate temperatures. This abnormal behavior is merely linked to the impact of carrier localization and polarization-induced electric fields in optical properties. A significant blue shift of 18 meV for polar and a negligible shift for non-polar In0.21Ga0.79As/GaAs Middle QW has been observed. In order to follow the evolution of the PL peak energies for each QW in both samples versus temperature, three theoretical models (Varshni, Vïna and Pässler) have been reported. A comparison between theoretical and experimental data demonstrates that the Pässler model is the most accurate fit despite none of the classical models can replicate the excitonic PL energy evolution at cryogenic temperature for Middle QW in the structure grown on (113).

  17. A piezoelectric transformer

    NASA Technical Reports Server (NTRS)

    Won, C. C.

    1993-01-01

    This work describes a modeling and design method whereby a piezoelectric system is formulated by two sets of second-order equations, one for the mechanical system, and the other for the electrical system, coupled through the piezoelectric effect. The solution to this electromechanical coupled system gives a physical interpretation of the piezoelectric effect as a piezoelectric transformer that is a part of the piezoelectric system, which transfers the applied mechanical force into a force-controlled current source, and short circuit mechanical compliance into capacitance. It also transfers the voltage source into a voltage-controlled relative velocity input, and free motional capacitance into mechanical compliance. The formulation and interpretation simplify the modeling of smart structures and lead to physical insight that aids the designer. Due to its physical realization, the smart structural system can be unconditional stable and effectively control responses. This new concept has been demonstrated in three numerical examples for a simple piezoelectric system.

  18. Circuit for Driving Piezoelectric Transducers

    NASA Technical Reports Server (NTRS)

    Randall, David P.; Chapsky, Jacob

    2009-01-01

    The figure schematically depicts an oscillator circuit for driving a piezoelectric transducer to excite vibrations in a mechanical structure. The circuit was designed and built to satisfy application-specific requirements to drive a selected one of 16 such transducers at a regulated amplitude and frequency chosen to optimize the amount of work performed by the transducer and to compensate for both (1) temporal variations of the resonance frequency and damping time of each transducer and (2) initially unknown differences among the resonance frequencies and damping times of different transducers. In other words, the circuit is designed to adjust itself to optimize the performance of whichever transducer is selected at any given time. The basic design concept may be adaptable to other applications that involve the use of piezoelectric transducers in ultrasonic cleaners and other apparatuses in which high-frequency mechanical drives are utilized. This circuit includes three resistor-capacitor networks that, together with the selected piezoelectric transducer, constitute a band-pass filter having a peak response at a frequency of about 2 kHz, which is approximately the resonance frequency of the piezoelectric transducers. Gain for generating oscillations is provided by a power hybrid operational amplifier (U1). A junction field-effect transistor (Q1) in combination with a resistor (R4) is used as a voltage-variable resistor to control the magnitude of the oscillation. The voltage-variable resistor is part of a feedback control loop: Part of the output of the oscillator is rectified and filtered for use as a slow negative feedback to the gate of Q1 to keep the output amplitude constant. The response of this control loop is much slower than 2 kHz and, therefore, does not introduce significant distortion of the oscillator output, which is a fairly clean sine wave. The positive AC feedback needed to sustain oscillations is derived from sampling the current through the

  19. Hybrid thermoelectric piezoelectric generator

    NASA Astrophysics Data System (ADS)

    Montgomery, D. S.; Hewitt, C. A.; Carroll, D. L.

    2016-06-01

    This work presents an integration of flexible thermoelectric and piezoelectric materials into a single device structure. This device architecture overcomes several prohibitive issues facing the combination of traditional thermoelectric and piezoelectric generators, while optimizing performance of the combined power output. The structure design uses a carbon nanotube/polymer thin film as a flexible thermoelectric generator that doubles as an electrode on a piezoelectric generator made of poly(vinylidene fluoride). An example 2 × 2 array of devices is shown to generate 89% of the maximum thermoelectric power, and provide 5.3 times more piezoelectric voltage when compared with a traditional device.

  20. Voltage generation of piezoelectric cantilevers by laser heating

    PubMed Central

    Hsieh, Chun-Yi; Liu, Wei-Hung; Chen, Yang-Fang; Shih, Wan Y.; Gao, Xiaotong; Shih, Wei-Heng

    2012-01-01

    Converting ambient thermal energy into electricity is of great interest in harvesting energy from the environment. Piezoelectric cantilevers have previously been shown to be an effective biosensor and a tool for elasticity mapping. Here we show that a single piezoelectric (lead-zirconate titanate (PZT)) layer cantilever can be used to convert heat to electricity through pyroelectric effect. Furthermore, piezoelectric-metal (PZT-Ti) bi-layer cantilever showed an enhanced induced voltage over the single PZT layer alone due to the additional piezoelectric effect. This type of device can be a way for converting heat energy into electricity. PMID:23258941

  1. Voltage generation of piezoelectric cantilevers by laser heating.

    PubMed

    Hsieh, Chun-Yi; Liu, Wei-Hung; Chen, Yang-Fang; Shih, Wan Y; Gao, Xiaotong; Shih, Wei-Heng

    2012-11-15

    Converting ambient thermal energy into electricity is of great interest in harvesting energy from the environment. Piezoelectric cantilevers have previously been shown to be an effective biosensor and a tool for elasticity mapping. Here we show that a single piezoelectric (lead-zirconate titanate (PZT)) layer cantilever can be used to convert heat to electricity through pyroelectric effect. Furthermore, piezoelectric-metal (PZT-Ti) bi-layer cantilever showed an enhanced induced voltage over the single PZT layer alone due to the additional piezoelectric effect. This type of device can be a way for converting heat energy into electricity. PMID:23258941

  2. Voltage generation of piezoelectric cantilevers by laser heating

    NASA Astrophysics Data System (ADS)

    Hsieh, Chun-Yi; Liu, Wei-Hung; Chen, Yang-Fang; Shih, Wan Y.; Gao, Xiaotong; Shih, Wei-Heng

    2012-11-01

    Converting ambient thermal energy into electricity is of great interest in harvesting energy from the environment. Piezoelectric cantilevers have previously been shown to be an effective biosensor and a tool for elasticity mapping. Here we show that a single piezoelectric (lead-zirconate titanate (PZT)) layer cantilever can be used to convert heat to electricity through pyroelectric effect. Furthermore, piezoelectric-metal (PZT-Ti) bi-layer cantilever showed an enhanced induced voltage over the single PZT layer alone due to the additional piezoelectric effect. This type of device can be a way for converting heat energy into electricity.

  3. Piezoelectric immunosensors -- Theory and applications

    SciTech Connect

    O`Sullivan, C.K.; Vaughan, R.; Guilbault, G.G.

    1999-09-01

    A Mini Review of recent advances in piezoelectric immunobiosensors is presented. First a review of the theory and history of the technique is given, followed by a critical survey of the use of this method in various fields of analysis. A biosensor can be defined as a device incorporating biological material connected to or integrated within a transducer. The specificity and sensitivity is complemented by the transducer, which electronically measures and computes the signal.

  4. Effect of material uncertainties on dynamic analysis of piezoelectric fans

    NASA Astrophysics Data System (ADS)

    Srivastava, Swapnil; Yadav, Shubham Kumar; Mukherjee, Sujoy

    2015-04-01

    A piezofan is a resonant device that uses a piezoceramic material to induce oscillations in a cantilever beam. In this study, lumped-mass modelling is used to analyze a piezoelectric fan. Uncertainties are associated with the piezoelectric structures due to several reasons such as variation during manufacturing process, temperature, presence of adhesive layer between the piezoelectric actuator/sensor and the shim stock etc. Presence of uncertainty in the piezoelectric materials can influence the dynamic behavior of the piezoelectric fan such as natural frequency, tip deflection etc. Moreover, these quantities will also affect the performance parameters of the piezoelectric fan. Uncertainty analysis is performed using classical Monte Carlo Simulation (MCS). It is found that the propagation of uncertainty causes significant deviations from the baseline deterministic predictions, which also affect the achievable performance of the piezofan. The numerical results in this paper provide useful bounds on several performance parameters of the cooling fan and will enhance confidence in the design process.

  5. Structure-Property Study of Piezoelectricity in Polyimides

    NASA Technical Reports Server (NTRS)

    Ounaies, Zoubeida; Park, Cheol; Harrison, Joycelyn S.; Smith, Joseph G.; Hinkley, Jeffrey

    1999-01-01

    High performance piezoelectric polymers are of interest to NASA as they may be useful for a variety of sensor applications. Over the past few years research on piezoelectric polymers has led to the development of promising high temperature piezoelectric responses in some novel polyimides. In this study, a series of polyimides have been studied with systematic variations in the diamine monomers that comprise the polyimide while holding the dianhydride constant. The effect of structural changes, including variations in the nature and concentration of dipolar groups, on the remanent polarization and piezoelectric coefficient is examined. Fundamental structure-piezoelectric property insight will enable the molecular design of polymers possessing distinct improvements over state-of-the-art piezoelectric polymers including enhanced polarization, polarization stability at elevated temperatures, and improved processability.

