Science.gov

Sample records for pigmentation pathway evolution

  1. Lineage-specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales.

    PubMed

    Brockington, Samuel F; Yang, Ya; Gandia-Herrero, Fernando; Covshoff, Sarah; Hibberd, Julian M; Sage, Rowan F; Wong, Gane K S; Moore, Michael J; Smith, Stephen A

    2015-09-01

    Betalain pigments are unique to the Caryophyllales and structurally and biosynthetically distinct from anthocyanins. Two key enzymes within the betalain synthesis pathway have been identified: 4,5-dioxygenase (DODA) that catalyzes the formation of betalamic acid and CYP76AD1, a cytochrome P450 gene that catalyzes the formation of cyclo-DOPA. We performed phylogenetic analyses to reveal the evolutionary history of the DODA and CYP76AD1 lineages and in the context of an ancestral reconstruction of pigment states we explored the evolution of these genes in relation to the complex evolution of pigments in Caryophylalles. Duplications within the CYP76AD1 and DODA lineages arose just before the origin of betalain pigmentation in the core Caryophyllales. The duplications gave rise to DODA-α and CYP76AD1-α isoforms that appear specific to betalain synthesis. Both betalain-specific isoforms were then lost or downregulated in the anthocyanic Molluginaceae and Caryophyllaceae. Our findings suggest a single origin of the betalain synthesis pathway, with neofunctionalization following gene duplications in the CYP76AD1 and DODA lineages. Loss of DODA-α and CYP76AD1-α in anthocyanic taxa suggests that betalain pigmentation has been lost twice in Caryophyllales, and exclusion of betalain pigments from anthocyanic taxa is mediated through gene loss or downregulation. [Correction added after online publication 13 May 2015: in the last two paragraphs of the Summary the gene name CYP761A was changed to CYP76AD1.]. PMID:25966996

  2. Lineage-specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales

    PubMed Central

    Brockington, Samuel F; Yang, Ya; Gandia-Herrero, Fernando; Covshoff, Sarah; Hibberd, Julian M; Sage, Rowan F; Wong, Gane K S; Moore, Michael J; Smith, Stephen A

    2015-01-01

    Betalain pigments are unique to the Caryophyllales and structurally and biosynthetically distinct from anthocyanins. Two key enzymes within the betalain synthesis pathway have been identified: 4,5-dioxygenase (DODA) that catalyzes the formation of betalamic acid and CYP76AD1, a cytochrome P450 gene that catalyzes the formation of cyclo-DOPA. We performed phylogenetic analyses to reveal the evolutionary history of the DODA and CYP76AD1 lineages and in the context of an ancestral reconstruction of pigment states we explored the evolution of these genes in relation to the complex evolution of pigments in Caryophylalles. Duplications within the CYP76AD1 and DODA lineages arose just before the origin of betalain pigmentation in the core Caryophyllales. The duplications gave rise to DODA-α and CYP76AD1-α isoforms that appear specific to betalain synthesis. Both betalain-specific isoforms were then lost or downregulated in the anthocyanic Molluginaceae and Caryophyllaceae. Our findings suggest a single origin of the betalain synthesis pathway, with neofunctionalization following gene duplications in the CYP76AD1 and DODA lineages. Loss of DODA-α and CYP76AD1-α in anthocyanic taxa suggests that betalain pigmentation has been lost twice in Caryophyllales, and exclusion of betalain pigments from anthocyanic taxa is mediated through gene loss or downregulation. [Correction added after online publication 13 May 2015: in the last two paragraphs of the Summary the gene name CYP761A was changed to CYP76AD1.] PMID:25966996

  3. Not just black and white: pigment pattern development and evolution in vertebrates

    PubMed Central

    Mills, Margaret G.; Patterson, Larissa B.

    2009-01-01

    Animals display diverse colors and patterns that vary within and between species. Similar phenotypes appear in both closely related and widely divergent taxa. Pigment patterns thus provide an opportunity to explore how development is altered to produce differences in form and whether similar phenotypes share a common genetic basis. Understanding the development and evolution of pigment patterns requires knowledge of the cellular interactions and signaling pathways that produce those patterns. These complex traits provide unparalleled opportunities for integrating studies from ecology and behavior to molecular biology and biophysics. PMID:19073271

  4. Gene expression changes in the tyrosine metabolic pathway regulate caste-specific cuticular pigmentation of termites.

    PubMed

    Masuoka, Yudai; Maekawa, Kiyoto

    2016-07-01

    In social insects, all castes have characteristic phenotypes suitable for their own tasks and to engage in social behavior. The acquisition of caste-specific phenotypes was a key event in the course of social insect evolution. However, understanding of the genetic basis and the developmental mechanisms that produce these phenotypes is still very limited. In particular, termites normally possess more than two castes with specific phenotypes (i.e. workers, soldiers, and reproductives), but proximate developmental mechanisms are far from being fully understood. In this study, we focused on the pigmentation of the cuticle as a model trait for caste-specific phenotypes, during the molts of each caste; workers, soldiers, presoldiers (intermediate stage of soldiers), and alates (primary reproductives) in Zootermopsis nevadensis. Expression patterns of cuticular tanning genes (members of the tyrosine metabolic pathway) were different among each molt, and high expression levels of several "key genes" were observed during each caste differentiation. For the differentiation of castes with well-tanned cuticles (i.e. soldiers and alates), all focal genes except DDC in the former were highly expressed. On the other hand, high expression levels of yellow and aaNAT were observed during worker and presoldier molts, respectively, but most other genes in the pathway were expressed at low levels. RNA interference (RNAi) of these key genes affected caste-specific cuticular pigmentation, leading to soldiers with yellowish-white heads and pigmented mandibular tips, presoldiers with partly pigmented head cuticles, and alates with the yellow head capsules. These results suggest that the pigmentation of caste-specific cuticles is achieved by the regulation of gene expression in the tyrosine metabolic pathway. PMID:27125584

  5. Candida glabrata tryptophan-based pigment production via the Ehrlich pathway.

    PubMed

    Brunke, Sascha; Seider, Katja; Almeida, Ricardo Sergio; Heyken, Antje; Fleck, Christian Benjamin; Brock, Matthias; Barz, Dagmar; Rupp, Steffen; Hube, Bernhard

    2010-04-01

    Pigments contribute to the pathogenicity of many fungi, mainly by protecting fungal cells from host defence activities. Here, we have dissected the biosynthetic pathway of a tryptophan-derived pigment of the human pathogen Candida glabrata, identified key genes involved in pigment production and have begun to elucidate the possible biological function of the pigment. Using transcriptional analyses and a transposon insertion library, we have identified genes associated with pigment production. Targeted deletion mutants revealed that the pigment is a by-product of the Ehrlich pathway of tryptophan degradation: a mutant lacking a tryptophan-upregulated aromatic aminotransferase (Aro8) displayed significantly reduced pigmentation and a recombinantly expressed version of this protein was sufficient for pigment production in vitro. Pigment production is tightly regulated as the synthesis is affected by the presence of alternative nitrogen sources, carbon sources, cyclic AMP and oxygen. Growth of C. glabrata on pigment inducing medium leads to an increased resistance to hydrogen peroxide, an effect which was not observed with a mutant defective in pigmentation. Furthermore, pigmented yeast cells had a higher survival rate when exposed to human neutrophils and caused increased damage in a monolayer model of human epithelia, indicating a possible role of pigmentation during interactions with host cells. PMID:20199593

  6. Inhibitors of Intracellular Signaling Pathways that Lead to Stimulated Epidermal Pigmentation: Perspective of Anti-Pigmenting Agents

    PubMed Central

    Imokawa, Genji; Ishida, Koichi

    2014-01-01

    Few anti-pigmenting agents have been designed and developed according to their known hyperpigmentation mechanisms and corresponding intracellular signaling cascades. Most anti-pigmenting agents developed so far are mechanistically involved in the interruption of constitutional melanogenic mechanisms by which skin color is maintained at a normal and unstimulated level. Thus, owing to the difficulty of confining topical application to a specific hyperpigmented skin area, potent anti-pigmenting agents capable of attenuating the natural unstimulated pigmentation process have the risk of leading to hypopigmentation. Since intracellular signaling pathways within melanocytes do not function substantially in maintaining normal skin color and are activated only by environmental stimuli such as UV radiation, specifically down-regulating the activation of melanogenesis to the constitutive level would be an appropriate strategy to develop new potent anti-pigmenting agents with a low risk of hypopigmentation. In this article, we review the hyperpigmentation mechanisms and intracellular signaling pathways that lead to the stimulation of melanogenesis. We also discuss a screening and evaluation system to select candidates for new anti-melanogenic substances by focusing on inhibitors of endothelin-1 or stem cell factor-triggered intracellular signaling cascades. From this viewpoint, we show that extracts of the herbs Withania somnifera and Melia toosendan and the natural chemicals Withaferin A and Astaxanthin are new candidates for potent anti-pigmenting substances that avoid the risk of hypopigmentation. PMID:24823877

  7. Inhibitors of intracellular signaling pathways that lead to stimulated epidermal pigmentation: perspective of anti-pigmenting agents.

    PubMed

    Imokawa, Genji; Ishida, Koichi

    2014-01-01

    Few anti-pigmenting agents have been designed and developed according to their known hyperpigmentation mechanisms and corresponding intracellular signaling cascades. Most anti-pigmenting agents developed so far are mechanistically involved in the interruption of constitutional melanogenic mechanisms by which skin color is maintained at a normal and unstimulated level. Thus, owing to the difficulty of confining topical application to a specific hyperpigmented skin area, potent anti-pigmenting agents capable of attenuating the natural unstimulated pigmentation process have the risk of leading to hypopigmentation. Since intracellular signaling pathways within melanocytes do not function substantially in maintaining normal skin color and are activated only by environmental stimuli such as UV radiation, specifically down-regulating the activation of melanogenesis to the constitutive level would be an appropriate strategy to develop new potent anti-pigmenting agents with a low risk of hypopigmentation. In this article, we review the hyperpigmentation mechanisms and intracellular signaling pathways that lead to the stimulation of melanogenesis. We also discuss a screening and evaluation system to select candidates for new anti-melanogenic substances by focusing on inhibitors of endothelin-1 or stem cell factor-triggered intracellular signaling cascades. From this viewpoint, we show that extracts of the herbs Withania somnifera and Melia toosendan and the natural chemicals Withaferin A and Astaxanthin are new candidates for potent anti-pigmenting substances that avoid the risk of hypopigmentation. PMID:24823877

  8. Pigment cell interactions and differential xanthophore recruitment underlying zebrafish stripe reiteration and Danio pattern evolution

    PubMed Central

    Patterson, Larissa B.; Bain, Emily J.; Parichy, David M.

    2014-01-01

    Fishes have diverse pigment patterns, yet mechanisms of pattern evolution remain poorly understood. In zebrafish, Danio rerio, pigment-cell autonomous interactions generate dark stripes of melanophores that alternate with light interstripes of xanthophores and iridophores. Here, we identify mechanisms underlying the evolution of a uniform pattern in D. albolineatus in which all three pigment cell classes are intermingled. We show that in this species xanthophores differentiate precociously over a wider area, and that cis regulatory evolution has increased expression of xanthogenic Colony Stimulating Factor-1 (Csf1). Expressing Csf1 similarly in D. rerio has cascading effects, driving the intermingling of all three pigment cell classes and resulting in the loss of stripes, as in D. albolineatus. Our results identify novel mechanisms of pattern development and illustrate how pattern diversity can be generated when a core network of pigment-cell autonomous interactions is coupled with changes in pigment cell differentiation. PMID:25374113

  9. Origins of adult pigmentation: diversity in pigment stem cell lineages and implications for pattern evolution

    PubMed Central

    Spiewak, Jessica E.

    2014-01-01

    Summary Teleosts comprise about half of all vertebrate species and exhibit an extraordinary diversity of adult pigment patterns that function in shoaling, camouflage and mate choice and have played important roles in speciation. Here, we review recent studies that have identified several distinct neural crest lineages, with distinct genetic requirements, that give rise to adult pigment cells in fishes. These lineages include post-embryonic, peripheral nerve associated stem cells that generate black melanophores and iridescent iridophores, cells derived directly from embryonic neural crest cells that generate yellow-orange xanthophores, and bipotent stem cells that generate both melanophores and xanthophores. This complexity in adult chromatophore lineages has implications for our understanding of adult traits, melanoma, and the evolutionary diversification of pigment cell lineages and patterns. PMID:25421288

  10. Spectral tuning and evolution of primate short-wavelength-sensitive visual pigments

    PubMed Central

    Carvalho, Livia S.; Davies, Wayne L.; Robinson, Phyllis R.; Hunt, David M.

    2012-01-01

    The peak sensitivities (λmax) of the short-wavelength-sensitive-1 (SWS1) pigments in mammals range from the ultraviolet (UV) (360–400 nm) to the violet (400–450 nm) regions of the spectrum. In most cases, a UV or violet peak is determined by the residue present at site 86, with Phe conferring UV sensitivity (UVS) and either Ser, Tyr or Val causing a shift to violet wavelengths. In primates, however, the tuning mechanism of violet-sensitive (VS) pigments would appear to differ. In this study, we examine the tuning mechanisms of prosimian SWS1 pigments. One species, the aye-aye, possesses a pigment with Phe86 but in vitro spectral analysis reveals a VS rather than a UVS pigment. Other residues (Cys, Ser and Val) at site 86 in prosimians also gave VS pigments. Substitution at site 86 is not, therefore, the primary mechanism for the tuning of VS pigments in primates, and phylogenetic analysis indicates that substitutions at site 86 have occurred at least five times in primate evolution. The sole potential tuning site that is conserved in all primate VS pigments is Pro93, which when substituted by Thr (as found in mammalian UVS pigments) in the aye-aye pigment shifted the peak absorbance into the UV region with a λmax value at 371 nm. We, therefore, conclude that the tuning of VS pigments in primates depends on Pro93, not Tyr86 as in other mammals. However, it remains uncertain whether the initial event that gave rise to the VS pigment in the ancestral primate was achieved by a Thr93Pro or a Phe86Tyr substitution. PMID:21697177

  11. The evolution of Bab paralog expression and abdominal pigmentation among Sophophora fruit fly species.

    PubMed

    Salomone, Joseph R; Rogers, William A; Rebeiz, Mark; Williams, Thomas M

    2013-01-01

    The evolution of gene networks lies at the heart of understanding trait divergence. Intrinsic to development is the dimension of time: a network must be altered during the correct phase of development to generate the appropriate phenotype. One model of developmental network evolution is the origination of dimorphic (male-specific) abdomen pigmentation in the fruit fly subgenus Sophophora. In Drosophila (D.) melanogaster, dimorphic pigmentation is controlled by the dimorphic expression of the paralogous Bab1 and Bab2 transcription factors that repress pigmentation. These expression patterns are thought to have evolved from a monomorphic ancestral state. Here we show that the spatial domain and contrast in dimorphic Bab expression increases during the latter half of pupal development, and this late pupal expression is necessary and sufficient to suppress pigmentation. Late pupal Bab expression was monomorphic for species from basal clades exhibiting monomorphic pigmentation, though dimorphic expression was observed in D. pseudoobscura that represents an intermediate-branching monomorphic clade. Among species from the dimorphic Sophophora clades, Bab expression was dimorphic, but a poor correlation was found between the domains of expression and male pigmentation. Lastly, while Bab paralog co-expression was generally observed, an instance of paralog-specific expression was found, indicating more complex regulatory mechanisms and mutational effects have shaped the evolution of the bab locus. These results highlight the importance of the time and place of Bab expression for pigmentation development and evolution, and suggest that dimorphism evolved early in Sophophora, but diversity in male pigmentation was not further shaped by alterations in Bab expression. PMID:24261445

  12. Pigmentation, pleiotropy, and genetic pathways in humans and mice

    SciTech Connect

    Barsh, G.S.

    1995-10-01

    Some of the most striking polymorphisms in human populations affect the color of our eyes, hair, or skin. Despite some simple lessons from high school biology (blue eyes are recessive; brown are dominant), the genetic basis of such phenotypic variability has, for the most part, eluded Mendelian description. A logical place to search for the keys to understanding common variation in human pigmentation are genes in which defects cause uncommon conditions such as albinism or piebaldism. The area under this lamppost has recently gotten larger, with two articles, one in this issue of the Journal, that describe the map position for Hermansky-Pudlak syndrome (HPS) and with the recent cloning of a gene that causes X-linked ocular albinism (OA1). In addition, a series of three recent articles in Cell demonstrate (1) that defects in the gene encoding the endothelin B (ET{sub B}) receptor cause hypopigmentation and Hirschsprung disease in a Mennonite population and the mouse mutation piebald(s) and (2) that a defect in the edn3 gene, which encodes one of the ligands for the ET{sub B} receptor, causes the lethal spotting (ls) mouse mutation. 47 refs., 1 fig.

  13. A non-linear irreversible thermodynamic perspective on organic pigment proliferation and biological evolution

    NASA Astrophysics Data System (ADS)

    Michaelian, K.

    2013-12-01

    The most important thermodynamic work performed by life today is the dissipation of the solar photon flux into heat through organic pigments in water. From this thermodynamic perspective, biological evolution is thus just the dispersal of organic pigments and water throughout Earth's surface, while adjusting the gases of Earth's atmosphere to allow the most intense part of the solar spectrum to penetrate the atmosphere and reach the surface to be intercepted by these pigments. The covalent bonding of atoms in organic pigments provides excited levels compatible with the energies of these photons. Internal conversion through vibrational relaxation to the ground state of these excited molecules when in water leads to rapid dissipation of the solar photons into heat, and this is the major source of entropy production on Earth. A non-linear irreversible thermodynamic analysis shows that the proliferation of organic pigments on Earth is a direct consequence of the pigments catalytic properties in dissipating the solar photon flux. A small part of the energy of the photon goes into the production of more organic pigments and supporting biomass, while most of the energy is dissipated and channeled into the hydrological cycle through the latent heat of vaporization of surface water. By dissipating the surface to atmosphere temperature gradient, the hydrological cycle further increases the entropy production of Earth. This thermodynamic perspective of solar photon dissipation by life has implications to the possibility of finding extra-terrestrial life in our solar system and the Universe.

  14. Brain evolution by brain pathway duplication

    PubMed Central

    Chakraborty, Mukta; Jarvis, Erich D.

    2015-01-01

    Understanding the mechanisms of evolution of brain pathways for complex behaviours is still in its infancy. Making further advances requires a deeper understanding of brain homologies, novelties and analogies. It also requires an understanding of how adaptive genetic modifications lead to restructuring of the brain. Recent advances in genomic and molecular biology techniques applied to brain research have provided exciting insights into how complex behaviours are shaped by selection of novel brain pathways and functions of the nervous system. Here, we review and further develop some insights to a new hypothesis on one mechanism that may contribute to nervous system evolution, in particular by brain pathway duplication. Like gene duplication, we propose that whole brain pathways can duplicate and the duplicated pathway diverge to take on new functions. We suggest that one mechanism of brain pathway duplication could be through gene duplication, although other mechanisms are possible. We focus on brain pathways for vocal learning and spoken language in song-learning birds and humans as example systems. This view presents a new framework for future research in our understanding of brain evolution and novel behavioural traits. PMID:26554045

  15. Brain evolution by brain pathway duplication.

    PubMed

    Chakraborty, Mukta; Jarvis, Erich D

    2015-12-19

    Understanding the mechanisms of evolution of brain pathways for complex behaviours is still in its infancy. Making further advances requires a deeper understanding of brain homologies, novelties and analogies. It also requires an understanding of how adaptive genetic modifications lead to restructuring of the brain. Recent advances in genomic and molecular biology techniques applied to brain research have provided exciting insights into how complex behaviours are shaped by selection of novel brain pathways and functions of the nervous system. Here, we review and further develop some insights to a new hypothesis on one mechanism that may contribute to nervous system evolution, in particular by brain pathway duplication. Like gene duplication, we propose that whole brain pathways can duplicate and the duplicated pathway diverge to take on new functions. We suggest that one mechanism of brain pathway duplication could be through gene duplication, although other mechanisms are possible. We focus on brain pathways for vocal learning and spoken language in song-learning birds and humans as example systems. This view presents a new framework for future research in our understanding of brain evolution and novel behavioural traits. PMID:26554045

  16. Diversifying Carotenoid Biosynthetic Pathways by Directed Evolution

    PubMed Central

    Umeno, Daisuke; Tobias, Alexander V.; Arnold, Frances H.

    2005-01-01

    Microorganisms and plants synthesize a diverse array of natural products, many of which have proven indispensable to human health and well-being. Although many thousands of these have been characterized, the space of possible natural products—those that could be made biosynthetically—remains largely unexplored. For decades, this space has largely been the domain of chemists, who have synthesized scores of natural product analogs and have found many with improved or novel functions. New natural products have also been made in recombinant organisms, via engineered biosynthetic pathways. Recently, methods inspired by natural evolution have begun to be applied to the search for new natural products. These methods force pathways to evolve in convenient laboratory organisms, where the products of new pathways can be identified and characterized in high-throughput screening programs. Carotenoid biosynthetic pathways have served as a convenient experimental system with which to demonstrate these ideas. Researchers have mixed, matched, and mutated carotenoid biosynthetic enzymes and screened libraries of these “evolved” pathways for the emergence of new carotenoid products. This has led to dozens of new pathway products not previously known to be made by the assembled enzymes. These new products include whole families of carotenoids built from backbones not found in nature. This review details the strategies and specific methods that have been employed to generate new carotenoid biosynthetic pathways in the laboratory. The potential application of laboratory evolution to other biosynthetic pathways is also discussed. PMID:15755953

  17. Evolution of the JAK-STAT pathway.

    PubMed

    Liongue, Clifford; Ward, Alister C

    2013-01-01

    The JAK-STAT pathway represents a finely tuned orchestra capable of rapidly facilitating an exquisite symphony of responses from a complex array of extracellular signals. This review explores the evolution of the JAK-STAT pathway: the origins of the individual domains from which it is constructed, the formation of individual components from these basic building blocks, the assembly of the components into a functional pathway, and the subsequent reiteration of this basic template to fulfill a variety of roles downstream of cytokine receptors. PMID:24058787

  18. Evolution of the JAK-STAT pathway

    PubMed Central

    Liongue, Clifford; Ward, Alister C.

    2013-01-01

    The JAK-STAT pathway represents a finely tuned orchestra capable of rapidly facilitating an exquisite symphony of responses from a complex array of extracellular signals. This review explores the evolution of the JAK-STAT pathway: the origins of the individual domains from which it is constructed, the formation of individual components from these basic building blocks, the assembly of the components into a functional pathway, and the subsequent reiteration of this basic template to fulfill a variety of roles downstream of cytokine receptors. PMID:24058787

  19. The contribution of the melanin pathway to overall body pigmentation during ontogenesis of Periplaneta americana.

    PubMed

    Lemonds, Thomas R; Liu, Jin; Popadić, Aleksandar

    2016-08-01

    The most prominent colors observed in insects are black or brown, whose production is attributed to the melanin pathway. At present, though, the contribution of this pathway to overall body pigmentation throughout ontogenesis is still lacking. To address this question we examined the roles of 2 key melanin genes (TH and DDC), in embryonic and postembryonic development of the American cockroach, Periplaneta americana. Our results show that the melanin pathway does not contribute to the light brown coloration observed in the first nymphs. However, the dark brown coloration in mid nymphs and adults is produced solely from the melanin pathway. In addition, the DDC RNAi results reveal that it is dopamine melanin, not DOPA melanin, acts as the main contributor in this process. Overall, present study provides a new insight into insect pigmentation suggesting that genetic mechanisms of coloration can change during ontogenesis. Future studies of additional basal insect lineages will be required to assess in more details the generality of this phenomenon. PMID:27158782

  20. Human Pigmentation, Cutaneous Vitamin D Synthesis and Evolution: Variants of Genes (SNPs) Involved in Skin Pigmentation Are Associated with 25(OH)D Serum Concentration.

    PubMed

    Rossberg, Willi; Saternus, Roman; Wagenpfeil, Stefan; Kleber, Marcus; März, Winfried; Reichrath, Sandra; Vogt, Thomas; Reichrath, Jörg

    2016-03-01

    Vitamin D deficiency is common and associated with higher risk for and unfavourable outcome of many diseases. Limited data exist on genetic determinants of serum 25(OH)D concentration. In a cohort of the LURIC study (n=2974, median 25(OH)D concentration 15.5 ng/ml), we tested the hypothesis that variants (SNPs, n=244) of several genes (n=15) involved in different aspects of skin pigmentation, including melanosomal biogenesis (ATP7A, DTNBP1, BLOC1S5, PLDN, PMEL), melanosomal transport within melanocytes (RAB27A, MYO5A, MLPH); or various melanocyte signaling pathways (MC1R, MITF, PAX3, SOX10, DKK1, RACK1, CNR1) are predictive of serum 25(OH)D levels. Eleven SNPs located in 6 genes were associated (p<0.05) with low or high serum 25(OH)D levels, 3 out of these 11 SNPs reached the aimed significance level after correction for multiple comparisons (FDR). In the linear regression model adjusted for sex, body mass index (BMI), year of birth and month of blood sample rs7565264 (MLPH), rs10932949 (PAX3), and rs9328451 (BLOC1S5) showed a significant association with 25(OH)D. The combined impact on variation of 25(OH)D serum levels (coefficient of determination (R(2))) for the 11 SNPs was 1.6% and for the 3 SNPs after FDR 0.3%. In Cox Regression we identified rs2292881 (MLPH) as having a significant association (advantage) with overall survival. Kaplan-Meier analysis did not show any significant impact of individual SNPs on overall survival. In conclusion, these results shed new light on the role of sunlight, skin pigmentation and vitamin D for human evolution. PMID:26977047

  1. Evolution-guided optimization of biosynthetic pathways

    PubMed Central

    Raman, Srivatsan; Rogers, Jameson K.; Taylor, Noah D.; Church, George M.

    2014-01-01

    Engineering biosynthetic pathways for chemical production requires extensive optimization of the host cellular metabolic machinery. Because it is challenging to specify a priori an optimal design, metabolic engineers often need to construct and evaluate a large number of variants of the pathway. We report a general strategy that combines targeted genome-wide mutagenesis to generate pathway variants with evolution to enrich for rare high producers. We convert the intracellular presence of the target chemical into a fitness advantage for the cell by using a sensor domain responsive to the chemical to control a reporter gene necessary for survival under selective conditions. Because artificial selection tends to amplify unproductive cheaters, we devised a negative selection scheme to eliminate cheaters while preserving library diversity. This scheme allows us to perform multiple rounds of evolution (addressing ∼109 cells per round) with minimal carryover of cheaters after each round. Based on candidate genes identified by flux balance analysis, we used targeted genome-wide mutagenesis to vary the expression of pathway genes involved in the production of naringenin and glucaric acid. Through up to four rounds of evolution, we increased production of naringenin and glucaric acid by 36- and 22-fold, respectively. Naringenin production (61 mg/L) from glucose was more than double the previous highest titer reported. Whole-genome sequencing of evolved strains revealed additional untargeted mutations that likely benefit production, suggesting new routes for optimization. PMID:25453111

  2. Origin and evolution of metabolic pathways

    NASA Astrophysics Data System (ADS)

    Fani, Renato; Fondi, Marco

    2009-03-01

    The emergence and evolution of metabolic pathways represented a crucial step in molecular and cellular evolution. In fact, the exhaustion of the prebiotic supply of amino acids and other compounds that were likely present in the ancestral environment, imposed an important selective pressure, favoring those primordial heterotrophic cells which became capable of synthesizing those molecules. Thus, the emergence of metabolic pathways allowed primitive organisms to become increasingly less-dependent on exogenous sources of organic compounds. Comparative analyses of genes and genomes from organisms belonging to Archaea, Bacteria and Eukarya revealed that, during evolution, different forces and molecular mechanisms might have driven the shaping of genomes and the arisal of new metabolic abilities. Among these gene elongations, gene and operon duplications undoubtedly played a major role since they can lead to the (immediate) appearance of new genetic material that, in turn, might undergo evolutionary divergence giving rise to new genes coding for new metabolic abilities. Gene duplication has been invoked in the different schemes proposed to explain why and how the extant metabolic pathways have arisen and shaped. Both the analysis of completely sequenced genomes and directed evolution experiments strongly support one of them, i.e. the patchwork hypothesis, according to which metabolic pathways have been assembled through the recruitment of primitive enzymes that could react with a wide range of chemically related substrates. However, the analysis of the structure and organization of genes belonging to ancient metabolic pathways, such as histidine biosynthesis and nitrogen fixation, suggested that other different hypothesis, i.e. the retrograde hypothesis or the semi-enzymatic theory, may account for the arisal of some metabolic routes.

  3. The evolution of plant virus transmission pathways.

    PubMed

    Hamelin, Frédéric M; Allen, Linda J S; Prendeville, Holly R; Hajimorad, M Reza; Jeger, Michael J

    2016-05-01

    The evolution of plant virus transmission pathways is studied through transmission via seed, pollen, or a vector. We address the questions: under what circumstances does vector transmission make pollen transmission redundant? Can evolution lead to the coexistence of multiple virus transmission pathways? We restrict the analysis to an annual plant population in which reproduction through seed is obligatory. A semi-discrete model with pollen, seed, and vector transmission is formulated to investigate these questions. We assume vector and pollen transmission rates are frequency-dependent and density-dependent, respectively. An ecological stability analysis is performed for the semi-discrete model and used to inform an evolutionary study of trade-offs between pollen and seed versus vector transmission. Evolutionary dynamics critically depend on the shape of the trade-off functions. Assuming a trade-off between pollen and vector transmission, evolution either leads to an evolutionarily stable mix of pollen and vector transmission (concave trade-off) or there is evolutionary bi-stability (convex trade-off); the presence of pollen transmission may prevent evolution of vector transmission. Considering a trade-off between seed and vector transmission, evolutionary branching and the subsequent coexistence of pollen-borne and vector-borne strains is possible. This study contributes to the theory behind the diversity of plant-virus transmission patterns observed in nature. PMID:26908348

  4. Pathways of Transport Protein Evolution: Recent Advances

    PubMed Central

    Lam, Vincent H.; Lee, Jong-Hoon; Silverio, Abe; Chan, Henry; Gomolplitinant, Kenny M.; Povolotsky, Tatyana L.; Orlova, Ekaterina; Sun, Eric I.; Welliver, Carl H.; Saier, Milton H.

    2014-01-01

    We herein report recent advances in our understanding of transport protein evolution. The Drug-Metabolite Transporter (DMT) superfamily (TC# 2.A.7) arose from a 2TMS precursor to give 4TMS proteins which then added one and duplicated to give 10. The proposed pathway is 2 –> 4 –> 5 –> 10. This superfamily provides a rare example where all proposed topological intermediates in this evolutionary pathway have been identified in current protein databases. Another family, the Oligopeptide Transporter (OPT) family (TC# 2.A.67), also started with a 2 TMS peptide precursor, but it followed the pathway: Only 16 and 17 TMS OPT family members have been identified in current databases. The TRIC family of K+ channels, characterized in animals, arose via the pathway: where the seventh TMS was added c-terminally to the 6 TMS precursor that resulted from a 3 TMS duplication. Surprisingly, animal TRIC channels proved to have numerous 7 TMS homologues in prokaryotes, none of which had been identified previously. We found that two families of integral membrane proteins gave rise to multiple current topological types. Members of the SdpC killer factor immunity protein family, SdpI (TC# 9.A.32) probably arose via the pathway: while members of the Heme Handling Protein (HHP) Family (TC# 9.B.14) arose via the pathway: Predictions are also made for an evolutionary pathway giving rise to the seven topological types of P-type ATPases so far identified in the P-ATPase superfamily. Finally, the ubiquitous CDF carriers (TC# 1.A.4) of 6TMSs probably gave rise to CRAC channels of 4TMSs by loss of the first two TMSs an unusual example of retroevolution. PMID:21194372

  5. Evolution and spectral tuning of visual pigments in birds and mammals

    PubMed Central

    Hunt, David M.; Carvalho, Livia S.; Cowing, Jill A.; Davies, Wayne L.

    2009-01-01

    Variation in the types and spectral characteristics of visual pigments is a common mechanism for the adaptation of the vertebrate visual system to prevailing light conditions. The extent of this diversity in mammals and birds is discussed in detail in this review, alongside an in-depth consideration of the molecular changes involved. In mammals, a nocturnal stage in early evolution is thought to underlie the reduction in the number of classes of cone visual pigment genes from four to only two, with the secondary loss of one of these genes in many monochromatic nocturnal and marine species. The trichromacy seen in many primates arises from either a polymorphism or duplication of one of these genes. In contrast, birds have retained the four ancestral cone visual pigment genes, with a generally conserved expression in either single or double cone classes. The loss of sensitivity to ultraviolet (UV) irradiation is a feature of both mammalian and avian visual evolution, with UV sensitivity retained among mammals by only a subset of rodents and marsupials. Where it is found in birds, it is not ancestral but newly acquired. PMID:19720655

  6. Different death stimuli evoke apoptosis via multiple pathways in retinal pigment epithelial cells.

    PubMed

    Ferrington, Deborah A; Tran, Tina N; Lew, Kathleen L; Van Remmen, Holly; Gregerson, Dale S

    2006-09-01

    Loss of retinal pigment epithelial (RPE) cells via apoptosis plays a prominent role in several retinal degenerative diseases, such as age-related macular degeneration, and with light damage. Strategies for preservation of vision that would interrupt the apoptotic cascade require understanding the molecular events associated with apoptosis. This study investigated the susceptibility of RPE to caspase-dependent and -independent apoptotic pathways when challenged with different stimuli, including oxidants, anti-Fas antibody, and activated cytotoxic T lymphocytes (CTLs). These experiments used novel RPE cell lines developed from wildtype and heterozygous mice with reduced levels of either Mn superoxide dismutatse (SOD) or CuZnSOD. Peroxide and 4-hydroxynonenal induced apoptosis through both caspase-independent and -dependent pathways, respectively. With both oxidants, translocation of apoptosis inducing factor into the nucleus was observed. Cells containing reduced levels of CuZnSOD were the most susceptible to oxidant-induced cell death. Targeted killing by CTLs and activation of the Fas death receptor induced caspase-dependent apoptosis. These results show stimulus-specific activation of either the caspase-dependent or -independent pathway. Since cultured RPE express the protein components required for different apoptotic pathways, they provide a good model system for studying molecular events associated with multiple signals that lead to cell death. PMID:16682026

  7. Evolution of Dominance in Metabolic Pathways

    PubMed Central

    Bagheri, Homayoun C.; Wagner, Günter P.

    2004-01-01

    Dominance is a form of phenotypic robustness to mutations. Understanding how such robustness can evolve provides a window into how the relation between genotype and phenotype can evolve. As such, the issue of dominance evolution is a question about the evolution of inheritance systems. Attempts at explaining the evolution of dominance have run into two problems. One is that selection for dominance is sensitive to the frequency of heterozygotes. Accordingly, dominance cannot evolve unless special conditions lead to the presence of a high frequency of mutant alleles in the population. Second, on the basis of theoretical results in metabolic control analysis, it has been proposed that metabolic systems possess inherent constraints. These hypothetical constraints imply the default manifestation of dominance of the wild type with respect to the effects of mutations at most loci. Hence, some biologists have maintained that an evolutionary explanation is not relevant to dominance. In this article, we put into question the hypothetical assumption of default metabolic constraints. We show that this assumption is based on an exclusion of important nonlinear interactions that can occur between enzymes in a pathway. With an a priori exclusion of such interactions, the possibility of epistasis and hence dominance modification is eliminated. We present a theoretical model that integrates enzyme kinetics and population genetics to address dominance evolution in metabolic pathways. In the case of mutations that decrease enzyme concentrations, and given the mechanistic constraints of Michaelis-Menten-type catalysis, it is shown that dominance of the wild type can be extensively modified in a two-enzyme pathway. Moreover, we discuss analytical results indicating that the conclusions from the two-enzyme case can be generalized to any number of enzymes. Dominance modification is achieved chiefly through changes in enzyme concentrations or kinetic parameters such as kcat, both of which

  8. Wavepacket splitting and two-pathway deactivation in the photoexcited visual pigment isorhodopsin.

    PubMed

    Polli, Dario; Weingart, Oliver; Brida, Daniele; Poli, Emiliano; Maiuri, Margherita; Spillane, Katelyn M; Bottoni, Andrea; Kukura, Philipp; Mathies, Richard A; Cerullo, Giulio; Garavelli, Marco

    2014-02-24

    Isorhodopsin is the visual pigment analogue of rhodopsin. It shares the same opsin environment but it embeds 9-cis retinal instead of 11-cis. Its photoisomerization is three times slower and less effective. The mechanistic rationale behind this observation is revealed by combining high-level quantum-mechanical/molecular-mechanical simulations with ultrafast optical spectroscopy with sub-20 fs time resolution and spectral coverage extended to the near-infrared. Whereas in rhodopsin the photoexcited wavepacket has ballistic motion through a single conical intersection seam region between the ground and excited states, in isorhodopsin it branches into two competitive deactivation pathways involving distinct conical intersection funnels. One is rapidly accessed but unreactive. The other is slower, as it features extended steric interactions with the environment, but it is productive as it follows forward bicycle pedal motion. PMID:24481600

  9. Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies.

    PubMed

    Briscoe, Adriana D; Bybee, Seth M; Bernard, Gary D; Yuan, Furong; Sison-Mangus, Marilou P; Reed, Robert D; Warren, Andrew D; Llorente-Bousquets, Jorge; Chiao, Chuan-Chin

    2010-02-23

    The butterfly Heliconius erato can see from the UV to the red part of the light spectrum with color vision proven from 440 to 640 nm. Its eye is known to contain three visual pigments, rhodopsins, produced by an 11-cis-3-hydroxyretinal chromophore together with long wavelength (LWRh), blue (BRh) and UV (UVRh1) opsins. We now find that H. erato has a second UV opsin mRNA (UVRh2)-a previously undescribed duplication of this gene among Lepidoptera. To investigate its evolutionary origin, we screened eye cDNAs from 14 butterfly species in the subfamily Heliconiinae and found both copies only among Heliconius. Phylogeny-based tests of selection indicate positive selection of UVRh2 following duplication, and some of the positively selected sites correspond to vertebrate visual pigment spectral tuning residues. Epi-microspectrophotometry reveals two UV-absorbing rhodopsins in the H. erato eye with lambda(max) = 355 nm and 398 nm. Along with the additional UV opsin, Heliconius have also evolved 3-hydroxy-DL-kynurenine (3-OHK)-based yellow wing pigments not found in close relatives. Visual models of how butterflies perceive wing color variation indicate this has resulted in an expansion of the number of distinguishable yellow colors on Heliconius wings. Functional diversification of the UV-sensitive visual pigments may help explain why the yellow wing pigments of Heliconius are so colorful in the UV range compared to the yellow pigments of close relatives lacking the UV opsin duplicate. PMID:20133601

  10. Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies

    PubMed Central

    Briscoe, Adriana D.; Bybee, Seth M.; Bernard, Gary D.; Yuan, Furong; Sison-Mangus, Marilou P.; Reed, Robert D.; Warren, Andrew D.; Llorente-Bousquets, Jorge; Chiao, Chuan-Chin

    2010-01-01

    The butterfly Heliconius erato can see from the UV to the red part of the light spectrum with color vision proven from 440 to 640 nm. Its eye is known to contain three visual pigments, rhodopsins, produced by an 11-cis-3-hydroxyretinal chromophore together with long wavelength (LWRh), blue (BRh) and UV (UVRh1) opsins. We now find that H. erato has a second UV opsin mRNA (UVRh2)—a previously undescribed duplication of this gene among Lepidoptera. To investigate its evolutionary origin, we screened eye cDNAs from 14 butterfly species in the subfamily Heliconiinae and found both copies only among Heliconius. Phylogeny-based tests of selection indicate positive selection of UVRh2 following duplication, and some of the positively selected sites correspond to vertebrate visual pigment spectral tuning residues. Epi-microspectrophotometry reveals two UV-absorbing rhodopsins in the H. erato eye with λmax = 355 nm and 398 nm. Along with the additional UV opsin, Heliconius have also evolved 3-hydroxy-DL-kynurenine (3-OHK)-based yellow wing pigments not found in close relatives. Visual models of how butterflies perceive wing color variation indicate this has resulted in an expansion of the number of distinguishable yellow colors on Heliconius wings. Functional diversification of the UV-sensitive visual pigments may help explain why the yellow wing pigments of Heliconius are so colorful in the UV range compared to the yellow pigments of close relatives lacking the UV opsin duplicate. PMID:20133601

  11. SWS2 visual pigment evolution as a test of historically contingent patterns of plumage color evolution in warblers.

    PubMed

    Bloch, Natasha I; Morrow, James M; Chang, Belinda S W; Price, Trevor D

    2015-02-01

    Distantly related clades that occupy similar environments may differ due to the lasting imprint of their ancestors-historical contingency. The New World warblers (Parulidae) and Old World warblers (Phylloscopidae) are ecologically similar clades that differ strikingly in plumage coloration. We studied genetic and functional evolution of the short-wavelength-sensitive visual pigments (SWS2 and SWS1) to ask if altered color perception could contribute to the plumage color differences between clades. We show SWS2 is short-wavelength shifted in birds that occupy open environments, such as finches, compared to those in closed environments, including warblers. Phylogenetic reconstructions indicate New World warblers were derived from a finch-like form that colonized from the Old World 15-20 Ma. During this process, the SWS2 gene accumulated six substitutions in branches leading to New World warblers, inviting the hypothesis that passage through a finch-like ancestor resulted in SWS2 evolution. In fact, we show spectral tuning remained similar across warblers as well as the finch ancestor. Results reject the hypothesis of historical contingency based on opsin spectral tuning, but point to evolution of other aspects of visual pigment function. Using the approach outlined here, historical contingency becomes a generally testable theory in systems where genotype and phenotype can be connected. PMID:25496318

  12. SWS2 visual pigment evolution as a test of historically contingent patterns of plumage color evolution in Warblers

    PubMed Central

    Bloch, Natasha I.; Morrow, James M.; Chang, Belinda S.W.; Price, Trevor D.

    2014-01-01

    Distantly related clades that occupy similar environments may differ due to the lasting imprint of their ancestors – historical contingency. The New World warblers (Parulidae) and Old World warblers (Phylloscopidae) are ecologically similar clades that differ strikingly in plumage coloration. We studied genetic and functional evolution of the short-wavelength sensitive visual pigments (SWS2 and SWS1) to ask if altered color perception could contribute to the plumage color differences between clades. We show SWS2 is short-wavelength shifted in birds that occupy open environments, such as finches, compared to those in closed environments, including warblers. Phylogenetic reconstructions indicate New World warblers were derived from a finch-like form that colonized from the Old World 15-20Ma. During this process the SWS2 gene accumulated 6 substitutions in branches leading to New World warblers, inviting the hypothesis that passage through a finch-like ancestor resulted in SWS2 evolution. In fact, we show spectral tuning remained similar across warblers as well as the finch ancestor. Results reject the hypothesis of historical contingency based on opsin spectral tuning, but point to evolution of other aspects of visual pigment function. Using the approach outlined here, historical contingency becomes a generally testable theory in systems where genotype and phenotype can be connected. PMID:25496318

  13. A red pigment synthesized by an Aspergillus parasiticus mutant as a possible new intermediate in the aflatoxin biosynthetic pathway.

    PubMed

    García, M E; Herce, M D; Blanco, J L; Suárez, G

    1994-11-01

    The isolation of a red pigment from an Aspergillus parasiticus mutant obtained by 366 nm u.v. light treatment of A. parasiticus NRRL 2999 is described. Studies of conversion in aflatoxin B1 and G1 suggest that the red pigment could be a possible new intermediate in the aflatoxin biosynthetic pathway not described to date, and this has been verified by studies in gas chromatography/mass spectrometry. The solubility and stability characteristics under refrigeration storage, and the influence of the temperature and the pH on its production by the A. parasiticus mutant were also studied. It grew best at 30 degrees C and pH 6. The red pigment was most soluble in ethyl acetate. The results obtained in water are emphasized where there was high stability. PMID:8002480

  14. Out of the blue: adaptive visual pigment evolution accompanies Amazon invasion.

    PubMed

    Van Nynatten, Alexander; Bloom, Devin; Chang, Belinda S W; Lovejoy, Nathan R

    2015-07-01

    Incursions of marine water into South America during the Miocene prompted colonization of freshwater habitats by ancestrally marine species and present a unique opportunity to study the molecular evolution of adaptations to varying environments. Freshwater and marine environments are distinct in both spectra and average intensities of available light. Here, we investigate the molecular evolution of rhodopsin, the photosensitive pigment in the eye that activates in response to light, in a clade of South American freshwater anchovies derived from a marine ancestral lineage. Using likelihood-based comparative sequence analyses, we found evidence for positive selection in the rhodopsin of freshwater anchovy lineages at sites known to be important for aspects of rhodopsin function such as spectral tuning. No evidence was found for positive selection in marine lineages, nor in three other genes not involved in vision. Our results suggest that an increased rate of rhodopsin evolution was driven by diversification into freshwater habitats, thereby constituting a rare example of molecular evolution mirroring large-scale palaeogeographic events. PMID:26224386

  15. Pigmented anatomy in Carboniferous cyclostomes and the evolution of the vertebrate eye.

    PubMed

    Gabbott, Sarah E; Donoghue, Philip C J; Sansom, Robert S; Vinther, Jakob; Dolocan, Andrei; Purnell, Mark A

    2016-08-17

    The success of vertebrates is linked to the evolution of a camera-style eye and sophisticated visual system. In the absence of useful data from fossils, scenarios for evolutionary assembly of the vertebrate eye have been based necessarily on evidence from development, molecular genetics and comparative anatomy in living vertebrates. Unfortunately, steps in the transition from a light-sensitive 'eye spot' in invertebrate chordates to an image-forming camera-style eye in jawed vertebrates are constrained only by hagfish and lampreys (cyclostomes), which are interpreted to reflect either an intermediate or degenerate condition. Here, we report-based on evidence of size, shape, preservation mode and localized occurrence-the presence of melanosomes (pigment-bearing organelles) in fossil cyclostome eyes. Time of flight secondary ion mass spectrometry analyses reveal secondary ions with a relative intensity characteristic of melanin as revealed through principal components analyses. Our data support the hypotheses that extant hagfish eyes are degenerate, not rudimentary, that cyclostomes are monophyletic, and that the ancestral vertebrate had a functional visual system. We also demonstrate integument pigmentation in fossil lampreys, opening up the exciting possibility of investigating colour patterning in Palaeozoic vertebrates. The examples we report add to the record of melanosome preservation in Carboniferous fossils and attest to surprising durability of melanosomes and biomolecular melanin. PMID:27488650

  16. Pigmented anatomy in Carboniferous cyclostomes and the evolution of the vertebrate eye

    PubMed Central

    Gabbott, Sarah E.; Sansom, Robert S.; Vinther, Jakob; Dolocan, Andrei; Purnell, Mark A.

    2016-01-01

    The success of vertebrates is linked to the evolution of a camera-style eye and sophisticated visual system. In the absence of useful data from fossils, scenarios for evolutionary assembly of the vertebrate eye have been based necessarily on evidence from development, molecular genetics and comparative anatomy in living vertebrates. Unfortunately, steps in the transition from a light-sensitive ‘eye spot’ in invertebrate chordates to an image-forming camera-style eye in jawed vertebrates are constrained only by hagfish and lampreys (cyclostomes), which are interpreted to reflect either an intermediate or degenerate condition. Here, we report—based on evidence of size, shape, preservation mode and localized occurrence—the presence of melanosomes (pigment-bearing organelles) in fossil cyclostome eyes. Time of flight secondary ion mass spectrometry analyses reveal secondary ions with a relative intensity characteristic of melanin as revealed through principal components analyses. Our data support the hypotheses that extant hagfish eyes are degenerate, not rudimentary, that cyclostomes are monophyletic, and that the ancestral vertebrate had a functional visual system. We also demonstrate integument pigmentation in fossil lampreys, opening up the exciting possibility of investigating colour patterning in Palaeozoic vertebrates. The examples we report add to the record of melanosome preservation in Carboniferous fossils and attest to surprising durability of melanosomes and biomolecular melanin. PMID:27488650

  17. Tracking the excited-state time evolution of the visual pigment with multiconfigurational quantum chemistry.

    PubMed

    Frutos, Luis Manuel; Andruniów, Tadeusz; Santoro, Fabrizio; Ferré, Nicolas; Olivucci, Massimo

    2007-05-01

    The primary event that initiates vision is the photoinduced isomerization of retinal in the visual pigment rhodopsin (Rh). Here, we use a scaled quantum mechanics/molecular mechanics potential that reproduces the isomerization path determined with multiconfigurational perturbation theory to follow the excited-state evolution of bovine Rh. The analysis of a 140-fs trajectory provides a description of the electronic and geometrical changes that prepare the system for decay to the ground state. The data uncover a complex change of the retinal backbone that, at approximately 60-fs delay, initiates a space saving "asynchronous bicycle-pedal or crankshaft" motion, leading to a conical intersection on a 110-fs time scale. It is shown that the twisted structure achieved at decay features a momentum that provides a natural route toward the photoRh structure recently resolved by using femtosecond-stimulated Raman spectroscopy. PMID:17470789

  18. Tracking the excited-state time evolution of the visual pigment with multiconfigurational quantum chemistry

    PubMed Central

    Frutos, Luis Manuel; Andruniów, Tadeusz; Santoro, Fabrizio; Ferré, Nicolas; Olivucci, Massimo

    2007-01-01

    The primary event that initiates vision is the photoinduced isomerization of retinal in the visual pigment rhodopsin (Rh). Here, we use a scaled quantum mechanics/molecular mechanics potential that reproduces the isomerization path determined with multiconfigurational perturbation theory to follow the excited-state evolution of bovine Rh. The analysis of a 140-fs trajectory provides a description of the electronic and geometrical changes that prepare the system for decay to the ground state. The data uncover a complex change of the retinal backbone that, at ≈60-fs delay, initiates a space saving “asynchronous bicycle-pedal or crankshaft” motion, leading to a conical intersection on a 110-fs time scale. It is shown that the twisted structure achieved at decay features a momentum that provides a natural route toward the photoRh structure recently resolved by using femtosecond-stimulated Raman spectroscopy. PMID:17470789

  19. Contrasting modes of evolution of the visual pigments in Heliconius butterflies.

    PubMed

    Yuan, Furong; Bernard, Gary D; Le, Jennifer; Briscoe, Adriana D

    2010-10-01

    The adult compound eyes of passion-vine butterflies in the genus Heliconius contain one more UV opsin than other butterflies. Together with an 11-cis-3-hydroxyretinal chromophore, their four opsin genes UVRh1, UVRh2, BRh, and LWRh produce four rhodopsins that are UV-, blue-, or long wavelength absorbing. One of the Heliconius UV opsin genes, UVRh2, was found to have evolved under positive selection following recent gene duplication, using the branch-site test of selection. Using a more conservative test, the small-sample method, we confirm our prior finding of positive selection of UVRh2 and provide new statistical evidence of episodic evolution, that is, positive selection followed by purifying selection. We also newly note that one of the positively selected amino acid sites contains substitutions with known spectral tuning effects in avian ultraviolet- and violet-sensitive visual pigments. As this is one of a handful of described examples of positive selection of any specific gene in any butterfly where functional variation between copies has been characterized, we were interested in examining the molecular and physiological context of this adaptive event by examining the UV opsin genes in contrast to the other visual pigment genes. We cloned BRh and LWRh from 13 heliconiine species and UVRh1 and UVRh2 from Heliconius elevatus. In parallel, we performed in vivo epi-microspectrophotometric experiments to estimate the wavelength of peak absorbance, λ(max), of several rhodopsins in seven heliconiine species. In contrast to UVRh2, we found both physiological and statistical evidence consistent with purifying selection on UVRh1, BRh, and LWRh along the branch leading to the common ancestor of Heliconius. These results underscore the utility of combining molecular and physiological experiments in a comparative context for strengthening evidence for adaptive evolution at the molecular level. PMID:20478921

  20. The Convergent Evolution of Blue Iris Pigmentation in Primates Took Distinct Molecular Paths

    PubMed Central

    Meyer, Wynn K; Zhang, Sidi; Hayakawa, Sachiko; Imai, Hiroo; Przeworski, Molly

    2013-01-01

    How many distinct molecular paths lead to the same phenotype? One approach to this question has been to examine the genetic basis of convergent traits, which likely evolved repeatedly under a shared selective pressure. We investigated the convergent phenotype of blue iris pigmentation, which has arisen independently in four primate lineages: humans, blue-eyed black lemurs, Japanese macaques, and spider monkeys. Characterizing the phenotype across these species, we found that the variation within the blue-eyed subsets of each species occupies strongly overlapping regions of CIE L*a*b* color space. Yet whereas Japanese macaques and humans display continuous variation, the phenotypes of blue-eyed black lemurs and their sister species (whose irises are brown) occupy more clustered subspaces. Variation in an enhancer of OCA2 is primarily responsible for the phenotypic difference between humans with blue and brown irises. In the orthologous region, we found no variant that distinguishes the two lemur species or associates with quantitative phenotypic variation in Japanese macaques. Given the high similarity between the blue iris phenotypes in these species and that in humans, this finding implies that evolution has used different molecular paths to reach the same end. Am J Phys Anthropol 151:398–407, 2013.© 2013 Wiley Periodicals, Inc. PMID:23640739

  1. A scenario for the evolution of selective egg coloration: the roles of enemy-free space, camouflage, thermoregulation and pigment limitation

    PubMed Central

    Torres-Campos, Inmaculada; Abram, Paul K.; Guerra-Grenier, Eric; Boivin, Guy; Brodeur, Jacques

    2016-01-01

    Behavioural plasticity can drive the evolution of new traits in animals. In oviparous species, plasticity in oviposition behaviour could promote the evolution of new egg traits by exposing them to different selective pressures in novel oviposition sites. Individual females of the predatory stink bug Podisus maculiventris are able to selectively colour their eggs depending on leaf side, laying lightly pigmented eggs on leaf undersides and more pigmented eggs, which are more resistant to ultraviolet (UV) radiation damage, on leaf tops. Here, we propose an evolutionary scenario for P. maculiventris egg pigmentation and its selective application. We experimentally tested the influence of several ecological factors that: (i) could have favoured a behavioural shift towards laying eggs on leaf tops and thus the evolution of a UV-protective egg pigment (i.e. exploitation of enemy-reduced space or a thermoregulatory benefit) and (ii) could have subsequently led to the evolution of selective pigment application (i.e. camouflage or costly pigment production). We found evidence that a higher predation pressure on leaf undersides could have caused a shift in oviposition effort towards leaf tops. We also found the first evidence of an insect egg pigment providing a thermoregulatory advantage. Our study contributes to an understanding of how plasticity in oviposition behaviour could shape the responses of organisms to ecological factors affecting their reproductive success, spurring the evolution of new morphological traits. PMID:27152215

  2. A scenario for the evolution of selective egg coloration: the roles of enemy-free space, camouflage, thermoregulation and pigment limitation.

    PubMed

    Torres-Campos, Inmaculada; Abram, Paul K; Guerra-Grenier, Eric; Boivin, Guy; Brodeur, Jacques

    2016-04-01

    Behavioural plasticity can drive the evolution of new traits in animals. In oviparous species, plasticity in oviposition behaviour could promote the evolution of new egg traits by exposing them to different selective pressures in novel oviposition sites. Individual females of the predatory stink bug Podisus maculiventris are able to selectively colour their eggs depending on leaf side, laying lightly pigmented eggs on leaf undersides and more pigmented eggs, which are more resistant to ultraviolet (UV) radiation damage, on leaf tops. Here, we propose an evolutionary scenario for P. maculiventris egg pigmentation and its selective application. We experimentally tested the influence of several ecological factors that: (i) could have favoured a behavioural shift towards laying eggs on leaf tops and thus the evolution of a UV-protective egg pigment (i.e. exploitation of enemy-reduced space or a thermoregulatory benefit) and (ii) could have subsequently led to the evolution of selective pigment application (i.e. camouflage or costly pigment production). We found evidence that a higher predation pressure on leaf undersides could have caused a shift in oviposition effort towards leaf tops. We also found the first evidence of an insect egg pigment providing a thermoregulatory advantage. Our study contributes to an understanding of how plasticity in oviposition behaviour could shape the responses of organisms to ecological factors affecting their reproductive success, spurring the evolution of new morphological traits. PMID:27152215

  3. Molecular phylogeny of the subfamily Amphistichinae (Teleostei: Embiotocidae) reveals parallel divergent evolution of red pigmentation in two rapidly evolving lineages of sand-dwelling surfperch.

    PubMed

    Westphal, M F; Morey, S R; Uyeda, J C; Morgan, T J

    2011-08-01

    Pigment evolution was reconstructed in the subfamily Amphistichinae, a six-species clade of the surfperches, family Embiotocidae. Assignment was confirmed for all species within the subfamily, but low levels of differentiation were found among species within the subfamily, suggesting a recent radiation. The new phylogeny differs from previous hypotheses by the placement of the spotfin surfperch Hyperprosopon anale at the base of the subfamily, while still preserving the calico surfperch Amphistichus koelzi and the redtailed surfperch Amphistichus rhodoterus as sister species. Phenotypically, A. rhodoterus, A. koelzi and the silver surfperch Hyperprosopon ellipticum express high levels of red pigmentation. The barred surfperch, Amphistichus argenteus and the walleye surfperch Hyperprosopon argenteum express little to no red pigment, while basal H. anale expresses an intermediate amount of red pigment. Red pigmentation is proposed to have experienced parallel divergent evolution in each genus within the subfamily. PMID:21781095

  4. The Silk-protein Sericin Induces Rapid Melanization of Cultured Primary Human Retinal Pigment Epithelial Cells by Activating the NF-κB Pathway.

    PubMed

    Eidet, J R; Reppe, S; Pasovic, L; Olstad, O K; Lyberg, T; Khan, A Z; Fostad, I G; Chen, D F; Utheim, T P

    2016-01-01

    Restoration of the retinal pigment epithelial (RPE) cells to prevent further loss of vision in patients with age-related macular degeneration represents a promising novel treatment modality. Development of RPE transplants, however, requires up to 3 months of cell differentiation. We explored whether the silk protein sericin can induce maturation of primary human retinal pigment epithelial (hRPE) cells. Microarray analysis demonstrated that sericin up-regulated RPE-associated transcripts (RPE65 and CRALBP). Upstream analysis identified the NF-κB pathway as one of the top sericin-induced regulators. ELISA confirmed that sericin stimulates the main NF-κB pathway. Increased levels of RPE-associated proteins (RPE65 and the pigment melanin) in the sericin-supplemented cultures were confirmed by western blot, spectrophotometry and transmission electron microscopy. Sericin also increased cell density and reduced cell death following serum starvation in culture. Inclusion of NF-κB agonists and antagonists in the culture medium showed that activation of the NF-κB pathway appears to be necessary, but not sufficient, for sericin-induced RPE pigmentation. We conclude that sericin promotes pigmentation of cultured primary hRPE cells by activating the main NF-κB pathway. Sericin's potential role in culture protocols for rapid differentiation of hRPE cells derived from embryonic or induced pluripotent stem cells should be investigated. PMID:26940175

  5. The Silk-protein Sericin Induces Rapid Melanization of Cultured Primary Human Retinal Pigment Epithelial Cells by Activating the NF-κB Pathway

    PubMed Central

    Eidet, J. R.; Reppe, S.; Pasovic, L.; Olstad, O. K.; Lyberg, T.; Khan, A. Z.; Fostad, I. G.; Chen, D. F.; Utheim, T. P.

    2016-01-01

    Restoration of the retinal pigment epithelial (RPE) cells to prevent further loss of vision in patients with age-related macular degeneration represents a promising novel treatment modality. Development of RPE transplants, however, requires up to 3 months of cell differentiation. We explored whether the silk protein sericin can induce maturation of primary human retinal pigment epithelial (hRPE) cells. Microarray analysis demonstrated that sericin up-regulated RPE-associated transcripts (RPE65 and CRALBP). Upstream analysis identified the NF-κB pathway as one of the top sericin-induced regulators. ELISA confirmed that sericin stimulates the main NF-κB pathway. Increased levels of RPE-associated proteins (RPE65 and the pigment melanin) in the sericin-supplemented cultures were confirmed by western blot, spectrophotometry and transmission electron microscopy. Sericin also increased cell density and reduced cell death following serum starvation in culture. Inclusion of NF-κB agonists and antagonists in the culture medium showed that activation of the NF-κB pathway appears to be necessary, but not sufficient, for sericin-induced RPE pigmentation. We conclude that sericin promotes pigmentation of cultured primary hRPE cells by activating the main NF-κB pathway. Sericin’s potential role in culture protocols for rapid differentiation of hRPE cells derived from embryonic or induced pluripotent stem cells should be investigated. PMID:26940175

  6. The Evolution of Fungal Metabolic Pathways

    PubMed Central

    Rokas, Antonis

    2014-01-01

    Fungi contain a remarkable range of metabolic pathways, sometimes encoded by gene clusters, enabling them to digest most organic matter and synthesize an array of potent small molecules. Although metabolism is fundamental to the fungal lifestyle, we still know little about how major evolutionary processes, such as gene duplication (GD) and horizontal gene transfer (HGT), have interacted with clustered and non-clustered fungal metabolic pathways to give rise to this metabolic versatility. We examined the synteny and evolutionary history of 247,202 fungal genes encoding enzymes that catalyze 875 distinct metabolic reactions from 130 pathways in 208 diverse genomes. We found that gene clustering varied greatly with respect to metabolic category and lineage; for example, clustered genes in Saccharomycotina yeasts were overrepresented in nucleotide metabolism, whereas clustered genes in Pezizomycotina were more common in lipid and amino acid metabolism. The effects of both GD and HGT were more pronounced in clustered genes than in their non-clustered counterparts and were differentially distributed across fungal lineages; specifically, GD, which was an order of magnitude more abundant than HGT, was most frequently observed in Agaricomycetes, whereas HGT was much more prevalent in Pezizomycotina. The effect of HGT in some Pezizomycotina was particularly strong; for example, we identified 111 HGT events associated with the 15 Aspergillus genomes, which sharply contrasts with the 60 HGT events detected for the 48 genomes from the entire Saccharomycotina subphylum. Finally, the impact of GD within a metabolic category was typically consistent across all fungal lineages, whereas the impact of HGT was variable. These results indicate that GD is the dominant process underlying fungal metabolic diversity, whereas HGT is episodic and acts in a category- or lineage-specific manner. Both processes have a greater impact on clustered genes, suggesting that metabolic gene clusters

  7. Effects of PACAP on intracellular signaling pathways in human retinal pigment epithelial cells exposed to oxidative stress.

    PubMed

    Fabian, E; Reglodi, D; Mester, L; Szabo, A; Szabadfi, K; Tamas, A; Toth, G; Kovacs, K

    2012-11-01

    The integrity of retinal pigment epithelial cells is critical for photoreceptor survival and vision. Pituitary adenylate cyclase activating polypeptide (PACAP) exerts retinoprotective effects against several types of injuries in vivo, including optic nerve transection, retinal ischemia, excitotoxic injuries, UVA-induced lesion, and diabetic retinopathy. In a recent study, we have proven that PACAP is also protective in oxidative stress-induced injury in human pigment epithelial cells (ARPE-19 cells). The aim of the present study was to investigate the possible mechanisms of this protection. ARPE cells were exposed to a 24-h hydrogen peroxide treatment. Expressions of kinases and apoptotic markers were studied by complex array kits and Western blot. Oxidative stress induced the activation of several apoptotic markers, including Bad, Bax, HIF-1α, several heat shock proteins, TNF-related apoptosis-inducing ligand, and Fas-associated protein with death domain, while PACAP treatment decreased them. The changes in the expression of MAP kinases showed that PACAP activated the protective ERK1/2 and downstream CREB, and decreased the activation of the pro-apoptotic p38MAPK and c-Jun N-terminal kinase, an effect opposite to that observed with only oxidative stress. Furthermore, PACAP increased the activation of the protective Akt pathway. In addition, the effects of oxidative stress on several other signaling molecules were counteracted by PACAP treatment (Chk2, Yes, Lyn, paxillin, p53, PLC, STAT4, RSK). These play a role in cell death, cell cycle, inflammation, adhesion, differentiation and proliferation. In summary, PACAP, acting at several levels, influences the balance between pro- and anti-apoptotic factors in favor of anti-apoptosis, thereby providing protection in oxidative stress-induced injury of human retinal pigment epithelial cells. PMID:22644900

  8. Oxygen and the evolution of metabolic pathways

    NASA Technical Reports Server (NTRS)

    Jahnke, L. L.

    1986-01-01

    While a considerable amount of evidence has been accumulated about the history of oxygen on this planet, little is known about the relative amounts to which primitive cells might have been exposed. One clue may be found in the metabolic pathways of extant microorganisms. While eucaryotes are principally aerobic organisms, a number are capable of anaerobic growth by fermentation. One such eucaryotic microorganism, Saccharomyces cerevisiae, will grow in the complete absence of oxygen when supplemented with unsaturated fatty acid and sterol. Oxygen-requiring enzymes are involved in the synthesis of both of these compounds. Studies have demonstrated that the oxidative desaturation of palmitic acid and the conversion of squalene to sterols occur in the range of 10-(3) to 10(-2) PAL. Thus, if the oxygen requirements of these enzymatic processes are an indication, eucaryotes might be more primitive than anticipated from the microfossil record. Results of studies on the oxygen requirements for sterol and unsaturated fatty acid synthesis in a more primitive procaryotic system are also discussed.

  9. Experimental evolution reveals hidden diversity in evolutionary pathways

    PubMed Central

    Lind, Peter A; Farr, Andrew D; Rainey, Paul B

    2015-01-01

    Replicate populations of natural and experimental organisms often show evidence of parallel genetic evolution, but the causes are unclear. The wrinkly spreader morph of Pseudomonas fluorescens arises repeatedly during experimental evolution. The mutational causes reside exclusively within three pathways. By eliminating these, 13 new mutational pathways were discovered with the newly arising WS types having fitnesses similar to those arising from the commonly passaged routes. Our findings show that parallel genetic evolution is strongly biased by constraints and we reveal the genetic bases. From such knowledge, and in instances where new phenotypes arise via gene activation, we suggest a set of principles: evolution proceeds firstly via pathways subject to negative regulation, then via promoter mutations and gene fusions, and finally via activation by intragenic gain-of-function mutations. These principles inform evolutionary forecasting and have relevance to interpreting the diverse array of mutations associated with clinically identical instances of disease in humans. DOI: http://dx.doi.org/10.7554/eLife.07074.001 PMID:25806684

  10. The beet Y locus encodes an anthocyanin-MYB-like protein that activates the betalain red pigment pathway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Almost all flowering plants produce red/violet, phenylalanine-based, anthocyanin pigments. A single order, the Caryophyllales, contains families that replace anthocyanins with tyrosine-based red and yellow betalain pigments. Close biological correlation of pigmentation patterns suggested that betala...

  11. Sequence and evolution of the blue cone pigment gene in old and new world primates

    SciTech Connect

    Hunt, D.M.; Cowing, J.A.; Patel, R.

    1995-06-10

    The sequences of the blue cone photopigments in the talapoin monkey (Miopithecus talapoin), an Old World primate, and in the marmoset (Callithrix jacchus), a New World monkey, are presented. Both genes are composed of 5 exons separated by 4 introns. In this respect, they are identical to the human blue gene, and intron sizes are also similar. Based on the level of amino acid identity, both monkey pigments are members of the S branch of pigments. Alignment of these sequences with the human gene requires the insertion/deletion of two separate codons in exon 1. The silent site divergence between these primate blue genes indicates a separation of the Old and New World primate lineages around 43 million years ago. 41 refs., 1 fig., 3 tabs.

  12. Was skin cancer a selective force for black pigmentation in early hominin evolution?

    PubMed Central

    Greaves, Mel

    2014-01-01

    Melanin provides a crucial filter for solar UV radiation and its genetically determined variation influences both skin pigmentation and risk of cancer. Genetic evidence suggests that the acquisition of a highly stable melanocortin 1 receptor allele promoting black pigmentation arose around the time of savannah colonization by hominins at some 1–2 Ma. The adaptive significance of dark skin is generally believed to be protection from UV damage but the pathologies that might have had a deleterious impact on survival and/or reproductive fitness, though much debated, are uncertain. Here, I suggest that data on age-associated cancer incidence and lethality in albinos living at low latitudes in both Africa and Central America support the contention that skin cancer could have provided a potent selective force for the emergence of black skin in early hominins. PMID:24573849

  13. Isomerization and oxidation of vitamin a in cone-dominant retinas: a novel pathway for visual-pigment regeneration in daylight.

    PubMed

    Mata, Nathan L; Radu, Roxana A; Clemmons, Richard C; Travis, Gabriel H

    2002-09-26

    The first step toward light perception is 11-cis to all-trans photoisomerization of the retinaldehyde chromophore in a rod or cone opsin-pigment molecule. Light sensitivity of the opsin pigment is restored through a multistep pathway called the visual cycle, which effects all-trans to 11-cis re-isomerization of the retinoid chromophore. The maximum throughput of the known visual cycle, however, is too slow to explain sustained photosensitivity in bright light. Here, we demonstrate three novel enzymatic activities in cone-dominant ground-squirrel and chicken retinas: an all-trans-retinol isomerase, an 11-cis-retinyl-ester synthase, and an 11-cis-retinol dehydrogenase. Together these activities comprise a novel pathway that regenerates opsin photopigments at a rate 20-fold faster than the known visual cycle. We suggest that this pathway is responsible for sustained daylight vision in vertebrates. PMID:12367507

  14. Isomerization and Oxidation of Vitamin A in Cone-Dominant Retinas: A Novel Pathway for Visual-Pigment Regeneration in Daylight

    PubMed Central

    Mata, Nathan L.; Radu, Roxana A.; Clemmons, Richard S.; Travis, Gabriel H.

    2010-01-01

    Summary The first step toward light perception is 11-cis to all-trans photoisomerization of the retinaldehyde chromophore in a rod or cone opsin-pigment molecule. Light sensitivity of the opsin pigment is restored through a multistep pathway called the visual cycle, which effects all-trans to 11-cis re-isomerization of the retinoid chromophore. The maximum throughput of the known visual cycle, however, is too slow to explain sustained photosensitivity in bright light. Here, we demonstrate three novel enzymatic activities in cone-dominant ground-squirrel and chicken retinas: an all-trans-retinol isomerase, an 11-cis-retinyl-ester synthase, and an 11-cis-retinol dehydrogenase. Together these activities comprise a novel pathway that regenerates opsin photopigments at a rate 20-fold faster than the known visual cycle. We suggest that this pathway is responsible for sustained daylight vision in vertebrates. PMID:12367507

  15. Association of the OCA2 polymorphism His615Arg with melanin content in east Asian populations: further evidence of convergent evolution of skin pigmentation.