  6. A multi-degree of freedom piezoelectric vibration energy harvester with piezoelectric elements inserted between two nearby oscillators

    NASA Astrophysics Data System (ADS)

    Xiao, Han; Wang, Xu; John, Sabu

    2016-02-01

    A novel piezoelectric vibration energy harvesting system is proposed whose harvesting performance could be significantly enhanced by introducing one or multiple additional piezoelectric elements placed between every two nearby oscillators. The proposed two degree-of-freedom piezoelectric vibration harvester system is expected to extract 9.78 times more electrical energy than a conventional two degrees of freedom harvester system with only one piezoelectric element inserted close to the base. A parameter study of a multiple degree-of-freedom piezoelectric vibration energy harvester system has been conducted to provide a guideline for tuning its harvesting bandwidth and optimizing its design. Based on the analysis method of the two degrees of freedom piezoelectric vibration harvester system, a generalised MDOF piezoelectric vibration energy harvester with multiple pieces of piezoelectric elements inserted between every two nearby oscillators is studied. The harvested power values of the piezoelectric vibration energy harvesters of 1 to 5 degree-of-freedom have been compared while the total mass and the mass ratio of the oscillators are kept as constants. It is found that the greater numbers of degree-of-freedom of a PVEH with the more additional piezoelectric elements inserted between every two nearby oscillators would enable that system to harvest more energy. The first mode resonant frequency will be shifted to a low-frequency range when the numbers of degree-of-freedom increase.

  7. Development of Piezoelectric Zinc Oxide Nanoparticle-Poly(Vinylidene Fluoride) Nanocomposites for Sensing and Actuation

    NASA Astrophysics Data System (ADS)

    Dodds, John Steven

    Structural health monitoring (SHM) is vital for detecting the onset of damage and for preventing catastrophic failure of civil infrastructure systems. In particular, piezoelectric transducers have the ability to excite and actively interrogate structures (e.g., using surface waves) while measuring their response for damage detection. In fact, piezoelectric transducers such as lead zirconate titanate (PZT) and poly(vinylidene fluoride) (PVDF) have been used for various laboratory and field tests and have demonstrated significant advantages as compared to visual inspection and vibration-based methods, to name a few. However, PZTs are inherently brittle, and PVDF films do not possess high piezoelectricity, thereby limiting each of these devices to certain specific applications. Piezoelectric nanocomposites, which enjoy a combination of the best properties of these material types, are at the forefront of emerging SHM technologies. The objective of this study is to design, characterize, and validate piezoelectric nanocomposites consisting of zinc oxide (ZnO) nanoparticles assembled in a PVDF copolymer matrix for sensing and actuation. It will be shown that these films provide greater mechanical flexibility as compared to PZTs, yet possess enhanced piezoelectricity as compared to pristine PVDF copolymers. The results obtained from this research will be crucial for future SHM applications using these piezoelectric nanocomposites. This study began with spin coating dispersed ZnO-based solutions for piezoelectric nanocomposite fabrication. The concentration of ZnO nanoparticles was varied from 0 to 20 wt.% (in 5% increments) to determine their influence on bulk film piezoelectricity. Second, their electric polarization responses were obtained for quantifying thin film remnant polarization, which is directly correlated to piezoelectricity. Based on these results, the films were poled at 50 MV-m-1 to permanently align film electrical domains and to enhance bulk film

  8. Enhanced fog collection with electric fields

    NASA Astrophysics Data System (ADS)

    Damak, Maher; Mahmoudi, Seyed Reza; Varanasi, Kripa

    2015-11-01

    Fog harvesting is a promising source of fresh water in remote areas. However, the efficiency of current collectors, consisting in fine meshes standing perpendicularly to the wind, is dramatically low. Fog-laden flows generally have low Stokes numbers, which leads to the deviation of fog droplets in the vicinity of the mesh wires. Here, we propose to overcome this aerodynamic limitation using a combination of electric fields and specific collecting surfaces. We show that our system largely increases the fog collection efficiency. We study the trajectories of individual particles and use the results to derive a model to predict the collection efficiency of the system. We finally identify and quantify the mechanisms that can limit the collection of fog particles. The understanding of these mechanisms leads us to construct a design chart that can be used to determine the optimal design parameters that should be used in fog collection applications as a function of the field conditions.

  9. Quantum theory for plasmon-assisted local field enhancement

    NASA Astrophysics Data System (ADS)

    Grigorenko, Ilya

    2016-01-01

    We applied quantum theory for nonlocal response and plasmon-assisted field enhancement near a small metallic nanoscale antenna in the limit of weak incoming fields. A simple asymmetric bio-inspired design of the nanoantenna for polarization-resolved measurement is proposed. The spatial field intensity distribution was calculated for different field frequencies and polarizations. We have shown that the proposed design the antenna allows us to resolve the polarization of incoming photons.

  10. Quantum theory for plasmon-assisted local field enhancement

    NASA Astrophysics Data System (ADS)

    Grigorenko, Ilya

    We applied quantum theory for nonlocal response and plasmon-assisted field enhancement near a small metallic nanoscale antenna in the limit of weak incoming fields. A simple asymmetric bio-inspired design of the nanoantenna for polarization-resolved measurement is proposed. The spatial field intensity distribution was calculated for different field frequencies and polarizations. We have shown that the proposed design the antenna allows us to resolve the polarization of incoming photons.

  11. Graphene-enhanced infrared near-field microscopy.

    PubMed

    Li, Peining; Wang, Tao; Böckmann, Hannes; Taubner, Thomas

    2014-08-13

    Graphene is a promising two-dimensional platform for widespread nanophotonic applications. Recent theories have predicted that graphene can also enhance evanescent fields for subdiffraction-limited imaging. Here, for the first time we experimentally demonstrate that monolayer graphene offers a 7-fold enhancement of evanescent information, improving conventional infrared near-field microscopy to resolve buried structures at a 500 nm depth with λ/11-resolution. PMID:25019504

  12. ENHANCEMENT OF METHANE CONVERSION USING ELECTRIC FIELDS

    SciTech Connect

    Richard G. Mallinson; Lance L. Lobban

    2000-05-01

    This report summarizes the conditions and results of this multifaceted program. Detailed experimental descriptions and results and discussion can be found in the publications cited in the Appendix. The goal of this project is the development of novel, economical, processes for the conversion of natural gas to more valuable projects such as synthesis gas or direct conversion to methanol, ethylene and other organic oxygenates or higher hydrocarbons. The methodologies of the project are to investigate and develop low temperature electric discharges and electric discharge-enhanced catalysis for carrying out these conversions. With the electric discharge-enhanced conversion, the operating temperatures are expected to be far below those currently required for such processes as oxidative coupling, thereby allowing for a higher degree of catalytic selectivity while maintaining high activity. In the case of low temperature discharges, the conversion is carried out at ambient temperature, trading high temperature thermal energy for electric energy as the driving force for conversion. The low operating temperatures remove thermodynamic constraints on the product distribution due to the non-equilibrium nature of the low temperature plasma. This also removes the requirements of large thermal masses that need very large-scale operation to maximize efficiency that is the characteristic of current technologies, including high temperature plasma processes. This potentially allows much smaller scale processes to be efficient. Additionally, a gas conversion process that is electrically driven provides an internal use for excess power generated by proposed Fischer Tropsch gas-to-liquids processes and can increase their internal thermal efficiency and reduce capital costs. This project has studied three primary types of low temperature plasma reactor and operating conditions. The organization of this program is shown schematically in the report. Typical small scale laboratory reactor

  13. Superior piezoelectric composite films: taking advantage of carbon nanomaterials.

    PubMed

    Saber, Nasser; Araby, Sherif; Meng, Qingshi; Hsu, Hung-Yao; Yan, Cheng; Azari, Sara; Lee, Sang-Heon; Xu, Yanan; Ma, Jun; Yu, Sirong

    2014-01-31

    Piezoelectric composites comprising an active phase of ferroelectric ceramic and a polymer matrix have recently found numerous sensory applications. However, it remains a major challenge to further improve their electromechanical response for advanced applications such as precision control and monitoring systems. We here investigated the incorporation of graphene platelets (GnPs) and multi-walled carbon nanotubes (MWNTs), each with various weight fractions, into PZT (lead zirconate titanate)/epoxy composites to produce three-phase nanocomposites. The nanocomposite films show markedly improved piezoelectric coefficients and electromechanical responses (50%) besides an enhancement of ~200% in stiffness. The carbon nanomaterials strengthened the impact of electric field on the PZT particles by appropriately raising the electrical conductivity of the epoxy. GnPs have been proved to be far more promising in improving the poling behavior and dynamic response than MWNTs. The superior dynamic sensitivity of GnP-reinforced composite may be caused by the GnPs' high load transfer efficiency arising from their two-dimensional geometry and good compatibility with the matrix. The reduced acoustic impedance mismatch resulting from the improved thermal conductance may also contribute to the higher sensitivity of GnP-reinforced composite. This research pointed out the potential of employing GnPs to develop highly sensitive piezoelectric composites for sensing applications. PMID:24398819

  14. Surface plasmon field enhancements in deterministic aperiodic structures.

    PubMed

    Shugayev, Roman

    2010-11-22

    In this paper we analyze optical properties and plasmonic field enhancements in large aperiodic nanostructures. We introduce extension of Generalized Ohm's Law approach to estimate electromagnetic properties of Fibonacci, Rudin-Shapiro, cluster-cluster aggregate and random deterministic clusters. Our results suggest that deterministic aperiodic structures produce field enhancements comparable to random morphologies while offering better understanding of field localizations and improved substrate design controllability. Generalized Ohm's law results for deterministic aperiodic structures are in good agreement with simulations obtained using discrete dipole method. PMID:21164839

  15. High Power Piezoelectric Characterization for Piezoelectric Transformer Development

    NASA Astrophysics Data System (ADS)

    Ural, Seyit O.

    circuit to leave the resonator in an open circuit condition. The newly introduced open circuits burst have resulted in antiresonance quality factor measurements along with resonance quality factors in a "non-heating" sample. In this technique too, resonance and antiresonance losses showed significant difference. Resonance burst mode characterizations at elevated ambient temperatures have shown that the lower vibration velocity mechanical quality factors appear to be more sensitive to the ambient temperature. Design criteria's to produce the most power dense structure were investigated. Common device shapes were investigated to see which one does enhance the power density of the piezoelectric device. Disk shaped piezoelectric actuators have proven to have lower matching impedances and higher, farther persisting mechanical quality factors with respect to vibration velocities. In order to achieve identical power level, plate shaped samples will have been to strain ~3.5 times more than disk shaped samples. Thus the most power dense structure has been concluded to be a disk shape ~1W/cm3 Once the actuators shape was fixed, further design on structure were conducted with (c)ATILA finite element method. For the transformer application, the design considered following key factors; 1-Controlling the output impedance by optimizing number of layers and layer thicknesses of the multilayer and 2- Evaluation of various electrodes and their affect on high power performance was evaluated. As the thickness of active layers decreased, the number of electrode layers increases. This increase in the metal to piezoelectric ratio and the relative increase in the electrode resistance under high current loads, both will have to be accounted for. Thus; with the piezoelectric composition and the device structure optimized, the research input electrical power. Once the actuators shape was fixed, further design on structure were conducted with (c)ATILA finite element method. For the transformer

  16. An enhancement in the low-field electron mobility associated with a ZnMgO/ZnO heterostructure: The role of a two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Baghani, Erfan; O'Leary, Stephen K.