    PubMed

    Edwards, Melissa; Bigham, Abigail; Tan, Jinze; Li, Shilin; Gozdzik, Agnes; Ross, Kendra; Jin, Li; Parra, Esteban J

    2010-03-01

    The last decade has witnessed important advances in our understanding of the genetics of pigmentation in European populations, but very little is known about the genes involved in skin pigmentation variation in East Asian populations. Here, we present the results of a study evaluating the association of 10 Single Nucleotide Polymorphisms (SNPs) located within 5 pigmentation candidate genes (OCA2, DCT, ADAM17, ADAMTS20, and TYRP1) with skin pigmentation measured quantitatively in a sample of individuals of East Asian ancestry living in Canada. We show that the non-synonymous polymorphism rs1800414 (His615Arg) located within the OCA2 gene is significantly associated with skin pigmentation in this sample. We replicated this result in an independent sample of Chinese individuals of Han ancestry. This polymorphism is characterized by a derived allele that is present at a high frequency in East Asian populations, but is absent in other population groups. In both samples, individuals with the derived G allele, which codes for the amino acid arginine, show lower melanin levels than those with the ancestral A allele, which codes for the amino acid histidine. An analysis of this non-synonymous polymorphism using several programs to predict potential functional effects provides additional support for the role of this SNP in skin pigmentation variation in East Asian populations. Our results are consistent with previous research indicating that evolution to lightly-pigmented skin occurred, at least in part, independently in Europe and East Asia. PMID:20221248

  16. In silico study for diversing the molecular pathway of pigment formation: an alternative to manual coloring in cotton fibers

    PubMed Central

    Ahad, Ammara; Ahmad, Aftab; Din, Salah ud; Rao, Abdul Q.; Shahid, Ahmad A.; Husnain, Tayyab

    2015-01-01

    Diversity of colors in flowers and fruits is largely due to anthocyanin pigments. The flavonoid/anthocyanin pathway has been most extensively studied. Dihydroflavonol 4-reductase (DFR) is a vital enzyme of the flavonoid pathway which displays major impact on the formation of anthocyanins, flavan 3-ols and flavonols. The substrate specificity of the DFR was found to play a crucial role in determination of type of anthocyanidins. Altering the flavonoid/anthocyanin pathway through genetic engineering to develop color of our own choice is an exciting subject of future research. In the present study, comparison among four DFR genes (Gossypium hirsutum, Iris × hollandica, Ang. DFRI and DFRII), sequence alignment for homology as well as protein modeling and docking is demonstrated. Estimation of catalytic sites, prediction of substrate preference and protein docking were the key features of this article. For specific substrate uptake, a proline rich region and positions 12 plus 26 along with other positions emphasizing the 26-amino acid residue region (132–157) was tested. Results showed that proline rich region position 12, 26, and 132–157 plays an important role in selective attachment of DFRs with respective substrates. Further, “Expasy ProtParam tool” results showed that Iris × hollandica DFR amino acids (Asn 9: Asp 23) are favorable for reducing DHQ and DHM thus accumulating delphinidin, while Gossypium hirsutum DFR has (Asn 13: Asp 21) hypothesized to consume DHK. Protein docking data showed that amino acid residues in above mentioned positions were just involved in attachment of DFR with substrate and had no role in specific substrate uptake. Advanced bioinformatics analysis has revealed that all above mentioned positions have role in substrate attachment. For substrate specificity, other residues region is involved. It will help in color manipulations in different plant species. PMID:26442064

  17. Spectral tuning and molecular evolution of rod visual pigments in the species flock of cottoid fish in Lake Baikal.

    PubMed

    Hunt, D M; Fitzgibbon, J; Slobodyanyuk, S J; Bowmaker, J K

    1996-05-01

    Lake Baikal in Eastern Siberia is the deepest and one of the largest and most ancient lakes in the world. However, even in the deepest regions, oxygenation levels do not fall below 75-80% of the surface levels. This has enabled a remarkable flock of largely endemic teleost fish of the sub-order Cottoidei to colonize all depth habitats. We have previously shown that species that occupy progressively deeper habitats show a blue shift in the peak wavelength of absorbance (lambda max) of both their rod and cone visual pigments; for the rod pigments, a number of stepwise shifts occur from about 516 nm in littoral species to about 484 nm in abyssal species. By sequencing the rod opsin gene from 11 species of Baikal cottoids that include representatives from all depth habitats, we have been able to identify four amino acid substitutions that would account for these shifts. The effect of each substitution on lambda max is approximately additive and each corresponds to a particular lineage of evolution. PMID:8711901

  18. MC1R, the cAMP pathway and the response to solar UV: Extending the horizon beyond pigmentation

    PubMed Central

    García-Borrón, Jose C; Abdel-Malek, Zalfa; Jiménez-Cervantes, Celia

    2014-01-01

    Summary The melanocortin 1 receptor (MC1R) is a G protein-coupled receptor crucial for the regulation of melanocyte proliferation and function. Upon binding melanocortins, MC1R activates several signaling cascades, notably the cAMP pathway leading to synthesis of photoprotective eumelanin. Polymorphisms in the MC1R gene are a major source of normal variation of human hair color and skin pigmentation, response to ultraviolet radiation (UVR) and skin cancer susceptibility. The identification of a surprisingly high number of MC1R natural variants strongly associated with pigmentary phenotypes and increased skin cancer risk has prompted research on the functional properties of the wild-type receptor and frequent mutant alleles. We summarize current knowledge on MC1R structural and functional properties, as well as on its intracellular trafficking and signaling. We also review the current knowledge about the function of MC1R as a skin cancer, particularly melanoma, susceptibility gene and how it modulates the response of melanocytes to UVR. PMID:24807163

  19. Long-distance communication by specialized cellular projections during pigment pattern development and evolution

    PubMed Central

    Eom, Dae Seok; Bain, Emily J; Patterson, Larissa B; Grout, Megan E; Parichy, David M

    2015-01-01

    Changes in gene activity are essential for evolutionary diversification. Yet, elucidating the cellular behaviors that underlie modifications to adult form remains a profound challenge. We use neural crest-derived adult pigmentation of zebrafish and pearl danio to uncover cellular bases for alternative pattern states. We show that stripes in zebrafish require a novel class of thin, fast cellular projection to promote Delta-Notch signaling over long distances from cells of the xanthophore lineage to melanophores. Projections depended on microfilaments and microtubules, exhibited meandering trajectories, and stabilized on target cells to which they delivered membraneous vesicles. By contrast, the uniformly patterned pearl danio lacked such projections, concomitant with Colony stimulating factor 1-dependent changes in xanthophore differentiation that likely curtail signaling available to melanophores. Our study reveals a novel mechanism of cellular communication, roles for differentiation state heterogeneity in pigment cell interactions, and an unanticipated morphogenetic behavior contributing to a striking difference in adult form. DOI: http://dx.doi.org/10.7554/eLife.12401.001 PMID:26701906

  20. Insight into the evolution of the iron oxidation pathways.

    PubMed

    Ilbert, Marianne; Bonnefoy, Violaine

    2013-02-01

    Iron is a ubiquitous element in the universe. Ferrous iron (Fe(II)) was abundant in the primordial ocean until the oxygenation of the Earth's atmosphere led to its widespread oxidation and precipitation. This change of iron bioavailability likely put selective pressure on the evolution of life. This element is essential to most extant life forms and is an important cofactor in many redox-active proteins involved in a number of vital pathways. In addition, iron plays a central role in many environments as an energy source for some microorganisms. This review is focused on Fe(II) oxidation. The fact that the ability to oxidize Fe(II) is widely distributed in Bacteria and Archaea and in a number of quite different biotopes suggests that the dissimilatory Fe(II) oxidation is an ancient energy metabolism. Based on what is known today about Fe(II) oxidation pathways, we propose that they arose independently more than once in evolution and evolved convergently. The iron paleochemistry, the phylogeny, the physiology of the iron oxidizers, and the nature of the cofactors of the redox proteins involved in these pathways suggest a possible scenario for the timescale in which each type of Fe(II) oxidation pathways evolved. The nitrate dependent anoxic iron oxidizers are likely the most ancient iron oxidizers. We suggest that the phototrophic anoxic iron oxidizers arose in surface waters after the Archaea/Bacteria-split but before the Great Oxidation Event. The neutrophilic oxic iron oxidizers possibly appeared in microaerobic marine environments prior to the Great Oxidation Event while the acidophilic ones emerged likely after the advent of atmospheric O(2). This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. PMID:23044392

  1. Vitreous-induced cytoskeletal rearrangements via the Rac1 GTPase-dependent signaling pathway in human retinal pigment epithelial cells

    SciTech Connect

    Huang, Xionggao; Wei, Yantao; Ma, Haizhi; Zhang, Shaochong

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Vitreous induces morphological changes and cytoskeletal rearrangements in RPE cells. Black-Right-Pointing-Pointer Rac1 is activated in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer Rac inhibition prevents morphological changes in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer Rac inhibition suppresses cytoskeletal rearrangements in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer The vitreous-induced effects are mediated by a Rac1 GTPase/LIMK1/cofilin pathway. -- Abstract: Proliferative vitreoretinopathy (PVR) is mainly caused by retinal pigment epithelial (RPE) cell migration, invasion, proliferation and transformation into fibroblast-like cells that produce the extracellular matrix (ECM). The vitreous humor is known to play an important role in PVR. An epithelial-to-mesenchymal transdifferentiation (EMT) of human RPE cells induced by 25% vitreous treatment has been linked to stimulation of the mesenchymal phenotype, migration and invasion. Here, we characterized the effects of the vitreous on the cell morphology and cytoskeleton in human RPE cells. The signaling pathway that mediates these effects was investigated. Serum-starved RPE cells were incubated with 25% vitreous, and the morphological changes were examined by phase-contrast microscopy. Filamentous actin (F-actin) was examined by immunofluorescence and confocal microscopy. Protein phosphorylation of AKT, ERK1/2, Smad2/3, LIM kinase (LIMK) 1 and cofilin was analyzed by Western blot analysis. Vitreous treatment induced cytoskeletal rearrangements, activated Rac1 and enhanced the phosphorylation of AKT, ERK1/2 and Smad2/3. When the cells were treated with a Rac activation-specific inhibitor, the cytoskeletal rearrangements were prevented, and the phosphorylation of Smad2/3 was blocked. Vitreous treatment also enhanced the phosphorylation of LIMK1 and cofilin and the Rac inhibitor blocked this effect. We propose that vitreous

  2. Reaction Pathways for Oxygen Evolution Promoted by Cobalt Catalyst

    PubMed Central

    Mattioli, Giuseppe; Giannozzi, Paolo; Bonapasta, Aldo Amore; Guidoni, Leonardo

    2014-01-01

    The in-depth understanding of the molecular mechanisms regulating the water oxidation catalysis is of key relevance for the rationalization and the design of efficient oxygen evolution catalysts based on earth-abundant transition metals. Performing ab initio DFT+U molecular dynamics calculations of cluster models in explicit water solution, we provide insight into the pathways for oxygen evolution of a cobalt-based catalyst (CoCat). The fast motion of protons at the CoCat/water interface and the occurrence of cubane-like Co-oxo units at the catalyst boundaries are the keys to unlock the fast formation of O–O bonds. Along the resulting pathways, we identified the formation of Co(IV)-oxyl species as the driving ingredient for the activation of the catalytic mechanism, followed by their geminal coupling with O atoms coordinated by the same Co. Concurrent nucleophilic attack of water molecules coming directly from the water solution is discouraged by high activation barriers. The achieved results suggest also interesting similarities between the CoCat and the Mn4Ca-oxo oxygen evolving complex of photosystem II. PMID:24044778

  3. Skin Pigment

    MedlinePlus

    ... Professional Version Pigment Disorders Overview of Skin Pigment Albinism Vitiligo Hyperpigmentation Melasma Melanin is the brown pigment ... dark-skinned people produce the most. People with albinism have little or no melanin and thus their ...

  4. αvβ5 Integrin/FAK/PGC-1α Pathway Confers Protective Effects on Retinal Pigment Epithelium

    PubMed Central

    Roggia, Murilo F.; Ueta, Takashi

    2015-01-01

    Purpose To elucidate the mechanism of the induction of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) by photoreceptor outer segments (POS) and its effects on retinal pigment epithelium (RPE). Methods PGC-1α upregulation by POS was confirmed in ARPE-19 cells and in RPE ex vivo. To elucidate the mechanism, siRNAs against β5 integrin, CD36, Mer tyrosine kinase (MerTK), and Atg5, blocking antibodies against CD36 and MerTK, and a specific inhibitor for focal adhesion kinase (FAK) were used. We examined the effect of POS-induced PGC-1α upregulation on the levels of reactive oxygen species (ROS), mitochondrial biogenesis, senescence-associated β-galactosidase (SA-β-gal) after H2O2 treatment, and lysosomal activity. Lysosomal activity was evaluated through transcriptional factor EB and its target genes, and the activity of cathepsin D. Lipid metabolism after POS treatment was assessed using Oil Red O and BODIPY C11. RPE phenotypes of PGC-1α-deficient mice were examined. Results POS-induced PGC-1α upregulation was suppressed by siRNA against β5 integrin and a FAK inhibitor. siRNAs and blocking antibodies against CD36 and MerTK enhanced the effect of POS on PGC-1α. The upregulation of PGC-1α increased the levels of mRNA for antioxidant enzymes and stimulated mitochondrial biogenesis, decreased ROS levels, and reduced SA-β-gal staining in H2O2-treated ARPE-19 cells. PGC-1α was critical for lysosomal activity and lipid metabolism after POS treatment. PGC-1α-deficient mice demonstrated an accumulation of type 2 lysosomes in RPE, thickening of Bruch’s membrane, and poor choriocapillaris vasculature. Conclusions The binding, but not the internalization of POS confers protective effects on RPE cells through the αvβ5 integrin/FAK/PGC-1α pathway. PMID:26244551

  5. Gene duplications and evolution of the short wavelength-sensitive visual pigments in vertebrates.

    PubMed

    Yokoyama, S

    1994-01-01

    When invertebrate rhodopsins were used as the outgroup, the rooted phylogenetic tree of 26 vertebrate visual pigments (VPs) was constructed. These VPs are distinguished into the following four clusters: (1) RH1 cluster consisting of rhodopsins, (2) RH2 cluster consisting of VPs with variable ranges of absorption spectra, (3) SWS cluster of short wavelength-sensitive VPs, and (4) LWS/MSW cluster of long and medium wavelength-sensitive VPs. Short wavelength-sensitive VPs from Astyanax fasciatus (AF23), goldfish (BCa), chicken (BCg and VGg), and human (BHs) belong to SWS cluster, whereas that from gecko (BGge) belongs to the RH2 cluster. The SWS cluster is further divided into SWS-I (BHs and VGg) and SWS-II (AF23, BCa, and BGg) groups. The SWS-I group has accumulated more amino acid changes than any other group of VPs. It is suggested that amino acid changes at a few key positions might have been important in the functional differentiation of the SWS-I group from the SWS-II group. PMID:8121284

  6. Marine Microbial Secondary Metabolites: Pathways, Evolution and Physiological Roles.

    PubMed

    Giordano, Daniela; Coppola, Daniela; Russo, Roberta; Denaro, Renata; Giuliano, Laura; Lauro, Federico M; di Prisco, Guido; Verde, Cinzia

    2015-01-01

    Microbes produce a huge array of secondary metabolites endowed with important ecological functions. These molecules, which can be catalogued as natural products, have long been exploited in medical fields as antibiotics, anticancer and anti-infective agents. Recent years have seen considerable advances in elucidating natural-product biosynthesis and many drugs used today are natural products or natural-product derivatives. The major contribution to recent knowledge came from application of genomics to secondary metabolism and was facilitated by all relevant genes being organised in a contiguous DNA segment known as gene cluster. Clustering of genes regulating biosynthesis in bacteria is virtually universal. Modular gene clusters can be mixed and matched during evolution to generate structural diversity in natural products. Biosynthesis of many natural products requires the participation of complex molecular machines known as polyketide synthases and non-ribosomal peptide synthetases. Discovery of new evolutionary links between the polyketide synthase and fatty acid synthase pathways may help to understand the selective advantages that led to evolution of secondary-metabolite biosynthesis within bacteria. Secondary metabolites confer selective advantages, either as antibiotics or by providing a chemical language that allows communication among species, with other organisms and their environment. Herewith, we discuss these aspects focusing on the most clinically relevant bioactive molecules, the thiotemplated modular systems that include polyketide synthases, non-ribosomal peptide synthetases and fatty acid synthases. We begin by describing the evolutionary and physiological role of marine natural products, their structural/functional features, mechanisms of action and biosynthesis, then turn to genomic and metagenomic approaches, highlighting how the growing body of information on microbial natural products can be used to address fundamental problems in

  7. Evolution of carotenoid pigmentation in caciques and meadowlarks (Icteridae): repeated gains of red plumage coloration by carotenoid C4-oxygenation.

    PubMed

    Friedman, Nicholas R; McGraw, Kevin J; Omland, Kevin E

    2014-03-01

    Many animals use carotenoid pigments to produce yellow, orange, and red coloration. In birds, at least 10 carotenoid compounds have been documented in red feathers; most of these are produced through metabolic modification of dietary precursor compounds. However, it is poorly understood how lineages have evolved the biochemical mechanisms for producing red coloration. We used high-performance liquid chromatography to identify the carotenoid compounds present in feathers from 15 species across two clades of blackbirds (the meadowlarks and allies, and the caciques and oropendolas; Icteridae), and mapped their presence or absence on a phylogeny. We found that the red plumage found in meadowlarks includes different carotenoid compounds than the red plumage found in caciques, indicating that these gains of red color are convergent. In contrast, we found that red coloration in two closely related lineages of caciques evolved twice by what appear to be similar biochemical mechanisms. The C4-oxygenation of dietary carotenoids was responsible for each observed transition from yellow to red plumage coloration, and has been commonly reported by other researchers. This suggests that the C4-oxygenation pathway may be a readily evolvable means to gain red coloration using carotenoids. PMID:24164419

  8. Space and Time Evolution of the Electrostatic Potential During the Activation of a Visual Pigment.

    PubMed

    Melaccio, Federico; Calimet, Nicolas; Schapiro, Igor; Valentini, Alessio; Cecchini, Marco; Olivucci, Massimo

    2016-07-01

    Animal and microbial retinal proteins employ the Schiff base of retinal as their chromophore. Here, the possible consequences of the charge translocation associated with the light-induced dynamics of the chromophore of a visual opsin are investigated along a representative semiclassical trajectory. We show that the evolution of the electrostatic potential projected by the chromophore onto the surrounding protein displays intense but topographically localized sudden variations in proximity of the decay region. pKa calculations carried out on selected snapshots used as probes, indicate that the only residue which may be sensitive to the electrostatic potential shift is Glu181. Accordingly, our results suggest that the frail Tyr191/268-Glu181-Wat2-Ser186 hydrogen bond network may be perturbed by the transient variations of the electrostatic potential. PMID:27322155

  9. Evolution of oxytocin pathways in the brain of vertebrates

    PubMed Central

    Knobloch, H. Sophie; Grinevich, Valery

    2014-01-01

    The central oxytocin system transformed tremendously during the evolution, thereby adapting to the expanding properties of species. In more basal vertebrates (paraphyletic taxon Anamnia, which includes agnathans, fish and amphibians), magnocellular neurosecretory neurons producing homologs of oxytocin reside in the wall of the third ventricle of the hypothalamus composing a single hypothalamic structure, the preoptic nucleus. This nucleus further diverged in advanced vertebrates (monophyletic taxon Amniota, which includes reptiles, birds, and mammals) into the paraventricular and supraoptic nuclei with accessory nuclei (AN) between them. The individual magnocellular neurons underwent a process of transformation from primitive uni- or bipolar neurons into highly differentiated neurons. Due to these microanatomical and cytological changes, the ancient release modes of oxytocin into the cerebrospinal fluid were largely replaced by vascular release. However, the most fascinating feature of the progressive transformations of the oxytocin system has been the expansion of oxytocin axonal projections to forebrain regions. In the present review we provide a background on these evolutionary advancements. Furthermore, we draw attention to the non-synaptic axonal release in small and defined brain regions with the aim to clearly distinguish this way of oxytocin action from the classical synaptic transmission on one side and from dendritic release followed by a global diffusion on the other side. Finally, we will summarize the effects of oxytocin and its homologs on pro-social reproductive behaviors in representatives of the phylogenetic tree and will propose anatomically plausible pathways of oxytocin release contributing to these behaviors in basal vertebrates and amniots. PMID:24592219

  10. In vivo evolution of metabolic pathways: Assembling old parts to build novel and functional structures

    PubMed Central

    Luque, Alejandro; Sebai, Sarra C; Sauveplane, Vincent; Ramaen, Odile; Pandjaitan, Rudy

    2014-01-01

    In our recent article “In vivo evolution of metabolic pathways by homeologous recombination in mitotic cells” we proposed a useful alternative to directed evolution methods that permits the generation of yeast cell libraries containing recombinant metabolic pathways from counterpart genes. The methodology was applied to generate single mosaic genes and intragenic mosaic pathways. We used flavonoid metabolism genes as a working model to assembly and express evolved pathways in DNA repair deficient cells. The present commentary revises the principles of gene and pathway mosaicism and explores the scope and perspectives of our results as an additional tool for synthetic biology. PMID:25482082

  11. Genetic Architecture of Abdominal Pigmentation in Drosophila melanogaster

    PubMed Central

    Dembeck, Lauren M.; Huang, Wen; Magwire, Michael M.; Lawrence, Faye; Lyman, Richard F.; Mackay, Trudy F. C.

    2015-01-01

    Pigmentation varies within and between species and is often adaptive. The amount of pigmentation on the abdomen of Drosophila melanogaster is a relatively simple morphological trait, which serves as a model for mapping the genetic basis of variation in complex phenotypes. Here, we assessed natural variation in female abdominal pigmentation in 175 sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel, derived from the Raleigh, NC population. We quantified the proportion of melanization on the two most posterior abdominal segments, tergites 5 and 6 (T5, T6). We found significant genetic variation in the proportion of melanization and high broad-sense heritabilities for each tergite. Genome-wide association studies identified over 150 DNA variants associated with the proportion of melanization on T5 (84), T6 (34), and the difference between T5 and T6 (35). Several of the top variants associated with variation in pigmentation are in tan, ebony, and bric-a-brac1, genes known to affect D. melanogaster abdominal pigmentation. Mutational analyses and targeted RNAi-knockdown showed that 17 out of 28 (61%) novel candidate genes implicated by the genome-wide association study affected abdominal pigmentation. Several of these genes are involved in developmental and regulatory pathways, chitin production, cuticle structure, and vesicle formation and transport. These findings show that genetic variation may affect multiple steps in pathways involved in tergite development and melanization. Variation in these novel candidates may serve as targets for adaptive evolution and sexual selection in D. melanogaster. PMID:25933381

  12. Photosynthetic Pigments in Diatoms.

    PubMed

    Kuczynska, Paulina; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2015-09-01

    Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries. PMID:26389924

  13. Photosynthetic Pigments in Diatoms

    PubMed Central

    Kuczynska, Paulina; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2015-01-01

    Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries. PMID:26389924

  14. A dominant mutation in MAPKAPK3, an actor of p38 signaling pathway, causes a new retinal dystrophy involving Bruch's membrane and retinal pigment epithelium.

    PubMed

    Meunier, Isabelle; Lenaers, Guy; Bocquet, Béatrice; Baudoin, Corinne; Piro-Megy, Camille; Cubizolle, Aurélie; Quilès, Mélanie; Jean-Charles, Albert; Cohen, Salomon Yves; Merle, Harold; Gaudric, Alain; Labesse, Gilles; Manes, Gaël; Péquignot, Marie; Cazevieille, Chantal; Dhaenens, Claire-Marie; Fichard, Agnès; Ronkina, Natalia; Arthur, Simon J; Gaestel, Matthias; Hamel, Christian P

    2016-03-01

    Inherited retinal dystrophies are clinically and genetically heterogeneous with significant number of cases remaining genetically unresolved. We studied a large family from the West Indies islands with a peculiar retinal disease, the Martinique crinkled retinal pigment epitheliopathy that begins around the age of 30 with retinal pigment epithelium (RPE) and Bruch's membrane changes resembling a dry desert land and ends with a retinitis pigmentosa. Whole-exome sequencing identified a heterozygous c.518T>C (p.Leu173Pro) mutation in MAPKAPK3 that segregates with the disease in 14 affected and 28 unaffected siblings from three generations. This unknown variant is predicted to be damaging by bioinformatic predictive tools and the mutated protein to be non-functional by crystal structure analysis. MAPKAPK3 is a serine/threonine protein kinase of the p38 signaling pathway that is activated by a variety of stress stimuli and is implicated in cellular responses and gene regulation. In contrast to other tissues, MAPKAPK3 is highly expressed in the RPE, suggesting a crucial role for retinal physiology. Expression of the mutated allele in HEK cells revealed a mislocalization of the protein in the cytoplasm, leading to cytoskeleton alteration and cytodieresis inhibition. In Mapkapk3-/- mice, Bruch's membrane is irregular with both abnormal thickened and thinned portions. In conclusion, we identified the first pathogenic mutation in MAPKAPK3 associated with a retinal disease. These findings shed new lights on Bruch's membrane/RPE pathophysiology and will open studies of this signaling pathway in diseases with RPE and Bruch's membrane alterations, such as age-related macular degeneration. PMID:26744326

  15. Illumination from light-emitting diodes (LEDs) disrupts pathological cytokines expression and activates relevant signal pathways in primary human retinal pigment epithelial cells.

    PubMed

    Shen, Ye; Xie, Chen; Gu, Yangshun; Li, Xiuyi; Tong, Jianping

    2016-04-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in the aged people. The latest systemic review of epidemiological investigations revealed that excessive light exposure increases the risk of AMD. With the drastically increasing use of high-energy light-emitting diodes (LEDs) light in our domestic environment nowadays, it is supposed to pose a potential oxidative threat to ocular health. Retinal pigment epithelium (RPE) is the major ocular source of pathological cytokines, which regulate local inflammation and angiogenesis. We hypothesized that high-energy LED light might disrupt the pathological cytokine expression of retinal pigment epithelium (RPE), contributing to the pathogenesis of AMD. Primary human RPE cells were isolated from eyecups of normal eye donors and seeded into plate wells for growing to confluence. Two widely used multichromatic white light-emitting diodes (LEDs) with correlated color temperatures (CCTs) of 2954 and 7378 K were used in this experiment. The confluent primary RPE cells were under white LEDs light exposure until 24 h. VEGF-A, IL-6, IL-8 and MCP-1 proteins and mRNAs were measured using an ELISA kit and RT-PCR, respectively. Activation of mitogen-activated protein kinases (MAPKs), Akt, Janus kinase (JAK)2 and Nuclear factor (NF)-κB signal pathways after LEDs illumination were evaluated by western blotting analysis. The level of reactive oxygen species (ROS) using chloromethyl- 2',7'-dichlorodihydrofluorescein diacetate. Inhibitors of relevant signal pathways and anti-oxidants were added to the primary RPE cells before LEDs illumination to evaluate their biological functions. We found that 7378 K light, but not 2954 K upregulated the VEGF-A, IL-6, IL-8 and downregulated MCP-1 proteins and mRNAs levels in a time-dependent manner. In parallel, initial activation of MAPKs and NF-κB signal pathways were also observed after 7378 K light exposure. Mechanistically, antioxidants for eliminating reactive oxygen

  16. Combinatorial Evolution of Enzymes and Synthetic Pathways Using One-Step PCR.

    PubMed

    Jin, Peng; Kang, Zhen; Zhang, Junli; Zhang, Linpei; Du, Guocheng; Chen, Jian

    2016-03-18

    DNA engineering is the fundamental motive driving the rapid development of modern biotechnology. Here, we present a versatile evolution method termed "rapidly efficient combinatorial oligonucleotides for directed evolution" (RECODE) for rapidly introducing multiple combinatorial mutations to the target DNA by combined action of a thermostable high-fidelity DNA polymerase and a thermostable DNA Ligase in one reaction system. By applying this method, we rapidly constructed a variant library of the rpoS promoters (with activity of 8-460%), generated a novel heparinase from the highly specific leech hyaluronidase (with more than 30 mutant residues) and optimized the heme biosynthetic pathway by combinatorial evolution of regulatory elements and pathway enzymes (2500 ± 120 mg L(-1) with 20-fold increase). The simple RECODE method enabled researchers the unparalleled ability to efficiently create diverse mutant libraries for rapid evolution and optimization of enzymes and synthetic pathways. PMID:26751617

  17. mTOR pathway is activated by PKA in adrenocortical cells and participates in vivo to apoptosis resistance in primary pigmented nodular adrenocortical disease (PPNAD).

    PubMed

    de Joussineau, Cyrille; Sahut-Barnola, Isabelle; Tissier, Frédérique; Dumontet, Typhanie; Drelon, Coralie; Batisse-Lignier, Marie; Tauveron, Igor; Pointud, Jean-Christophe; Lefrançois-Martinez, Anne-Marie; Stratakis, Constantine A; Bertherat, Jérôme; Val, Pierre; Martinez, Antoine

    2014-10-15

    Primary pigmented nodular adrenocortical disease (PPNAD) is associated with inactivating mutations of the PRKAR1A tumor suppressor gene that encodes the regulatory subunit R1α of the cAMP-dependent protein kinase (PKA). In human and mouse adrenocortical cells, these mutations lead to increased PKA activity, which results in increased resistance to apoptosis that contributes to the tumorigenic process. We used in vitro and in vivo models to investigate the possibility of a crosstalk between PKA and mammalian target of rapamycin (mTOR) pathways in adrenocortical cells and its possible involvement in apoptosis resistance. Impact of PKA signaling on activation of the mTOR pathway and apoptosis was measured in a mouse model of PPNAD (AdKO mice), in human and mouse adrenocortical cell lines in response to pharmacological inhibitors and in PPNAD tissues by immunohistochemistry. AdKO mice showed increased mTOR complex 1 (mTORC1) pathway activity. Inhibition of mTORC1 by rapamycin restored sensitivity of adrenocortical cells to apoptosis in AdKO but not in wild-type mice. In both cell lines and mouse adrenals, rapid phosphorylation of mTORC1 targets including BAD proapoptotic protein was observed in response to PKA activation. Accordingly, BAD hyperphosphorylation, which inhibits its proapoptotic activity, was increased in both AdKO mouse adrenals and human PPNAD tissues. In conclusion, mTORC1 pathway is activated by PKA signaling in human and mouse adrenocortical cells, leading to increased cell survival, which is correlated with BAD hyperphosphorylation. These alterations could be causative of tumor formation. PMID:24865460

  18. Evolution of tryptophan biosynthetic pathway in microbial genomes: a comparative genetic study.

    PubMed

    Priya, V K; Sarkar, Susmita; Sinha, Somdatta

    2014-03-01

    Biosynthetic pathway evolution needs to consider the evolution of a group of genes that code for enzymes catalysing the multiple chemical reaction steps leading to the final end product. Tryptophan biosynthetic pathway has five chemical reaction steps that are highly conserved in diverse microbial genomes, though the genes of the pathway enzymes show considerable variations in arrangements, operon structure (gene fusion and splitting) and regulation. We use a combined bioinformatic and statistical analyses approach to address the question if the pathway genes from different microbial genomes, belonging to a wide range of groups, show similar evolutionary relationships within and between them. Our analyses involved detailed study of gene organization (fusion/splitting events), base composition, relative synonymous codon usage pattern of the genes, gene expressivity, amino acid usage, etc. to assess inter- and intra-genic variations, between and within the pathway genes, in diverse group of microorganisms. We describe these genetic and genomic variations in the tryptophan pathway genes in different microorganisms to show the similarities across organisms, and compare the same genes across different organisms to find the possible variability arising possibly due to horizontal gene transfers. Such studies form the basis for moving from single gene evolution to pathway evolutionary studies that are important steps towards understanding the systems biology of intracellular pathways. PMID:24592292

  19. Pigmented casts.

    PubMed

    Miteva, Mariya; Romanelli, Paolo; Tosti, Antonella

    2014-01-01

    Pigmented casts have been reported with variable frequency in scalp biopsies from alopecia areata, trichotillomania, chemotherapy-induced alopecia and postoperative (pressure induced) alopecia. Their presence and morphology in other scalp disorders has not been described. The authors assessed for the presence and morphology of pigmented casts in 308 transversely bisected scalp biopsies from nonscarring and scarring alopecia, referred to the Department of Dermatology, University of Miami within a year. The pigmented casts were present in 21 of 29 cases of alopecia areata (72%), 7 of 7 cases of trichotillomania (100%), 1 case of friction alopecia, 4 of 28 cases of central centrifugal cicatricial alopecia (14%), and 4 of 4 cases of dissecting cellulitis (100%). They did not show any distinguishing features except for the morphology in trichotillomania, which included twisted, linear (zip), and "button"-like pigment aggregation. The linear arrangement was found also in friction alopecia and dissecting cellulitis. Pigmented casts in the hair canals of miniaturized/vellus hairs was a clue to alopecia areata. Pigmented casts can be observed in biopsies of different hair disorders, but they are not specific for the diagnosis. Horizontal sections allow to better assess their morphology and the follicular level of presence of pigmented casts, which in the context of the other follicular findings may be a clue to the diagnosis. PMID:23823025

  20. Oxidative stress sensitizes retinal pigmented epithelial (RPE) cells to complement-mediated injury in a natural antibody-, lectin pathway-, and phospholipid epitope-dependent manner.

    PubMed

    Joseph, Kusumam; Kulik, Liudmila; Coughlin, Beth; Kunchithapautham, Kannan; Bandyopadhyay, Mausumi; Thiel, Steffen; Thielens, Nicole M; Holers, V Michael; Rohrer, Bärbel

    2013-05-01

    Uncontrolled activation of the alternative complement pathway (AP) is thought to be associated with age-related macular degeneration. Previously, we have shown that in retinal pigmented epithelial (RPE) monolayers, oxidative stress reduced complement inhibition on the cell surface, resulting in sublytic complement activation and loss of transepithelial resistance (TER), but the potential ligand and pathway involved are unknown. ARPE-19 cells were grown as monolayers on transwell plates, and sublytic complement activation was induced with H2O2 and normal human serum. TER deteriorated rapidly in H2O2-exposed monolayers upon adding normal human serum. Although the effect required AP activation, AP was not sufficient, because elimination of MASP, but not C1q, prevented TER reduction. Reconstitution experiments to unravel essential components of the lectin pathway (LP) showed that both ficolin and mannan-binding lectin can activate the LP through natural IgM antibodies (IgM-C2) that recognize phospholipid cell surface modifications on oxidatively stressed RPE cells. The same epitopes were found on human primary embryonic RPE monolayers. Likewise, mouse laser-induced choroidal neovascularization, an injury that involves LP activation, could be increased in antibody-deficient rag1(-/-) mice using the phospholipid-specific IgM-C2. In summary, using a combination of depletion and reconstitution strategies, we have shown that the LP is required to initiate the complement cascade following natural antibody recognition of neoepitopes, which is then further amplified by the AP. LP activation is triggered by IgM bound to phospholipids. Taken together, we have defined novel mechanisms of complement activation in oxidatively stressed RPE, linking molecular events involved in age-related macular degeneration, including the presence of natural antibodies and neoepitopes. PMID:23493397

  1. TGF-{beta}-stimulated aberrant expression of class III {beta}-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    SciTech Connect

    Chung, Eun Jee; Chun, Ji Na; Jung, Sun-Ah; Cho, Jin Won; Lee, Joon H.

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer TGF-{beta} induces aberrant expression of {beta}III in RPE cells via the ERK pathway. Black-Right-Pointing-Pointer TGF-{beta} increases O-GlcNAc modification of {beta}III in RPE cells. Black-Right-Pointing-Pointer Mature RPE cells have the capacity to express a neuron-associated gene by TGF-{beta}. -- Abstract: The class III {beta}-tubulin isotype ({beta}{sub III}) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III {beta}-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology in pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-{beta} (TGF-{beta}) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-{beta} on the aberrant expression of class III {beta}-tubulin and the intracellular signaling pathway mediating these changes. TGF-{beta}-induced aberrant expression and O-linked-{beta}-N-acetylglucosamine (O-GlcNac) modification of class III {beta}-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-{beta} also stimulated phosphorylation of ERK. TGF-{beta}-induced aberrant expression of class III {beta}-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-{beta} stimulated aberrant expression of class III {beta}-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-{beta} stimulation and provide useful information

  2. Phenotypic determination of epithelial appendages: genes, developmental pathways, and evolution.

    PubMed

    Chuong, C M; Noveen, A

    1999-12-01

    Epithelial appendages are derivatives of epithelia that elaborate to form specialized structures and functions. The appendage can protrude out, such as in teeth and feathers, or invaginate in, such as in glands. The epithelia can be ectodermal, such as in hairs, or endodermal, such as in livers. Using feather as a prototype of epithelial appendage, we study the molecular signals involved in the successive stages of epithelial-mesenchymal interactions during morphogenesis. We propose that these form the basics of gene networks, which can be integrated to gene supernetwork and totinetwork. Because the unit of development is molecular pathway rather than single molecule, and the unit of morphogenesis is cell group rather than single cell, we make the analogy between genes/developmental pathways and words/sentences. The study of developmental pathways in epithelial appendage organogenesis will help us to understand the grammar of genes and the basic rules in constructing regulated new growth. This knowledge may contribute to the study of cancer biology (deregulated new growth) and organ regeneration. PMID:10674387

  3. The secretory pathway of protists: spatial and functional organization and evolution.

    PubMed Central

    Becker, B; Melkonian, M

    1996-01-01

    All cells secrete a diversity of macromolecules to modify their environment or to protect themselves. Eukaryotic cells have evolved a complex secretory pathway consisting of several membrane-bound compartments which contain specific sets of proteins. Experimental work on the secretory pathway has focused mainly on mammalian cell lines or on yeasts. Now, some general principles of the secretory pathway have become clear, and most components of the secretory pathway are conserved between yeast cells and mammalian cells. However, the structure and function of the secretory system in protists have been less extensively studied. In this review, we summarize the current knowledge about the secretory pathway of five different groups of protists: Giardia lamblia, one of the earliest lines of eukaryotic evolution, kinetoplastids, the slime mold Dictyostelium discoideum, and two lineages within the "crown" of eukaryotic cell evolution, the alveolates (ciliates and Plasmodium species) and the green algae. Comparison of these systems with the mammalian and yeast system shows that most elements of the secretory pathway were presumably present in the earliest eukaryotic organisms. However, one element of the secretory pathway shows considerable variation: the presence of a Golgi stack and the number of cisternae within a stack. We suggest that the functional separation of the plasma membrane from the nucleus-endoplasmic reticulum system during evolution required a sorting compartment, which became the Golgi apparatus. Once a Golgi apparatus was established, it was adapted to the various needs of the different organisms. PMID:8987360

  4. Molecular and developmental contributions to divergent pigment patterns in marine and freshwater sticklebacks

    PubMed Central

    Greenwood, Anna K.; Cech, Jennifer N.; Peichel, Catherine L.

    2012-01-01

    SUMMARY Pigment pattern variation across species or populations offers a tractable framework in which to investigate the evolution of development. Juvenile threespine sticklebacks (Gasterosteus aculeatus) from marine and freshwater environments exhibit divergent pigment patterns that are associated with ecological differences. Juvenile marine sticklebacks have a silvery appearance, whereas sticklebacks from freshwater environments exhibit a pattern of vertical bars. We investigated both the developmental and molecular basis of this population-level variation in pigment pattern. Time course imaging during the transition from larval to juvenile stages revealed differences between marine and freshwater fish in spatial patterns of chromatophore differentiation as well as in pigment amount and dispersal. In freshwater fish, melanophores appear primarily within dark bars whereas iridophores appear within light bars. By contrast, in marine fish, these chromatophores are interspersed across the flank. In addition to spatially segregated chromatophore differentiation, pigment amount and dispersal within melanophores varies spatially across the flank of freshwater, but not marine fish. To gain insight into the molecular pathways that underlie the differences in pigment pattern development, we evaluated differential gene expression in the flanks of developing fish using high throughput cDNA sequencing (RNA-seq) and quantitative PCR. We identified several genes that were differentially expressed across dark and light bars of freshwater fish, and between freshwater and marine fish. Together, these experiments begin to shed light on the process of pigment pattern evolution in sticklebacks. PMID:22765206

  5. Mutational Pathway Determines Whether Drug Gradients Accelerate Evolution of Drug-Resistant Cells

    NASA Astrophysics Data System (ADS)

    Greulich, Philip; Waclaw, Bartłomiej; Allen, Rosalind J.

    2012-08-01

    Drug gradients are believed to play an important role in the evolution of bacteria resistant to antibiotics and tumors resistant to anticancer drugs. We use a statistical physics model to study the evolution of a population of malignant cells exposed to drug gradients, where drug resistance emerges via a mutational pathway involving multiple mutations. We show that a nonuniform drug distribution has the potential to accelerate the emergence of resistance when the mutational pathway involves a long sequence of mutants with increasing resistance, but if the pathway is short or crosses a fitness valley, the evolution of resistance may actually be slowed down by drug gradients. These predictions can be verified experimentally, and may help to improve strategies for combating the emergence of resistance.

  6. Origin and evolution of the Notch signalling pathway: an overview from eukaryotic genomes

    PubMed Central

    Gazave, Eve; Lapébie, Pascal; Richards, Gemma S; Brunet, Frédéric; Ereskovsky, Alexander V; Degnan, Bernard M; Borchiellini, Carole; Vervoort, Michel; Renard, Emmanuelle

    2009-01-01

    Background Of the 20 or so signal transduction pathways that orchestrate cell-cell interactions in metazoans, seven are involved during development. One of these is the Notch signalling pathway which regulates cellular identity, proliferation, differentiation and apoptosis via the developmental processes of lateral inhibition and boundary induction. In light of this essential role played in metazoan development, we surveyed a wide range of eukaryotic genomes to determine the origin and evolution of the components and auxiliary factors that compose and modulate this pathway. Results We searched for 22 components of the Notch pathway in 35 different species that represent 8 major clades of eukaryotes, performed phylogenetic analyses and compared the domain compositions of the two fundamental molecules: the receptor Notch and its ligands Delta/Jagged. We confirm that a Notch pathway, with true receptors and ligands is specific to the Metazoa. This study also sheds light on the deep ancestry of a number of genes involved in this pathway, while other members are revealed to have a more recent origin. The origin of several components can be accounted for by the shuffling of pre-existing protein domains, or via lateral gene transfer. In addition, certain domains have appeared de novo more recently, and can be considered metazoan synapomorphies. Conclusion The Notch signalling pathway emerged in Metazoa via a diversity of molecular mechanisms, incorporating both novel and ancient protein domains during eukaryote evolution. Thus, a functional Notch signalling pathway was probably present in Urmetazoa. PMID:19825158

  7. Molecular Evolution of Multiple-Level Control of Heme Biosynthesis Pathway in Animal Kingdom

    PubMed Central

    Tzou, Wen-Shyong; Chu, Ying; Lin, Tzung-Yi; Hu, Chin-Hwa; Pai, Tun-Wen; Liu, Hsin-Fu; Lin, Han-Jia; Cases, Ildeofonso; Rojas, Ana; Sanchez, Mayka; You, Zong-Ye; Hsu, Ming-Wei

    2014-01-01

    Adaptation of enzymes in a metabolic pathway can occur not only through changes in amino acid sequences but also through variations in transcriptional activation, mRNA splicing and mRNA translation. The heme biosynthesis pathway, a linear pathway comprised of eight consecutive enzymes in animals, provides researchers with ample information for multiple types of evolutionary analyses performed with respect to the position of each enzyme in the pathway. Through bioinformatics analysis, we found that the protein-coding sequences of all enzymes in this pathway are under strong purifying selection, from cnidarians to mammals. However, loose evolutionary constraints are observed for enzymes in which self-catalysis occurs. Through comparative genomics, we found that in animals, the first intron of the enzyme-encoding genes has been co-opted for transcriptional activation of the genes in this pathway. Organisms sense the cellular content of iron, and through iron-responsive elements in the 5′ untranslated regions of mRNAs and the intron-exon boundary regions of pathway genes, translational inhibition and exon choice in enzymes may be enabled, respectively. Pathway product (heme)-mediated negative feedback control can affect the transport of pathway enzymes into the mitochondria as well as the ubiquitin-mediated stability of enzymes. Remarkably, the positions of these controls on pathway activity are not ubiquitous but are biased towards the enzymes in the upstream portion of the pathway. We revealed that multiple-level controls on the activity of the heme biosynthesis pathway depend on the linear depth of the enzymes in the pathway, indicating a new strategy for discovering the molecular constraints that shape the evolution of a metabolic pathway. PMID:24489775

  8. Lycopene inhibits PDGF-BB-induced retinal pigment epithelial cell migration by suppression of PI3K/Akt and MAPK pathways

    SciTech Connect

    Chan, Chi-Ming; Fang, Jia-You; Lin, Hsin-Huang; Yang, Chi-Yea; Hung, Chi-Feng

    2009-10-09

    Retinal pigment epithelial (RPE) cells play a dominant role in the development of proliferative vitreoretinopathy (PVR), which is the leading cause of failure in retinal reattachment surgery. Several studies have shown that platelet-derived growth factor (PDGF) exhibits chemotaxis and proliferation effects on RPE cells in PVR. In this study, the inhibitory effect of lycopene on PDGF-BB-induced ARPE19 cell migration is examined. In electric cell-substrate impedance sensing (ECIS) and Transwell migration assays, significant suppression of PDGF-BB-induced ARPE19 cell migration by lycopene is observed. Cell viability assays show no cytotoxicity of lycopene on RPE cells. Lycopene shows no effect on ARPE19 cell adhesion and is found to inhibit PDGF-BB-induced tyrosine phosphorylation and the underlying signaling pathways of PI3K, Akt, ERK and p38 activation. However, PDGF-BB and lycopene show no effects on JNK activation. Taken together, our results demonstrate that lycopene inhibits PDGF-BB-induced ARPE19 cell migration through inhibition of PI3K/Akt, ERK and p38 activation.

  9. The evolution of control and distribution of adaptive mutations in a metabolic pathway.

    PubMed

    Wright, Kevin M; Rausher, Mark D

    2010-02-01

    In an attempt to understand whether it should be expected that some genes tend to be used disproportionately often by natural selection, we investigated two related phenomena: the evolution of flux control among enzymes in a metabolic pathway and properties of adaptive substitutions in pathway enzymes. These two phenomena are related by the principle that adaptive substitutions should occur more frequently in enzymes with greater flux control. Predicting which enzymes will be preferentially involved in adaptive evolution thus requires an evolutionary theory of flux control. We investigated the evolution of enzyme control in metabolic pathways with two models of enzyme kinetics: metabolic control theory (MCT) and Michaelis-Menten saturation kinetics (SK). Our models generate two main predictions for pathways in which reactions are moderately to highly irreversible: (1) flux control will evolve to be highly unequal among enzymes in a pathway and (2) upstream enzymes evolve a greater control coefficient then those downstream. This results in upstream enzymes fixing the majority of beneficial mutations during adaptive evolution. Once the population has reached high fitness, the trend is reversed, with the majority of neutral/slightly deleterious mutations occurring in downstream enzymes. These patterns are the result of three factors (the first of these is unique to the MCT simulations while the other two seem to be general properties of the metabolic pathways): (1) the majority of randomly selected, starting combinations of enzyme kinetic rates generate pathways that possess greater control for the upstream enzymes compared to downstream enzymes; (2) selection against large pools of intermediate substrates tends to prevent majority control by downstream enzymes; and (3) equivalent mutations in enzyme kinetic rates have the greatest effect on flux for enzymes with high levels of flux control, and these enzymes will accumulate adaptive substitutions, strengthening their

  10. Evolution of pigment-dispersing factor neuropeptides in Panarthropoda: Insights from Onychophora (velvet worms) and Tardigrada (water bears).

    PubMed

    Mayer, Georg; Hering, Lars; Stosch, Juliane M; Stevenson, Paul A; Dircksen, Heinrich

    2015-09-01

    Pigment-dispersing factor (PDF) denotes a conserved family of homologous neuropeptides present in several invertebrate groups, including mollusks, nematodes, insects, and crustaceans (referred to here as pigment-dispersing hormone [PDH]). With regard to their encoding genes (pdf, pdh), insects possess only one, nematodes two, and decapod crustaceans up to three, but their phylogenetic relationship is unknown. To shed light on the origin and diversification of pdf/pdh homologs in Panarthropoda (Onychophora + Tardigrada + Arthropoda) and other molting animals (Ecdysozoa), we analyzed the transcriptomes of five distantly related onychophorans and a representative tardigrade and searched for putative pdf homologs in publically available genomes of other protostomes. This revealed only one pdf homolog in several mollusk and annelid species; two in Onychophora, Priapulida, and Nematoda; and three in Tardigrada. Phylogenetic analyses suggest that the last common ancestor of Panarthropoda possessed two pdf homologs, one of which was lost in the arthropod or arthropod/tardigrade lineage, followed by subsequent duplications of the remaining homolog in some taxa. Immunolocalization of PDF-like peptides in six onychophoran species, by using a broadly reactive antibody that recognizes PDF/PDH peptides in numerous species, revealed an elaborate system of neurons and fibers in their central and peripheral nervous systems. Large varicose projections in the heart suggest that the PDF neuropeptides functioned as both circulating hormones and locally released transmitters in the last common ancestor of Onychophora and Arthropoda. The lack of PDF-like-immunoreactive somata associated with the onychophoran optic ganglion conforms to the hypothesis that onychophoran eyes are homologous to the arthropod median ocelli. PMID:25722044

  11. Identification of the genes and pathways associated with pigment gland morphogenesis in cotton by transcriptome profiling of near-isogenic lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cottonseed protein is underutilized due to the presence of pigment gland containing a toxic compound called gossypol. Cotton produce gossypol and related compounds in various tissues to protect itself against microbial, insect, and rodent attacks. Understanding the mechanism of cotton pigment gland ...

  12. Evidence from Biochemical Pathways in Favor of Unfinished Evolution Rather than Intelligent Design

    ERIC Educational Resources Information Center

    Behrman, Edward J.; Marzluf, George A.

    2004-01-01

    An argument is made in favor of imperfect or unfinished evolution based on some metabolic pathways in which it seems that intelligent design would have done better. The case studies noted indicate the absence of highly intelligent design and are not intended as comprehensive collection but as a limited sample of inefficient situations in…

  13. Evolution of JAK-STAT Pathway Components: Mechanisms and Role in Immune System Development

    PubMed Central

    Liongue, Clifford; O'Sullivan, Lynda A.; Trengove, Monique C.; Ward, Alister C.

    2012-01-01

    Background Lying downstream of a myriad of cytokine receptors, the Janus kinase (JAK) – Signal transducer and activator of transcription (STAT) pathway is pivotal for the development and function of the immune system, with additional important roles in other biological systems. To gain further insight into immune system evolution, we have performed a comprehensive bioinformatic analysis of the JAK-STAT pathway components, including the key negative regulators of this pathway, the SH2-domain containing tyrosine phosphatase (SHP), Protein inhibitors against Stats (PIAS), and Suppressor of cytokine signaling (SOCS) proteins across a diverse range of organisms. Results Our analysis has demonstrated significant expansion of JAK-STAT pathway components co-incident with the emergence of adaptive immunity, with whole genome duplication being the principal mechanism for generating this additional diversity. In contrast, expansion of upstream cytokine receptors appears to be a pivotal driver for the differential diversification of specific pathway components. Conclusion Diversification of JAK-STAT pathway components during early vertebrate development occurred concurrently with a major expansion of upstream cytokine receptors and two rounds of whole genome duplications. This produced an intricate cell-cell communication system that has made a significant contribution to the evolution of the immune system, particularly the emergence of adaptive immunity. PMID:22412924

  14. Birthmarks - pigmented

    MedlinePlus

    ... its own appearance: Cafe-au-lait spots are light tan, the color of coffee with milk. Moles are small clusters of colored skin cells. Mongolian spots (also called Mongolian blue ... dark or light skin Growth of hair from pigmented skin Skin ...

  15. Evolution of alternative biosynthetic pathways for vitamin C following plastid acquisition in photosynthetic eukaryotes.

    PubMed

    Wheeler, Glen; Ishikawa, Takahiro; Pornsaksit, Varissa; Smirnoff, Nicholas

    2015-01-01

    Ascorbic acid (vitamin C) is an enzyme co-factor in eukaryotes that also plays a critical role in protecting photosynthetic eukaryotes against damaging reactive oxygen species derived from the chloroplast. Many animal lineages, including primates, have become ascorbate auxotrophs due to the loss of the terminal enzyme in their biosynthetic pathway, L-gulonolactone oxidase (GULO). The alternative pathways found in land plants and Euglena use a different terminal enzyme, L-galactonolactone dehydrogenase (GLDH). The evolutionary processes leading to these differing pathways and their contribution to the cellular roles of ascorbate remain unclear. Here we present molecular and biochemical evidence demonstrating that GULO was functionally replaced with GLDH in photosynthetic eukaryote lineages following plastid acquisition. GULO has therefore been lost repeatedly throughout eukaryote evolution. The formation of the alternative biosynthetic pathways in photosynthetic eukaryotes uncoupled ascorbate synthesis from hydrogen peroxide production and likely contributed to the rise of ascorbate as a major photoprotective antioxidant. PMID:25768426

  16. Expression and regulation of enzymes in the ceramide metabolic pathway in human retinal pigment epithelial cells and their relevance to retinal degeneration

    PubMed Central

    Zhu, DanHong; Sreekumar, Parameswaran G.; Hinton, David R.; Kannan, Ram

    2009-01-01

    Ceramide and its metabolic derivatives are important modulators of cellular apoptosis and proliferation. Dysregulation or imbalance of their metabolic pathways may promote the development of retinal degeneration. The aim of this study was to identify the expression and regulation of key enzymes of the ceramide pathway in retinal pigment epithelial (RPE) cells. RT-PCR was used to screen the enzymes involved in ceramide metabolism that are expressed in RPE. Over-expression of neutral sphingomyelinase-2 (SMPD3) or sphingosine kinase 1 (Sphk1) in ARPE-19 cells was achieved by transient transfection of SMPD3 or Sphk1 cDNA subcloned into an expression vector. The number of apoptotic or proliferating cells was determined using TUNEL and BrdU assays respectively. Neutral sphingomyelinase-1, neutral sphingomyelinase-2, acidic ceramidase, ceramide kinase, SphK1 and Sphk2 were expressed in both ARPE-19 and early passage human fetal RPE (fRPE) cells, while alkaline ceramidase 2 was only expressed in fRPE cells. Over-expression of SMPD3 decreased RPE cell proliferation and increased cell apoptosis. The percentage of apoptotic cells increased proportionally with the amount of transfected SMPD3 DNA. Over-expression of SphK1 promoted cell proliferation and protected ARPE-19 cells from ceramide-induced apoptosis. The effect of C2 ceramide on induction of apoptosis was evaluated in polarized vs. non-polarized RPE cultures; polarization of RPE was associated with much reduced apoptosis in response to ceramide. In conclusion, RPE cells possess the synthetic machinery for the production of ceramide, sphingosine, ceramide-1-phosphate (C1P), and sphingosine-1-phosphate (S1P). Overexpression of SMPD3 may increase cellular ceramide levels, leading to enhanced cell death and arrested cell proliferation. The selective induction of apoptosis in non-polarized RPE cultures by C2 ceramide suggests that increased ceramide levels will preferentially affect non-polarized RPE, as are found in late

  17. Possible evolution of alliarinoside biosynthesis from the glucosinolate pathway in Alliaria petiolata.

    PubMed

    Frisch, Tina; Møller, Birger L

    2012-05-01

    Nitrile formation in plants involves the activity of cytochrome P450s. Hydroxynitrile glucosides are widespread among plants but generally do not occur in glucosinolate producing species. Alliaria petiolata (garlic mustard, Brassicaceae) is the only species known to produce glucosinolates as well as a γ-hydroxynitrile glucoside. Furthermore, A. petiolata has been described to release diffusible cyanide, which indicates the presence of unidentified cyanogenic glucoside(s). Our research on A. petiolata addresses the molecular evolution of P450s. By integrating current knowledge about glucosinolate and hydroxynitrile glucoside biosynthesis in other species and new visions on recurrent evolution of hydroxynitrile glucoside biosynthesis, we propose a pathway for biosynthesis of the γ-hydroxynitrile glucoside, alliarinoside. Homomethionine and the corresponding oxime are suggested as shared intermediates in the biosynthesis of alliarinoside and 2-propenyl glucosinolate. The first committed step in the alliarinoside pathway is envisioned to be catalysed by a P450, which has been recruited to metabolize the oxime. Furthermore, alliarinoside biosynthesis is suggested to involve enzyme activities common to secondary modification of glucosinolates. Thus, we argue that biosynthesis of alliarinoside may be the first known case of a hydroxynitrile glucoside pathway having evolved from the glucosinolate pathway. An intriguing question is whether the proposed hydroxynitrile intermediate may also be converted to novel homomethionine-derived cyanogenic glucoside(s), which could release cyanide. Elucidation of the pathway for biosynthesis of alliarinoside and other putative hydroxynitrile glucosides in A. petiolata is envisioned to offer significant new knowledge on the emerging picture of P450 functional dynamics as a basis for recurrent evolution of pathways for bioactive natural product biosynthesis. PMID:22212644

  18. Human skin pigmentation as an adaptation to UV radiation

    PubMed Central

    Jablonski, Nina G.; Chaplin, George

    2010-01-01

    Human skin pigmentation is the product of two clines produced by natural selection to adjust levels of constitutive pigmentation to levels of UV radiation (UVR). One cline was generated by high UVR near the equator and led to the evolution of dark, photoprotective, eumelanin-rich pigmentation. The other was produced by the requirement for UVB photons to sustain cutaneous photosynthesis of vitamin D3 in low-UVB environments, and resulted in the evolution of depigmented skin. As hominins dispersed outside of the tropics, they experienced different intensities and seasonal mixtures of UVA and UVB. Extreme UVA throughout the year and two equinoctial peaks of UVB prevail within the tropics. Under these conditions, the primary selective pressure was to protect folate by maintaining dark pigmentation. Photolysis of folate and its main serum form of 5-methylhydrofolate is caused by UVR and by reactive oxygen species generated by UVA. Competition for folate between the needs for cell division, DNA repair, and melanogenesis is severe under stressful, high-UVR conditions and is exacerbated by dietary insufficiency. Outside of tropical latitudes, UVB levels are generally low and peak only once during the year. The populations exhibiting maximally depigmented skin are those inhabiting environments with the lowest annual and summer peak levels of UVB. Development of facultative pigmentation (tanning) was important to populations settling between roughly 23° and 46° , where levels of UVB varied strongly according to season. Depigmented and tannable skin evolved numerous times in hominin evolution via independent genetic pathways under positive selection. PMID:20445093

  19. On the levels of enzymatic substrate specificity: Implications for the early evolution of metabolic pathways

    NASA Technical Reports Server (NTRS)

    Lazcano, A.; Diaz-Villagomez, E.; Mills, T.; Oro, J.

    1995-01-01

    The most frequently invoked explanation for the origin of metabolic pathways is the retrograde evolution hypothesis. In contrast, according to the so-called 'patchwork' theory, metabolism evolved by the recruitment of relatively inefficient small enzymes of broad specificity that could react with a wide range of chemically related substrates. In this paper it is argued that both sequence comparisons and experimental results on enzyme substrate specificity support the patchwork assembly theory. The available evidence supports previous suggestions that gene duplication events followed by a gradual neoDarwinian accumulation of mutations and other minute genetic changes lead to the narrowing and modification of enzyme function in at least some primordial metabolic pathways.

  20. Ultraviolet pigments in birds evolved from violet pigments by a single amino acid change

    PubMed Central

    Yokoyama, Shozo; Radlwimmer, F. Bernhard; Blow, Nathan S.

    2000-01-01

    UV vision has profound effects on the evolution of organisms by affecting such behaviors as mating preference and foraging strategies. Despite its importance, the molecular basis of UV vision is not known. Here, we have transformed the zebra finch UV pigment into a violet pigment by incorporating one amino acid change, C84S. By incorporating the reverse mutations, we have also constructed UV pigments from the orthologous violet pigments of the pigeon and chicken. These results and comparative amino acid sequence analyses of the pigments in vertebrates demonstrate that many avian species have achieved their UV vision by S84C. PMID:10861005

  1. [The origin of novel proteins by gene duplication: what is common in evolution of the color-sensitive pigment proteins and translation termination factors].

    PubMed

    Zhuravleva, G A; Inge-Vechtomov, S G

    2009-01-01

    The review is discussing a role of duplications in evolution, including events from genes to genomes duplications. The important role of duplications is their participation in the block-modular reorganizations leading to a combination of fragments from various genes. Examples of gene duplications leading to occurrence of proteins with divergent functions are shown. For instance, human and Old World monkey trichromatic vision has arisen due to consecutive duplications of the genes encoding color-sensitive pigment proteins, and their subsequent divergence. Many proteins participating in regulation and the control of protein synthesis have resulted from series of gene duplications that has led to origin of modern translation elongation and termination factors. It is supposed, that proteins participating in the control of newly synthesized mRNA quality have arisen also due to duplication of the genes encoding ancient translation elongation factors. Their subsequent divergence has led to the origin of proteins with the new properties, but already unable to participate in the control of translation. PMID:19899624

  2. The Role of Gene Duplication in the Evolution of Purine Nucleotide Salvage Pathways

    NASA Astrophysics Data System (ADS)

    Becerra, Arturo; Lazcano, Antonio

    1998-10-01

    Purine nucleotides are formed de novo by a widespread biochemical route that may be of monophyletic origin, or are synthesized from preformed purine bases and nucleosides through different salvage pathways. Three monophyletic sets of purine salvage enzymes, each of which catalyzes mechanistically similar reactions, can be identified: (a) adenine-, xanthine-, hypoxanthine- and guanine-phosphoribosyltransferases, which are all homologous among themselves, as well as to nucleoside phosphorylases; (b) adenine deaminase, adenosine deaminase, and adenosine monophophate deaminase; and (c) guanine reductase and inosine monophosphate dehydrogenase. These homologies support the idea that substrate specificity is the outcome of gene duplication, and that the purine nucleotide salvage pathways were assembled by a patchwork process that probably took place before the divergence of the three cell domains (Bacteria, Archaea, and Eucarya). Based on the ability of adenine PRTase to catalyze the condensation of PRPP with 4-aminoimidazole-5-carboxamide (AICA), a simpler scheme of purine nucleotide biosynthesis is presented. This hypothetical route requires the prior evolution of PRPP biosynthesis. Since it has been argued that PRPP, nucleosides, and nucleotides are susceptible to hydrolysis, they are very unlikely prebiotic compounds. If this is the case, it implies that many purine salvage pathways appeared only after the evolution of phosphorylated sugar biosynthetic pathways made ribosides available.

  3. Insights into Ongoing Evolution of the Hexachlorocyclohexane Catabolic Pathway from Comparative Genomics of Ten Sphingomonadaceae Strains

    PubMed Central

    Pearce, Stephen L.; Oakeshott, John G.; Pandey, Gunjan

    2015-01-01

    Hexachlorocyclohexane (HCH), a synthetic organochloride, was first used as a broad-acre insecticide in the 1940s, and many HCH-degrading bacterial strains have been isolated from around the globe during the last 20 years. To date, the same degradation pathway (the lin pathway) has been implicated in all strains characterized, although the pathway has only been characterized intensively in two strains and for only a single HCH isomer. To further elucidate the evolution of the lin pathway, we have biochemically and genetically characterized three HCH-degrading strains from the Czech Republic and compared the genomes of these and seven other HCH-degrading bacterial strains. The three new strains each yielded a distinct set of metabolites during their degradation of HCH isomers. Variable assembly of the pathway is a common feature across the 10 genomes, eight of which (including all three Czech strains) were either missing key lin genes or containing duplicate copies of upstream lin genes (linA-F). The analysis also confirmed the important role of horizontal transfer mediated by insertion sequence IS6100 in the acquisition of the pathway, with a stronger association of IS6100 to the lin genes in the new strains. In one strain, a linA variant was identified that likely caused a novel degradation phenotype involving a shift in isomer preference. This study identifies a number of strains that are in the early stages of lin pathway acquisition and shows that the state of the pathway can explain the degradation patterns observed. PMID:25850427

  4. The Evolution and Origin of Animal Toll-Like Receptor Signaling Pathway Revealed by Network-Level Molecular Evolutionary Analyses

    PubMed Central

    Qin, Sheng; Chen, Liming; Ma, Fei

    2012-01-01

    Genes carry out their biological functions through pathways in complex networks consisting of many interacting molecules. Studies on the effect of network architecture on the evolution of individual proteins will provide valuable information for understanding the origin and evolution as well as functional conservation of signaling pathways. However, the relationship between the network architecture and the individual protein sequence evolution is yet little known. In current study, we carried out network-level molecular evolution analysis on TLR (Toll-like receptor ) signaling pathway, which plays an important role in innate immunity in insects and mammals, and we found that: 1) The selection constraint of genes was negatively correlated with its position along TLR signaling pathway; 2) all genes in TLR signaling pathway were highly conserved and underwent strong purifying selection; 3) the distribution of selective pressure along the pathway was driven by differential nonsynonymous substitution levels; 4) The TLR signaling pathway might present in a common ancestor of sponges and eumetazoa, and evolve via the TLR, IKK, IκB and NF-κB genes underwent duplication events as well as adaptor molecular enlargement, and gene structure and conservation motif of NF-κB genes shifted in their evolutionary history. Our results will improve our understanding on the evolutionary history of animal TLR signaling pathway as well as the relationship between the network architecture and the sequences evolution of individual protein. PMID:23236523

  5. Comparison of human cell signaling pathway databases—evolution, drawbacks and challenges

    PubMed Central

    Chowdhury, Saikat; Sarkar, Ram Rup

    2015-01-01

    Elucidating the complexities of cell signaling pathways is of immense importance to gain understanding about various biological phenomenon, such as dynamics of gene/protein expression regulation, cell fate determination, embryogenesis and disease progression. The successful completion of human genome project has also helped experimental and theoretical biologists to analyze various important pathways. To advance this study, during the past two decades, systematic collections of pathway data from experimental studies have been compiled and distributed freely by several databases, which also integrate various computational tools for further analysis. Despite significant advancements, there exist several drawbacks and challenges, such as pathway data heterogeneity, annotation, regular update and automated image reconstructions, which motivated us to perform a thorough review on popular and actively functioning 24 cell signaling databases. Based on two major characteristics, pathway information and technical details, freely accessible data from commercial and academic databases are examined to understand their evolution and enrichment. This review not only helps to identify some novel and useful features, which are not yet included in any of the databases but also highlights their current limitations and subsequently propose the reasonable solutions for future database development, which could be useful to the whole scientific community. PMID:25632107

  6. Evolution of a pathway for chlorobenzene metabolism leads to natural attenuation in contaminated groundwater

    PubMed

    van der Meer JR; Werlen; Nishino; Spain

    1998-11-01

    Complete metabolism of chlorinated benzenes is not a feature that is generally found in aerobic bacteria but is thought to be due to a novel recombination of two separate gene clusters. Such a recombination could be responsible for adaptation of a natural microbial community in response to contamination with synthetic chemicals. This hypothesis was tested in a chlorobenzene (CB)-contaminated aquifer. CB-degrading bacteria from a contaminated site were characterized for a number of years by examining a combination of growth characteristics and DNA-DNA hybridization, PCR, and DNA sequence data. The genetic information obtained for the CB pathway of the predominant microorganism, Ralstonia sp. strain JS705, revealed a unique combination of (partially duplicated) genes for chlorocatechol degradation and genes for a benzene-toluene type of aromatic ring dioxygenase. The organism was detected in CB-polluted groundwater by hybridizing colonies cultivated on low-strength heterotrophic media with probes for the CB pathway. Southern hybridizations performed to determine the organization of the CB pathway genes and the 16S ribosomal DNA indicated that CB-degrading organisms isolated from different wells at the site were identical to JS705. Physiological characterization by the Biolog test system revealed some differences. The genes for the aromatic ring dioxygenase and dihydrodiol dehydrogenase of JS705 were detected in toluene and benzene degraders from the same site. Our results suggest that recent horizontal gene transfer and genetic recombination of existing genes between indigenous microorganisms were the mechanisms for evolution of the catabolic pathway. Evolution of the CB pathway seems to have created the capacity for natural attenuation of CB at the contaminated site. PMID:9797264

  7. Skin Pigmentation Disorders

    MedlinePlus

    Pigmentation means coloring. Skin pigmentation disorders affect the color of your skin. Your skin gets its color from a pigment called melanin. Special cells in the skin make melanin. When these cells become damaged or ...

  8. Sonic hedgehog signaling pathway in vertebrate epithelial appendage morphogenesis: perspectives in development and evolution.

    PubMed

    Chuong, C M; Patel, N; Lin, J; Jung, H S; Widelitz, R B

    2000-11-01

    Vertebrate epithelial appendages are elaborate topological transformations of flat epithelia into complex organs that either protrude out of external (integument) and internal (oral cavity, gut) epithelia, or invaginate into the surrounding mesenchyme. Although they have specific structures and diverse functions, most epithelial appendages share similar developmental stages, including induction, morphogenesis, differentiation and cycling. The roles of the SHH pathway are analyzed in exemplary organs including feather, hair, tooth, tongue papilla, lung and foregut. SHH is not essential for induction and differentiation, but is involved heavily in morphogenetic processes including cell proliferation (size regulation), branching morphogenesis, mesenchymal condensation, fate determination (segmentation), polarizing activities and so on. Through differential activation of these processes by SHH in a spatiotemporal-specific fashion, organs of different shape and size are laid down. During evolution, new links of developmental pathways may occur and novel forms of epithelial appendages may emerge, upon which evolutionary selections can act. Sites of major variations have progressed from the body plan to the limb plan to the epithelial appendage plan. With its powerful morphogenetic activities, the SHH pathway would likely continue to play a major role in the evolution of novel epithelial appendages. PMID:11130174

  9. The oestrogen pathway underlies the evolution of exaggerated male cranial shapes in Anolis lizards

    PubMed Central

    Sanger, Thomas J.; Seav, Susan M.; Tokita, Masayoshi; Langerhans, R. Brian; Ross, Lela M.; Losos, Jonathan B.; Abzhanov, Arhat

    2014-01-01

    Sexual dimorphisms vary widely among species. This variation must arise through sex-specific evolutionary modifications to developmental processes. Anolis lizards vary extensively in their expression of cranial dimorphism. Compared with other Anolis species, members of the carolinensis clade have evolved relatively high levels of cranial dimorphism; males of this clade have exceptionally long faces relative to conspecific females. Developmentally, this facial length dimorphism arises through an evolutionarily novel, clade-specific strategy. Our analyses herein reveal that sex-specific regulation of the oestrogen pathway underlies evolution of this exaggerated male phenotype, rather than the androgen or insulin growth factor pathways that have long been considered the primary regulators of male-biased dimorphism among vertebrates. Our results suggest greater intricacy in the genetic mechanisms that underlie sexual dimorphisms than previously appreciated. PMID:24741020

  10. Evolution of the EGFR pathway in Metazoa and its diversification in the planarian Schmidtea mediterranea.

    PubMed

    Barberán, Sara; Martín-Durán, José M; Cebrià, Francesc

    2016-01-01

    The EGFR pathway is an essential signaling system in animals, whose core components are the epidermal growth factors (EGF ligands) and their trans-membrane tyrosine kinase receptors (EGFRs). Despite extensive knowledge in classical model organisms, little is known of the composition and function of the EGFR pathway in most animal lineages. Here, we have performed an extensive search for the presence of EGFRs and EGF ligands in representative species of most major animal clades, with special focus on the planarian Schmidtea mediterranea. With the exception of placozoans and cnidarians, we found that the EGFR pathway is potentially present in all other analyzed animal groups, and has experienced frequent independent expansions. We further characterized the expression domains of the EGFR/EGF identified in S. mediterranea, revealing a wide variety of patterns and localization in almost all planarian tissues. Finally, functional experiments suggest an interaction between one of the previously described receptors, Smed-egfr-5, and the newly found ligand Smed-egf-6. Our findings provide the most comprehensive overview to date of the EGFR pathway, and indicate that the last common metazoan ancestor had an initial complement of one EGFR and one putative EGF ligand, which was often expanded or lost during animal evolution. PMID:27325311

  11. Evolution of alternative biosynthetic pathways for vitamin C following plastid acquisition in photosynthetic eukaryotes

    PubMed Central

    Wheeler, Glen; Ishikawa, Takahiro; Pornsaksit, Varissa; Smirnoff, Nicholas

    2015-01-01

    Ascorbic acid (vitamin C) is an enzyme co-factor in eukaryotes that also plays a critical role in protecting photosynthetic eukaryotes against damaging reactive oxygen species derived from the chloroplast. Many animal lineages, including primates, have become ascorbate auxotrophs due to the loss of the terminal enzyme in their biosynthetic pathway, l-gulonolactone oxidase (GULO). The alternative pathways found in land plants and Euglena use a different terminal enzyme, l-galactonolactone dehydrogenase (GLDH). The evolutionary processes leading to these differing pathways and their contribution to the cellular roles of ascorbate remain unclear. Here we present molecular and biochemical evidence demonstrating that GULO was functionally replaced with GLDH in photosynthetic eukaryote lineages following plastid acquisition. GULO has therefore been lost repeatedly throughout eukaryote evolution. The formation of the alternative biosynthetic pathways in photosynthetic eukaryotes uncoupled ascorbate synthesis from hydrogen peroxide production and likely contributed to the rise of ascorbate as a major photoprotective antioxidant. DOI: http://dx.doi.org/10.7554/eLife.06369.001 PMID:25768426

  12. Evolution of the EGFR pathway in Metazoa and its diversification in the planarian Schmidtea mediterranea

    PubMed Central

    Barberán, Sara; Martín-Durán, José M.; Cebrià, Francesc

    2016-01-01

    The EGFR pathway is an essential signaling system in animals, whose core components are the epidermal growth factors (EGF ligands) and their trans-membrane tyrosine kinase receptors (EGFRs). Despite extensive knowledge in classical model organisms, little is known of the composition and function of the EGFR pathway in most animal lineages. Here, we have performed an extensive search for the presence of EGFRs and EGF ligands in representative species of most major animal clades, with special focus on the planarian Schmidtea mediterranea. With the exception of placozoans and cnidarians, we found that the EGFR pathway is potentially present in all other analyzed animal groups, and has experienced frequent independent expansions. We further characterized the expression domains of the EGFR/EGF identified in S. mediterranea, revealing a wide variety of patterns and localization in almost all planarian tissues. Finally, functional experiments suggest an interaction between one of the previously described receptors, Smed-egfr-5, and the newly found ligand Smed-egf-6. Our findings provide the most comprehensive overview to date of the EGFR pathway, and indicate that the last common metazoan ancestor had an initial complement of one EGFR and one putative EGF ligand, which was often expanded or lost during animal evolution. PMID:27325311

  13. Evolution and Design Governing Signal Precision and Amplification in a Bacterial Chemosensory Pathway

    PubMed Central

    Espinosa, Leon; Baronian, Grégory; Molle, Virginie; Mauriello, Emilia M. F.; Brochier-Armanet, Céline; Mignot, Tâm

    2015-01-01

    Understanding the principles underlying the plasticity of signal transduction networks is fundamental to decipher the functioning of living cells. In Myxococcus xanthus, a particular chemosensory system (Frz) coordinates the activity of two separate motility systems (the A- and S-motility systems), promoting multicellular development. This unusual structure asks how signal is transduced in a branched signal transduction pathway. Using combined evolution-guided and single cell approaches, we successfully uncoupled the regulations and showed that the A-motility regulation system branched-off an existing signaling system that initially only controlled S-motility. Pathway branching emerged in part following a gene duplication event and changes in the circuit structure increasing the signaling efficiency. In the evolved pathway, the Frz histidine kinase generates a steep biphasic response to increasing external stimulations, which is essential for signal partitioning to the motility systems. We further show that this behavior results from the action of two accessory response regulator proteins that act independently to filter and amplify signals from the upstream kinase. Thus, signal amplification loops may underlie the emergence of new connectivity in signal transduction pathways. PMID:26291327

  14. Enzymology and evolution of the pyruvate pathway to 2-oxobutyrate in Methanocaldococcus jannaschii.

    PubMed

    Drevland, Randy M; Waheed, Abdul; Graham, David E

    2007-06-01

    The archaeon Methanocaldococcus jannaschii uses three different 2-oxoacid elongation pathways, which extend the chain length of precursors in leucine, isoleucine, and coenzyme B biosyntheses. In each of these pathways an aconitase-type hydrolyase catalyzes an hydroxyacid isomerization reaction. The genome sequence of M. jannaschii encodes two homologs of each large and small subunit that forms the hydrolyase, but the genes are not cotranscribed. The genes are more similar to each other than to previously characterized isopropylmalate isomerase or homoaconitase enzyme genes. To identify the functions of these homologs, the four combinations of subunits were heterologously expressed in Escherichia coli, purified, and reconstituted to generate the iron-sulfur center of the holoenzyme. Only the combination of MJ0499 and MJ1277 proteins catalyzed isopropylmalate and citramalate isomerization reactions. This pair also catalyzed hydration half-reactions using citraconate and maleate. Another broad-specificity enzyme, isopropylmalate dehydrogenase (MJ0720), catalyzed the oxidative decarboxylation of beta-isopropylmalate, beta-methylmalate, and d-malate. Combined with these results, phylogenetic analysis suggests that the pyruvate pathway to 2-oxobutyrate (an alternative to threonine dehydratase in isoleucine biosynthesis) evolved several times in bacteria and archaea. The enzymes in the isopropylmalate pathway of leucine biosynthesis facilitated the evolution of 2-oxobutyrate biosynthesis through the introduction of a citramalate synthase, either by gene recruitment or gene duplication and functional divergence. PMID:17449626

  15. Solid State Pathways to Complex Shape Evolution and Tunable Porosity during Metallic Crystal Growth

    PubMed Central

    Valenzuela, Carlos Díaz; Carriedo, Gabino A.; Valenzuela, María L.; Zúñiga, Luis; O'Dwyer, Colm

    2013-01-01

    Growing complex metallic crystals, supported high index facet nanocrystal composites and tunable porosity metals, and exploiting factors that influence shape and morphology is crucial in many exciting developments in chemistry, catalysis, biotechnology and nanoscience. Assembly, organization and ordered crystallization of nanostructures into complex shapes requires understanding of the building blocks and their association, and this relationship can define the many physical properties of crystals and their assemblies. Understanding crystal evolution pathways is required for controlled deposition onto surfaces. Here, complex metallic crystals on the nano- and microscale, carbon supported nanoparticles, and spinodal porous noble metals with defined inter-feature distances in 3D, are accomplished in the solid-state for Au, Ag, Pd, and Re. Bottom-up growth and positioning is possible through competitive coarsening of mobile nanoparticles and their site-specific crystallization in a nucleation-dewetted matrix. Shape evolution, density and growth mechanism of complex metallic crystals and porous metals can be imaged during growth. PMID:24026532

  16. Simulation of permeability evolution of leakage pathway in carbonate-rich caprocks in carbon sequestration

    NASA Astrophysics Data System (ADS)

    Guo, B.; Fitts, J. P.; Dobossy, M. E.; Peters, C. A.

    2013-12-01

    Geologic carbon sequestration in deep saline aquifers is a promising strategy for mitigating climate change. A major concern is the possibility of brine and CO2 migration through the caprock such as through fractures and faults. In this work, we examine the extent to which mineral dissolution will substantially alter the porosity and permeability of caprock leakage pathways as CO2-acidified brine flows through them. Three models were developed. Firstly, a reactive transport model, Permeability Evolution of Leakage pathway (PEL), was developed to simulate permeability evolution of a leakage pathway during the injection period, and assumes calcite is the only reactive mineral. The system domain is a 100 m long by 0.2 m diameter cylindrical flow path with fixed boundaries containing a rock matrix with an initial porosity of 30% and initial permeability of 1×10-13 m2. One example result is for an initial calcite volume fraction (CVF) of 0.20, in which all the calcite is dissolved after 50 years and the permeability reaches 3.2×10-13 m2. For smaller values of CVF, the permeability reaches its final value earlier but the increase in permeability is minimal. For a large value of CVF such as 0.50, the permeability could eventually reach 1×10-12 m2, but the large amount of dissolved calcium buffers the solution and slows the reaction. After 50 years the permeability change is negligible. Thus, there is a non-monotonic relationship between the amount of calcite in the rock and the resulting permeability change because of the competing dynamics of calcite dissolution and alkalinity build-up. In the second model, PEL was coupled to an existing basin-scale multiphase flow model, Princeton's Estimating Leakage Semi-Analytical (ELSA) model. The new model, ELSA-PEL, estimates the brine and CO2 leakage rates during the injection period under conditions of permeability evolution. The scenario considered in this work is for 50 years of CO2 injection into the Mt. Simon formation in

  17. Evolution of threonine aldolases, a diverse family involved in the second pathway of glycine biosynthesis.

    PubMed

    Liu, Guangxiu; Zhang, Manxiao; Chen, Ximing; Zhang, Wei; Ding, Wei; Zhang, Qi

    2015-02-01

    Threonine aldolases (TAs) catalyze the interconversion of threonine and glycine plus acetaldehyde in a pyridoxal phosphate-dependent manner. This class of enzymes complements the primary glycine biosynthetic pathway catalyzed by serine hydroxymethyltransferase (SHMT), and was shown to be necessary for yeast glycine auxotrophy. Because the reverse reaction of TA involves carbon-carbon bond formation, resulting in a β-hydroxyl-α-amino acid with two adjacent chiral centers, TAs are of high interests in synthetic chemistry and bioengineering studies. Here, we report systematic phylogenetic analysis of TAs. Our results demonstrated that L-TAs and D-TAs that are specific for L- and D-threonine, respectively, are two phylogenetically unique families, and both enzymes are different from their closely related enzymes SHMTs and bacterial alanine racemases (ARs). Interestingly, L-TAs can be further grouped into two evolutionarily distinct families, which share low sequence similarity with each other but likely possess the same structural fold, suggesting a convergent evolution of these enzymes. The first L-TA family contains enzymes of both prokaryotic and eukaryotic origins, and is related to fungal ARs, whereas the second contains only prokaryotic L-TAs. Furthermore, we show that horizontal gene transfer may occur frequently during the evolution of both L-TA families. Our results indicate the complex, dynamic, and convergent evolution process of TAs and suggest an updated classification scheme for L-TAs. PMID:25644973

  18. Climate variability and the energetic pathways of evolution: the origin of endothermy in mammals and birds.

    PubMed

    Portner, Hans O

    2004-01-01

    Large-scale climate oscillations in earth's history have influenced the directions of evolution, last but not least, through mass extinction events. This analysis tries to identify some unifying forces behind the course of evolution that favored an increase in organismic complexity and performance, paralleled by an increase in energy turnover, and finally led to endothermy. The analysis builds on the recent concept of oxygen-limited thermal tolerance and on the hypothesis that unifying principles exist in the temperature-dependent biochemical design of the eukaryotic cell in animals. The comparison of extant water-breathing and air-breathing animal species from various climates provides a cause-and-effect understanding of the trade-offs and constraints in thermal adaptation and their energetic consequences. It is hypothesized that the high costs of functional adaptation to fluctuating temperatures, especially in the cold (cold eurythermy), cause an increase in energy turnover and, at the same time, mobility and agility. These costs are associated with elevated mitochondrial capacities at minimized levels of activation enthalpies for proton leakage. Cold eurythermy is seen as a precondition for the survival of evolutionary crises elicited by repeated cooling events during extreme climate fluctuations. The costs of cold eurythermy appear as the single most important reason why metazoan evolution led to life forms with high energy turnover. They also explain why dinosaurs were able to live in subpolar climates. Finally, they give insight into the pathways, benefits, and trade-offs involved in the evolution of constant, elevated body temperature maintained by endothermy. Eurythermy, which encompasses cold tolerance, is thus hypothesized to be the "missing link" between ectothermy and endothermy. Body temperatures between 32 degrees and 42 degrees C in mammals and birds then result from trade-offs between the limiting capacities of ventilation and circulation and the

  19. RAS/MAPK Activation Drives Resistance to Smo Inhibition, Metastasis, and Tumor Evolution in Shh Pathway-Dependent Tumors.

    PubMed

    Zhao, Xuesong; Ponomaryov, Tatyana; Ornell, Kimberly J; Zhou, Pengcheng; Dabral, Sukriti K; Pak, Ekaterina; Li, Wei; Atwood, Scott X; Whitson, Ramon J; Chang, Anne Lynn S; Li, Jiang; Oro, Anthony E; Chan, Jennifer A; Kelleher, Joseph F; Segal, Rosalind A

    2015-09-01

    Aberrant Shh signaling promotes tumor growth in diverse cancers. The importance of Shh signaling is particularly evident in medulloblastoma and basal cell carcinoma (BCC), where inhibitors targeting the Shh pathway component Smoothened (Smo) show great therapeutic promise. However, the emergence of drug resistance limits long-term efficacy, and the mechanisms of resistance remain poorly understood. Using new medulloblastoma models, we identify two distinct paradigms of resistance to Smo inhibition. Sufu mutations lead to maintenance of the Shh pathway in the presence of Smo inhibitors. Alternatively activation of the RAS-MAPK pathway circumvents Shh pathway dependency, drives tumor growth, and enhances metastatic behavior. Strikingly, in BCC patients treated with Smo inhibitor, squamous cell cancers with RAS/MAPK activation emerged from the antecedent BCC tumors. Together, these findings reveal a critical role of the RAS-MAPK pathway in drug resistance and tumor evolution of Shh pathway-dependent tumors. PMID:26130651

  20. RAS/MAPK activation drives resistance to Smo inhibition, metastasis and tumor evolution in Shh pathway-dependent tumors

    PubMed Central

    Zhao, Xuesong; Ponomaryov, Tatyana; Ornell, Kimberly J.; Zhou, Pengcheng; Dabral, Sukriti K.; Pak, Ekaterina; Li, Wei; Atwood, Scott X.; Whitson, Ramon J.; Chang, Anne Lynn S.; Li, Jiang; Oro, Anthony E.; Chan, Jennifer A.; Kelleher, Joseph F.; Segal, Rosalind A.

    2015-01-01

    Aberrant Shh signaling promotes tumor growth in diverse cancers. The importance of Shh signaling is particularly evident in medulloblastoma and basal cell carcinoma (BCC), where inhibitors targeting the Shh pathway component Smoothened (Smo) show great therapeutic promise. However, the emergence of drug resistance limits long-term efficacy and the mechanisms of resistance remain poorly understood. Using new medulloblastoma models, we identify two distinct paradigms of resistance to Smo inhibition. Sufu mutations lead to maintenance of the Shh pathway in the presence of Smo inhibitors. Alternatively activation of the RAS/MAPK pathway circumvents Shh pathway-dependency, drives tumor growth and enhances metastatic behavior. Strikingly, in BCC patients treated with Smo inhibitor, squamous cell cancers with RAS/MAPK activation emerged from the antecedent BCC tumors. Together these findings reveal a critical role of RAS/MAPK pathway in drug resistance and tumor evolution of Shh pathway-dependent tumors. PMID:26130651

  1. Comparative genomic analysis of nine Sphingobium strains: Insights into their evolution and hexachlorocyclohexane (HCH) degradation pathways

    DOE PAGESBeta

    Verma, Helianthous; Kumar, Roshan; Oldach, Phoebe; Sangwan, Naseer; Khurana, Jitendra P.; Gilbert, Jack A.; Lal, Rup

    2014-11-23

    Background: Sphingobium spp. are efficient degraders of a wide range of chlorinated and aromatic hydrocarbons. In particular, strains which harbour the lin pathway genes mediating the degradation of hexachlorocyclohexane (HCH) isomers are of interest due to the widespread persistence of this contaminant. Here, we examined the evolution and diversification of the lin pathway under the selective pressure of HCH, by comparing the draft genomes of six newly-sequenced Sphingobium spp. (strains LL03, DS20, IP26, HDIPO4, P25 and RL3) isolated from HCH dumpsites, with three existing genomes (S. indicum B90A, S. japonicum UT26S and Sphingobium sp. SYK6). Results: Efficient HCH degraders phylogeneticallymore » clustered in a closely related group comprising of UT26S, B90A, HDIPO4 and IP26, where HDIPO4 and IP26 were classified as subspecies with ANI value >98%. Less than 10% of the total gene content was shared among all nine strains, but among the eight HCH-associated strains, that is all except SYK6, the shared gene content jumped to nearly 25%. Genes associated with nitrogen stress response and two-component systems were found to be enriched. The strains also housed many xenobiotic degradation pathways other than HCH, despite the absence of these xenobiotics from isolation sources. In addition, these strains, although non-motile, but posses flagellar assembly genes. While strains HDIPO4 and IP26 contained the complete set of lin genes, DS20 was entirely devoid of lin genes (except linKLMN) whereas, LL03, P25 and RL3 were identified as lin deficient strains, as they housed incomplete lin pathways. Further, in HDIPO4, linA was found as a hybrid of two natural variants i.e., linA1 and linA2 known for their different enantioselectivity. In conclusion, the bacteria isolated from HCH dumpsites provide a natural testing ground to study variations in the lin system and their effects on degradation efficacy. Further, the diversity in the lin gene sequences and copy number, their

  2. Evolution of mitochondrial cell death pathway: Proapoptotic role of HtrA2/Omi in Drosophila

    SciTech Connect

    Igaki, Tatsushi; Suzuki, Yasuyuki; Tokushige, Naoko; Aonuma, Hiroka; Takahashi, Ryosuke . E-mail: ryosuket@kuhp.kyoto-u.ac.jp; Miura, Masayuki . E-mail: miura@mol.f.u-tokyo.ac.jp

    2007-05-18

    Despite the essential role of mitochondria in a variety of mammalian cell death processes, the involvement of mitochondrial pathway in Drosophila cell death has remained unclear. To address this, we cloned and characterized DmHtrA2, a Drosophila homolog of a mitochondrial serine protease HtrA2/Omi. We show that DmHtrA2 normally resides in mitochondria and is up-regulated by UV-irradiation. Upon receipt of apoptotic stimuli, DmHtrA2 is translocated to extramitochondrial compartment; however, unlike its mammalian counterpart, the extramitochondrial DmHtrA2 does not diffuse throughout the cytosol but stays near the mitochondria. RNAi-mediated knock-down of DmHtrA2 in larvae or adult flies results in a resistance to stress stimuli. DmHtrA2 specifically cleaves Drosophila inhibitor-of-apoptosis protein 1 (DIAP1), a cellular caspase inhibitor, and induces cell death both in vitro and in vivo as potent as other fly cell death proteins. Our observations suggest that DmHtrA2 promotes cell death through a cleavage of DIAP1 in the vicinity of mitochondria, which may represent a prototype of mitochondrial cell death pathway in evolution.

  3. Parallel evolution of Nitric Oxide signaling: Diversity of synthesis & memory pathways

    PubMed Central

    Moroz, Leonid L.; Kohn, Andrea B.

    2014-01-01

    The origin of NO signaling can be traceable back to the origin of life with the large scale of parallel evolution of NO synthases (NOSs). Inducible-like NOSs may be the most basal prototype of all NOSs and that neuronal-like NOS might have evolved several times from this prototype. Other enzymatic and non-enzymatic pathways for NO synthesis have been discovered using reduction of nitrites, an alternative source of NO. Diverse synthetic mechanisms can co-exist within the same cell providing a complex NO-oxygen microenvironment tightly coupled with cellular energetics. The dissection of multiple sources of NO formation is crucial in analysis of complex biological processes such as neuronal integration and learning mechanisms when NO can act as a volume transmitter within memory-forming circuits. In particular, the molecular analysis of learning mechanisms (most notably in insects and gastropod molluscs) opens conceptually different perspectives to understand the logic of recruiting evolutionarily conserved pathways for novel functions. Giant uniquely identified cells from Aplysia and related species precent unuque opportunities for integrative analysis of NO signaling at the single cell level. PMID:21622160

  4. Molecular evolution accompanying functional divergence of duplicated genes along the plant starch biosynthesis pathway

    PubMed Central

    2014-01-01

    Background Starch is the main source of carbon storage in the Archaeplastida. The starch biosynthesis pathway (sbp) emerged from cytosolic glycogen metabolism shortly after plastid endosymbiosis and was redirected to the plastid stroma during the green lineage divergence. The SBP is a complex network of genes, most of which are members of large multigene families. While some gene duplications occurred in the Archaeplastida ancestor, most were generated during the sbp redirection process, and the remaining few paralogs were generated through compartmentalization or tissue specialization during the evolution of the land plants. In the present study, we tested models of duplicated gene evolution in order to understand the evolutionary forces that have led to the development of SBP in angiosperms. We combined phylogenetic analyses and tests on the rates of evolution along branches emerging from major duplication events in six gene families encoding sbp enzymes. Results We found evidence of positive selection along branches following cytosolic or plastidial specialization in two starch phosphorylases and identified numerous residues that exhibited changes in volume, polarity or charge. Starch synthases, branching and debranching enzymes functional specializations were also accompanied by accelerated evolution. However, none of the sites targeted by selection corresponded to known functional domains, catalytic or regulatory. Interestingly, among the 13 duplications tested, 7 exhibited evidence of positive selection in both branches emerging from the duplication, 2 in only one branch, and 4 in none of the branches. Conclusions The majority of duplications were followed by accelerated evolution targeting specific residues along both branches. This pattern was consistent with the optimization of the two sub-functions originally fulfilled by the ancestral gene before duplication. Our results thereby provide strong support to the so-called “Escape from Adaptive Conflict

  5. Divergence along the gonadal steroidogenic pathway: Implications for hormone-mediated phenotypic evolution.

    PubMed

    Rosvall, Kimberly A; Bergeon Burns, Christine M; Jayaratna, Sonya P; Ketterson, Ellen D

    2016-08-01

    Across a range of taxa, hormones regulate suites of traits that influence survival and reproductive success; however, the mechanisms by which hormone-mediated traits evolve are still unclear. We hypothesized that phenotypic divergence might follow from differential regulation of genes encoding key steps in hormone biosynthesis and thus the rate of hormone production. We tested this hypothesis in relation to the steroid hormone testosterone by comparing two subspecies of junco (Junco hyemalis) in the wild and in captivity. These subspecies have diverged over the last 10-15kyears in multiple testosterone-mediated traits, including aggression, ornamentation, and body size. We show that variation in gonadal gene expression along the steroid biosynthetic pathway predicts phenotypic divergence within and among subspecies, and that the more androgenized subspecies exhibits a more prolonged time-course of elevated testosterone following exogenous stimulation. Our results point to specific genes that fulfill key conditions for phenotypic evolution because they vary functionally in their expression among individuals and between populations, and they map onto population variation in phenotype in a common garden. Our findings therefore build an important bridge between hormones, genes, and phenotypic evolution. PMID:27206546

  6. Skin Pigmentation Disorders

    MedlinePlus

    ... skin gets its color from a pigment called melanin. Special cells in the skin make melanin. When these cells become damaged or unhealthy, it affects melanin production. Some pigmentation disorders affect just patches of ...

  7. Oral pigmentation: A review

    PubMed Central

    Sreeja, C.; Ramakrishnan, K.; Vijayalakshmi, D.; Devi, M.; Aesha, I.; Vijayabanu, B.

    2015-01-01

    Pigmentations are commonly found in the mouth. They represent in various clinical patterns that can range from just physiologic changes to oral manifestations of systemic diseases and malignancies. Color changes in the oral mucosa can be attributed to the deposition of either endogenous or exogenous pigments as a result of various mucosal diseases. The various pigmentations can be in the form of blue/purple vascular lesions, brown melanotic lesions, brown heme-associated lesions, gray/black pigmentations. PMID:26538887

  8. Overview of plant pigments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chlorophylls, carotenoids, flavonoids and betalains are four major classes of biological pigments produced in plants. Chlorophylls are the primary pigments responsible for plant green and photosynthesis. The other three are accessary pigments and secondary metabolites that yield non-green colors and...

  9. Sequence divergence, polymorphism and evolution of the middle-wave and long-wave visual pigment genes of great apes and Old World monkeys.

    PubMed

    Dulai, K S; Bowmaker, J K; Mollon, J D; Hunt, D M

    1994-10-01

    In man, the spectral shift between the middle-wave (MW) and long-wave (LW) visual pigments is largely achieved by amino acid substitution at two codons, both located in exon 5. A third amino acid site coded by exon 3 is polymorphic between pigments. We have studied the equivalent regions of the cone opsin genes in two members of the Hominidea (the gorilla, Gorilla gorilla and the chimpanzee, Pan troglodytes) and in three members of the Cercopithecoidea family of Old World primates (the diana monkey, Cercopithecus diana, the talapoin monkey, Miopithecus talapoin, and the crab-eating macaque, Macaca fascicularis). No variation in the codons that specify the amino acids involved in spectral tuning were found. We predict therefore that the MW and LW pigments of gorilla and chimpanzee have similar spectral characteristics to those of man. Multiple copies of the same opsin gene sequence were identified in the chimpanzee, talapoin and macaque and we also show that non-human Old World primates are similar to man in showing a bunching of polymorphic sites in exon 3. We discuss the ancestry of the separate MW and LW genes of Old World primates and the equivalent polymorphic gene of the marmoset, a New World primate. PMID:7975287

  10. Structural and functional evolution of isopropylmalate dehydrogenases in the leucine and glucosinolate pathways of Arabidopsis thaliana

    SciTech Connect

    He, Yan; Galant, Ashley; Pang, Qiuying; Strul, Johanna M.; Balogun, Sherifat F.; Jez, Joseph M.; Chen, Sixue

    2012-10-24

    The methionine chain-elongation pathway is required for aliphatic glucosinolate biosynthesis in plants and evolved from leucine biosynthesis. In Arabidopsis thaliana, three 3-isopropylmalate dehydrogenases (AtIPMDHs) play key roles in methionine chain-elongation for the synthesis of aliphatic glucosinolates (e.g. AtIPMDH1) and leucine (e.g. AtIPMDH2 and AtIPMDH3). Here we elucidate the molecular basis underlying the metabolic specialization of these enzymes. The 2.25 {angstrom} resolution crystal structure of AtIPMDH2 was solved to provide the first detailed molecular architecture of a plant IPMDH. Modeling of 3-isopropylmalate binding in the AtIPMDH2 active site and sequence comparisons of prokaryotic and eukaryotic IPMDH suggest that substitution of one active site residue may lead to altered substrate specificity and metabolic function. Site-directed mutagenesis of Phe-137 to a leucine in AtIPMDH1 (AtIPMDH1-F137L) reduced activity toward 3-(2'-methylthio)ethylmalate by 200-fold, but enhanced catalytic efficiency with 3-isopropylmalate to levels observed with AtIPMDH2 and AtIPMDH3. Conversely, the AtIPMDH2-L134F and AtIPMDH3-L133F mutants enhanced catalytic efficiency with 3-(2'-methylthio)ethylmalate {approx}100-fold and reduced activity for 3-isopropylmalate. Furthermore, the altered in vivo glucosinolate profile of an Arabidopsis ipmdh1 T-DNA knock-out mutant could be restored to wild-type levels by constructs expressing AtIPMDH1, AtIPMDH2-L134F, or AtIPMDH3-L133F, but not by AtIPMDH1-F137L. These results indicate that a single amino acid substitution results in functional divergence of IPMDH in planta to affect substrate specificity and contributes to the evolution of specialized glucosinolate biosynthesis from the ancestral leucine pathway.

  11. MEK/ERK pathway mediates UVB-induced AQP1 downregulation and water permeability impairment in human retinal pigment epithelial cells.

    PubMed

    Jiang, Qin; Cao, Cong; Lu, Shan; Kivlin, Rebecca; Wallin, Brittany; Chu, Wenming; Bi, Zhigang; Wang, Xinru; Wan, Yinsheng

    2009-06-01

    Aquaporins (AQPs) are a family of 13 small ( approximately 30 kDa/monomer), hydrophobic, integral membrane proteins. AQPs are expressed in various epithelial and endothelial cells involved in fluid transport. Here, we demonstrated for the first time that AQP1 is expressed in cultured human retinal pigment epithelial (RPE) cells (ARPE-19 cell line). Ultraviolet radiation (UVB) and H2O2, two major factors causing RPE cell damage, induced AQP1 downregulation which was mediated by MEK/ERK activation. UV and H2O2 as well as AQP1-specific siRNA knockdown impaired water permeability of ARPE-19 cells. Notably, pretreatment with all-trans retinoic acid attenuated UV- and H2O2-induced AQP1 downregulation and water permeability impairment. Considering that water permeability is involved in multiple functions of RPE cells such as cellular junction formation, fluid or protein exchange and barrier formation, our data elucidated a novel mechanism through which UV radiation and oxidative stress induce eye cell damage. Our results further support the notion that all-trans retinoic acid might be useful for protection against UV or oxidative stress-induced eye cell damage. PMID:19424603

  12. Evolution of the Hemifused Intermediate on the Pathway to Membrane Fusion

    PubMed Central

    Warner, Jason M.; O’Shaughnessy, Ben

    2012-01-01

    The pathway to membrane fusion in synthetic and biological systems is thought to pass through hemifusion, in which the outer leaflets are fused while the inner leaflets engage in a hemifusion diaphragm (HD). Fusion has been proposed to be completed by lysis of the expanded HD that matures from a localized stalklike initial connection. However, the process that establishes the expanded HD is poorly understood. Here we mathematically modeled hemifusion of synthetic vesicles, where hemifusion and fusion are most commonly driven by calcium and membrane tension. The model shows that evolution of the hemifused state is driven by these agents and resisted by interleaflet frictional and tensile stresses. Predicted HD growth rates depend on tension and salt concentration, and agree quantitatively with experimental measurements. For typical conditions, we predict that HDs expand at ∼30 μm2/s, reaching a final equilibrium area ∼7% of the vesicle area. Key model outputs are the evolving HD tension and area during the growth transient, properties that may determine whether HD lysis occurs. Applying the model to numerous published experimental studies that reported fusion, our results are consistent with a final fusion step in which the HD ruptures due to super-lysis HD membrane tensions. PMID:22947930

  13. Regulatory punctuated equilibrium and convergence in the evolution of developmental pathways in direct-developing sea urchins.

    PubMed

    Raff, Elizabeth C; Popodi, Ellen M; Kauffman, Jeffery S; Sly, Belinda J; Turner, F Rudolf; Morris, Valerie B; Raff, Rudolf A

    2003-01-01

    We made hybrid crosses between closely and distantly related sea urchin species to test two hypotheses about the evolution of gene regulatory systems in the evolution of ontogenetic pathways and larval form. The first hypothesis is that gene regulatory systems governing development evolve in a punctuational manner during periods of rapid morphological evolution but are relatively stable over long periods of slow morphological evolution. We compared hybrids between direct and indirect developers from closely and distantly related families. Hybrids between eggs of the direct developer Heliocidaris erythrogramma and sperm of the 4-million year distant species H. tuberculata, an indirect developer, restored feeding larval structures and paternal gene expression that were lost in the evolution of the direct-developing maternal parent. Hybrids resulting from the cross between eggs of H. erythrogramma and sperm of the 40-million year distant indirect-developer Pseudoboletia maculata are strikingly similar to hybrids between the congeneric hybrids. The marked similarities in ontogenetic trajectory and morphological outcome in crosses of involving either closely or distantly related indirect developing species indicates that their regulatory mechanisms interact with those of H. erythrogramma in the same way, supporting remarkable conservation of molecular control pathways among indirect developers. Second, we tested the hypothesis that convergent developmental pathways in independently evolved direct developers reflect convergence of the underlying regulatory systems. Crosses between two independently evolved direct-developing species from two 70-million year distant families, H. erythrogramma and Holopneustes purpurescens, produced harmoniously developing hybrid larvae that maintained the direct mode of development and did not exhibit any obvious restoration of indirect-developing features. These results are consistent with parallel evolution of direct-developing features

  14. Molecular evolution of NASP and conserved histone H3/H4 transport pathway

    PubMed Central

    2014-01-01

    Background NASP is an essential protein in mammals that functions in histone transport pathways and maintenance of a soluble reservoir of histones H3/H4. NASP has been studied exclusively in Opisthokonta lineages where some functional diversity has been reported. In humans, growing evidence implicates NASP miss-regulation in the development of a variety of cancers. Although a comprehensive phylogenetic analysis is lacking, NASP-family proteins that possess four TPR motifs are thought to be widely distributed across eukaryotes. Results We characterize the molecular evolution of NASP by systematically identifying putative NASP orthologs across diverse eukaryotic lineages ranging from excavata to those of the crown group. We detect extensive silent divergence at the nucleotide level suggesting the presence of strong purifying selection acting at the protein level. We also observe a selection bias for high frequencies of acidic residues which we hypothesize is a consequence of their critical function(s), further indicating the role of functional constraints operating on NASP evolution. Our data indicate that TPR1 and TPR4 constitute the most rapidly evolving functional units of NASP and may account for the functional diversity observed among well characterized family members. We also show that NASP paralogs in ray-finned fish have different genomic environments with clear differences in their GC content and have undergone significant changes at the protein level suggesting functional diversification. Conclusion We draw four main conclusions from this study. First, wide distribution of NASP throughout eukaryotes suggests that it was likely present in the last eukaryotic common ancestor (LECA) possibly as an important innovation in the transport of H3/H4. Second, strong purifying selection operating at the protein level has influenced the nucleotide composition of NASP genes. Further, we show that selection has acted to maintain a high frequency of functionally relevant

  15. One phase of the dormancy developmental pathway is critical for the evolution of insect seasonality.

    PubMed

    Wadsworth, C B; Woods, W A; Hahn, D A; Dopman, E B

    2013-11-01

    Evolutionary change in the timing of dormancy enables animals and plants to adapt to changing seasonal environments and can result in ecological speciation. Despite its clear biological importance, the mechanisms underlying the evolution of dormancy timing in animals remain poorly understood because of a lack of anatomical landmarks to discern which phase of dormancy an individual is experiencing. Taking advantage of the nearly universal characteristic of metabolic suppression during insect dormancy (diapause), we use patterns of respiratory metabolism to document physiological landmarks of dormancy and test which of the distinct phases of the dormancy developmental pathway contribute to a month-long shift in diapause timing between a pair of incipient moth species. Here, we show that divergence in life cycle between the earlier-emerging E-strain and the later-emerging Z-strain of European corn borer (ECB) is clearly explained by a delay in the timing of the developmental transition from the diapause maintenance phase to the termination phase. Along with recent findings indicating that life-cycle differences between ECB strains stem from allelic variation at a single sex-linked locus, our results demonstrate how dramatic shifts in animal seasonality can result from simple developmental and genetic changes. Although characterizing the multiple phases of the diapause developmental programme in other locally adapted populations and species will undoubtedly yield surprises about the nature of animal dormancy, results in the ECB moth suggest that focusing on genetic variation in the timing of the dormancy termination phase may help explain how (or whether) organisms rapidly respond to global climate change, expand their ranges after accidental or managed introductions, undergo seasonal adaptation, or evolve into distinct species through allochronic isolation. PMID:24016035

  16. Evolution of sexes from an ancestral mating-type specification pathway.

    PubMed

    Geng, Sa; De Hoff, Peter; Umen, James G

    2014-07-01

    Male and female sexes have evolved repeatedly in eukaryotes but the origins of dimorphic sexes and their relationship to mating types in unicellular species are not understood. Volvocine algae include isogamous species such as Chlamydomonas reinhardtii, with two equal-sized mating types, and oogamous multicellular species such as Volvox carteri with sperm-producing males and egg-producing females. Theoretical work predicts genetic linkage of a gamete cell-size regulatory gene(s) to an ancestral mating-type locus as a possible step in the evolution of dimorphic gametes, but this idea has not been tested. Here we show that, contrary to predictions, a single conserved mating locus (MT) gene in volvocine algae-MID, which encodes a RWP-RK domain transcription factor-evolved from its ancestral role in C. reinhardtii as a mating-type specifier, to become a determinant of sperm and egg development in V. carteri. Transgenic female V. carteri expressing male MID produced functional sperm packets during sexual development. Transgenic male V. carteri with RNA interference (RNAi)-mediated knockdowns of VcMID produced functional eggs, or self-fertile hermaphrodites. Post-transcriptional controls were found to regulate cell-type-limited expression and nuclear localization of VcMid protein that restricted its activity to nuclei of developing male germ cells and sperm. Crosses with sex-reversed strains uncoupled sex determination from sex chromosome identity and revealed gender-specific roles for male and female mating locus genes in sexual development, gamete fitness and reproductive success. Our data show genetic continuity between the mating-type specification and sex determination pathways of volvocine algae, and reveal evidence for gender-specific adaptations in the male and female mating locus haplotypes of Volvox. These findings will enable a deeper understanding of how a master regulator of mating-type determination in an ancestral unicellular species was reprogrammed to

  17. Evolution of Sexes from an Ancestral Mating-Type Specification Pathway

    PubMed Central

    Geng, Sa; De Hoff, Peter; Umen, James G.

    2014-01-01

    Male and female sexes have evolved repeatedly in eukaryotes but the origins of dimorphic sexes and their relationship to mating types in unicellular species are not understood. Volvocine algae include isogamous species such as Chlamydomonas reinhardtii, with two equal-sized mating types, and oogamous multicellular species such as Volvox carteri with sperm-producing males and egg-producing females. Theoretical work predicts genetic linkage of a gamete cell-size regulatory gene(s) to an ancestral mating-type locus as a possible step in the evolution of dimorphic gametes, but this idea has not been tested. Here we show that, contrary to predictions, a single conserved mating locus (MT) gene in volvocine algae—MID, which encodes a RWP-RK domain transcription factor—evolved from its ancestral role in C. reinhardtii as a mating-type specifier, to become a determinant of sperm and egg development in V. carteri. Transgenic female V. carteri expressing male MID produced functional sperm packets during sexual development. Transgenic male V. carteri with RNA interference (RNAi)-mediated knockdowns of VcMID produced functional eggs, or self-fertile hermaphrodites. Post-transcriptional controls were found to regulate cell-type–limited expression and nuclear localization of VcMid protein that restricted its activity to nuclei of developing male germ cells and sperm. Crosses with sex-reversed strains uncoupled sex determination from sex chromosome identity and revealed gender-specific roles for male and female mating locus genes in sexual development, gamete fitness and reproductive success. Our data show genetic continuity between the mating-type specification and sex determination pathways of volvocine algae, and reveal evidence for gender-specific adaptations in the male and female mating locus haplotypes of Volvox. These findings will enable a deeper understanding of how a master regulator of mating-type determination in an ancestral unicellular species was reprogrammed

  18. Cone visual pigments of monotremes: filling the phylogenetic gap.

    PubMed

    Wakefield, Matthew J; Anderson, Mark; Chang, Ellen; Wei, Ke-Jun; Kaul, Rajinder; Graves, Jennifer A Marshall; Grützner, Frank; Deeb, Samir S

    2008-01-01

    We have determined the sequence and genomic organization of the genes encoding the cone visual pigment of the platypus (Ornithorhynchus anatinus) and the echidna (Tachyglossus aculeatus), and inferred their spectral properties and evolutionary pathways. We prepared platypus and echidna retinal RNA and used primers of the middle-wave-sensitive (MWS), long-wave-sensitive (LWS), and short-wave sensitive (SWS1) pigments corresponding to coding sequences that are highly conserved among mammals; to PCR amplify the corresponding pigment sequences. Amplification from the retinal RNA revealed the expression of LWS pigment mRNA that is homologous in sequence and spectral properties to the primate LWS visual pigments. However, we were unable to amplify the mammalian SWS1 pigment from these two species, indicating this gene was lost prior to the echidna-platypus divergence (21 MYA). Subsequently, when the platypus genome sequence became available, we found an LWS pigment gene in a conserved genomic arrangement that resembles the primate pigment, but, surprisingly we found an adjacent (20 kb) SWS2 pigment gene within this conserved genomic arrangement. We obtained the same result after sequencing the echidna genes. The encoded SWS2 pigment is predicted to have a wavelength of maximal absorption of about 440 nm, and is paralogous to SWS pigments typically found in reptiles, birds, and fish but not in mammals. This study suggests the locus control region (LCR) has played an important role in the conservation of photo receptor gene arrays and the control of their spatial and temporal expression in the retina in all mammals. In conclusion, a duplication event of an ancestral cone visual pigment gene, followed by sequence divergence and selection gave rise to the LWS and SWS2 visual pigments. So far, the echidna and platypus are the only mammals that share the gene structure of the LWS-SWS2 pigment gene complex with reptiles, birds and fishes. PMID:18598396

  19. Investigating the evolution of Shared Socioeconomic Pathways with a large number of scenarios

    NASA Astrophysics Data System (ADS)

    Schweizer, V. J.; Guivarch, C.; Rozenberg, J.

    2013-12-01

    The new scenario framework for climate change research includes alternative possible trends for socioeconomic development called Shared Socioeconomic Pathways (SSPs). The SSPs bear some similarities to other scenarios used for global change research, but they also have important differences. Like the IPCC Special Report on Emissions Scenarios or the Millennium Ecosystem Assessment, SSPs are defined by a scenario logic consisting of two axes. However, these axes define SSPs with respect to their location in an outcome space for challenges to mitigation and to adaptation rather than by their drivers. Open questions for the SSPs include what their drivers are and how the time dimension could be interpreted with the outcomes space. We present a new analytical approach for addressing both questions by studying large numbers of scenarios produced by an integrated assessment model, IMACLIM-R. We systematically generated 432 scenarios and used the SSP framework to classify them by typology. We then analyzed them dynamically, tracing their evolution through the SSP challenges space at annual time steps over the period 2010-2090. Through this approach, we found that many scenarios do not remain fixed to a particular SSP domain; they drift from one domain to another. In papers describing the framework for new scenarios, SSPs are envisioned as hypothetical (counter-factual) reference scenarios that remain fixed in one domain over some time period of interest. However, we conclude that it may be important to also research scenarios that shift across SSP domains. This is relevant for another open question, which is what scenarios are important to explore given their consequences. Through a data mining technique, we uncovered prominent drivers for scenarios that shift across SSP domains. Scenarios with different challenges for adaptation and mitigation (that is, mitigation and adaptation challenges that are not co-varying) were found to be the least stable, and the following

  20. Genetic basis of stage-specific melanism: a putative role for a cysteine sulfinic acid decarboxylase in insect pigmentation

    PubMed Central

    Saenko, S V; Jerónimo, M A; Beldade, P

    2012-01-01

    Melanism, the overall darkening of the body, is a widespread form of animal adaptation to particular environments, and includes bookcase examples of evolution by natural selection, such as industrial melanism in the peppered moth. The major components of the melanin biosynthesis pathway have been characterized in model insects, but little is known about the genetic basis of life-stage specific melanism such as cases described in some lepidopteran species. Here, we investigate two melanic mutations of Bicyclus anynana butterflies, called Chocolate and melanine, that exclusively affect pigmentation of the larval and adult stages, respectively. Our analysis of Mendelian segregation patterns reveals that the larval and adult melanic phenotypes are due to alleles at different, independently segregating loci. Our linkage mapping analysis excludes the pigmentation candidate gene black as the melanine locus, and implicates a gene encoding a putative pyridoxal phosphate-dependant cysteine sulfinic acid decarboxylase as the Chocolate locus. We show variation in coding sequence and in expression levels for this candidate larval melanism locus. This is the first study that suggests a biological function for this gene in insects. Our findings open up exciting opportunities to study the role of this locus in the evolution of adaptive variation in pigmentation, and the uncoupling of regulation of pigment biosynthesis across developmental stages with different ecologies and pressures on body coloration. PMID:22234245

  1. Feeding the Elite: The Evolution of Elite Pathways from Star High Schools to Elite Universities

    ERIC Educational Resources Information Center

    LeTendre, Gerald K.; Gonzalez, Roger Geertz; Nomi, Takako

    2006-01-01

    During the last 50 years, private "feeder" schools in Japan came to dominate entry into elite colleges. Intense organizational competition shaped the organizational environment and changed the pathways available to social elites. Compared to Japan, elite private feeders in the US have failed to dominate pathways into elite colleges. In this paper,…

  2. Ion transport in pigmentation

    PubMed Central

    Bellono, Nicholas W.; Oancea, Elena V.

    2014-01-01

    Skin melanocytes and ocular pigment cells contain specialized organelles called melanosomes, which are responsible for the synthesis of melanin, the major pigment in mammals. Defects in the complex mechanisms involved in melanin synthesis and regulation result in vision and pigmentation deficits, impaired development of the visual system,, and increased susceptibility to skin and eye cancers. Ion transport across cellular membranes is critical for many biological processes, including pigmentation, but the molecular mechanisms by which it regulates melanin synthesis, storage, and transfer are not understood. In this review we first discuss ion channels and transporters that function at the plasma membrane of melanocytes; in the second part we consider ion transport across the membrane of intracellular organelles, with emphasis on melanosomes. We discuss recently characterized lysosomal and endosomal ion channels and transporters associated with pigmentation phenotypes. We then review the evidence for melanosomal channels and transporters critical for pigmentation, discussing potential molecular mechanisms mediating their function. The studies investigating ion transport in pigmentation physiology open new avenues for future research and could reveal novel molecular mechanisms underlying melanogenesis. PMID:25034214

  3. Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology.

    PubMed

    Pandey, Ramesh Prasad; Parajuli, Prakash; Koffas, Mattheos A G; Sohng, Jae Kyung

    2016-01-01

    In this review, we address recent advances made in pathway engineering, directed evolution, and systems/synthetic biology approaches employed in the production and modification of flavonoids from microbial cells. The review is divided into two major parts. In the first, various metabolic engineering and system/synthetic biology approaches used for production of flavonoids and derivatives are discussed broadly. All the manipulations/engineering accomplished on the microorganisms since 2000 are described in detail along with the biosynthetic pathway enzymes, their sources, structures of the compounds, and yield of each product. In the second part of the review, post-modifications of flavonoids by four major reactions, namely glycosylations, methylations, hydroxylations and prenylations using recombinant strains are described. PMID:26946281

  4. Caffeic acid phenethyl ester reduces the secretion of vascular endothelial growth factor through the inhibition of the ROS, PI3K and HIF-1α signaling pathways in human retinal pigment epithelial cells under hypoxic conditions.

    PubMed

    Paeng, Sung Hwa; Jung, Won-Kyo; Park, Won Sun; Lee, Dae-Sung; Kim, Gi-Young; Choi, Yung Hyun; Seo, Su-Kil; Jang, Won Hee; Choi, Jung Sik; Lee, Young-Min; Park, Saegwang; Choi, Il-Whan

    2015-05-01

    Choroidal neovascularization (CNV) can lead to progressive and severe visual loss. Vascular endothelial growth factor (VEGF) promotes the development of CNV. Caffeic acid phenethyl ester (CAPE), a biologically active component of the honeybee (Apis mellifera) propolis, has been demonstrated to have several interesting biological regulatory properties. The objective of this study was to determine whether treatment with CAPE results in the inhibition of the production of vascular endothelial growth factor (VEGF) in retinal pigment epithelial cells (RPE cells) under hypoxic conditions and to explore the possible underlying mechanisms. An in vitro experimental model of hypoxia was used to mimic an ischemic microenvironment for the RPE cells. Human RPE cells (ARPE-19) were exposed to hypoxia with or without CAPE pre-treatment. ARPE-19 cells were used to investigate the pathway involved in the regulation of VEGF production under hypoxic conditions, based on western blot analysis, enzyme-linked immunosorbent assay (ELISA) and electrophoretic mobility shift assay (EMSA). The amount of VEGF released from the hypoxia-exposed cells was significantly higher than that of the normoxic controls. Pre-treatment with CAPE suppressed the hypoxia-induced production of VEGF in the ARPE-19 cells, and this effect was inhibited through the attenuation of reactive oxygen species (ROS) production, and the inhibition of phosphoinositide 3-kinase (PI3K)/AKT and hypoxia-inducible factor-1α (HIF-1α) expression. These in vitro findings suggest that CAPE may prove to be a novel anti-angiogenic agent for the treatment of diseases associated with CNV. PMID:25738890

  5. Evolution.

    ERIC Educational Resources Information Center

    Mayr, Ernst

    1978-01-01

    Traces the history of evolution theory from Lamarck and Darwin to the present. Discusses natural selection in detail. Suggests that, besides biological evolution, there is also a cultural evolution which is more rapid than the former. (MA)

  6. Defense mechanisms against herbivory in Picea: sequence evolution and expression regulation of gene family members in the phenylpropanoid pathway

    PubMed Central

    2011-01-01

    Background In trees, a substantial amount of carbon is directed towards production of phenolics for development and defense. This metabolic pathway is also a major factor in resistance to insect pathogens in spruce. In such gene families, environmental stimuli may have an important effect on the evolutionary fate of duplicated genes, and different expression patterns may indicate functional diversification. Results Gene families in spruce (Picea) have expanded to superfamilies, including O-methyltransferases, cytochrome-P450, and dirigents/classIII-peroxidases. Neo-functionalization of superfamily members from different clades is reflected in expression diversification. Genetical genomics can provide new insights into the genetic basis and evolution of insect resistance in plants. Adopting this approach, we merged genotype data (252 SNPs in a segregating pedigree), gene expression levels (for 428 phenylpropanoid-related genes) and measures of susceptibility to Pissodes stobi, using a partial-diallel crossing-design with white spruce (Picea glauca). Thirty-eight expressed phenylpropanoid-related genes co-segregated with weevil susceptibility, indicating either causative or reactive effects of these genes to weevil resistance. We identified eight regulatory genomic regions with extensive overlap of quantitative trait loci from susceptibility and growth phenotypes (pQTLs) and expression QTL (eQTL) hotspots. In particular, SNPs within two different CCoAOMT loci regulate phenotypic variation from a common set of 24 genes and three resistance traits. Conclusions Pest resistance was associated with individual candidate genes as well as with trans-regulatory hotspots along the spruce genome. Our results showed that specific genes within the phenylpropanoid pathway have been duplicated and diversified in the conifer in a process fundamentally different from short-lived angiosperm species. These findings add to the information about the role of the phenylpropanoid pathway in

  7. Learning from input and memory evolution: Points of vulnerability on a pathway to mastery in word learning

    PubMed Central

    Storkel, Holly L.

    2014-01-01

    Word learning consists of at least two neurocognitive processes: learning from input during training and memory evolution during gaps between training sessions. Fine-grained analysis of word learning by normal adults provides evidence that learning from input is swift and stable, whereas memory evolution is a point of potential vulnerability on the pathway to mastery. Moreover, success during learning from input is linked to positive outcomes from memory evolution. These two neurocognitive processes can be overlaid on to components of clinical treatment with within-session variables (i.e., dose form and dose) potentially linked to learning from input and between-session variables (i.e., dose frequency) linked to memory evolution. Collecting data at the beginning and end of a treatment session can be used to identify the point of vulnerability in word learning for a given client and the appropriate treatment component can then be adjusted to improve the client’s word learning. Two clinical cases are provided to illustrate this approach. PMID:25539474

  8. A closer look at evolution: Variants (SNPs) of genes involved in skin pigmentation, including EXOC2, TYR, TYRP1, and DCT, are associated with 25(OH)D serum concentration.

    PubMed

    Saternus, Roman; Pilz, Stefan; Gräber, Stefan; Kleber, Marcus; März, Winfried; Vogt, Thomas; Reichrath, Jörg

    2015-01-01

    )D levels as compared with the total cohort (median, 15.5 ng/mL). Although 1 SNP in the EXOC2 gene reached the aimed significance level after correction for multiple comparisons (false discovery rate) and was associated with a Δ25(OH)D value more than 5.00 ng/mL, 11 SNPs located in the TYR (n = 4), PRKACG (n = 1), EDN1 (n = 3), TYRP1 (n = 1), and microphthalmia-associated transcription factor (n = 2) genes reached the aimed significance level after false discovery rate correction but were not associated with Δ25(OH)D value more than 5.00 ng/mL. We conclude that variants of genes involved in skin pigmentation are predictive of serum 25(OH)D levels in the Caucasian population. Our data indicate that out of the variants in 29 different genes analyzed, variants of 11 genes, including EXOC2, TYR, and TYRP1, have the highest impact on vitamin D status. Our results have a fundamental importance to understand the role of sunlight, skin pigmentation, and vitamin D for the human evolution. PMID:25396269

  9. Pigment-protein complexes

    SciTech Connect

    Siegelman, H W

    1980-01-01

    The photosynthetically-active pigment protein complexes of procaryotes and eucaryotes include chlorophyll proteins, carotenochlorophyll proteins, and biliproteins. They are either integral components or attached to photosynthetic membranes. Detergents are frequently required to solubilize the pigment-protein complexes. The membrane localization and detergent solubilization strongly suggest that the pigment-protein complexes are bound to the membranes by hydrophobic interactions. Hydrophobic interactions of proteins are characterized by an increase in entropy. Their bonding energy is directly related to temperature and ionic strength. Hydrophobic-interaction chromatography, a relatively new separation procedure, can furnish an important method for the purification of pigment-protein complexes. Phycobilisome purification and properties provide an example of the need to maintain hydrophobic interactions to preserve structure and function.

  10. Scientists Discover Two New Interstellar Molecules: Point to Probable Pathways for Chemical Evolution in Space

    NASA Astrophysics Data System (ADS)

    2004-06-01

    are particularly interesting since several biologically significant molecules, including a family of sugar molecules, are aldehydes. "The GBT can be used to fully explore the possibility that a significant amount of prebiotic chemistry may occur in space long before it occurs on a newly formed planet," said Remijan. "Comets form from interstellar clouds and incessantly bombard a newly formed planet early in its history. Craters on our Moon attest to this. Thus, comets may be the delivery vehicles for organic molecules necessary for life to begin on a new planet." Laboratory experiments also demonstrate that atomic addition reactions -- similar to those assumed to occur in interstellar clouds -- play a role in synthesizing complex molecules by subjecting ices containing simpler molecules such as water, carbon dioxide, and methanol to ionizing radiation dosages. Thus, laboratory experiments can now be devised with various ice components to attempt production of the aldehydes observed with the GBT. "The detection of the two new aldehydes, which are related by a common chemical pathway called hydrogen addition, demonstrates that evolution to more complex species occurs routinely in interstellar clouds and that a relatively simple mechanism may build large molecules out of smaller ones. The GBT is now a key instrument in exploring chemical evolution in space," said Hollis. The GBT is the world's largest fully steerable radio telescope; it is operated by the NRAO. "The large diameter and high precision of the GBT allowed us to study small interstellar clouds that can absorb the radiation from a bright, background source. The sensitivity and flexibility of the telescope gave us an important new tool for the study of complex interstellar molecules," said Jewell. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  11. Recreating a functional ancestral archosaur visual pigment.

    PubMed

    Chang, Belinda S W; Jönsson, Karolina; Kazmi, Manija A; Donoghue, Michael J; Sakmar, Thomas P

    2002-09-01

    The ancestors of the archosaurs, a major branch of the diapsid reptiles, originated more than 240 MYA near the dawn of the Triassic Period. We used maximum likelihood phylogenetic ancestral reconstruction methods and explored different models of evolution for inferring the amino acid sequence of a putative ancestral archosaur visual pigment. Three different types of maximum likelihood models were used: nucleotide-based, amino acid-based, and codon-based models. Where possible, within each type of model, likelihood ratio tests were used to determine which model best fit the data. Ancestral reconstructions of the ancestral archosaur node using the best-fitting models of each type were found to be in agreement, except for three amino acid residues at which one reconstruction differed from the other two. To determine if these ancestral pigments would be functionally active, the corresponding genes were chemically synthesized and then expressed in a mammalian cell line in tissue culture. The expressed artificial genes were all found to bind to 11-cis-retinal to yield stable photoactive pigments with lambda(max) values of about 508 nm, which is slightly redshifted relative to that of extant vertebrate pigments. The ancestral archosaur pigments also activated the retinal G protein transducin, as measured in a fluorescence assay. Our results show that ancestral genes from ancient organisms can be reconstructed de novo and tested for function using a combination of phylogenetic and biochemical methods. PMID:12200476

  12. Skin pigmentation evaluation in broilers fed natural and synthetic pigments.

    PubMed

    Castañeda, M P; Hirschler, E M; Sams, A R

    2005-01-01

    Broiler carcass skin color is important in the United States and Mexico. This study evaluated the use of natural and synthetic pigments in broiler diets at commercial levels. Birds were fed natural or synthetic pigments at low or high levels, simulating US and Mexican commercial practices. Skin color was measured during live production (3 to 7 wk of age) and after slaughter and chilling. The natural pigments had consistently greater skin b* values (yellowness) than the synthetic pigments. The high levels produced greater skin b* values than the low levels, regardless of source. The synthetic pigments had a slower increase in skin b* but reached the same level as the natural low by 7 wk. There was no difference in skin a* values (redness) due to pigment source or level or the age of the bird. By 7 wk, all pigment sources approached plateau levels in the blood, but the synthetic pigment diet produced higher blood levels of yellow and red pigments than the natural pigment diets. Processing intensified skin yellowness and reduced skin redness. These data suggest that although synthetic pigments might have been absorbed better than natural ones, natural pigments were more efficient at increasing skin yellowness and there were only small differences between high and low levels for each pigment source. This finding may allow reduction in pigment use and feed cost to achieve the same skin acceptance by the consumer. PMID:15685954

  13. Directed Evolution of Metabolic Pathways in Microbial Populations. I. Modification of the Acid Phosphatase Ph Optimum in S. CEREVISIAE

    PubMed Central

    Francis, J. C.; Hansche, P. E.

    1972-01-01

    An experimental system for directing the evolution of enzymes and metabolic pathways in microbial populations is proposed and an initial test of its power is provided.—The test involved an attempt to genetically enhance certain functional properties of the enzyme acid phosphatase in S. cerevisiae by constructing an environment in which the functional changes desired would be "adaptive". Naturally occurring mutations in a population of 109 cells were automatically and continuously screened, over 1,000 generations, for their effect on the efficiency (Km) and activity of acid phosphatase at pH 6, and for their effect on the efficiency of orthophosphate metabolism.—The first adaptation observed, M1, was due to a single mutational event that effected a 30% increase in the efficiency of orthophosphate metabolism. The second, M2, effected an adaptive shift in the pH optimum of acid phosphatase and an increase in its activity over a wide range of pH values (an increment of 60% at pH 6). M2 was shown to result from a single mutational event in the region of the acid phosphatase structural gene. The third, M3, effected cell clumping, an adaptation to the culture apparatus that had no effect on phosphate metabolism.—The power of this system for directing the evolution of enzymes and of metabolic pathways is discussed in terms of the kinetic properties of the experimental system and in terms of the results obtained. PMID:4552227

  14. Oxygen and hydrogen peroxide in the early evolution of life on earth: in silico comparative analysis of biochemical pathways.

    PubMed

    Slesak, Ireneusz; Slesak, Halina; Kruk, Jerzy

    2012-08-01

    In the Universe, oxygen is the third most widespread element, while on Earth it is the most abundant one. Moreover, oxygen is a major constituent of all biopolymers fundamental to living organisms. Besides O(2), reactive oxygen species (ROS), among them hydrogen peroxide (H(2)O(2)), are also important reactants in the present aerobic metabolism. According to a widely accepted hypothesis, aerobic metabolism and many other reactions/pathways involving O(2) appeared after the evolution of oxygenic photosynthesis. In this study, the hypothesis was formulated that the Last Universal Common Ancestor (LUCA) was at least able to tolerate O(2) and detoxify ROS in a primordial environment. A comparative analysis was carried out of a number of the O(2)-and H(2)O(2)-involving metabolic reactions that occur in strict anaerobes, facultative anaerobes, and aerobes. The results indicate that the most likely LUCA possessed O(2)-and H(2)O(2)-involving pathways, mainly reactions to remove ROS, and had, at least in part, the components of aerobic respiration. Based on this, the presence of a low, but significant, quantity of H(2)O(2) and O(2) should be taken into account in theoretical models of the early Archean atmosphere and oceans and the evolution of life. It is suggested that the early metabolism involving O(2)/H(2)O(2) was a key adaptation of LUCA to already existing weakly oxic zones in Earth's primordial environment. PMID:22970865

  15. RECRUITMENT OF TFT AND CLC BIODEGRADATIVE PATHWAY GENES: MODELS OF EVOLUTION

    EPA Science Inventory

    Pseudomonas putida can utilize a simple chlorinated compound 3-chlorocatechol (3-clc) through elaboration of a plasmid pAC27 encoded pathway. he clc genes are clustered as an operon termed clcABD. he positive regulatory gene clcR maps close to but is transcribed divergently from ...

  16. Competition between anthocyanin and flavonol biosynthesis produces spatial pattern variation of floral pigments between Mimulus species.

    PubMed

    Yuan, Yao-Wu; Rebocho, Alexandra B; Sagawa, Janelle M; Stanley, Lauren E; Bradshaw, Harvey D

    2016-03-01

    Flower color patterns have long served as a model for developmental genetics because pigment phenotypes are visually striking, yet generally not required for plant viability, facilitating the genetic analysis of color and pattern mutants. The evolution of novel flower colors and patterns has played a key role in the adaptive radiation of flowering plants via their specialized interactions with different pollinator guilds (e.g., bees, butterflies, birds), motivating the search for allelic differences affecting flower color pattern in closely related plant species with different pollinators. We have identified LIGHT AREAS1 (LAR1), encoding an R2R3-MYB transcription factor, as the causal gene underlying the spatial pattern variation of floral anthocyanin pigmentation between two sister species of monkeyflower: the bumblebee-pollinated Mimulus lewisii and the hummingbird-pollinated Mimulus cardinalis. We demonstrated that LAR1 positively regulates FLAVONOL SYNTHASE (FLS), essentially eliminating anthocyanin biosynthesis in the white region (i.e., light areas) around the corolla throat of M. lewisii flowers by diverting dihydroflavonol into flavonol biosynthesis from the anthocyanin pigment pathway. FLS is preferentially expressed in the light areas of the M. lewisii flower, thus prepatterning the corolla. LAR1 expression in M. cardinalis flowers is much lower than in M. lewisii, explaining the unpatterned phenotype and recessive inheritance of the M. cardinalis allele. Furthermore, our gene-expression analysis and genetic mapping results suggest that cis-regulatory change at the LAR1 gene played a critical role in the evolution of different pigmentation patterns between the two species. PMID:26884205

  17. Competition between anthocyanin and flavonol biosynthesis produces spatial pattern variation of floral pigments between Mimulus species

    PubMed Central

    Yuan, Yao-Wu; Rebocho, Alexandra B.; Sagawa, Janelle M.; Stanley, Lauren E.; Bradshaw, Harvey D.

    2016-01-01

    Flower color patterns have long served as a model for developmental genetics because pigment phenotypes are visually striking, yet generally not required for plant viability, facilitating the genetic analysis of color and pattern mutants. The evolution of novel flower colors and patterns has played a key role in the adaptive radiation of flowering plants via their specialized interactions with different pollinator guilds (e.g., bees, butterflies, birds), motivating the search for allelic differences affecting flower color pattern in closely related plant species with different pollinators. We have identified LIGHT AREAS1 (LAR1), encoding an R2R3-MYB transcription factor, as the causal gene underlying the spatial pattern variation of floral anthocyanin pigmentation between two sister species of monkeyflower: the bumblebee-pollinated Mimulus lewisii and the hummingbird-pollinated Mimulus cardinalis. We demonstrated that LAR1 positively regulates FLAVONOL SYNTHASE (FLS), essentially eliminating anthocyanin biosynthesis in the white region (i.e., light areas) around the corolla throat of M. lewisii flowers by diverting dihydroflavonol into flavonol biosynthesis from the anthocyanin pigment pathway. FLS is preferentially expressed in the light areas of the M. lewisii flower, thus prepatterning the corolla. LAR1 expression in M. cardinalis flowers is much lower than in M. lewisii, explaining the unpatterned phenotype and recessive inheritance of the M. cardinalis allele. Furthermore, our gene-expression analysis and genetic mapping results suggest that cis-regulatory change at the LAR1 gene played a critical role in the evolution of different pigmentation patterns between the two species. PMID:26884205

  18. Surprising Arginine Biosynthesis: a Reappraisal of the Enzymology and Evolution of the Pathway in Microorganisms

    PubMed Central

    Xu, Ying; Labedan, Bernard; Glansdorff, Nicolas

    2007-01-01

    Summary: Major aspects of the pathway of de novo arginine biosynthesis via acetylated intermediates in microorganisms must be revised in light of recent enzymatic and genomic investigations. The enzyme N-acetylglutamate synthase (NAGS), which used to be considered responsible for the first committed step of the pathway, is present in a limited number of bacterial phyla only and is absent from Archaea. In many Bacteria, shorter proteins related to the Gcn5-related N-acetyltransferase family appear to acetylate l-glutamate; some are clearly similar to the C-terminal, acetyl-coenzyme A (CoA) binding domain of classical NAGS, while others are more distantly related. Short NAGSs can be single gene products, as in Mycobacterium spp. and Thermus spp., or fused to the enzyme catalyzing the last step of the pathway (argininosuccinase), as in members of the Alteromonas-Vibrio group. How these proteins bind glutamate remains to be determined. In some Bacteria, a bifunctional ornithine acetyltransferase (i.e., using both acetylornithine and acetyl-CoA as donors of the acetyl group) accounts for glutamate acetylation. In many Archaea, the enzyme responsible for glutamate acetylation remains elusive, but possible connections with a novel lysine biosynthetic pathway arose recently from genomic investigations. In some Proteobacteria (notably Xanthomonadaceae) and Bacteroidetes, the carbamoylation step of the pathway appears to involve N-acetylornithine or N-succinylornithine rather than ornithine. The product N-acetylcitrulline is deacetylated by an enzyme that is also involved in the provision of ornithine from acetylornithine; this is an important metabolic function, as ornithine itself can become essential as a source of other metabolites. This review insists on the biochemical and evolutionary implications of these findings. PMID:17347518

  19. Surprising arginine biosynthesis: a reappraisal of the enzymology and evolution of the pathway in microorganisms.

    PubMed

    Xu, Ying; Labedan, Bernard; Glansdorff, Nicolas

    2007-03-01

    Major aspects of the pathway of de novo arginine biosynthesis via acetylated intermediates in microorganisms must be revised in light of recent enzymatic and genomic investigations. The enzyme N-acetylglutamate synthase (NAGS), which used to be considered responsible for the first committed step of the pathway, is present in a limited number of bacterial phyla only and is absent from Archaea. In many Bacteria, shorter proteins related to the Gcn5-related N-acetyltransferase family appear to acetylate l-glutamate; some are clearly similar to the C-terminal, acetyl-coenzyme A (CoA) binding domain of classical NAGS, while others are more distantly related. Short NAGSs can be single gene products, as in Mycobacterium spp. and Thermus spp., or fused to the enzyme catalyzing the last step of the pathway (argininosuccinase), as in members of the Alteromonas-Vibrio group. How these proteins bind glutamate remains to be determined. In some Bacteria, a bifunctional ornithine acetyltransferase (i.e., using both acetylornithine and acetyl-CoA as donors of the acetyl group) accounts for glutamate acetylation. In many Archaea, the enzyme responsible for glutamate acetylation remains elusive, but possible connections with a novel lysine biosynthetic pathway arose recently from genomic investigations. In some Proteobacteria (notably Xanthomonadaceae) and Bacteroidetes, the carbamoylation step of the pathway appears to involve N-acetylornithine or N-succinylornithine rather than ornithine. The product N-acetylcitrulline is deacetylated by an enzyme that is also involved in the provision of ornithine from acetylornithine; this is an important metabolic function, as ornithine itself can become essential as a source of other metabolites. This review insists on the biochemical and evolutionary implications of these findings. PMID:17347518

  20. Phylobiochemical Characterization of Class-Ib Aspartate/Prephenate Aminotransferases Reveals Evolution of the Plant Arogenate Phenylalanine Pathway[W

    PubMed Central

    Dornfeld, Camilla; Weisberg, Alexandra J.; K C, Ritesh; Dudareva, Natalia; Jelesko, John G.; Maeda, Hiroshi A.

    2014-01-01

    The aromatic amino acid Phe is required for protein synthesis and serves as the precursor of abundant phenylpropanoid plant natural products. While Phe is synthesized from prephenate exclusively via a phenylpyruvate intermediate in model microbes, the alternative pathway via arogenate is predominant in plant Phe biosynthesis. However, the molecular and biochemical evolution of the plant arogenate pathway is currently unknown. Here, we conducted phylogenetically informed biochemical characterization of prephenate aminotransferases (PPA-ATs) that belong to class-Ib aspartate aminotransferases (AspAT Ibs) and catalyze the first committed step of the arogenate pathway in plants. Plant PPA-ATs and succeeding arogenate dehydratases (ADTs) were found to be most closely related to homologs from Chlorobi/Bacteroidetes bacteria. The Chlorobium tepidum PPA-AT and ADT homologs indeed efficiently converted prephenate and arogenate into arogenate and Phe, respectively. A subset of AspAT Ib enzymes exhibiting PPA-AT activity was further identified from both Plantae and prokaryotes and, together with site-directed mutagenesis, showed that Thr-84 and Lys-169 play key roles in specific recognition of dicarboxylic keto (prephenate) and amino (aspartate) acid substrates. The results suggest that, along with ADT, a gene encoding prephenate-specific PPA-AT was transferred from a Chlorobi/Bacteroidetes ancestor to a eukaryotic ancestor of Plantae, allowing efficient Phe and phenylpropanoid production via arogenate in plants today. PMID:25070637

  1. Phototrophic pigment production with microalgae: biological constraints and opportunities.

    PubMed

    Mulders, Kim J M; Lamers, Packo P; Martens, Dirk E; Wijffels, René H

    2014-04-01

    There is increasing interest in naturally produced colorants, and microalgae represent a bio-technologically interesting source due to their wide range of colored pigments, including chlorophylls (green), carotenoids (red, orange and yellow), and phycobiliproteins (red and blue). However, the concentration of these pigments, under optimal growth conditions, is often too low to make microalgal-based pigment production economically feasible. In some Chlorophyta (green algae), specific process conditions such as oversaturating light intensities or a high salt concentration induce the overproduction of secondary carotenoids (β-carotene in Dunaliella salina (Dunal) Teodoresco and astaxanthin in Haematococcus pluvialis (Flotow)). Overproduction of all other pigments (including lutein, fucoxanthin, and phycocyanin) requires modification in gene expression or enzyme activity, most likely combined with the creation of storage space outside of the photosystems. The success of such modification strategies depends on an adequate understanding of the metabolic pathways and the functional roles of all the pigments involved. In this review, the distribution of commercially interesting pigments across the most common microalgal groups, the roles of these pigments in vivo and their biosynthesis routes are reviewed, and constraints and opportunities for overproduction of both primary and secondary pigments are presented. PMID:26988181

  2. Evolution of hydrological pathways in engineered hillslopes due to soil and vegetation development

    NASA Astrophysics Data System (ADS)

    Appels, Willemijn M.; Ireson, Andrew M.; McDonnell, Jeffrey J.; Barbour, S. Lee

    2015-04-01

    The structure and hydraulic properties of soils and bedrock within a hillslope combined with the timing and rates of water availability control the partitioning of precipitation into vertical and lateral flowpaths. In natural hillslope sites, heterogeneity in both soil texture and structure are the result of long-term landscape evolution processes and consequently can be assumed to be static relative to the timescale of rainfall-runoff processes. However; engineered hillslopes, constructed commonly as reclamation covers overlying mine waste, have been observed to undergo rapid changes in hydraulic properties over relatively short timescales (i.e. 3-5 years) as a result of weathering (e.g. freeze-thaw and wet-dry cycles) and vegetation growth (e.g. increasing rooting depth and density). Rainfall-runoff responses on such hillslopes would therefore not only be expected to reflect seasonal dynamics, but also the evolution of the system from a relatively homogeneous initial condition to a system with increasing heterogeneity of soil texture and structure. We present results of a combined field and modeling study of three prototype soil covers on a saline-sodic shale overburden dump at the Syncrude Canada Ltd. Mildred Lake mine, north of Fort McMurray, Canada. Since their construction in 1999, soil properties, hydrological response to atmospheric and vegetative demands, and vegetation properties have been extensively monitored. The three covers have undergone substantial evolution due to freeze-thaw processes and aggrading vegetation. In this work, we quantify hydrological processes in the reclamation covers, focusing on inter- and intra-annual patterns. To this purpose we analyzed the long-term hydrometric data with field sampling of the distribution of salts and the stable isotopes of water within soil water and subsurface flow in the base of the cover. We use a 2D Hydrus model to explore the co-evolution of soil and vegetation and quantify its effect on flow

  3. The origin of the supernumerary subunits and assembly factors of complex I: A treasure trove of pathway evolution.

    PubMed

    Elurbe, Dei M; Huynen, Martijn A

    2016-07-01

    We review and document the evolutionary origin of all complex I assembly factors and nine supernumerary subunits from protein families. Based on experimental data and the conservation of critical residues we identify a spectrum of protein function conservation between the complex I representatives and their non-complex I homologs. This spectrum ranges from proteins that have retained their molecular function but in which the substrate specificity may have changed or have become more specific, like NDUFAF5, to proteins that have lost their original molecular function and critical catalytic residues like NDUFAF6. In between are proteins that have retained their molecular function, which however appears unrelated to complex I, like ACAD9, or proteins in which amino acids of the active site are conserved but for which no enzymatic activity has been reported, like NDUFA10. We interpret complex I evolution against the background of molecular evolution theory. Complex I supernumerary subunits and assembly factors appear to have been recruited from proteins that are mitochondrial and/or that are expressed when complex I is active. Within the evolution of complex I and its assembly there are many cases of neofunctionalization after gene duplication, like ACAD9 and TMEM126B, one case of subfunctionalization: ACPM1 and ACPM2 in Yarrowia lipolytica, and one case in which a complex I protein itself appears to have been the source of a new protein from another complex: NDUFS6 gave rise to cytochrome c oxidase subunit COX4/COX5b. Complex I and its assembly can therewith be regarded as a treasure trove for pathway evolution. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt. PMID:27048931

  4. Regulation of constitutive vascular endothelial growth factor secretion in retinal pigment epithelium/choroid organ cultures: p38, nuclear factor kappaB, and the vascular endothelial growth factor receptor-2/phosphatidylinositol 3 kinase pathway

    PubMed Central

    Westhues, Daniel; Lassen, Jens; Bartsch, Sofia; Roider, Johann

    2013-01-01

    Purpose The retinal pigment epithelium (RPE) is a major source of vascular endothelial growth factor (VEGF) in the eye. Despite the role of VEGF in ocular pathology, VEGF is an important factor in maintaining the choroid and the RPE. Accordingly, the VEGF is constitutively expressed in RPE. In this study, the regulation of constitutive VEGF expression was investigated in an RPE/choroid organ culture. Methods To investigate VEGF regulation, RPE/choroid of porcine origin were used. VEGF content was evaluated with enzyme-linked immunosorbent assay. The influence of several molecular factors was assessed with commercially available inhibitors (SU1498, bisindolylmaleimide, LY294002, nuclear factor kappaB [NFkB] activation inhibitor, mithramycin, YC-1, Stattic, SB203580). For toxicity measurements of inhibitors, primary RPE cells of porcine origin were used, and toxicity was evaluated with methyl thiazolyl tetrazolium assay. Results VEGF secretion as measured in the RPE/choroid organ culture was diminished after long-term (48 h) inhibition of vascular endothelial growth factor receptor-2 by VEGFR-2-antagonist SU1498. VEGF secretion was also diminished after phosphatidylinositol 3 kinase was inhibited by LY294002 for 48 h. Coapplication of the substances did not show an additive effect, suggesting that they use the same pathway in an autocrine-positive VEGF regulation loop. Inhibition of protein kinase C by bisindolylmaleimide, on the other hand, did not influence VEGF secretion in organ culture. Inhibition of the transcription factor SP-1 by mithramycin displayed effects after 24 h and 48 h. Inhibiting hypoxia-inducible factor-1 (HIF-1) and Stat3 did not show any influence on constitutive VEGF secretion. Inhibition of the transcription factor NFkB diminished VEGF secretion after 6 h (earliest measured time point) and remained diminished at all measured time points (24 h, 48 h). The same pattern was found when the inhibitor of mitogen-activated kinase p38 was applied. A

  5. Biology of pigmentation

    SciTech Connect

    Parker, F.

    1981-01-01

    The many factors involved in the normal pigmentation of human skin are highly complex involving anatomic, biochemical, and genetic aspects of melanocytes in the skin and the influence of UV light and various hormones on the melanocytes. It is probably more than just coincidence that the melanocytes, which are of neurogenic origin, are so responsive to several trophic hormones produced in the brain. Understanding of the various factors involved in the normal pigmentary process is crucial to explaining the many alterations and anomalies in human pigmentation.

  6. Broadening of neutralization activity to directly block a dominant antibody-driven SARS-coronavirus evolution pathway.

    PubMed

    Sui, Jianhua; Aird, Daniel R; Tamin, Azaibi; Murakami, Akikazu; Yan, Meiying; Yammanuru, Anuradha; Jing, Huaiqi; Kan, Biao; Liu, Xin; Zhu, Quan; Yuan, Qing-An; Adams, Gregory P; Bellini, William J; Xu, Jianguo; Anderson, Larry J; Marasco, Wayne A

    2008-11-01

    Phylogenetic analyses have provided strong evidence that amino acid changes in spike (S) protein of animal and human SARS coronaviruses (SARS-CoVs) during and between two zoonotic transfers (2002/03 and 2003/04) are the result of positive selection. While several studies support that some amino acid changes between animal and human viruses are the result of inter-species adaptation, the role of neutralizing antibodies (nAbs) in driving SARS-CoV evolution, particularly during intra-species transmission, is unknown. A detailed examination of SARS-CoV infected animal and human convalescent sera could provide evidence of nAb pressure which, if found, may lead to strategies to effectively block virus evolution pathways by broadening the activity of nAbs. Here we show, by focusing on a dominant neutralization epitope, that contemporaneous- and cross-strain nAb responses against SARS-CoV spike protein exist during natural infection. In vitro immune pressure on this epitope using 2002/03 strain-specific nAb 80R recapitulated a dominant escape mutation that was present in all 2003/04 animal and human viruses. Strategies to block this nAb escape/naturally occurring evolution pathway by generating broad nAbs (BnAbs) with activity against 80R escape mutants and both 2002/03 and 2003/04 strains were explored. Structure-based amino acid changes in an activation-induced cytidine deaminase (AID) "hot spot" in a light chain CDR (complementarity determining region) alone, introduced through shuffling of naturally occurring non-immune human VL chain repertoire or by targeted mutagenesis, were successful in generating these BnAbs. These results demonstrate that nAb-mediated immune pressure is likely a driving force for positive selection during intra-species transmission of SARS-CoV. Somatic hypermutation (SHM) of a single VL CDR can markedly broaden the activity of a strain-specific nAb. The strategies investigated in this study, in particular the use of structural information in

  7. Enzyme chemistry and the evolution of metabolic diversity: the. beta. -ketoadipate pathway

    SciTech Connect

    Kozarich, J.W.

    1986-05-01

    The two converging catechol and protocatechuate branches of the ..beta..-ketoadipate pathway in Pseudomonas putida have long been considered a paradigm of evolutionary divergence of specialized enzymes from a common ancestor. The structural similarities of substrates, products and the enzymes themselves have supported this hypothesis. Employing chemical and /sup 1/H NMR techniques, they have determined the absolute stereochemical courses of the reactions catalyzed by ..beta..-carboxymuconate cycloisomerase, muconolactone isomerase, and ..gamma..-carboxymuconolactone decarboxylase. Surprisingly, ..beta..-carboxymuconate cycloisomerase proceeds via an anti addition while the corresponding muconate cycloisomerase has been shown to catalyze a syn addition. Moreover, the chiral centers generated in the products of both enzymes are of the opposite relative configuration. They believe that the shift in mechanism may reflect basic energetic differences of the two reactions. The stereochemistries of the isomerase and decarboxylase have been established by /sup 1/H NMR using a ricochet analysis. Both reactions proceed via a syn process; the relative configurations of muconolactone and ..gamma..-carboxymuconolactone necessitate that the enzymes operate on opposite faces of the common enol-lactone product. These findings suggest that either critical active site changes have occurred in these enzymes to accommodate preferred mechanistic pathways or the evolutionary relationship of the two branches is more remote than previously believed.

  8. Are changes in sulfate assimilation pathway needed for evolution of C4 photosynthesis?

    PubMed Central

    Weckopp, Silke C.; Kopriva, Stanislav

    2015-01-01

    C4 photosynthesis characteristically features a cell-specific localization of enzymes involved in CO2 assimilation in bundle sheath cells (BSC) or mesophyll cells. Interestingly, enzymes of sulfur assimilation are also specifically present in BSC of maize and many other C4 species. This localization, however, could not be confirmed in C4 species of the genus Flaveria. It was, therefore, concluded that the bundle sheath localization of sulfate assimilation occurs only in C4 monocots. However, recently the sulfate assimilation pathway was found coordinately enriched in BSC of Arabidopsis, opening new questions about the significance of such cell-specific localization of the pathway. In addition, next generation sequencing revealed expression gradients of many genes from C3 to C4 species and mathematical modeling proposed a sequence of adaptations during the evolutionary path from C3 to C4. Indeed, such gradient, with higher expression of genes for sulfate reduction in C4 species, has been observed within the genus Flaveria. These new tools provide the basis for reexamining the intriguing question of compartmentalization of sulfur assimilation. Therefore, this review summarizes the findings on spatial separation of sulfur assimilation in C4 plants and Arabidopsis, assesses the information on sulfur assimilation provided by the recent transcriptomics data and discusses their possible impact on understanding this interesting feature of plant sulfur metabolism to find out whether changes in sulfate assimilation are part of a general evolutionary trajectory toward C4 photosynthesis. PMID:25628630

  9. Oxygen and Hydrogen Peroxide in the Early Evolution of Life on Earth: In silico Comparative Analysis of Biochemical Pathways

    PubMed Central

    Ślesak, Halina; Kruk, Jerzy

    2012-01-01

    Abstract In the Universe, oxygen is the third most widespread element, while on Earth it is the most abundant one. Moreover, oxygen is a major constituent of all biopolymers fundamental to living organisms. Besides O2, reactive oxygen species (ROS), among them hydrogen peroxide (H2O2), are also important reactants in the present aerobic metabolism. According to a widely accepted hypothesis, aerobic metabolism and many other reactions/pathways involving O2 appeared after the evolution of oxygenic photosynthesis. In this study, the hypothesis was formulated that the Last Universal Common Ancestor (LUCA) was at least able to tolerate O2 and detoxify ROS in a primordial environment. A comparative analysis was carried out of a number of the O2-and H2O2-involving metabolic reactions that occur in strict anaerobes, facultative anaerobes, and aerobes. The results indicate that the most likely LUCA possessed O2-and H2O2-involving pathways, mainly reactions to remove ROS, and had, at least in part, the components of aerobic respiration. Based on this, the presence of a low, but significant, quantity of H2O2 and O2 should be taken into account in theoretical models of the early Archean atmosphere and oceans and the evolution of life. It is suggested that the early metabolism involving O2/H2O2 was a key adaptation of LUCA to already existing weakly oxic zones in Earth's primordial environment. Key Words: Hydrogen peroxide—Oxygen—Origin of life—Photosynthesis—Superoxide dismutase—Superoxide reductase. Astrobiology 12, 775–784. PMID:22970865

  10. Comparative genomic analysis of nine Sphingobium strains: Insights into their evolution and hexachlorocyclohexane (HCH) degradation pathways

    SciTech Connect

    Verma, Helianthous; Kumar, Roshan; Oldach, Phoebe; Sangwan, Naseer; Khurana, Jitendra P.; Gilbert, Jack A.; Lal, Rup

    2014-11-23

    Background: Sphingobium spp. are efficient degraders of a wide range of chlorinated and aromatic hydrocarbons. In particular, strains which harbour the lin pathway genes mediating the degradation of hexachlorocyclohexane (HCH) isomers are of interest due to the widespread persistence of this contaminant. Here, we examined the evolution and diversification of the lin pathway under the selective pressure of HCH, by comparing the draft genomes of six newly-sequenced Sphingobium spp. (strains LL03, DS20, IP26, HDIPO4, P25 and RL3) isolated from HCH dumpsites, with three existing genomes (S. indicum B90A, S. japonicum UT26S and Sphingobium sp. SYK6). Results: Efficient HCH degraders phylogenetically clustered in a closely related group comprising of UT26S, B90A, HDIPO4 and IP26, where HDIPO4 and IP26 were classified as subspecies with ANI value >98%. Less than 10% of the total gene content was shared among all nine strains, but among the eight HCH-associated strains, that is all except SYK6, the shared gene content jumped to nearly 25%. Genes associated with nitrogen stress response and two-component systems were found to be enriched. The strains also housed many xenobiotic degradation pathways other than HCH, despite the absence of these xenobiotics from isolation sources. In addition, these strains, although non-motile, but posses flagellar assembly genes. While strains HDIPO4 and IP26 contained the complete set of lin genes, DS20 was entirely devoid of lin genes (except linKLMN) whereas, LL03, P25 and RL3 were identified as lin deficient strains, as they housed incomplete lin pathways. Further, in HDIPO4, linA was found as a hybrid of two natural variants i.e., linA1 and linA2 known for their different enantioselectivity. In conclusion, the bacteria isolated from HCH dumpsites provide a natural testing ground to study variations in the lin system and their

  11. Utilization of the Mating Scaffold Protein in the Evolution of a New Signal Transduction Pathway for Biofilm Development

    PubMed Central

    Yi, Song; Sahni, Nidhi; Daniels, Karla J.; Lu, Kevin L.; Huang, Guanghua; Garnaas, Adam M.; Pujol, Claude; Srikantha, Thyagarajan; Soll, David R.