    2013-07-01

    We determine the role that a two-dimensional electron gas, formed at a ZnMgO/ZnO heterojunction, plays in shaping the corresponding temperature dependence of the low-field electron Hall mobility. This analysis is cast within the framework of the model of Shur et al. [M. Shur et al., J. Electron. Mater. 25, 777 (1996)], and the contributions to the mobility related to the ionized impurity, polar optical phonon, piezoelectric, and acoustic deformation potential scattering processes are considered, the overall mobility being determined through the application of Mathiessen's rule. The best fit to the ZnMgO/ZnO experimental results of Makino et al. [T. Makino et al., Appl. Phys. Lett. 87, 022101 (2005)] is obtained by setting the free electron concentration to 3×1018 cm-3 and the ionized impurity concentration to 1017 cm-3, i.e., within the two-dimensional electron gas formed at the heterojunction, the free electron gas concentration is a factor of 30 times the corresponding ionized impurity concentration. How this enhanced free electron concentration influences the contributions to the low-field electron mobility corresponding to these different scattering processes is also examined. It is found that the enhanced free electron concentration found within the two-dimensional electron gas dramatically decreases the ionized impurity and piezoelectric scattering rates and this is found to increase the overall low-field electron Hall mobility.

  17. Phase coexistence and transformations in field-cooled ternary piezoelectric single crystals near the morphotropic phase boundary

    NASA Astrophysics Data System (ADS)

    Luo, Chengtao; Wang, Yaojin; Wang, Zhiguang; Ge, Wenwei; Li, Jiefang; Luo, Haosu; Viehland, D.

    2014-12-01

    Structural phase transformations in (100)-oriented Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals have been investigated by X-ray diffraction. A cubic (C) → tetragonal (T) → monoclinic-C (MC) transformation sequence was observed in the field-cooled condition. Two phase coexistence regions of C + T and T + MC were found. In addition to an increase in the C → T phase transition temperature and a decrease of the T → MC one, a broadening of the coexistence regions was also found with increasing field. This broadening can be explained by the presence of polar nano regions within the C, T, and MC phase regions.

  18. Formation of Enhanced Uniform Chiral Fields in Symmetric Dimer Nanostructures.

    PubMed

    Tian, Xiaorui; Fang, Yurui; Sun, Mengtao

    2015-01-01

    Chiral fields with large optical chirality are very important in chiral molecules analysis, sensing and other measurements. Plasmonic nanostructures have been proposed to realize such super chiral fields for enhancing weak chiral signals. However, most of them cannot provide uniform chiral near-fields close to the structures, which makes these nanostructures not so efficient for applications. Plasmonic helical nanostructures and blocked squares have been proved to provide uniform chiral near-fields, but structure fabrication is a challenge. In this paper, we show that very simple plasmonic dimer structures can provide uniform chiral fields in the gaps with large enhancement of both near electric fields and chiral fields under linearly polarized light illumination with polarization off the dimer axis at dipole resonance. An analytical dipole model is utilized to explain this behavior theoretically. 30 times of volume averaged chiral field enhancement is gotten in the whole gap. Chiral fields with opposite handedness can be obtained simply by changing the polarization to the other side of the dimer axis. It is especially useful in Raman optical activity measurement and chiral sensing of small quantity of chiral molecule. PMID:26621558

  19. Formation of Enhanced Uniform Chiral Fields in Symmetric Dimer Nanostructures

    PubMed Central

    Tian, Xiaorui; Fang, Yurui; Sun, Mengtao

    2015-01-01

    Chiral fields with large optical chirality are very important in chiral molecules analysis, sensing and other measurements. Plasmonic nanostructures have been proposed to realize such super chiral fields for enhancing weak chiral signals. However, most of them cannot provide uniform chiral near-fields close to the structures, which makes these nanostructures not so efficient for applications. Plasmonic helical nanostructures and blocked squares have been proved to provide uniform chiral near-fields, but structure fabrication is a challenge. In this paper, we show that very simple plasmonic dimer structures can provide uniform chiral fields in the gaps with large enhancement of both near electric fields and chiral fields under linearly polarized light illumination with polarization off the dimer axis at dipole resonance. An analytical dipole model is utilized to explain this behavior theoretically. 30 times of volume averaged chiral field enhancement is gotten in the whole gap. Chiral fields with opposite handedness can be obtained simply by changing the polarization to the other side of the dimer axis. It is especially useful in Raman optical activity measurement and chiral sensing of small quantity of chiral molecule. PMID:26621558

  20. How are Forbush decreases related to interplanetary magnetic field enhancements?

    NASA Astrophysics Data System (ADS)

    Arunbabu, K. P.; Antia, H. M.; Dugad, S. R.; Gupta, S. K.; Hayashi, Y.; Kawakami, S.; Mohanty, P. K.; Oshima, A.; Subramanian, P.

    2015-08-01

    Aims: A Forbush decrease (FD) is a transient decrease followed by a gradual recovery in the observed galactic cosmic ray intensity. We seek to understand the relationship between the FDs and near-Earth interplanetary magnetic field (IMF) enhancements associated with solar coronal mass ejections (CMEs). Methods: We used muon data at cutoff rigidities ranging from 14 to 24 GV from the GRAPES-3 tracking muon telescope to identify FD events. We selected those FD events that have a reasonably clean profile, and magnitude >0.25%. We used IMF data from ACE/WIND spacecrafts. We looked for correlations between the FD profile and that of the one-hour averaged IMF. We wanted to find out whether if the diffusion of high-energy protons into the large scale magnetic field is the cause of the lag observed between the FD and the IMF. Results: The enhancement of the IMF associated with FDs occurs mainly in the shock-sheath region, and the turbulence level in the magnetic field is also enhanced in this region. The observed FD profiles look remarkably similar to the IMF enhancement profiles. The FDs typically lag behind the IMF enhancement by a few hours. The lag corresponds to the time taken by high-energy protons to diffuse into the magnetic field enhancement via cross-field diffusion. Conclusions: Our findings show that high-rigidity FDs associated with CMEs are caused primarily by the cumulative diffusion of protons across the magnetic field enhancement in the turbulent sheath region between the shock and the CME. Appendices are available in electronic form at http://www.aanda.org

  1. Optical and mechanical detection of near-field light by atomic force microscopy using a piezoelectric cantilever

    NASA Astrophysics Data System (ADS)

    Satoh, Nobuo; Kobayashi, Kei; Watanabe, Shunji; Fujii, Toru; Matsushige, Kazumi; Yamada, Hirofumi

    2016-08-01

    In this study, we developed an atomic force microscopy (AFM) system with scanning near-field optical microscopy (SNOM) using a microfabricated force-sensing cantilever with a lead zirconate titanate (PZT) thin film. Both optical and mechanical detection techniques were adopted in SNOM to detect scattered light induced by the interaction of the PZT cantilever tip apex and evanescent light, and SNOM images were obtained for each detection scheme. The mechanical detection technique did allow for a clear observation of the light scattered from the PZT cantilever without the interference observed by the optical detection technique, which used an objective lens, a pinhole, and a photomultiplier tube.

  2. Adaptive piezoelectric sensoriactuator

    NASA Technical Reports Server (NTRS)

    Clark, Jr., Robert L. (Inventor); Vipperman, Jeffrey S. (Inventor); Cole, Daniel G. (Inventor)

    1996-01-01

    An adaptive algorithm implemented in digital or analog form is used in conjunction with a voltage controlled amplifier to compensate for the feedthrough capacitance of piezoelectric sensoriactuator. The mechanical response of the piezoelectric sensoriactuator is resolved from the electrical response by adaptively altering the gain imposed on the electrical circuit used for compensation. For wideband, stochastic input disturbances, the feedthrough capacitance of the sensoriactuator can be identified on-line, providing a means of implementing direct-rate-feedback control in analog hardware. The device is capable of on-line system health monitoring since a quasi-stable dynamic capacitance is indicative of sustained health of the piezoelectric element.

  3. Phase coexistence and transformations in field-cooled ternary piezoelectric single crystals near the morphotropic phase boundary

    SciTech Connect

    Luo, Chengtao; Wang, Yaojin Wang, Zhiguang; Ge, Wenwei; Li, Jiefang; Viehland, D.; Luo, Haosu

    2014-12-08

    Structural phase transformations in (100)-oriented Pb(In{sub 1/2}Nb{sub 1/2})O{sub 3}-Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbTiO{sub 3} single crystals have been investigated by X-ray diffraction. A cubic (C) → tetragonal (T) → monoclinic-C (M{sub C}) transformation sequence was observed in the field-cooled condition. Two phase coexistence regions of C + T and T + M{sub C} were found. In addition to an increase in the C → T phase transition temperature and a decrease of the T → M{sub C} one, a broadening of the coexistence regions was also found with increasing field. This broadening can be explained by the presence of polar nano regions within the C, T, and M{sub C} phase regions.