    2011-01-01

    Among the hemiascomycetes, only Candida albicans must switch from the white phenotype to the opaque phenotype to mate. In the recent evolution of this transition, mating-incompetent white cells acquired a unique response to mating pheromone, resulting in the formation of a white cell biofilm that facilitates mating. All of the upstream components of the white cell response pathway so far analyzed have been shown to be derived from the ancestral pathway involved in mating, except for the mitogen-activated protein (MAP) kinase scaffold protein, which had not been identified. Here, through binding and mutational studies, it is demonstrated that in both the opaque and the white cell pheromone responses, Cst5 is the scaffold protein, supporting the evolutionary scenario proposed. Although Cst5 plays the same role in tethering the MAP kinases as Ste5 does in Saccharomyces cerevisiae, Cst5 is approximately one-third the size and has only one rather than four phosphorylation sites involved in activation and cytoplasmic relocalization. PMID:21221248

  12. Genomic and Secondary Metabolite Analyses of Streptomyces sp. 2AW Provide Insight into the Evolution of the Cycloheximide Pathway.

    PubMed

    Stulberg, Elizabeth R; Lozano, Gabriel L; Morin, Jesse B; Park, Hyunjun; Baraban, Ezra G; Mlot, Christine; Heffelfinger, Christopher; Phillips, Gillian M; Rush, Jason S; Phillips, Andrew J; Broderick, Nichole A; Thomas, Michael G; Stabb, Eric V; Handelsman, Jo

    2016-01-01

    The dearth of new antibiotics in the face of widespread antimicrobial resistance makes developing innovative strategies for discovering new antibiotics critical for the future management of infectious disease. Understanding the genetics and evolution of antibiotic producers will help guide the discovery and bioengineering of novel antibiotics. We discovered an isolate in Alaskan boreal forest soil that had broad antimicrobial activity. We elucidated the corresponding antimicrobial natural products and sequenced the genome of this isolate, designated Streptomyces sp. 2AW. This strain illustrates the chemical virtuosity typical of the Streptomyces genus, producing cycloheximide as well as two other biosynthetically unrelated antibiotics, neutramycin, and hygromycin A. Combining bioinformatic and chemical analyses, we identified the gene clusters responsible for antibiotic production. Interestingly, 2AW appears dissimilar from other cycloheximide producers in that the gene encoding the polyketide synthase resides on a separate part of the chromosome from the genes responsible for tailoring cycloheximide-specific modifications. This gene arrangement and our phylogenetic analyses of the gene products suggest that 2AW holds an evolutionarily ancestral lineage of the cycloheximide pathway. Our analyses support the hypothesis that the 2AW glutaramide gene cluster is basal to the lineage wherein cycloheximide production diverged from other glutarimide antibiotics. This study illustrates the power of combining modern biochemical and genomic analyses to gain insight into the evolution of antibiotic-producing microorganisms. PMID:27199910

  13. Genomic and Secondary Metabolite Analyses of Streptomyces sp. 2AW Provide Insight into the Evolution of the Cycloheximide Pathway

    PubMed Central

    Stulberg, Elizabeth R.; Lozano, Gabriel L.; Morin, Jesse B.; Park, Hyunjun; Baraban, Ezra G.; Mlot, Christine; Heffelfinger, Christopher; Phillips, Gillian M.; Rush, Jason S.; Phillips, Andrew J.; Broderick, Nichole A.; Thomas, Michael G.; Stabb, Eric V.; Handelsman, Jo

    2016-01-01

    The dearth of new antibiotics in the face of widespread antimicrobial resistance makes developing innovative strategies for discovering new antibiotics critical for the future management of infectious disease. Understanding the genetics and evolution of antibiotic producers will help guide the discovery and bioengineering of novel antibiotics. We discovered an isolate in Alaskan boreal forest soil that had broad antimicrobial activity. We elucidated the corresponding antimicrobial natural products and sequenced the genome of this isolate, designated Streptomyces sp. 2AW. This strain illustrates the chemical virtuosity typical of the Streptomyces genus, producing cycloheximide as well as two other biosynthetically unrelated antibiotics, neutramycin, and hygromycin A. Combining bioinformatic and chemical analyses, we identified the gene clusters responsible for antibiotic production. Interestingly, 2AW appears dissimilar from other cycloheximide producers in that the gene encoding the polyketide synthase resides on a separate part of the chromosome from the genes responsible for tailoring cycloheximide-specific modifications. This gene arrangement and our phylogenetic analyses of the gene products suggest that 2AW holds an evolutionarily ancestral lineage of the cycloheximide pathway. Our analyses support the hypothesis that the 2AW glutaramide gene cluster is basal to the lineage wherein cycloheximide production diverged from other glutarimide antibiotics. This study illustrates the power of combining modern biochemical and genomic analyses to gain insight into the evolution of antibiotic-producing microorganisms. PMID:27199910

  14. Olfactory pathway of the hornet Vespa velutina: New insights into the evolution of the hymenopteran antennal lobe.

    PubMed

    Couto, Antoine; Lapeyre, Benoit; Thiéry, Denis; Sandoz, Jean-Christophe

    2016-08-01

    In the course of evolution, eusociality has appeared several times independently in Hymenoptera, within different families such as Apidae (bees), Formicidae (ants), and Vespidae (wasps and hornets), among others. The complex social organization of eusocial Hymenoptera relies on sophisticated olfactory communication systems. Whereas the olfactory systems of several bee and ant species have been well characterized, very little information is as yet available in Vespidae, although this family represents a highly successful insect group, displaying a wide range of life styles from solitary to eusocial. Using fluorescent labeling, confocal microscopy, and 3D reconstructions, we investigated the organization of the olfactory pathway in queens, workers, and males of the eusocial hornet Vespa velutina. First, we found that caste and sex dimorphism is weakly pronounced in hornets, with regard to both whole-brain morphology and antennal lobe organization, although several male-specific macroglomeruli are present. The V. velutina antennal lobe contains approximately 265 glomeruli (in females), grouped in nine conspicuous clusters formed by afferent tract subdivisions. As in bees and ants, hornets display a dual olfactory pathway, with two major efferent tracts, the medial and the lateral antennal lobe tracts (m- and l-ALT), separately arborizing two antennal lobe hemilobes and projecting to partially different regions of higher order olfactory centers. Finally, we found remarkable anatomical similarities in the glomerular cluster organizations among hornets, ants, and bees, suggesting the possible existence of homologies in the olfactory pathways of these eusocial Hymenoptera. We propose a common framework for describing AL compartmentalization across Hymenoptera and discuss possible evolutionary scenarios. J. Comp. Neurol. 524:2335-2359, 2016. © 2016 Wiley Periodicals, Inc. PMID:26850231

  15. Evolution of the Chaperone/Usher Assembly Pathway: Fimbrial Classification Goes Greek†

    PubMed Central

    Nuccio, Sean-Paul; Bäumler, Andreas J.

    2007-01-01

    Summary: Many Proteobacteria use the chaperone/usher pathway to assemble proteinaceous filaments on the bacterial surface. These filaments can curl into fimbrial or nonfimbrial surface structures (e.g., a capsule or spore coat). This article reviews the phylogeny of operons belonging to the chaperone/usher assembly class to explore the utility of establishing a scheme for subdividing them into clades of phylogenetically related gene clusters. Based on usher amino acid sequence comparisons, our analysis shows that the chaperone/usher assembly class is subdivided into six major phylogenetic clades, which we have termed α-, β-, γ-, κ-, π-, and σ-fimbriae. Members of each clade share related operon structures and encode fimbrial subunits with similar protein domains. The proposed classification system offers a simple and convenient method for assigning newly discovered chaperone/usher systems to one of the six major phylogenetic groups. PMID:18063717

  16. Combining natural and man-made DNA tracers to advance understanding of hydrologic flow pathway evolution

    NASA Astrophysics Data System (ADS)

    Dahlke, H. E.; Walter, M. T.; Lyon, S. W.; Rosqvist, G. N.

    2014-12-01

    Identifying and characterizing the sources, pathways and residence times of water and associated constituents is critical to developing improved understanding of watershed-stream connections and hydrological/ecological/biogeochemical models. To date the most robust information is obtained from integrated studies that combine natural tracers (e.g. isotopes, geochemical tracers) with controlled chemical tracer (e.g., bromide, dyes) or colloidal tracer (e.g., carboxilated microspheres, tagged clay particles, microorganisms) applications. In the presented study we explore how understanding of sources and flow pathways of water derived from natural tracer studies can be improved and expanded in space and time by simultaneously introducing man-made, synthetic DNA-based microtracers. The microtracer used were composed of polylactic acid (PLA) microspheres into which short strands of synthetic DNA and paramagnetic iron oxide nanoparticles are incorporated. Tracer experiments using both natural tracers and the DNA-based microtracers were conducted in the sub-arctic, glacierized Tarfala (21.7 km2) catchment in northern Sweden. Isotopic hydrograph separations revealed that even though storm runoff was dominated by pre-event water the event water (i.e. rainfall) contributions to streamflow increased throughout the summer season as glacial snow cover decreased. This suggests that glaciers are a major source of the rainwater fraction in streamflow. Simultaneous injections of ten unique DNA-based microtracers confirmed this hypothesis and revealed that the transit time of water traveling from the glacier surface to the stream decreased fourfold over the summer season leading to instantaneous rainwater contributions during storm events. These results highlight that integrating simultaneous tracer injections (injecting tracers at multiple places at one time) with traditional tracer methods (sampling multiple times at one place) rather than using either approach in isolation can

  17. Evolution of oligomeric state through allosteric pathways that mimic ligand binding

    PubMed Central

    Perica, Tina; Kondo, Yasushi; Tiwari, Sandhya P.; McLaughlin, Stephen H.; Kemplen, Katherine R.; Zhang, Xiuwei; Steward, Annette; Reuter, Nathalie; Clarke, Jane; Teichmann, Sarah A.

    2015-01-01

    Evolution and design of protein complexes is almost always viewed through the lens of amino acid mutations at protein interfaces. We showed previously that residues not involved in the physical interaction between proteins make important contributions to oligomerisation by acting indirectly or allosterically. Here, we sought to investigate the mechanism by which allosteric mutations act using the example of the PyrR family of pyrimidine operon attenuators. In this family, a perfectly sequence-conserved helix that forms a tetrameric interface is exposed as solvent-accessible surface in dimeric orthologues. This means that mutations must be acting from a distance to destabilize the interface. We identified eleven key mutations controlling oligomeric state, all distant from the interfaces and outside ligand-binding pockets. Finally, we show that the key mutations introduce conformational changes equivalent to the conformational shift between the free versus the nucleotide-bound conformations of the proteins. PMID:25525255

  18. Tec1 Mediates the Pheromone Response of the White Phenotype of Candida albicans: Insights into the Evolution of New Signal Transduction Pathways

    PubMed Central

    Daniels, Karla J.; Huang, Guanghua; Srikantha, Thyagarajan; Soll, David R.

    2010-01-01

    The way in which signal transduction pathways evolve remains a mystery, primarily because we have few examples of ones that have newly evolved. There are numerous examples of how signal transduction pathways in the same organism selectively share components, most notably between the signal transduction pathways in Saccharomyces cerevisiae for the mating process, the filamentation process, cell wall integrity, ascospore formation, and osmoregulation. These examples, however, have not provided insights into how such pathways evolve. Here, through construction of an overexpression library for 107 transcription factors, and through mutational analyses, we have identified the transcription factor Tec1 as the last component of the newly evolved signal transduction pathway that regulates the pheromone response of the white cell phenotype in Candida albicans. The elucidation of this last component, Tec1, establishes a comprehensive description of the pheromone response pathway in the white cell phenotype of C. albicans, providing a unique perspective on how new signal transduction pathways may evolve. The three portions of this new regulatory pathway appear to have been derived from three different ancestral programs still functional in C. albicans. The upstream portion, including signals, receptors, the trimeric G protein complex, and the MAP kinase cascade, was derived intact from the upstream portion of the opaque pheromone response pathway of the mating process; Tec1, the transcription factor targeted by the MAP kinase pathway, was derived from a filamentation pathway; and the white-specific downstream target genes were derived from an ancestral biofilm process. The evolution of this pheromone response pathway provides a possible paradigm for how such signal transduction pathways evolve. PMID:20454615

  19. Development of Betta splendens embryos and larvae reveals variation in pigmentation patterns.

    PubMed

    Carey, Alexis N; Lyvers, Benjamin H; Ferrill, Rachel N; Johnson, Rachel L; Dumaine, Anne Marie; Sly, Belinda J

    2016-06-01

    Vertebrate pigmentation provides an ideal system for studying the intersections between evolution, genetics, and developmental biology. Teleost fish, with their accessible developmental stages and intense and diverse colours produced by chromatophores, are an ideal group for study. We set out to test whether Betta splendens is a good model organism for studying the evolution and development of diverse pigmentation. Our results demonstrate that B. splendens can be bred to produce large numbers of offspring with easily visualized pigment cells. Depending on the colour of the parents, there was variation in larval pigmentation patterns both within and between breeding events. In juveniles the developing adult pigmentation patterns showed even greater variation. These results suggest that B. splendens has great potential as a model organism for pigmentation studies. PMID:27172056

  20. The Utility of Geometric Morphometrics to Elucidate Pathways of Cichlid Fish Evolution

    PubMed Central

    Kerschbaumer, Michaela; Sturmbauer, Christian

    2011-01-01

    Fishes of the family Cichlidae are famous for their spectacular species flocks and therefore constitute a model system for the study of the pathways of adaptive radiation. Their radiation is connected to trophic specialization, manifested in dentition, head morphology, and body shape. Geometric morphometric methods have been established as efficient tools to quantify such differences in overall body shape or in particular morphological structures and meanwhile found wide application in evolutionary biology. As a common feature, these approaches define and analyze coordinates of anatomical landmarks, rather than traditional counts or measurements. Geometric morphometric methods have several merits compared to traditional morphometrics, particularly for the distinction and analysis of closely related entities. Cichlid evolutionary research benefits from the efficiency of data acquisition, the manifold opportunities of analyses, and the potential to visualize shape changes of those landmark-based methods. This paper briefly introduces to the concepts and methods of geometric morphometrics and presents a selection of publications where those techniques have been successfully applied to various aspects of cichlid fish diversification. PMID:21716723

  1. Common and overlapping oncogenic pathways contribute to the evolution of acute myeloid leukemias

    PubMed Central

    Kvinlaug, Brynn T; Chan, Wai-In; Bullinger, Lars; Ramaswami, Mukundhan; Sears, Christopher; Foster, Donna; Lazic, Stanley E; Okabe, Rachel; Benner, Axel; Lee, Benjamin H; De Silva, Inusha; Valk, Peter JM; Delwel, Ruud; Armstrong, Scott A; Döhner, Hartmut; Gilliland, D Gary; Huntly, Brian JP

    2011-01-01

    Fusion oncogenes in acute myeloid leukemia (AML) promote self-renewal from committed progenitors, thereby linking transformation and self-renewal pathways. Like most cancers, AML is a genetically and biologically heterogeneous disease, but it is unclear whether transformation results from common or overlapping genetic programs acting downstream of multiple mutations, or by the engagement of unique genetic programs acting cooperatively downstream of individual mutations. This distinction is important, because the involvement of common programs would imply the existence of common molecular targets to treat AML, no matter which fusion oncogenes are involved. Here we demonstrate that the ability to promote self-renewal is a generalized property of leukemia-associated oncogenes. Disparate oncogenes initiated overlapping transformation and self-renewal gene expression programs, the common elements of which were defined in established leukemia stem cells from an animal model as well as from a large cohort of patients with differing AML subtypes, where they strongly predicted pathobiological character. Notably, individual genes commonly activated in these programs could partially phenocopy the self-renewal function of leukemia-associated oncogenes in committed murine progenitors. Further, they could generate AML following expression in murine bone marrow. In summary, our findings reveal the operation of common programs of self-renewal and transformation downstream of leukemia-associated oncogenes, suggesting mechanistically common therapeutic approaches to AML are likely to be possible, regardless of the identity of the driver oncogene involved. PMID:21505102

  2. The evolution of phototransduction from an ancestral cyclic nucleotide gated pathway

    PubMed Central

    Plachetzki, David C.; Fong, Caitlin R.; Oakley, Todd H.

    2010-01-01

    The evolutionary histories of complex traits are complicated because such traits are comprised of multiple integrated and interacting components, which may have different individual histories. Phylogenetic studies of complex trait evolution often do not take this into account, instead focusing only on the history of whole, integrated traits; for example, mapping eyes as simply present or absent through history. Using the biochemistry of animal vision as a model, we demonstrate how investigating the individual components of complex systems can aid in elucidating both the origins and diversification of such systems. Opsin-based phototransduction underlies all visual phenotypes in animals, using complex protein cascades that translate light information into changes in cyclic nucleotide gated (CNG) or canonical transient receptor potential (TRPC) ion-channel activity. Here we show that CNG ion channels play a role in cnidarian phototransduction. Transcripts of a CNG ion channel co-localize with opsin in specific cell types of the eyeless cnidarian Hydra magnipapillata. Further, the CNG inhibitor cis-diltiazem ablates a stereotypical photoresponse in the hydra. Our findings in the Cnidaria, the only non-bilaterian lineage to possess functional opsins, allow us to trace the history of CNG-based photosensitivity to the very origin of animal phototransduction. Our general analytical approach, based on explicit phylogenetic analysis of individual components, contrasts the deep evolutionary history of CNG-based phototransduction, today used in vertebrate vision, with the more recent assembly of TRPC-based systems that are common to protostome (e.g. fly and mollusc) vision. PMID:20219739

  3. New class of blue animal pigments based on Frizzled and Kringle protein domains.

    PubMed

    Bulina, Maria E; Lukyanov, Konstantin A; Yampolsky, Ilia V; Chudakov, Dmitry M; Staroverov, Dmitry B; Shcheglov, Alexander S; Gurskaya, Nadya G; Lukyanov, Sergey

    2004-10-15

    The nature of coloration in many marine animals remains poorly investigated. Here we studied the blue pigment of a scyfoid jellyfish Rhizostoma pulmo and determined it to be a soluble extracellular 30-kDa chromoprotein with a complex absorption spectrum peaking at 420, 588, and 624 nm. Furthermore, we cloned the corresponding cDNA and confirmed its identity by immunoblotting and mass spectrometry experiments. The chromoprotein, named rpulFKz1, consists of two domains, a Frizzled cysteine-rich domain and a Kringle domain, inserted into one another. Generally, Frizzleds are members of a basic Wnt signal transduction pathway investigated intensely with regard to development and cancerogenesis. Kringles are autonomous structural domains found throughout the blood clotting and fibrinolytic proteins. Neither Frizzled and Kringle domains association with any type of coloration nor Kringle intrusion into Frizzled sequence was ever observed. Thus, rpulFKz1 represents a new class of animal pigments, whose chromogenic group remains undetermined. The striking homology between a chromoprotein and members of the signal transduction pathway provides a novel node in the evolution track of growth factor-mediated morphogenesis compounds. PMID:15297465

  4. Development of two simplified geochemical models for permeability evolution due to calcite dissolution in preferential pathways in caprock

    NASA Astrophysics Data System (ADS)

    Guo, B.; Fitts, J. P.; Peters, C. A.

    2014-12-01

    Leakage through faults and fractures in caprocks is a major concern for geologic carbon sequestration in deep saline aquifers. Current leakage models assume constant permeabilities of pathways, but CO2-acidified brine may cause minerals to dissolve, leading to permeability alteration. Calcite could cause significant permeability alteration, because it is abundant, thermodynamically unstable at low pH, and kinetically fast-reacting. We developed two simplified geochemical models to describe Permeability Evolution due to Calcite dissolution (PEC) in 1D flow paths through caprocks. The first is a numerical reactive transport model that couples solute advection and diffusion with carbonate reactions. The PEC model was used to examine geochemical and mineralogical conditions that lead to extensive permeability alterations. It was found that formations with larger amounts of calcite ultimately have larger final permeabilities, but the change is slower because extensive calcite dissolution buffers the reaction and retards the advance of the dissolution front. The second model, PEC Reaction Progress (PECRP), is a semi-analytical model developed to replicate the predictions of the PEC model but with much shorter run times. The PECRP model is based on assumptions of spatial homogeneity, sharp reacting front, and no reactions above the front. We simulated a synthetic system, the Eau Claire formation, and a sandstone in the Paris Basin to assess PECRP model performance. We found 1) for most cases the PECRP model causes a slightly shorter breakthrough time than the PEC model without affecting the final permeability; 2) when initial porosity is low, we observe temporary permeability decrease in the PEC model, while permeability never decreases in the PECRP model; 3) the PECRP model tends to fail to reproduce results from the PEC model with low Péclet numbers; 4) the PECRP model is not suitable for for pathways with certain types and degrees of mineral spatial heterogeneity. In

  5. Raman Spectroscopy of Microbial Pigments

    PubMed Central

    Edwards, Howell G. M.; Oren, Aharon

    2014-01-01

    Raman spectroscopy is a rapid nondestructive technique providing spectroscopic and structural information on both organic and inorganic molecular compounds. Extensive applications for the method in the characterization of pigments have been found. Due to the high sensitivity of Raman spectroscopy for the detection of chlorophylls, carotenoids, scytonemin, and a range of other pigments found in the microbial world, it is an excellent technique to monitor the presence of such pigments, both in pure cultures and in environmental samples. Miniaturized portable handheld instruments are available; these instruments can be used to detect pigments in microbiological samples of different types and origins under field conditions. PMID:24682303

  6. Mechanisms of protein delivery to melanosomes in pigment cells

    PubMed Central

    Sitaram, Anand; Marks, Michael S.

    2012-01-01

    SUMMARY Vertebrate pigment cells in the eye and skin are useful models for cell types that use specialized endosomal trafficking pathways to partition cargo proteins to unique lysosome-related organelles such as melanosomes. This review describes current models of protein trafficking required for melanosome biogenesis in mammalian melanocytes. PMID:22505665

  7. Evolution

    NASA Astrophysics Data System (ADS)

    Peter, Ulmschneider

    When we are looking for intelligent life outside the Earth, there is a fundamental question: Assuming that life has formed on an extraterrestrial planet, will it also develop toward intelligence? As this is hotly debated, we will now describe the development of life on Earth in more detail in order to show that there are good reasons why evolution should culminate in intelligent beings.

  8. Evolution of fracture and fault-controlled fluid pathways in carbonates of the Albanides fold-thrust belt

    USGS Publications Warehouse

    Graham, Wall B.R.; Girbacea, R.; Mesonjesi, A.; Aydin, A.

    2006-01-01

    The process of fracture and fault formation in carbonates of the Albanides fold-thrust belt has been systematically documented using hierarchical development of structural elements from hand sample, outcrop, and geologic-map scales. The function of fractures and faults in fluid migration was elucidated using calcite cement and bitumen in these structures as a paleoflow indicator. Two prefolding pressure-solution and vein assemblages were identified: an overburden assemblage and a remote tectonic stress assemblage. Sheared layer-parallel pressure-solution surfaces of the overburden assemblage define mechanical layers. Shearing of mechanical layers associated with folding resulted in the formation of a series of folding assemblage fractures at different orientations, depending on the slip direction of individual mechanical layers. Prefolding- and folding-related fracture assemblages together formed fragmentation zones in mechanical layers and are the sites of incipient fault localization. Further deformation along these sites was accommodated by rotation and translation of fragmented rock, which formed breccia and facilitated fault offset across multiple mechanical layers. Strike-slip faults formed by this process are organized in two sets in an apparent conjugate pattern. Calcite cement and bitumen that accumulated along fractures and faults are evidence of localized fluid flow along fault zones. By systematic identification of fractures and faults, their evolution, and their fluid and bitumen contents, along with subsurface core and well-log data, we identify northeast-southwest-trending strike-slip faults and the associated structures as dominant fluid pathways in the Albanides fold-thrust belt. Copyright ?? 2006. The American Association of Petroleum Geologists. All rights reserved.

  9. Nonphotosynthetic pigments as potential biosignatures.

    PubMed

    Schwieterman, Edward W; Cockell, Charles S; Meadows, Victoria S

    2015-05-01

    Previous work on possible surface reflectance biosignatures for Earth-like planets has typically focused on analogues to spectral features produced by photosynthetic organisms on Earth, such as the vegetation red edge. Although oxygenic photosynthesis, facilitated by pigments evolved to capture photons, is the dominant metabolism on our planet, pigmentation has evolved for multiple purposes to adapt organisms to their environment. We present an interdisciplinary study of the diversity and detectability of nonphotosynthetic pigments as biosignatures, which includes a description of environments that host nonphotosynthetic biologically pigmented surfaces, and a lab-based experimental analysis of the spectral and broadband color diversity of pigmented organisms on Earth. We test the utility of broadband color to distinguish between Earth-like planets with significant coverage of nonphotosynthetic pigments and those with photosynthetic or nonbiological surfaces, using both 1-D and 3-D spectral models. We demonstrate that, given sufficient surface coverage, nonphotosynthetic pigments could significantly impact the disk-averaged spectrum of a planet. However, we find that due to the possible diversity of organisms and environments, and the confounding effects of the atmosphere and clouds, determination of substantial coverage by biologically produced pigments would be difficult with broadband colors alone and would likely require spectrally resolved data. PMID:25941875

  10. Comparative chromatography of chloroplast pigment

    NASA Technical Reports Server (NTRS)

    Grandolfo, M.; Sherma, J.; Strain, H. H.

    1969-01-01

    Methods for isolation of low concentration pigments of the cocklebur species are described. The methods entail two step chromatography so that the different sorption properties of the various pigments in varying column parameters can be utilized. Columnar and thin layer methods are compared. Many conditions influence separability of the chloroplasts.

  11. Nonphotosynthetic Pigments as Potential Biosignatures

    PubMed Central

    Cockell, Charles S.; Meadows, Victoria S.

    2015-01-01

    Abstract Previous work on possible surface reflectance biosignatures for Earth-like planets has typically focused on analogues to spectral features produced by photosynthetic organisms on Earth, such as the vegetation red edge. Although oxygenic photosynthesis, facilitated by pigments evolved to capture photons, is the dominant metabolism on our planet, pigmentation has evolved for multiple purposes to adapt organisms to their environment. We present an interdisciplinary study of the diversity and detectability of nonphotosynthetic pigments as biosignatures, which includes a description of environments that host nonphotosynthetic biologically pigmented surfaces, and a lab-based experimental analysis of the spectral and broadband color diversity of pigmented organisms on Earth. We test the utility of broadband color to distinguish between Earth-like planets with significant coverage of nonphotosynthetic pigments and those with photosynthetic or nonbiological surfaces, using both 1-D and 3-D spectral models. We demonstrate that, given sufficient surface coverage, nonphotosynthetic pigments could significantly impact the disk-averaged spectrum of a planet. However, we find that due to the possible diversity of organisms and environments, and the confounding effects of the atmosphere and clouds, determination of substantial coverage by biologically produced pigments would be difficult with broadband colors alone and would likely require spectrally resolved data. Key Words: Biosignatures—Exoplanets—Halophiles—Pigmentation—Reflectance spectroscopy—Spectral models. Astrobiology 15, 341–361. PMID:25941875

  12. Bees' subtle colour preferences: how bees respond to small changes in pigment concentration

    NASA Astrophysics Data System (ADS)

    Papiorek, Sarah; Rohde, Katja; Lunau, Klaus

    2013-07-01

    Variability in flower colour of animal-pollinated plants is common and caused, inter alia, by inter-individual differences in pigment concentrations. If and how pollinators, especially bees, respond to these small differences in pigment concentration is not known, but it is likely that flower colour variability impacts the choice behaviour of all flower visitors that exhibit innate and learned colour preferences. In behavioural experiments, we simulated varying pigment concentrations and studied its impact on the colour choices of bumblebees and honeybees. Individual bees were trained to artificial flowers having a specific concentration of a pigment, i.e. Acridine Orange or Aniline Blue, and then given the simultaneous choice between three test colours including the training colour, one colour of lower and one colour of higher pigment concentration. For each pigment, two set-ups were provided, covering the range of low to middle and the range of middle to high pigment concentrations. Despite the small bee-subjective perceptual contrasts between the tested stimuli and regardless of training towards medium concentrations, bees preferred neither the training stimuli nor the stimuli offering the highest pigment concentration but more often chose those stimuli offering the highest spectral purity and the highest chromatic contrast against the background. Overall, this study suggests that bees choose an intermediate pigment concentration due to its optimal conspicuousness. It is concluded that the spontaneous preferences of bees for flower colours of high spectral purity might exert selective pressure on the evolution of floral colours and of flower pigmentation.

  13. Bees' subtle colour preferences: how bees respond to small changes in pigment concentration.

    PubMed

    Papiorek, Sarah; Rohde, Katja; Lunau, Klaus

    2013-07-01

    Variability in flower colour of animal-pollinated plants is common and caused, inter alia, by inter-individual differences in pigment concentrations. If and how pollinators, especially bees, respond to these small differences in pigment concentration is not known, but it is likely that flower colour variability impacts the choice behaviour of all flower visitors that exhibit innate and learned colour preferences. In behavioural experiments, we simulated varying pigment concentrations and studied its impact on the colour choices of bumblebees and honeybees. Individual bees were trained to artificial flowers having a specific concentration of a pigment, i.e. Acridine Orange or Aniline Blue, and then given the simultaneous choice between three test colours including the training colour, one colour of lower and one colour of higher pigment concentration. For each pigment, two set-ups were provided, covering the range of low to middle and the range of middle to high pigment concentrations. Despite the small bee-subjective perceptual contrasts between the tested stimuli and regardless of training towards medium concentrations, bees preferred neither the training stimuli nor the stimuli offering the highest pigment concentration but more often chose those stimuli offering the highest spectral purity and the highest chromatic contrast against the background. Overall, this study suggests that bees choose an intermediate pigment concentration due to its optimal conspicuousness. It is concluded that the spontaneous preferences of bees for flower colours of high spectral purity might exert selective pressure on the evolution of floral colours and of flower pigmentation. PMID:23722560

  14. New directions in phthalocyanine pigments

    NASA Technical Reports Server (NTRS)

    Trinh, Diep VO

    1994-01-01

    Phthalocyanines have been used as a pigment in coatings and related applications for many years. These pigments are some of the most stable organic pigments known. The phthalo blue and green pigments have been known to be ultraviolet (UV) stable and thermally stable to over 400 C. These phthalocyanines are both a semiconductor and photoconductor, exhibiting catalytic activity and photostabilization capability of polymers. Many metal free and metallic phthalocyanine derivatives have been prepared. Development of the new classes of phthalocyanine pigment could be used as coating on NASA spacecraft material such as glass to decrease the optical degradation from UV light, the outside of the space station modules for UV protection, and coating on solar cells to increase lifetime and efficiency.

  15. [INHERITANCE OF EPIDERMIS PIGMENTATION IN SUNFLOWER ACHENES].

    PubMed

    Gorohivets, N A; Vedmedeva, E V

    2016-01-01

    Inheritance of epidermis pigmentation in the pericarp of sunflower seeds was studied. Inheritance of pigmentation was confirmed by three alleles Ew (epidermis devoid of pigmentation), Estr (epidermal pigmentation in strips), Edg (solid pigmentation). Dominance of the lack of epidermis pigmentation over striped epidermis and striped epidermis over solid pigmentation was established. It was shown that the striped epidermis pigmentation and the presence of testa layer are controlled by two genes, expression of which is independent from each other. Yellowish hypodermis was discovered in the sample I2K2218, which is inherited monogenically dominantly. PMID:27281924

  16. Natural pigments and sacred art

    NASA Astrophysics Data System (ADS)

    Kelekian, Lena, ,, Lady

    2010-05-01

    Since the dawn of mankind, cavemen has expressed himself through art. The earliest known cave paintings date to some 32,000 years ago and used 4 colours derived from the earth. These pigments were iron oxides and known as ochres, blacks and whites. All pigments known by the Egyptians, the Greeks, the Romans and Renaissance man were natural and it was not until the 18th century that synthetic pigments were made and widely used. Until that time all art, be it sacred or secular used only natural pigments, of which the preparation of many have been lost or rarely used because of their tedious preparation. As a geologist, a mineralogist and an artist specializing in iconography, I have been able to rediscover 89 natural pigments extracted from minerals. I use these pigments to paint my icons in the traditional Byzantine manner and also to restore old icons, bringing back their glamour and conserving them for years to come. The use of the natural pigments in its proper way also helps to preserve the traditional skills of the iconographer. In the ancient past, pigments were extremely precious. Many took an exceedingly long journey to reach the artists, and came from remote countries. Research into these pigments is the work of history, geography and anthropology. It is an interesting journey in itself to discover that the blue aquamarines came from Afghanistan, the reds from Spain, the greens Africa, and so on. In this contribution I will be describing the origins, preparation and use of some natural pigments, together with their history and provenance. Additionally, I will show how the natural pigments are used in the creation of an icon. Being a geologist iconographer, for me, is a sacrement that transforms that which is earthly, material and natural into a thing of beauty that is sacred. As bread and wine in the Eucharist, water during baptism and oil in Holy Union transmit sanctification to the beholder, natural pigments do the same when one considers an icon. The

  17. [Sepsis caused by pigmented and no pigmented Chromobacterium violaceum].

    PubMed

    Guevara, Armando; Salomón, Marlly; Oliveros, María; Guevara, Esmirna; Guevara, Milarys; Medina, Laida

    2007-10-01

    Chromobacterium violaceum sepsis is rare but associated with a high mortality rate. We report a fatal case of C. violaceum sepsis in a 6 years old Venezuelan indian boy. Clinical manifestations were fever and swelling in the right inguinal region. The initial diagnosis was an appendicular plastron. Appendicectomy was performed and during surgery a right psoas abscess was identified that resulted culture positive for pigmented C. violaceum. Blood cultures were positive for a pigmented and non pigmented C. violaceum strain. Imipenem and amikacin were administered despite of which the child died 9 days after hospital admission. PMID:17989847

  18. Die Pigmente der antiken Malerei

    NASA Astrophysics Data System (ADS)

    Riederer, J.

    1982-02-01

    Scientific analysis of painted antique objects provides us with information about the pigments used in earlier periods of history. Beginning in prehistoric times, coloured earths and minerals were used exclusively until the 3rd millenium B.C. when an extensive production of artificial pigments started. Following Egyptian Blue, a potassium copper chloride, cobalt blue, and a cobalt aluminium oxide was invented but used only over a short period, until it was reinvented 200 years ago. In the Greecian and Roman times the palette was considerably enlarged by the use of other coloured minerals and artificially prepared pigments.

  19. Accumulation of yellow Monascus pigments by extractive fermentation in nonionic surfactant micelle aqueous solution.

    PubMed

    Xiong, Xu; Zhang, Xuehong; Wu, Zhenqiang; Wang, Zhilong

    2015-02-01

    Monascus species can produce various secondary metabolites of polyketide structure. In the current study, it is found that an interesting phenomenon, i.e., submerged culture of Monascus species in an aqueous solution majorly accumulated intracellular orange Monascus pigments exhibiting one peak at 470 nm with absorbance of 32 OD while extractive fermentation in a nonionic surfactant micelle aqueous solution produced extracellular and intracellular yellow Monascus pigments exhibiting one peak at 410 nm with absorbance 30 OD and 12 OD, respectively. The spectrum profiles of both intracellular and extracellular Monascus pigments were affected by surfactant loading, extractive fermentation time, and surfactant adding time. Meanwhile, the instability of orange Monascus pigments in the extracellular nonionic surfactant micelle aqueous solution was also confirmed experimentally. The mechanism behind this phenomenon is attributed to the export of intracellular yellow Monascus pigments into its broth by extractive fermentation. The transferring of intracellular yellow Monascus pigments into its broth blocks yellow Monascus pigments from further enzymatic conversion or eliminates the feedback inhibition of yellow Monascus pigments based on the biosynthetic pathway of Monascus pigments. PMID:25417745

  20. Evolutionary Recycling of Light Signaling Components in Fleshy Fruits: New Insights on the Role of Pigments to Monitor Ripening

    PubMed Central

    Llorente, Briardo; D’Andrea, Lucio; Rodríguez-Concepción, Manuel

    2016-01-01

    Besides an essential source of energy, light provides environmental information to plants. Photosensory pathways are thought to have occurred early in plant evolution, probably at the time of the Archaeplastida ancestor, or perhaps even earlier. Manipulation of individual components of light perception and signaling networks in tomato (Solanum lycopersicum) affects the metabolism of ripening fruit at several levels. Most strikingly, recent experiments have shown that some of the molecular mechanisms originally devoted to sense and respond to environmental light cues have been re-adapted during evolution to provide plants with useful information on fruit ripening progression. In particular, the presence of chlorophylls in green fruit can strongly influence the spectral composition of the light filtered through the fruit pericarp. The concomitant changes in light quality can be perceived and transduced by phytochromes (PHYs) and PHY-interacting factors, respectively, to regulate gene expression and in turn modulate the production of carotenoids, a family of metabolites that are relevant for the final pigmentation of ripe fruits. We raise the hypothesis that the evolutionary recycling of light-signaling components to finely adjust pigmentation to the actual ripening stage of the fruit may have represented a selective advantage for primeval fleshy-fruited plants even before the extinction of dinosaurs. PMID:27014289

  1. Evolutionary Recycling of Light Signaling Components in Fleshy Fruits: New Insights on the Role of Pigments to Monitor Ripening.

    PubMed

    Llorente, Briardo; D'Andrea, Lucio; Rodríguez-Concepción, Manuel

    2016-01-01

    Besides an essential source of energy, light provides environmental information to plants. Photosensory pathways are thought to have occurred early in plant evolution, probably at the time of the Archaeplastida ancestor, or perhaps even earlier. Manipulation of individual components of light perception and signaling networks in tomato (Solanum lycopersicum) affects the metabolism of ripening fruit at several levels. Most strikingly, recent experiments have shown that some of the molecular mechanisms originally devoted to sense and respond to environmental light cues have been re-adapted during evolution to provide plants with useful information on fruit ripening progression. In particular, the presence of chlorophylls in green fruit can strongly influence the spectral composition of the light filtered through the fruit pericarp. The concomitant changes in light quality can be perceived and transduced by phytochromes (PHYs) and PHY-interacting factors, respectively, to regulate gene expression and in turn modulate the production of carotenoids, a family of metabolites that are relevant for the final pigmentation of ripe fruits. We raise the hypothesis that the evolutionary recycling of light-signaling components to finely adjust pigmentation to the actual ripening stage of the fruit may have represented a selective advantage for primeval fleshy-fruited plants even before the extinction of dinosaurs. PMID:27014289

  2. Yolk pigments of the Mexican leaf frog.

    PubMed

    Marinetti, G V; Bagnara, J T

    1983-02-25

    Eggs of the Mexican leaf frog contain blue and yellow pigments identified as biliverdin and lutein, respectively. Both pigments are bound to proteins that occur in crystalline form in the yolk platelet. The major blue pigment is biliverdin IX alpha. The eggs vary in color from brilliant blue to pale yellow-green depending on the amount of each pigment. These pigments may provide protective coloration to the eggs. PMID:6681678

  3. Phytogenic pigments in animal nutrition: potentials and risks.

    PubMed

    Faehnrich, Bettina; Lukas, Brigitte; Humer, Elke; Zebeli, Qendrim

    2016-03-01

    Phytogenic pigments are secondary plant compounds responsible for coloring effects in plant tissues. In particular, phenolic flavonoids and terpenoid carotenoids, but also rare compounds like curcumin and betalain, form this group of biochemical agents used in animal nutrition. From the perspective of ecological mutuality between plants and animals, these compounds are of crucial importance because they serve as visual attraction for herbivores but also signal nutritional and/or health-promoting values. This review focuses on the properties of phytogenic pigments which are likely to impact feed intake and preferences of livestock. Also natural prophylactic and/or therapeutic properties and, in particular, the potential of pigments to enhance quality and health value of animal products for human consumption are important issues. Nevertheless, reasonable limits of use due to possible adverse indications have been suggested recently. Pathways of digestion, metabolism and excretion in animals play a crucial role not only in the evaluation of effectiveness but also in the prediction of potential risks for human consumption. The popularity of natural feed additives is growing; therefore, more research work is needed to better understand metabolic pathways in the animal's body and to better estimate the potentials and risks of pigmenting plant compounds used in animal nutrition. © 2015 Society of Chemical Industry. PMID:26415572

  4. Expression of Pigment Cell-Specific Genes in the Ontogenesis of the Sea Urchin Strongylocentrotus intermedius.

    PubMed

    Ageenko, Natalya V; Kiselev, Konstantin V; Odintsova, Nelly A

    2011-01-01

    One of the polyketide compounds, the naphthoquinone pigment echinochrome, is synthesized in sea urchin pigment cells. We analyzed polyketide synthase (pks) and sulfotransferase (sult) gene expression in embryos and larvae of the sea urchin Strongylocentrotus intermedius from various stages of development and in specific tissues of the adults. We observed the highest level of expression of the pks and sult genes at the gastrula stage. In unfertilized eggs, only trace amounts of the pks and sult transcripts were detected, whereas no transcripts of these genes were observed in spermatozoids. The addition of shikimic acid, a precursor of naphthoquinone pigments, to zygotes and embryos increased the expression of the pks and sult genes. Our findings, including the development of specific conditions to promote pigment cell differentiation of embryonic sea urchin cells in culture, represent a definitive study on the molecular signaling pathways that are involved in the biosynthesis of pigments during sea urchin development. PMID:21804858

  5. Topology of feather melanocyte progenitor niche allows complex pigment patterns to emerge.

    PubMed

    Lin, S J; Foley, J; Jiang, T X; Yeh, C Y; Wu, P; Foley, A; Yen, C M; Huang, Y C; Cheng, H C; Chen, C F; Reeder, B; Jee, S H; Widelitz, R B; Chuong, C M

    2013-06-21

    Color patterns of bird plumage affect animal behavior and speciation. Diverse patterns are present in different species and within the individual. Here, we study the cellular and molecular basis of feather pigment pattern formation. Melanocyte progenitors are distributed as a horizontal ring in the proximal follicle, sending melanocytes vertically up into the epithelial cylinder, which gradually emerges as feathers grow. Different pigment patterns form by modulating the presence, arrangement, or differentiation of melanocytes. A layer of peripheral pulp further regulates pigmentation via patterned agouti expression. Lifetime feather cyclic regeneration resets pigment patterns for physiological needs. Thus, the evolution of stem cell niche topology allows complex pigment patterning through combinatorial co-option of simple regulatory mechanisms. PMID:23618762

  6. Construction of artificial pigment-protein antennae

    SciTech Connect

    Sibbald, J.

    1997-01-10

    Photosynthesis is a complex process which results in the conversion of solar radiation into chemical energy. This chemical energy is then used as the free energy source for all living organisms. In its basic form, photosynthesis can be described as the light-activated synthesis of carbohydrates from the simple molecules of water and carbon dioxide: 6H{sub 2}O + 6 CO{sub 2} light C{sub 6}H{sub 12}O{sub 6} + 6 O{sub 2} This basic mechanism actually requires numerous reaction steps. The two primary steps being: the capture of light by pigment molecules in light-harvesting antenna complexes and the transfer of this captured energy to the so-called photochemical reaction center. While the preferred pathway for energy absorbed by the chromophores in the antenna complexes is transfer to the reaction center, energy can be lost to competing processes such as internal conversion or radiative decay. Therefore, the energy transfer must be rapid, typically on the order of picoseconds, to successfully compete. The focus of the present work is on the construction of light-harvesting antenna complexes incorporating modular pigment-proteins.

  7. A genomic and transcriptomic approach to investigate the blue pigment phenotype in Pseudomonas fluorescens.

    PubMed

    Andreani, Nadia Andrea; Carraro, Lisa; Martino, Maria Elena; Fondi, Marco; Fasolato, Luca; Miotto, Giovanni; Magro, Massimiliano; Vianello, Fabio; Cardazzo, Barbara

    2015-11-20

    Pseudomonas fluorescens is a well-known food spoiler, able to cause serious economic losses in the food industry due to its ability to produce many extracellular, and often thermostable, compounds. The most outstanding spoilage events involving P. fluorescens were blue discoloration of several food stuffs, mainly dairy products. The bacteria involved in such high-profile cases have been identified as belonging to a clearly distinct phylogenetic cluster of the P. fluorescens group. Although the blue pigment has recently been investigated in several studies, the biosynthetic pathway leading to the pigment formation, as well as its chemical nature, remain challenging and unsolved points. In the present paper, genomic and transcriptomic data of 4 P. fluorescens strains (2 blue-pigmenting strains and 2 non-pigmenting strains) were analyzed to evaluate the presence and the expression of blue strain-specific genes. In particular, the pangenome analysis showed the presence in the blue-pigmenting strains of two copies of genes involved in the tryptophan biosynthesis pathway (including trpABCDF). The global expression profiling of blue-pigmenting strains versus non-pigmenting strains showed a general up-regulation of genes involved in iron uptake and a down-regulation of genes involved in primary metabolism. Chromogenic reaction of the blue-pigmenting bacterial cells with Kovac's reagent indicated an indole-derivative as the precursor of the blue pigment. Finally, solubility tests and MALDI-TOF mass spectrometry analysis of the isolated pigment suggested that its molecular structure is very probably a hydrophobic indigo analog. PMID:26051958

  8. Multiple pigmented basal cell carcinomas.

    PubMed

    Shoji, T; Lee, J; Hong, S H; Oh, C H; Kim, W K; Bhawan, J

    1998-04-01

    Basal cell carcinoma is the most common of all skin cancers and the most prevalent one among Caucasians. Rarely, these tumors are seen in other races. We report a 77-year-old Korean woman who presented with multiple darkly pigmented enlarging nodules on her scalp, face, trunk, and extremities. The patient had first noted a 6-mm pigmented lesion on her left eyebrow 10 years previously. Since then, other lesions had appeared in many locations on her body. She had been otherwise healthy and without a history of exposure to arsenic or radiation. There was no family history of skin cancer, xeroderma pigmentosum, or basal cell nevus syndrome. On physical examination, multiple darkly pigmented dome-shaped papules and nodules were present on her scalp, face, right forearm, lower abdomen, and inguinal areas. They ranged in size from 0.5 mm to 2 cm. The larger ones showed central ulceration. Multiple biopsy specimens from different sites showed pigmented basal cell carcinomas. Clinically, there was no evidence of nevus sebaceus, xeroderma pigmentosum, basal cell nevus syndrome, or immunodeficiency. Clinical workup including chest radiography, abdominal ultrasound, bone scan, and brain computerized axial tomography scan did not demonstrate primary or secondary tumors. The results of serologic and hematologic tests were also within normal limits. This is an unusual case report of multiple pigmented basal cell carcinomas in an Asian woman without any predisposing risk factors. PMID:9557792

  9. Exogenous pigment in Peyer's patches

    SciTech Connect

    Shepherd, N.A.; Crocker, P.R.; Smith, A.P.; Levison, D.A.

    1987-01-01

    Dark brown granular pigment was found consistently in macrophages in the deep aspect of adult Peyer's patches. Tissue sections from intestinal resections of 35 patients with a variety of pathologic diagnoses and of seven postmortem cases with no evidence of gastrointestinal disease were examined for the presence of this pigment. It was found in all patients over the age of 6 years (34 cases) but was not found in any children below that age (eight cases). Scanning electron microscopy with secondary and backscattered electron imaging and x-ray energy spectroscopy were performed on routine histologic sections. The pigmented macrophages contained aluminum and silicon, diffusely present throughout the cytoplasm, and numerous discrete foci of titanium. Pigment containing these same elements has also been found around dilated submucosal lymphatics, in mesenteric lymph nodes, and in some transmural inflammatory aggregates of Crohn's disease. The pigment probably is derived from the diet and actively taken up by Peyer's patches, which are able to incorporate inert particulate matter.

  10. Pigment Analysis of Chloroplast Pigment-Protein Complexes in Wheat

    PubMed Central

    Eskins, Kenneth; Duysen, Murray E.; Olson, Linda

    1983-01-01

    Pigment-protein complexes separated from wheat (Triticum aestivum L. selection ND96-25 by two gel electrophoresis techniques were analyzed by high-performance liquid chromatography for chlorophylls and carotenoids. The two techniques are compared, and pigment analyses are given for the major reaction centers and light-harvesting complexes. Reaction centers contain mostly chlorophyll a, carotene, and lutein, whereas light-harvesting complexes contain chlorophyll a, chlorophyll b, lutein, and neoxanthin. The amounts of violaxanthin are variable. Images Fig. 1 PMID:16662906

  11. Skin Pigmentation and Pigmentary Disorders: Focus on Epidermal/Dermal Cross-Talk

    PubMed Central

    Bastonini, Emanuela; Kovacs, Daniela

    2016-01-01

    Variation in human skin and hair color is the most notable aspect of human variability and several studies in evolution, genetics and developmental biology contributed to explain the mechanisms underlying human skin pigmentation, which is responsible for differences in skin color across the world's populations. Despite skin pigmentation is primarily related to melanocytes functionality, the surrounding keratinocytes and extracellular matrix proteins and fibroblasts in the underlying dermal compartment actively contribute to cutaneous homeostasis. Many autocrine/paracrine secreted factors and cell adhesion mechanisms involving both epidermal and dermal constituents determine constitutive skin pigmentation and, whenever deregulated, the occurrence of pigmentary disorders. In particular, an increased expression of such mediators and their specific receptors frequently lead to hyperpigmentary conditions, such as in melasma and in solar lentigo, whereas a defect in their expression/release is related to hypopigmented disorders, as seen in vitiligo. All these interactions underline the relevant role of pigmentation on human evolution and biology. PMID:27274625

  12. Skin Pigmentation and Pigmentary Disorders: Focus on Epidermal/Dermal Cross-Talk.

    PubMed

    Bastonini, Emanuela; Kovacs, Daniela; Picardo, Mauro

    2016-06-01

    Variation in human skin and hair color is the most notable aspect of human variability and several studies in evolution, genetics and developmental biology contributed to explain the mechanisms underlying human skin pigmentation, which is responsible for differences in skin color across the world's populations. Despite skin pigmentation is primarily related to melanocytes functionality, the surrounding keratinocytes and extracellular matrix proteins and fibroblasts in the underlying dermal compartment actively contribute to cutaneous homeostasis. Many autocrine/paracrine secreted factors and cell adhesion mechanisms involving both epidermal and dermal constituents determine constitutive skin pigmentation and, whenever deregulated, the occurrence of pigmentary disorders. In particular, an increased expression of such mediators and their specific receptors frequently lead to hyperpigmentary conditions, such as in melasma and in solar lentigo, whereas a defect in their expression/release is related to hypopigmented disorders, as seen in vitiligo. All these interactions underline the relevant role of pigmentation on human evolution and biology. PMID:27274625

  13. Photosynthesis-dependent anthocyanin pigmentation in arabidopsis

    PubMed Central

    Das, Prasanta Kumar; Geul, Bang; Choi, Sang-Bong; Yoo, Sang-Dong

    2011-01-01

    Light is the ultimate energy source for photo-autotrophs on earth. For green plants, however, it can also be toxic under certain stressful environmental conditions and at critical developmental stages. Anthocyanins, a class of flavonoids, act as an effective screening mechanism that allows plant survival and proliferation under occasional periods of harmful irradiation through modulation of light absorption. Apart from light-sensing through photoreceptors such as phytochrome and cryptochrome, plants use the photosynthetic electron transfer (PET) chain to integrate light information. The redox status of the plastoquinone (PQ) pool of the PET chain regulates anthocyanin biosynthesis genes, together with the plant hormone ethylene and plant hormone-like sugars. A complex signaling apparatus in acyanic cells appears to transduce information to cyanic cells to regulate anthocyanin production through an intercellular signaling pathway that remains largely uncharacterized. This review will highlight recent advances in this field and their implications for the regulation of anthocyanin pigmentation. PMID:21248473

  14. Evaluating the Beneficial and Detrimental Effects of Bile Pigments in Early and Later Life

    PubMed Central

    Dennery, Phyllis A.

    2012-01-01

    The heme degradation pathway has been conserved throughout phylogeny and allows for the removal of a pro-oxidant and the generation of unique molecules including bile pigments with important cellular functions. The impact of bile pigments on health and disease are reviewed, as is the special circumstance of neonatal hyperbilirubinemia. In addition, the importance of promoter polymorphisms in the UDP-glucuronosyl transferase gene (UGTA1), which is key to the elimination of excess bilirubin and to the prevention of its toxicity, are discussed. Overall, the duality of bile pigments as either cytoprotective or toxic molecules is highlighted. PMID:22737125

  15. Pigmented Porokeratosis. A Further Variant?

    PubMed

    Tan, Tracy S P; Tallon, Ben

    2016-03-01

    Porokeratosis is a clonal disorder of keratinization characterized by the presence of the cornoid lamella. A number of variants of porokeratosis have been described, based on the clinical features and histologic features of the lesions. The authors present a case of porokeratosis with prominent melanocytic hyperplasia, which was biopsied to clinically exclude melanoma. The authors retrospectively studied cases of porokeratosis to look for the presence of melanocytic hyperplasia. Melanocytic hyperplasia was identified in 8 of 31 cases (25.8%). All of the cases except the index case were clinically nonpigmented but arose in solar damaged skin. This case represents a distinct variant of porokeratosis, and the authors propose the designation pigmented porokeratosis. Melanocytic hyperplasia is a benign condition, and it is important that this is not histologically confused with melanoma in situ, particularly in a context of clinically pigmented lesion. Increased recognition of pigmented porokeratosis is essential to avoid an erroneous diagnosis of melanoma in situ. PMID:26894774

  16. Microprobe analysis of chlorpromazine pigmentation

    SciTech Connect

    Benning, T.L.; McCormack, K.M.; Ingram, P.; Kaplan, D.L.; Shelburne, J.D.

    1988-10-01

    We describe the histochemical, ultrastructural, and microanalytical features of a skin biopsy specimen obtained from a patient with chlorpromazine pigmentation. Golden-brown pigment granules were present in the dermis, predominantly in a perivascular arrangement. The granules stained positively with the Fontana-Masson stain for silver-reducing substances and negatively with Perl's stain for iron. Electron microscopy revealed dense inclusion bodies in dermal histiocytes, pericytes, endothelial cells, and Schwann cells, as well as lying free in the extracellular matrix. These ''chlorpromazine bodies'' were quite dense even in unosmicated, unstained ultrathin sections, indicating that the pigmentation is related, at least in part, to the inclusions. Microprobe analysis of the chlorpromazine bodies revealed a striking peak for sulfur, which strongly suggests the presence of the drug or its metabolite within these inclusions.

  17. Glucose metabolism in rat retinal pigment epithelium.

    PubMed

    Coffe, Víctor; Carbajal, Raymundo C; Salceda, Rocío

    2006-01-01

    The retinal pigment epithelium (RPE) is the major transport pathway for exchange of metabolites and ions between choroidal blood supply and the neural retina. To gain insight into the mechanisms controlling glucose metabolism in RPE and its possible relationship to retinopathy, we studied the influence of different glucose concentrations on glycogen and lactate levels and CO(2) production in RPE from normal and streptozotocin-treated diabetic rats. Incubation of normal RPE in the absence of glucose caused a decrease in lactate production and glycogen content. In normal RPE, increasing glucose concentrations from 5.6 mM to 30 mM caused a four-fold increase in glucose accumulation and CO(2) yield, as well as reduction in lactate and glycogen production. In RPE from diabetic rats glucose accumulation did not increase in the presence of high glucose substrate, but it showed a four- and a seven-fold increase in CO(2) production through the mitochondrial and pentose phosphate pathways, respectively. We found high glycogen levels in RPE which can be used as an energy reserve for RPE itself and/or neural retina. Findings further show that the RPE possesses a high oxidative capacity. The large increase in glucose shunting to the pentose phosphate pathway in diabetic retina exposed to high glucose suggests a need for reducing capacity, consistent with increased oxidative stress. PMID:16475003

  18. Barrier Requirements as the Evolutionary “Driver” of Epidermal Pigmentation in Humans

    PubMed Central

    ELIAS, PETER M.; MENON, GOPINATHAN; WETZEL, BRUCE K.; WILLIAMS, JOHN (JACK) W.

    2011-01-01

    Current explanations for the development of epidermal pigmentation during human evolution are not tenable as stand-alone hypotheses. Accordingly, we assessed instead whether xeric- and UV-B-induced stress to the epidermal permeability barrier, critical to survival in a terrestrial environment, could have “driven” the development of epidermal pigmentation. (1) Megadroughts prevailed in central Africa when hominids expanded into open savannahs [≈1.5–0.8 million years ago], resulting in sustained exposure to both extreme aridity and erythemogenic UV-B, correlating with genetic evidence that pigment developed ≈1.2 million years ago. (2) Pigmented skin is endowed with enhanced permeability barrier function, stratum corneum integrity/cohesion, and a reduced susceptibility to infections. The enhanced function of pigmented skin can be attributed to the lower pH of the outer epidermis, likely due to the persistence of (more-acidic) melanosomes into the outer epidermis, as well as the conservation of genes associated with eumelanin synthesis and melanosome acidification (e.g., TYR, OCA2 [p protein], SLC24A5, SLC45A2, MATP) in pigmented populations. Five keratinocyte-derived signals (stem cell factor⇒KIT; FOXn1⇒FGF2; IL-1α, NGF, and p53) are potential candidates to have stimulated the sequential development of epidermal pigmentation in response to stress to the barrier. We summarize evidence here that epidermal interfollicular pigmentation in early hominids likely evolved in response to stress to the permeability barrier. PMID:20209486

  19. The genetic basis of pigmentation differences within and between Drosophila species

    PubMed Central

    Massey, Jonathan; Wittkopp, Patricia J.

    2016-01-01

    In Drosophila, as well as in many other plants and animals, pigmentation is highly variable both within and between species. This variability, combined with powerful genetic and transgenic tools as well as knowledge of how pigment patterns are formed biochemically and developmentally, have made Drosophila pigmentation a premier system for investigating the genetic and molecular mechanisms responsible for phenotypic evolution. In this chapter, we review and synthesize findings from a rapidly growing body of case studies examining the genetic basis of pigmentation differences in the abdomen, thorax, wings, and pupal cases within and between Drosophila species. A core set of genes, including genes required for pigment synthesis (e.g., yellow, ebony, tan, Dat) as well as developmental regulators of these genes (e.g., bab1, bab2, omb, Dll, and wg) emerge as the primary sources of this variation, with most genes having been shown to contribute to pigmentation differences both within and between species. In cases where specific genetic changes contributing to pigmentation divergence were identified in these genes, the changes were always located in noncoding sequences and affected cis-regulatory activity. We conclude this chapter by discussing these and other lessons learned from evolutionary genetic studies of Drosophila pigmentation and identify topics we think should be the focus of future work with this model system. PMID:27282023

  20. The Genetic Basis of Pigmentation Differences Within and Between Drosophila Species.

    PubMed

    Massey, J H; Wittkopp, P J

    2016-01-01

    In Drosophila, as well as in many other plants and animals, pigmentation is highly variable both within and between species. This variability, combined with powerful genetic and transgenic tools as well as knowledge of how pigment patterns are formed biochemically and developmentally, has made Drosophila pigmentation a premier system for investigating the genetic and molecular mechanisms responsible for phenotypic evolution. In this chapter, we review and synthesize findings from a rapidly growing body of case studies examining the genetic basis of pigmentation differences in the abdomen, thorax, wings, and pupal cases within and between Drosophila species. A core set of genes, including genes required for pigment synthesis (eg, yellow, ebony, tan, Dat) as well as developmental regulators of these genes (eg, bab1, bab2, omb, Dll, and wg), emerge as the primary sources of this variation, with most genes having been shown to contribute to pigmentation differences both within and between species. In cases where specific genetic changes contributing to pigmentation divergence were identified in these genes, the changes were always located in noncoding sequences and affected cis-regulatory activity. We conclude this chapter by discussing these and other lessons learned from evolutionary genetic studies of Drosophila pigmentation and identify topics we think should be the focus of future work with this model system. PMID:27282023

  1. From PIE to APPLES: The Evolution of a Survey Instrument to Explore Engineering Student Pathways. Research Brief

    ERIC Educational Resources Information Center

    Chen, Helen; Donaldson, Krista; Eris, Ozgur; Chachra, Debbie; Lichtenstein, Gary; Sheppard, Sheri; Toye, George

    2008-01-01

    The Academic Pathways Study (APS) of the NSF-funded Center for the Advancement of Engineering Education (CAEE) is a cross-university study that systematically examines how engineering students navigate their education, and how engineering skills and identity develop during their undergraduate careers. The APS has utilized a variety of methods…

  2. The brainstem efferent acoustic chiasm in pigmented and albino rats.

    PubMed

    Reuss, Stefan; Closhen-Gabrisch, Stefanie; Closhen, Christina

    2016-02-01

    The present study examined whether structural peculiarities in the brain-efferent pathway to the organ of Corti may underlie functional differences in hearing between pigmented and albino individuals of the same mammalian species. Pigmented Brown-Norway rats and albino Wistar rats received unilateral injections of an aqueous solution of the retrograde neuronal tracer Fluorogold (FG) into the scala tympani of the cochlea to identify olivocochlear neurons (OCN) in the brainstem superior olivary complex. After five days, brains were perfusion-fixed and brainstem sections were cut and analyzed with respect to retrogradely labeled neurons. Intrinsic neurons of the lateral system were located exclusively in the ipsilateral lateral superior olive (LSO) in both groups. Shell neurons surrounding the LSO and in periolivary regions, which made up only 5-8% of all OCN, were more often contralaterally located in albino than in pigmented animals. A striking difference was observed in the laterality of neurons of the medial olivocochlear (MOC) system, which provided more than one third of all OCN. These neurons, located in the rostral periolivary region and in the ventral nucleus of the trapezoid body, were observed contralateral to 45% in pigmented and to 68% in albino animals. Our study, the first to compare the origin of the olivocochlear bundle in pigmented and albino rats, provides evidence for differences in the crossing pattern of the olivocochlear pathway. These were found predominantly in the MOC system providing the direct efferent innervation of cochlear outer hair cells. Our findings may account for the alterations in auditory perception observed in albino mammals including man. PMID:26657095

  3. A phylogenetic approach to the early evolution of autotrophy: the case of the reverse TCA and the reductive acetyl-CoA pathways.

    PubMed

    Becerra, Arturo; Rivas, Mario; García-Ferris, Carlos; Lazcano, Antonio; Peretó, Juli

    2014-06-01

    In recent decades, a number of hypotheses on the autotrophic origin of life have been presented. These proposals invoke the emergence of reaction networks leading from CO or CO₂ to the organic molecules required for life. It has also been suggested that the last (universal) common ancestor (LCA or LUCA) of all extant cell lineages was a chemolitho-autotrophic thermophilic anaerobe. The antiquity of some carbon fixation pathways, the phylogenetic basal distribution of some autotrophic organisms, and the catalytic properties of iron-sulfur minerals have been advanced in support of these ideas. Here we critically examine the phylogenetic distribution and evolution of enzymes that are essential for two of the most ancient autotrophic means of metabolism: the reductive tricarboxylic acid (rTCA) cycle and the reductive acetyl-CoA pathway. Phylogenetic analysis of citryl-CoA synthetase and of citryl-CoA lyase, key enzymatic components of the rTCA cycle, and of CO dehydrogenase/acetyl-CoA synthase, a key enzyme in the reductive acetyl-CoA pathway, revealed that all three enzymes have undergone major lateral transfer events and therefore cannot be used as proof of the LCA's metabolic abilities nor as evidence of an autotrophic origin of life. PMID:26418853

  4. Evolution of albinism in cave planthoppers by a convergent defect in the first step of melanin biosynthesis.

    PubMed

    Bilandžija, Helena; Cetković, Helena; Jeffery, William R

    2012-01-01

    Albinism, the reduction or loss of melanin pigment, is found in many diverse cave-dwelling animals. The mechanisms responsible for loss of melanin pigment are poorly understood. In this study we use a melanogenic substrate assay to determine the position where melanin synthesis is blocked in independently evolved cave planthoppers from Hawaii and Croatia. In this assay, substrates of enzymes responsible for melanin biosynthesis are added to fixed specimens in vitro and their ability to rescue black melanin pigmentation is determined. L-tyrosine, the first substrate in the pathway, did not produce melanin pigment, whereas L-DOPA, the second substrate, restored black pigment. Substrates in combination with enzyme inhibitors were used to test the possibility of additional downstream defects in the pathway. The results showed that downstream reactions leading from L-DOPA and dopamine to DOPA-melanin and dopamine-melanin, the two types of insect melanin, are functional. It is concluded that albinism is caused by a defect in the first step of the melanin synthesis pathway in cave-adapted planthoppers from widely separated parts of the world. However, Western blots indicated that tyrosine hydroxylase (TH), the only enzyme shown to operate at the first step in insects, is present in Hawaiian cave planthoppers. Thus, an unknown factor(s) operating at this step may be important in the evolution of planthopper albinism. In the cavefish Astyanax mexicanus, a genetic defect has also been described at the first step of melanin synthesis suggesting convergent evolution of albinism in both cave-adapted insects and teleosts. PMID:23017027

  5. The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments.

    PubMed Central

    Cowing, Jill A; Poopalasundaram, Subathra; Wilkie, Susan E; Robinson, Phyllis R; Bowmaker, James K; Hunt, David M

    2002-01-01

    The short-wave-sensitive (SWS) visual pigments of vertebrate cone photoreceptors are divided into two classes on the basis of molecular identity, SWS1 and SWS2. Only the SWS1 class are present in mammals. The SWS1 pigments can be further subdivided into violet-sensitive (VS), with lambda(max) (the peak of maximal absorbance) values generally between 400 and 430 nm, and ultraviolet-sensitive (UVS), with a lambda(max)<380 nm. Phylogenetic evidence indicates that the ancestral pigment was UVS and that VS pigments have evolved separately from UVS pigments in the different vertebrate lineages. In this study, we have examined the mechanism of evolution of VS pigments in the mammalian lineage leading to present day ungulates (cow and pig). Amino acid sequence comparisons of the UVS pigments of teleost fish, amphibia, reptiles and rodents show that site 86 is invariably occupied by Phe but is replaced in bovine and porcine VS pigments by Tyr. Using site-directed mutagenesis of goldfish UVS opsin, we have shown that a Phe-86-->Tyr substitution is sufficient by itself to shift the lambda(max) of the goldfish pigment from a wild-type value of 360 nm to around 420 nm, and the reverse substitution of Tyr-86-Phe into bovine VS opsin produces a similar shift in the opposite direction. The substitution of this single amino acid is sufficient to account therefore for the evolution of bovine and porcine VS pigments. The replacement of Phe with polar Tyr at site 86 is consistent with the stabilization of Schiff-base protonation in VS pigments and the absence of protonation in UVS pigments. PMID:12099889

  6. The Whole Genome Sequence of Sphingobium chlorophenolicum L-1: Insights into the Evolution of the Pentachlorophenol Degradation Pathway

    SciTech Connect

    Copley, Shelley D.; Rokicki, Joseph; Turner, Pernilla; Daligault, Hajnalka E.; Nolan, Matt; Land, Miriam L

    2012-01-01

    Sphingobium chlorophenolicum Strain L-1 can mineralize the toxic pesticide pentachlorophenol (PCP). We have sequenced the genome of S. chlorophenolicum Strain L-1. The genome consists of a primary chromosome that encodes most of the genes for core processes, a secondary chromosome that encodes primarily genes that appear to be involved in environmental adaptation, and a small plasmid. The genes responsible for degradation of PCP are found on chromosome 2. We have compared the genomes of S. chlorophenolicum Strain L-1 and Sphingobium japonicum, a closely related Sphingomonad that degrades lindane. Our analysis suggests that the genes encoding the first three enzymes in the PCP degradation pathway were acquired via two different horizontal gene transfer events, and the genes encoding the final two enzymes in the pathway were acquired from the most recent common ancestor of these two bacteria.

  7. The Whole Genome Sequence of Sphingobium chlorophenolicum L-1: Insights into the Evolution of the Pentachlorophenol Degradation Pathway

    PubMed Central

    Copley, Shelley D.; Rokicki, Joseph; Turner, Pernilla; Daligault, Hajnalka; Nolan, Matt; Land, Miriam

    2012-01-01

    Sphingobium chlorophenolicum Strain L-1 can mineralize the toxic pesticide pentachlorophenol (PCP). We have sequenced the genome of S. chlorophenolicum Strain L-1. The genome consists of a primary chromosome that encodes most of the genes for core processes, a secondary chromosome that encodes primarily genes that appear to be involved in environmental adaptation, and a small plasmid. The genes responsible for degradation of PCP are found on chromosome 2. We have compared the genomes of S. chlorophenolicum Strain L-1 and Sphingobium japonicum, a closely related Sphingomonad that degrades lindane. Our analysis suggests that the genes encoding the first three enzymes in the PCP degradation pathway were acquired via two different horizontal gene transfer events, and the genes encoding the final two enzymes in the pathway were acquired from the most recent common ancestor of these two bacteria. PMID:22179583

  8. Modeling of the dorsal gradient across species reveals interaction between embryo morphology and Toll signaling pathway during evolution.

    PubMed

    Ambrosi, Priscilla; Chahda, Juan Sebastian; Koslen, Hannah R; Chiel, Hillel J; Mizutani, Claudia Mieko

    2014-08-01

    Morphogenetic gradients are essential to allocate cell fates in embryos of varying sizes within and across closely related species. We previously showed that the maternal NF-κB/Dorsal (Dl) gradient has acquired different shapes in Drosophila species, which result in unequally scaled germ layers along the dorso-ventral axis and the repositioning of the neuroectodermal borders. Here we combined experimentation and mathematical modeling to investigate which factors might have contributed to the fast evolutionary changes of this gradient. To this end, we modified a previously developed model that employs differential equations of the main biochemical interactions of the Toll (Tl) signaling pathway, which regulates Dl nuclear transport. The original model simulations fit well the D. melanogaster wild type, but not mutant conditions. To broaden the applicability of this model and probe evolutionary changes in gradient distributions, we adjusted a set of 19 independent parameters to reproduce three quantified experimental conditions (i.e. Dl levels lowered, nuclear size and density increased or decreased). We next searched for the most relevant parameters that reproduce the species-specific Dl gradients. We show that adjusting parameters relative to morphological traits (i.e. embryo diameter, nuclear size and density) alone is not sufficient to reproduce the species Dl gradients. Since components of the Tl pathway simulated by the model are fast-evolving, we next asked which parameters related to Tl would most effectively reproduce these gradients and identified a particular subset. A sensitivity analysis reveals the existence of nonlinear interactions between the two fast-evolving traits tested above, namely the embryonic morphological changes and Tl pathway components. Our modeling further suggests that distinct Dl gradient shapes observed in closely related melanogaster sub-group lineages may be caused by similar sequence modifications in Tl pathway components, which

  9. Modeling of the Dorsal Gradient across Species Reveals Interaction between Embryo Morphology and Toll Signaling Pathway during Evolution

    PubMed Central

    Koslen, Hannah R.; Chiel, Hillel J.; Mizutani, Claudia Mieko

    2014-01-01

    Morphogenetic gradients are essential to allocate cell fates in embryos of varying sizes within and across closely related species. We previously showed that the maternal NF-κB/Dorsal (Dl) gradient has acquired different shapes in Drosophila species, which result in unequally scaled germ layers along the dorso-ventral axis and the repositioning of the neuroectodermal borders. Here we combined experimentation and mathematical modeling to investigate which factors might have contributed to the fast evolutionary changes of this gradient. To this end, we modified a previously developed model that employs differential equations of the main biochemical interactions of the Toll (Tl) signaling pathway, which regulates Dl nuclear transport. The original model simulations fit well the D. melanogaster wild type, but not mutant conditions. To broaden the applicability of this model and probe evolutionary changes in gradient distributions, we adjusted a set of 19 independent parameters to reproduce three quantified experimental conditions (i.e. Dl levels lowered, nuclear size and density increased or decreased). We next searched for the most relevant parameters that reproduce the species-specific Dl gradients. We show that adjusting parameters relative to morphological traits (i.e. embryo diameter, nuclear size and density) alone is not sufficient to reproduce the species Dl gradients. Since components of the Tl pathway simulated by the model are fast-evolving, we next asked which parameters related to Tl would most effectively reproduce these gradients and identified a particular subset. A sensitivity analysis reveals the existence of nonlinear interactions between the two fast-evolving traits tested above, namely the embryonic morphological changes and Tl pathway components. Our modeling further suggests that distinct Dl gradient shapes observed in closely related melanogaster sub-group lineages may be caused by similar sequence modifications in Tl pathway components, which

  10. Evolution of the C30 Carotenoid Synthase CrtM for Function in a C40 Pathway

    PubMed Central

    Umeno, Daisuke; Tobias, Alexander V.; Arnold, Frances H.

    2002-01-01

    The C30 carotene synthase CrtM from Staphylococcus aureus and the C40 carotene synthase CrtB from Erwinia uredovora were swapped into their respective foreign C40 and C30 biosynthetic pathways (heterologously expressed in Escherichia coli) and evaluated for function. Each displayed negligible ability to synthesize the natural carotenoid product of the other. After one round of mutagenesis and screening, we isolated 116 variants of CrtM able to synthesize C40 carotenoids. In contrast, we failed to find a single variant of CrtB with detectable C30 activity. Subsequent analysis revealed that the best CrtM mutants performed comparably to CrtB in an in vivo C40 pathway. These mutants showed significant variation in performance in their original C30 pathway, indicating the emergence of enzymes with broadened substrate specificity as well as those with shifted specificity. We discovered that Phe 26 alone determines the specificity of CrtM. The plasticity of CrtM with respect to its substrate and product range highlights the potential for creating further new carotenoid backbone structures. PMID:12426357

  11. Clofazimine-induced Hair Pigmentation.

    PubMed

    Philip, Mariam; Samson, Joan Felicita; Simi, Puthenveedu Salahudeen

    2012-07-01

    A 45-year-old man was treated with WHO multibacillary multidrug therapy for borderline leprosy and high dose daily Clofazimine for lepra reaction. Along with the expected side effect of skin pigmentation, the patient also noticed darkening of previously grey hair. This colour persisted eight months after completing multibacillary multidrug therapy. PMID:23180930

  12. Stripes and belly-spots -- a review of pigment cell morphogenesis in vertebrates.

    PubMed

    Kelsh, Robert N; Harris, Melissa L; Colanesi, Sarah; Erickson, Carol A

    2009-02-01

    Pigment patterns in the integument have long-attracted attention from both scientists and non-scientists alike since their natural attractiveness combines with their excellence as models for the general problem of pattern formation. Pigment cells are formed from the neural crest and must migrate to reach their final locations. In this review, we focus on our current understanding of mechanisms underlying the control of pigment cell migration and patterning in diverse vertebrates. The model systems discussed here - chick, mouse, and zebrafish - each provide unique insights into the major morphogenetic events driving pigment pattern formation. In birds and mammals, melanoblasts must be specified before they can migrate on the dorsolateral pathway. Transmembrane receptors involved in guiding them onto this route include EphB2 and Ednrb2 in chick, and Kit in mouse. Terminal migration depends, in part, upon extracellular matrix reorganization by ADAMTS20. Invasion of the ectoderm, especially into the feather germ and hair follicles, requires specific signals that are beginning to be characterized. We summarize our current understanding of the mechanisms regulating melanoblast number and organization in the epidermis. We note the apparent differences in pigment pattern formation in poikilothermic vertebrates when compared with birds and mammals. With more pigment cell types, migration pathways are more complex and largely unexplored; nevertheless, a role for Kit signaling in melanophore migration is clear and indicates that at least some patterning mechanisms may be highly conserved. We summarize the multiple factors thought to contribute to zebrafish embryonic pigment pattern formation, highlighting a recent study identifying Sdf1a as one factor crucial for regulation of melanophore positioning. Finally, we discuss the mechanisms generating a second, metamorphic pigment pattern in adult fish, emphasizing recent studies strengthening the evidence that undifferentiated

  13. 21 CFR 178.3725 - Pigment dispersants.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Pigment dispersants. 178.3725 Section 178.3725... Certain Adjuvants and Production Aids § 178.3725 Pigment dispersants. Subject to the provisions of this regulation, the substances listed in this section may be safely used as pigment dispersants in...

  14. 21 CFR 178.3725 - Pigment dispersants.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Pigment dispersants. 178.3725 Section 178.3725 Food... Certain Adjuvants and Production Aids § 178.3725 Pigment dispersants. Subject to the provisions of this regulation, the substances listed in this section may be safely used as pigment dispersants in...

  15. 21 CFR 178.3725 - Pigment dispersants.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Pigment dispersants. 178.3725 Section 178.3725... Certain Adjuvants and Production Aids § 178.3725 Pigment dispersants. Subject to the provisions of this regulation, the substances listed in this section may be safely used as pigment dispersants in...

  16. 21 CFR 178.3725 - Pigment dispersants.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Pigment dispersants. 178.3725 Section 178.3725... § 178.3725 Pigment dispersants. Subject to the provisions of this regulation, the substances listed in this section may be safely used as pigment dispersants in food-contact materials....

  17. 21 CFR 178.3725 - Pigment dispersants.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Pigment dispersants. 178.3725 Section 178.3725... Certain Adjuvants and Production Aids § 178.3725 Pigment dispersants. Subject to the provisions of this regulation, the substances listed in this section may be safely used as pigment dispersants in...

  18. 21 CFR 73.352 - Paracoccus pigment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Paracoccus pigment. 73.352 Section 73.352 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.352 Paracoccus pigment. (a) Identity. (1) The color additive paracoccus pigment consists of the heat-killed, dried cells of a nonpathogenic and nontoxicogenic strain...

  19. 21 CFR 73.352 - Paracoccus pigment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Paracoccus pigment. 73.352 Section 73.352 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.352 Paracoccus pigment. (a) Identity. (1) The color additive paracoccus pigment consists of the heat-killed, dried cells of a nonpathogenic and nontoxicogenic strain...

  20. 21 CFR 73.352 - Paracoccus pigment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Paracoccus pigment. 73.352 Section 73.352 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.352 Paracoccus pigment. (a) Identity. (1) The color additive paracoccus pigment consists of the heat-killed, dried cells of a nonpathogenic and nontoxicogenic strain...

  1. 21 CFR 73.352 - Paracoccus pigment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Paracoccus pigment. 73.352 Section 73.352 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.352 Paracoccus pigment. (a) Identity. (1) The color additive paracoccus pigment consists of the heat-killed, dried cells of a nonpathogenic and nontoxicogenic strain...

  2. 21 CFR 73.352 - Paracoccus pigment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Paracoccus pigment. 73.352 Section 73.352 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.352 Paracoccus pigment. (a) Identity. (1) The color additive paracoccus pigment consists of the heat-killed, dried cells of a nonpathogenic and nontoxicogenic strain...

  3. Continental variation in wing pigmentation in Calopteryx damselflies is related to the presence of heterospecifics.

    PubMed

    Hassall, Christopher

    2014-01-01

    Wing pigmentation in Calopteryx damselflies, caused by the deposition of melanin, is energetically expensive to produce and enhances predation risk. However, patterns of melanisation are used in species identification, greater pigmentation is an accurate signal of male immune function in at least some species, and there may be a role for pigment in thermoregulation. This study tested two potential hypotheses to explain the presence of, and variation in, this pigmentation based on these three potential benefits using 907 male specimens of Calopteryx maculata collected from 49 sites (34 discrete populations) across the geographical range of the species in North America: (i) pigmentation varies with the presence of the closely related species, Calopteryx aequabilis, and (ii) pigment increases at higher latitudes as would be expected if it enhances thermoregulatory capacity. No gradual latitudinal pattern was observed, as might be expected if pigmentation was involved in thermoregulation. However, strong variation was observed between populations that were sympatric or allopatric with C. aequabilis. This variation was characterised by dark wings through allopatry in the south of the range and then a step change to much lighter wings at the southern border of sympatry. Pigmentation then increased further north into the sympatric zone, finally returning to allopatry levels at the northern range margin. These patterns are qualitatively similar to variation in pigmentation in C. aequabilis, meaning that the data are consistent with what would be expected from convergent character displacement. Overall, the results corroborate recent research that has suggested sexual selection as a primary driver behind the evolution of wing pigmentation in this group. PMID:24949250

  4. Continental variation in wing pigmentation in Calopteryx damselflies is related to the presence of heterospecifics

    PubMed Central

    2014-01-01

    Wing pigmentation in Calopteryx damselflies, caused by the deposition of melanin, is energetically expensive to produce and enhances predation risk. However, patterns of melanisation are used in species identification, greater pigmentation is an accurate signal of male immune function in at least some species, and there may be a role for pigment in thermoregulation. This study tested two potential hypotheses to explain the presence of, and variation in, this pigmentation based on these three potential benefits using 907 male specimens of Calopteryx maculata collected from 49 sites (34 discrete populations) across the geographical range of the species in North America: (i) pigmentation varies with the presence of the closely related species, Calopteryx aequabilis, and (ii) pigment increases at higher latitudes as would be expected if it enhances thermoregulatory capacity. No gradual latitudinal pattern was observed, as might be expected if pigmentation was involved in thermoregulation. However, strong variation was observed between populations that were sympatric or allopatric with C. aequabilis. This variation was characterised by dark wings through allopatry in the south of the range and then a step change to much lighter wings at the southern border of sympatry. Pigmentation then increased further north into the sympatric zone, finally returning to allopatry levels at the northern range margin. These patterns are qualitatively similar to variation in pigmentation in C. aequabilis, meaning that the data are consistent with what would be expected from convergent character displacement. Overall, the results corroborate recent research that has suggested sexual selection as a primary driver behind the evolution of wing pigmentation in this group. PMID:24949250

  5. The Hedgehog gene family of the cnidarian, Nematostella vectensis, and implications for understanding metazoan Hedgehog pathway evolution

    PubMed Central

    Matus, David Q.; Magie, Craig; Pang, Kevin; Martindale, Mark Q; Thomsen, Gerald H.

    2008-01-01

    Hedgehog signaling is an important component of cell-cell communication during bilaterian development, and abnormal Hedgehog signaling contributes to disease and birth defects. Hedgehog genes are composed of a ligand (“hedge”) domain and an autocatalytic intein (“hog”) domain. Hedgehog (hh) ligands bind to a conserved set of receptors and activate downstream signal transduction pathways terminating with Gli/Ci transcription factors. We have identified five intein-containing genes in the anthozoan cnidarian Nematostella vectensis, two of which (NvHh1 and NvHh2) contain definitive hedgehog ligand domains, suggesting that to date, cnidarians are the earliest branching metazoan phylum to possess definitive Hh orthologs. Expression analysis of NvHh1 and NvHh2, the receptor NvPatched and a downstream transcription factor NvGli (a Gli3/Ci ortholog) indicate that these genes may have conserved roles in planar and trans-epithelial signaling during gut and germline development, while the three remaining intein-containing genes (NvHint1,2,3) are expressed in a cell-type specific manner in putative neural precursors. Metazoan intein-containing genes that lack a ligand domain have previously only been identified within nematodes. However, phylogenetic analyses suggest that these nematode inteins may be derived from an ancestral nematode true hedgehog gene, and that the non-bilaterian intein-containing genes identified here may represent an ancestral state prior to the domain swapping events that resulted in the formation of true hedgehog genes in the cnidarian-bilaterian ancestor. Genomic surveys of N. vectensis suggest that most of the components of both protostome and deuterostome Hh signaling pathways are present in anthozoans and that some appear to have been lost in ecdysozoan lineages. Cnidarians possess many bilaterian cell-cell signaling pathways (Wnt, TGFß, FGF and Hh) that appear to act in concert to pattern tissues along the oral-aboral axis of the polyp

  6. Clonal evolution enhances leukemia propagating cell frequency in T-cell acute lymphoblastic leukemia through Akt/mTORC1 pathway activation

    PubMed Central

    Blackburn, Jessica S.; Liu, Sali; Wilder, Jayme L.; Dobrinski, Kimberly P.; Lobbardi, Riadh; Moore, Finola E.; Martinez, Sarah A.; Chen, Eleanor Y.; Lee, Charles; Langenau, David M.

    2014-01-01

    SUMMARY Clonal evolution and intratumoral heterogeneity drive cancer progression through unknown molecular mechanisms. To address this issue, functional differences between single T-cell acute lymphoblastic leukemia (T-ALL) clones were assessed using a zebrafish transgenic model. Functional variation was observed within individual clones, with a minority of clones enhancing growth rate and leukemia propagating potential with time. Akt pathway activation was acquired in a subset of these evolved clones, which increased the number of leukemia propagating cells through activating mTORC1, elevated growth rate likely by stabilizing the Myc protein, and rendered cells resistant to dexamethasone, which was reversed by combined treatment with an Akt inhibitor. Thus, T-ALL clones spontaneously and continuously evolve to drive leukemia progression even in the absence of therapy-induced selection. PMID:24613413

  7. Thermodynamic and kinetic modeling of mineralogical evolution in the Soultz-sous-Forêts geothermal system: insights into the reaction pathways

    NASA Astrophysics Data System (ADS)

    Van Ngo, Viet; Lucas, Yann; Clément, Alain; Fritz, Bertrand

    2015-04-01

    The energy production from hot fractured rocks has been investigated at the Soultz-sous-Forêts EGS (Alsace, France) from nearly three decades. Three wells have been drilled up to the depth of about 5000 m in which two wells are served as the fluid production and the third as a fluid re-injection. The circulation of geothermal fluids through the fractured reservoir leads to a strong chemical nonequilibrium of the solid and aqueous phases, which potentially cause changes in porosity, permeability, and flow pathways of the geothermal reservoir. Numerous experimental and modeling studies (e.g., Dubois et al., 2000; Baldeyrou et al., 2003; Ledésert et al., 2009; Fritz et al., 2010; Ledésert et al., 2010) carried out within the framework of the Soultz-sous-Forêts system have reported that quartz, calcite and illites are formed as the major secondary phases in the main fractures. Some contributions among the above publications further indicated that calcite plays an important role in the reduction of permeability of the fractured zones and illites are considered as a characteristic product of the hydrothermal vein alteration. Therefore, it is important to predict the evolution of minerals (especially for quartz, calcite, and illites), which may potentially modify the transport properties of the geothermal reservoir (e.g., Ledésert et al., 2009; Fritz et al., 2010). Understanding the changes in mineralogy in the fractured zones is also useful to choose the reagents in order to improve the permeability of the geothermal reservoir via the chemical stimulation. The overall objectives of the current study are to (i) investigate the long-term evolution of mineralogy in the geothermal Soultz-sous-Forêts Enhanced Geothermal System (EGS), (ii) establish the relationship between different mineral groups, (iii) study the reaction pathways, and (iv) compare the thermodynamic and kinetic approaches. The numerical calculations carried out using the KINDIS numerical code were

  8. Complete genome sequence and transcriptomics analyses reveal pigment biosynthesis and regulatory mechanisms in an industrial strain, Monascus purpureus YY-1

    PubMed Central

    Yang, Yue; Liu, Bin; Du, Xinjun; Li, Ping; Liang, Bin; Cheng, Xiaozhen; Du, Liangcheng; Huang, Di; Wang, Lei; Wang, Shuo

    2015-01-01

    Monascus has been used to produce natural colorants and food supplements for more than one thousand years, and approximately more than one billion people eat Monascus-fermented products during their daily life. In this study, using next-generation sequencing and optical mapping approaches, a 24.1-Mb complete genome of an industrial strain, Monascus purpureus YY-1, was obtained. This genome consists of eight chromosomes and 7,491 genes. Phylogenetic analysis at the genome level provides convincing evidence for the evolutionary position of M. purpureus. We provide the first comprehensive prediction of the biosynthetic pathway for Monascus pigment. Comparative genomic analyses show that the genome of M. purpureus is 13.6–40% smaller than those of closely related filamentous fungi and has undergone significant gene losses, most of which likely occurred during its specialized adaptation to starch-based foods. Comparative transcriptome analysis reveals that carbon starvation stress, resulting from the use of relatively low-quality carbon sources, contributes to the high yield of pigments by repressing central carbon metabolism and augmenting the acetyl-CoA pool. Our work provides important insights into the evolution of this economically important fungus and lays a foundation for future genetic manipulation and engineering of this strain. PMID:25660389

  9. Complete genome sequence and transcriptomics analyses reveal pigment biosynthesis and regulatory mechanisms in an industrial strain, Monascus purpureus YY-1.

    PubMed

    Yang, Yue; Liu, Bin; Du, Xinjun; Li, Ping; Liang, Bin; Cheng, Xiaozhen; Du, Liangcheng; Huang, Di; Wang, Lei; Wang, Shuo

    2015-01-01

    Monascus has been used to produce natural colorants and food supplements for more than one thousand years, and approximately more than one billion people eat Monascus-fermented products during their daily life. In this study, using next-generation sequencing and optical mapping approaches, a 24.1-Mb complete genome of an industrial strain, Monascus purpureus YY-1, was obtained. This genome consists of eight chromosomes and 7,491 genes. Phylogenetic analysis at the genome level provides convincing evidence for the evolutionary position of M. purpureus. We provide the first comprehensive prediction of the biosynthetic pathway for Monascus pigment. Comparative genomic analyses show that the genome of M. purpureus is 13.6-40% smaller than those of closely related filamentous fungi and has undergone significant gene losses, most of which likely occurred during its specialized adaptation to starch-based foods. Comparative transcriptome analysis reveals that carbon starvation stress, resulting from the use of relatively low-quality carbon sources, contributes to the high yield of pigments by repressing central carbon metabolism and augmenting the acetyl-CoA pool. Our work provides important insights into the evolution of this economically important fungus and lays a foundation for future genetic manipulation and engineering of this strain. PMID:25660389

  10. Early development and orientation of the acoustic funnel provides insight into the evolution of sound reception pathways in cetaceans.

    PubMed

    Yamato, Maya; Pyenson, Nicholas D

    2015-01-01

    Whales receive underwater sounds through a fundamentally different mechanism than their close terrestrial relatives. Instead of hearing through the ear canal, cetaceans hear through specialized fatty tissues leading to an evolutionarily novel feature: an acoustic funnel located anterior to the tympanic aperture. We traced the ontogenetic development of this feature in 56 fetal specimens from 10 different families of toothed (odontocete) and baleen (mysticete) whales, using X-ray computed tomography. We also charted ear ossification patterns through ontogeny to understand the impact of heterochronic developmental processes. We determined that the acoustic funnel arises from a prominent V-shaped structure established early in ontogeny, formed by the malleus and the goniale. In odontocetes, this V-formation develops into a cone-shaped funnel facing anteriorly, directly into intramandibular acoustic fats, which is likely functionally linked to the anterior orientation of sound reception in echolocation. In contrast, the acoustic funnel in balaenopterids rotates laterally, later in fetal development, consistent with a lateral sound reception pathway. Balaenids and several fossil mysticetes retain a somewhat anteriorly oriented acoustic funnel in the mature condition, indicating that a lateral sound reception pathway in balaenopterids may be a recent evolutionary innovation linked to specialized feeding modes, such as lunge-feeding. PMID:25760328

  11. Early Development and Orientation of the Acoustic Funnel Provides Insight into the Evolution of Sound Reception Pathways in Cetaceans

    PubMed Central

    Yamato, Maya; Pyenson, Nicholas D.

    2015-01-01

    Whales receive underwater sounds through a fundamentally different mechanism than their close terrestrial relatives. Instead of hearing through the ear canal, cetaceans hear through specialized fatty tissues leading to an evolutionarily novel feature: an acoustic funnel located anterior to the tympanic aperture. We traced the ontogenetic development of this feature in 56 fetal specimens from 10 different families of toothed (odontocete) and baleen (mysticete) whales, using X-ray computed tomography. We also charted ear ossification patterns through ontogeny to understand the impact of heterochronic developmental processes. We determined that the acoustic funnel arises from a prominent V-shaped structure established early in ontogeny, formed by the malleus and the goniale. In odontocetes, this V-formation develops into a cone-shaped funnel facing anteriorly, directly into intramandibular acoustic fats, which is likely functionally linked to the anterior orientation of sound reception in echolocation. In contrast, the acoustic funnel in balaenopterids rotates laterally, later in fetal development, consistent with a lateral sound reception pathway. Balaenids and several fossil mysticetes retain a somewhat anteriorly oriented acoustic funnel in the mature condition, indicating that a lateral sound reception pathway in balaenopterids may be a recent evolutionary innovation linked to specialized feeding modes, such as lunge-feeding. PMID:25760328

  12. Availability and Utilization of Pigments from Microalgae.

    PubMed

    Begum, Hasina; Yusoff, Fatimah Md; Banerjee, Sanjoy; Khatoon, Helena; Shariff, Mohamed

    2016-10-01

    Microalgae are the major photosynthesizers on earth and produce important pigments that include chlorophyll a, b and c, β-carotene, astaxanthin, xanthophylls, and phycobiliproteins. Presently, synthetic colorants are used in food, cosmetic, nutraceutical, and pharmaceutical industries. However, due to problems associated with the harmful effects of synthetic colorants, exploitation of microalgal pigments as a source of natural colors becomes an attractive option. There are various factors such as nutrient availability, salinity, pH, temperature, light wavelength, and light intensity that affect pigment production in microalgae. This paper reviews the availability and characteristics of microalgal pigments, factors affecting pigment production, and the application of pigments produced from microalgae. The potential of microalgal pigments as a source of natural colors is enormous as an alternative to synthetic coloring agents, which has limited applications due to regulatory practice for health reasons. PMID:25674822

  13. Using THz Spectroscopy, Evolutionary Network Analysis Methods, and MD Simulation to Map the Evolution of Allosteric Communication Pathways in c-Type Lysozymes

    PubMed Central

    Woods, Kristina N.; Pfeffer, Juergen

    2016-01-01

    It is now widely accepted that protein function is intimately tied with the navigation of energy landscapes. In this framework, a protein sequence is not described by a distinct structure but rather by an ensemble of conformations. And it is through this ensemble that evolution is able to modify a protein’s function by altering its landscape. Hence, the evolution of protein functions involves selective pressures that adjust the sampling of the conformational states. In this work, we focus on elucidating the evolutionary pathway that shaped the function of individual proteins that make-up the mammalian c-type lysozyme subfamily. Using both experimental and computational methods, we map out specific intermolecular interactions that direct the sampling of conformational states and accordingly, also underlie shifts in the landscape that are directly connected with the formation of novel protein functions. By contrasting three representative proteins in the family we identify molecular mechanisms that are associated with the selectivity of enhanced antimicrobial properties and consequently, divergent protein function. Namely, we link the extent of localized fluctuations involving the loop separating helices A and B with shifts in the equilibrium of the ensemble of conformational states that mediate interdomain coupling and concurrently moderate substrate binding affinity. This work reveals unique insights into the molecular level mechanisms that promote the progression of interactions that connect the immune response to infection with the nutritional properties of lactation, while also providing a deeper understanding about how evolving energy landscapes may define present-day protein function. PMID:26337549

  14. Pigments, Parasites and Personalitiy: Towards a Unifying Role for Steroid Hormones?

    PubMed Central

    Kittilsen, Silje; Johansen, Ida Beitnes; Braastad, Bjarne Olai; Øverli, Øyvind

    2012-01-01

    A surging interest in the evolution of consistent trait correlations has inspired research on pigment patterns as a correlate of behavioural syndromes, or “animal personalities”. Associations between pigmentation, physiology and health status are less investigated as potentially conserved trait clusters. In the current study, lice counts performed on farmed Atlantic salmon Salmo salar naturally infected with ectoparasitic sea lice Lepeophtheirus salmonis showed that individual fish with high incidence of black melanin-based skin spots harboured fewer female sea lice carrying egg sacs, compared to less pigmented fish. There was no significant association between pigmentation and lice at other developmental stages, suggesting that host factors associated with melanin-based pigmentation may modify ectoparasite development to a larger degree than settlement. In a subsequent laboratory experiment a strong negative correlation between skin spots and post-stress cortisol levels was revealed, with less pigmented individuals showing a more pronounced cortisol response to acute stress. The observation that lice prevalence was strongly increased on a fraction of sexually mature male salmon which occurred among the farmed fish further supports a role for steroid hormones as mediators of reduced parasite resistance. The data presented here propose steroid hormones as a proximate cause for the association between melanin-based pigmentation and parasites. Possible fundamental and applied implications are discussed. PMID:22493685

  15. Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways

    SciTech Connect

    Lamarque, J.-F.; Kyle, G. Page; Meinshausen, Malte; Riahi, Keywan; Smith, Steven J.; Van Vuuren, Detlef; Conley, Andrew; Vitt, Francis

    2011-08-05

    In this paper, we discuss the results of 2000-2100 simulations with a chemistry-climate model, focusing on the changes in atmospheric composition (troposphere and stratosphere) following the emissions associated with the Representative Concentration Pathways. We show that tropospheric ozone is projected to decrease (RCP3PD and RCP4.5) or increase (RCP8.5) between 2000 and 2100. Surface ozone in 2100 is projected to change little compared from 2000 conditions, a much-reduced impact from the projections based on the A2 scenario. Aerosols are projected to strongly decrease in the 21st century, a reflection of their projected decrease in emissions. Similarly, sulfate deposition is projected to strongly decrease. However, nitrogen deposition is projected to increase over certain regions because of the projected increase NH3 emissions.

  16. The relationship between the violet pigment PP-V production and intracellular ammonium level in Penicillium purpurogenum.

    PubMed

    Kojima, Ryo; Arai, Teppei; Matsufuji, Hiroshi; Kasumi, Takafumi; Watanabe, Taisuke; Ogihara, Jun

    2016-12-01

    Penicillium purpurogenum is the fungus that produces an azaphilone pigment. However, details about the pigment biosynthesis pathway are unknown. The violet pigment PP-V is the one of the main pigments biosynthesized by this fungus. This pigment contains an amino group in a pyran ring as its core structure. We focused on this pigment and examined the relationship between intracellular ammonium concentration and pigment production using glutamine as a nitrogen source. The intracellular ammonium level decreased about 1.5-fold in conditions favoring PP-V production. Moreover, P. purpurogenum was transferred to medium in which it commonly produces the related pigment PP-O after cultivating it in the presence or absence of glutamine to investigate whether this fungus biosynthesizes PP-V using surplus ammonium in cells. Only mycelia cultured in medium containing 10 mM glutamine produced the violet pigment, and simultaneously intracellular ammonium levels decreased under this condition. From comparisons of the amount of PP-V that was secreted with quantity of surplus intracellular ammonium, it is suggested that P. purpurogenum maintains ammonium homeostasis by excreting waste ammonium as PP-V. PMID:27368914

  17. Gene duplication in Mimulus underlies parallel floral evolution via independent trans-regulatory changes.

    PubMed

    Cooley, Arielle M; Modliszewski, Jennifer L; Rommel, Megan L; Willis, John H

    2011-04-26

    Identifying the genetic basis of parallelism reveals the means by which evolution repeats itself and shows what aspects-if any-may be predictable. The recently tetraploid luteus group of Mimulus contains five species native to central Chile, three of which have evolved extensive red floral pigmentation using at least two distinct loci . Here we show that the parallel evolution of petal lobe anthocyanin (PLA) pigmentation in M. cupreus and M. luteus var. variegatus occurred via separate yet strikingly similar mechanisms. In each case, a dominant, single-locus gain of pigmentation maps to a genomic region (pla1 and pla2, respectively) containing adjacent, apparently recently duplicated paralogs of MYB anthocyanin-regulating transcription factors. Interestingly, candidate genes in pla1 and pla2 are themselves related by an older duplication. In both cases, pla genotype cosegregates with expression of multiple genes in the anthocyanin biosynthetic pathway, revealing a mechanism of coordinated trans-regulatory expression changes across functionally related enzyme-encoding genes. We conclude that in this instance, evolution has repeated itself with marked consistency. Duplication has enabled that repetition to occur using two physically independent but functionally similar loci, highlighting the importance of genomic complexity to the evolutionary process. PMID:21474312

  18. Production and biological activities of yellow pigments from Monascus fungi.

    PubMed

    Chen, Gong; Wu, Zhenqiang

    2016-08-01

    Monascus yellow pigments (MYPs), are azaphilone compounds and one of the three main components of total Monascus pigments (MPs). Thirty-five hydrophilic or hydrophobic MYPs have been identified, with the majority being hydrophobic. Apart from screening special Monascus strains, some advanced approaches, such as extractive and high-cell-density fermentations, have been applied for developing or producing new MYPs, especially extracellular hydrophilic MYPs. The outstanding performance of MYPs in terms of resistance to photodegradation, as well as tolerance for temperature and pH, give natural MYPs reasonable prospects, compared with the orange and red MPs, for practical use in the present and future. Meanwhile, MYPs have shown promising potential for applications in the food and pharmaceutical industries based on their described bioactivities. This review briefly summarizes the reports to date on chemical structures, biological activities, biosynthetic pathways, production technologies, and physicochemical performances of MYPs. The existing problems for MYPs are discussed and research prospects proposed. PMID:27357404

  19. Holographic films from carotenoid pigments

    NASA Astrophysics Data System (ADS)

    Toxqui-López, S.; Lecona-Sánchez, J. F.; Santacruz-Vázquez, C.; Olivares-Pérez, A.; Fuentes-Tapia, I.

    2014-02-01

    Carotenoids pigments presents in pineapple can be more than just natural dyes, which is one of the applications that now at day gives the chemical industry. In this research shown that can be used in implementing of holographic recording Films. Therefore we describe the technique how to obtain this kind of pigments trough spay drying of natural pineapple juice, which are then dissolved with water in a proportion of 0.1g to 1mL. The obtained sample is poured into glass substrates using the gravity method, after a drying of 24 hours in laboratory normal conditions the films are ready. The films are characterized by recording transmission holographic gratings (LSR 445 NL 445 nm) and measuring the diffraction efficiency holographic parameter. This recording material has good diffraction efficiency and environmental stability.

  20. PP-O and PP-V, Monascus pigment homologues, production, and phylogenetic analysis in Penicillium purpurogenum.

    PubMed

    Arai, Teppei; Kojima, Ryo; Motegi, Yoshiki; Kato, Jun; Kasumi, Takafumi; Ogihara, Jun

    2015-12-01

    The production of pigments as secondary metabolites by microbes is known to vary by species and by physiological conditions within a single strain. The fungus strain Penicillium purpurogenum IAM15392 has been found to produce violet pigment (PP-V) and orange pigment (PP-O),Monascus azaphilone pigment homologues, when grown under specific culture conditions. In this study, we analysed PP-V and PP-O production capability in seven strains of P. purpurogenum in addition to strain IAM15392 under specific culture conditions. The pigment production pattern of five strains cultivated in PP-V production medium was similar to that of strain IAM15392, and all violet pigments produced by these five strains were confirmed to be PP-V. Strains that did not produce pigment were also identified. In addition, two strains cultivated in PP-O production medium produced a violet pigment identified as PP-V. The ribosomal DNA (rDNA) internal transcribed spacer (ITS) region sequences from the eight P. purpurogenum strains were sequenced and used to construct a neighbor-joining phylogenetic tree. PP-O and PP-V production of P. purpurogenum was shown to be related to phylogenetic placement based on rDNA ITS sequence. Based on these results, two hypotheses for the alteration of pigment production of P. purpurogenum in evolution were proposed. PMID:26615745

  1. Cutaneous metastatic pigmented breast carcinoma.

    PubMed

    Gaitan-Gaona, Francisco; Said, Mirra C; Valdes-Rodriguez, Rodrigo

    2016-01-01

    A 66-year-old woman presented with a 3 cm black, ulcerated nodule located on the skin of the upper abdomen, just below the breast. The lesion was painful to the touch, but the patient reported no other associated symptoms and was otherwise healthy. A 4-mm punch biopsy of the affected skin was obtained and the histological diagnosis was cutaneous metastatic pigmented breast carcinoma. PMID:27136637

  2. Nanoscience of an ancient pigment.

    PubMed

    Johnson-McDaniel, Darrah; Barrett, Christopher A; Sharafi, Asma; Salguero, Tina T

    2013-02-01

    We describe monolayer nanosheets of calcium copper tetrasilicate, CaCuSi(4)O(10), which have strong near-IR luminescence and are amenable to solution processing methods. The facile exfoliation of bulk CaCuSi(4)O(10) into nanosheets is especially surprising in view of the long history of this material as the colored component of Egyptian blue, a well-known pigment from ancient times. PMID:23215240

  3. Pigment Cell Progenitors in Zebrafish Remain Multipotent through Metamorphosis.

    PubMed

    Singh, Ajeet Pratap; Dinwiddie, April; Mahalwar, Prateek; Schach, Ursula; Linker, Claudia; Irion, Uwe; Nüsslein-Volhard, Christiane

    2016-08-01

    The neural crest is a transient, multipotent embryonic cell population in vertebrates giving rise to diverse cell types in adults via intermediate progenitors. The in vivo cell-fate potential and lineage segregation of these postembryonic progenitors is poorly understood, and it is unknown if and when the progenitors become fate restricted. We investigate the fate restriction in the neural crest-derived stem cells and intermediate progenitors in zebrafish, which give rise to three distinct adult pigment cell types: melanophores, iridophores, and xanthophores. By inducing clones in sox10-expressing cells, we trace and quantitatively compare the pigment cell progenitors at four stages, from embryogenesis to metamorphosis. At all stages, a large fraction of the progenitors are multipotent. These multipotent progenitors have a high proliferation ability, which diminishes with fate restriction. We suggest that multipotency of the nerve-associated progenitors lasting into metamorphosis may have facilitated the evolution of adult-specific traits in vertebrates. PMID:27453500

  4. Chlorophyll and carotenoid pigments in solar saltern microbial mats

    NASA Astrophysics Data System (ADS)

    Villanueva, Joan; Grimalt, Joan O.; de Wit, Rutger; Keely, Brendan J.; Maxwell, James R.

    1994-11-01

    The distributions of carotenoids, chlorophylls, and their degradation products have been studied in two microbial mat systems developed in the calcite and calcite/gypsum evaporite domains of a solar saltern system. Phormidium valderianum and Microcoleus chthonoplastes are the dominant cyanobacterial species, respectively, and large amounts of Chloroflexus-like bacteria occur in the carbonate/gypsum mat. In both systems, the major pigments are chlorophyll a, zeaxanthin, β-carotene and myxoxanthophyll, which originate from these mat-building cyanobacteria. This common feature contrasts with differences in other pigments that are specific for each mat community. Thus, chlorophyll c and fucoxanthin, reflecting diatom inputs, are only found in the calcite mat, whereas the calcite/gypsum mat contains high concentrations of bacteriochlorophylls c produced by the multicellular green filamentous bacteria. In both cases, the depth concentration profiles (0-30 and 0-40 mm) show a relatively good preservation of the cyanobacterial carotenoids, zeaxanthin, β-carotene, myxoxanthophyll, and echinenone. This contrasts with the extensive biodegradation of cyanobacterial remains observed microscopically. Fucoxanthin in the calcite mat is also transformed at a faster rate than the cyanobacterial carotenoids. Chlorophyll a, the major pigment in both mats, exhibits different transformation pathways. In the calcite/gypsum mat, it is transformed via C-13 2 carbomethoxy defunctionalization prior to loss of the phytyl chain, leading to the formation of pyrophaeophytin a and, subsequently, pyrophaeophorbide a. On the other hand, the occurrence of the enzyme chlorophyllase, attributed to diatoms in the calcite mat, gives rise to extensive phytyl hydrolysis, with the formation of chlorophyllide a, pyrophaeophorbide a and, in minor proportion, phaeophorbide a. Studies of the sources of the photosynthetic pigments and of their transformation pathways in such simplified ecosystems provide a

  5. Sequence Evolution and Expression of the Androgen Receptor and Other Pathway-Related Genes in a Unisexual Fish, the Amazon Molly, Poecilia formosa, and Its Bisexual Ancestors

    PubMed Central

    Zhu, Fangjun; Schlupp, Ingo; Tiedemann, Ralph

    2016-01-01

    The all-female Amazon molly (Poecilia formosa) originated from a single hybridization of two bisexual ancestors, Atlantic molly (Poecilia mexicana) and sailfin molly (Poecilia latipinna). As a gynogenetic species, the Amazon molly needs to copulate with a heterospecific male, but the genetic information of the sperm-donor does not contribute to the next generation, as the sperm only acts as the trigger for the diploid eggs’ embryogenesis. Here, we study the sequence evolution and gene expression of the duplicated genes coding for androgen receptors (ars) and other pathway-related genes, i.e., the estrogen receptors (ers) and cytochrome P450, family19, subfamily A, aromatase genes (cyp19as), in the Amazon molly, in comparison to its bisexual ancestors. Mollies possess–as most other teleost fish—two copies of the ar, er, and cyp19a genes, i.e., arα/arβ, erα/erβ1, and cyp19a1 (also referred as cyp19a1a)/cyp19a2 (also referred to as cyp19a1b), respectively. Non-synonymous single nucleotide polymorphisms (SNPs) among the ancestral bisexual species were generally predicted not to alter protein function. Some derived substitutions in the P. mexicana and one in P. formosa are predicted to impact protein function. We also describe the gene expression pattern of the ars and pathway-related genes in various tissues (i.e., brain, gill, and ovary) and provide SNP markers for allele specific expression research. As a general tendency, the levels of gene expression were lowest in gill and highest in ovarian tissues, while expression levels in the brain were intermediate in most cases. Expression levels in P. formosa were conserved where expression did not differ between the two bisexual ancestors. In those cases where gene expression levels significantly differed between the bisexual species, P. formosa expression was always comparable to the higher expression level among the two ancestors. Interestingly, erβ1 was expressed neither in brain nor in gill in the analyzed

  6. Sequence divergence of the red and green visual pigments in great apes and humans.

    PubMed Central

    Deeb, S S; Jorgensen, A L; Battisti, L; Iwasaki, L; Motulsky, A G

    1994-01-01

    We have determined the coding sequences of red and green visual pigment genes of the chimpanzee, gorilla, and orangutan. The deduced amino acid sequences of these pigments are highly homologous to the equivalent human pigments. None of the amino acid differences occurred at sites that were previously shown to influence pigment absorption characteristics. Therefore, we predict the spectra of red and green pigments of the apes to have wavelengths of maximum absorption that differ by < 2 nm from the equivalent human pigments and that color vision in these nonhuman primates will be very similar, if not identical, to that in humans. A total of 14 within-species polymorphisms (6 involving silent substitutions) were observed in the coding sequences of the red and green pigment genes of the great apes. Remarkably, the polymorphisms at 6 of these sites had been observed in human populations, suggesting that they predated the evolution of higher primates. Alleles at polymorphic sites were often shared between the red and green pigment genes. The average synonymous rate of divergence of red from green sequences was approximately 1/10th that estimated for other proteins of higher primates, indicating the involvement of gene conversion in generating these polymorphisms. The high degree of homology and juxtaposition of these two genes on the X chromosome has promoted unequal recombination and/or gene conversion that led to sequence homogenization. However, natural selection operated to maintain the degree of separation in peak absorbance between the red and green pigments that resulted in optimal chromatic discrimination. This represents a unique case of molecular coevolution between two homologous genes that functionally interact at the behavioral level. PMID:8041777

  7. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    NASA Astrophysics Data System (ADS)

    Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B.

    2015-12-01

    The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce2O3 and CeO2 was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  8. Development, regeneration, and evolution of feathers.

    PubMed

    Chen, Chih-Feng; Foley, John; Tang, Pin-Chi; Li, Ang; Jiang, Ting Xin; Wu, Ping; Widelitz, Randall B; Chuong, Cheng Ming

    2015-01-01

    The feather is a complex ectodermal organ with hierarchical branching patterns. It provides functions in endothermy, communication, and flight. Studies of feather growth, cycling, and health are of fundamental importance to avian biology and poultry science. In addition, feathers are an excellent model for morphogenesis studies because of their accessibility, and their distinct patterns can be used to assay the roles of specific molecular pathways. Here we review the progress in aspects of development, regeneration, and evolution during the past three decades. We cover the development of feather buds in chicken embryos, regenerative cycling of feather follicle stem cells, formation of barb branching patterns, emergence of intrafeather pigmentation patterns, interplay of hormones and feather growth, and the genetic identification of several feather variants. The discovery of feathered dinosaurs redefines the relationship between feathers and birds. Inspiration from biomaterials and flight research further fuels biomimetic potential of feathers as a multidisciplinary research focal point. PMID:25387232

  9. Non-photosynthetic pigments as potential biosignatures

    NASA Astrophysics Data System (ADS)

    Schwieterman, E. W.; Cockell, C. S.; Meadows, V. S.

    2014-03-01

    Photosynthetic organisms on Earth produce potentially detectable surface reflectance biosignatures due in part to the spectral location and strength of pigment absorption. However, life on Earth uses pigments for a multitude of purposes other than photosynthesis, including coping with extreme environments. Macroscopic environments exist on Earth where the surface reflectance is significantly altered by a nonphotosynthetic pigment, such as the case of hypersaline lakes and ponds (Oren et al. 1992). Here we explore the nature and potential detectability of non-photosynthetic pigments in disk-averaged planetary observations using a combination of laboratory measurements and archival reflectance spectra, along with simulated broadband photometry and spectra. The in vivo visible reflectance spectra of a cross section of pigmented microorganisms are presented to illustrate the spectral diversity of biologically produced pigments. Synthetic broadband colors are generated to show a significant spread in color space. A 1D radiative transfer model (Meadows & Crisp 1996; Crisp 1997) is used to approximate the spectra of scenarios where pigmented organisms are widespread on planets with Earth-like atmospheres. Broadband colors are revisited to show that colors due to surface reflectivity are not robust to the addition of scattering and absorption effects from the atmosphere. We consider a èbest case' plausible scenario for the detection of nonphotosynthetic pigments by using the Virtual Planetary Laboratory's 3D spectral Earth model (Robinson et al. 2011) to explore the detectability of the surface biosignature produced by pigmented halophiles that are widespread on an Earth-analog planet.

  10. Pigmented Lesion of Buccal Mucosa

    PubMed Central

    Bajpai, Manas; Kumar, Malay; Kumar, Manish; Agarwal, Deshant

    2014-01-01

    Pigmented lesions are commonly found in the mouth. Such lesions represent a variety of clinical entities, ranging from physiologic changes to manifestation of systemic illness and malignant neoplasm. Diagnosis of such lesions requires a proper case history, extraoral and intraoral examination, and, in some cases, biopsy, aspiration cytology, and laboratory investigations. Here we present a case of purple lesion on the buccal mucosa of a 34-year-old male patient which was provisionally diagnosed as mucocele but on the basis of histopathological picture it was finally diagnosed as angiofibroma, and we also discuss the clinical and histopathological differential diagnosis. PMID:25161669

  11. Melanin pigmented solar absorbing surfaces

    SciTech Connect

    Gallas, J.M.; Eisner, M.

    1980-01-01

    Selectivity enhancement is shown to result for melanin, a black biopolymer pigment, for sufficiently low sample density. The effect is proposed to follow from a consideration of the evanescent waves associated with the total internal reflection phenomenon. A relationship is discussed among powder density, pH and the paramagnetic properties of melanin; this relationship is shown to be consistent with, and offer support to an amino-acid side group proposed earlier as part of the melanin structure. A brief discussion is also presented on the optical properties of melanin and the relative importance of quinhydrone, a change transfer complex believed to exist in the polymeric structure of melanin.

  12. Pigmented lesion of buccal mucosa.

    PubMed

    Bajpai, Manas; Kumar, Malay; Kumar, Manish; Agarwal, Deshant

    2014-01-01

    Pigmented lesions are commonly found in the mouth. Such lesions represent a variety of clinical entities, ranging from physiologic changes to manifestation of systemic illness and malignant neoplasm. Diagnosis of such lesions requires a proper case history, extraoral and intraoral examination, and, in some cases, biopsy, aspiration cytology, and laboratory investigations. Here we present a case of purple lesion on the buccal mucosa of a 34-year-old male patient which was provisionally diagnosed as mucocele but on the basis of histopathological picture it was finally diagnosed as angiofibroma, and we also discuss the clinical and histopathological differential diagnosis. PMID:25161669

  13. The evolution of subglacial water pathways and catchment areas derived from observed ICESat and CryoSat-2 ice surface elevation changes at the Siple Coast, Antarctica

    NASA Astrophysics Data System (ADS)

    Goeller, Sebastian; Thoma, Malte; Grosfeld, Klaus

    2014-05-01

    The mass export of the West Antarctic Ice Sheet (WAIS) is dominated by fast flowing ice streams which transport ice from the interior of the ice sheet towards its coast lines with velocities of several hundred meters per year. Understanding their dynamics is considered as a key to estimate the contributions of the WAIS to global sea level rise. This study focuses on the Ross Ice Streams (RIS) at the Siple Coast where observations reveal a high variability of ice stream pathways and velocities in the past. A widely spread and meters thick basal layer of unconsolidated sediments beneath the ice sheet creates the precondition for high basal sliding rates by sediment deformation. However, the exact locations of the RIS are determined by the pathways of basal melt water flow. We compute the subglacial water flow paths for the present-day ice sheet geometry with a balance flux approach and find high correlations between areas of enhanced subglacial water flow and the locations of the RIS. Moreover, the ice flow velocities of the particular ice streams are found to be correlated with the sizes of the water catchment areas draining underneath. For projections we apply surface elevation change rates observed by ICESat and CryoSat-2 to the present-day ice sheet geometry for 200 years and thus estimate the evolution of basal water pathways and catchment areas at the Siple Coast. The results of the simulations using the elevation change rates derived by the particular satellite campaigns show a high consistency. According to them, a major hydraulic tributary of the Kamb and Whillans Ice Stream (KIS and WIS) will be redirected underneath the Bindschadler Ice Stream (BIS) within the next 200 years. The water catchment area feeding underneath the BIS is estimated to grow by about 50% while the lower part of the stagnated KIS becomes increasingly separated from the upper hydraulic tributaries of the Siple Coast. This might be a continuation of the subglacial hydraulic processes

  14. Structural evolution and tissue-specific expression of tetrapod-specific second isoform of secretory pathway Ca{sup 2+}-ATPase

    SciTech Connect

    Pestov, Nikolay B.; Dmitriev, Ruslan I.; Kostina, Maria B.; Korneenko, Tatyana V.; Shakhparonov, Mikhail I.; Modyanov, Nikolai N.

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Full-length secretory pathway Ca-ATPase (SPCA2) cloned from rat duodenum. Black-Right-Pointing-Pointer ATP2C2 gene (encoding SPCA2) exists only in genomes of Tetrapoda. Black-Right-Pointing-Pointer Rat and pig SPCA2 are expressed in intestines, lung and some secretory glands. Black-Right-Pointing-Pointer Subcellular localization of SPCA2 may depend on tissue type. Black-Right-Pointing-Pointer In rat duodenum, SPCA2 is localized in plasma membrane-associated compartments. -- Abstract: Secretory pathway Ca-ATPases are less characterized mammalian calcium pumps than plasma membrane Ca-ATPases and sarco-endoplasmic reticulum Ca-ATPases. Here we report analysis of molecular evolution, alternative splicing, tissue-specific expression and subcellular localization of the second isoform of the secretory pathway Ca-ATPase (SPCA2), the product of the ATP2C2 gene. The primary structure of SPCA2 from rat duodenum deduced from full-length transcript contains 944 amino acid residues, and exhibits 65% sequence identity with known SPCA1. The rat SPCA2 sequence is also highly homologous to putative human protein KIAA0703, however, the latter seems to have an aberrant N-terminus originating from intron 2. The tissue-specificity of SPCA2 expression is different from ubiquitous SPCA1. Rat SPCA2 transcripts were detected predominantly in gastrointestinal tract, lung, trachea, lactating mammary gland, skin and preputial gland. In the newborn pig, the expression profile is very similar with one remarkable exception: porcine bulbourethral gland gave the strongest signal. Upon overexpression in cultured cells, SPCA2 shows an intracellular distribution with remarkable enrichment in Golgi. However, in vivo SPCA2 may be localized in compartments that differ among various tissues: it is intracellular in epidermis, but enriched in plasma membranes of the intestinal epithelium. Analysis of SPCA2 sequences from various vertebrate species argue that ATP2C2

  15. THE PROTEASOME IS A TARGET OF OXIDATIVE DAMAGE IN HUMAN RETINA PIGMENT EPITHELIAL CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: Dysfunction of the ubiquitin-proteasome pathway (UPP) is associated with several age-related degenerative diseases. The objective of this study is to investigate the effect of oxidative stress on the UPP in retina pigment epithelial cells. Methods: To mimic physiological oxidative stress...

  16. Proteasome-dependent regulation of signal transduction in retinal pigment epithelial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As in many other types of cells, retinal pigment epithelial (RPE) cells have an active ubiquitin-proteasome pathway (UPP). However, the function of the UPP in RPE remains to be elucidated. The objective of this study is to determine the role of the UPP in controlling the levels and activities of tra...

  17. Identification of microbial pigments in evaporitic matrices using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Vítek, Petr; Jehlička, Jan; Edwards, Howell G. M.; Wierzchos, Jacek

    2010-05-01

    An evaporitic environment is considered as one of the possible habitats for life on Mars. From terrestrial geological scenarios we know that microorganisms inhabiting such an extreme environment (halophiles) are rich in protective pigments, depending on the metabolic pathways and specific adaptation to the harsh environmental conditions. Carotenoids typically occur within the cells of halophiles (bacteria, archaea as well as eukaryotic algae) in large amounts as part of their photosystem and protective adaptation to high doses of UV radiation that are typical for most recent evaporitic environments. Chlorophyll occurs in halophilic cyanobacteria together with carotenoids and possibly other pigments which are synthetised in response to the high UV radiation insolation. Here we present the results of Raman spectroscopic investigations of a) beta-carotene in experimentally prepared mixtures with halite, gypsum and epsomite; and b) cyanobacterial colonies inhabiting real halite and gypsum matrices in the Atacama Desert. Our results demonstrate the possibility of detection of beta-carotene - a typical carotenoid - in relatively low concentrations within the evaporitic powdered mixtures; the lowest concentration of carotenoid signal detected was 0,1 mg kg-1, which represents 100 ppb. Raman spectroscopic analyses of natural specimens (endolithic cyanobacteria) from the Atacama desert revealed the presence of scytonemin, an extremely efficient UV protective pigment, carotenoids of various types and chlorophyll. The detection potential as well as limitations of Raman spectroscopy as a part of a payload within future robotic space missions focused on the search for life on Mars is discussed.

  18. Visual pigments in a palaeognath bird, the emu Dromaius novaehollandiae: implications for spectral sensitivity and the origin of ultraviolet vision.

    PubMed

    Hart, Nathan S; Mountford, Jessica K; Davies, Wayne I L; Collin, Shaun P; Hunt, David M

    2016-07-13

    A comprehensive description of the spectral characteristics of retinal photoreceptors in palaeognaths is lacking. Moreover, controversy exists with respect to the spectral sensitivity of the short-wavelength-sensitive-1 (SWS1) opsin-based visual pigment expressed in one type of single cone: previous microspectrophotometric (MSP) measurements in the ostrich (Struthio camelus) suggested a violet-sensitive (VS) SWS1 pigment, but all palaeognath SWS1 opsin sequences obtained to date (including the ostrich) imply that the visual pigment is ultraviolet-sensitive (UVS). In this study, MSP was used to measure the spectral properties of visual pigments and oil droplets in the retinal photoreceptors of the emu (Dromaius novaehollandiae). Results show that the emu resembles most other bird species in possessing four spectrally distinct single cones, as well as double cones and rods. Four cone and a single rod opsin are expressed, each an orthologue of a previously identified pigment. The SWS1 pigment is clearly UVS (wavelength of maximum absorbance [λmax] = 376 nm), with key tuning sites (Phe86 and Cys90) consistent with other vertebrate UVS SWS1 pigments. Palaeognaths would appear, therefore, to have UVS SWS1 pigments. As they are considered to be basal in avian evolution, this suggests that UVS is the most likely ancestral state for birds. The functional significance of a dedicated UVS cone type in the emu is discussed. PMID:27383819

  19. Visual pigments in a living fossil, the Australian lungfish Neoceratodus forsteri

    PubMed Central

    Bailes, Helena J; Davies, Wayne L; Trezise, Ann EO; Collin, Shaun P

    2007-01-01

    Background One of the greatest challenges facing the early land vertebrates was the need to effectively interpret a terrestrial environment. Interpretation was based on ocular adaptations evolved for an aquatic environment millions of years earlier. The Australian lungfish Neoceratodus forsteri is thought to be the closest living relative to the first terrestrial vertebrate, and yet nothing is known about the visual pigments present in lungfish or the early tetrapods. Results Here we identify and characterise five visual pigments (rh1, rh2, lws, sws1 and sws2) expressed in the retina of N. forsteri. Phylogenetic analysis of the molecular evolution of lungfish and other vertebrate visual pigment genes indicates a closer relationship between lungfish and amphibian pigments than to pigments in teleost fishes. However, the relationship between lungfish, the coelacanth and tetrapods could not be absolutely determined from opsin phylogeny, supporting an unresolved trichotomy between the three groups. Conclusion The presence of four cone pigments in Australian lungfish suggests that the earliest tetrapods would have had a colorful view of their terrestrial environment. PMID:17961206

  20. Genetic variations associated with six-white-point coat pigmentation in Diannan small-ear pigs

    PubMed Central

    Lü, Meng-Die; Han, Xu-Man; Ma, Yun-Fei; Irwin, David M.; Gao, Yun; Deng, Jia-Kun; Adeola, Adeniyi C.; Xie, Hai-Bing; Zhang, Ya-Ping

    2016-01-01

    A common phenotypic difference among domestic animals is variation in coat color. Six-white-point is a pigmentation pattern observed in varying pig breeds, which seems to have evolved through several different mechanistic pathways. Herein, we re-sequenced whole genomes of 31 Diannan small-ear pigs from China and found that the six-white-point coat color in Diannan small-ear pigs is likely regulated by polygenic loci, rather than by the MC1R locus. Strong associations were observed at three loci (EDNRB, CNTLN, and PINK1), which explain about 20 percent of the total coat color variance in the Diannan small-ear pigs. We found a mutation that is highly differentiated between six-white-point and black Diannan small-ear pigs, which is located in a conserved noncoding sequence upstream of the EDNRB gene and is a putative binding site of the CEBPB protein. This study advances our understanding of coat color evolution in Diannan small-ear pigs and expands our traditional knowledge of coat color being a monogenic trait. PMID:27270507

  1. Genetic variations associated with six-white-point coat pigmentation in Diannan small-ear pigs.

    PubMed

    Lü, Meng-Die; Han, Xu-Man; Ma, Yun-Fei; Irwin, David M; Gao, Yun; Deng, Jia-Kun; Adeola, Adeniyi C; Xie, Hai-Bing; Zhang, Ya-Ping

    2016-01-01

    A common phenotypic difference among domestic animals is variation in coat color. Six-white-point is a pigmentation pattern observed in varying pig breeds, which seems to have evolved through several different mechanistic pathways. Herein, we re-sequenced whole genomes of 31 Diannan small-ear pigs from China and found that the six-white-point coat color in Diannan small-ear pigs is likely regulated by polygenic loci, rather than by the MC1R locus. Strong associations were observed at three loci (EDNRB, CNTLN, and PINK1), which explain about 20 percent of the total coat color variance in the Diannan small-ear pigs. We found a mutation that is highly differentiated between six-white-point and black Diannan small-ear pigs, which is located in a conserved noncoding sequence upstream of the EDNRB gene and is a putative binding site of the CEBPB protein. This study advances our understanding of coat color evolution in Diannan small-ear pigs and expands our traditional knowledge of coat color being a monogenic trait. PMID:27270507

  2. [Pigmented lesions of the oral cavity].

    PubMed

    Brocheriou, C; Kuffer, R; Verola, O

    1985-01-01

    Pigmented lesions of the oral cavity are of multiple origin. They can be subdivided as follows: non tumoral pigmentations, non melanin pigmented tumors or tumor-like lesions, benign melanin pigmented tumors and malignant melanomas. Among non tumoral pigmented lesions, some of them show melanin deposits: they can be associated with a systemic disease (Peutz Jeghers syndrome, Addison's disease) or have a medicamentous origin, or belong to a lichen migricans. Non tumoral and non melanin pigmentations are principally due to a heavy metal accumulation or an accidental tatoo arising after tooth treatment. Peripheral giant cell granuloma, so-called giant cell epulis is the major non pigmented non melanin pseudotumoral lesion; pigmentation is due to hemosiderin deposits. In the oral cavity nevi are principally of the intramucosal type. Blue nevus, the second type in frequency, is usually located on the hard palate. Primary malignant melanomas are rare in the oral cavity, but it is--because its very bad prognosis--the most important lesion. In order to improve the survival it is necessary to do the diagnosis as early as possible. PMID:3833244

  3. Endocrine factors as effectors of integumental pigmentation.

    PubMed

    Abdel-Malek, Z A

    1988-04-01

    Normal and malignant pigment cells are known targets for many hormones. Besides alpha-melanocyte-stimulating hormone and the steroidal hormones estrogen, testosterone, and glucocorticoids, factors produced by other epidermal cells can affect melanization and proliferation of pigment cells. Among those factors are the prostaglandins, vitamin D3, ETAF, and interleukin-1. PMID:3132340

  4. Thin Layer Chromatography (TLC) of Chlorophyll Pigments.

    ERIC Educational Resources Information Center

    Foote, Jerry

    1984-01-01

    Background information, list of materials needed, procedures used, and discussion of typical results are provided for an experiment on the thin layer chromatography of chlorophyll pigments. The experiment works well in high school, since the chemicals used are the same as those used in paper chromatography of plant pigments. (JN)

  5. ORGANIC DYES AND PIGMENTS DATA BASE

    EPA Science Inventory

    The objective of this research program was to compile a data base covering all the commercially significant dyes and pigments produced or imported in the United States. The Organic Dyes and Pigments Data Base (ODPDB) contains the following data elements: chemical-related data (co...

  6. The bioefficacy of microemulsified natural pigments in egg yolk pigmentation.

    PubMed

    Chow, P Y; Gue, S Z; Leow, S K; Goh, L B

    2014-01-01

    1. This study was designed to test the hypothesis that microemulsified carotenoid products show improved bioavailability over corresponding regular preparations, leading to greater yolk pigmentation at lower dosages. 2. The first trial was conducted using a maize-soya bean basal diet supplemented with either 0.25, 0.5, 0.75, 1.0 and 1.25 g/kg of microemulsified Red or non-microemulsified Red. The second trial involved feeding microemulsified Yellow or non-microemulsified Yellow using a similar dosage range. The layers were divided into 4 replicates of 8 layers each (32 layers per treatment). The 8 cages of layers were fed from a single feed trough. Feed and water were provided ad libitum throughout the trial. Each week, the eggs were collected. The whole liquid egg colour was determined by means of a commercially available yolk colour fan. Where required, HPLC-(high-performance liquid chromatography) based analysis of trans-capsanthin or trans-lutein equivalents using the Association of Analytical Communities method was carried out. Data were statistically analysed by one-way ANOVA method using Statgraphics. 3. Results showed that the colour and carotenoid content of the egg yolk increased with increasing amount of carotenoids in the diet. The colour of egg yolks from layers fed similar concentrations of microemulsified versus the regular preparation was significantly different. At the commercial recommended dose of one g/kg regular Yellow or Red product, the microemulsified pigmenter is able to provide the equivalent yolk colour at a 20-30% lower dose. 4. In conclusion, the trial results supported the hypothesis that a desired yolk colour score is achievable at a significantly lower inclusion rate when carotenoid molecules are emulsified using the microemulsion nanotechnology. PMID:24783946

  7. Identification of Shell Colour Pigments in Marine Snails Clanculus pharaonius and C. margaritarius (Trochoidea; Gastropoda)

    PubMed Central

    Ito, S.; Wakamatsu, K.; Goral, T.; Edwards, N. P.; Wogelius, R. A.; Henkel, T.; de Oliveira, L. F. C.; Maia, L. F.; Strekopytov, S.; Speiser, D. I.; Marsden, J. T.

    2016-01-01

    Colour and pattern are key traits with important roles in camouflage, warning and attraction. Ideally, in order to begin to understand the evolution and ecology of colour in nature, it is important to identify and, where possible, fully characterise pigments using biochemical methods. The phylum Mollusca includes some of the most beautiful exemplars of biological pigmentation, with the vivid colours of sea shells particularly prized by collectors and scientists alike. Biochemical studies of molluscan shell colour were fairly common in the last century, but few of these studies have been confirmed using modern methods and very few shell pigments have been fully characterised. Here, we use modern chemical and multi-modal spectroscopic techniques to identify two porphyrin pigments and eumelanin in the shell of marine snails Clanculus pharaonius and C margaritarius. The same porphyrins were also identified in coloured foot tissue of both species. We use high performance liquid chromatography (HPLC) to show definitively that these porphyrins are uroporphyrin I and uroporphyrin III. Evidence from confocal microscopy analyses shows that the distribution of porphyrin pigments corresponds to the striking pink-red of C. pharaonius shells, as well as pink-red dots and lines on the early whorls of C. margaritarius and yellow-brown colour of later whorls. Additional HPLC results suggest that eumelanin is likely responsible for black spots. We refer to the two differently coloured porphyrin pigments as trochopuniceus (pink-red) and trochoxouthos (yellow-brown) in order to distinguish between them. Trochopuniceus and trochoxouthos were not found in the shell of a third species of the same superfamily, Calliostoma zizyphinum, despite its superficially similar colouration, suggesting that this species has different shell pigments. These findings have important implications for the study of colour and pattern in molluscs specifically, but in other taxa more generally, since this

  8. Identification of Shell Colour Pigments in Marine Snails Clanculus pharaonius and C. margaritarius (Trochoidea; Gastropoda).

    PubMed

    Williams, S T; Ito, S; Wakamatsu, K; Goral, T; Edwards, N P; Wogelius, R A; Henkel, T; de Oliveira, L F C; Maia, L F; Strekopytov, S; Jeffries, T; Speiser, D I; Marsden, J T

    2016-01-01

    Colour and pattern are key traits with important roles in camouflage, warning and attraction. Ideally, in order to begin to understand the evolution and ecology of colour in nature, it is important to identify and, where possible, fully characterise pigments using biochemical methods. The phylum Mollusca includes some of the most beautiful exemplars of biological pigmentation, with the vivid colours of sea shells particularly prized by collectors and scientists alike. Biochemical studies of molluscan shell colour were fairly common in the last century, but few of these studies have been confirmed using modern methods and very few shell pigments have been fully characterised. Here, we use modern chemical and multi-modal spectroscopic techniques to identify two porphyrin pigments and eumelanin in the shell of marine snails Clanculus pharaonius and C margaritarius. The same porphyrins were also identified in coloured foot tissue of both species. We use high performance liquid chromatography (HPLC) to show definitively that these porphyrins are uroporphyrin I and uroporphyrin III. Evidence from confocal microscopy analyses shows that the distribution of porphyrin pigments corresponds to the striking pink-red of C. pharaonius shells, as well as pink-red dots and lines on the early whorls of C. margaritarius and yellow-brown colour of later whorls. Additional HPLC results suggest that eumelanin is likely responsible for black spots. We refer to the two differently coloured porphyrin pigments as trochopuniceus (pink-red) and trochoxouthos (yellow-brown) in order to distinguish between them. Trochopuniceus and trochoxouthos were not found in the shell of a third species of the same superfamily, Calliostoma zizyphinum, despite its superficially similar colouration, suggesting that this species has different shell pigments. These findings have important implications for the study of colour and pattern in molluscs specifically, but in other taxa more generally, since this

  9. Melanin-Like Pigment Synthesis by Soil Bacillus weihenstephanensis Isolates from Northeastern Poland

    PubMed Central

    Drewnowska, Justyna M.; Zambrzycka, Monika; Kalska-Szostko, Beata; Fiedoruk, Krzysztof; Swiecicka, Izabela

    2015-01-01

    Although melanin is known for protecting living organisms from harmful physical and chemical factors, its synthesis is rarely observed among endospore-forming Bacillus cereus sensu lato. Here, for the first time, we reported that psychrotolerant Bacillus weihenstephanensis from Northeastern Poland can produce melanin-like pigment. We assessed physicochemical properties of the pigment and the mechanism of its synthesis in relation to B. weihenstephanensis genotypic and phenotypic characteristics. Electron paramagnetic resonance (EPR) spectroscopy displayed a stable free radical signal of the pigment from environmental isolates which are consistent with the commercial melanin. Fourier transform infrared spectroscopy (FT-IR) and physicochemical tests indicated the phenolic character of the pigment. Several biochemical tests showed that melanin-like pigment synthesis by B. weihenstephanensis was associated with laccase activity. The presence of the gene encoding laccase was confirmed by the next generation whole genome sequencing of one B. weihenstephanensis strain. Biochemical (API 20E and 50CHB tests) and genetic (Multi-locus Sequence Typing, 16S rRNA sequencing, and Pulsed-Field Gel Electrophoresis) characterization of the isolates revealed their close relation to the psychrotrophic B. weihenstephanensis DSMZ 11821 reference strain. The ability to synthesize melanin-like pigment by soil B. weihenstephanensis isolates and their psychrotrophic character seemed to be a local adaptation to a specific niche. Detailed genetic and biochemical analyses of melanin-positive environmental B. weihenstephanensis strains shed some light on the evolution and ecological adaptation of these bacteria. Moreover, our study raised new biotechnological possibilities for the use of water-soluble melanin-like pigment naturally produced by B. weihenstephanensis as an alternative to commercial non-soluble pigment. PMID:25909751

  10. Developing fungal pigments for "painting" vascular plants.

    PubMed

    Robinson, Sara C

    2012-02-01

    The use of fungal pigments as color additives to wood as a method to increase forest revenue is a relatively new, but quickly developing field. Sugar maple (Acer saccharum) is currently the primary utilized hardwood for spalting and appears to be the best suited North American hardwood for such purposes. The combination of Trametes versicolor and Bjerkandera adusta has been identified in several instances as a strong fungal pairing for zone line production; however, Xylaria polymorpha is capable of creating zone lines without the antagonism of a secondary fungus. Few fungal pigments have been developed for reliable use; Scytalidium cuboideum is capable of producing a penetrating pink/red stain, as well as a blue pigment after extended incubation, and Chlorociboria sp. produces a blue/green pigment if grown on aspen (Populus tremuloides). Several opportunities exist for stimulation of fungal pigments including the use of copper sulfate and changes in wood pH. PMID:22237673

  11. Bilateral pigmented villonodular synovitis of the knee

    PubMed Central

    Shah, Samir H.; Porrino, Jack A.; Green, John R.; Chew, Felix S.

    2015-01-01

    Pigmented villonodular synovitis is a disorder resulting in a villous, nodular, or villonodular proliferation of the synovium, with pigmentation related to the presence of hemosiderin. These lesions are almost exclusively benign with rare reports of malignancy. Pigmented villonodular synovitis can occur in a variety of joints and at any age but most often occurs within the knee in the young adult. Pigmented villonodular synovitis is a rare disease entity, and bilateral synchronous or metachronous involvement of a joint is even more uncommon, with few reports previously described in the literature. We present a case of pigmented villonodular synovitis involving both the right and left knee in the same patient, with radiographic imaging, magnetic resonance imaging, photograph and video intraoperative imaging, and pathologic correlation. PMID:26649121

  12. Widespread flower color convergence in Solanaceae via alternate biochemical pathways.

    PubMed

    Ng, Julienne; Smith, Stacey D

    2016-01-01

    Phenotypic convergence is rampant throughout the tree of life. While recent studies have made significant progress in ascertaining the proximate mechanisms underlying convergent phenotypes, less is known about the frequency and predictability with which convergent phenotypes arise via the same or multiple pathways at the macroevolutionary scale. We investigated the proximate causes and evolutionary patterns of red flower color in the tomato family, Solanaceae, using large-scale data mining and new sequence data to reconstruct a megaphylogeny of 1341 species. We then combined spectral and anatomical data to assess how many times red flowers have evolved, the relative contribution of different pathways to independent origins of red, and whether the underlying pathway is predicted by phylogenetic relatedness. We estimated at least 30 relatively recent origins of red flowers using anthocyanins, carotenoids, or a dual production of both pigments, with significant phylogenetic signal in the use of anthocyanins and dual production, indicating that closely related red-flowered species tend to employ the same mechanism for coloration. Our study is the first to test whether developmental pathways exhibit phylogenetic signal and implies that historical contingency strongly influences the evolution of new phenotypes. PMID:26224118

  13. Structure of plant bile pigments

    SciTech Connect

    Schoenleber, R.W.

    1983-12-01

    Selective peptide cleavage has provided a general procedure for the study of the structure, including stereochemistry, of plant bile pigments. The information derived from the synthesis and spectral analysis of a series of 2,3-dihydrodioxobilins allows the determination of the trans relative stereochemistry for ring A of the ..beta../sub 1/-phycocyanobilin from C-phycocyanin as well as for ring A of phytochrome. A complete structure proof of the five phycoerythrobilins attached to the ..cap alpha.. and ..beta.. subunits of B-phycoerythrin is described. One of these tetrapyrroles is doubly-peptide linked to a single peptide chain through two thioethers at the C-3' and C-18' positions. The four remaining phycoerythrobilins are singly-linked to the protein through thioethers at the C-3' position and all possess the probable stereochemistry C-2(R), C-3(R), C-3'(R), and C-16(R).

  14. The relationship between EZH2 expression and microRNA-31 in colorectal cancer and the role in evolution of the serrated pathway

    PubMed Central

    Kurihara, Hiroyoshi; Maruyama, Reo; Ishiguro, Kazuya; Kanno, Shinichi; Yamamoto, Itaru; Ishigami, Keisuke; Mitsuhashi, Kei; Igarashi, Hisayoshi; Ito, Miki; Tanuma, Tokuma; Sukawa, Yasutaka; Okita, Kenji; Hasegawa, Tadashi; Imai, Kohzoh; Yamamoto, Hiroyuki; Shinomura, Yasuhisa; Nosho, Katsuhiko

    2016-01-01

    Polycomb group protein enhancer of zeste homolog 2 (EZH2) is a methyltransferase that correlates with the regulation of invasion and metastasis and is overexpressed in human cancers such as colorectal cancer. MicroRNA-31 (miR-31) plays an oncogenic role and is associated with BRAF mutation and poor prognosis in colorectal cancer. EZH2 is functionally considered to suppress miR-31 expression in human cancers; however, no study has reported its relationship with colon cancer. We therefore evaluated EZH2 expression using immunohistochemistry and assessed miR-31 and epigenetic alterations using 301 colorectal carcinomas and 207 premalignant lesions. Functional analysis was performed to identify the association between EZH2 and miR-31 using cancer cell lines. In the current study, negative, weak, moderate, and strong EZH2 expressions were observed in 15%, 19%, 25%, and 41% of colorectal cancers, respectively. EZH2 was inversely associated with miR-31 (P < 0.0001), independent of clinicopathological and molecular features. In a multivariate stage-stratified analysis, high EZH2 expression was related to favorable prognosis (P = 0.0022). Regarding premalignant lesions, negative EZH2 expression was frequently detected in sessile serrated adenomas/polyps (SSA/Ps) (76%; P < 0.0001) compared with hyperplastic polyps, traditional serrated adenomas, and non-serrated adenomas (25–36%). Functional analysis demonstrated that the knockdown of EZH2 increased miR-31 expression. In conclusion, an inverse association was identified between EZH2 and miR-31 in colorectal cancers. Our data also showed that upregulation of EZH2 expression may be rare in SSA/Ps. These results suggest that EZH2 suppresses miR-31 in colorectal cancer and may correlate with differentiation and evolution of serrated pathway. PMID:26871294

  15. UV signaling pathways within the skin

    PubMed Central

    Chen, Hongxiang; Weng, Qing Yu; Fisher, David E.

    2014-01-01

    The effects of UVR on the skin include tanning, carcinogenesis, immunomodulation, and synthesis of vitamin D, among others. Melanocortin 1 receptor polymorphisms correlate with skin pigmentation, UV sensitivity, and skin cancer risk. This article reviews pathways through which UVR induces cutaneous stress and the pigmentation response. Modulators of the UV tanning pathway include sunscreen agents, MC1R activators, adenylate cyclase activators, phosphodiesterase 4D3 inhibitors, T oligos, and MITF regulators such as histone deacetylase (HDAC)-inhibitors. UVR, as one of the most ubiquitous carcinogens, represents both a challenge and enormous opportunity in skin cancer prevention. PMID:24759085

  16. Chicken genomics: feather-pecking and victim pigmentation.

    PubMed

    Keeling, Linda; Andersson, Leif; Schütz, Karin E; Kerje, Susanne; Fredriksson, Robert; Carlborg, Orjan; Cornwallis, Charles K; Pizzari, Tommaso; Jensen, Per

    2004-10-01

    Feather-pecking in domestic birds is associated with cannibalism and severe welfare problems. It is a dramatic example of a spiteful behaviour in which the victim's fitness is reduced for no immediate direct benefit to the perpetrator and its evolution is unexplained. Here we show that the plumage pigmentation of a chicken may predispose it to become a victim: birds suffer more drastic feather-pecking when the colour of their plumage is due to the expression of a wild recessive allele at PMEL17, a gene that controls plumage melanization, and when these birds are relatively common in a flock. These findings, obtained using an intercross between a domestic fowl and its wild ancestor, have implications for the welfare of domestic species and offer insight into the genetic changes associated with the evolution of feather-pecking during the early stages of domestication. PMID:15470416

  17. Surgical Management of Iatrogenic Pigment Dispersion Glaucoma

    PubMed Central

    Mierlo, Camille Van; Pinto, Luis Abegão

    2015-01-01

    ABSTRACT Introduction: Iatrogenic pigment dispersion syndrome generally originates from a repetitive, mechanical trauma to the pigmented posterior epithelium of the iris. This trauma can arise after intraocular surgery, most commonly due to an abnormal contact between the intraocular lens (IOL) and the iris. Whether surgical removal of this primary insult can lead to a successful intraocular pressure (IOP) control remains unclear. Methods: Case-series. Patients with IOP elevation and clinical signs of pigment dispersion were screened for a diagnosis of iatrogenic IOL-related pigment dispersion. Results: Three patients in which the IOL or the IOL-bag complex caused a pigment dispersion through a repetitive iris chafing were selected. In two cases, replacement of a sulcus-based single-piece IOL (patient 1) or a sub-luxated in-the-bag IOL (patient 2) by an anterior-chamber (AC) iris-fixed IOL led to a sustained decrease in IOP. In the third case, extensive iris atrophy and poor anatomical AC parameters for IOL implantation precluded further surgical intervention. Conclusion: IOL-exchange appears to be a useful tool in the management of iatrogenic pigment dispersion glaucoma due to inappropriate IOL implantation. This cause-oriented approach seems to be effective in controlling IOP, but should be offered only if safety criteria are met. How to cite this article: Van Mierlo C, Abegao Pinto L, Stalmans I. Surgical Management of Iatrogenic Pigment Dispersion Glaucoma. J Curr Glaucoma Pract 2015;9(1):28-32. PMID:26997830

  18. Surface modification for aluminium pigment inhibition.

    PubMed

    Karlsson, Philip; Palmqvist, Anders E C; Holmberg, Krister

    2006-12-21

    This review concerns surface treatment of aluminium pigments for use in water borne coatings. Aluminium pigments are commonly used in coatings to give a silvery and shiny lustre to the substrate. Such paints and inks have traditionally been solvent borne, since aluminium pigment particles react with water. For environmental and health reasons solvent borne coatings are being replaced by water borne and the aluminium pigments then need to be surface modified in order to stand exposure to water. This process is called inhibition and both organic and inorganic substances are used as inhibiting agents. The organic inhibiting agents range from low molecular weight substances, such as phenols and aromatic acids, via surfactants, in particular alkyl phosphates and other anionic amphiphiles, to high molecular weight compounds, such as polyelectrolytes. A common denominator for them all is that they contain a functional group that interacts specifically with aluminium at the surface. A particularly strong interaction is obtained if the inhibiting agent contains functional groups that form chelating complex with surface Al(III). Encapsulation of the pigment can be made by in situ polymerization at the surface of the pigment and a recent approach is to have the polymerization occur within a double layer of adsorbed surfactant. The inorganic route is dominated by coating with silica, and recent progress has been made using an alkoxide, such as tetraethoxysilane as silica precursor. Such silica coated aluminium pigments are comparable in performance to chromate inhibited pigments and thus offer a possible heavy metal-free alternative. There are obvious connections between surface modifications made to prevent the pigment to react with water and inhibition of corrosion of macroscopic aluminium surfaces. PMID:17239333

  19. Exosomes released by keratinocytes modulate melanocyte pigmentation

    PubMed Central

    Cicero, Alessandra Lo; Delevoye, Cédric; Gilles-Marsens, Floriane; Loew, Damarys; Dingli, Florent; Guéré, Christelle; André, Nathalie; Vié, Katell; van Niel, Guillaume; Raposo, Graça

    2015-01-01

    Cells secrete extracellular vesicles (EVs), exosomes and microvesicles, which transfer proteins, lipids and RNAs to regulate recipient cell functions. Skin pigmentation relies on a tight dialogue between keratinocytes and melanocytes in the epidermis. Here we report that exosomes secreted by keratinocytes enhance melanin synthesis by increasing both the expression and activity of melanosomal proteins. Furthermore, we show that the function of keratinocyte-derived exosomes is phototype-dependent and is modulated by ultraviolet B. In sum, this study uncovers an important physiological function for exosomes in human pigmentation and opens new avenues in our understanding of how pigmentation is regulated by intercellular communication in both healthy and diseased states. PMID:26103923

  20. Exosomes released by keratinocytes modulate melanocyte pigmentation.

    PubMed

    Lo Cicero, Alessandra; Delevoye, Cédric; Gilles-Marsens, Floriane; Loew, Damarys; Dingli, Florent; Guéré, Christelle; André, Nathalie; Vié, Katell; van Niel, Guillaume; Raposo, Graça

    2015-01-01

    Cells secrete extracellular vesicles (EVs), exosomes and microvesicles, which transfer proteins, lipids and RNAs to regulate recipient cell functions. Skin pigmentation relies on a tight dialogue between keratinocytes and melanocytes in the epidermis. Here we report that exosomes secreted by keratinocytes enhance melanin synthesis by increasing both the expression and activity of melanosomal proteins. Furthermore, we show that the function of keratinocyte-derived exosomes is phototype-dependent and is modulated by ultraviolet B. In sum, this study uncovers an important physiological function for exosomes in human pigmentation and opens new avenues in our understanding of how pigmentation is regulated by intercellular communication in both healthy and diseased states. PMID:26103923

  1. Biological role of pigment production for the bacterial phytopathogen Pantoea stewartii subsp. stewartii.

    PubMed

    Mohammadi, Mojtaba; Burbank, Lindsey; Roper, M Caroline

    2012-10-01

    Pantoea stewartii subsp. stewartii, the causal agent of Stewart's wilt of sweet corn, produces a yellow carotenoid pigment. A nonpigmented mutant was selected from a bank of mutants generated by random transposon mutagenesis. The transposon insertion site was mapped to the crtB gene, encoding a putative phytoene synthase, an enzyme involved in the early steps of carotenoid biosynthesis. We demonstrate here that the carotenoid pigment imparts protection against UV radiation and also contributes to the complete antioxidant pathway of P. stewartii. Moreover, production of this pigment is regulated by the EsaI/EsaR quorum-sensing system and significantly contributes to the virulence of the pathogen in planta. PMID:22820327

  2. Preservation of hypericin and related polycyclic quinone pigments in fossil crinoids

    PubMed Central

    Wolkenstein, Klaus; Gross, Jürgen H; Falk, Heinz; Schöler, Heinz F

    2005-01-01

    The fringelite pigments, a group of phenanthroperylene quinones discovered in purple coloured specimens of the Upper Jurassic crinoid Liliocrinus, demonstrate exceptional preservation of organic compounds in macrofossils. Here we report the finding of hypericin and related phenanthroperylene quinones in Liliocrinus munsterianus from the original ‘Fringeli’ locality and in the Middle Triassic crinoid Carnallicrinus carnalli. Our results show that fringelites in fact consist of hypericin and closely related derivatives and that the stratigraphic range of phenanthroperylene quinones is much wider than previously known. The fossil occurrence of hypericin indicates a polyketide biosynthesis of hypericin-type pigments in Mesozoic crinoids analogous to similar polyketides, which occur in living crinoids. The common presence of a characteristic distribution pattern of the fossil pigments and related polycyclic aromatic hydrocarbons further suggests that this assemblage is the result of a stepwise degradation of hypericin via a general diagenetic pathway. PMID:16615212

  3. Gene Expression Analysis of Zebrafish Melanocytes, Iridophores, and Retinal Pigmented Epithelium Reveals Indicators of Biological Function and Developmental Origin

    PubMed Central

    Higdon, Charles W.; Mitra, Robi D.; Johnson, Stephen L.