  4. Design and characterization of piezoelectric ultrasonic motors

    NASA Astrophysics Data System (ADS)

    Yener, Serra

    This thesis presents modeling and prototype fabrication and characterization of new types of piezoelectric ultrasonic micromotors. Our approach in designing these piezoelectric motors was: (i) to simplify the structure including the poling configuration of piezoelectric elements used in the stator and (ii) to reduce the number of components in order to decrease the cost and enhance the driving reliability. There are two different types of piezoelectric motors designed throughout this research. The first of these designs consists of a metal tube, on which two piezoelectric ceramic plates poled in thickness direction, were bonded. Two orthogonal bending modes of the hollow cylinder were superimposed resulting in a rotational vibration. Since the structure and poling configuration of the active piezoelectric elements used in the stator are simple, this motor structure is very suitable for miniaturization. Moreover, a single driving source can excite two bending modes at the same time, thus generate a wobble motion. Three types of prototypes are included in this design. The piezoelectric stator structure is the same for all. However, the dimensions of the motors are reduced by almost 50 percent. Starting with a 10 mm long stator, we reached to 4 mm in the last prototype. The initial diameter was 2.4 mm, which was reduced to 1.6 mm. In the final design, the rotor part of the motor was changed resulting in the reduction in the number of components. In terms of driving circuit, a single driving source was enough to run the motors and a conventional switching power supply type resonant L-C circuit was used. A simple motor structure with a simple driving circuit were combined successfully and fabricated inexpensively. The second design is a shear type piezoelectric linear motor. The behavior of a single rectangular piezoelectric shear plate was analyzed and after optimizing the dimensions and the mode characteristics, a prototype was fabricated. The prototype consists of

  5. Energy collection via Piezoelectricity

    NASA Astrophysics Data System (ADS)

    Naveen Kumar, Ch

    2015-12-01

    In the present days, wireless data transmission techniques are commonly used in electronic devices. For powering them connection needs to be made to the power supply through wires else power may be supplied from batteries. Batteries require charging, replacement and other maintenance efforts. So, some alternative methods need to be developed to keep the batteries full time charged and to avoid the need of any consumable external energy source to charge the batteries. Mechanical energy harvesting utilizes piezoelectric components where deformations produced by different means are directly converted to electrical charge via piezoelectric effect. The proposed work in this research recommends Piezoelectricity as a alternate energy source. The motive is to obtain a pollution-free energy source and to utilize and optimize the energy being wasted. Current work also illustrates the working principle of piezoelectric crystal and various sources of vibration for the crystal.

  6. Dynamics of a piezoelectric tuning fork/optical fiber assembly in a near-field scanning optical microscope

    NASA Astrophysics Data System (ADS)

    Shelimov, Konstantin B.; Davydov, Dmitri N.; Moskovits, Martin

    2000-02-01

    Factors leading to a decrease in the resonance quality (the Q factor) of quartz microtuning fork/optical fiber assemblies used as sensing elements in near-field scanning optical microscopes were considered using a simple elastomechanical analysis. Experiments to test the predictions of the analysis were carried out and strategies for recovering high Q factors were proposed and tested. Three major factors affecting the magnitude of the Q factor are discussed. The first is the stiffness imparted to the tine of the microtuning fork by the optical fiber attached to it; the second is the location of the attachment point of the fiber along the tine; the third is the resonant vibrational excitation of the fiber tip which acts as an energy dissipative channel. For tapping mode operation using a standard 125 μm diameter fiber, the large longitudinal stiffness of the fiber results in a dramatic Q-factor degradation. This effect can be overcome by reducing the diameter of the fiber cladding, d, and by slightly bending the fiber. Under these conditions, bending rather than longitudinal stretching dominates the fiber dynamics. The effective bending force constant for a thinned fiber is predicted to be proportional to d4. A sharp upturn in the Q factor is observed for d⩽25 μm, consistent with this prediction. The effective stiffness and mass of the fiber are also expected to scale approximately as x3, where x is the distance from the point of attachment of the fiber to the fork's base. Hence, the Q factor can be improved further by attaching the fiber closer to the tuning fork's base. Vibrational coupling between the tuning fork and the probe tip can result in a substantial Q-factor degradation for tips of a certain size. By taking these insights into consideration, we were able to construct tapping mode tuning fork/optical fiber assemblies with Q factors of up to 9000.

  7. Piezoelectric Energy Harvesting Solutions

    PubMed Central

    Caliò, Renato; Rongala, Udaya Bhaskar; Camboni, Domenico; Milazzo, Mario; Stefanini, Cesare; de Petris, Gianluca; Oddo, Calogero Maria

    2014-01-01

    This paper reviews the state of the art in piezoelectric energy harvesting. It presents the basics of piezoelectricity and discusses materials choice. The work places emphasis on material operating modes and device configurations, from resonant to non-resonant devices and also to rotational solutions. The reviewed literature is compared based on power density and bandwidth. Lastly, the question of power conversion is addressed by reviewing various circuit solutions. PMID:24618725

  8. Laminated piezoelectric transformer

    NASA Technical Reports Server (NTRS)

    Vazquez Carazo, Alfredo (Inventor)

    2006-01-01

    A laminated piezoelectric transformer is provided using the longitudinal vibration modes for step-up voltage conversion applications. The input portions are polarized to deform in a longitudinal plane and are bonded to an output portion. The deformation of the input portions is mechanically coupled to the output portion, which deforms in the same longitudinal direction relative to the input portion. The output portion is polarized in the thickness direction relative its electrodes, and piezoelectrically generates a stepped-up output voltage.

  9. Directional field enhancement of dielectric nano optical disc antenna arrays

    NASA Astrophysics Data System (ADS)

    Wang, Ivan; Du, Y.

    2011-11-01

    This paper presents a discussion on the directive field enhancement of dielectric disc antenna arrays in optical band. The property of dielectric material is addressed, and field modes in a cylindrical resonator are discussed. It is identified that the fundamental mode of HE 11δ generates the far field with a higher directivity than other modes. More effective field enhancement in the radiation direction could be achieved by using multiple-disc antenna arrays. Simulation examples indicate that the directivity of a disc antenna array varies with the disc spacing. The maximum directivity is observed when the disc spacing is approximately equal to the half of the vacuum wavelength. The maximum directivity can be improved significantly when the disc number is increased.

  10. Giant piezoelectricity of monolayer group IV monochalcogenides

    NASA Astrophysics Data System (ADS)

    Fei, Ruixiang; Li, Wenbin; Li, Ju; Yang, Li

    We predict enormous, anisotropic piezoelectric effects in intrinsic monolayer group IV monochalcogenides (MX, M =Sn or Ge, X =Se or S), including SnSe, SnS, GeSe, and GeS. Using first-principle simulations based on the modern theory of polarization, we find that their piezoelectric coefficients are about one to two orders of magnitude larger than those of other 2D materials, such as MoS2 and GaSe, and bulk quartz and AlN which are widely used in industry. This enhancement is a result of the unique ``puckered'' C2v symmetry and electronic structure of monolayer group IV monochalcogenides. Given the achieved experimental advances in the fabrication of monolayers, their flexible character, and ability to withstand enormous strain, these 2D structures with giant piezoelectric effects may be promising for a broad range of applications such as nano-sized sensors, piezotronics, and energy harvesting in portable electronic devices.

  11. Stretchable piezoelectric nanocomposite generator

    NASA Astrophysics Data System (ADS)

    Park, Kwi-Il; Jeong, Chang Kyu; Kim, Na Kyung; Lee, Keon Jae

    2016-06-01

    Piezoelectric energy conversion that generate electric energy from ambient mechanical and vibrational movements is promising energy harvesting technology because it can use more accessible energy resources than other renewable natural energy. In particular, flexible and stretchable piezoelectric energy harvesters which can harvest the tiny biomechanical motions inside human body into electricity properly facilitate not only the self-powered energy system for flexible and wearable electronics but also sensitive piezoelectric sensors for motion detectors and in vivo diagnosis kits. Since the piezoelectric ZnO nanowires (NWs)-based energy harvesters (nanogenerators) were proposed in 2006, many researchers have attempted the nanogenerator by using the various fabrication process such as nanowire growth, electrospinning, and transfer techniques with piezoelectric materials including polyvinylidene fluoride (PVDF) polymer and perovskite ceramics. In 2012, the composite-based nanogenerators were developed using simple, low-cost, and scalable methods to overcome the significant issues with previously-reported energy harvester, such as insufficient output performance and size limitation. This review paper provides a brief overview of flexible and stretchable piezoelectric nanocomposite generator for realizing the self-powered energy system with development history, power performance, and applications.

  12. Surfactant-enhanced alkaline flooding field project. Annual report, Revision

    SciTech Connect

    French, T.R.

    1991-10-01

    The Tucker sand of Helper (KS) field is a candidate for surfactant-enhanced alkaline flooding. The geology of the Helper site is typical of many DOE Class I reservoirs. The Tucker sand of Helper field was deposited in a fluvial dominated deltaic environment. Helper oil can be mobilized with either chemical system 2 or chemical system 3, as described in this report. Oil fields in the Gulf Coast region are also good candidates for surfactant-enhanced alkaline flooding. The results from laboratory tests conducted in Berea sandstone cores with oil brine from Helper (KS) field are encouraging. The crude oil is viscous and non-acidic and, yet, was mobilized by the chemical formulations described in this report. Significant amounts of the oil were mobilized under simulated reservoir conditions. The results in Berea sandstone cores were encouraging and should be verified by tests with field core. Consumption of alkali, measured with field core, was very low. Surfactant loss appeared to be acceptable. Despite the good potential for mobilization of Helper oil, certain reservoir characteristics such as low permeability, compartmentalization, and shallow depth place constraints on applications of any chemical system in the Tucker sand. These constraints are typical of many DOE Class I reservoirs. Although Hepler field is not a perfect reservoir in which to apply surfactant- enhanced alkaline flooding, Hepler oil is particularly amenable to mobilization by surfactant-enhanced alkaline systems. A field test is recommended, dependent upon final evaluation of well logs and cores from the proposed pilot area. 14 refs., 21 figs., 10 tabs.

  13. Piezoelectrically Initiated Pyrotechnic Igniter

    NASA Technical Reports Server (NTRS)

    Quince, Asia; Dutton, Maureen; Hicks, Robert; Burnham, Karen

    2013-01-01

    This innovation consists of a pyrotechnic initiator and piezoelectric initiation system. The device will be capable of being initiated mechanically; resisting initiation by EMF, RF, and EMI (electromagnetic field, radio frequency, and electromagnetic interference, respectively); and initiating in water environments and space environments. Current devices of this nature are initiated by the mechanical action of a firing pin against a primer. Primers historically are prone to failure. These failures are commonly known as misfires or hang-fires. In many cases, the primer shows the dent where the firing pin struck the primer, but the primer failed to fire. In devices such as "T" handles, which are commonly used to initiate the blowout of canopies, loss of function of the device may result in loss of crew. In devices such as flares or smoke generators, failure can result in failure to spot a downed pilot. The piezoelectrically initiated ignition system consists of a pyrotechnic device that plugs into a mechanical system (activator), which on activation, generates a high-voltage spark. The activator, when released, will strike a stack of electrically linked piezo crystals, generating a high-voltage, low-amperage current that is then conducted to the pyro-initiator. Within the initiator, an electrode releases a spark that passes through a pyrotechnic first-fire mixture, causing it to combust. The combustion of the first-fire initiates a primary pyrotechnic or explosive powder. If used in a "T" handle, the primary would ramp the speed of burn up to the speed of sound, generating a shock wave that would cause a high explosive to go "high order." In a flare or smoke generator, the secondary would produce the heat necessary to ignite the pyrotechnic mixture. The piezo activator subsystem is redundant in that a second stack of crystals would be struck at the same time with the same activation force, doubling the probability of a first strike spark generation. If the first

  14. Helicity sensitive enhancement of strong-field ionization in circularly polarized laser fields.

    PubMed

    Zhu, Xiaosong; Lan, Pengfei; Liu, Kunlong; Li, Yang; Liu, Xi; Zhang, Qingbin; Barth, Ingo; Lu, Peixiang

    2016-02-22

    We investigate the strong-field ionization from p± orbitals driven by circularly polarized laser fields by solving the two-dimensional time-dependent Schrödinger equation in polar coordinates with the Lagrange mesh technique. Enhancement of ionization is found in the deep multiphoton ionization regime when the helicity of the laser field is opposite to that of the p electron, while this enhancement is suppressed when the helicities are the same. It is found that the enhancement of ionization is attributed to the multiphoton resonant excitation. The helicity sensitivity of the resonant enhancement is related to the different excitation-ionization channels in left and right circularly polarized laser fields. PMID:26907068

  15. Enhanced gauge symmetry and winding modes in double field theory

    NASA Astrophysics Data System (ADS)

    Aldazabal, G.; Graña, M.; Iguri, S.; Mayo, M.; Nuñez, C.; Rosabal, J. A.

    2016-03-01

    We provide an explicit example of how the string winding modes can be incorporated in double field theory. Our guiding case is the closed bosonic string compactified on a circle of radius close to the self-dual point, where some modes with non-zero winding or discrete momentum number become massless and enhance the U(1) × U(1) symmetry to SU(2) × SU(2). We compute three-point string scattering amplitudes of massless and slightly massive states, and extract the corresponding effective low energy gauge field theory. The enhanced gauge symmetry at the self-dual point and the Higgs-like mechanism arising when changing the compactification radius are examined in detail. The extra massless fields associated to the enhancement are incorporated into a generalized frame with Oleft(d+3,d+3right)/Oleft(d+3right)× Oleft(d+3right) structure, where d is the number of non-compact dimensions. We devise a consistent double field theory action that reproduces the low energy string effective action with enhanced gauge symmetry. The construction requires a truly non-geometric frame which explicitly depends on both the compact coordinate along the circle and its dual.

  16. Enhancing Field Research Methods with Mobile Survey Technology

    ERIC Educational Resources Information Center

    Glass, Michael R.

    2015-01-01

    This paper assesses the experience of undergraduate students using mobile devices and a commercial application, iSurvey, to conduct a neighborhood survey. Mobile devices offer benefits for enhancing student learning and engagement. This field exercise created the opportunity for classroom discussions on the practicalities of urban research, the…

  17. Field Enhanced Thermionic Electron Emission from Oxide Coated Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Day, Christopher; Jin, Feng; Liu, Yan; Little, Scott

    2006-03-01

    We have created a novel nanostructure by coating carbon nanotubes with a thin functional oxide layer. The structure was fabricated by sputter deposition of a thin film of oxide materials on aligned carbon nanotubes, which were grown on a tungsten substrate with plasma enhanced chemical vapor deposition. This structure combines the low work function of the oxide coating with a high field enhancement factor introduced by carbon nanotubes and we have demonstrated that it can be used as a highly efficient electron source. A field enhancement factor as high as 2000 was observed and thermionic electron emission current at least an order of magnitude higher than the emission from a conventional oxide cathode was obtained.

  18. Tip-enhanced Raman spectroscopy and near-field polarization

    NASA Astrophysics Data System (ADS)

    Saito, Yuika; Mino, Toshihiro; Verma, Prabhat

    2015-12-01

    Tip-enhanced Raman spectroscopy (TERS) is a powerful tool for High-resolution Raman spectroscopy. In this method, a metal coated nano-tip acts as a plasmonic antenna to enhance the originally weak Raman scattering from a nanometric volume of a sample. The technique enables to detect Raman scattering light from nano-scale area and also enhance the light intensity with combination of near-filed light and localized surface plasmon generated at a metallized tip apex. Nowadays TERS is used to investigate various nano-scale samples, for examples, carbon nanotubes, graphenes DNA and biomaterials. As the TERS developed, there is high demand to investigate the properties of near-field light e.g. polarization properties. We have analyzed the polarization properties of near-field light in TERS and successfully realized the quantitative nano-imaging by visible light.

  19. Piezoelectric and magnetoelectric thick films for fabricating power sources in wireless sensor nodes.

    PubMed

    Priya, Shashank; Ryu, Jungho; Park, Chee-Sung; Oliver, Josiah; Choi, Jong-Jin; Park, Dong-Soo

    2009-01-01

    In this manuscript, we review the progress made in the synthesis of thick film-based piezoelectric and magnetoelectric structures for harvesting energy from mechanical vibrations and magnetic field. Piezoelectric compositions in the system Pb(Zr,Ti)O(3)-Pb(Zn(1/3)Nb(2/3))O(3) (PZNT) have shown promise for providing enhanced efficiency due to higher energy density and thus form the base of transducers designed for capturing the mechanical energy. Laminate structures of PZNT with magnetostrictive ferrite materials provide large magnitudes of magnetoelectric coupling and are being targeted to capture the stray magnetic field energy. We analyze the models used to predict the performance of the energy harvesters and present a full system description. PMID:22454590

  20. Piezoelectric and Magnetoelectric Thick Films for Fabricating Power Sources in Wireless Sensor Nodes

    PubMed Central

    Priya, Shashank; Ryu, Jungho; Park, Chee-Sung; Oliver, Josiah; Choi, Jong-Jin; Park, Dong-Soo

    2009-01-01

    In this manuscript, we review the progress made in the synthesis of thick film-based piezoelectric and magnetoelectric structures for harvesting energy from mechanical vibrations and magnetic field. Piezoelectric compositions in the system Pb(Zr,Ti)O3–Pb(Zn1/3Nb2/3)O3 (PZNT) have shown promise for providing enhanced efficiency due to higher energy density and thus form the base of transducers designed for capturing the mechanical energy. Laminate structures of PZNT with magnetostrictive ferrite materials provide large magnitudes of magnetoelectric coupling and are being targeted to capture the stray magnetic field energy. We analyze the models used to predict the performance of the energy harvesters and present a full system description. PMID:22454590

  1. Electric field induced lattice strain in pseudocubic Bi(Mg1/2Ti1/2)O3-modified BaTiO3-BiFeO3 piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Fujii, Ichiro; Iizuka, Ryo; Nakahira, Yuki; Sunada, Yuya; Ueno, Shintaro; Nakashima, Kouichi; Magome, Eisuke; Moriyoshi, Chikako; Kuroiwa, Yoshihiro; Wada, Satoshi

    2016-04-01

    Contributions to the piezoelectric response in pseudocubic 0.3BaTiO3-0.1Bi(Mg1/2Ti1/2)O3-0.6BiFeO3 ceramics were investigated by synchrotron X-ray diffraction under electric fields. All of the lattice strain determined from the 110, 111, and 200 pseudocubic diffraction peaks showed similar lattice strain hysteresis that was comparable to the bulk butterfly-like strain curve. It was suggested that the hysteresis of the lattice strain and the lack of anisotropy were related to the complex domain structure and the phase boundary composition.