    2013-01-01

    In order to facilitate understanding of pigment cell biology, we developed a method to concomitantly purify melanocytes, iridophores, and retinal pigmented epithelium from zebrafish, and analyzed their transcriptomes. Comparing expression data from these cell types and whole embryos allowed us to reveal gene expression co-enrichment in melanocytes and retinal pigmented epithelium, as well as in melanocytes and iridophores. We found 214 genes co-enriched in melanocytes and retinal pigmented epithelium, indicating the shared functions of melanin-producing cells. We found 62 genes significantly co-enriched in melanocytes and iridophores, illustrative of their shared developmental origins from the neural crest. This is also the first analysis of the iridophore transcriptome. Gene expression analysis for iridophores revealed extensive enrichment of specific enzymes to coordinate production of their guanine-based reflective pigment. We speculate the coordinated upregulation of specific enzymes from several metabolic pathways recycles the rate-limiting substrate for purine synthesis, phosphoribosyl pyrophosphate, thus constituting a guanine cycle. The purification procedure and expression analysis described here, along with the accompanying transcriptome-wide expression data, provide the first mRNA sequencing data for multiple purified zebrafish pigment cell types, and will be a useful resource for further studies of pigment cell biology. PMID:23874447

  4. Ethnic and Mouse Strain Differences in Central Corneal Thickness and Association with Pigmentation Phenotype

    PubMed Central

    Dimasi, David P.; Hewitt, Alex W.; Kagame, Kenneth; Ruvama, Sam; Tindyebwa, Ludovica; Llamas, Bastien; Kirk, Kirsty A.; Mitchell, Paul; Burdon, Kathryn P.; Craig, Jamie E.

    2011-01-01

    The cornea is a transparent structure that permits the refraction of light into the eye. Evidence from a range of studies indicates that central corneal thickness (CCT) is strongly genetically determined. Support for a genetic component comes from data showing significant variation in CCT between different human ethnic groups. Interestingly, these studies also appear to show that skin pigmentation may influence CCT. To validate these observations, we undertook the first analysis of CCT in an oculocutaneous albinism (OCA) and Ugandan cohort, populations with distinct skin pigmentation phenotypes. There was a significant difference in the mean CCT of the OCA, Ugandan and Australian-Caucasian cohorts (Ugandan: 517.3±37 µm; Caucasian: 539.7±32.8 µm, OCA: 563.3±37.2 µm; p<0.001). A meta-analysis of 53 studies investigating the CCT of different ethnic groups was then performed and demonstrated that darker skin pigmentation is associated with a thinner CCT (p<0.001). To further verify these observations, we measured CCT in 13 different inbred mouse strains and found a significant difference between the albino and pigmented strains (p = 0.008). Specific mutations within the melanin synthesis pathway were then investigated in mice for an association with CCT. Significant differences between mutant and wild type strains were seen with the nonagouti (p<0.001), myosin VA (p<0.001), tyrosinase (p = 0.025) and tyrosinase related protein (p = 0.001) genes. These findings provide support for our hypothesis that pigmentation is associated with CCT and identifies pigment-related genes as candidates for developmental determination of a non-pigmented structure. PMID:21853026

  5. Spectropolarimetry of Photosynthetic Pigments as Global Surface Biosignatures

    NASA Astrophysics Data System (ADS)

    Sparks, W. B.; Parenteau, M. N.; Blankenship, R. E.; Germer, T. A.; Meadows, V. S.; Telesco, C. M.

    2015-12-01

    Photosynthesis is an ancient metabolic process on the early Earth. The most primitive phototrophs used reductants such as H2, H2S, and Fe(II) and were widespread in marine, intertidal, and likely continental habitats. These anoxygenic phototrophs were the key primary producers for the first ~1 billion years before the evolution of oxygenic photosynthesis at 2.7 Ga. The potential clearly exists for this type of primitive photosynthesis to operate on habitable exoplanets. Anoxygenic phototrophs are not known to emit gases that are uniquely biogenic in origin, so we focus on surface pigments signatures as having the strongest promise to offer identifiable biosignatures for a pre-oxygenic habitable exoplanet. Following our earlier work that showed photosynthetic cyanobacteria yield a polarization signature potentially useful in remote sensing, here we seek to characterize the remotely detectable polarization biosignatures associated with anoxygenic phototrophs. The six major pigments of anoxygenic phototrophs (bacteriochlorophylls [Bchls]) absorb in the near-infrared (NIR) from ~705 - 1040 nm. The lower symmetry of the pigment structure relative to chlorophylls shifts the energy absorption bands to longer wavelengths. As a result, Bchls are well suited to absorbing the relatively higher flux of red and NIR radiation of M dwarf stars, the most abundant type of star in the Galaxy, as well as the plentiful flux of typical main sequence stars. Homochirality is a powerful biosignature, and because of the optical activity of biological molecules, it can, in principle, be remotely observed on macroscopic scales using circular polarization spectroscopy. Bchls and Chls are optically active molecules with several chiral centers, strongly interacting with the incident light. We measured the reflectance and transmission full Stokes polarization spectra of pure cultures of anoxygenic phototrophs and environmental samples of microbial mats, and found strong correlations between

  6. Conservation of the chromatophore pigment response.

    PubMed

    Dukovcic, Stephanie R; Hutchison, Janine R; Trempy, Janine E

    2010-08-01

    Toxicant sensing technology has evolved to include biological sensors, such as cell-based biosensors, which rely on viable cells to convey a measurable physiological signal. Chromatophores are a class of pigment cells that have been investigated as cell-based biosensors. We report the characterization of Oncorhynchus tshawytscha melanophores and describe the melanophore pigment response to neurotransmitters in terms of pigment area occupied. Compared with the previously described model, Betta splendens erythrophores, O. tshawytscha melanophores responded similarly, indicating that pigment responses are biologically conserved between these two species. Additionally, melanophores responded to mercuric chloride and sodium arsenite, similar to B. splendens erythrophores, suggesting that melanophores can be used as detectors for environmental toxicants. This report highlights the potential of O. tshawytscha melanophores to be used as cell-based biosensors to address environmental toxicity, and warrants a continued investigation to strengthen this technology and its applications. PMID:20809546

  7. Optically variable films, pigments, and inks

    NASA Astrophysics Data System (ADS)

    Phillips, Roger W.

    1990-12-01

    Optically variable thin film coatings have been prepared on rolls of polyester film by depositing thin multi-layers in a vacuum roll coater. Such coatings can be removed from the polyester film and ground into optically variable pigments for printing inks. Various printing inks including gravure, flexographic, and Intaglio inks have been prepared from these pigments, and printed images using these inks have been obtained from commercial printing presses. These optically variable systems have been used on various security documents to prevent counterfeiting with color copiers. Unique colors, color shifting effects, and other optical properties have been obtained by combining non-optically variable pigment and dyes with this light interference pigment. The merits of this new ink relative to other optically variable systems are color uniformity, print quality, its ready use on existing printing presses, and high security.

  8. Pigments of fly agaric (Amanita muscaria).

    PubMed

    Stintzing, Florian; Schliemann, Willibald

    2007-01-01

    The complex pigment pattern of fly agaric (Amanita muscaria) cap skins has been studied by LC-DAD and mass spectrometry. Among the betaxanthins the corresponding derivatives of serine, threonine, ethanolamine, alanine, Dopa, phenylalanine and tryptophan are reported for the first time to contribute to the pigment pattern of fly agarics. Betalamic acid, the chromophoric precursor of betaxanthins and betacyanins, muscaflavin and seco-dopas were also detected. Furthermore, the red-purple muscapurpurin and the red muscarubrin were tentatively assigned while further six betacyanin-like components could not be structurally allocated. Stability studies indicated a high susceptibility of pigment extracts to degradation which led to rapid colour loss thus rendering a complete characterization of betacyanin-like compounds impossible at present. Taking into account these difficulties the presented results may be a starting point for a comprehensive characterization of the pigment composition of fly agarics. PMID:18274277

  9. A Case of Pigmented Mammary Paget's Disease

    PubMed Central

    Kim, Ji Eun; Kang, Myung Seung; Kim, Joung Soo

    2008-01-01

    Pigmented mammary Paget's disease is a uncommon clinicopathologic variant of mammary Paget's disease, and this mimics malignant melanoma both clinically and histopathologically. Herein, we report on a rare case of pigmented mammary Paget's disease. An 81-year-old woman presented with 2.5×1 cm sized, red and brown, eczematous plaque on her right areola, and she'd had this lesion for 3 years. Histopathology showed large, atypical cells with large nuclei and abundant pale cytoplasm throughout the epidermis. Dispersed melanocytes were noted in the epidermis and some of the Paget's cells contained melanin within their cytoplasm. Immunohistochemical studies demonstrated that the intraepidermal pagetoid cells were positive for cytokeratin 7; in contrast, they were negative for S-100, Periodic-acid Schiff (PAS), Alcian blue at PH 2.5, HMB-45 and carninoembryonic antigen (CEA). We recommend that pigmented mammary Paget's disease should be included in the differential diagnosis of pigmented lesions on the nipple. PMID:27303202

  10. New Directions in Phthalocyanine Pigments

    NASA Technical Reports Server (NTRS)

    Vandemark, Michael R.

    1992-01-01

    The objectives were the following: (1) investigation of the synthesis of new phthalocyanines; (2) characterization of the new phthalocyanines synthesized; (3) investigate the properties of the newly synthesized phthalocyanines with emphasis on UV protection of plastics and coatings; and (4) utilize quantum mechanics to evaluate the structural relationships with possible properties and synthetic approaches. The proposed research targeted the synthesis of phthalocyanines containing an aromatic bridge between two phthalocyanine rings. The goal was to synthesize pigments which would protect plastics when exposed to the photodegradation effects of the sun in space. The stability and extended conjugation of the phthalocyanines offer a unique opportunity for energy absorption and numerous radiative and non-radiative energy loss mechanisms. Although the original targeted phthalocyanines were changed early in the project, several new and unique phthalocyanine compounds were prepared. The basic goals of this work were met and some unique and unexpected outcomes of the work were the result of the integral use of quantum mechanics and molecular modeling with the synthetic effort.

  11. A conserved aromatic residue regulating photosensitivity in short-wavelength sensitive cone visual pigments.

    PubMed

    Kuemmel, Colleen M; Sandberg, Megan N; Birge, Robert R; Knox, Barry E

    2013-07-30

    Visual pigments have a conserved phenylalanine in transmembrane helix 5 located near the β-ionone ring of the retinal chromophore. Site-directed mutants of this residue (F207) in a short-wavelength sensitive visual pigment (VCOP) were studied using UV-visible spectroscopy to investigate its role in photosensitivity and formation of the light-activated state. The side chain is important for pigment formation: VCOP(F207A), VCOP(F207L), VCOP(F207M), and VCOP(F207W) substitutions all bound 11-cis-retinal and formed a stable visual pigment, while VCOP(F207V), VCOP(F207S), VCOP(F207T), and VCOP(F207Y) substitutions do not. The extinction coefficients of all pigments are close, ranging between 35800 and 45600 M⁻¹ cm⁻¹. Remarkably, the mutants exhibit an up to 5-fold reduction in photosensitivity and also abnormal photobleaching behavior. One mutant, VCOP(F207A), forms an isomeric composition of the retinal chromophore after illumination comparable to that of wild-type VCOP yet does not release the all-trans-retinal chromophore. These findings suggest that the conserved F207 residue is important for a normal photoactivation pathway, formation of the active conformation and the exit of all-trans-retinal from the chromophore-binding pocket. PMID:23808485

  12. Phenolic compounds and bioactivities of pigmented rice.

    PubMed

    Deng, Gui-Fang; Xu, Xiang-Rong; Zhang, Yuan; Li, Dan; Gan, Ren-You; Li, Hua-Bin

    2013-01-01

    The pigmented rice has been consumed in China, Japan, and Korea for a long time. It has been used for strengthening kidney function, treating anemia, promoting blood circulation, removing blood stasis, treating diabetes, and ameliorating sight in traditional Chinese medicine. The extracts from pigmented rice are used as natural food colorants in bread, ice cream, and liquor as well as functional food. The pigmented rice is mainly black, red, and dark purple rice, and contains a variety of flavones, tannin, phenolics, sterols, tocols, γ-oryzanols, amino acids, and essential oils. Anthocyanins are thought as major functional components of pigmented rice. Several anthocyanins have been isolated and identified from the pigmented rice, including cyanidin 3-glucoside, cyanidin 3-galactoside, cyanidin 3-rutinoside, cyanidin 3,5-diglucoside, malvidin 3-galactoside, peonidin 3-glucoside, and pelargonidin 3,5-diglucoside. This review provides up-to-date coverage of pigmented rice in regard to bioactive constituents, extraction and analytical methods, and bioactivities. Special attention is paid to the bioactivities including antioxidant and free radical scavenging, antitumor, antiatherosclerosis, hypoglycemic, and antiallergic activities. PMID:23216001

  13. FTIR study of primate color visual pigments

    PubMed Central

    Katayama, Kota; Kandori, Hideki

    2015-01-01

    How do we distinguish colors? Humans possess three color pigments; red-, green-, and blue-sensitive proteins, which have maximum absorbance (λmax) at 560, 530, and 420 nm, respectively, and contribute to normal human trichromatic vision (RGB). Each color pigments consists of a different opsin protein bound to a common chromophore molecule, 11-cis-retinal, whereas different chromophore-protein interactions allow preferential absorption of different colors. However, detailed experimental structural data to explain the molecular basis of spectral tuning of color pigments are lacking, mainly because of the difficulty in sample preparation. We thus started structural studies of primate color visual pigments using low-temperature Fourier-transform infrared (FTIR) spectroscopy, which needs only 0.3 mg protein for a single measurement. Here we report the first structural data of monkey red- (MR) and green- (MG) sensitive pigments, in which the information about the protein, retinal chromophore, and internal water molecules is contained. Molecular mechanism of color discrimination between red and green pigments will be discussed based on the structural data by FTIR spectroscopy. PMID:27493516

  14. Microspectrophotometry of arthropod visual screening pigments.

    PubMed

    Strother, G K; Casella, A J

    1972-05-01

    Absorption spectra of visual screening pigments obtained in vitro with a microspectrophotometer using frozen sections are given for the insects Musca domestica, Phormia regina, Libellula luctuosa, Apis mellifera (worker honeybee only), Drosophila melanogaster (wild type only) and the arachnids Lycosa baltimoriana and Lycosa miami. The spectral range covered is 260-700 nm for Lycosa and Drosophila and 310-700 nm for the remainder of the arthropods. A complete description of the instrumentation is given. For the flies, Phormia and Musca, light absorption by the yellow and red pigments is high from 310 to about 610 nm. This implies that for these insects there should be no wavelength shift in electroretinogram (ERG) results due to light leakage among neighboring ommatidia for this wavelength range. The same comment applies to Calliphora erythrocephala, which is known to have similar screening pigments. For some of the insects studied a close correspondence is noted between screening pigment absorption spectra and spectral sensitivity curves for individual photoreceptors, available in the literature. In some cases the screening pigment absorption spectra can be related to chemical extraction results, with the general observation that some of the in vitro absorption peaks are shifted to the red. The Lycosa, Apis, and Libellula dark red pigments absorb strongly over a wide spectral range and therefore prevent chemical identification. PMID:4623852

  15. Dermoscopic Features of Facial Pigmented Skin Lesions

    PubMed Central

    Goncharova, Yana; Attia, Enas A. S.; Souid, Khawla; Vasilenko, Inna V.

    2013-01-01

    Four types of facial pigmented skin lesions (FPSLs) constitute diagnostic challenge to dermatologists; early seborrheic keratosis (SK), pigmented actinic keratosis (AK), lentigo maligna (LM), and solar lentigo (SL). A retrospective analysis of dermoscopic images of histopathologically diagnosed clinically-challenging 64 flat FPSLs was conducted to establish the dermoscopic findings corresponding to each of SK, pigmented AK, LM, and SL. Four main dermoscopic features were evaluated: sharp demarcation, pigment pattern, follicular/epidermal pattern, and vascular pattern. In SK, the most specific dermoscopic features are follicular/epidermal pattern (cerebriform pattern; 100% of lesions, milia-like cysts; 50%, and comedo-like openings; 37.50%), and sharp demarcation (54.17%). AK and LM showed a composite characteristic pattern named “strawberry pattern” in 41.18% and 25% of lesions respectively, characterized by a background erythema and red pseudo-network, associated with prominent follicular openings surrounded by a white halo. However, in LM “strawberry pattern” is widely covered by psewdonetwork (87.5%), homogenous structureless pigmentation (75%) and other vascular patterns. In SL, structureless homogenous pigmentation was recognized in all lesions (100%). From the above mentioned data, we developed an algorithm to guide in dermoscopic features of FPSLs. PMID:23431466

  16. Beyond spectral tuning: human cone visual pigments adopt different transient conformations for chromophore regeneration.

    PubMed

    Srinivasan, Sundaramoorthy; Cordomí, Arnau; Ramon, Eva; Garriga, Pere

    2016-03-01

    Human red and green visual pigments are seven transmembrane receptors of cone photoreceptor cells of the retina that mediate color vision. These pigments share a very high degree of homology and have been assumed to feature analogous structural and functional properties. We report on a different regeneration mechanism among red and green cone opsins with retinal analogs using UV-Vis/fluorescence spectroscopic analyses, molecular modeling and site-directed mutagenesis. We find that photoactivated green cone opsin adopts a transient conformation which regenerates via an unprotonated Schiff base linkage with its natural chromophore, whereas red cone opsin forms a typical protonated Schiff base. The chromophore regeneration kinetics is consistent with a secondary retinal uptake by the cone pigments. Overall, our findings reveal, for the first time, structural differences in the photoactivated conformation between red and green cone pigments that may be linked to their molecular evolution, and support the proposal of secondary retinal binding to visual pigments, in addition to binding to the canonical primary site, which may serve as a regulatory mechanism of dark adaptation in the phototransduction process. PMID:26387074

  17. Betalain: a particular class of antioxidant pigment.

    PubMed

    El Gharras, Hasna

    2011-10-01

    We have analyzed the stability of betalains in juices prepared from Moroccan yellow cactus pears (Opuntia ficus indica (L.) Mill.) as a function of temperature and pH. The experiments were carried out at temperatures ranging from 80 to 100 degrees C with juices at pH 3.5, 5 and 6.5. The degree of pigment retention decreased when the temperature increased. The degradation constant rates were determined for thermal degradation rates of pseudo-first order. The Arrhenius plot obtained for the degradation of betaxanthin from the yellow fruits was not linear. Regardless of the temperature of treatment, the lowest degradation was obtained for pH 5. When some stabilizers were tested for the protection of pigments, the results showed that ascorbic acid was a better protective agent at pH 3.5, increasing the protection by 40%. The inhibitive action of betalain pigments extracted from cactus pears towards corrosion of stainless steel in phosphoric acid was investigated using electrochemical polarization and electrochemical impedance spectroscopy (EIS) methods. It was found that the presence of natural pigments reduces the corrosion rate of the tested metal, especially on addition of the red pigments (97%). The inhibition efficiency increases as the pigment concentration of extracts increases. It was also found that the pigments tested act as mixed inhibitors. The inhibitive action of the extracts is discussed in term of adsorption and that such adsorption follows a Langmuir adsorption isotherm. The calculated values of the free energy of adsorption indicated that the adsorption process is spontaneous. PMID:22164774

  18. Yap and Taz regulate retinal pigment epithelial cell fate

    PubMed Central

    Miesfeld, Joel B.; Gestri, Gaia; Clark, Brian S.; Flinn, Michael A.; Poole, Richard J.; Bader, Jason R.; Besharse, Joseph C.; Wilson, Stephen W.; Link, Brian A.

    2015-01-01

    The optic vesicle comprises a pool of bi-potential progenitor cells from which the retinal pigment epithelium (RPE) and neural retina fates segregate during ocular morphogenesis. Several transcription factors and signaling pathways have been shown to be important for RPE maintenance and differentiation, but an understanding of the initial fate specification and determination of this ocular cell type is lacking. We show that Yap/Taz-Tead activity is necessary and sufficient for optic vesicle progenitors to adopt RPE identity in zebrafish. A Tead-responsive transgene is expressed within the domain of the optic cup from which RPE arises, and Yap immunoreactivity localizes to the nuclei of prospective RPE cells. yap (yap1) mutants lack a subset of RPE cells and/or exhibit coloboma. Loss of RPE in yap mutants is exacerbated in combination with taz (wwtr1) mutant alleles such that, when Yap and Taz are both absent, optic vesicle progenitor cells completely lose their ability to form RPE. The mechanism of Yap-dependent RPE cell type determination is reliant on both nuclear localization of Yap and interaction with a Tead co-factor. In contrast to loss of Yap and Taz, overexpression of either protein within optic vesicle progenitors leads to ectopic pigmentation in a dosage-dependent manner. Overall, this study identifies Yap and Taz as key early regulators of RPE genesis and provides a mechanistic framework for understanding the congenital ocular defects of Sveinsson's chorioretinal atrophy and congenital retinal coloboma. PMID:26209646

  19. Transcriptional control of floral anthocyanin pigmentation in monkeyflowers (Mimulus)

    PubMed Central

    Yuan, Yao-Wu; Sagawa, Janelle M.; Frost, Laura; Vela, James P.; Bradshaw, Harvey D.

    2014-01-01

    Summary A molecular description of the control of floral pigmentation in a multi-species group displaying various flower color patterns is of great interest for understanding the molecular bases of phenotypic diversification and pollinator-mediated speciation. Through transcriptome profiling, mutant analyses, and transgenic experiments, we aim to establish a ‘baseline’ floral anthocyanin regulation model in Mimulus lewisii and to examine the different ways of tinkering with this model in generating the diversity of floral anthocyanin patterns in other Mimulus species. We find one WD40 and one bHLH gene controlling anthocyanin pigmentation in the entire corolla of M. lewisii, and two R2R3-MYB genes, PELAN and NEGAN, controlling anthocyanin production in the petal lobe and nectar guide, respectively. The autoregulation of NEGAN might be a critical property to generate anthocyanin spots. Independent losses of PELAN expression (via different mechanisms) explain two natural yellow-flowered populations of M. cardinalis (typically red-flowered). The NEGAN ortholog is the only anthocyanin-activating MYB expressed in the M. guttatus flowers. The mutant lines and transgenic tools available for M. lewisii will enable gene-by-gene replacement experiments to dissect the genetic and developmental bases of more complex floral color patterns, and to test hypotheses on phenotypic evolution in general. PMID:25103615

  20. Maya blue: a clay-organic pigment?

    PubMed

    Van Olphen, H

    1966-11-01

    Maya Blue, a pigment used by the Mayas in Yucatan, is remarkably stable: the color is not destroyed by hot concentrated mineral acids or by heating to about 250 degrees C. The principal constituent is the colorless mineral attapulgite. It is proposed that the pigment is an adsorption complex of attapulgite and natural indigo; a synthetic equivalent may be prepared from attapulgite and either indoxylester or indigo, or by applying the vat-dyeing technique, with reduced indigo.The low dye content of the pigment (less than 0.5 percent) indicates that the dye is absorbed only on the external surfaces of the attapulgite particles and not throughout the channels in their structures. The complex as such is not stable to acids, but the stability displayed by Maya Blue is achieved simply by heating the complex to from 75 degrees to 150 degrees C for several days. An analogous stable pigment can be prepared from sepiolite and indigo. No stable pigments could be prepared from clays with platelike structures or from zeolites. PMID:17778806

  1. Iris pigment epithelial cysts in a newborn

    PubMed Central

    Zargar, Shabnam; Prendiville, Kevin John; Martinez, Eladio

    2016-01-01

    Purpose: We report a case of iris pigment epithelial cysts in a newborn and discuss the importance of an accurate diagnosis for prevention of amblyopia. Methods: We describe a case of an abnormal red reflex seen on a newborn exam. Results: A full-term female born via normal spontaneous vaginal delivery without any complications was seen in the newborn nursery. She was noted to have an abnormal eye exam. Pupils were large with circular dark excrescences of the iris pigment epithelium. She was referred to a pediatric ophthalmologist where she was noted to fixate and follow faces. No afferent pupillary defect was seen. OD red reflex was normal whereas OS red reflex was blocked mostly by dark excrescences. A 2–3 mm dark brown lesion was seen in the OD iris and a 3–5 mm dark brown lesion was seen in the OS iris, consistent with a pupillary iris pigment epithelial cyst. Central visual axis was clear OU. Glaucoma was not present and patching was not performed. Observations and clinical photographs were recommended with follow-up in three months. Conclusion: Iris pigment epithelial cysts are uncommonly seen in children. The primary care provider first seeing a newborn must be aware of lesions obscuring a red reflex with appropriate follow-up. Follow-up in three months with IOP measurements is recommended. Iris pigment epithelial cysts in children may be a cause of amblyopia, thus prompt evaluation is important for prognostic purposes and the prevention of amblyopia. PMID:27625966

  2. Pigments in avocado tissue and oil.

    PubMed

    Ashton, Ofelia B O; Wong, Marie; McGhie, Tony K; Vather, Rosheila; Wang, Yan; Requejo-Jackman, Cecilia; Ramankutty, Padmaja; Woolf, Allan B

    2006-12-27

    Pigments are important contributors to the appearance and healthful properties of both avocado fruits and the oils extracted from these fruits. This study determined carotenoid and chlorophyll pigment concentrations in the skin and three sections of the flesh (outer dark green, middle pale green, and inner yellow flesh-nearest the seed) and anthocyanin concentrations in the skin of Hass avocado during ripening at 20 degrees C. Pigments were extracted from frozen tissue with acetone and measured using high-performance liquid chromatography. Pigments were also measured in the oil extracted from freeze-dried tissue sections by an accelerated solvent extraction system using hexane. Carotenoids and chlorophylls identified in the skin, flesh, and oil were lutein, alpha-carotene, beta-carotene, neoxanthin, violaxanthin, zeaxanthin, antheraxanthin, chlorophylls a and b, and pheophytins a and b with the highest concentrations of all pigments in the skin. Chlorophyllides a and b were identified in the skin and flesh tissues only. As the fruit ripened and softened, the skin changed from green to purple/black, corresponding to changes in skin hue angle, and a concomitant increase in cyanidin 3-O-glucoside and the loss of chlorophyllide a. In flesh tissue, chroma and lightness values decreased with ripening, with no changes in hue angle. The levels of carotenoids and chlorophylls did not change significantly during ripening. As fruit ripened, the total chlorophyll level in the oil from the flesh sections remained constant but declined in the oil extracted from the skin. PMID:17177553

  3. Inadvertent polychlorinated biphenyls in commercial paint pigments.

    PubMed

    Hu, Dingfei; Hornbuckle, Keri C

    2010-04-15

    A polychlorinated biphenyl (PCB) that was not produced as part of the Aroclor mixtures banned in the 1980s was recently reported in air samples collected in Chicago, Philadelphia, the Arctic, and several sites around the Great Lakes. In Chicago, the congener 3,3'-dichlorobiphenyl or PCB11 was found to be the fifth most concentrated congener and ubiquitous throughout the city. The congener exhibited strong seasonal concentration trends that suggest volatilization of this compound from common outdoor surfaces. Due to these findings and also the compound's presence in waters that received waste from paint manufacturing facilities, we hypothesized that PCB11 may be present in current commercial paint. In this study we measured PCBs in paint sold on the current retail market. We tested 33 commercial paint pigments purchased from three local paint stores. The pigment samples were analyzed for all 209 PCB congeners using gas chromatography with tandem mass spectrometry (GC-MS/MS). More than 50 PCB congeners including several dioxin-like PCBs were detected, and the PCB profiles varied due to different types of pigments and different manufacturing processes. PCB congeners were detected in azo and phthalocyanine pigments which are commonly used in paint but also in inks, textiles, paper, cosmetics, leather, plastics, food and other materials. Our findings suggest several possible mechanisms for the inadvertent production of specific PCB congeners during the manufacturing of paint pigments. PMID:19957996

  4. Investigations of biomimetic light energy harvesting pigments

    SciTech Connect

    Van Patten, P.G.; Donohoe, R.J.; Lindsey, J.S.; Bocian, D.F.

    1998-12-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Nature uses chlorophyll and other porphyrinic pigments to capture and transfer light energy as a preliminary step in photosynthesis. The design of synthetic assemblies of light harvesting and energy directing pigments has been explored through synthesis and characterization of porphyrin oligomers. In this project, pigment electronic and vibrational structures have been explored by electrochemistry and dynamic and static optical measurements. Transient absorption data reveal energy transfer between pigments with lifetimes on the order of 20--200 picoseconds, while Raman data reveal that the basic porphyrin core structure is unperturbed relative to the individual monomer units. These two findings, along with an extensive series of experiments on the oxidized oligomers, reveal that coupling between the pigments is fundamentally weak, but sufficient to allow facile energy transfer as the predominant excited state process. Modeling of the expected quantum yields for energy transfer within a variety of arrays was accomplished, thereby providing a tool to guide synthetic goals.

  5. Population diversity and adaptive evolution in keratinization genes: impact of environment in shaping skin phenotypes.

    PubMed

    Gautam, Pramod; Chaurasia, Amit; Bhattacharya, Aniket; Grover, Ritika; Mukerji, Mitali; Natarajan, Vivek T

    2015-03-01

    Several studies have demonstrated the role of climatic factors in shaping skin phenotypes, particularly pigmentation. Keratinization is another well-designed feature of human skin, which is involved in modulating transepidermal water loss (TEWL). Although this physiological process is closely linked to climate, presently it is not clear whether genetic diversity is observed in keratinization and whether this process also responds to the environmental pressure. To address this, we adopted a multipronged approach, which involved analysis of 1) copy number variations in diverse Indian and HapMap populations from varied geographical regions; 2) genetic association with geoclimatic parameters in 61 populations of dbCLINE database in a set of 549 genes from four processes namely keratinization, pigmentation, epidermal differentiation, and housekeeping functions; 3) sequence divergence in 4,316 orthologous promoters and corresponding exonic regions of human and chimpanzee with macaque as outgroup, and 4) protein sequence divergence (Ka/Ks) across nine vertebrate classes, which differ in their extent of TEWL. Our analyses demonstrate that keratinization and epidermal differentiation genes are under accelerated evolution in the human lineage, relative to pigmentation and housekeeping genes. We show that this entire pathway may have been driven by environmental selection pressure through concordant functional polymorphisms across several genes involved in skin keratinization. Remarkably, this underappreciated function of skin may be a crucial determinant of adaptation to diverse environmental pressures across world populations. PMID:25534032

  6. Polycyclic aromatic hydrocarbons - Primitive pigment systems in the prebiotic environment

    NASA Technical Reports Server (NTRS)

    Deamer, D. W.

    1992-01-01

    The chemical evolution of meteoritic organics in the primitive earth is examined experimentally with attention given to the photochemical effects of hydrocarbon/water mixtures. Also addressed are the generation of amphiphilic products by photochemical reactions and the transduction of light energy into potentially useful forms. Polycyclic aromatic hydrocarbons (PAHs) absorb light and exist in carbonaceous chondrites; PAHs are therefore examined as primitive pigments by means of salt solutions with pyrene, fluoranthene, and pyrene derivatives with hexadecane. The hexadecane undergoes photochemical oxidation and yields long-chain amphiphiles with oxygen supplied by water, and acid pH shifts also occur. PAHs are also tested in lipid bilayer membranes to examine light-energy transduction. Protons are found to accumulate within the membrane-bounded volume to form proton gradients, and this reaction is theorized to be a good model of primitive photochemical reactions that related to the transduction of light energy into useable forms.

  7. Pigments which reflect infrared radiation from fire

    DOEpatents

    Berdahl, P.H.

    1998-09-22

    Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer ({micro}m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 {micro}m or, for cool smoky fires, about 2 {micro}m to about 16 {micro}m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 {micro}m to about 2 {micro}m and thin leafing aluminum flake pigments. 4 figs.

  8. Pigments which reflect infrared radiation from fire

    DOEpatents

    Berdahl, Paul H.

    1998-01-01

    Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer (.mu.m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 .mu.m or, for cool smoky fires, about 2 .mu.m to about 16 .mu.m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 .mu.m to about 2 .mu.m and thin leafing aluminum flake pigments.

  9. Reversible Conjunctival Pigmentation Associated With Prostaglandin Use.

    PubMed

    Choi, Daniel Y; Chang, Robert T; Yegnashankaran, Krishnan; Friedman, Neil J

    2016-01-01

    A 54-year-old Indian male with a diagnosis of ocular hypertension was started on a prostaglandin analog (PGA) in both eyes to lower intraocular pressure. Six years later, he developed progressively increasing bilateral limbal conjunctival hyperpigmentation. Travoprost was discontinued and replaced with brinzolamide and over the next year, the patient's conjunctival pigmentation improved significantly in both the eyes. This case report documents with slit-lamp photography the first case of conjunctival pigmentation associated with PGA use that has been shown to have reversal with discontinuation of the PGA. Because of the widespread use of PGAs, and the evolving nature of the conjunctival pigmentation, clinicians should be aware of this reversible condition when considering biopsy or removal of conjunctival melanocytic lesions. PMID:25967530

  10. Predicting phenotype from genotype: normal pigmentation.

    PubMed

    Valenzuela, Robert K; Henderson, Miquia S; Walsh, Monica H; Garrison, Nanibaa' A; Kelch, Jessica T; Cohen-Barak, Orit; Erickson, Drew T; John Meaney, F; Bruce Walsh, J; Cheng, Keith C; Ito, Shosuke; Wakamatsu, Kazumasa; Frudakis, Tony; Thomas, Matthew; Brilliant, Murray H

    2010-03-01

    Genetic information in forensic studies is largely limited to CODIS data and the ability to match samples and assign them to an individual. However, there are circumstances, in which a given DNA sample does not match anyone in the CODIS database, and no other information about the donor is available. In this study, we determined 75 SNPs in 24 genes (previously implicated in human or animal pigmentation studies) for the analysis of single- and multi-locus associations with hair, skin, and eye color in 789 individuals of various ethnic backgrounds. Using multiple linear regression modeling, five SNPs in five genes were found to account for large proportions of pigmentation variation in hair, skin, and eyes in our across-population analyses. Thus, these models may be of predictive value to determine an individual's pigmentation type from a forensic sample, independent of ethnic origin. PMID:20158590

  11. ABCF1 extrinsically regulates retinal pigment epithelial cell phagocytosis

    PubMed Central

    Guo, Feiye; Ding, Ying; Caberoy, Nora; Alvarado, Gabriela; Wang, Feng; Chen, Rui; Li, Wei

    2015-01-01

    Phagocytosis of shed photoreceptor outer segments (POSs) by retinal pigment epithelial (RPE) cells is critical to retinal homeostasis and shares many conserved signaling pathways with other phagocytes, including extrinsic regulations. Phagocytotic ligands are the key to cargo recognition, engulfment initiation, and activity regulation. In this study, we identified intracellular protein ATP-binding cassette subfamily F member 1 (ABCF1) as a novel RPE phagocytotic ligand by a new approach of functional screening. ABCF1 was independently verified to extrinsically promote phagocytosis of shed POSs by D407 RPE cells. This finding was further corroborated with primary RPE cells and RPE explants. Internalized POS vesicles were colocalized with a phagosome marker, suggesting that ABCF1-mediated engulfment is through a phagocytic pathway. ABCF1 was released from apoptotic cells and selectively bound to shed POS vesicles and apoptotic cells, possibly via externalized phosphatidylserine. ABCF1 is predominantly expressed in POSs and colocalized with the POS marker rhodopsin, providing geographical convenience for regulation of RPE phagocytosis. Collectively these results suggest that ABCF1 is released from and binds to shed POSs in an autocrine manner to facilitate RPE phagocytosis through a conserved pathway. Furthermore, the new approach is broadly applicable to many other phagocytes and will enable systematic elucidation of their ligands to understand extrinsic regulation and cargo recognition. PMID:25904329

  12. Mycosis fungoides presenting as pigmented purpuric dermatitis.

    PubMed

    Hanna, Shannon; Walsh, Noreen; D'Intino, Yolanda; Langley, Richard G B

    2006-01-01

    Mycosis fungoides, a cutaneous T-cell lymphoma, typically presents as indolent, progressive, and persistent erythematous patches or plaques with mild scaling and over time can evolve into tumor stage with tumor nodules. Other presentations include eczematous, psoriasiform, poikilodermatous, and hypopigmented patches. We report Mycosis fungoides in a 14-year-old boy presenting as pigmented purpuric dermatitis and review the relevant literature. This is a rare presentation of a condition that is uncommon in the pediatric population. In our patient, histologic features were typical of Mycosis fungoides presenting as pigmented purpuric dermatitis. The clinical features, pathology, molecular biology, and the relationship between these two entities are discussed. PMID:16918631

  13. Pseudoepitheliomatous Hyperplasia in a Red Pigment Tattoo

    PubMed Central

    Kazlouskaya, Viktoryia

    2015-01-01

    Red pigment tattoos are known to cause pseudoepitheliomatous hyperplasia in the skin, frequently simulating squamous cell carcinoma or keratoacanthoma. Herein, the authors present two additional cases of red pigment tattoo pseudoepitheliomatous hyperplasia in which they noted a lichenoid tissue reaction. They reviewed the previously published cases and observed a lichenoid reaction in the histopathological images similar to hypertrophic lichen planus. The authors suggest that these reactions might best be referred to as “lichenoid reaction with pseudoepitheliomatous hyperplasia” or “hypertrophic lichen planus-like reaction.” Accordingly, recognition of an inflammatory component may allow additional treatment options. PMID:26705448

  14. Green pigments of the Pompeian artists' palette

    NASA Astrophysics Data System (ADS)

    Aliatis, Irene; Bersani, Danilo; Campani, Elisa; Casoli, Antonella; Lottici, Pier Paolo; Mantovan, Silvia; Marino, Iari-Gabriel; Ospitali, Francesca

    2009-08-01

    Green colored samples on wall paintings and green powder from a pigment pot found in Pompeii area are investigated by micro-Raman, FT-IR and, for one sample, SEM-EDX. To obtain the green color, green earths and malachite were used, together with mixture of Egyptian blue and yellow ochre. The mineralogical identification of the green earths has been attempted through the comparison of the vibrational features, discriminating between celadonite and glauconite spectra. Traces of a modern synthetic pigment containing copper phthalocyanine were found in a fresco fragment.

  15. Fundamental molecules of life are pigments which arose and evolved to dissipate the solar spectrum

    NASA Astrophysics Data System (ADS)

    Michaelian, K.; Simeonov, A.

    2015-02-01

    The driving force behind the origin and evolution of life has been the thermodynamic imperative of increasing the entropy production of the biosphere through increasing the global solar photon dissipation rate. In the upper atmosphere of today, oxygen and ozone derived from life processes are performing the short wavelength UVC and UVB dissipation. On Earth's surface, water and organic pigments in water facilitate the near UV and visible photon dissipation. The first organic pigments probably formed, absorbed, and dissipated at those photochemically active wavelengths in the UVC that could have reached Earth's surface during the Archean. Proliferation of these pigments can be understood as an autocatalytic photochemical process obeying non-equilibrium thermodynamic directives related to increasing solar photon dissipation rate. Under these directives, organic pigments would have evolved over time to increase the global photon dissipation rate by; (1) increasing the ratio of their effective photon cross sections to their physical size, (2) decreasing their electronic excited state life times, (3) quenching radiative de-excitation channels (e.g. fluorescence), (4) covering ever more completely the prevailing solar spectrum, and (5) proliferating and dispersing to cover an ever greater surface area of Earth. From knowledge of the evolution of the spectrum of G-type stars, and considering the most probable history of the transparency of Earth's atmosphere, we construct the most probable Earth surface solar spectrum as a function of time and compare this with the history of molecular absorption maxima obtained from the available data in the literature. This comparison supports the conjecture that many fundamental molecules of life are pigments which arose and evolved to dissipate the solar spectrum, supports the thermodynamic dissipation theory for the origin of life, constrains models for Earth's early atmosphere, and sheds some new light on the origin of

  16. Pigment oligomers as natural and artificial photosynthetic antennas

    SciTech Connect

    Blankenship, R.E.

    1996-12-31

    Green photosynthetic bacteria contain antenna complexes known as chlorosomes. These complexes are appressed to the cytoplasmic side of the inner cell membrane and function to absorb light and transfer the energy to the photochemical reaction center, where photochemical energy storage takes place. Chlorosomes differ from all other known photosynthetic antenna complexes in that the geometrical arrangement of pigments is determined primarily by pigment-pigment interactions instead of pigment-protein interactions. The bacteriochlorophyll c, d or e pigments found in chlorosomes form large oligomers with characteristic spectral properties significantly perturbed from those exhibited by monomeric pigments. Because of their close spatial interaction, the pigments are thought to be strongly coupled electronically, and many of the optical properties result from exciton interactions. This presentation will summarize existing knowledge on the chemical composition and properties of chlorosomes, the evidence for the oligomeric nature of chlorosome pigment organization and proposed structures for the oligomers, and the kinetics and mechanisms of energy transfer in chlorosomes.

  17. Separation of Chloroplast Pigments Using Reverse Phase Chromatography.

    ERIC Educational Resources Information Center

    Reese, R. Neil

    1997-01-01

    Presents a protocol that uses reverse phase chromatography for the separation of chloroplast pigments. Provides a simple and relatively safe procedure for use in teaching laboratories. Discusses pigment extraction, chromatography, results, and advantages of the process. (JRH)

  18. The Use of HPLC for the Characterization of Phytoplankton Pigments.

    PubMed

    Garrido, José L; Roy, Suzanne

    2015-01-01

    HPLC is still the technique of choice for the analysis and characterization of phytoplankton pigments. In this chapter we describe procedures for sample preparation and pigment extraction, and the use of octyl silica columns and pyridine-containing mobile phases to separate chlorophylls and carotenoids. The identification of pigments on the basis of their retention times and visible spectra, the preparation of pigment standards, and the quantitative analysis by either external or internal standard procedures are also described. PMID:26108510

  19. The peripheral clock regulates human pigmentation.

    PubMed

    Hardman, Jonathan A; Tobin, Desmond J; Haslam, Iain S; Farjo, Nilofer; Farjo, Bessam; Al-Nuaimi, Yusur; Grimaldi, Benedetto; Paus, Ralf

    2015-04-01

    Although the regulation of pigmentation is well characterized, it remains unclear whether cell-autonomous controls regulate the cyclic on-off switching of pigmentation in the hair follicle (HF). As human HFs and epidermal melanocytes express clock genes and proteins, and given that core clock genes (PER1, BMAL1) modulate human HF cycling, we investigated whether peripheral clock activity influences human HF pigmentation. We found that silencing BMAL1 or PER1 in human HFs increased HF melanin content. Furthermore, tyrosinase expression and activity, as well as TYRP1 and TYRP2 mRNA levels, gp100 protein expression, melanocyte dendricity, and the number gp100+ HF melanocytes, were all significantly increased in BMAL1 and/or PER1-silenced HFs. BMAL1 or PER1 silencing also increased epidermal melanin content, gp100 protein expression, and tyrosinase activity in human skin. These effects reflect direct modulation of melanocytes, as BMAL1 and/or PER1 silencing in isolated melanocytes increased tyrosinase activity and TYRP1/2 expression. Mechanistically, BMAL1 knockdown reduces PER1 transcription, and PER1 silencing induces phosphorylation of the master regulator of melanogenesis, microphthalmia-associated transcription factor, thus stimulating human melanogenesis and melanocyte activity in situ and in vitro. Therefore, the molecular clock operates as a cell-autonomous modulator of human pigmentation and may be targeted for future therapeutic strategies. PMID:25310406

  20. Human pigmentation genes under environmental selection

    PubMed Central

    2012-01-01

    Genome-wide association studies and comparative genomics have established major loci and specific polymorphisms affecting human skin, hair and eye color. Environmental changes have had an impact on selected pigmentation genes as populations have expanded into different regions of the globe. PMID:23110848

  1. "Dry-column" chromatography of plant pigments

    NASA Technical Reports Server (NTRS)

    Woeller, F. H.; Lehwalt, M. F.; Oyama, V. I.

    1973-01-01

    Separation of plant pigments which can be accomplished on thin-layer silica plates with mixture of petroleum ether, halocarbon, acetone, and polar solvent can be readily translated into dry-column technique that yields reproducible chromatograms after elution in fashion of liquid chromatography with fluorimeter as detector. Best solvent system was found to be mixture of petroleum ether, dichloromethane, acetone, and ethyl acetate.

  2. Retinal pigment epithelial hamartoma--unusual manifestations.

    PubMed Central

    Rosenberg, P. R.; Walsh, J. B.

    1984-01-01

    Hamartoma of the retinal pigment epithelium is an uncommon tumour of young adults. We have seen 2 patients with this clinical diagnosis, both with unusual manifestations. In one patient growth of the tumour was observed over a 5-year period. In the second patient arterial-arterial anastomoses were detected at a site distal to the tumour. Images PMID:6722077

  3. IFN-γ signaling maintains skin pigmentation homeostasis through regulation of melanosome maturation.

    PubMed

    Natarajan, Vivek T; Ganju, Parul; Singh, Archana; Vijayan, Vinaya; Kirty, Kritika; Yadav, Shalini; Puntambekar, Shraddha; Bajaj, Sonali; Dani, Prachi P; Kar, Hemanta K; Gadgil, Chetan J; Natarajan, Krishnamurthy; Rani, Rajni; Gokhale, Rajesh S

    2014-02-11

    Cellular homeostasis is an outcome of complex interacting processes with nonlinear feedbacks that can span distinct spatial and temporal dimensions. Skin tanning is one such dynamic response that maintains genome integrity of epidermal cells. Although pathways underlying hyperpigmentation cascade are recognized, negative feedback regulatory loops that can dampen the activated melanogenesis process are not completely understood. In this study, we delineate a regulatory role of IFN-γ in skin pigmentation biology. We show that IFN-γ signaling impedes maturation of the key organelle melanosome by concerted regulation of several pigmentation genes. Withdrawal of IFN-γ signal spontaneously restores normal cellular programming. This effect in melanocytes is mediated by IFN regulatory factor-1 and is not dependent on the central regulator microphthalmia-associated transcription factor. Chronic IFN-γ signaling shows a clear hypopigmentation phenotype in both mouse and human skin. Interestingly, IFN-γ KO mice display a delayed recovery response to restore basal state of epidermal pigmentation after UV-induced tanning. Together, our studies delineate a new spatiotemporal role of the IFN-γ signaling network in skin pigmentation homeostasis, which could have implications in various cutaneous depigmentary and malignant disorders. PMID:24474804

  4. Aspartate Decarboxylase is Required for a Normal Pupa Pigmentation Pattern in the Silkworm, Bombyx mori

    PubMed Central

    Dai, Fangyin; Qiao, Liang; Cao, Cun; Liu, Xiaofan; Tong, Xiaoling; He, Songzhen; Hu, Hai; Zhang, Li; Wu, Songyuan; Tan, Duan; Xiang, Zhonghuai; Lu, Cheng

    2015-01-01

    The pigmentation pattern of Lepidoptera varies greatly in different development stages. To date, the effects of key genes in the melanin metabolism pathway on larval and adult body color are distinct, yet the effects on pupal pigmentation remains unclear. In the silkworm, Bombyx mori, the black pupa (bp) mutant is only specifically melanized at the pupal stage. Using positional cloning, we found that a mutation in the Aspartate decarboxylase gene (BmADC) is causative in the bp mutant. In the bp mutant, a SINE-like transposon with a length of 493 bp was detected ~2.2 kb upstream of the transcriptional start site of BmADC. This insertion causes a sharp reduction in BmADC transcript levels in bp mutants, leading to deficiency of β-alanine and N-β-alanyl dopamine (NBAD), but accumulation of dopamine. Following injection of β-alanine into bp mutants, the color pattern was reverted that of the wild-type silkworms. Additionally, melanic pupae resulting from knock-down of BmADC in the wild-type strain were obtained. These findings show that BmADC plays a crucial role in melanin metabolism and in the pigmentation pattern of the silkworm pupal stage. Finally, this study contributes to a better understanding of pupa pigmentation patterns in Lepidoptera. PMID:26077025

  5. Aspartate Decarboxylase is Required for a Normal Pupa Pigmentation Pattern in the Silkworm, Bombyx mori.

    PubMed

    Dai, Fangyin; Qiao, Liang; Cao, Cun; Liu, Xiaofan; Tong, Xiaoling; He, Songzhen; Hu, Hai; Zhang, Li; Wu, Songyuan; Tan, Duan; Xiang, Zhonghuai; Lu, Cheng

    2015-01-01

    The pigmentation pattern of Lepidoptera varies greatly in different development stages. To date, the effects of key genes in the melanin metabolism pathway on larval and adult body color are distinct, yet the effects on pupal pigmentation remains unclear. In the silkworm, Bombyx mori, the black pupa (bp) mutant is only specifically melanized at the pupal stage. Using positional cloning, we found that a mutation in the Aspartate decarboxylase gene (BmADC) is causative in the bp mutant. In the bp mutant, a SINE-like transposon with a length of 493 bp was detected ~2.2 kb upstream of the transcriptional start site of BmADC. This insertion causes a sharp reduction in BmADC transcript levels in bp mutants, leading to deficiency of β-alanine and N-β-alanyl dopamine (NBAD), but accumulation of dopamine. Following injection of β-alanine into bp mutants, the color pattern was reverted that of the wild-type silkworms. Additionally, melanic pupae resulting from knock-down of BmADC in the wild-type strain were obtained. These findings show that BmADC plays a crucial role in melanin metabolism and in the pigmentation pattern of the silkworm pupal stage. Finally, this study contributes to a better understanding of pupa pigmentation patterns in Lepidoptera. PMID:26077025

  6. Production of a Sporulation Pigment by Streptomyces venezuelae

    PubMed Central

    Scribner, H. E.; Tang, Terry; Bradley, S. G.

    1973-01-01

    Streptomyces venezuelae S13 produced a pH-indicating sporulation pigment on a glucose-salts-agar medium consisting of glucose, KNO3, MgSO4, and Na2HPO4, pH 7. Pigmentation on this medium appeared to be closely associated with sporulation, which normally required 5 to 7 days at 30 C. The pigment was soluble in water as well as in a number of organic solvents. Butanol-extracted pigment exhibited absorption maxima at 430 and 520 nm at pH 3 and 12, respectively. Although many salts of organic acids and amino acids could replace glucose as the sole carbon source in basal salts-agar medium for growth and pigmentation, most sugars that were tested supported good growth but negligible pigmentation. Among the nitrogenous substances tested, KNO3 was most desirable for pigmentation. The organism did not exhibit any specific requirements for divalent cations with respect to growth and pigmentation. In the absence of MgSO4, however, glucose-salts-agar prepared by autoclaving all components together failed to support growth. The production of the sporulation pigment on glucose-salts-agar was comparable to that obtained on tomato paste-oatmeal-agar medium. Incorporation of partially purified pigment material into broth medium that did not normally support sporulation induced sporulation, and amino acid-salts-agar medium could induce vegetative mycelia to pigment when transferred from medium that did not support either pigmentation or sporulation. Images PMID:4577487

  7. Neurotized Congenital Melanocytic Nevus Resembling a Pigmented Neurofibroma

    PubMed Central

    Singh, Nidhi; Chandrashekar, Laxmisha; Kar, Rakhee; Sylvia, Mary Theresa; Thappa, Devinder Mohan

    2015-01-01

    Neurotized congenital melanocytic nevus and pigmented neurofibroma (PNF) are close mimics and pose a clinicopathological challenge. We present a case of pigmented hypertrichotic plaque over lumbosacral region and discuss the differential diagnosis and its clinical, histopathological and immunohistochemistry features which may aid in differentiation. We highlight the difficulties faced in differentiating neurotized congenital melanocytic nevus from pigmented neurofibroma. PMID:25657396

  8. The determination and optimization of (rutile) pigment particle size distributions

    NASA Technical Reports Server (NTRS)

    Richards, L. W.

    1972-01-01

    A light scattering particle size test which can be used with materials having a broad particle size distribution is described. This test is useful for pigments. The relation between the particle size distribution of a rutile pigment and its optical performance in a gray tint test at low pigment concentration is calculated and compared with experimental data.

  9. 21 CFR 73.3128 - Mica-based pearlescent pigments.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Mica-based pearlescent pigments. 73.3128 Section... pigments. (a) Identity and specifications. The color additive is formed by depositing titanium or iron... pigments listed in paragraph (a) of this section may be used as a color additive in contact lenses...

  10. 21 CFR 73.350 - Mica-based pearlescent pigments.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Mica-based pearlescent pigments. 73.350 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.350 Mica-based pearlescent pigments. (a... pearlescent pigments may contain only those diluents listed in this subpart as safe and suitable for use...

  11. 21 CFR 73.3128 - Mica-based pearlescent pigments.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Mica-based pearlescent pigments. 73.3128 Section... pigments. (a) Identity and specifications. The color additive is formed by depositing titanium or iron... pigments listed in paragraph (a) of this section may be used as a color additive in contact lenses...

  12. 21 CFR 73.350 - Mica-based pearlescent pigments.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Mica-based pearlescent pigments. 73.350 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.350 Mica-based pearlescent pigments. (a... pearlescent pigments may contain only those diluents listed in this subpart as safe and suitable for use...

  13. 21 CFR 73.1350 - Mica-based pearlescent pigments.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Mica-based pearlescent pigments. 73.1350 Section... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1350 Mica-based pearlescent pigments. (a...-based pearlescent pigments may contain only those diluents listed in this subpart as safe and...

  14. 21 CFR 73.1350 - Mica-based pearlescent pigments.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Mica-based pearlescent pigments. 73.1350 Section... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1350 Mica-based pearlescent pigments. (a...-based pearlescent pigments may contain only those diluents listed in this subpart as safe and...

  15. Detrimental effects of carotenoid pigments: the dark side of bright coloration

    NASA Astrophysics Data System (ADS)

    Huggins, Kristal A.; Navara, Kristen J.; Mendonça, Mary T.; Hill, Geoffrey E.

    2010-07-01

    Carotenoid pigments produce yellow, orange, and red integumentary color displays that can serve as reliable signals of health and condition. In many birds and fish, individuals gain competitive or mating advantages by ingesting and utilizing large quantities of carotenoid pigments. Carotenoid pigments serve as antioxidants, performing important functions as free-radical scavengers. The beneficial effects of carotenoid pigments are well documented, but rarely have researchers considered potential detrimental effects of high-level accumulation of carotenoids. We maintained American goldfinches ( Carduelis tristis) on high- or low-carotenoid diets through molt and tested for damage to the liver and skeletal muscle. High intake of carotenoids had no measurable effect on liver enzymes but caused an increase in creatine kinase, an indicator of skeletal muscle breakdown, and a reduction in vertical flight performance, a measure of skeletal muscle integrity. The detrimental effects of high-level carotenoid accumulation were approximately equivalent to the negative effects of removing carotenoids from the diet. The adverse effects observed in this study have important implications for theories of the function and evolution of colorful plumage.

  16. Molecular evolution of antioxidant and hypoxia response in long-lived, cancer-resistant blind mole rats: The Nrf2-Keap1 pathway.

    PubMed

    Schmidt, Hanno; Hangmann, Johannes; Shams, Imad; Avivi, Aaron; Hankeln, Thomas

    2016-02-15

    The Nrf2-Keap1 pathway is crucial for the cellular antioxidant and hypoxia response in vertebrates. Deciphering its modifications in hypoxia-adapted animals will help understand its functionality under environmental stress and possibly allow for knowledge transfer into biomedical research. The blind mole rat Spalax, a long-lived cancer-resistant rodent, lives in burrows underground and is adapted to severely hypoxic conditions. Here we have conducted a bioinformatical survey of Spalax core genes from the Nrf2-Keap1 pathway on the coding sequence level in comparison to other hypoxia-tolerant and -sensitive rodents. We find strong sequence conservation across all genes, illustrating the pathway's importance. One of the central players however, Spalax Keap1, shows a non-conservative amino acid substitution from tyrosine to cysteine in its intervening region (IVR) domain. Cysteines in this location have been shown to be of high functional relevance to the binding and degradation of Nrf2. Therefore, this peculiar substitution could influence the cellular Nrf2 levels in Spalax and, thereby, downstream gene expression in the antioxidant pathway, contributing to the special adaptive phenotype of the blind mole rat. PMID:26631622

  17. Dimerization of visual pigments in vivo.

    PubMed

    Zhang, Tao; Cao, Li-Hui; Kumar, Sandeep; Enemchukwu, Nduka O; Zhang, Ning; Lambert, Alyssia; Zhao, Xuchen; Jones, Alex; Wang, Shixian; Dennis, Emily M; Fnu, Amrita; Ham, Sam; Rainier, Jon; Yau, King-Wai; Fu, Yingbin

    2016-08-01

    It is a deeply engrained notion that the visual pigment rhodopsin signals light as a monomer, even though many G protein-coupled receptors are now known to exist and function as dimers. Nonetheless, recent studies (albeit all in vitro) have suggested that rhodopsin and its chromophore-free apoprotein, R-opsin, may indeed exist as a homodimer in rod disk membranes. Given the overwhelmingly strong historical context, the crucial remaining question, therefore, is whether pigment dimerization truly exists naturally and what function this dimerization may serve. We addressed this question in vivo with a unique mouse line (S-opsin(+)Lrat(-/-)) expressing, transgenically, short-wavelength-sensitive cone opsin (S-opsin) in rods and also lacking chromophore to exploit the fact that cone opsins, but not R-opsin, require chromophore for proper folding and trafficking to the photoreceptor's outer segment. In R-opsin's absence, S-opsin in these transgenic rods without chromophore was mislocalized; in R-opsin's presence, however, S-opsin trafficked normally to the rod outer segment and produced functional S-pigment upon subsequent chromophore restoration. Introducing a competing R-opsin transmembrane helix H1 or helix H8 peptide, but not helix H4 or helix H5 peptide, into these transgenic rods caused mislocalization of R-opsin and S-opsin to the perinuclear endoplasmic reticulum. Importantly, a similar peptide-competition effect was observed even in WT rods. Our work provides convincing evidence for visual pigment dimerization in vivo under physiological conditions and for its role in pigment maturation and targeting. Our work raises new questions regarding a potential mechanistic role of dimerization in rhodopsin signaling. PMID:27462111

  18. Identification and Molecular Characterization of the Homogentisate Pathway Responsible for Pyomelanin Production, the Major Melanin Constituents in Aeromonas media WS

    PubMed Central

    Wang, He; Qiao, Yunqian; Chai, Baozhong; Qiu, Chenxi; Chen, Xiangdong

    2015-01-01

    The pigmentation of many Aeromonas species has been thought to be due to the production of a L-DOPA (L-3,4-dihydroxyphenylalanine) based melanin. However, in this study we found that although L-DOPA synthesis occurs in the high-melanin-yielding Aeromonas media strain WS, it plays a minor, if any, role in pigmentation. Instead, the pigmentation of A. media strain WS is due to the production of pyomelanin through HGA (homogentisate). Gene products of phhA (encodes phenylalanine hydroxylase), tyrB and aspC (both encode aromatic amino acid aminotransferase), and hppD (encodes 4-hydroxyphenylpyruvate dioxygenase) constitute a linear pathway of converting phenylalanine to HGA and disruption of any one of these genes impairs or blocks pigmentation of A. media strain WS. This HGA biosynthesis pathway is widely distributed in Aeromonas, but HGA is only detectable in the cultures of pigmented Aeromonas species. Heterologous expression of HppD from both pigmented and non-pigmented Aeromonas species in E. coli leads to the production of pyomelanin and thus pigmentation, suggesting that most Aeromonas species have the critical enzymes to produce pyomelanin through HGA. Taken together, we have identified a widely conserved biosynthesis pathway of HGA based pyomelanin in Aeromonas that may be responsible for pigmentation of many Aeromonas species. PMID:25793756

  19. Color me bad: microbial pigments as virulence factors.

    PubMed

    Liu, George Y; Nizet, Victor

    2009-09-01

    A hallmark feature of several pathogenic microbes is the distinctive color of their colonies when propagated in the clinical laboratory. Such pigmentation comes in a variety of hues, and has often proven useful in presumptive clinical diagnosis. Recent advances in microbial pigment biochemistry and the genetic basis of pigment production have sometimes revealed a more sinister aspect to these curious materials that change the color of reflected light by selective light absorbance. In many cases, the microbial pigment contributes to disease pathogenesis by interfering with host immune clearance mechanisms or by exhibiting pro-inflammatory or cytotoxic properties. We review several examples of pigments that promote microbial virulence, including the golden staphyloxanthin of Staphylococcusaureus, the blue-green pyocyanin of Pseudomonas spp., and the dark brown or black melanin pigments of Cryptococcus neoformans and Aspergillus spp. Targeted pigment neutralisation might represent a viable concept to enhance treatment of certain difficult infectious disease conditions. PMID:19726196

  20. Activation of visual pigments by light and heat.

    PubMed

    Luo, Dong-Gen; Yue, Wendy W S; Ala-Laurila, Petri; Yau, King-Wai

    2011-06-10

    Vision begins with photoisomerization of visual pigments. Thermal energy can complement photon energy to drive photoisomerization, but it also triggers spontaneous pigment activation as noise that interferes with light detection. For half a century, the mechanism underlying this dark noise has remained controversial. We report here a quantitative relation between a pigment's photoactivation energy and its peak-absorption wavelength, λ(max). Using this relation and assuming that pigment activations by light and heat go through the same ground-state isomerization energy barrier, we can predict the relative noise of diverse pigments with multi-vibrational-mode thermal statistics. The agreement between predictions and our measurements strongly suggests that pigment noise arises from canonical isomerization. The predicted high noise for pigments with λ(max) in the infrared presumably explains why they apparently do not exist in nature. PMID:21659602

  1. Age-associated glycopeptide pigment in human costal cartilage.

    PubMed Central

    van der Korst, J. K.; Willekens, F. L.; Lansink, A. G.; Henrichs, A. M.

    1977-01-01

    Age-associated pigmentation of human costal cartilage is caused by the accumulation of a brown water-soluble substance which can be only be extracted after proteolytic disruption of the cartilage. After isolation by gel filtration and ion exchange chromatography, the compound was identified as an acid glycopeptide. In contrast to ochronotic pigment and an artificial pigment derived by oxidation of homogentistic acid in alkaline solution, the age-associated cartilage pigment was strongly fluorescent and did not form insoluble complexes with cetylpyridinium chloride. Moreover, age-associated cartilage pigment is alkali resistant, in contrast to the ochronotic pigment. The pigment differs from lipofuscin in being strongly hydrophilic and having no affinity for fat stains. The unidentified chromophore could not be separated from the glycopeptide molecule. PMID:596418

  2. The photobleaching sequence of a short-wavelength visual pigment.

    PubMed

    Kusnetzow, A; Dukkipati, A; Babu, K R; Singh, D; Vought, B W; Knox, B E; Birge, R R

    2001-07-01

    The photobleaching pathway of a short-wavelength cone opsin purified in delipidated form (lambda(max) = 425 nm) is reported. The batho intermediate of the violet cone opsin generated at 45 K has an absorption maximum at 450 nm. The batho intermediate thermally decays to the lumi intermediate (lambda(max) = 435 nm) at 200 K. The lumi intermediate decays to the meta I (lambda(max) = 420 nm) and meta II (lambda(max) = 388 nm) intermediates at 258 and 263 K, respectively. The meta II intermediate decays to free retinal and opsin at >270 K. At 45, 75, and 140 K, the photochemical excitation of the violet cone opsin at 425 nm generates the batho intermediate at high concentrations under moderate illumination. The batho intermediate spectra, generated via decomposing the photostationary state spectra at 45 and 140 K, are identical and have properties typical of batho intermediates of other visual pigments. Extended illumination of the violet cone opsin at 75 K, however, generates a red-shifted photostationary state (relative to both the dark and the batho intermediates) that has as absorption maximum at approximately 470 nm, and thermally reverts to form the normal batho intermediate when warmed to 140 K. We conclude that this red-shifted photostationary state is a metastable state, characterized by a higher-energy protein conformation that allows relaxation of the all-trans chromophore into a more planar conformation. FTIR spectroscopy of violet cone opsin indicates conclusively that the chromophore is protonated. A similar transformation of the rhodopsin binding site generates a model for the VCOP binding site that predicts roughly 75% of the observed blue shift of the violet cone pigment relative to rhodopsin. MNDO-PSDCI calculations indicate that secondary interactions involving the binding site residues are as important as the first-order chromophore protein interactions in mediating the wavelength maximum. PMID:11425310

  3. Direct evidence for positive selection of skin, hair, and eye pigmentation in Europeans during the last 5,000 y.

    PubMed

    Wilde, Sandra; Timpson, Adrian; Kirsanow, Karola; Kaiser, Elke; Kayser, Manfred; Unterländer, Martina; Hollfelder, Nina; Potekhina, Inna D; Schier, Wolfram; Thomas, Mark G; Burger, Joachim

    2014-04-01

    Pigmentation is a polygenic trait encompassing some of the most visible phenotypic variation observed in humans. Here we present direct estimates of selection acting on functional alleles in three key genes known to be involved in human pigmentation pathways--HERC2, SLC45A2, and TYR--using allele frequency estimates from Eneolithic, Bronze Age, and modern Eastern European samples and forward simulations. Neutrality was overwhelmingly rejected for all alleles studied, with point estimates of selection ranging from around 2-10% per generation. Our results provide direct evidence that strong selection favoring lighter skin, hair, and eye pigmentation has been operating in European populations over the last 5,000 y. PMID:24616518

  4. Transcriptome analysis reveals novel patterning and pigmentation genes underlying Heliconius butterfly wing pattern variation

    PubMed Central

    2012-01-01

    Background Heliconius butterfly wing pattern diversity offers a unique opportunity to investigate how natural genetic variation can drive the evolution of complex adaptive phenotypes. Positional cloning and candidate gene studies have identified a handful of regulatory and pigmentation genes implicated in Heliconius wing pattern variation, but little is known about the greater developmental networks within which these genes interact to pattern a wing. Here we took a large-scale transcriptomic approach to identify the network of genes involved in Heliconius wing pattern development and variation. This included applying over 140 transcriptome microarrays to assay gene expression in dissected wing pattern elements across a range of developmental stages and wing pattern morphs of Heliconius erato. Results We identified a number of putative early prepattern genes with color-pattern related expression domains. We also identified 51 genes differentially expressed in association with natural color pattern variation. Of these, the previously identified color pattern “switch gene” optix was recovered as the first transcript to show color-specific differential expression. Most differentially expressed genes were transcribed late in pupal development and have roles in cuticle formation or pigment synthesis. These include previously undescribed transporter genes associated with ommochrome pigmentation. Furthermore, we observed upregulation of melanin-repressing genes such as ebony and Dat1 in non-melanic patterns. Conclusions This study identifies many new genes implicated in butterfly wing pattern development and provides a glimpse into the number and types of genes affected by variation in genes that drive color pattern evolution. PMID:22747837

  5. Schiff Base Protonation Changes in Siberian Hamster Ultraviolet Cone Pigment Photointermediates †

    PubMed Central

    Mooney, Victoria L.; Szundi, Istvan; Lewis, James W.; Yan, Elsa C. Y.; Kliger, David S.

    2012-01-01

    Molecular structure and function studies of vertebrate ultraviolet (UV) cone visual pigments are needed to understand the molecular evolution of these photoreceptors, which uniquely contain unprotonated Schiff base linkages between the 11-cis retinal chromophore and the opsin proteins. In this study, the Siberian hamster ultraviolet cone pigment (SHUV) was expressed and purified in an n-dodecyl-β-D-maltoside suspension for optical characterization. Time-resolved absorbance measurements, over a spectral range from 300 to 700 nm, were made on the purified pigment at time delays from 30 ns to 4.64 seconds after photoexcitation using 7 ns pulses of 355 nm light. The resulting data were fit globally to a sum of exponential functions after noise reduction using singular value decomposition. Four exponentials best fit the data with lifetimes of 1.4 µs, 210 µs, 47 ms and 1 s. The first photointermediate species characterized here is an equilibrated mixture similar to the one formed after rhodopsin's Batho intermediate decays into equilibrium with its successor, BSI. The extremely large red shift of the SHUV Batho component relative to the pigment suggests that SHUV Batho has a protonated Schiff base and that the SHUV cone pigment itself has an unprotonated Schiff base. In contrast to SHUV Batho, the portion of the equilibrated mixture's spectrum corresponding to SHUV BSI is well fit by a model spectrum with an unprotonated Schiff base. The spectra of the next two photointermediate species revealed that they both have unprotonated Schiff bases and suggest they are analogous to rhodopsin's Lumi I and Lumi II species. After decay of SHUV Lumi II, correspondence with rhodopsin photointermediates breaks down and the next photointermediate, presumably including the G protein-activating species, is a mixture of protonated and unprotonated Schiff base photointermediate species. PMID:22394396

  6. Characterization of the mantle transcriptome of yesso scallop (Patinopecten yessoensis): identification of genes potentially involved in biomineralization and pigmentation.

    PubMed

    Sun, Xiujun; Yang, Aiguo; Wu, Biao; Zhou, Liqing; Liu, Zhihong

    2015-01-01

    The Yesso scallop Patinopecten yessoensis is an economically important marine bivalve species in aquaculture and fishery in Asian countries. However, limited genomic resources are available for this scallop, which hampers investigations into molecular mechanisms underlying their unique biological characteristics, such as shell formation and pigmentation. Mantle is the special tissue of P. yessoensis that secretes biomineralization proteins inducing shell deposition as well as pigmentation on the shells. However, a current deficiency of transcriptome information limits insight into mechanisms of shell formation and pigmentation in this species. In this study, the transcriptome of the mantle of P. yessoensis was deeply sequenced and characterized using Illumina RNA-seq technology. A total of 86,521 unique transcripts are assembled from 55,884,122 reads that passed quality filters, and annotated, using Gene Ontology classification. A total of 259 pathways are identified in the mantle transcriptome, including the calcium signaling and melanogenesis pathways. A total of 237 unigenes that are homologous to 102 reported biomineralization genes are identified, and 121 unigenes that are homologous to 93 known proteins related to melanin biosynthesis are found. Twenty-three annotated unigenes, which are mainly homologous to calmodulin and related proteins, Ca2+/calmodulin-dependent protein kinase, adenylate/guanylate cyclase, and tyrosinase family are potentially involved in both biomineralization and melanin biosynthesis. It is suggested that these genes are probably not limited in function to induce shell deposition by calcium metabolism, but may also be involved in pigmentation of the shells of the scallop. This potentially supports the idea that there might be a link between calcium metabolism and melanin biosynthesis, which was previously found in vertebrates. The findings presented here will notably advance the understanding of the sophisticated processes of shell

  7. Characterization of the Mantle Transcriptome of Yesso Scallop (Patinopecten yessoensis): Identification of Genes Potentially Involved in Biomineralization and Pigmentation

    PubMed Central

    Sun, Xiujun; Yang, Aiguo; Wu, Biao; Zhou, Liqing; Liu, Zhihong

    2015-01-01

    The Yesso scallop Patinopecten yessoensis is an economically important marine bivalve species in aquaculture and fishery in Asian countries. However, limited genomic resources are available for this scallop, which hampers investigations into molecular mechanisms underlying their unique biological characteristics, such as shell formation and pigmentation. Mantle is the special tissue of P. yessoensis that secretes biomineralization proteins inducing shell deposition as well as pigmentation on the shells. However, a current deficiency of transcriptome information limits insight into mechanisms of shell formation and pigmentation in this species. In this study, the transcriptome of the mantle of P. yessoensis was deeply sequenced and characterized using Illumina RNA-seq technology. A total of 86,521 unique transcripts are assembled from 55,884,122 reads that passed quality filters, and annotated, using Gene Ontology classification. A total of 259 pathways are identified in the mantle transcriptome, including the calcium signaling and melanogenesis pathways. A total of 237 unigenes that are homologous to 102 reported biomineralization genes are identified, and 121 unigenes that are homologous to 93 known proteins related to melanin biosynthesis are found. Twenty-three annotated unigenes, which are mainly homologous to calmodulin and related proteins, Ca2+/calmodulin-dependent protein kinase, adenylate/guanylate cyclase, and tyrosinase family are potentially involved in both biomineralization and melanin biosynthesis. It is suggested that these genes are probably not limited in function to induce shell deposition by calcium metabolism, but may also be involved in pigmentation of the shells of the scallop. This potentially supports the idea that there might be a link between calcium metabolism and melanin biosynthesis, which was previously found in vertebrates. The findings presented here will notably advance the understanding of the sophisticated processes of shell

  8. Copy number variants and rasopathies: germline KRAS duplication in a patient with syndrome including pigmentation abnormalities.