  2. Towards field malaria diagnosis using surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Keren; Xiong, Aoli; Yuen, Clement; Preiser, Peter; Liu, Quan

    2016-04-01

    We report three strategies of surface enhanced Raman spectroscopy (SERS) for β-hematin and hemozoin detection in malaria infected human blood, which can be potentially developed for field malaria diagnosis. In the first strategy, we used silver coated magnetic nanoparticles (Fe3O4@Ag) in combination with an external magnetic field to enhance the Raman signal of β-hematin. Then we developed two SERS methods without the requirement of magnetic field for malaria infection diagnosis. In Method 1, silver nanoparticles were synthesized separately and then mixed with lysed blood just like in traditional SERS measurements; while in Method 2, we developed an ultrasensitive SERS method by synthesizing silver nanoparticles directly inside the parasites of Plasmodium falciparum. Method 2 can be also used to detect single parasites in the ring stage.

  3. Passively Damped Laminated Piezoelectric Shell Structures with Integrated Electric Networks

    NASA Technical Reports Server (NTRS)

    Saravanos, Dimitris A.

    1999-01-01

    Multi-field mechanics are presented for curvilinear piezoelectric laminates interfaced with distributed passive electric components. The equations of motion for laminated piezoelectric shell structures with embedded passive electric networks are directly formulated and solved using a finite element methodology. The modal damping and frequencies of the piezoelectric shell are calculated from the poles of the system. Experimental and numerical results are presented for the modal damping and frequency of composite beams with a resistively shunted piezoceramic patch. The modal damping and frequency of plates, cylindrical shells and cylindrical composite blades with piezoelectric-resistor layers are predicted. Both analytical and experimental studies illustrate a unique dependence of modal damping and frequencies on the shunting resistance and show the effect of structural shape and curvature on piezoelectric damping.

  4. Piezoelectric Ceramics and Their Applications

    ERIC Educational Resources Information Center

    Flinn, I.

    1975-01-01

    Describes the piezoelectric effect in ceramics and presents a quantitative representation of this effect. Explains the processes involved in the manufacture of piezoelectric ceramics, the materials used, and the situations in which they are applied. (GS)

  5. Piezoelectric Templates - New Views on Biomineralization and Biomimetics.

    PubMed

    Stitz, Nina; Eiben, Sabine; Atanasova, Petia; Domingo, Neus; Leineweber, Andreas; Burghard, Zaklina; Bill, Joachim

    2016-01-01

    Biomineralization in general is based on electrostatic interactions and molecular recognition of organic and inorganic phases. These principles of biomineralization have also been utilized and transferred to bio-inspired synthesis of functional materials during the past decades. Proteins involved in both, biomineralization and bio-inspired processes, are often piezoelectric due to their dipolar character hinting to the impact of a template's piezoelectricity on mineralization processes. However, the piezoelectric contribution on the mineralization process and especially the interaction of organic and inorganic phases is hardly considered so far. We herein report the successful use of the intrinsic piezoelectric properties of tobacco mosaic virus (TMV) to synthesize piezoelectric ZnO. Such films show a two-fold increase of the piezoelectric coefficient up to 7.2 pm V(-1) compared to films synthesized on non-piezoelectric templates. By utilizing the intrinsic piezoelectricity of a biotemplate, we thus established a novel synthesis pathway towards functional materials, which sheds light on the whole field of biomimetics. The obtained results are of even broader and general interest since they are providing a new, more comprehensive insight into the mechanisms involved into biomineralization in living nature. PMID:27212583

  6. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun

    2009-01-01

    The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

  7. Localized plasmonic field enhancement in shaped graphene nanoribbons.

    PubMed

    Xia, Sheng-Xuan; Zhai, Xiang; Wang, Ling-Ling; Lin, Qi; Wen, Shuang-Chun

    2016-07-25

    Graphene nanoribbon (GNR), as a fundamental component to support the surface plasmon waves, are envisioned to play an important role in graphene plasmonics. However, to achieve extremely confinement of the graphene surface plasmons (GSPs) is still a challenging. Here, we propose a scheme to realize the excitation of localized surface plasmons with very strong field enhancement at the resonant frequency. By sinusoidally patterning the boundaries of GNRs, a new type of plasmon mode with field energy concentrated on the shaped grating crest (crest mode) can be efficiently excited, creating a sharp notch on the transmission spectra. Specifically, the enhanced field energies are featured by 3 times of magnitude stronger than that of the unpatterned classical GNRs. Through theoretical analyses and numerical calculations, we confirm that the enhanced fields of the crest modes can be tuned not only by changing the width, period and Fermi energy as traditional ribbons, but also by varying the grating amplitude and period. This new technique of manipulating the light-graphene interaction gives an insight of modulating plasmon resonances on graphene nanostrutures, making the proposed pattern method an attractive candidate for designing optical filters, spatial light modulators, and other active plasmonic devices. PMID:27464087

  8. Enhanced shot noise in carbon nanotube field-effect transistors

    SciTech Connect

    Betti, A.; Fiori, G.; Iannaccone, G.

    2009-12-21

    We predict shot noise enhancement in defect-free carbon nanotube field-effect transistors through a numerical investigation based on the self-consistent solution of the Poisson and Schroedinger equations within the nonequilibrium Green's functions formalism, and on a Monte Carlo approach to reproduce injection statistics. Noise enhancement is due to the correlation between trapping of holes from the drain into quasibound states in the channel and thermionic injection of electrons from the source, and can lead to an appreciable Fano factor of 1.22 at room temperature.

  9. Tip-enhanced near-field optical microscopy

    PubMed Central

    Mauser, Nina; Hartschuh, Achim

    2013-01-01

    Tip-enhanced near-field optical microscopy (TENOM) is a scanning probe technique capable of providing a broad range of spectroscopic information on single objects and structured surfaces at nanometer spatial resolution and with highest detection sensitivity. In this review, we first illustrate the physical principle of TENOM that utilizes the antenna function of a sharp probe to efficiently couple light to excitations on nanometer length scales. We then discuss the antenna-induced enhancement of different optical sample responses including Raman scattering, fluorescence, generation of photocurrent and electroluminescence. Different experimental realizations are presented and several recent examples that demonstrate the capabilities of the technique are reviewed. PMID:24100541

  10. Overview of NASA Langley's Piezoelectric Ceramic Packaging Technology and Applications

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G.

    2007-01-01

    Over the past decade, NASA Langley Research Center (LaRC) has developed several actuator packaging concepts designed to enhance the performance of commercial electroactive ceramics. NASA LaRC focused on properly designed actuator and sensor packaging for the following reasons, increased durability, protect the working material from the environment, allow for proper mechanical and electrical contact, afford "ready to use" mechanisms that are scalable, and develop fabrication methodology applicable to any active material of the same physical class. It is more cost effective to enhance or tailor the performance of existing systems, through innovative packaging, than to develop, test and manufacture new materials. This approach led to the development of several solid state actuators that include THUNDER, the Macrofiber Composite or (MFC) and the Radial Field Diaphragm or (RFD). All these actuators are fabricated using standard materials and processes derived from earlier concepts. NASA s fabrication and packaging technology as yielded, piezoelectric actuators and sensors that are easy to implement, reliable, consistent in properties, and of lower cost to manufacture in quantity, than their predecessors (as evidenced by their continued commercial availability.) These piezoelectric actuators have helped foster new research and development in areas involving computational modeling, actuator specific refinements, and engineering system redesign which led to new applications for piezo-based devices that replace traditional systems currently in use.

  11. ZAP - enhanced PCA sky subtraction for integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Soto, Kurt T.; Lilly, Simon J.; Bacon, Roland; Richard, Johan; Conseil, Simon

    2016-05-01

    We introduce Zurich Atmosphere Purge (ZAP), an approach to sky subtraction based on principal component analysis (PCA) that we have developed for the Multi Unit Spectrographic Explorer (MUSE) integral field spectrograph. ZAP employs filtering and data segmentation to enhance the inherent capabilities of PCA for sky subtraction. Extensive testing shows that ZAP reduces sky emission residuals while robustly preserving the flux and line shapes of astronomical sources. The method works in a variety of observational situations from sparse fields with a low density of sources to filled fields in which the target source fills the field of view. With the inclusion of both of these situations, the method is generally applicable to many different science cases and should also be useful for other instrumentation. ZAP is available for download at http://muse-vlt.eu/science/tools.

  12. Enhanced field emission of plasma treated multilayer graphene

    SciTech Connect

    Khare, Ruchita T.; More, Mahendra A.; Gelamo, Rogerio V.; Late, Dattatray J. E-mail: csrout@iitbbs.ac.in; Rout, Chandra Sekhar E-mail: csrout@iitbbs.ac.in

    2015-09-21

    Electron emission properties of multilayer graphene (MLG) prepared by a facile exfoliation technique have been studied. Effect of CO{sub 2} Ar, N{sub 2}, plasma treatment was studied using Raman spectroscopy and investigated for field emission based application. The CO{sub 2} plasma treated multilayer graphene shows an enhanced field emission behavior with a low turn on field of 0.18 V/μm and high emission current density of 1.89 mA/cm{sup 2} at an applied field of 0.35 V/μm. Further the plasma treated MLG exhibits excellent current stability at a lower and higher emission current value.

  13. Enhancement of fast electron energy deposition by external magnetic fields

    NASA Astrophysics Data System (ADS)

    Honrubia, J. J.; Murakami, M.; Mima, K.; Johzaki, T.; Sunahara, A.; Nagatomo, H.; Fujioka, S.; Shiraga, H.; Azechi, H.