    PubMed

    Gilbert-Dussardier, Brigitte; Briand-Suleau, Audrey; Laurendeau, Ingrid; Bilan, Frédéric; Cavé, Hélène; Verloes, Alain; Vidaud, Michel; Vidaud, Dominique; Pasmant, Eric

    2016-01-01

    RAS/MAPK pathway germline mutations were described in Rasopathies, a class of rare genetic syndromes combining facial abnormalities, heart defects, short stature, skin and genital abnormalities, and mental retardation. The majority of the mutations identified in the Rasopathies are point mutations which increase RAS/MAPK pathway signaling. Duplications encompassing RAS/MAPK pathway genes (PTPN11, RAF1, MEK2, or SHOC2) were more rarely described. Here we report, a syndromic familial case of a 12p duplication encompassing the dosage sensitive gene KRAS, whose phenotype overlapped with rasopathies. The patient was referred because of a history of mild learning disabilities, small size, facial dysmorphy, and pigmentation abnormalities (café-au-lait and achromic spots, and axillar lentigines). This phenotype was reminiscent of rasopathies. No mutation was identified in the most common genes associated with Noonan, cardio-facio-cutaneous, Legius, and Costello syndromes, as well as neurofibromatosis type 1. The patient constitutional DNA exhibited a ~10.5 Mb duplication at 12p, including the KRAS gene. The index case's mother carried the same chromosome abnormality and also showed development delay with short stature, and numerous café-au-lait spots. Duplication of the KRAS gene may participate in the propositus phenotype, in particular of the specific pigmentation abnormalities. Array-CGH or some other assessment of gene/exon CNVs of RAS/MAPK pathway genes should be considered in the evaluation of individuals with rasopathies. PMID:27450488

  9. Retinal pigment epithelium in incontinentia pigmenti.

    PubMed

    Mensheha-Manhart, O; Rodrigues, M M; Shields, J A; Shannon, G M; Mirabelli, R P

    1975-04-01

    An 18-month-old white girl with incontinentia pigmenti presented clinically with leukokoria of the right eye. B-scan ultrasound demonstrated a retrolental mass consistent with a detached retina. Histologic examination of the skin revealed changes compatible with the intermediate verrucous phase of the disease. Microscopic examination of the right eye showed retinal detachment and nodular proliferation of the retinal pigment epithelium. The nodules contained macrophages laden with melanin and lipofuscin. An unusually large amount of lipofuscin was present for a child of this age. The basic pigmentary abnormality may affect the retinal pigment epithelium, resulting in changes in the overlying neurosensory retina that may lead to the retinal dysplasia or retinal detachemnt often associated with this condition. PMID:1119517

  10. Bleached pigment activates transduction in salamander cones

    PubMed Central

    1995-01-01

    We have used suction electrode recording together with rapid steps into 0.5 mM IBMX solution to investigate changes in guanylyl cyclase velocity produced by pigment bleaching in isolated cones of the salamander Ambystoma tigrinum. Both backgrounds and bleaches accelerate the time course of current increase during steps into IBMX. We interpret this as evidence that the velocity of the guanylyl cyclase is increased in background light or after bleaching. Our results indicate that cyclase velocity increases nearly linearly with increasing percent pigment bleached but nonlinearly (and may saturate) with increasing back-ground intensity. In cones (as previously demonstrated for rods), light-activated pigment and bleached pigment appear to have somewhat different effects on the transduction cascade. The effect of bleaching on cyclase rate is maintained for at least 15-20 min after the light is removed, much longer than is required after a bleach for circulating current and sensitivity to stabilize in an isolated cone. The effect on the cyclase rate can be completely reversed by treatment with liposomes containing 11-cis retinal. The effects of bleaching can also be partially reversed by beta-ionone, an analogue of the chromophore 11- cis-retinal which does not form a covalent attachment to opsin. Perfusion of a bleached cone with beta-ionone produces a rapid increase in circulating current and sensitivity, which rapidly reverses when the beta-ionone is removed. Perfusion with beta-ionone also causes a partial reversal of the bleach-induced acceleration of cyclase velocity. We conclude that bleaching produces an "equivalent background" excitation of the transduction cascade in cones, perhaps by a mechanism similar to that in rods. PMID:8786347

  11. Practice and Educational Gaps in Abnormal Pigmentation.

    PubMed

    Mohammad, Tasneem F; Hamzavi, Iltefat H

    2016-07-01

    Dyschromia refers to abnormal pigmentation and is one of the most common diagnoses in dermatology. However, there are many educational and practice gaps in this area, specifically in melasma, postinflammatory hyperpigmentation, and vitiligo. This article aims to review the gold standard of care for these conditions as well as highlight common educational and practice gaps in these areas. Finally, possible solutions to these gaps are addressed. PMID:27363886

  12. Diet-induced pigmented purpuric dermatosis.

    PubMed

    Weiß, Katharina T; Karrer, Sigrid; Landthaler, Michael; Babilas, Philipp; Schreml, Stephan

    2014-08-01

    Pigmented purpuric dermatoses (PPD) are chronic and relapsing disorders characterised by a localised or generalised purpuric rash. Even though the clinical presentation of PPD subtypes varies, they have a similar histopathology. The aetiology is largely unknown, but trigger factors, such as drugs, infections and systemic illnesses have been described. To our knowledge, this is the only case showing widespread PPD lesions not only induced but also rapidly provoked by dietary factors, namely Coca Cola and apple-cherry fruit spritzer. PMID:23574037

  13. Skin pigmentation, biogeographical ancestry and admixture mapping.

    PubMed

    Shriver, Mark D; Parra, Esteban J; Dios, Sonia; Bonilla, Carolina; Norton, Heather; Jovel, Celina; Pfaff, Carrie; Jones, Cecily; Massac, Aisha; Cameron, Neil; Baron, Archie; Jackson, Tabitha; Argyropoulos, George; Jin, Li; Hoggart, Clive J; McKeigue, Paul M; Kittles, Rick A

    2003-04-01

    Ancestry informative markers (AIMs) are genetic loci showing alleles with large frequency differences between populations. AIMs can be used to estimate biogeographical ancestry at the level of the population, subgroup (e.g. cases and controls) and individual. Ancestry estimates at both the subgroup and individual level can be directly instructive regarding the genetics of the phenotypes that differ qualitatively or in frequency between populations. These estimates can provide a compelling foundation for the use of admixture mapping (AM) methods to identify the genes underlying these traits. We present details of a panel of 34 AIMs and demonstrate how such studies can proceed, by using skin pigmentation as a model phenotype. We have genotyped these markers in two population samples with primarily African ancestry, viz. African Americans from Washington D.C. and an African Caribbean sample from Britain, and in a sample of European Americans from Pennsylvania. In the two African population samples, we observed significant correlations between estimates of individual ancestry and skin pigmentation as measured by reflectometry (R(2)=0.21, P<0.0001 for the African-American sample and R(2)=0.16, P<0.0001 for the British African-Caribbean sample). These correlations confirm the validity of the ancestry estimates and also indicate the high level of population structure related to admixture, a level that characterizes these populations and that is detectable by using other tests to identify genetic structure. We have also applied two methods of admixture mapping to test for the effects of three candidate genes (TYR, OCA2, MC1R) on pigmentation. We show that TYR and OCA2 have measurable effects on skin pigmentation differences between the west African and west European parental populations. This work indicates that it is possible to estimate the individual ancestry of a person based on DNA analysis with a reasonable number of well-defined genetic markers. The implications and

  14. Evolution of a Genome-Encoded Bias in Amino Acid Biosynthetic Pathways Is a Potential Indicator of Amino Acid Dynamics in the Environment

    PubMed Central

    Fasani, Rick A.; Savageau, Michael A.

    2014-01-01

    Overcoming the stress of starvation is one of an organism’s most challenging phenotypic responses. Those organisms that frequently survive the challenge, by virtue of their fitness, will have evolved genomes that are shaped by their specific environments. Understanding this genotype–environment–phenotype relationship at a deep level will require quantitative predictive models of the complex molecular systems that link these aspects of an organism’s existence. Here, we treat one of the most fundamental molecular systems, protein synthesis, and the amino acid biosynthetic pathways involved in the stringent response to starvation. These systems face an inherent logical dilemma: Building an amino acid biosynthetic pathway to synthesize its product—the cognate amino acid of the pathway—may require that very amino acid when it is no longer available. To study this potential “catch-22,” we have created a generic model of amino acid biosynthesis in response to sudden starvation. Our mathematical analysis and computational results indicate that there are two distinctly different outcomes: Partial recovery to a new steady state, or full system failure. Moreover, the cell’s fate is dictated by the cognate bias, the number of cognate amino acids in the corresponding biosynthetic pathway relative to the average number of that amino acid in the proteome. We test these implications by analyzing the proteomes of over 1,800 sequenced microbes, which reveals statistically significant evidence of low cognate bias, a genetic trait that would avoid the biosynthetic quandary. Furthermore, these results suggest that the pattern of cognate bias, which is readily derived by genome sequencing, may provide evolutionary clues to an organism’s natural environment. PMID:25118252

  15. Pigments with or without organic binder? A survey of wall painting techniques during Antiquity

    SciTech Connect

    Walter, P.

    1996-01-01

    The identification of ancient artistic techniques is based on laboratory studies and, for historical cases, also on literary sources. An analytical approach using the techniques of physical chemistry reveals the technical expertise of the artists, right at the dawn of art. In the case of prehistoric parietal art, we show that the artists prepared their pigments with different ground and mixed minerals. They applied their material onto the wall and the particles remained embedded in the superficial calcite layer. Later, the prehistoric people prepared a real paint with the proper pigment, an extender and an organic binder to fix the paint on the wall. During Antiquity, new techniques appear. The paint is applied to the natural or artificial wall and is executed, either directly or on a previously applied plaster. The aim of this paper is to describe the evolution of the techniques. The underlying chemistry provides some interesting clues on the technical choices. {copyright} {ital 1996 American Institute of Physics.}

  16. The genetics of skin, hair, and eye color variation and its relevance to forensic pigmentation predictive tests.

    PubMed

    Maroñas, O; Söchtig, J; Ruiz, Y; Phillips, C; Carracedo, Á; Lareu, M V

    2015-01-01

    This review examines the potential application of single nucleotide polymorphism (SNP)-based predictive tests for skin, hair, and eye color to forensic analysis in support of police investigations lacking DNA database matches or eyewitness testimony. Brief descriptions of the biology of melanogenesis and the main genes involved are presented in order to understand the basis of common pigmentation variation in humans. We outline the most recently developed forensically sensitive multiplex tests that can be applied to investigative analyses. The review also describes the biology of the SNPs with the closest associations to, and therefore the best predictors for, common variation in eye, hair, and skin pigmentation. Because pigmentation pathways are complex in their patterns, many of the better-studied human albinism traits provide insight into how pigmentation SNPs interact, control, or modify gene expression and show varying degrees of association with the key genes identified to date. These aspects of SNP action are discussed in an overview of each of the functional groups of pigmentation genes. PMID:26227136

  17. An intracellular anion channel critical for pigmentation

    PubMed Central

    Bellono, Nicholas W; Escobar, Iliana E; Lefkovith, Ariel J; Marks, Michael S; Oancea, Elena

    2014-01-01

    Intracellular ion channels are essential regulators of organellar and cellular function, yet the molecular identity and physiological role of many of these channels remains elusive. In particular, no ion channel has been characterized in melanosomes, organelles that produce and store the major mammalian pigment melanin. Defects in melanosome function cause albinism, characterized by vision and pigmentation deficits, impaired retinal development, and increased susceptibility to skin and eye cancers. The most common form of albinism is caused by mutations in oculocutaneous albinism II (OCA2), a melanosome-specific transmembrane protein with unknown function. Here we used direct patch-clamp of skin and eye melanosomes to identify a novel chloride-selective anion conductance mediated by OCA2 and required for melanin production. Expression of OCA2 increases organelle pH, suggesting that the chloride channel might regulate melanin synthesis by modulating melanosome pH. Thus, a melanosomal anion channel that requires OCA2 is essential for skin and eye pigmentation. DOI: http://dx.doi.org/10.7554/eLife.04543.001 PMID:25513726

  18. Optical tomography of pigmented human skin biopsies

    NASA Astrophysics Data System (ADS)

    Riemann, Iris; Fischer, Peter; Kaatz, Martin; Fischer, Tobias W.; Elsner, Peter; Dimitrov, Enrico; Reif, Annette; Konig, Karsten

    2004-07-01

    The novel femtosecond NIR (near infrared) laser based high resolution imaging system DermaInspect was used for non-invasive diagnostics of pigmented skin. The system provides fluorescence and SHG images of high spatial submicron resolution (3D) and 250 ps temporal resolution (4D) based on time resolved single photon counting (TCSPC). Pigmented tissue biopsies from patients with nevi and melanoma have been investigated using the tunable 80 MHz femtosecond laser MaiTai with laser wavelengths in the range of 750 - 850 nm. The autofluorescence patterns of different intratissue cell types and structures were determined. The non-linear induced autofluorescence originates from naturally endogenous fluorophores and protein structures like NAD(P)H, flavins, elastin, collagen, phorphyrins and melanin. In addition to autofluorescence, SHG (second harmonic generation) was used to detect dermal collagen structures. Interestingly, pigmented cells showed intense luminescence signals. Further characterization of tissue components was performed via 4D measurements of the fluorescence lifetime (x, y, z, τ). The novel multiphoton technique offers the possibility of a painless high resolution non invasive diagnostic method (optical biopsy), in particular for the early detection of skin cancer.

  19. An intracellular anion channel critical for pigmentation.

    PubMed

    Bellono, Nicholas W; Escobar, Iliana E; Lefkovith, Ariel J; Marks, Michael S; Oancea, Elena

    2014-01-01

    Intracellular ion channels are essential regulators of organellar and cellular function, yet the molecular identity and physiological role of many of these channels remains elusive. In particular, no ion channel has been characterized in melanosomes, organelles that produce and store the major mammalian pigment melanin. Defects in melanosome function cause albinism, characterized by vision and pigmentation deficits, impaired retinal development, and increased susceptibility to skin and eye cancers. The most common form of albinism is caused by mutations in oculocutaneous albinism II (OCA2), a melanosome-specific transmembrane protein with unknown function. Here we used direct patch-clamp of skin and eye melanosomes to identify a novel chloride-selective anion conductance mediated by OCA2 and required for melanin production. Expression of OCA2 increases organelle pH, suggesting that the chloride channel might regulate melanin synthesis by modulating melanosome pH. Thus, a melanosomal anion channel that requires OCA2 is essential for skin and eye pigmentation. PMID:25513726

  20. Blackberry pigment (whitlockite) gallstones in uremic patient.

    PubMed

    Cariati, Andrea

    2013-04-01

    Black pigment gallstones represent nearly the 15% of all gallstones and are usually related with the typical "hyperbilirubinbilia" factors as hemolysis, ineffective erythropoiesis, pathologic enterohepatic cycling of unconjugated bilirubin, cirrhosis and with gallbladder mucosa (parietal) factors as adenomyomatosis. During a prospective study on 179 patients who underwent cholecystectomy for gallstone disease a 69-year-old female with predialysis chronic kidney disease was operated for symptomatic gallstone. The removed gallstones were black pigment gallstones, with an irregular (as small blackberry) surface. Analysis of the stones revealed a great amount of whitlockite (Ca Mg)3 (PO4)2. Recent studies on chronic renal failure patients found that chronic uremia is associated with an increased risk of gallstones formation (22%) as it seems in women affected by primary hyperparathyroidism (30%). The presence of calcium phosphate gallstones in these patients have been never described. In conclusion, further studies could be necessary to establish the role of chronic renal failure and of primary and secondary hyperparathyroidism in gallstones formation and, in particular, if dialysis and predialysis patients have an higher risk to develop cholesterol and black pigment gallstones in particular of the "blackberry" (whitlockite) subtype. PMID:22959097

  1. The photochromic effect of bismuth vanadate pigments. Part I: Synthesis, characterization and lightfastness of pigment coatings

    NASA Astrophysics Data System (ADS)

    Tücks, A.; Beck, H. P.

    2005-04-01

    We report on investigations of the photochromic effect of BiVO 4 pigments. Emphasis is placed on an approach widely used in industrial color testing. By means of colorimetry Δ E ab*-values, which measure the perceived color difference, can be calculated from reflectance spectra of non-illuminated and illuminated pigment coatings. Pigments were prepared by either wet-chemical precipitation or solid-state reactions. Depending on the choice of starting compounds, lightfastness was found to vary significantly. Small amounts of impurity phases do not seem to affect photochromism. In contrast, impurities like Fe and Pb cause intense photochromism. The role of Fe is suggested by trace analyses, which (in case of pigments synthesized by precipitation reactions) reveal a correlation between concentration and Δ E ab*. Indications are found that other effects like pigment-lacquer interactions might also be of importance. Difference reflectance spectra turn out to vary in shape depending on the type and concentration of impurities or dopants. For BiVO 4 at least three different mechanisms of photochromism can be assumed.

  2. The photochromic effect of bismuth vanadate pigments. Part I: Synthesis, characterization and lightfastness of pigment coatings

    SciTech Connect

    Tuecks, A.; Beck, H.P. . E-mail: hp.beck@mx.uni-saarland.de

    2005-04-15

    We report on investigations of the photochromic effect of BiVO{sub 4} pigments. Emphasis is placed on an approach widely used in industrial color testing. By means of colorimetry {delta}E{sub ab}*-values, which measure the perceived color difference, can be calculated from reflectance spectra of non-illuminated and illuminated pigment coatings. Pigments were prepared by either wet-chemical precipitation or solid-state reactions. Depending on the choice of starting compounds, lightfastness was found to vary significantly. Small amounts of impurity phases do not seem to affect photochromism. In contrast, impurities like Fe and Pb cause intense photochromism. The role of Fe is suggested by trace analyses, which (in case of pigments synthesized by precipitation reactions) reveal a correlation between concentration and {delta}E{sub ab}*. Indications are found that other effects like pigment-lacquer interactions might also be of importance. Difference reflectance spectra turn out to vary in shape depending on the type and concentration of impurities or dopants. For BiVO{sub 4} at least three different mechanisms of photochromism can be assumed.

  3. Transient Ectopic Overexpression of Agouti-Signalling Protein 1 (Asip1) Induces Pigment Anomalies in Flatfish

    PubMed Central

    Cal, Rosa; Rotllant, Josep; Cerdá-Reverter, José Miguel

    2012-01-01

    While flatfish in the wild exhibit a pronounced countershading of the dorso-ventral pigment pattern, malpigmentation is commonly observed in reared animals. In fish, the dorso-ventral pigment polarity is achieved because a melanization inhibition factor (MIF) inhibits melanoblast differentiation and encourages iridophore proliferation in the ventrum. A previous work of our group suggested that asip1 is the uncharacterized MIF concerned. In order to further support this hypothesis, we have characterized asip1 mRNAs in both turbot and sole and used deduced peptide alignments to analyze the evolutionary history of the agouti-family of peptides. The putative asip precursors have the characteristics of a secreted protein, displaying a putative hydrophobic signal. Processing of the potential signal peptide produces mature proteins that include an N-terminal region, a basic central domain with a high proportion of lysine residues as well as a proline-rich region that immediately precedes the C-terminal poly-cysteine domain. The expression of asip1 mRNA in the ventral area was significantly higher than in the dorsal region. Similarly, the expression of asip1 within the unpigmented patches in the dorsal skin of pseudoalbino fish was higher than in the pigmented dorsal regions but similar to those levels observed in the ventral skin. In addition, the injection/electroporation of asip1 capped mRNA in both species induced long term dorsal skin paling, suggesting the inhibition of the melanogenic pathways. The data suggest that fish asip1 is involved in the dorsal-ventral pigment patterning in adult fish, where it induces the regulatory asymmetry involved in precursor differentiation into mature chromatophore. Adult dorsal pseudoalbinism seems to be the consequence of the expression of normal developmental pathways in an inaccurate position that results in unbalanced asip1 production levels. This, in turn, generates a ventral-like differentiation environment in dorsal regions

  4. Interaction between Vaccinium bracteatum Thunb. leaf pigment and rice proteins.

    PubMed

    Wang, Li; Xu, Yuan; Zhou, Sumei; Qian, Haifeng; Zhang, Hui; Qi, Xiguang; Fan, Meihua

    2016-03-01

    In this study, we investigated the interaction of Vaccinium bracteatum Thunb. leaf (VBTL) pigment and rice proteins. In the presence of rice protein, VBTL pigment antioxidant activity and free polyphenol content decreased by 67.19% and 68.11%, respectively, and L(∗) of the protein-pigment complex decreased significantly over time. L(∗) values of albumin, globulin and glutelin during 60-min pigment exposure decreased by 55.00, 57.14, and 54.30%, respectively, indicating that these proteins had bound to the pigment. A significant difference in protein surface hydrophobicity was observed between rice proteins and pigment-protein complexes, indicating that hydrophobic interaction is a major binding mechanism between VBTL pigment and rice proteins. A significant difference in secondary structures between proteins and protein-pigment complexes was also uncovered, indicating that hydrogen bonding may be another mode of interaction between VBTL pigment and rice proteins. Our results indicate that VBTL pigment can stain rice proteins with hydrophobic and hydrogen interactions. PMID:26471554

  5. Mitochondrial Evolution

    PubMed Central

    Gray, Michael W.

    2012-01-01

    Viewed through the lens of the genome it contains, the mitochondrion is of unquestioned bacterial ancestry, originating from within the bacterial phylum α-Proteobacteria (Alphaproteobacteria). Accordingly, the endosymbiont hypothesis—the idea that the mitochondrion evolved from a bacterial progenitor via symbiosis within an essentially eukaryotic host cell—has assumed the status of a theory. Yet mitochondrial genome evolution has taken radically different pathways in diverse eukaryotic lineages, and the organelle itself is increasingly viewed as a genetic and functional mosaic, with the bulk of the mitochondrial proteome having an evolutionary origin outside Alphaproteobacteria. New data continue to reshape our views regarding mitochondrial evolution, particularly raising the question of whether the mitochondrion originated after the eukaryotic cell arose, as assumed in the classical endosymbiont hypothesis, or whether this organelle had its beginning at the same time as the cell containing it. PMID:22952398

  6. Tetraspanin 3c requirement for pigment cell interactions and boundary formation in zebrafish adult pigment stripes

    PubMed Central

    Inoue, Shinya; Kondo, Shigeru; Parichy, David M.; Watanabe, Masakatsu

    2014-01-01

    Summary Skin pigment pattern formation in zebrafish requires pigment-cell autonomous interactions between melanophores and xanthophores, yet the molecular bases for these interactions remain largely unknown. Here, we examined the dali mutant that exhibits stripes in which melanophores are intermingled abnormally with xanthophores. By in vitro cell culture, we found that melanophores of dali mutants have a defect in motility and that interactions between melanophores and xanthophores are defective as well. Positional cloning and rescue identified dali as tetraspanin 3c (tspan3c), encoding a transmembrane scaffolding protein expressed by melanophores and xanthophores. We further showed that dali mutant Tspan3c expressed in HeLa cell exhibits a defect in N-glycosylation and is retained inappropriately in the endoplasmic reticulum. Our results are the first to identify roles for a tetraspanin superfamily protein in skin pigment pattern formation and suggest new mechanisms for the establishment and maintenance of zebrafish stripe boundaries. PMID:24734316

  7. Evolution of the eye transcriptome under constant darkness in Sinocyclocheilus cavefish.

    PubMed

    Meng, Fanwei; Braasch, Ingo; Phillips, Jennifer B; Lin, Xiwen; Titus, Tom; Zhang, Chunguang; Postlethwait, John H

    2013-07-01

    In adaptating to perpetual darkness, cave species gradually lose eyes and body pigmentation and evolve alternatives for exploring their environments. Although troglodyte features evolved independently many times in cavefish, we do not yet know whether independent evolution of these characters involves common genetic mechanisms. Surface-dwelling and many cave-dwelling species make the freshwater teleost genus Sinocyclocheilus an excellent model for studying the evolution of adaptations to life in constant darkness. We compared the mature retinal histology of surface and cave species in Sinocyclocheilus and found that adult cavefish showed a reduction in the number and length of photoreceptor cells. To identify genes and genetic pathways that evolved in constant darkness, we used RNA-seq to compare eyes of surface and cave species. De novo transcriptome assemblies were developed for both species, and contigs were annotated with gene ontology. Results from cave-dwelling Sinocyclocheilus revealed reduced transcription of phototransduction and other genes important for retinal function. In contrast to the blind Mexican tetra cavefish Astyanax mexicanus, our results on morphologies and gene expression suggest that evolved retinal reduction in cave-dwelling Sinocyclocheilus occurs in a lens-independent fashion by the reduced proliferation and downregulation of transcriptional factors shown to have direct roles in retinal development and maintenance, including cone-rod homeobox (crx) and Wnt pathway members. These results show that the independent evolution of retinal degeneration in cavefish can occur by different developmental genetic mechanisms. PMID:23612715

  8. Evolution of the Eye Transcriptome under Constant Darkness in Sinocyclocheilus Cavefish

    PubMed Central

    Meng, Fanwei; Braasch, Ingo; Phillips, Jennifer B.; Lin, Xiwen; Titus, Tom; Zhang, Chunguang; Postlethwait, John H.

    2013-01-01

    In adaptating to perpetual darkness, cave species gradually lose eyes and body pigmentation and evolve alternatives for exploring their environments. Although troglodyte features evolved independently many times in cavefish, we do not yet know whether independent evolution of these characters involves common genetic mechanisms. Surface-dwelling and many cave-dwelling species make the freshwater teleost genus Sinocyclocheilus an excellent model for studying the evolution of adaptations to life in constant darkness. We compared the mature retinal histology of surface and cave species in Sinocyclocheilus and found that adult cavefish showed a reduction in the number and length of photoreceptor cells. To identify genes and genetic pathways that evolved in constant darkness, we used RNA-seq to compare eyes of surface and cave species. De novo transcriptome assemblies were developed for both species, and contigs were annotated with gene ontology. Results from cave-dwelling Sinocyclocheilus revealed reduced transcription of phototransduction and other genes important for retinal function. In contrast to the blind Mexican tetra cavefish Astyanax mexicanus, our results on morphologies and gene expression suggest that evolved retinal reduction in cave-dwelling Sinocyclocheilus occurs in a lens-independent fashion by the reduced proliferation and downregulation of transcriptional factors shown to have direct roles in retinal development and maintenance, including cone-rod homeobox (crx) and Wnt pathway members. These results show that the independent evolution of retinal degeneration in cavefish can occur by different developmental genetic mechanisms. PMID:23612715

  9. Comparison of Ergot Alkaloid Biosynthesis Gene Clusters in Claviceps Species Indicates Loss of Late Pathway Steps in Evolution of C. fusiformis▿

    PubMed Central

    Lorenz, Nicole; Wilson, Ella V.; Machado, Caroline; Schardl, Christopher L.; Tudzynski, Paul

    2007-01-01

    The grass parasites Claviceps purpurea and Claviceps fusiformis produce ergot alkaloids (EA) in planta and in submerged culture. Whereas EA synthesis (EAS) in C. purpurea proceeds via clavine intermediates to lysergic acid and the complex ergopeptines, C. fusiformis produces only agroclavine and elymoclavine. In C. purpurea the EAS gene (EAS) cluster includes dmaW (encoding the first pathway step), cloA (elymoclavine oxidation to lysergic acid), and the lpsA/lpsB genes (ergopeptine formation). We analyzed the corresponding C. fusiformis EAS cluster to investigate the evolutionary basis for chemotypic differences between the Claviceps species. Other than three peptide synthetase genes (lpsC and the tandem paralogues lpsA1 and lpsA2), homologues of all C. purpurea EAS genes were identified in C. fusiformis, including homologues of lpsB and cloA, which in C. purpurea encode enzymes for steps after clavine synthesis. Rearrangement of the cluster was evident around lpsB, which is truncated in C. fusiformis. This and several frameshift mutations render CflpsB a pseudogene (CflpsBΨ). No obvious inactivating mutation was identified in CfcloA. All C. fusiformis EAS genes, including CflpsBΨ and CfcloA, were expressed in culture. Cross-complementation analyses demonstrated that CfcloA and CflpsBΨ were expressed in C. purpurea but did not encode functional enzymes. In contrast, CpcloA catalyzed lysergic acid biosynthesis in C. fusiformis, indicating that C. fusiformis terminates its EAS pathway at elymoclavine because the cloA gene product is inactive. We propose that the C. fusiformis EAS cluster evolved from a more complete cluster by loss of some lps genes and by rearrangements and mutations inactivating lpsB and cloA. PMID:17720822

  10. Potential therapeutic effects of pigment epithelium-derived factor for treatment of diabetic retinopathy.

    PubMed

    Liu, Xiao; Chen, Hui-Hui; Zhang, Li-Wei

    2013-01-01

    Diabetic retinopathy (DR), a major micro-vascular complication of diabetes, has emerged as a leading cause of visual impairment and blindness among working adults in the worldwide. The pathobiology of DR involves multiple molecular pathways and is characterized chronic neurovascular degeneration. Current approaches to prevent or to treat DR are still far from satisfactory. Therefore, it is important to develop new therapeutic strategies for the prevention and treatment to DR. Pigment epithelium-derived factor (PEDF), a 50-kDa secreted glycoprotein, has been described as a multi-functional protein. Some emerging evidences indicate that PEDF are able to target multiple pathways exerting neurotropic, neuroprotective, anti-angiogenic, antivasopermeability, anti-inflammation, anti-thrombogenic and anti-oxidative effects in DR. In this review, we addressed the functions of PEDF in different pathways, which could lead to potential therapeutics on the treatment to DR. PMID:23638428

  11. Enhancing the thermal robustness of an enzyme by directed evolution: least favorable starting points and inferior mutants can map superior evolutionary pathways.

    PubMed

    Gumulya, Yosephine; Reetz, Manfred T

    2011-11-01

    In a previous directed evolution study, the B-FIT approach to increasing the thermal robustness of proteins was introduced and applied to the lipase from Bacillus subtilis. It is based on the general concept of iterative saturation mutagenesis (ISM), according to which sites in an enzyme are subjected to saturation mutagenesis, the best hit of a given library is then used as a template for randomization at other sites, and the process is continued until the desired catalyst improvement has been achieved. The appropriate choice of the ISM sites is crucial; in the B-FIT method the criterion is residues characterized by highest B factors available from X-ray crystallography data. In the present study, B-FIT was employed in order to increase the thermal robustness of the epoxide hydrolase from Aspergillus niger. Several rounds of ISM resulted in the best variant showing a 21 °C increase in the T(60)(50) value, an 80-fold improvement in half-life at 60 °C, and a 44 kcal mol(-1) improvement in inactivation energy. Seven other variants were also evolved with moderate yet significant improvements; these were characterized by 10-14 °C increases in T(60)(50), 20-30-fold improvement in half-lives at 60 °C and 15-20 kcal mol(-1) elevations in activation energy. Unexpectedly, in the ISM process the best variants were obtained from essentially neutral or even inferior mutant parents, that is, when a given library contains no improved mutants. This constitutes a practical way to escape from what appear to be local minima ("dead ends") in the fitness landscape-a finding of notable significance in directed evolution. PMID:21913300

  12. Probing S-state advancements and recombination pathways in photosystem II with a global fit program for flash-induced oxygen evolution pattern.

    PubMed

    Pham, Long Vo; Messinger, Johannes

    2016-06-01

    The oxygen-evolving complex (OEC) in photosystem II catalyzes the oxidation of water to molecular oxygen. Four decades ago, measurements of flash-induced oxygen evolution have shown that the OEC steps through oxidation states S(0), S(1), S(2), S(3) and S(4) before O(2) is released and the S(0) state is reformed. The light-induced transitions between these states involve misses and double hits. While it is widely accepted that the miss parameter is S state dependent and may be further modulated by the oxidation state of the acceptor side, the traditional way of analyzing each flash-induced oxygen evolution pattern (FIOP) individually did not allow using enough free parameters to thoroughly test this proposal. Furthermore, this approach does not allow assessing whether the presently known recombination processes in photosystem II fully explain all measured oxygen yields during Si state lifetime measurements. Here we present a global fit program that simultaneously fits all flash-induced oxygen yields of a standard FIOP (2 Hz flash frequency) and of 11-18 FIOPs each obtained while probing the S(0), S(2) and S(3) state lifetimes in spinach thylakoids at neutral pH. This comprehensive data treatment demonstrates the presence of a very slow phase of S(2) decay, in addition to the commonly discussed fast and slow reduction of S(2) by YD and QB(-), respectively. Our data support previous suggestions that the S(0)→S(1) and S(1)→S(2) transitions involve low or no misses, while high misses occur in the S(2)→S(3) or S(3)→S(0) transitions. PMID:27033305

  13. Analytical Raman spectroscopic discrimination between yellow pigments of the Renaissance

    NASA Astrophysics Data System (ADS)

    Edwards, Howell G. M.

    2011-10-01

    The Renaissance represented a major advance in painting techniques, subject matter, artistic style and the use of pigments and pigment mixtures. However, most pigments in general use were still mineral-based as most organic dyes were believed to be fugitive; the historical study of artists' palettes and recipes has assumed importance for the attribution of art works to the Renaissance period. Although the application of diagnostic elemental and molecular spectroscopic techniques play vital and complementary roles in the analysis of art works, elemental techniques alone cannot definitively provide the data needed for pigment identification. The advantages and limitations of Raman spectroscopy for the definitive diagnostic characterisation of yellow pigments that were in use during the Renaissance is demonstrated here in consideration of heavy metal oxides and sulphides; these data will be compared with those obtained from analyses of synthetic yellow pigments that were available during the eighteenth and nineteenth Centuries which could have been used in unrecorded restorations of Renaissance paintings.

  14. Graph-based pigment network detection in skin images

    NASA Astrophysics Data System (ADS)

    Sadeghi, M.; Razmara, M.; Ester, M.; Lee, T. K.; Atkins, M. S.

    2010-03-01

    Detecting pigmented network is a crucial step for melanoma diagnosis. In this paper, we present a novel graphbased pigment network detection method that can find and visualize round structures belonging to the pigment network. After finding sharp changes of the luminance image by an edge detection function, the resulting binary image is converted to a graph, and then all cyclic sub-graphs are detected. Theses cycles represent meshes that belong to the pigment network. Then, we create a new graph of the cyclic structures based on their distance. According to the density ratio of the new graph of the pigment network, the image is classified as "Absent" or "Present". Being Present means that a pigment network is detected in the skin lesion. Using this approach, we achieved an accuracy of 92.6% on five hundred unseen images.

  15. Fuzzy logic for identifying pigments studied by Raman spectroscopy.

    PubMed

    Ramos, Pablo Manuel; Ferré, Joan; Ruisánchez, Itziar; Andrikopoulos, Konstantinos S

    2004-07-01

    Fuzzy logic and linguistic variables are used for the automatic interpretation of Raman spectra obtained from pigments found in cultural heritage art objects. Featured bands are extracted from a Raman spectrum of a reference pigment and the methodology for constructing the library is illustrated. An unknown spectrum is then interpreted automatically and a process for identifying the corresponding pigment is described. A reference library consisting of 32 pigments was built and the effectiveness of the algorithm was tested by the Raman spectroscopic analysis of 10 pigments that are known to have been extensively used in Byzantine hagiography. Binary mixtures of these pigments were also tested. The algorithm's level of identification was good even though extra peaks, noise, and background signals were encountered in the spectra. PMID:15282052

  16. Oral pigmented lesions: Clinicopathologic features and review of the literature

    PubMed Central

    da Silva-Jorge, Rogério; Jorge, Jacks; Lopes, Márcio A.; Vargas, Pablo A.

    2012-01-01

    Diagnosis of pigmented lesions of the oral cavity and perioral tissues is challenging. Even though epidemiology may be of some help in orientating the clinician and even though some lesions may confidently be diagnosed on clinical grounds alone, the definitive diagnosis usually requires histopathologic evaluation. Oral pigmentation can be physiological or pathological, and exogenous or endogenous. Color, location, distribution, and duration as well as drugs use, family history, and change in pattern are important for the differential diagnosis. Dark or black pigmented lesions can be focal, multifocal or diffuse macules, including entities such as racial pigmentation, melanotic macule, melanocytic nevus, blue nevus, smoker’s melanosis, oral melanoacanthoma, pigmentation by foreign bodies or induced by drugs, Peutz-Jeghers syndrome, Addison´s disease and oral melanoma. The aim of this review is to present the main oral black lesions contributing to better approach of the patients. Key words:Pigmentation, melanin, oral, diagnosis, management. PMID:22549672

  17. Mapping pigment distribution in mud samples through hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Mehrübeoglu, Mehrube; Nicula, Cosmina; Trombley, Christopher; Smith, Shane W.; Smith, Dustin K.; Shanks, Elizabeth S.; Zimba, Paul V.

    2015-09-01

    Mud samples collected from bodies of water reveal information about the distribution of microorganisms in the local sediments. Hyperspectral imaging has been investigated as a technology to identify phototropic organisms living on sediments collected from the Texas Coastal Bend area based on their spectral pigment profiles and spatial arrangement. The top pigment profiles identified through high-performance liquid chromatography (HPLC) have been correlated with spectral signatures extracted from the hyperspectral data of mud using fast Fourier transform (FFT). Spatial distributions have also been investigated using 2D hyperspectral image processing. 2D pigment distribution maps have been created based on the correlation with pigment profiles in the FFT domain. Among the tested pigments, the results show match among four out of five pigment distribution trends between HPLC and hyperspectral data analysis. Differences are attributed mainly to the difference between area and volume of scale between the HPLC analysis and area covered by hyperspectral imaging.

  18. Characterization of Sorolla's gouache pigments by means of spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Roldán, Clodoaldo; Juanes, David; Ferrazza, Livio; Carballo, Jorgelina

    2016-02-01

    This paper presents the characterization of the Joaquín Sorolla's gouache sketches for the oil on canvas series "Vision of Spain" commissioned by A. M. Huntington to decorate the library of the Hispanic Society of America in New York. The analyses were focused on the identification of the elemental composition of the gouache pigments by means of portable EDXRF spectrometry in a non-destructive mode. Additionally, SEM-EDX and FTIR analyses of a selected set of micro-samples were carried out to identify completely the pigments, the paint technique and the binding media. The obtained results have confirmed the identification of lead and zinc white, vermillion, earth pigments, ochre, zinc yellow, chrome yellow, ultramarine, Prussian blue, chromium based and copper-arsenic based green pigments, bone black and carbon based black pigments, and the use of gum arabic as binding media in the gouache pigments.

  19. BASIS FOR ENHANCED BARRIER FUNCTION OF PIGMENTED SKIN

    PubMed Central

    Man, Mao-Qiang; Lin, Tzu-Kai; Santiago, Juan Luis; Celli, Anna; Zhong, Lily; Huang, Zhi-Ming; Roelandt, Truus; Hupe, Melanie; Sundberg, John P.; Silva, Kathleen A.; Crumrine, Debra; Martin-Ezquerra, Gemma; Trullas, Carles; Sun, Richard; Wakefield, Joan S.; Wei, Maria L.; Feingold, Kenneth R.; Mauro, Theodora M.; Elias, Peter M.

    2014-01-01

    Humans with darkly-pigmented skin display superior permeability barrier function in comparison to humans with lightly-pigmented skin. The reduced pH of the stratum corneum (SC) of darkly-pigmented skin could account for enhanced function, because acidifying lightly-pigmented human SC resets barrier function to darkly-pigmented levels. In SKH1 (non-pigmented) vs. SKH2/J (pigmented) hairless mice, we evaluated how a pigment-dependent reduction in pH could influence epidermal barrier function. Permeability barrier homeostasis is enhanced in SKH2/J vs. SKH1 mice, correlating with a reduced pH in the lower SC that co-localizes with the extrusion of melanin granules. Darkly-pigmented human epidermis also shows substantial melanin extrusion in the outer epidermis. Both acute barrier disruption and topical basic pH challenges accelerate re-acidification of SKH2/J (but not SKH1) SC, while inducing melanin extrusion. SKH2/J mice also display enhanced expression of the SC acidifying enzyme, secretory phospholipase A2f (sPLA2f). Enhanced barrier function of SKH2/J mice could be attributed to enhanced activity of two acidic pH-dependent, ceramide-generating enzymes, β-glucocerebrosidase and acidic sphingomyelinase, leading to accelerated maturation of SC lamellar bilayers. Finally, organotypic cultures of darkly-pigmented-bearing human keratinocytes display enhanced barrier function in comparison to lightly-pigmented cultures. Together, these results suggest that the superior barrier function of pigmented epidermis can be largely attributed to the pH-lowering impact of melanin persistence/extrusion and enhanced sPLA2f expression. PMID:24732399

  20. Atmospheric effects in the remote sensing of phytoplankton pigments

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.; Clark, D. K.

    1980-01-01

    The accuracy with which relevant atmospheric parameters must be estimated to derive photoplankton pigment concentrations of a given accuracy, from measurements of the ocean's apparent spectral radiance at satellite altitudes, is examined. A phytoplankton pigment algorithm is developed which relates the pigment concentration (c) to the three ratios of upwelling radiance just beneath the sea surface which can be formed from wavelengths (lambda) 440, 520 and 550 nm.

  1. Nematode endogenous small RNA pathways

    PubMed Central

    Hoogstrate, Suzanne W; Volkers, Rita JM; Sterken, Mark G; Kammenga, Jan E; Snoek, L Basten

    2014-01-01

    The discovery of small RNA silencing pathways has greatly extended our knowledge of gene regulation. Small RNAs have been presumed to play a role in every field of biology because they affect many biological processes via regulation of gene expression and chromatin remodeling. Most well-known examples of affected processes are development, fertility, and maintenance of genome stability. Here we review the role of the three main endogenous small RNA silencing pathways in Caenorhabditis elegans: microRNAs, endogenous small interfering RNAs, and PIWI-interacting RNAs. After providing an entry-level overview on how these pathways function, we discuss research on other nematode species providing insight into the evolution of these small RNA pathways. In understanding the differences between the endogenous small RNA pathways and their evolution, a more comprehensive picture is formed of the functions and effects of small RNAs. PMID:25340013

  2. [Pathways of flowering regulation in plants].

    PubMed

    Liu, Yongping; Yang, Jing; Yang, Mingfeng

    2015-11-01

    Flowering, the floral transition from vegetative growth to reproductive growth, is induced by diverse endogenous and exogenous cues, such as photoperiod, temperature, hormones and age. Precise flowering time is critical to plant growth and evolution of species. The numerous renewal molecular and genetic results have revealed five flowering time pathways, including classical photoperiod pathway, vernalization pathway, autonomous pathway, gibberellins (GA) pathway and newly identified age pathway. These pathways take on relatively independent role, and involve extensive crosstalks and feedback loops. This review describes the complicated regulatory network of this floral transition to understand the molecular mechanism of flowering and provide references for further research in more plants. PMID:26939439

  3. The role of a lens survival pathway including sox2 and αA-crystallin in the evolution of cavefish eye degeneration

    PubMed Central

    2014-01-01

    (s) associated with an Astyanax eye QTL. The results reveal a genetic pathway leading from sox2 to αA-crys that is required for survival of the lens in Astyanax surface fish. Defects in this pathway may be involved in lens apoptosis and thus a cause of cavefish eye degeneration. PMID:25210614

  4. Relationship of Gingival Pigmentation with Passive Smoking in Women

    PubMed Central

    Moravej-Salehi, Elahe; Moravej-Salehi, Elham

    2015-01-01

    Background: Oral mucosal pigmentation is among the most common findings in smokers, affecting smile esthetics. Passive smoking significantly compromises the health of non-smoker individuals particularly women. The purpose of this study was to assess the relationship of passive smoking with oral pigmentation in non-smoker women. Materials and Methods: This historical-cohort study was conducted on a case group of 50 married women who were unemployed, not pregnant, non-smoker, had no systemic condition causing cutaneous or mucosal pigmentation, were not taking any medication causing cutaneous or mucosal pigmentation and had a heavy smoker husband. The control group comprised of 50 matched females with no smoker member in the family. Both groups were clinically examined for presence of gingival pigmentation and the results were analyzed using chi-square and logistic regression tests. Results: Gingival pigmentation was found in 27 (54%) passive smokers and 14 (28%) controls (P=0.01). The odds ratio (OR) of gingival pigmentation in women exposed to secondhand smoke of their husbands (adjusted for education and having a smoker parent at childhood) was 3 (95% confidence interval; CI: 1.26 – 7.09). House floor area was correlated with gingival pigmentation in female passive smokers (P=0.025). Conclusion: This study was the first to describe the relationship between secondhand smoke and gingival pigmentation in women and this effect was magnified in smaller houses. PMID:26528364

  5. Stain removal from a pigmented silicone maxillofacial elastomer.

    PubMed

    Yu, R; Koran, A; Craig, R G; Raptis, C N

    1982-08-01

    The removal of environmental stains from a pigmented maxillofacial elastomer was carried out by solvent extraction under network swelling. Silastic 44210 was pigmented with 11 maxillofacial pigments prior to staining. Samples were stained with lipstick, methylene blue, and disclosing solution. These stains were then removed by solvent extraction with 1,1,1-trichloroethane. Color parameter measurements both before and after staining and after solvent extraction demonstrated the effectiveness of removing these stains by solvent extraction while causing little or no change in the color of the pigmented samples. PMID:6955345

  6. Intra-Articular Pigmentation of Synovium: An Unusual Cause

    PubMed Central

    Hamilton, Steven; Liew, Sue M

    2016-01-01

    An unusual grayish brown discoloration of the synovium was found during a knee arthroscopy of a 72-year-old man. He also had similar pigmentation affecting the skin on the legs, arms, hands, and face. It was found he had been taking 400 mg of amiodarone hydrochloride daily for last 7 years. Amiodarone is known to cause a slate grey pigmentation of skin and cornea, but we believe this is the first report of amiodarone-induced pigmentation of the synovium. The arthroscopist should be aware of the possibility of drug-related synovial pigmentation and include this in differential diagnosis.

  7. Intra-Articular Pigmentation of Synovium: An Unusual Cause.

    PubMed

    Verma, Shobhit; Hamilton, Steven; Liew, Sue M

    2016-09-01

    An unusual grayish brown discoloration of the synovium was found during a knee arthroscopy of a 72-year-old man. He also had similar pigmentation affecting the skin on the legs, arms, hands, and face. It was found he had been taking 400 mg of amiodarone hydrochloride daily for last 7 years. Amiodarone is known to cause a slate grey pigmentation of skin and cornea, but we believe this is the first report of amiodarone-induced pigmentation of the synovium. The arthroscopist should be aware of the possibility of drug-related synovial pigmentation and include this in differential diagnosis. PMID:27583118

  8. Reflective color display using thermochromic pigments.

    PubMed

    Heo, Kyong Chan; Sohn, Youngku; Yi, Jonghoon; Kwon, Jin Hyuk; Son, Phil Kook; Gwag, Jin Seog

    2012-06-20

    A reflective thermochromic display fabricated by a very simple method using three kinds of thermochromic pigments is produced and its thermo-optical characteristics are investigated. The display exhibits maximum red, green, and blue reflectances of 38%, 30%, and 35%, respectively. The reflective display cell shows continuous gray color with changing temperature, which is crucial for multicolor displays. It also shows an excellent viewing angle above 80° without any of the additional optical components that are required in liquid crystal displays. We expect that this display technology will be used for outdoor billboard information display applications. PMID:22722305

  9. Corrosion-Indicating Pigment And Probes

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Bugga, Ratnakumar V.; Attia, Alan I.

    1993-01-01

    Proposed hydrogen-sensitive paint for metal structures changes color at onset of corrosion, involving emission of hydrogen as result of electrochemical reactions. Pigment of suitable paint includes rhodium compound RhCl(PPh3)3, known as Wilkinson's catalyst. As coating on critical parts of such structures as bridges and aircraft, paint gives early warning of corrosion, and parts thus repaired or replaced before failing catastrophically. Reveals corrosion before it becomes visible to eye. Inspection for changes in color not ordinarily necessitate removal of structure from service, and costs less than inspection by x-ray or thermal neutron radiography, ultrasonic, eddy-current, or acoustic-emission techniques.

  10. Monte Carlo modeling of pigmented lesions

    NASA Astrophysics Data System (ADS)

    Gareau, Daniel; Jacques, Steven; Krueger, James

    2014-03-01

    Colors observed in clinical dermoscopy are critical to diagnosis but the mechanisms that lead to the spectral components of diffuse reflectance are more than meets the eye: combinations of the absorption and scattering spectra of the biomolecules as well as the "structural color" effect of skin anatomy. We modeled diffuse remittance from skin based on histopathology. The optical properties of the tissue types were based on the relevant chromophores and scatterers. The resulting spectral images mimic the appearance of pigmented lesions quite well when the morphology is mathematically derived but limited when based on histopathology, raising interesting questions about the interaction between various wavelengths with various pathological anatomical features.

  11. Method of preparing zinc orthotitanate pigment

    NASA Technical Reports Server (NTRS)

    Gates, D. W.; Harada, Y.; Logan, W. R.; Gilligan, J. E. (Inventor)

    1977-01-01

    Zinc orthotitanate suitable for use as a pigment for spacecraft thermal control coatings is prepared by heating a slightly zinc deficient reaction mixture of precipitated oxalates of zinc and titanium. The reaction mixture can be formed by coprecipitation of zinc and titanium oxalates from chloride solution or by mixing separately precipitated oxalates. The mixture is first heated to 400 to 600 C to remove volatiles and is then rapidly heated at 900 to 1200 C. Zinc orthotitanate produced by this method exhibits the very fine particle size needed for thermal control coatings as well as stability in a space environment.

  12. Locating structures and evolution pathways of reconstructed rutile TiO2(011) using genetic algorithm aided density functional theory calculations.

    PubMed

    Ding, Pan; Gong, Xue-Qing

    2016-05-01

    Titanium dioxide (TiO2) is an important metal oxide that has been used in many different applications. TiO2 has also been widely employed as a model system to study basic processes and reactions in surface chemistry and heterogeneous catalysis. In this work, we investigated the (011) surface of rutile TiO2 by focusing on its reconstruction. Density functional theory calculations aided by a genetic algorithm based optimization scheme were performed to extensively sample the potential energy surfaces of reconstructed rutile TiO2 structures that obey (2 × 1) periodicity. A lot of stable surface configurations were located, including the global-minimum configuration that was proposed previously. The wide variety of surface structures determined through the calculations performed in this work provide insight into the relationship between the atomic configuration of a surface and its stability. More importantly, several analytical schemes were proposed and tested to gauge the differences and similarities among various surface structures, aiding the construction of the complete pathway for the reconstruction process. PMID:27115517

  13. Signaling Pathways in Melanogenesis

    PubMed Central

    D’Mello, Stacey A. N.; Finlay, Graeme J.; Baguley, Bruce C.; Askarian-Amiri, Marjan E.

    2016-01-01

    Melanocytes are melanin-producing cells found in skin, hair follicles, eyes, inner ear, bones, heart and brain of humans. They arise from pluripotent neural crest cells and differentiate in response to a complex network of interacting regulatory pathways. Melanins are pigment molecules that are endogenously synthesized by melanocytes. The light absorption of melanin in skin and hair leads to photoreceptor shielding, thermoregulation, photoprotection, camouflage and display coloring. Melanins are also powerful cation chelators and may act as free radical sinks. Melanin formation is a product of complex biochemical events that starts from amino acid tyrosine and its metabolite, dopa. The types and amounts of melanin produced by melanocytes are determined genetically and are influenced by a variety of extrinsic and intrinsic factors such as hormonal changes, inflammation, age and exposure to UV light. These stimuli affect the different pathways in melanogenesis. In this review we will discuss the regulatory mechanisms involved in melanogenesis and explain how intrinsic and extrinsic factors regulate melanin production. We will also explain the regulatory roles of different proteins involved in melanogenesis. PMID:27428965

  14. Signaling Pathways in Melanogenesis.

    PubMed

    D'Mello, Stacey A N; Finlay, Graeme J; Baguley, Bruce C; Askarian-Amiri, Marjan E

    2016-01-01

    Melanocytes are melanin-producing cells found in skin, hair follicles, eyes, inner ear, bones, heart and brain of humans. They arise from pluripotent neural crest cells and differentiate in response to a complex network of interacting regulatory pathways. Melanins are pigment molecules that are endogenously synthesized by melanocytes. The light absorption of melanin in skin and hair leads to photoreceptor shielding, thermoregulation, photoprotection, camouflage and display coloring. Melanins are also powerful cation chelators and may act as free radical sinks. Melanin formation is a product of complex biochemical events that starts from amino acid tyrosine and its metabolite, dopa. The types and amounts of melanin produced by melanocytes are determined genetically and are influenced by a variety of extrinsic and intrinsic factors such as hormonal changes, inflammation, age and exposure to UV light. These stimuli affect the different pathways in melanogenesis. In this review we will discuss the regulatory mechanisms involved in melanogenesis and explain how intrinsic and extrinsic factors regulate melanin production. We will also explain the regulatory roles of different proteins involved in melanogenesis. PMID:27428965

  15. Mutations in CTNNA1 cause butterfly-shaped pigment dystrophy and perturbed retinal pigment epithelium integrity.

    PubMed

    Saksens, Nicole T M; Krebs, Mark P; Schoenmaker-Koller, Frederieke E; Hicks, Wanda; Yu, Minzhong; Shi, Lanying; Rowe, Lucy; Collin, Gayle B; Charette, Jeremy R; Letteboer, Stef J; Neveling, Kornelia; van Moorsel, Tamara W; Abu-Ltaif, Sleiman; De Baere, Elfride; Walraedt, Sophie; Banfi, Sandro; Simonelli, Francesca; Cremers, Frans P M; Boon, Camiel J F; Roepman, Ronald; Leroy, Bart P; Peachey, Neal S; Hoyng, Carel B; Nishina, Patsy M; den Hollander, Anneke I

    2016-02-01

    Butterfly-shaped pigment dystrophy is an eye disease characterized by lesions in the macula that can resemble the wings of a butterfly. Here we report the identification of heterozygous missense mutations in the CTNNA1 gene (encoding α-catenin 1) in three families with butterfly-shaped pigment dystrophy. In addition, we identified a Ctnna1 missense mutation in a chemically induced mouse mutant, tvrm5. Parallel clinical phenotypes were observed in the retinal pigment epithelium (RPE) of individuals with butterfly-shaped pigment dystrophy and in tvrm5 mice, including pigmentary abnormalities, focal thickening and elevated lesions, and decreased light-activated responses. Morphological studies in tvrm5 mice demonstrated increased cell shedding and the presence of large multinucleated RPE cells, suggesting defects in intercellular adhesion and cytokinesis. This study identifies CTNNA1 gene variants as a cause of macular dystrophy, indicates that CTNNA1 is involved in maintaining RPE integrity and suggests that other components that participate in intercellular adhesion may be implicated in macular disease. PMID:26691986

  16. Mutations in CTNNA1 cause butterfly-shaped pigment dystrophy and perturbed retinal pigment epithelium integrity

    PubMed Central

    Saksens, Nicole T.M.; Krebs, Mark P.; Schoenmaker-Koller, Frederieke E.; Hicks, Wanda; Yu, Minzhong; Shi, Lanying; Rowe, Lucy; Collin, Gayle B.; Charette, Jeremy R.; Letteboer, Stef J.; Neveling, Kornelia; van Moorsel, Tamara W.; Abu-Ltaif, Sleiman; De Baere, Elfride; Walraedt, Sophie; Banfi, Sandro; Simonelli, Francesca; Cremers, Frans P.M.; Boon, Camiel J.F.; Roepman, Ronald; Leroy, Bart P.; Peachey, Neal S.; Hoyng, Carel B.; Nishina, Patsy M.; den Hollander, Anneke I.

    2015-01-01

    Butterfly-shaped pigment dystrophy is an eye disease characterized by lesions in the macula that can resemble the wings of a butterfly. Here, we report the identification of heterozygous missense mutations in the α-catenin 1 (CTNNA1) gene in three families with butterfly-shaped pigment dystrophy. In addition, we identified a Ctnna1 missense mutation in a chemically induced mouse mutant, tvrm5. Parallel clinical phenotypes were observed in the retinal pigment epithelium (RPE) of individuals with butterfly-shaped pigment dystrophy and in tvrm5 mice, including pigmentary abnormalities, focal thickening and elevated lesions, and decreased light-activated responses. Morphological studies in tvrm5 mice revealed increased cell shedding and large multinucleated RPE cells, suggesting defects in intercellular adhesion and cytokinesis. This study identifies CTNNA1 gene variants as a cause of macular dystrophy, suggests that CTNNA1 is involved in maintaining RPE integrity, and suggests that other components that participate in intercellular adhesion may be implicated in macular disease. PMID:26691986

  17. SIGNALING PATHWAYS IN MELANOSOME BIOGENESIS AND PATHOLOGY

    PubMed Central

    Schiaffino, Maria Vittoria

    2010-01-01

    Melanosomes are the specialized intracellular organelles of pigment cells devoted to the synthesis, storage and transport of melanin pigments, which are responsible for most visible pigmentation in mammals and other vertebrates. As a direct consequence, any genetic mutation resulting in alteration of melanosomal function, either because affecting pigment cell survival, migration and differentiation, or because interfering with melanosome biogenesis, transport and transfer to keratinocytes, is immediately translated into color variations of skin, fur, hair or eyes. Thus, over one hundred genes and proteins have been identified as pigmentary determinants in mammals, providing us with a deep understanding of this biological system, which functions by using mechanisms and processes that have parallels in other tissues and organs. In particular, many genes implicated in melanosome biogenesis have been characterized, so that melanosomes represent an incredible source of information and a model for organelles belonging to the secretory pathway. Furthermore, the function of melanosomes can be associated with common physiological phenotypes, such as variation of pigmentation among individuals, and with rare pathological conditions, such as albinism, characterized by severe visual defects. Among the most relevant mechanisms operating in melanosome biogenesis are the signal transduction pathways mediated by two peculiar G protein-coupled receptors: the melanocortin-1 receptor (MC1R), involved in the fair skin/red hair phenotype and skin cancer; and OA1 (GPR143), whose loss-of-function results in X-linked ocular albinism. This review will focus on the most recent novelties regarding the functioning of these two receptors, by highlighting emerging signaling mechanisms and general implications for cell biology and pathology. PMID:20381640

  18. Mesd extrinsically promotes phagocytosis by retinal pigment epithelial cells.

    PubMed

    Chen, Xiuping; Guo, Feiye; LeBlanc, Michelle E; Ding, Ying; Zhang, Chenming; Shakya, Akhalesh; Li, Wei

    2016-08-01

    Phagocytosis is a critical process to maintain tissue homeostasis. In the retina, photoreceptor cells renew their photoexcitability by shedding photoreceptor outer segments (POSs) in a diurnal rhythm. Shed POSs are phagocytosed by retinal pigment epithelial (RPE) cells to prevent debris accumulation, retinal degeneration, and blindness. Phagocytosis ligands are the key to understanding how RPE recognizes shed POSs. Here, we characterized mesoderm development candidate 2 (Mesd or Mesdc2), an endoplasmic reticulum (ER) chaperon for low-density lipoprotein receptor-related proteins (LRPs), to extrinsically promote RPE phagocytosis. The results showed that Mesd stimulated phagocytosis of fluorescence-labeled POS vesicles by D407 RPE cells. Ingested POSs were partially degraded within 3 h in some RPE cells to dispense undegradable fluorophore throughout the cytoplasm. Internalized POSs were colocalized with phagosome biomarker Rab7, suggesting that Mesd-mediated engulfment is involved in a phagocytosis pathway. Mesd also facilitated phagocytosis of POSs by primary RPE cells. Mesd bound to unknown phagocytic receptor(s) on RPE cells. Mesd was detected in the cytoplasm, but not nuclei, of different retinal layers and is predominantly expressed in the ER-free cellular compartment of POSs. Mesd was not secreted into medium from healthy cells but passively released from apoptotic cells with increased membrane permeability. Released Mesd selectively bound to the surface of POS vesicles and apoptotic cells, but not healthy cells. These results suggest that Mesd may be released from and bind to shed POSs to facilitate their phagocytic clearance. PMID:27184668

  19. Genetic engineering of yellow betalain pigments beyond the species barrier.

    PubMed

    Nakatsuka, Takashi; Yamada, Eri; Takahashi, Hideyuki; Imamura, Tomohiro; Suzuki, Mariko; Ozeki, Yoshihiro; Tsujimura, Ikuko; Saito, Misa; Sakamoto, Yuichi; Sasaki, Nobuhiro; Nishihara, Masahiro

    2013-01-01

    Betalains are one of the major plant pigment groups found in some higher plants and higher fungi. They are not produced naturally in any plant species outside of the order Caryophyllales, nor are they produced by anthocyanin-accumulating Caryophyllales. Here, we attempted to reconstruct the betalain biosynthetic pathway as a self-contained system in an anthocyanin-producing plant species. The combined expressions of a tyrosinase gene from shiitake mushroom and a DOPA 4,5-dioxygenase gene from the four-o'clock plant resulted in successful betalain production in cultured cells of tobacco BY2 and Arabidopsis T87. Transgenic tobacco BY2 cells were bright yellow because of the accumulation of betaxanthins. LC-TOF-MS analyses showed that proline-betaxanthin (Pro-Bx) accumulated as the major betaxanthin in these transgenic BY2 cells. Transgenic Arabidopsis T87 cells also produced betaxanthins, but produced lower levels than transgenic BY2 cells. These results illustrate the success of a novel genetic engineering strategy for betalain biosynthesis. PMID:23760173

  20. Lyar Is a New Ligand for Retinal Pigment Epithelial Phagocytosis.

    PubMed

    Guo, Feiye; Ding, Ying; Caberoy, Nora B; Alvarado, Gabriela; Liu, Robert; Shen, Chen; Yu, Jisu; Zhou, Yixiong; Salero, Enrique; LeBlanc, Michelle E; Wang, Weiwen; Li, Wei

    2015-10-01

    Phagocytosis is critical to tissue homeostasis, as highlighted by phagocytosis defect of retinal pigment epithelial (RPE) cells with debris accumulation, photoreceptor degeneration and blindness. Phagocytosis ligands are the key to delineating molecular mechanisms and functional roles of phagocytes, but are traditionally identified in individual cases with technical challenges. We recently developed open reading frame phage display (OPD) for phagocytosis-based functional cloning (PFC) to identify unknown ligands. One of the identified ligands was Ly-1 antibody reactive clone (Lyar) with functions poorly defined. Herein, we characterized Lyar as a new ligand to stimulate RPE phagocytosis. In contrast to its reported nucleolar expression, immunohistochemistry showed that Lyar was highly expressed in photoreceptor outer segments (POSs) of the retina. Cytoplasmic Lyar was released from apoptotic cells, and selectively bound to shed POSs and apoptotic cells, but not healthy cells. POS vesicles engulfed through Lyar-dependent pathway were targeted to phagosomes and colocalized with phagosome marker Rab7. These results suggest that Lyar is a genuine RPE phagocytosis ligand, which in turn supports the validity of OPD/PFC as the only available approach for unbiased identification of phagocytosis ligands with broad applicability to various phagocytes. PMID:25735755

  1. Genetic engineering of yellow betalain pigments beyond the species barrier

    PubMed Central

    Nakatsuka, Takashi; Yamada, Eri; Takahashi, Hideyuki; Imamura, Tomohiro; Suzuki, Mariko; Ozeki, Yoshihiro; Tsujimura, Ikuko; Saito, Misa; Sakamoto, Yuichi; Sasaki, Nobuhiro; Nishihara, Masahiro

    2013-01-01

    Betalains are one of the major plant pigment groups found in some higher plants and higher fungi. They are not produced naturally in any plant species outside of the order Caryophyllales, nor are they produced by anthocyanin-accumulating Caryophyllales. Here, we attempted to reconstruct the betalain biosynthetic pathway as a self-contained system in an anthocyanin-producing plant species. The combined expressions of a tyrosinase gene from shiitake mushroom and a DOPA 4,5-dioxygenase gene from the four-o'clock plant resulted in successful betalain production in cultured cells of tobacco BY2 and Arabidopsis T87. Transgenic tobacco BY2 cells were bright yellow because of the accumulation of betaxanthins. LC-TOF-MS analyses showed that proline-betaxanthin (Pro-Bx) accumulated as the major betaxanthin in these transgenic BY2 cells. Transgenic Arabidopsis T87 cells also produced betaxanthins, but produced lower levels than transgenic BY2 cells. These results illustrate the success of a novel genetic engineering strategy for betalain biosynthesis. PMID:23760173

  2. Temporal Visual Mechanisms May Mediate Compensation for Macular Pigment.

    PubMed

    Stringham, Nicole T; Stringham, James M

    2015-12-01

    Macular pigment (MP) is a pre-receptoral filter that is diet derived and deposited in relatively high optical density in the foveal region of the retina. Due to its yellow coloration, MP absorbs light of relatively short wavelengths, ranging from 400 nm to 520 nm. Despite the spectral and spatial nonuniformity imposed upon the sensory retina by MP, perception appears to be relatively uniform across the central visual field. MP therefore offers an opportunity to determine experimentally potential mechanisms responsible for mediating this uniformity. After assessing, in 14 subjects, MP's effects on the temporal sensitivity of both the short-wavelength- and middle-/long-wavelength-sensitive visual pathways, it appears that the visual system compensates for absorption of short-wavelength light by MP by slowing the sampling rate of short-wavelength cones and by increasing the processing speed of middle-/long-wavelength-sensitive cones. This mechanism could work via temporal summation or a temporal neural code, whereby slower response dynamics lead to amplification of relatively weak signals. PMID:26562864

  3. Influence of Iron Chlorosis on Pigment and Protein Metabolism in Leaves of Nicotiana tabacum L. 1

    PubMed Central

    Shetty, A. S.; Miller, G. W.

    1966-01-01

    Experiments were conducted on Nicotiana tabacum, L. to study the relation in the grana among chlorophylls, carotenoids, and proteins. The effect of iron chlorosis on protein and pigment synthesis was studied at different stages of chlorosis using glycine-U-C14. Pigments were separated by thin layer chromatography. Chlorophyll a, chlorophyll b, carotenoid, and protein contents of chloroplasts from chlorotic tissue were less than those of normal tissues. A 25% decrease in protein labeling and a 45% decrease in chlorophyll labeling was noted in deficient tissue compared to normal tissue even before chlorosis was perceptible. Both normal and iron deficient leaf discs which received iron in the incubation medium incorporated higher amounts of radioactive glycine into chlorophyll a and chlorophyll b at all stages of development than their respective counterparts not supplied with iron in the incubation medium. The presence of iron in the incubation medium reduced the amount of glycine incorporated into carotenes and xanthophylls, except where the tissue was severely chlorotic. This may be attributed to active competition for glycine between the iron-dependent- (chlorophyll) and iron-independent-(carotenoid) biosynthetic pathways. Incorporation of glycine into chloroplast pigments was lowest at severe chlorosis, probably due to a reduction in the overall enzyme activity. PMID:16656270

  4. Zinc Deficiency Leads to Lipofuscin Accumulation in the Retinal Pigment Epithelium of Pigmented Rats

    PubMed Central

    Kokkinou, Despina; Eibl, Oliver; Schraermeyer, Ulrich

    2011-01-01

    Background Age-related macular degeneration (AMD) is associated with lipofuscin accumulation whereas the content of melanosomes decreases. Melanosomes are the main storage of zinc in the pigmented tissues. Since the elderly population, as the most affected group for AMD, is prone to zinc deficit, we investigated the chemical and ultrastructural effects of zinc deficiency in pigmented rat eyes after a six-month zinc penury diet. Methodology/Principal Findings Adult Long Evans (LE) rats were investigated. The control animals were fed with a normal alimentation whereas the zinc-deficiency rats (ZD-LE) were fed with a zinc deficient diet for six months. Quantitative Energy Dispersive X-ray (EDX) microanalysis yielded the zinc mole fractions of melanosomes in the retinal pigment epithelium (RPE). The lateral resolution of the analysis was 100 nm. The zinc mole fractions of melanosomes were significantly smaller in the RPE of ZD-LE rats as compared to the LE control rats. Light, fluorescence and electron microscopy, as well as immunohistochemistry were performed. The numbers of lipofuscin granules in the RPE and of infiltrated cells (Ø>3 µm) found in the choroid were quantified. The number of lipofuscin granules significantly increased in ZD-LE as compared to control rats. Infiltrated cells bigger than 3 µm were only detected in the choroid of ZD-LE animals. Moreover, the thickness of the Bruch's membrane of ZD-LE rats varied between 0.4–3 µm and thin, rangy ED1 positive macrophages were found attached at these sites of Bruch's membrane or even inside it. Conclusions/Significance In pigmented rats, zinc deficiency yielded an accumulation of lipofuscin in the RPE and of large pigmented macrophages in the choroids as well as the appearance of thin, rangy macrophages at Bruch's membrane. Moreover, we showed that a zinc diet reduced the zinc mole fraction of melanosomes in the RPE and modulated the thickness of the Bruch's membrane. PMID:22216222

  5. Skin pigmentation provides evidence of convergent melanism in extinct marine reptiles.

    PubMed

    Lindgren, Johan; Sjövall, Peter; Carney, Ryan M; Uvdal, Per; Gren, Johan A; Dyke, Gareth; Schultz, Bo Pagh; Shawkey, Matthew D; Barnes, Kenneth R; Polcyn, Michael J

    2014-02-27

    Throughout the animal kingdom, adaptive colouration serves critical functions ranging from inconspicuous camouflage to ostentatious sexual display, and can provide important information about the environment and biology of a particular organism. The most ubiquitous and abundant pigment, melanin, also has a diverse range of non-visual roles, including thermoregulation in ectotherms. However, little is known about the functional evolution of this important biochrome through deep time, owing to our limited ability to unambiguously identify traces of it in the fossil record. Here we present direct chemical evidence of pigmentation in fossilized skin, from three distantly related marine reptiles: a leatherback turtle, a mosasaur and an ichthyosaur. We demonstrate that dark traces of soft tissue in these fossils are dominated by molecularly preserved eumelanin, in intimate association with fossilized melanosomes. In addition, we suggest that contrary to the countershading of many pelagic animals, at least some ichthyosaurs were uniformly dark-coloured in life. Our analyses expand current knowledge of pigmentation in fossil integument beyond that of feathers, allowing for the reconstruction of colour over much greater ranges of extinct taxa and anatomy. In turn, our results provide evidence of convergent melanism in three disparate lineages of secondarily aquatic tetrapods. Based on extant marine analogues, we propose that the benefits of thermoregulation and/or crypsis are likely to have contributed to this melanisation, with the former having implications for the ability of each group to exploit cold environments. PMID:24402224

  6. [Notalgia paresthetica, "posterior pigmented pruritic patch" and macular amyloidosis. Three stages of a disease].

    PubMed

    Cerroni, L; Kopera, D; Soyer, H P; Kerl, H

    1993-12-01

    We report on nine cases of notalgia paresthetica, a cutaneous condition that has rarely been described in the dermatological literature and is characterized by localized pruritus, burning and hyperesthesia and/or paresthesia on the back. Histological and immunohistochemical studies have not clarified the pathogenesis of this disease. Several factors might be involved in various cases, including increased cutaneous innervation and neuropathy. The so-called posterior pigmented pruritic patch and macular amyloidosis may be considered as progressive evolutional stages of notalgia paresthetica. PMID:8113041

  7. A colorimetric sensor array of porous pigments.

    PubMed

    Lim, Sung H; Kemling, Jonathan W; Feng, Liang; Suslick, Kenneth S

    2009-12-01

    The development of a low-cost, simple colorimetric sensor array capable of the detection and identification of toxic gases is reported. This technology uses a disposable printed array of porous pigments in which metalloporphyrins and chemically-responsive dyes are immobilized in a porous matrix of organically modified siloxanes (ormosils) and printed on a porous membrane. The printing of the ormosil into the membrane is highly uniform and does not lessen the porosity of the membrane, as shown by scanning electron microscopy. When exposed to an analyte, these pigments undergo reactions that result in well-defined color changes due to strong chemical interactions: ligation to metal ions, Lewis or Brønsted acid-base interactions, hydrogen bonding, etc. Striking visual identification of 3 toxic gases has been shown at the IDLH (immediately dangerous to life and health) concentration, at the PEL (permissible exposure level), and at a level well below the PEL. Identification and quantification of analytes were achieved using the color change profiles, which were readily distinguishable in a hierarchical clustering analysis (HCA) dendrogram, with no misclassifications in 50 trials. PMID:19918616

  8. A colorimetric sensor array of porous pigments

    PubMed Central

    Lim, Sung H.; Kemling, Jonathan W.; Feng, Liang

    2010-01-01

    The development of a low-cost, simple colorimetric sensor array capable of detection and identification of toxic gases is reported. This technology uses a disposable printed array of porous pigments in which metalloporphyrins and chemically responsive dyes are immobilized in a porous matrix of organically modified siloxanes (ormosils) and printed on a porous membrane. The printing of the ormosil into the membrane is highly uniform and does not lessen the porosity of the membrane, as shown by scanning electron microscopy. When exposed to an analyte, these pigments undergo reactions that result in well-defined color changes due to strong chemical interactions: ligation to metal ions, Lewis or Bronsted acid-base interactions, hydrogen bonding, etc. Striking visual identification of 3 toxic gases has been shown at the IDLH (immediately dangerous to life and health), at the PEL (permissible exposure level), and at a level well below the PEL. Identification and quantification of analytes were achieved using the color change profiles, which were readily distinguishable in a hierarchical clustering analysis (HCA) dendrogram, with no misclassifications in 50 trials. PMID:19918616

  9. Biological Activities of Plant Pigments Betalains.

    PubMed

    Gandía-Herrero, Fernando; Escribano, Josefa; García-Carmona, Francisco

    2016-04-25

    Betalains are a family of natural pigments present in most plants of the order Caryophyllales. They provide colors ranging from yellow to violet to structures that in other plants are colored by anthocyanins. These include not only edible fruits and roots but also flowers, stems, and bracts. The recent characterization of different bioactivities in experiments with betalain containing extracts and purified pigments has renewed the interest of the research community in these molecules used by the food industry as natural colorants. Studies with multiple cancer cell lines have demonstrated a high chemopreventive potential that finds in vitro support in a strong antiradical and antioxidant activity. Experiments in vivo with model animals and bioavailability studies reinforce the possible role played by betalains in the diet. This work provides a critical review of all the claimed biological activities of betalains, showing that the bioactivities described might be supported by the high antiradical capacity of their structural unit, betalamic acid. Although more investigations with purified compounds are needed, the current evidences suggest a strong health-promoting potential. PMID:25118005

  10. Chlorophyll and carotenoid pigments of prochloron (prochlorophyta)

    NASA Technical Reports Server (NTRS)

    Paerl, H. W.; Lewin, R. A.; Cheng, L.

    1983-01-01

    High-performance liquid chromatography (HPLC) with a gradient-elution technique was utilized to separate and quantify chlorophylls a and b as well as major carotenoid pigments present in freeze-dried preprations of prochloron-didemnid associations and in Prochloron cells separated from host colonies. Results confirm earlier spectrophotometric evidence for both chlorophylls a and b in this prokaryote. Chlorophyll a:b ratios range from 4.14 to 19.71; generally good agreement was found between ratios determined in isolated cell preprations and in symbiotic colonies (in hospite). These values are 1.5 to 5-fold higher than ratios determined in a variety of eukaryotic green plants. The carotenoids in Prochloron are quantitatively and qualitatively similar to those found in various freshwater and marine blue-green algae (cyanopbytes) from high-light environments. However, Prochloron differs from cyanophytes by the absence of myxoxanthophyll and related glycosidic carotenoids. It pigment characteristics are considered sufficiently different from those of cyanophytes to justify its assignment to a separate algal division.

  11. Photoinduced changes in photosystem II pigments

    NASA Astrophysics Data System (ADS)

    Andreeva, Atanaska S.; Busheva, Mira C.; Stoitchkova, Katerina V.; Tzonova, Iren K.

    2010-11-01

    The photosynthetic apparatus in higher plants performs two seemingly opposing tasks: efficient harvest of sunlight, but also rapid and harmless dissipation of excess light energy as heat to avoid deleterious photodamage. In order to study this process in pigment-protein supercomplexes of photosystem II (PSII), 77 K fluorescence and room temperature resonance Raman (RR) spectroscopy were applied to investigate the changes in structure and spectral properties of the pigments in spinach PSII membranes. The high-light treatment results in a strong quenching of the fluorescence (being largest when the excitation is absorbed by carotenoids) and a red-shift of the main maximum. Decomposition of the fluorescence spectra into four bands revealed intensive quenching of F685 and F695 bands, possible bleaching of chlorophyll a, enhanced extent of light harvesting complexes (LHCII) aggregation and increased energy transfer to aggregated LHCII. The analysis of RR spectra revealed the predominant contribution of ß-carotene (ß-Car) upon 457.8 and 488 nm excitations and lutein (Lut) at 514.5 nm. During prolonged exposure to strong light no significant bleaching of ß-Car and weak photobleaching of Lut is observed. The results will contribute to the efforts to produce more efficient and robust solar cells when exposed to fluctuations in light intensity.

  12. Dispelling myths concerning pigmented skin lesions.

    PubMed

    Piccolo, V; Russo, T; Giacomel, J; Lallas, A; Alfano, R; Argenziano, G

    2016-06-01

    The history of medicine is replete with examples of debunked myths, and in daily clinical dermatological practice, we must still counter many misconceptions regarding pigmented lesions, both with patients and other medical practitioners. Debunking myths and attempting to explain the reasons for these erroneous beliefs are the purposes of this review. The literature review has been partially guided by the results obtained from an online questionnaire conducted on an Italian website (www.vediamocichiara.it) from February 15, 2015 to March 15, 2015. The remaining discussed were selected on the basis of the existing literature and our personal experience. In order to explore these misconceptions, the following are the seven most salient questions that require investigation: (i) Is it dangerous to excise moles?; (ii) Is it dangerous to traumatize moles?; (iii) Are plantar moles worrisome?; (iv) Is it necessary to selectively apply sunscreen to moles?; (v) Is it inadvisable to partially biopsy a melanoma?; (vi) Do moles turn into melanoma?; and (vii) Is it necessary to perform sentinel lymph node biopsy for thin melanomas and for atypical Spitz naevi? Myths are ubiquitous, being prevalent in dermatological practice, with many of them concerning pigmented skin lesions. By encouraging critical analysis by patients and medical practitioners, the birth and perpetuation of myths can potentially be minimized, for the ultimate benefit of patients. This requires a scientific approach to be rigorously applied to dermatology, with critical questioning of unsubstantiated hypotheses including those emanating from the mass media as well as from respected sources. PMID:26840917

  13. Skin as a living coloring book: how epithelial cells create patterns of pigmentation.

    PubMed

    Weiner, Lorin; Fu, Wenyu; Chirico, William J; Brissette, Janice L

    2014-11-01

    The pigmentation of mammalian skin and hair develops through the interaction of two basic cell types - pigment donors and recipients. The pigment donors are melanocytes, which produce and distribute melanin through specialized structures. The pigment recipients are epithelial cells, which acquire melanin and put it to use, collectively yielding the pigmentation visible to the eye. This review will focus on the pigment recipients, the historically less understood cell type. These end-users of pigment are now known to exert a specialized control over the patterning of pigmentation, as they identify themselves as melanocyte targets, recruit pigment donors, and stimulate the transfer of melanin. As such, this review will discuss the evidence that the skin is like a coloring book: the pigment recipients create a 'picture,' a blueprint for pigmentation, which is colorless initially but outlines where pigment should be placed. Melanocytes then melanize the recipients and 'color in' the picture. PMID:25104547

  14. SKIN AS A LIVING COLORING BOOK: HOW EPITHELIAL CELLS CREATE PATTERNS OF PIGMENTATION

    PubMed Central

    Weiner, Lorin; Fu, Wenyu; Chirico, William J.; Brissette, Janice L.