    2016-03-01

    Recently, generation of external magnetic fields of a few kT has been reported [Fujioka et al. Scientific Reports 2013 3 1170]. These fields can be used in fast ignition to mitigate the large fast electron divergence. In this summary, two fast ignition applications are briefly outlined. The first one deals with electron guiding by external B-fields applied at the end of the shell implosion of a re-entrant cone target. Preliminary results show that the B-field strength at the time of peak ρR may be sufficiently high for fast electron guiding. The second application deals with guiding of fast electrons in magnetized wires surrounded by plasma. Results show a significant enhancement of electron energy deposition at the end of the wire, which is particularly important for low-Z wires.

  14. Stable dielectric charge distributions from field enhancement of secondary mission

    NASA Technical Reports Server (NTRS)

    Robinson, J. W.

    1979-01-01

    The emission of secondary electrons from dielectrics subject to numerous effects of electric field which are experimentally difficult to control is discussed. Measurements are reported using pulse techniques such that local fields do not build to significant levels, but measurements with fields present are also of interest. A specific series of measurements under controlled conditions are described and their implications in terms of fields, magnitude and angle, near the dielectric surface were examined. The measurements were made for a charged fluorinated-ethylene-propylene surface near a grounded aluminum half-round resting on the surface. The geometry produced a stable surface-charge gradient being controlled by a strongly enhanced secondary emission for which a model is constructed. Observations of surface flashovers under various conditions confirm the predictions of some scaling exercises.

  15. Could Radiotherapy Effectiveness Be Enhanced by Electromagnetic Field Treatment?

    PubMed Central

    Francisco, Artacho-Cordón; del Mar, Salinas-Asensio María; Irene, Calvente; Sandra, Ríos-Arrabal; Josefa, León; Elisa, Román-Marinetto; Nicolás, Olea; Isabel, Núñez María

    2013-01-01

    One of the main goals in radiobiology research is to enhance radiotherapy effectiveness without provoking any increase in toxicity. In this context, it has been proposed that electromagnetic fields (EMFs), known to be modulators of proliferation rate, enhancers of apoptosis and inductors of genotoxicity, might control tumor recruitment and, thus, provide therapeutic benefits. Scientific evidence shows that the effects of ionizing radiation on cellular compartments and functions are strengthened by EMF. Although little is known about the potential role of EMFs in radiotherapy (RT), the radiosensitizing effect of EMFs described in the literature could support their use to improve radiation effectiveness. Thus, we hypothesized that EMF exposure might enhance the ionizing radiation effect on tumor cells, improving the effects of RT. The aim of this paper is to review reports of the effects of EMFs in biological systems and their potential therapeutic benefits in radiotherapy. PMID:23867611

  16. Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy.

    PubMed

    Li, Yiye; Wen, Tao; Zhao, Ruifang; Liu, Xixi; Ji, Tianjiao; Wang, Hai; Shi, Xiaowei; Shi, Jian; Wei, Jingyan; Zhao, Yuliang; Wu, Xiaochun; Nie, Guangjun

    2014-11-25

    Near-infrared plasmonic nanoparticles demonstrate great potential in disease theranostic applications. Herein a nanoplatform, composed of mesoporous silica-coated gold nanorods (AuNRs), is tailor-designed to optimize the photodynamic therapy (PDT) for tumor based on the plasmonic effect. The surface plasmon resonance of AuNRs was fine-tuned to overlap with the exciton absorption of indocyanine green (ICG), a near-infrared photodynamic dye with poor photostability and low quantum yield. Such overlap greatly increases the singlet oxygen yield of incorporated ICG by maximizing the local field enhancement, and protecting the ICG molecules against photodegradation by virtue of the high absorption cross section of the AuNRs. The silica shell strongly increased ICG payload with the additional benefit of enhancing ICG photostability by facilitating the formation of ICG aggregates. As-fabricated AuNR@SiO2-ICG nanoplatform enables trimodal imaging, near-infrared fluorescence from ICG, and two-photon luminescence/photoacoustic tomography from the AuNRs. The integrated strategy significantly improved photodynamic destruction of breast tumor cells and inhibited the growth of orthotopic breast tumors in mice, with mild laser irradiation, through a synergistic effect of PDT and photothermal therapy. Our study highlights the effect of local field enhancement in PDT and demonstrates the importance of systematic design of nanoplatform to greatly enhancing the antitumor efficacy. PMID:25375193

  17. Piezoelectric allostery of protein.

    PubMed

    Ohnuki, Jun; Sato, Takato; Takano, Mitsunori

    2016-07-01

    Allostery is indispensable for a protein to work, where a locally applied stimulus is transmitted to a distant part of the molecule. While the allostery due to chemical stimuli such as ligand binding has long been studied, the growing interest in mechanobiology prompts the study of the mechanically stimulated allostery, the physical mechanism of which has not been established. By molecular dynamics simulation of a motor protein myosin, we found that a locally applied mechanical stimulus induces electrostatic potential change at distant regions, just like the piezoelectricity. This novel allosteric mechanism, "piezoelectric allostery", should be of particularly high value for mechanosensor/transducer proteins. PMID:27575163

  18. Piezoelectric allostery of protein

    NASA Astrophysics Data System (ADS)

    Ohnuki, Jun; Sato, Takato; Takano, Mitsunori

    2016-07-01

    Allostery is indispensable for a protein to work, where a locally applied stimulus is transmitted to a distant part of the molecule. While the allostery due to chemical stimuli such as ligand binding has long been studied, the growing interest in mechanobiology prompts the study of the mechanically stimulated allostery, the physical mechanism of which has not been established. By molecular dynamics simulation of a motor protein myosin, we found that a locally applied mechanical stimulus induces electrostatic potential change at distant regions, just like the piezoelectricity. This novel allosteric mechanism, "piezoelectric allostery", should be of particularly high value for mechanosensor/transducer proteins.

  19. Enhancement of antibacterial properties of Ag nanorods by electric field

    NASA Astrophysics Data System (ADS)

    Akhavan, Omid; Ghaderi, Elham

    2009-01-01

    The effect of an electric field on the antibacterial activity of columnar aligned silver nanorods was investigated. Silver nanorods with a polygonal cross section, a width of 20-60 nm and a length of 260-550 nm, were grown on a titanium interlayer by applying an electric field perpendicular to the surface of a Ag/Ti/Si(100) thin film during its heat treatment at 700 °C in an Ar+H2 environment. The optical absorption spectrum of the silver nanorods exhibited two peaks at wavelengths of 350 and 395 nm corresponding to the main surface plasmon resonance bands of the one-dimensional silver nanostructures. It was found that the silver nanorods with an fcc structure were bounded mainly by {100} facets. The antibacterial activity of the silver nanorods against Escherichia coli bacteria was evaluated at various electric fields applied in the direction of the nanorods without any electrical connection between the nanorods and the capacitor plates producing the electric field. Increasing the electric field from 0 to 50 V cm-1 resulted in an exponential increase in the relative rate of reduction of the bacteria from 3.9×10-2 to 10.5×10-2 min-1. This indicates that the antibacterial activity of silver nanorods can be enhanced by applying an electric field, for application in medical and food-preserving fields.

  20. Modeling of Nanoparticle-Mediated Electric Field Enhancement Inside Biological Cells Exposed to AC Electric Fields

    NASA Astrophysics Data System (ADS)

    Tiwari, Pawan K.; Kang, Sung Kil; Kim, Gon Jun; Choi, Jun; Mohamed, A.-A. H.; Lee, Jae Koo

    2009-08-01

    We present in this article the effect of alternating electric field at kilohertz (kHz) and megahertz (MHz) frequencies on the biological cells in presence and absence of nanoparticles. The induced electric field strength distribution in the region around cell membrane and nucleus envelope display different behavior at kHz and MHz frequencies. The attachment of gold nanoparticles (GNPs), especially gold nanowires around the surface of nucleus induce enhanced electric field strengths. The induced field strengths are dependent on the length of nanowire and create varying field regions when the length of nanowire is increased from 2 to 4 µm. The varying nanowire length increased the induced field strengths inside nucleoplasm and region adjacent to the nucleus in the cytoplasm. We investigated a process of electrostatic disruption of nucleus membrane when the induced electric field strength across the nucleus exceeds its tensile strength.

  1. Piezoelectric MEMS for energy harvesting

    NASA Astrophysics Data System (ADS)

    Kanno, Isaku

    2015-12-01

    Recently, piezoelectric MEMS have been intensively investigated to create new functional microdevices, and some of them have already been commercialized such as MEMS gyrosensors or miropumps of inkjet printer head. Piezoelectric energy harvesting is considered to be one of the promising future applications of piezoelectric MEMS. In this report, we introduce the deposition of the piezoelectric PZT thin films as well as lead-free KNN thin films. We fabricated piezoelectric energy harvesters of PZT and KNN thin films deposited on stainless steel cantilevers and compared their power generation performance.

  2. Intrinsic space charge layers and field enhancement in ferroelectric nanojunctions

    SciTech Connect

    Cao, Ye; Ievlev, Anton V.; Morozovska, Anna N.; Chen, Long-Qing; Kalinin, Sergei V.; Maksymovych, Petro

    2015-07-13

    The conducting characteristics of topological defects in the ferroelectric materials, such as charged domain walls in ferroelectric materials, engendered broad interest and extensive study on their scientific merit and the possibility of novel applications utilizing domain engineering. At the same time, the problem of electron transport in ferroelectrics themselves still remains full of unanswered questions, and becomes still more relevant over the impending revival of interest in ferroelectric semiconductors and new improper ferroelectric materials. We have employed self-consistent phase-field modeling to investigate the physical properties of a local metal-ferroelectric (Pb(Zr0.2Ti0.8)O3) junction in applied electric field. We revealed an up to 10-fold local field enhancement realized by large polarization gradient and over-polarization effects once the inherent non-linear dielectric properties of PZT are considered. The effect is independent of bias polarity and maintains its strength prior, during and after ferroelectric switching. The local field enhancement can be considered equivalent to increase of doping level, which will give rise to reduction of the switching bias and significantly smaller voltages to charge injection and electronic injection, electrochemical and photoelectrochemical processes.

  3. Intrinsic space charge layers and field enhancement in ferroelectric nanojunctions

    SciTech Connect

    Cao, Ye; Ievlev, Anton V.; Kalinin, Sergei V.; Maksymovych, Petro; Morozovska, Anna N.; Chen, Long-Qing

    2015-07-13

    Conducting characteristics of topological defects in ferroelectric materials, such as charged domain walls, engendered a broad interest on their scientific merit and the possibility of novel applications utilizing domain engineering. At the same time, the problem of electron transport in ferroelectrics still remains full of unanswered questions and becomes yet more relevant over the growing interest in ferroelectric semiconductors and new improper ferroelectric materials. We have employed self-consistent phase-field modeling to investigate the physical properties of a local metal-ferroelectric (Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}) junction in applied electric field. We revealed an up to 10-fold local enhancement of electric field realized by large polarization gradient and over-polarization effects due to inherent non-linear dielectric properties of Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}. The effect is independent of bias polarity and maintains its strength prior, during and after ferroelectric switching. The observed field enhancement can be considered on similar grounds as increased doping level, giving rise to reduced switching bias and threshold voltages for charge injection, electrochemical and photoelectrochemical processes.

  4. Intrinsic space charge layers and field enhancement in ferroelectric nanojunctions

    DOE PAGESBeta

    Cao, Ye; Ievlev, Anton V.; Morozovska, Anna N.; Chen, Long-Qing; Kalinin, Sergei V.; Maksymovych, Petro

    2015-07-13

    The conducting characteristics of topological defects in the ferroelectric materials, such as charged domain walls in ferroelectric materials, engendered broad interest and extensive study on their scientific merit and the possibility of novel applications utilizing domain engineering. At the same time, the problem of electron transport in ferroelectrics themselves still remains full of unanswered questions, and becomes still more relevant over the impending revival of interest in ferroelectric semiconductors and new improper ferroelectric materials. We have employed self-consistent phase-field modeling to investigate the physical properties of a local metal-ferroelectric (Pb(Zr0.2Ti0.8)O3) junction in applied electric field. We revealed an up tomore » 10-fold local field enhancement realized by large polarization gradient and over-polarization effects once the inherent non-linear dielectric properties of PZT are considered. The effect is independent of bias polarity and maintains its strength prior, during and after ferroelectric switching. The local field enhancement can be considered equivalent to increase of doping level, which will give rise to reduction of the switching bias and significantly smaller voltages to charge injection and electronic injection, electrochemical and photoelectrochemical processes.« less

  5. Enhanced cosmic ray anisotropies and the extended solar magnetic field

    SciTech Connect

    Swinson, D.B.; Saito, T.; Mori, S.

    1981-10-01

    Saito's two-hemisphere model for the three-dimensional magnetic structure of the inner heliomagnetosphere is used to determine the orientation of the two solar magnetic hemispheres. This orientation, as viewed from the earth, varies throughout the year. The orientations during 1974 are presented and are confirmed by satellite data for the interplanetary magnetic field. These data suggest a role for the field component perpendicular to the ecliptic plane B/sub z/ in giving rise to cosmic ray anisotropies detected at the earth. It is shown that an enhanced solar diurnal variation in cosmic ray intensity at the earth can arise from the constructive interference of three cosmic ray anisotropies, two of which depend on the direction of the interplanetary magnetic field. This is demonstrated by using cosmic ray data from the Nagaya muon telescope and underground muon telescopes in Bolivia, Embudo (New Mexico), and Socorro (New Mexico).

  6. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces.

    PubMed

    Miljkovic, Nenad; Preston, Daniel J; Enright, Ryan; Wang, Evelyn N

    2013-12-23

    When condensed droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump due to the conversion of excess surface energy into kinetic energy. This phenomenon has been shown to enhance condensation heat transfer by up to 30% compared to state-of-the-art dropwise condensing surfaces. However, after the droplets jump away from the surface, the existence of the vapor flow toward the condensing surface increases the drag on the jumping droplets, which can lead to complete droplet reversal and return to the surface. This effect limits the possible heat transfer enhancement because larger droplets form upon droplet return to the surface, which impedes heat transfer until they can be either removed by jumping again or finally shedding via gravity. By characterizing individual droplet trajectories during condensation on superhydrophobic nanostructured copper oxide (CuO) surfaces, we show that this vapor flow entrainment dominates droplet motion for droplets smaller than R ≈ 30 μm at moderate heat fluxes (q″ > 2 W/cm(2)). Subsequently, we demonstrate electric-field-enhanced condensation, whereby an externally applied electric field prevents jumping droplet return. This concept leverages our recent insight that these droplets gain a net positive charge due to charge separation of the electric double layer at the hydrophobic coating. As a result, with scalable superhydrophobic CuO surfaces, we experimentally demonstrated a 50% higher overall condensation heat transfer coefficient compared to that on a jumping-droplet surface with no applied field for low supersaturations (<1.12). This work not only shows significant condensation heat transfer enhancement but also offers avenues for improving the performance of self-cleaning and anti-icing surfaces as well as thermal diodes. PMID:24261667

  7. Analysis and Testing of Plates with Piezoelectric Sensors and Actuators

    NASA Technical Reports Server (NTRS)

    Bevan, Jeffrey S.

    1998-01-01

    Piezoelectric material inherently possesses coupling between electrostatics and structural dynamics. Utilizing linear piezoelectric theory results in an intrinsically coupled pair of piezoelectric constitutive equations. One equation describes the direct piezoelectric effect where strains produce an electric field and the other describes the converse effect where an applied electrical field produces strain. The purpose of this study is to compare finite element analysis and experiments of a thin plate with bonded piezoelectric material. Since an isotropic plate in combination with a thin piezoelectric layer constitutes a special case of a laminated composite, the classical laminated plate theory is used in the formulation to accommodated generic laminated composite panels with multiple bonded and embedded piezoelectric layers. Additionally, the von Karman large deflection plate theory is incorporated. The formulation results in laminate constitutive equations that are amiable to the inclusion of the piezoelectric constitutive equations yielding in a fully electro-mechanically coupled composite laminate. Using the finite element formulation, the governing differential equations of motion of a composite laminate with embedded piezoelectric layers are derived. The finite element model not only considers structural degrees of freedom (d.o.f.) but an additional electrical d.o.f. for each piezoelectric layer. Comparison between experiment and numerical prediction is performed by first treating the piezoelectric as a sensor and then again treating it as an actuator. To assess the piezoelectric layer as a sensor, various uniformly distributed pressure loads were simulated in the analysis and the corresponding generated voltages were calculated using both linear and nonlinear finite element analyses. Experiments were carried out by applying the same uniformly distributed loads and measuring the resulting generated voltages and corresponding maximum plate deflections. It is

  8. UHV piezoelectric translator

    SciTech Connect

    Oversluizen, T.; Watson, G.

    1985-01-01

    A UHV compatible piezoelectric translator has been developed to correct for angular misalignments in the crysals of a UHV x-ray monochromator. The unit is small, bakeable to 150/sup 0/C, and uses only ceramic materials for insulation. We report on the construction details, vacuum compatibility, mechanical properties, and uses of the device.

  9. Piezoelectric Nanoparticle-Polymer Composite Materials

    NASA Astrophysics Data System (ADS)

    McCall, William Ray

    Herein we demonstrate that efficient piezoelectric nanoparticle-polymer composite materials can be synthesized and fabricated into complex microstructures using sugar-templating methods or optical printing techniques. Stretchable foams with excellent tunable piezoelectric properties are created by incorporating sugar grains directly into polydimethylsiloxane (PDMS) mixtures containing barium titanate (BaTiO3 -- BTO) nanoparticles and carbon nanotubes (CNTs), followed by removal of the sugar after polymer curing. Porosities and elasticity are tuned by simply adjusting the sugar/polymer mass ratio and the electrical performance of the foams showed a direct relationship between porosity and the piezoelectric outputs. User defined 2D and 3D optically printed piezoelectric microstructures are also fabricated by incorporating BTO nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate (PEGDA) and exposing to digital optical masks that can be dynamically altered. Mechanical-to-electrical conversion efficiency of the optically printed composite is enhanced by chemically altering the surface of the BTO nanoparticles with acrylate groups which form direct covalent linkages with the polymer matrix under light exposure. Both of these novel materials should find exciting uses in a variety of applications including energy scavenging platforms, nano- and microelectromechanical systems (NEMS/MEMS), sensors, and acoustic actuators.

  10. Enhanced ferroelectric and piezoelectric response in Mn-doped Bi0.5Na0.5TiO3-BaTiO3 lead-free film by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Jin, Chengchao; Wang, Feifei; Leung, Chung Ming; Yao, Qirong; Tang, Yanxue; Wang, Tao; Shi, Wangzhou

    2013-10-01

    Mn-doped Bi0.5Na0.5TiO3-BaTiO3 thin film with the composition around the morphotropic phase boundary was grown on Pt-electrodized Si substrate by pulsed laser deposition. Highly (1 0 0)-oriented film with pure perovskite structure was obtained through carefully controlling the growth conditions. Well-defined ferroelectric P-E loop was obtained with the average remnant polarization Pr and coercive field Ec of ∼11.3 μC/cm2 and ∼6.5 kV/mm, respectively. Polycrystalline structures and multidomain states were revealed by piezoresponse force microscopy and large local strain response was obtained with the normalized strain Smax/Emax up to 92 pm/V. The excellent global electrical properties make it quite promising in environmental-friendly ferroelectric and piezoelectric devices.