    2014-01-01

    Summary The pigmentation of mammalian skin and hair develops through the interaction of two basic cell types — pigment donors and recipients. The pigment donors are melanocytes, which produce and distribute melanin through specialized structures. The pigment recipients are epithelial cells, which acquire melanin and put it to use, collectively yielding the pigmentation visible to the eye. This review will focus on the pigment recipients, the historically less understood cell type. These end-users of pigment are now known to exert a specialized control over the patterning of pigmentation, as they identify themselves as melanocyte targets, recruit pigment donors, and stimulate the transfer of melanin. As such, this review will discuss the evidence that the skin is like a coloring book: the pigment recipients create a “picture,” a blueprint for pigmentation, which is colorless initially but outlines where pigment should be placed. Melanocytes then melanize the recipients and “color in” the picture. PMID:25104547

  15. Hyperspectral imaging techniques for rapid identification of Arabidopsis mutants with altered leaf pigment status.

    PubMed

    Matsuda, Osamu; Tanaka, Ayako; Fujita, Takao; Iba, Koh

    2012-06-01

    The spectral reflectance signature of living organisms provides information that closely reflects their physiological status. Because of its high potential for the estimation of geomorphic biological parameters, particularly of gross photosynthesis of plants, two-dimensional spectroscopy, via the use of hyperspectral instruments, has been widely used in remote sensing applications. In genetics research, in contrast, the reflectance phenotype has rarely been the subject of quantitative analysis; its potential for illuminating the pathway leading from the gene to phenotype remains largely unexplored. In this study, we employed hyperspectral imaging techniques to identify Arabidopsis mutants with altered leaf pigment status. The techniques are comprised of two modes; the first is referred to as the 'targeted mode' and the second as the 'non-targeted mode'. The 'targeted' mode is aimed at visualizing individual concentrations and compositional parameters of leaf pigments based on reflectance indices (RIs) developed for Chls a and b, carotenoids and anthocyanins. The 'non-targeted' mode highlights differences in reflectance spectra of leaf samples relative to reference spectra from the wild-type leaves. Through the latter approach, three mutant lines with weak irregular reflectance phenotypes, that are hardly identifiable by simple observation, were isolated. Analysis of these and other mutants revealed that the RI-based targeted pigment estimation was robust at least against changes in trichome density, but was confounded by genetic defects in chloroplast photorelocation movement. Notwithstanding such a limitation, the techniques presented here provide rapid and high-sensitive means to identify genetic mechanisms that coordinate leaf pigment status with developmental stages and/or environmental stress conditions. PMID:22470059

  16. Molecular analysis of proanthocyanidins related to pigmentation in brown cotton fibre (Gossypium hirsutum L.).

    PubMed

    Feng, Hongjie; Li, Yanjun; Wang, Shaofang; Zhang, Liangliang; Liu, Yongchuang; Xue, Fei; Sun, Yuqiang; Wang, Yongmei; Sun, Jie

    2014-11-01

    The structural characteristics and component differences of proanthocyanidins in brown and white cotton fibres were identified by nuclear magnetic resonance (NMR) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analyses. Proanthocyanidins in brown and white cotton fibres were found to contain mainly procyanidin (PC) and prodelphidin (PD) units with 2, 3-cis form (epigallocatechin and epicatechin). However, part of the proanthocyanidins in the white cotton fibres were modified by acylation and were constitutively different from the proanthocyanidins in brown cotton fibres. The relative amount of PD was similar to that of PC in white cotton fibres, while proanthocyanidins in brown cotton fibres consisted mainly of PD units with a relative ratio of 9:1. In brown cotton fibres, the proanthocyanidin monomeric composition was consistent with the expression profiles of proanthocyanidin synthase genes, suggesting that anthocyanidin reductase represented the major flow of the proanthocyanidin biosynthesis pathway. In addition, the structural characteristics and component differences of proanthocanidins in brown and white cotton fibres suggested that quinones, the oxidation products of proanthocyanidins, were the direct contributors to colour development in brown cotton fibre. This was demonstrated by vanillin-HCl staining and Borntrager's test. Collectively, these data demonstrated that the biosynthesis of proanthocyanidins is a crucial pigmentation process in brown cotton fibre, and that quinones may represent the main pigments contributing to formation of the the brown colour. This study revealed the molecular basis of pigmentation in brown cotton fibres, and provided important insights for genetic manipulation of pigment production in cotton fibres. PMID:25086591

  17. Hyperspectral Imaging Techniques for Rapid Identification of Arabidopsis Mutants with Altered Leaf Pigment Status

    PubMed Central

    Matsuda, Osamu; Tanaka, Ayako; Fujita, Takao; Iba, Koh

    2012-01-01

    The spectral reflectance signature of living organisms provides information that closely reflects their physiological status. Because of its high potential for the estimation of geomorphic biological parameters, particularly of gross photosynthesis of plants, two-dimensional spectroscopy, via the use of hyperspectral instruments, has been widely used in remote sensing applications. In genetics research, in contrast, the reflectance phenotype has rarely been the subject of quantitative analysis; its potential for illuminating the pathway leading from the gene to phenotype remains largely unexplored. In this study, we employed hyperspectral imaging techniques to identify Arabidopsis mutants with altered leaf pigment status. The techniques are comprised of two modes; the first is referred to as the ‘targeted mode’ and the second as the ‘non-targeted mode’. The ‘targeted’ mode is aimed at visualizing individual concentrations and compositional parameters of leaf pigments based on reflectance indices (RIs) developed for Chls a and b, carotenoids and anthocyanins. The ‘non-targeted’ mode highlights differences in reflectance spectra of leaf samples relative to reference spectra from the wild-type leaves. Through the latter approach, three mutant lines with weak irregular reflectance phenotypes, that are hardly identifiable by simple observation, were isolated. Analysis of these and other mutants revealed that the RI-based targeted pigment estimation was robust at least against changes in trichome density, but was confounded by genetic defects in chloroplast photorelocation movement. Notwithstanding such a limitation, the techniques presented here provide rapid and high-sensitive means to identify genetic mechanisms that coordinate leaf pigment status with developmental stages and/or environmental stress conditions. PMID:22470059

  18. Directed evolution of the CpcA biosynthetic pathway and optimization of conditions for CpcA production and its properties.

    PubMed

    Dong, Dalu; Pan, Hangtao; Yu, Ping

    2014-06-01

    To improve the production of phycocyanin holo-α-subunit (CpcA) from Spirulina maxima, five genes and their spacer region sequences involved in its biosynthesis were subject to the directed evolution by error-prone PCR using the plasmid pETDuet-6 as the template. Mutants were screened by determining the CpcA yield in 96-well plates directly. A mutant strain CPCA713 with the highest CpcA yield of 17.36 mg/l in 96-well plates was obtained, and this yield was 29.7 % higher than that from the control strain ZJGSU09 containing pETDuet-6 (13.38 mg/l). Sequence alignments indicated that 10 nucleotides and 5 amino acids were mutated. Glycerol and beef extract were found to be the best carbon and nitrogen sources for accumulating CpcA in the screened CPCA713 strain, respectively. The concentrations of the key factors that affected the CpcA yield were optimized by response surface methodology with a Box-Behnken design and were as follows: glycerol, 16.0 g/l; yeast extract, 18.2 g/l; and beef extract, 4.8 g/l. Under the optimal conditions, the CpcA yield was up to 71.21 mg/l in the shake flask. Time-course of the CpcA production before and after optimization were performed and compared. After being purified by a Hi-Trap metal chelating affinity column loaded with 100 mM nickel sulfate, CpcA presented a single protein band with an estimated molecular weight of 29 kDa in the sodium dodecyl sulfate polyacrylamide gel electrophoresis gel. The purified CpcA had the maximal absorptive and fluorescent emission wavelengths at 623 and 650.8 nm, respectively, and was stable at temperatures of 40 °C below and pHs of 5.5-8.0, and in the dark or in the dim light. It had also a strong scavenging ability to three free radicals ·OH, ·O2 (-), and di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH). The IC50 values of ·OH, ·O2 (-), and DPPH free radicals by purified CpcA were 0.08, 0.46, and 0.48 mg/ml, respectively. This study lays a good foundation for the industrial

  19. Pathways of geomorphic evolution of sandstone escarpments in the Góry Stołowe tableland (SW Poland) - Insights from LiDAR-based high-resolution DEM

    NASA Astrophysics Data System (ADS)

    Migoń, Piotr; Kasprzak, Marek

    2016-05-01

    The tableland of the Stołowe Mountains (SW Poland), with its prominent mesas and sandstone-capped escarpments, belongs to the most spectacular geomorphic landscapes of Central Europe. While the gross morphological features of the area have long been recognized, the evolutionary pathways of densely forested and poorly accessible escarpment slopes remained poorly understood. In this paper we use LiDAR data to shed a new light on landform inventories within the escarpments, their spatial patterns and, using process-from-form reasoning, on the longer-term evolution of the escarpments. Four sites, two on each major escarpment, have been subject to detailed analysis which involved examination of shaded relief, slope, plan and profile curvature and topographic wetness index. In each case, the 1 × 1 m model was used, while for the most complex site at Mt. Szczeliniec Wielki the results were compared with the 5 × 5 m model to check the impact of model resolution on geomorphic interpretation. Despite some loss of information involved in model re-interpolation to the coarser scale, the main features of escarpment morphology could still be recognized. On the other hand, automatic landform classification based on the calculation of Topographic Position Index from the 10 × 10 m model and performed for the entire tableland failed to reveal differences between various sections of the escarpments, detectable on finer models. The analysis of spatial patterns of minor landforms within the escarpments, identified on LiDAR-derived models shows that no single pathway of escarpment evolution exists. Both the upper slopes (in sandstone caprock) and the mid-slopes (in weaker rocks) show signs of instability and these are not necessarily coupled. Large-scale caprock failures do occur but seem rare and localized. Sandstone free faces are rather subject to continuous slow retreat by detachment of individual joint-bound blocks. Another zone of instability occurs well below the caprock and

  20. Physiological Properties of Rod Photoreceptor Cells in Green-sensitive Cone Pigment Knock-in Mice

    PubMed Central

    Sakurai, Keisuke; Onishi, Akishi; Imai, Hiroo; Chisaka, Osamu; Ueda, Yoshiki; Usukura, Jiro; Nakatani, Kei; Shichida, Yoshinori

    2007-01-01

    Rod and cone photoreceptor cells that are responsible for scotopic and photopic vision, respectively, exhibit photoresponses different from each other and contain similar phototransduction proteins with distinctive molecular properties. To investigate the contribution of the different molecular properties of visual pigments to the responses of the photoreceptor cells, we have generated knock-in mice in which rod visual pigment (rhodopsin) was replaced with mouse green-sensitive cone visual pigment (mouse green). The mouse green was successfully transported to the rod outer segments, though the expression of mouse green in homozygous retina was ∼11% of rhodopsin in wild-type retina. Single-cell recordings of wild-type and homozygous rods suggested that the flash sensitivity and the single-photon responses from mouse green were three to fourfold lower than those from rhodopsin after correction for the differences in cell volume and levels of several signal transduction proteins. Subsequent measurements using heterozygous rods expressing both mouse green and rhodopsin E122Q mutant, where these pigments in the same rod cells can be selectively irradiated due to their distinctive absorption maxima, clearly showed that the photoresponse of mouse green was threefold lower than that of rhodopsin. Noise analysis indicated that the rate of thermal activations of mouse green was 1.7 × 10−7 s−1, about 860-fold higher than that of rhodopsin. The increase in thermal activation of mouse green relative to that of rhodopsin results in only 4% reduction of rod photosensitivity for bright lights, but would instead be expected to severely affect the visual threshold under dim-light conditions. Therefore, the abilities of rhodopsin to generate a large single photon response and to retain high thermal stability in darkness are factors that have been necessary for the evolution of scotopic vision. PMID:17591985

  1. [A woman with a pigmentation of the hard palate].

    PubMed

    van der Meij, Erik H; Nieken, Judith; de Visscher, Jan G A M

    2013-01-01

    A bluish flat pigmented lesion of the hard palate of a 51-year-old woman was excised to exclude malignancy, in particular oral malignant melanoma. On histopathological examination, depositions of black pigment were seen accompanied by several foreign body giant cells. Probably due to a childhood trauma, a pencil point had penetrated the hard palate. PMID:24330792

  2. Passivation of pigment particles for thermal control coatings

    NASA Technical Reports Server (NTRS)

    Sancier, K. M.; Morrison, S. R.; Farley, E. P.

    1974-01-01

    Various redox couple surface additives are studied which increase the photostability of coprecipitated zinc orthotitanate pigment. The electron spin resonance technique was used to examine the characteristic photodamage centers. Results indicate that cerium surface redox additive completely passivates the pigment at the surface concentrations studied. Less passivation occurs with the iridium chloride and the iron cyanide redox couples.

  3. Passivation of pigment particles for thermal control coatings

    NASA Technical Reports Server (NTRS)

    Sancier, K. M.; Morrison, S. R.; Farley, E. P.

    1975-01-01

    The preparation of a matrix of 48 samples consisting of pigments and pigmented paints is described. The results obtained from testing these samples by electron spin resonance and by in situ spectral reflectance measurements in space simulation tests are presented. Conclusions and recommendations for further research are given.

  4. Betacyanins pigments as photosensitizing agents for holographic recording medium

    NASA Astrophysics Data System (ADS)

    Toxqui-López, S.; Hernández-Hernández, E.; Santacruz-Vázquez, C.; Olivares-Pérez, A.; Santacruz-Vazquez, V.

    2014-02-01

    One of the natural most employed within the food industry are pigments of betalains by their solubility in water to give desired colorations in processed foods such as beverages, dairy, meat. However, this research shows that this type of pigments can be used as photosensitizing agents in the field of holographic recording materials.

  5. Stabilized pigment and method for producing the same

    NASA Technical Reports Server (NTRS)

    Morrison, Stanley Roy (Inventor); Freund, Thomas (Inventor)

    1976-01-01

    A chemical species, present in two oxidation states which differ from one another by one equivalent, is added to pigment materials to serve as a recombination center for alternately capturing electrons and holes produced by the pigment materials when they are subjected to ultraviolet light exposure.

  6. An Improved Method for Extraction and Separation of Photosynthetic Pigments

    ERIC Educational Resources Information Center

    Katayama, Nobuyasu; Kanaizuka, Yasuhiro; Sudarmi, Rini; Yokohama, Yasutsugu

    2003-01-01

    The method for extracting and separating hydrophobic photosynthetic pigments proposed by Katayama "et al." ("Japanese Journal of Phycology," 42, 71-77, 1994) has been improved to introduce it to student laboratories at the senior high school level. Silica gel powder was used for removing water from fresh materials prior to extracting pigments by a…

  7. 21 CFR 73.350 - Mica-based pearlescent pigments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Mica-based pearlescent pigments. 73.350 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.350 Mica-based pearlescent pigments. (a) Identity. (1) The color additive is formed by depositing titanium salts onto mica, followed by heating...

  8. 21 CFR 73.1350 - Mica-based pearlescent pigments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Mica-based pearlescent pigments. 73.1350 Section... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1350 Mica-based pearlescent pigments. (a) Identity. (1) The color additive is formed by depositing titanium and/or iron salts onto mica, followed...

  9. 21 CFR 73.350 - Mica-based pearlescent pigments.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Mica-based pearlescent pigments. 73.350 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.350 Mica-based pearlescent pigments. (a) Identity. (1) The color additive is formed by depositing titanium salts onto mica, followed by heating...

  10. 21 CFR 73.1350 - Mica-based pearlescent pigments.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Mica-based pearlescent pigments. 73.1350 Section... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1350 Mica-based pearlescent pigments. (a) Identity. (1) The color additive is formed by depositing titanium and/or iron salts onto mica, followed...

  11. 21 CFR 73.350 - Mica-based pearlescent pigments.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Mica-based pearlescent pigments. 73.350 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.350 Mica-based pearlescent pigments. (a) Identity. (1) The color additive is formed by depositing titanium salts onto mica, followed by heating...

  12. 21 CFR 73.1350 - Mica-based pearlescent pigments.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Mica-based pearlescent pigments. 73.1350 Section... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1350 Mica-based pearlescent pigments. (a) Identity. (1) The color additive is formed by depositing titanium and/or iron salts onto mica, followed...

  13. Internal pigment cells respond to external UV radiation in frogs.

    PubMed

    Franco-Belussi, Lilian; Nilsson Sköld, Helen; de Oliveira, Classius

    2016-05-01

    Fish and amphibians have pigment cells that generate colorful skins important for signaling, camouflage, thermoregulation and protection against ultraviolet radiation (UVR). However, many animals also have pigment cells inside their bodies, on their internal organs and membranes. In contrast to external pigmentation, internal pigmentation is remarkably little studied and its function is not well known. Here, we tested genotoxic effects of UVR and its effects on internal pigmentation in a neotropical frog, Physalaemus nattereri We found increases in body darkness and internal melanin pigmentation in testes and heart surfaces and in the mesenterium and lumbar region after just a few hours of UVR exposure. The melanin dispersion in melanomacrophages in the liver and melanocytes in testes increased after UV exposure. In addition, the amount of melanin inside melanomacrophages cells also increased. Although mast cells were quickly activated by UVR, only longer UVR exposure resulted in genotoxic effects inside frogs, by increasing the frequency of micronuclei in red blood cells. This is the first study to describe systemic responses of external UVR on internal melanin pigmentation, melanomacrophages and melanocytes in frogs and thus provides a functional explanation to the presence of internal pigmentation. PMID:26944494

  14. A review of polymeric dispersant stabilisation of titania pigment.

    PubMed

    Farrokhpay, Saeed

    2009-10-30

    A review of past and present published works examining the interaction of polymeric dispersants with titania pigment particles is presented. Titania is the most important white pigments currently used in the world and its suspension properties are very important for consumer industries such as paints, papermaking and plastics; if aggregates are present, the end-use properties including gloss, opacity and storage stability will be highly affected. As polymeric dispersants are generally used to disperse titania pigment particles, it is very important to understand the interactions between the pigment particles and polymeric dispersants of varying functionality. Although, in principle, the adsorption of polymers onto titania pigment and influences on pigment dispersion and stabilisation are fairly known, it is nevertheless hardly possible to forecast the behaviour of a given polymeric dispersant in advance, unless to have a broad knowledge of the interaction occurring between pigment and dispersants and effect of dispersant structure upon adsorption. While only titania pigment is discussed, the issues raised may also apply to other mineral oxides such as alumina or zirconia. PMID:19691945

  15. Changes in pigment, spectral transmission and element content of pink chicken eggshells with different pigment intensity during incubation.

    PubMed

    Yu, Yue; Li, Zhanming; Pan, Jinming

    2016-01-01

    Objective. The objective of this study was to investigate changes in pigment, spectral transmission and element content of chicken eggshells with different intensities of pink pigment during the incubation period. We also investigated the effects of the region (small pole, equator and large pole) and pink pigment intensity of the chicken eggshell on the percent transmission of light passing through the chicken eggshells. Method. Eggs of comparable weight from a meat-type breeder (Meihuang) were used, and divided based on three levels of pink pigment (light, medium and dark) in the eggshells. During the incubation (0-21 d), the values of the eggshell pigment (ΔE, L (∗), a (∗), b (∗)) were measured. The percent transmission of light for different regions and intensities of eggshell pigmentation was measured by using the visible wavelength range of 380-780 nm. Result. Three measured indicators of eggshell color, ΔE, L (∗) and a (∗), did not change significantly during incubation. Compared with other regions and pigment intensities, eggshell at the small pole and with light pigmentation intensity showed the highest percent transmission of light. The transmission value varied significantly (P < 0.001) with incubation time. The element analysis of eggshells with different levels of pink pigment showed that the potassium content of the eggshells for all pigment levels decreased significantly during incubation. Conclusion. In summary, pigment intensity and the region of the eggshell influenced the percent transmission of light of eggshell. Differences in the spectral characteristics of different eggshells may influence the effects of photostimulation during the incubation of eggs. All of these results will be applicable for perfecting the design of light intensity for lighted incubation to improve productivity. PMID:27019785

  16. Changes in pigment, spectral transmission and element content of pink chicken eggshells with different pigment intensity during incubation

    PubMed Central

    Yu, Yue; Li, Zhanming

    2016-01-01

    Objective. The objective of this study was to investigate changes in pigment, spectral transmission and element content of chicken eggshells with different intensities of pink pigment during the incubation period. We also investigated the effects of the region (small pole, equator and large pole) and pink pigment intensity of the chicken eggshell on the percent transmission of light passing through the chicken eggshells. Method. Eggs of comparable weight from a meat-type breeder (Meihuang) were used, and divided based on three levels of pink pigment (light, medium and dark) in the eggshells. During the incubation (0–21 d), the values of the eggshell pigment (ΔE, L∗, a∗, b∗) were measured. The percent transmission of light for different regions and intensities of eggshell pigmentation was measured by using the visible wavelength range of 380–780 nm. Result. Three measured indicators of eggshell color, ΔE, L∗ and a∗, did not change significantly during incubation. Compared with other regions and pigment intensities, eggshell at the small pole and with light pigmentation intensity showed the highest percent transmission of light. The transmission value varied significantly (P < 0.001) with incubation time. The element analysis of eggshells with different levels of pink pigment showed that the potassium content of the eggshells for all pigment levels decreased significantly during incubation. Conclusion. In summary, pigment intensity and the region of the eggshell influenced the percent transmission of light of eggshell. Differences in the spectral characteristics of different eggshells may influence the effects of photostimulation during the incubation of eggs. All of these results will be applicable for perfecting the design of light intensity for lighted incubation to improve productivity. PMID:27019785

  17. Polycyclic aromatic hydrocarbons: primitive pigment systems in the prebiotic environment.

    PubMed

    Deamer, D W

    1992-01-01

    Polycyclic aromatic hydrocarbons (PAH) in the form of polymerized derivatives represent over 90% of the organic material of carbonaceous chondrites. It now appears likely that there was substantial survival of the organic content of meteoritic and cometary infall during late accretion, so that PAH would presumably be major components of the organic inventory present on the prebiotic Earth. An important question relative to chemical evolution and energy transduction is the nature of pigments which could be available to make light energy available to the earliest cellular forms of life. PAH and their derivatives all absorb light in the near UV and blue wavelengths, and are candidates for primitive pigments. We have explored this possibility in a model system consisting of mixtures of pyrene, fluoranthene and pyrene derivatives with hexadecane, dispersed in dilute salt solutions. Upon illumination, photochemical oxidation of the hexadecane occurs, with long-chain amphiphiles such as 2-hexadecanone and 2-hexadecanol as products. Because the reaction proceeds under strictly anaerobic conditions, the source of oxygen is apparently water. We also observed acid pH shifts during illumination. Photochemical production of hydrogen ion is significant, in that chemiosmotic proton gradients across membranes are used by all contemporary cells as a source of energy for ATP synthesis and nutrient transport. To test whether the protons could be used to transduce light energy into a useful form, PAH derivatives were included in lipid bilayer membranes (liposomes). Upon illumination, protons (or acidic products) were produced and accumulated inside the vesicles, so that substantial pH gradients were established across the membranes, acid inside. We conclude that PAH dissolved in aliphatic hydrocarbons absorb light energy and use it to oxidize the hydrocarbon to long-chain amphiphilic molecules. The oxidation is accompanied by release of protons. If PAH derivatives are included in the

  18. In-vivo absorption properties of algal pigments

    NASA Astrophysics Data System (ADS)

    Bidigare, Robert R.; Ondrusek, Michael E.; Morrow, John H.; Kiefer, Dale A.

    1990-09-01

    Estimates of the in vivo specific absorption coefficients (m2 mg'; 400-750 nm, 2 nm intervals) for the major algal pigment groups (chlorophylls, carotenoids and phycobilins) are presented. "Unpackaged" absorption coefficients were initially obtained by measuring the absorption properties of pure pigment standards spectrophotometrically and "shifting" their absorption maxima to match in vivo positions. Two approaches for estimating the phytoplankton absorption coefficient (spectral reconstruction and spectral decomposition) are compared by linear regression analysis, incorporating concurrent measurements of particulate absorption and pigmentation performed in the Sargasso Sea. Results suggest that "pigment package" effects are minimal for natural assemblages of open-oceanic phytoplankton and that accessory pigments do not always co-vary with chlorophyll a over depth and time.

  19. A melanosomal two-pore sodium channel regulates pigmentation.

    PubMed

    Bellono, Nicholas W; Escobar, Iliana E; Oancea, Elena

    2016-01-01

    Intracellular organelles mediate complex cellular functions that often require ion transport across their membranes. Melanosomes are organelles responsible for the synthesis of the major mammalian pigment melanin. Defects in melanin synthesis result in pigmentation defects, visual deficits, and increased susceptibility to skin and eye cancers. Although genes encoding putative melanosomal ion transporters have been identified as key regulators of melanin synthesis, melanosome ion transport and its contribution to pigmentation remain poorly understood. Here we identify two-pore channel 2 (TPC2) as the first reported melanosomal cation conductance by directly patch-clamping skin and eye melanosomes. TPC2 has been implicated in human pigmentation and melanoma, but the molecular mechanism mediating this function was entirely unknown. We demonstrate that the vesicular signaling lipid phosphatidylinositol bisphosphate PI(3,5)P2 modulates TPC2 activity to control melanosomal membrane potential, pH, and regulate pigmentation. PMID:27231233

  20. Structural and functional characterization of enamel pigmentation in shrews.

    PubMed

    Dumont, M; Tütken, T; Kostka, A; Duarte, M J; Borodin, S

    2014-04-01

    Pigmented tooth enamel occurs in several vertebrate clades, ranging from mammals to fish. Although an iron compound is associated with this orange to red colored pigmentation, its chemical and structural organization within the enamel is unknown. To determine the nature of the iron compound, we investigated heavily pigmented teeth of the northern short-tailed shrew Blarina brevicauda using combined characterization techniques such as scanning and transmission electron microscopy and synchrotron X-ray diffraction. We found that the pigmentation of the enamel with an iron content of around 8wt% results from a close to amorphous magnetite phase deposited around the nm-sized enamel crystals. Furthermore, the influence of the pigmentation on the enamel hardness was determined by nanoindentation measurements. Finally, the biomechanical function and biological context are discussed in light of the obtained results. PMID:24556576

  1. A melanosomal two-pore sodium channel regulates pigmentation

    PubMed Central

    Bellono, Nicholas W.; Escobar, Iliana E.; Oancea, Elena

    2016-01-01

    Intracellular organelles mediate complex cellular functions that often require ion transport across their membranes. Melanosomes are organelles responsible for the synthesis of the major mammalian pigment melanin. Defects in melanin synthesis result in pigmentation defects, visual deficits, and increased susceptibility to skin and eye cancers. Although genes encoding putative melanosomal ion transporters have been identified as key regulators of melanin synthesis, melanosome ion transport and its contribution to pigmentation remain poorly understood. Here we identify two-pore channel 2 (TPC2) as the first reported melanosomal cation conductance by directly patch-clamping skin and eye melanosomes. TPC2 has been implicated in human pigmentation and melanoma, but the molecular mechanism mediating this function was entirely unknown. We demonstrate that the vesicular signaling lipid phosphatidylinositol bisphosphate PI(3,5)P2 modulates TPC2 activity to control melanosomal membrane potential, pH, and regulate pigmentation. PMID:27231233

  2. Fly ash based zeolitic pigments for application in anticorrosive paints

    NASA Astrophysics Data System (ADS)

    Shaw, Ruchi; Tiwari, Sangeeta

    2016-04-01

    The purpose of this work is to evaluate the utilization of waste fly ash in anticorrosive paints. Zeolite NaY was synthesized from waste fly ash and subsequently modified by exchanging its nominal cation Na+ with Mg2+ and Ca2+ ions. The metal ion exchanged zeolite was then used as anticorrosive zeolitic pigments in paints. The prepared zeolite NaY was characterized using X-Ray diffraction technique and Scanning electron microscopy. The size, shape and density of the prepared fly ash based pigments were determined by various techniques. The paints were prepared by using fly ash based zeolitic pigments in epoxy resin and the percentages of pigments used in paints were 2% and 5%. These paints were applied to the mild steel panels and the anticorrosive properties of the pigments were assessed by the electrochemical spectroscopy technique (EIS).

  3. Temporal variations in the concentration and settling flux of carbon and phytoplankton pigments in a deep fjordlike estuary*1

    NASA Astrophysics Data System (ADS)

    Baker, Edward T.; Feely, Richard A.; Landry, Michael R.; Lamb, Marilyn

    1985-12-01

    The weekly mass flux of C and phytoplankton pigments at five depths in the main basin of Puget Sound, a deep (˜200 m) fjordlike estuary, was sampled for a year with moored sequentially-sampling sediment traps. Flux measurements were compared with weekly samples of suspended pigments in the euphotic zone and bi-monthly samples of total suspended matter and particulate C throughout the water column at the mooring site. Seasonal changes in the total mass flux at all depths were small; instead, physical (river runoff, bottom resuspension) and biological (phytoplankton blooms) events caused occasional sharp increases on a weekly scale. The dry weight concentration of pigments in the trap samples mirrored the concentration of pigments in the euphotic zone suspended matter, increasing from 0·01% in winter to a maximum of 0·65% in late summer. Bloom-induced changes in the pigment concentration were observed almost simultaneously in the euphotic zone and in the traps to a depth of 160 m, indicating a rapid vertical transfer of surface-originating particles by organic aggregates. In contrast to the strong seasonal signal in the pigment concentration, C concentration varied by only a factor of three during the year. The seasonal trend of C/pigment ratios in the C flux arises from at least two sources: (1) a balance between terrestrial sources of C during the high-runoff winter season and in-situ primary production in spring and summer, and (2) cycling of C through the zooplankton population. Budget calculations suggest that the loss of primary-produced C and pigment from the euphotic zone by settling is ˜5% regardless of season. On an annual basis, this C flux (16 g m -2) is sufficient to support previously measured values of benthic aerobic respiration at the mooring site. To account for other C sinks such as burial, predation and chemical oxidation, however, terrestrial C sources and alternate transport pathways, such as vertical advection and sediment movement down the

  4. Regulation of eumelanin / pheomelanin synthesis and visible pigmentation in melanocytes by ligands of the melanocortin 1 receptor

    PubMed Central

    Le Pape, Elodie; Wakamatsu, Kazumasa; Ito, Shosuke; Wolber, Rainer; Hearing, Vincent J.

    2008-01-01

    The production of melanin in the hair and skin is tightly regulated by the melanocortin 1 receptor (MC1R) whose activation is controlled by 2 secreted ligands, α-melanocyte stimulating hormone (αMSH) and agouti signal protein (ASP). Since melanin is extremely stable, lasting years in biological tissues, the mechanism underlying the relatively rapid decrease in visible pigmentation elicited by ASP is of obvious interest. In this study, the effects of ASP and αMSH on the regulation of melanin synthesis and on visible pigmentation were assessed in normal murine melanocytes and were compared with the quick depigmenting effect of the tyrosinase inhibitor, phenylthiourea (PTU). αMSH increased pheomelanin levels prior to increasing eumelanin content over 4 days of treatment. Conversely, ASP switched off the pigment synthesis pathway, reducing eu- and pheo- melanin synthesis within 1 day of treatment that was proportional to the decrease in tyrosinase protein level and activity. These results demonstrate that the visible depigmentation of melanocytes induced by ASP does not require the degradation of existing melanin but rather is due to the dilution of existing melanin by melanocyte turnover, which emphasizes the importance of pigment distribution to visible color. PMID:18627531

  5. Adenocarcinoma of the pigmented ciliary epithelium

    PubMed Central

    Sukeda, Aoi; Mori, Taisuke; Suzuki, Shigenobu; Ochiai, Atsushi

    2014-01-01

    Adenocarcinoma of the pigmented ciliary epithelium is an exceptionally rare eye tumour, with only a few cases reported to date. We encountered such a case in a 50-year-old woman who reported seeing floaters in her right eye. Fundus examination and MRI revealed an elevated lesion located in the ciliary body compressing the lens. The ciliary body was resected under the diagnosis of ciliary adenoma. On histological examination, the tumour exhibited epithelial features with glandular formation and moderate nuclear pleomorphism. The tumour invaded the subepithelial stroma of the ciliary body. Immunohistochemical findings were positive for cytokeratin OSCAR, AE1/AE3, CK7, EMA, S100, Melan A, HMB45, and microphthalmia-associated transcription factor. PMID:25015166

  6. Retinal pigment epithelial change and partial lipodystrophy.

    PubMed Central

    Davis, T. M.; Holdright, D. R.; Schulenberg, W. E.; Turner, R. C.; Joplin, G. F.

    1988-01-01

    Cuticular drusen and retinal pigment epithelial changes were found incidentally in a 27 year old Lebanese woman during assessment of partial lipodystrophy. Her vision was normal despite involvement of both maculae. The patient had hypocomplementaemia, but serum C3 nephritic factor was absent and renal function was normal. She had impaired glucose tolerance and a continuous infusion of glucose with model assessment (CIGMA) test revealed low normal tissue insulin sensitivity and high normal pancreatic beta cell function. Mild fasting hypertriglyceridaemia (2.0 mmol/l) may have been secondary to impaired insulin sensitivity. Endocrine function was otherwise normal apart from a completely absent growth hormone response to adequate hypoglycaemia. The simultaneous occurrence of partial lipodystrophy and retinal pigmentary epithelial and basement membrane changes appears to be a newly recognized syndrome. Images Figure 1 Figure 2 PMID:3255937

  7. Cutaneous pigmentation secondary to amiodarone therapy

    SciTech Connect

    Trimble, J.W.; Mendelson, D.S.; Fetter, B.F.; Ingram, P.; Gallagher, J.J.; Shelburne, J.D.

    1983-11-01

    Amiodarone (Cordarone) is an iodinated cardiac antiarrhythmic drug that causes a slate-gray discoloration of the sun-exposed skin and a yellow-brown stippling of the cornea. Histopathologically, biopsy specimens of aminodarone pigmentation sites disclose yellow-brown refractile granules in the reticular dermis. These granules were characterized by transmission electron microscopy as being concentrically arranged intralysosomal inclusions (''myelinlike'' bodies) in dermal endothelial cells and perivascular smooth-muscle cells. Electron probe x-ray analysis of these same inclusions disclosed definite peaks for iodine, evidence for the presence of amiodarone or a metabolite of the drug at these sites. Amiodarone, then, concentrates in lysosomes and causes an accumulation of lipids similar to what has been seen with other cationic amphiphilic compounds, such as the glycosphingolipid stored in Fabry's disease. Amiodarone must be recognized as a cause of a drug-induced lipid storage disease with cutaneous and corneal manifestations.

  8. [Pigmented lesions of the genital mucosa].

    PubMed

    Hengge, U R; Meurer, M

    2005-06-01

    Pigmented lesions of the genital mucosa are more frequent in women than in men. They represent a spectrum of different benign entities. A biopsy is always recommended when the diagnosis cannot be made with certainty on clinical examination and dermatoscopy. Differential diagnostic considerations include melanocytic nevi, blue nevi and syndromes featuring lentigines. Malignant melanomas of the penis and vulva are uncommon tumors which usually appear in elderly patients. They frequently present as painless palpable nodules at routine examination. The treatment consists of excision with histological control of the margins. An aggressive surgical approach has not been shown to prolong the poor 5-year survival. Cooperation with gynecologists and urologists is essential for the optimal management of such patients. PMID:15905972

  9. Calcium binding in pigmented and albino eyes.

    PubMed Central

    Dräger, U C

    1985-01-01

    The localization of calcium binding sites in eyes was determined autoradiographically after extracting endogenous Ca from tissue sections and replacing it with 45Ca. The strongest labeling was associated with pigmented tissues due to the high concentration of melanin, which was shown to bind Ca effectively and in a pH-dependent fashion. The second strongest binding was over the tapetum lucidum of the cat eye, and moderate labeling was associated with eye muscles and epithelium and endothelium of the cornea. The neural retina was generally more lightly labeled than the surrounding tissue of the eye; here the plexiform layers stood out in comparison to the nuclear layers, as did a band located internal to the photoreceptor outer segments. The possibility that the Ca buffering capacity of melanin may represent the common denominator for the various neurological defects found in hypopigmentation mutants is discussed. Images PMID:3863122

  10. High biological variability of plastids, photosynthetic pigments and pigment forms of leaf primordia in buds.

    PubMed

    Solymosi, Katalin; Morandi, Dominique; Bóka, Károly; Böddi, Béla; Schoefs, Benoît

    2012-05-01

    To study the formation of the photosynthetic apparatus in nature, the carotenoid and chlorophyllous pigment compositions of differently developed leaf primordia in closed and opening buds of common ash (Fraxinus excelsior L.) and horse chestnut (Aesculus hippocastanum L.) as well as in closed buds of tree of heaven (Ailanthus altissima P. Mill.) were analyzed with HPLC. The native organization of the chlorophyllous pigments was studied using 77 K fluorescence spectroscopy, and plastid ultrastructure was investigated with electron microscopy. Complete etiolation, i.e., accumulation of protochlorophyllide, and absence of chlorophylls occurred in the innermost leaf primordia of common ash buds. The other leaf primordia were partially etiolated in the buds and contained protochlorophyllide (0.5-1 μg g(-1) fresh mass), chlorophyllides (0.2-27 μg g(-1) fresh mass) and chlorophylls (0.9-643 μg g(-1) fresh mass). Etio-chloroplasts with prolamellar bodies and either regular or only low grana were found in leaves having high or low amounts of chlorophyll a and b, respectively. After bud break, etioplast-chloroplast conversion proceeded and the pigment contents increased in the leaves, similarly to the greening processes observed in illuminated etiolated seedlings under laboratory conditions. The pigment contents and the ratio of the different spectral forms had a high biological variability that could be attributed to (i) various light conditions due to light filtering in the buds resulting in differently etiolated leaf primordia, (ii) to differences in the light-exposed and inner regions of the same primordia in opening buds due to various leaf folding, and (iii) to tissue-specific slight variations of plastid ultrastructure. PMID:22160501

  11. Synthesis of Cr-doped CaTiSiO{sub 5} ceramic pigments by spray drying

    SciTech Connect

    Lyubenova, T. Stoyanova Matteucci, F.; Costa, A.L.; Dondi, M.; Ocana, M.

    2009-04-02

    Cr-doped CaTiSiO{sub 5} was synthesized by spray drying and conventional ceramic method in order to assess its potential as ceramic pigment. The evolution of the phase composition with thermal treatment was investigated by X-ray powder diffraction (XRPD) and thermal analyses (DTA-TGA-EGA). Powder morphology and particle size distribution were analyzed by scanning electron microscopy (SEM) and laser diffraction, respectively. The color efficiency of pigments was evaluated by optical spectroscopy (UV-vis-NIR) and colorimetric analysis (CIE Lab). Results proved that spray drying is an efficient procedure to prepare highly reactive pigment precursors. The spray-dried powders consist of hollow spherical particles with aggregate size in the 1-10 {mu}m range, developing a brown coloration. Optical spectra reveal the occurrence of Cr(III) and Cr(IV), both responsible for the brown color of this pigment. The former occupies the octahedral site of titanite, in substitution of Ti(IV), while the latter is located at the tetrahedral site, where replaces Si(IV)

  12. Bleaching effect of ozone on pigmented teeth

    PubMed Central

    Zanjani, Vagharedin Akhavan; Ghasemi, Amir; Torabzadeh, Hassan; Jamali, Mahbobeh; Razmavar, Sara; Baghban, Alireza Akbarzadeh

    2015-01-01

    Background: There have been numerous researches on ozone application in dentistry; yet the data regarding its whitening effect is very limited. The present study compares the bleaching effect of ozone with office bleaching. Materials and Methods: In this experimental study, 15 maxillary premolar teeth were selected and sectioned mesio-distally and bucco-lingually. The sections were then placed in tea for 1 week according to the Sulieman method and were divided into three groups each comprised of 15 sections. The samples were bleached as followed; Group I: Bleached with 35% hydrogen peroxide in three intervals of 8 min each, Group II: Underwent ozone treatment using Ozotop unite for 4 min and Group III: Bleached with a combination of both methods. The color indices of the samples, i.e., (a) green-red pigment, (b) blue-yellow pigment, (L) brightness, (ΔE) overall color change, were evaluated pre- and post-bleaching utilizing a digital camera, Photoshop software and CIE lab index. The color changes of specimens then were calculated and analyzed through randomized analysis of variance and Tukey tests. P < 0.001 was considered to be significant. Results: The color change (ΔE) in Group II was significantly lower than those in the two other groups (P < 0.001). There was no significant difference between the color change of Groups I and III (P = 0.639). In addition, the results of L, a and b brought forth a similar pattern to the findings obtained from ΔE. Conclusion: The hydrogen peroxide gel has a more powerful whitening effect than ozone; in addition, ozone has no synergistic effect when is used simultaneously with hydrogen peroxide. PMID:25709670

  13. Cell Models to Study Regulation of Cell Transformation in Pathologies of Retinal Pigment Epithelium

    PubMed Central

    Kuznetsova, Alla V.; Aleksandrova, Maria A.

    2014-01-01

    The retinal pigment epithelium (RPE) plays a key role in the development of many eye diseases leading to visual impairment and even blindness. Cell culture models of pathological changes in the RPE make it possible to study factors responsible for these changes and signaling pathways coordinating cellular and molecular mechanisms of cell interactions under pathological conditions. Moreover, they give an opportunity to reveal target cells and develop effective specific treatment for degenerative and dystrophic diseases of the retina. In this review, data are presented on RPE cell sources for culture models, approaches to RPE cell culturing, phenotypic changes of RPE cells in vitro, the role of signal pathways, and possibilities for their regulation in pathological processes. PMID:25177495

  14. Study of Pigment Epithelium-derived Factor in Pathogenesis of Diabetic Retinopathy.

    PubMed

    Zang, Jing; Guan, Guoqi

    2015-06-01

    Diabetic retinopathy (DR), a major microvascular complication of diabetes, has emerged as a leading cause of visual impairment and blindness among adults worldwide. However, aside from pathological damage, the traditional laser and multi-needle operation treatments required for more advanced disease can cause further damage to the visual field and increase the operation risk. Therefore, the development of new therapeutic strategies for the prevention and treatment of DR is essential. Some emerging evidence now indicates that pigment epithelium-derived factor (PEDF), a multifunctional protein, can target multiple pathways to exert neurotropic, neuropro- tective, anti-angiogenic, anti-vasopermeability, anti-inflammation, anti-thrombogenic, and anti-oxidative effects against DR. This review addresses the functions of PEDF in different pathways that could lead to potential therapeutics for the treatment of DR. PMID:26902068

  15. Comparative short-term inhalation toxicity of five organic diketopyrrolopyrrole pigments and two inorganic iron-oxide-based pigments.

    PubMed

    Hofmann, Thomas; Ma-Hock, Lan; Strauss, Volker; Treumann, Silke; Rey Moreno, Maria; Neubauer, Nicole; Wohlleben, Wendel; Gröters, Sibylle; Wiench, Karin; Veith, Ulrich; Teubner, Wera; van Ravenzwaay, Bennard; Landsiedel, Robert

    2016-08-01

    Diketopyrrolopyrroles (DPP) are a relatively new class of organic high-performance pigments. The present inhalation and particle characterization studies were performed to compare the effects of five DPP-based pigments (coarse and fine Pigment Red 254, coarse and fine meta-chloro DPP isomer and one form of mixed chlorinated DPP isomers) and compare it to coarse and fine inorganic Pigment Red 101. Wistar rats were exposed head-nose to atmospheres of the respective materials for 6 h/day on 5 consecutive days. Target concentrations were 30 mg/m(3) as high dose for all compounds and selected based occupational exposure limits for respirable nuisance dust. Toxicity was determined after end of exposure and after 3-week recovery using broncho-alveolar lavage fluid (BALF) and microscopic examinations of the entire respiratory tract. Mixed chlorinated DPP isomers and coarse meta-chloro DPP isomer caused marginal changes in BALF, consisting of slight increases of polymorphonuclear neutrophils, and in case of coarse meta-chloro DPP increased MCP-1 and osteopontin levels. Mixed chlorinated DPP isomers, Pigment Red 254, and meta-chloro DPP caused pigment deposits and phagocytosis by alveolar macrophages, slight hypertrophy/hyperplasia of the bronchioles and alveolar ducts, but without evidence of inflammation. In contrast, only pigment deposition and pigment phagocytosis were observed after exposure to Pigment Red 101. All pigments were tolerated well and caused only marginal effects in BALF or no effects at all. Only minor effects were seen on the lung by microscopic examination. There was no evidence of systemic inflammation based on acute-phase protein levels in blood. PMID:27387137

  16. Melanins and melanogenesis: from pigment cells to human health and technological applications.

    PubMed

    d'Ischia, Marco; Wakamatsu, Kazumasa; Cicoira, Fabio; Di Mauro, Eduardo; Garcia-Borron, Josè Carlos; Commo, Stephane; Galván, Ismael; Ghanem, Ghanem; Kenzo, Koike; Meredith, Paul; Pezzella, Alessandro; Santato, Clara; Sarna, Tadeusz; Simon, John D; Zecca, Luigi; Zucca, Fabio A; Napolitano, Alessandra; Ito, Shosuke

    2015-09-01

    During the past decade, melanins and melanogenesis have attracted growing interest for a broad range of biomedical and technological applications. The burst of polydopamine-based multifunctional coatings in materials science is just one example, and the list may be expanded to include melanin thin films for organic electronics and bioelectronics, drug delivery systems, functional nanoparticles and biointerfaces, sunscreens, environmental remediation devices. Despite considerable advances, applied research on melanins and melanogenesis is still far from being mature. A closer intersectoral interaction between research centers is essential to raise the interests and increase the awareness of the biomedical, biomaterials science and hi-tech sectors of the manifold opportunities offered by pigment cells and related metabolic pathways. Starting from a survey of biological roles and functions, the present review aims at providing an interdisciplinary perspective of melanin pigments and related pathway with a view to showing how it is possible to translate current knowledge about physical and chemical properties and control mechanisms into new bioinspired solutions for biomedical, dermocosmetic, and technological applications. PMID:26176788

  17. Single-nucleotide polymorphisms in pigment genes and nonmelanoma skin cancer predisposition: a systematic review.

    PubMed

    Binstock, M; Hafeez, F; Metchnikoff, C; Arron, S T

    2014-10-01

    Nonmelanoma skin cancer (NMSC) is the most common cancer in the U.S.A. The two most common NMSCs are basal cell carcinoma and squamous cell carcinoma. The associations of single-nucleotide polymorphisms (SNPs) in pigmentation pathway genes with NMSC are not well characterized. There is a series of epidemiological studies that have tested these relationships, but there is no recent summary of these findings. To explain overarching trends, we undertook a systematic review of published studies. The summarized data support the concept that specific SNPs in the pigmentation pathway are of importance for the pathogenesis of NMSC. The SNPs with the most promising evidence include MC1R rs1805007(T) (Arg151Cys) and rs1805008(T) (Arg160Trp), and ASIP AH haplotype [rs4911414(T) and rs1015362(G)]. There are a few other SNPs found in TYR, OCA2 and SLC45A2 that may show additional correlation after future research. With additional research there is potential for the translation of future findings to the clinic in the form of SNP screenings, where patients at high risk for NMSC can be identified beyond their phenotype by genotypically screening for predisposing SNPs. PMID:25319428

  18. Methods for analysis of photosynthetic pigments and steady-state levels of intermediates of tetrapyrrole biosynthesis.

    PubMed

    Czarnecki, Olaf; Peter, Enrico; Grimm, Bernhard

    2011-01-01

    Tetrapyrroles and carotenoids are required for many indispensable functions in photosynthesis. Tetrapyrroles are essential metabolites for photosynthesis, redox reaction, and detoxification of reactive oxygen species and xenobiotics, while carotenoids function as accessory pigments, in photoprotection and in attraction to animals. Their branched metabolic pathways of synthesis and degradation are tightly controlled to provide adequate amounts of each metabolite (carotenoids/tetrapyrroles) and to prevent accumulation of photoreactive intermediates (tetrapyrroles). Many Arabidopsis mutants and transgenic plants have been reported to show variations in steady-state levels of tetrapyrrole intermediates and contents of different carotenoid species. It is a challenging task to determine the minute amounts of these metabolites to assess the metabolic flow and the activities of both pigment-synthesising and degrading pathways, to unravel limiting enzymatic steps of these biosynthetic pathways, and to characterise mutants with accumulating intermediates. In this chapter, we present a series of methods to qualify and quantify anabolic and catabolic intermediates of Arabidopsis tetrapyrrole metabolism, and describe a common method for quantification of different plant carotenoid species. Additionally, we introduce two methods for quantification of non-covalently bound haem. The approach of analysing steady-state levels of tetrapyrrole intermediates in plants, when applied in combination with analyses of transcripts, proteins, and enzyme activities, enables the biochemical and genetic elucidation of the tetrapyrrole pathway in wild-type plants, varieties, and mutants. Steady-state levels of tetrapyrrole intermediates are only up to 1/1,000 of the amounts of the accumulating end-products, chlorophyll, and haem. Although present in very low amounts, the accumulation and availability of tetrapyrrole intermediates have major consequences on the physiology and activity of

  19. A chalcone isomerase-like protein enhances flavonoid production and flower pigmentation.

    PubMed

    Morita, Yasumasa; Takagi, Kyoko; Fukuchi-Mizutani, Masako; Ishiguro, Kanako; Tanaka, Yoshikazu; Nitasaka, Eiji; Nakayama, Masayoshi; Saito, Norio; Kagami, Takashi; Hoshino, Atsushi; Iida, Shigeru

    2014-04-01

    Flavonoids are major pigments in plants, and their biosynthetic pathway is one of the best-studied metabolic pathways. Here we have identified three mutations within a gene that result in pale-colored flowers in the Japanese morning glory (Ipomoea nil). As the mutations lead to a reduction of the colorless flavonoid compound flavonol as well as of anthocyanins in the flower petal, the identified gene was designated enhancer of flavonoid production (EFP). EFP encodes a chalcone isomerase (CHI)-related protein classified as a type IV CHI protein. CHI is the second committed enzyme of the flavonoid biosynthetic pathway, but type IV CHI proteins are thought to lack CHI enzymatic activity, and their functions remain unknown. The spatio-temporal expression of EFP and structural genes encoding enzymes that produce flavonoids is very similar. Expression of both EFP and the structural genes is coordinately promoted by genes encoding R2R3-MYB and WD40 family proteins. The EFP gene is widely distributed in land plants, and RNAi knockdown mutants of the EFP homologs in petunia (Petunia hybrida) and torenia (Torenia hybrida) had pale-colored flowers and low amounts of anthocyanins. The flavonol and flavone contents in the knockdown petunia and torenia flowers, respectively, were also significantly decreased, suggesting that the EFP protein contributes in early step(s) of the flavonoid biosynthetic pathway to ensure production of flavonoid compounds. From these results, we conclude that EFP is an enhancer of flavonoid production and flower pigmentation, and its function is conserved among diverse land plant species. PMID:24517863

  20. Oral Pigmentation in McCune-Albright Syndrome

    PubMed Central

    Pichard, Dominique C.; Boyce, Alison M.; Collins, Michael T.; Cowen, Edward W.

    2016-01-01

    IMPORTANCE The differential diagnosis for oral lentigines includes several syndromes with important associated systemic findings. McCune-Albright syndrome (MAS), a mosaic condition associated with café au lait pigmentation, is not typically considered a mucosal lentiginosis syndrome. The clinical phenotype of MAS is variable because of mosaicism, but oral pigmentation developing in mid-childhood to early adulthood should be recognized as a clinical feature of MAS. OBSERVATIONS We present 4 patients with MAS who developed oral mucosal pigmentation during childhood or early adulthood. All patients had other characteristic findings of MAS including hyperfunctioning endocrinopathies, polyostotic fibrous dysplasia, and café au lait pigmentation. CONCLUSIONS AND RELEVANCE Oral pigmentation is an underrecognized finding in MAS and presents later in development compared with the other mucosal lentiginosis syndromes. The diagnosis of MAS is most commonly a clinical diagnosis because mutational analysis is challenging in mosaic conditions. Expanding the cutaneous phenotype to include oral pigmentation further characterizes the clinical findings in this mosaic condition, broadens the differential diagnosis of syndromes with oral pigmentation, and in some cases may aid in earlier diagnosis of MAS. PMID:24671640

  1. Pigmented foils for radiative cooling and condensation irrigation

    SciTech Connect

    Nilsson, T.M.J.; Vargas, W.E.; Niklasson, G.A.

    1994-12-31

    This paper reports on the development of pigmented polyethylene foils for radiative cooling. The optical properties of the foils were optimized for applications in day-time radiative cooling and water condensation. The authors first study highly scattering foils used as convection shields. These cover foils combine a high solar reflectance and a high transmittance in the atmospheric window region in the infrared. Different pigment materials were studied and ZnS was the only one that could prevent heating of an underlying blackbody at noon, with the sun in its zenith. A 400 {micro}m thick ZnS pigmented polyethylene foil with a pigment volume fraction of 0.15 was tested in Tanzania. At noon the observed temperature of the covered blackbody was only 1.5 K above the ambient. Secondly, they study the potential for condensation of water in an arid region. Pigmented foils for this purpose should combine a high solar reflectance and a high infrared emittance, in order to promote condensation by the radiative cooling effect. Titanium dioxide is a fairly good infrared emitter, but the emittance can be improved by using a mixture of TiO{sub 2} and BaSO{sub 4} pigments or only employing a composite SiO{sub 2}/TiO{sub 2}. Field tests with a 390 {micro}m thick polyethylene foil with TiO{sub 2} and BaSO{sub 4} pigments gave encouraging results.

  2. Antimycobacterial activity in vitro of pigments isolated from Antarctic bacteria.

    PubMed

    Mojib, Nazia; Philpott, Rachel; Huang, Jonathan P; Niederweis, Michael; Bej, Asim K

    2010-11-01

    In this study, we describe the antimycobacterial activity of two pigments, violacein, a purple violet pigment from Janthinobacterium sp. Ant5-2 (J-PVP), and flexirubin, a yellow-orange pigment from Flavobacterium sp. Ant342 (F-YOP). These pigments were isolated from bacterial strains found in the land-locked freshwater lakes of Schirmacher Oasis, East Antarctica. The minimum inhibitory concentrations (MICs) of these pigments for avirulent and virulent mycobacteria were determined by the microplate Alamar Blue Assay (MABA) and Nitrate Reductase Assay (NRA). Results indicated that the MICs of J-PVP and F-YOP were 8.6 and 3.6 μg/ml for avirulent Mycobacterium smegmatis mc²155; 5 and 2.6 μg/ml for avirulent Mycobacterium tuberculosis mc²6230; and 34.4 and 10.8 μg/ml for virulent M. tuberculosis H₃₇Rv, respectively. J-PVP exhibited a ~15 times lower MIC for Mycobacterium sp. than previously reported for violacein pigment from Chromobacterium violaceum, while the antimycobacterial effect of F-YOP remains undocumented. Our results indicate these pigments isolated from Antarctic bacteria might be valuable lead compounds for new antimycobacterial drugs used for chemotherapy of tuberculosis. PMID:20556653

  3. Fluorescent thin gel films using organic dyes and pigments

    NASA Astrophysics Data System (ADS)

    Nakazumi, Hiroyuki; Takashi, Tarao; Taniguchi, Shin-ichi; Nanto, Hidehito

    1997-10-01

    New organic-inorganic fluorescent thin gel films included with laser dyes or fluorescent organic pigments have been prepared for display application. The florescent dyes (benzoxazolium, pyrromethene, and rhodamine dyes) and super-fine particles of fluorescent pigments (coumarin and perylene) were successfully incorporated into thin silicate gel films prepared from tetraethoxysilane (TEOS), methyltriethoxysilane (MTES), and methoxysilane oligomer (MTSO) under acid catalyzed hydrolysis. The blue, green, and red luminescence were observed from these thin films (thickness: 100 - 400 nm), respectively. Fluorescence spectra, fluorescent quantum yield and lifetime of thin gel films are examined. Fluorescent peaks for most of dyes and pigments used in gel films were similar to those in solution, and fluorescent lifetime for dyes and pigments used in gel films were 2.9 - 4.5 ns. Photostability of fluorescent gel films is dependent on fluorescent organic dyes and pigments used and/or silicate gel matrixes. Coumarin and perylene pigments have higher fluorescent quantum yield in gel film prepared from MTSO. The large Stokes shift was observed in fluorescent gel film using coumarin and benzoxazolium dyes. The coumarin and perylene pigments are significantly photo- stable in gel film prepared from MTSO, and photodegradation of perylene red after irradiation of 500 W Xi-lamp for 30 min is below 20%.

  4. Dissecting pigment architecture of individual photosynthetic antenna complexes in solution

    PubMed Central

    Wang, Quan; Moerner, W. E.

    2015-01-01

    Oligomerization plays a critical role in shaping the light-harvesting properties of many photosynthetic pigment−protein complexes, but a detailed understanding of this process at the level of individual pigments is still lacking. To study the effects of oligomerization, we designed a single-molecule approach to probe the photophysical properties of individual pigment sites as a function of protein assembly state. Our method, based on the principles of anti-Brownian electrokinetic trapping of single fluorescent proteins, step-wise photobleaching, and multiparameter spectroscopy, allows pigment-specific spectroscopic information on single multipigment antennae to be recorded in a nonperturbative aqueous environment with unprecedented detail. We focus on the monomer-to-trimer transformation of allophycocyanin (APC), an important antenna protein in cyanobacteria. Our data reveal that the two chemically identical pigments in APC have different roles. One (α) is the functional pigment that red-shifts its spectral properties upon trimer formation, whereas the other (β) is a “protective” pigment that persistently quenches the excited state of α in the prefunctional, monomer state of the protein. These results show how subtleties in pigment organization give rise to functionally important aspects of energy transfer and photoprotection in antenna complexes. The method developed here should find immediate application in understanding the emergent properties of other natural and artificial light-harvesting systems. PMID:26438850

  5. Synthesis of chromium containing pigments from chromium galvanic sludges.

    PubMed

    Andreola, F; Barbieri, L; Bondioli, F; Cannio, M; Ferrari, A M; Lancellotti, I

    2008-08-15

    In this work the screening results of the scientific activity conducted on laboratory scale to valorise chromium(III) contained in the galvanic sludge as chromium precursor for ceramic pigments are reported. The valorisation of this waste as a secondary raw material (SRM) is obtained by achievement of thermal and chemical stable crystal structures able to color ceramic material. Two different pigments pink CaCr(0.04)Sn(0.97)SiO(5) and green Ca(3)Cr(2)(SiO(4))(3) were synthesized by solid-state reactions using dried Cr sludge as chromium oxide precursor. The obtained pigments were characterized by X-ray diffraction and SEM analysis. Furthermore the color developed in a suitable ceramic glaze was investigated in comparison with the color developed by the pigments prepared from pure Cr(2)O(3). The characterization carried out corroborates the thermal and chemical stability of the synthesized pigments and, especially for the Cr-Sn pink pigment, the powders develop an intense color that is very similar to the color developed by the pigments obtained starting from pure Cr(2)O(3). PMID:18289775

  6. Inorganic yellow-red pigments without toxic metals

    NASA Astrophysics Data System (ADS)

    Jansen, M.; Letschert, H. P.

    2000-04-01

    Inorganic pigments have been utilized by mankind since ancient times, and are still widely used to colour materials exposed to elevated temperatures during processing or application. Indeed, in the case of glasses, glazes and ceramics, there is no alternative to inorganic pigments for colouring. However, most inorganic pigments contain heavy metals or transition metals that can adversely effect the environment and human health if critical levels are exceeded. Cadmium-based pigments in particular are a cause of concern: although the pigments are not toxic due to their very low solubility in water and dilute mineral acids, cadmium itself is toxic and can enter the environment in a bioavailable form through waste-disposal sites and incineration plants. This has led to regulations, based on the precautionary principle, that strongly restrict the use of cadmium pigments. And even though recent assessments have concluded that the risk to humans or the environment might be not as significant as originally feared, a strong demand for inherently safer substitutes remains. Here we demonstrate that solid solutions of the perovskites CaTaO 2N and LaTaON2 constitute promising candidates for such substitutes: their brilliance, tinting strength, opacity, dispersability, light-fastness and heat stability rival that of the cadmium pigments, while their colour can be tuned through the desired range, from yellow through orange to deep red, by simple composition adjustments. Because all the constituent elements are harmless, this perovskite-based inorganic pigment system seems a promising replacement that could eliminate one of the sources for cadmium emissions to the environment and some of the remaining concerns about pigment safety.

  7. Characterizing pigments with hyperspectral imaging variable false-color composites

    NASA Astrophysics Data System (ADS)

    Hayem-Ghez, Anita; Ravaud, Elisabeth; Boust, Clotilde; Bastian, Gilles; Menu, Michel; Brodie-Linder, Nancy

    2015-11-01

    Hyperspectral imaging has been used for pigment characterization on paintings for the last 10 years. It is a noninvasive technique, which mixes the power of spectrophotometry and that of imaging technologies. We have access to a visible and near-infrared hyperspectral camera, ranging from 400 to 1000 nm in 80-160 spectral bands. In order to treat the large amount of data that this imaging technique generates, one can use statistical tools such as principal component analysis (PCA). To conduct the characterization of pigments, researchers mostly use PCA, convex geometry algorithms and the comparison of resulting clusters to database spectra with a specific tolerance (like the Spectral Angle Mapper tool on the dedicated software ENVI). Our approach originates from false-color photography and aims at providing a simple tool to identify pigments thanks to imaging spectroscopy. It can be considered as a quick first analysis to see the principal pigments of a painting, before using a more complete multivariate statistical tool. We study pigment spectra, for each kind of hue (blue, green, red and yellow) to identify the wavelength maximizing spectral differences. The case of red pigments is most interesting because our methodology can discriminate the red pigments very well—even red lakes, which are always difficult to identify. As for the yellow and blue categories, it represents a good progress of IRFC photography for pigment discrimination. We apply our methodology to study the pigments on a painting by Eustache Le Sueur, a French painter of the seventeenth century. We compare the results to other noninvasive analysis like X-ray fluorescence and optical microscopy. Finally, we draw conclusions about the advantages and limits of the variable false-color image method using hyperspectral imaging.

  8. Pigments and citrinin biosynthesis by fungi belonging to genus Monascus.

    PubMed

    Pisareva, Emiliya; Savov, Valentin; Kujumdzieva, Anna

    2005-01-01

    Citrinin is a mycotoxin, which is produced by fungi belonging to the genus Monascus, known in biotechnology as producers of azaphilone pigments. The relation between biosynthesis of these secondary metabolites was investigated in different species of the genus Monascus in batch-culture at the following cultivation conditions: T = 28 degrees C, agitation 220 rpm, and a medium, which induce citrinin production, containing ethanol as a carbon source. The screening was carried out with 16 fungal strains and the biosynthesis of citrinin and pigments was monitored quantitatively at the standard conditions mentioned above. Some kinetic parameters of the process have been determined. The values of the growth yield coefficient Y(X/C) were between 0.32 and 0.57. The amount of the extracellular red and orange pigments at the end of cultivation varied for the different strains between 0.09 and 1.33 OU/ mg dry weight, and 0.15 and 0.96 OU/mg dry weight, respectively. The amount of the total pigments measured was between 0.16 and 3.6 OU/mg dry weight, and between 0.21 and 3.39 OU/mg dry weight. The determined ratio 500 nm/400 nm, characterizing the pigment production, ranged between 0.60 and 1.06. Twelve of the investigated strains produced citrinin and pigments, two of them produced only pigments. Two strains were not able to produce neither pigments nor citrinin. Thus, the biosynthesis of citrinin appeared to be strain-specific and does not correlate with the pigments' biosynthesis by the fungal strains belonging to the genus Monascus. PMID:15787255

  9. Genetic evidence for the convergent evolution of light skin in Europeans and East Asians.

    PubMed

    Norton, Heather L; Kittles, Rick A; Parra, Esteban; McKeigue, Paul; Mao, Xianyun; Cheng, Keith; Canfield, Victor A; Bradley, Daniel G; McEvoy, Brian; Shriver, Mark D

    2007-03-01

    Human skin pigmentation shows a strong positive correlation with ultraviolet radiation intensity, suggesting that variation in skin color is, at least partially, due to adaptation via natural selection. We investigated the evolution of pigmentation variation by testing for the presence of positive directional selection in 6 pigmentation genes using an empirical F(ST) approach, through an examination of global diversity patterns of these genes in the Centre d'Etude du Polymorphisme Humain (CEPH)-Diversity Panel, and by exploring signatures of selection in data from the International HapMap project. Additionally, we demonstrated a role for MATP in determining normal skin pigmentation variation using admixture mapping methods. Taken together (with the results of previous admixture mapping studies), these results point to the importance of several genes in shaping the pigmentation phenotype and a complex evolutionary history involving strong selection. Polymorphisms in 2 genes, ASIP and OCA2, may play a shared role in shaping light and dark pigmentation across the globe, whereas SLC24A5, MATP, and TYR have a predominant role in the evolution of light skin in Europeans but not in East Asians. These findings support a case for the recent convergent evolution of a lighter pigmentation phenotype in Europeans and East Asians. PMID:17182896

  10. Pigmentation development, defects, and patterning in summer flounder (Paralichthys dentatus).

    PubMed

    Bolker, Jessica A; Hakala, Tanya F; Quist, Judith E

    2005-01-01

    Flounders offer unique opportunities to study the cytological basis of vertebrate pigmentation. Individual skin pigment cells are clearly visible at hatching, and flounder ontogeny includes a dramatic shift in overall pigmentation (from symmetrical to asymmetrical) during metamorphosis. Moreover, several types of malpigmentation occur in hatchery populations; although much effort has gone into reducing the frequency of such defects, their etiology remains poorly understood, and they have rarely been described at the cellular level. In this paper, we use light and fluorescence microscopy to describe the cytological basis of normal developmental changes and of common types of malpigmentation. We then discuss the implications of these observations for underlying patterning mechanisms. PMID:16351966

  11. Radiative properties of a painted layer containing nonspherical pigment

    NASA Astrophysics Data System (ADS)

    Shafey, H. M.; Kunitomo, T.

    1980-07-01

    The radiative properties of a painted layer containing nonspherical pigment particles are studied theoretically. The scattering properties are calculated using a new method based on the volume integral form of Maxwell's equations. The radiative transfer is treated by Chandrasekhar's theory. The effects of the optical properties of the pigment and the optical thickness are examined. It is found that the assumption for nonspherical pigments having the scattering properties calculated by the Mie theory for equivalent spherical particles leads to a considerable error in predicting the reflectances of an optically thin layer, and a small error in the case of a thick layer.

  12. Passivation of pigment particles for thermal control coatings

    NASA Technical Reports Server (NTRS)

    Farley, E. P.; Sancier, K. M.; Morrison, S. R.

    1973-01-01

    Five powders were received for plasma calcining during this report period. The particle size using a fluid energy mill, and obtained pigments that could be plasma calcined. Optimum results are obtained in the plasma calcining of zinc orthotitanate when finely dispersed particles are subjected to a calculated plasma temperature of 1670 C. Increasing the plasma calcining time by using multiple passes through the plasma stabilized the pigment to vacuum UV irradiation was evidenced by the resulting ESR spectra but slightly decreased the whiteness of the pigment. The observed darkening is apparently associated with the formation of Ti(+3) color centers.

  13. Dermoscopic features of small size pigmented basal cell carcinomas.

    PubMed

    Takahashi, Asuka; Hara, Hiroyuki; Aikawa, Miwa; Ochiai, Toyoko

    2016-05-01

    Dermoscopic images of histologically proven pigmented basal cell carcinomas (BCC) were retrospectively assessed to compare the dermoscopic features of BCC of 3 mm or less in diameter (n = 6) with BCC of 4-6 mm in diameter (n = 11). All lesions lacked the presence of a pigment network. BCC with a diameter of 3 mm or less had fewer positive dermoscopic features compared with the 4-6 mm in diameter BCC. Multiple blue-gray globules and large blue-gray ovoid nests were frequently present. Dermoscopy is a useful tool for early diagnosis of pigmented BCC, even when they are small. PMID:26458728

  14. Mineral resource of the month: iron oxide pigments

    USGS Publications Warehouse

    U.S. Geological Survey

    2008-01-01

    The article discusses iron oxide pigments, which have been used as colorants since human began painting as they resist color change due to sunlight exposure, have good chemical resistance and are stable under normal ambient conditions. Cyprus, Italy and Spain are among the countries that are known for the production of iron oxide pigments. Granular forms of iron oxides and nano-sized materials are cited as developments in the synthetic iron oxide pigment industry which are being used in computer disk drives and nuclear magnetic resonance imaging.

  15. Nutrient Sensing Mechanisms and Pathways

    PubMed Central

    Efeyan, Alejo; Comb, William C.; Sabatini, David M.

    2015-01-01

    PREFACE The ability to sense and respond to fluctuations in environmental nutrient levels is a requisite for life. Nutrient scarcity is a selective pressure that has shaped the evolution of most cellular processes. Different pathways that detect intracellular and extracellular levels of sugars, amino acids and lipids, and surrogate metabolites, are then integrated and coordinated at the organismal level via hormonal signals. During food abundance, nutrient sensing pathways engage anabolism and storage, and scarcity triggers homeostatic mechanisms, like the mobilization of internal stores through mechanisms such as autophagy. Nutrient sensing pathways are commonly deregulated in human metabolic diseases. PMID:25592535

  16. An 'all pigment' model of excitation quenching in LHCII.

    PubMed

    Chmeliov, Jevgenij; Bricker, William P; Lo, Cynthia; Jouin, Elodie; Valkunas, Leonas; Ruban, Alexander V; Duffy, Christopher D P

    2015-06-28

    The rapid, photoprotective down-regulation of plant light-harvesting in bright light proceeds via the non-photochemical quenching of chlorophyll excitation energy in the major photosystem II light-harvesting complex LHCII. However, there is currently no consensus regarding the precise mechanism by which excess energy is quenched. Current X-ray structures of this complex correspond to a dissipative conformation and therefore correct microscopic theoretical modelling should capture this property. Despite their accuracy in explaining the steady state spectroscopy of this complex, chlorophyll-only models (those that neglect the energetic role of carotenoids) do not explain the observed fluorescence quenching. To address this gap, we have used a combination of the semi-empirical MNDO-CAS-CI and the Transition Density Cube method to model all chlorophyll-carotenoid energy transfer pathways in the highly quenched LHCII X-ray structure. Our simulations reveal that the inclusion of carotenoids in this microscopic model results in profound excitation quenching, reducing the predicted excitation lifetime of the complex from 4 ns (chlorophyll-only) to 67 ps. The model indicates that energy dissipation proceeds via slow excitation transfer (>20 ps) from chlorophyll to the forbidden S1 excited state of the centrally bound lutein molecules followed by the rapid (∼10 ps) radiationless decay to the ground state, with the latter being assumed from experimental measurements of carotenoid excited state lifetimes. Violaxanthin and neoxanthin do not contribute to this quenching. This work presents the first all-pigment microscopic model of LHCII and the first attempt to capture the dissipative character of the known structure. PMID:26017055

  17. Effect of light on growth, intracellular and extracellular pigment production by five pigment-producing filamentous fungi in synthetic medium.

    PubMed

    Velmurugan, Palanivel; Lee, Yong Hoon; Venil, Chidambaram Kulandaisamy; Lakshmanaperumalsamy, Perumalsamy; Chae, Jong-Chan; Oh, Byung-Taek

    2010-04-01

    The competence of the living creatures to sense and respond to light is well known. The effect of darkness and different color light quality on biomass, extracellular and intracellular pigment yield of five potent pigment producers Monascus purpureus, Isaria farinosa, Emericella nidulans, Fusarium verticillioides and Penicillium purpurogenum, with different color shades such as red, pink, reddish brown and yellow, were investigated. Incubation in total darkness increased the biomass, extracellular and intracellular pigment production in all the fungi. Extracellular red pigment produced by M. purpureus resulted maximum in darkness 36.75 + or - 2.1 OD and minimum in white unscreened light 5.90 + or - 1.1 OD. Similarly, intracellular red pigment produced by M. purpureus resulted maximum in darkness 18.27 + or - 0.9 OD/g and minimum in yellow light 8.03 + or - 0.6 OD/g of substrate. The maximum biomass production was also noticed in darkness 2.51 g/L and minimum in yellow light 0.5 g/L of dry weight. In contrast, growth of fungi in green and yellow wavelengths resulted in low biomass and pigment yield. It was found that darkness, (red 780-622 nm, blue 492-455 nm) and white light influenced pigment and biomass yield. PMID:20226375

  18. MicroRNA Expression Profiles of Human iPS Cells, Retinal Pigment Epithelium Derived From iPS, and Fetal Retinal Pigment Epithelium

    PubMed Central

    Greene, Whitney A.; Muñiz, Alberto.; Plamper, Mark L.; Kaini, Ramesh R.; Wang, Heuy-Ching

    2014-01-01

    The objective of this report is to describe the protocols for comparing the microRNA (miRNA) profiles of human induced-pluripotent stem (iPS) cells, retinal pigment epithelium (RPE) derived from human iPS cells (iPS-RPE), and fetal RPE. The protocols include collection of RNA for analysis by microarray, and the analysis of microarray data to identify miRNAs that are differentially expressed among three cell types. The methods for culture of iPS cells and fetal RPE are explained. The protocol used for differentiation of RPE from human iPS is also described. The RNA extraction technique we describe was selected to allow maximal recovery of very small RNA for use in a miRNA microarray. Finally, cellular pathway and network analysis of microarray data is explained. These techniques will facilitate the comparison of the miRNA profiles of three different cell types. PMID:24999033

  19. Pigments and plastic in limnetic ecosystems: A qualitative and quantitative study on microparticles of different size classes.

    PubMed

    Imhof, Hannes K; Laforsch, Christian; Wiesheu, Alexandra C; Schmid, Johannes; Anger, Philipp M; Niessner, Reinhard; Ivleva, Natalia P

    2016-07-01

    Recently, macroplastic (>5 mm) and especially microplastic (<5 mm) particles have been reported as emerging contaminants in marine and limnetic ecosystems. Their coloration is gained by the addition of pigments to the polymer blend which is the major component of the respective product. However, color is also a feature of paint and coatings whereby the pigment is the major component. Once abraded from a surface, paint particles may enter the environment via similar pathways as microplastic particles. So far no detailed studies of microplastic particles (pigmented and non-pigmented) as well as paint particles have been performed focusing on very small microparticles (1-50 μm), in either marine or limnetic ecosystems. Using Raman microspectroscopy with a spatial resolution down to 1 μm, we report a remarkable increase in the occurrence of (pigmented) microplastic particles below 500 μm. Among those, most particles were found at a size of ∼130 μm in a freshwater ecosystem (subalpine Lake Garda, Italy). Moreover, our qualitative and quantitative analyses revealed that the number of paint microparticles significantly increased below the size range of 50 μm due to their brittleness (the smallest detected paint particle had a size of 4 μm). Inductively coupled plasma mass spectrometry measurements showed that both colored particles found in nature as well as virgin particles contain a high variety of metals such as cadmium, lead and copper. These additives may elicit adverse effects in biota ingesting these microparticles, thus paints and associated compounds may act as formerly overlooked contaminants in freshwater ecosystems. PMID:27082693

  20. Anticorrosive pigments. (Latest citations from World Surface Coatings abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-08-01

    The bibliography contains citations concerning the composition and preparation of pigments that have good anticorrosive and weather-resistant qualities. The citations examine non-lead pigments as alternatives to lead-based pigments, and include test results. Some references describe resin compositions developed specifically for use with these pigments. (Contains 250 citations and includes a subject term index and title list.)