Sample records for piliocolobus rufomitratus tephrosceles

  1. Coinfection of Ugandan Red Colobus (Procolobus [Piliocolobus] rufomitratus tephrosceles) with Novel, Divergent Delta-, Lenti-, and Spumaretroviruses ▿

    PubMed Central

    Goldberg, Tony L.; Sintasath, David M.; Chapman, Colin A.; Cameron, Kenneth M.; Karesh, William B.; Tang, Shaohua; Wolfe, Nathan D.; Rwego, Innocent B.; Ting, Nelson; Switzer, William M.

    2009-01-01

    Nonhuman primates host a plethora of potentially zoonotic microbes, with simian retroviruses receiving heightened attention due to their roles in the origins of human immunodeficiency viruses type 1 (HIV-1) and HIV-2. However, incomplete taxonomic and geographic sampling of potential hosts, especially the African colobines, has left the full range of primate retrovirus diversity unexplored. Blood samples collected from 31 wild-living red colobus monkeys (Procolobus [Piliocolobus] rufomitratus tephrosceles) from Kibale National Park, Uganda, were tested for antibodies to simian immunodeficiency virus (SIV), simian T-cell lymphotrophic virus (STLV), and simian foamy virus (SFV) and for nucleic acids of these same viruses using genus-specific PCRs. Of 31 red colobus tested, 22.6% were seroreactive to SIV, 6.4% were seroreactive to STLV, and 97% were seroreactive to SFV. Phylogenetic analyses of SIV polymerase (pol), STLV tax and long terminal repeat (LTR), and SFV pol and LTR sequences revealed unique SIV and SFV strains and a novel STLV lineage, each divergent from corresponding retroviral lineages previously described in Western red colobus (Procolobus badius badius) or black-and-white colobus (Colobus guereza). Phylogenetic analyses of host mitochondrial DNA sequences revealed that red colobus populations in East and West Africa diverged from one another approximately 4.25 million years ago. These results indicate that geographic subdivisions within the red colobus taxonomic complex exert a strong influence on retroviral phylogeny and that studying retroviral diversity in closely related primate taxa should be particularly informative for understanding host-virus coevolution. PMID:19692478

  2. Beyond bushmeat: Animal contact, injury, and zoonotic disease risk in western Uganda

    PubMed Central

    Paige, Sarah B.; Frost, Simon D.W.; Gibson, Mhairi A.; Holland, James; Shankar, Anupama; Switzer, William M.; Ting, Nelson

    2014-01-01

    Zoonotic pathogens cause an estimated 70% of emerging and re-emerging infectious diseases in humans. In sub-Saharan Africa, bushmeat hunting and butchering is considered the primary risk factor for human-wildlife contact and zoonotic disease transmission, particularly for the transmission of simian retroviruses. However, hunting is only one of many activities in sub-Saharan Africa that bring people and wildlife into contact. Here, we examine human-animal interaction in western Uganda, identifying patterns of injuries from animals and contact with nonhuman primates. Additionally, we identify individual-level risk factors associated with contact. Nearly 20% (246/ 1,240) of participants reported either being injured by an animal or having contact with a primate over their lifetimes. The majority (51.7%) of injuries were dog bites that healed with no long term medical consequences. The majority (76.8%) of 125 total primate contacts involved touching a carcass; however, butchering (20%), hunting (10%), and touching a live primate (10%) were also reported. Red colobus (Piliocolobus rufomitratus tephrosceles) accounted for most primate contact events. Multivariate logistic regression indicated that men who live adjacent to forest fragments are at elevated risk of animal contact and specifically primate contact. Our results provide a useful comparison to West and Central Africa where “bushmeat hunting” is the predominant paradigm for human-wildlife contact and zoonotic disease transmission. PMID:24845574

  3. Beyond bushmeat: animal contact, injury, and zoonotic disease risk in Western Uganda.

    PubMed

    Paige, Sarah B; Frost, Simon D W; Gibson, Mhairi A; Jones, James Holland; Shankar, Anupama; Switzer, William M; Ting, Nelson; Goldberg, Tony L

    2014-12-01

    Zoonotic pathogens cause an estimated 70% of emerging and re-emerging infectious diseases in humans. In sub-Saharan Africa, bushmeat hunting and butchering is considered the primary risk factor for human-wildlife contact and zoonotic disease transmission, particularly for the transmission of simian retroviruses. However, hunting is only one of many activities in sub-Saharan Africa that bring people and wildlife into contact. Here, we examine human-animal interaction in western Uganda, identifying patterns of injuries from animals and contact with nonhuman primates. Additionally, we identify individual-level risk factors associated with contact. Nearly 20% (246/1,240) of participants reported either being injured by an animal or having contact with a primate over their lifetimes. The majority (51.7%) of injuries were dog bites that healed with no long-term medical consequences. The majority (76.8%) of 125 total primate contacts involved touching a carcass; however, butchering (20%), hunting (10%), and touching a live primate (10%) were also reported. Red colobus (Piliocolobus rufomitratus tephrosceles) accounted for most primate contact events. Multivariate logistic regression indicated that men who live adjacent to forest fragments are at elevated risk of animal contact and specifically primate contact. Our results provide a useful comparison to West and Central Africa where "bushmeat hunting" is the predominant paradigm for human-wildlife contact and zoonotic disease transmission.

  4. Gastrointestinal parasites of the colobus monkeys of Uganda.

    PubMed

    Gillespie, Thomas R; Greiner, Ellis C; Chapman, Colin A

    2005-06-01

    From August 1997 to July 2003, we collected 2,103 fecal samples from free-ranging individuals of the 3 colobus monkey species of Uganda-the endangered red colobus (Piliocolobus tephrosceles), the eastern black-and-white colobus (Colobus guereza), and the Angolan black-and-white colobus (C. angolensis)--to identify and determine the prevalence of gastrointestinal parasites. Helminth eggs, larvae, and protozoan cysts were isolated by sodium nitrate flotation and fecal sedimentation. Coprocultures facilitated identification of helminths. Seven nematodes (Strongyloides fulleborni, S. stercoralis, Oesophagostomum sp., an unidentified strongyle, Trichuris sp., Ascaris sp., and Colobenterobius sp.), 1 cestode (Bertiella sp.), 1 trematode (Dicrocoeliidae), and 3 protozoans (Entamoeba coli, E. histolytica, and Giardia lamblia) were detected. Seasonal patterns of infection were not apparent for any parasite species infecting colobus monkeys. Prevalence of S. fulleborni was higher in adult male compared to adult female red colobus, but prevalence did not differ for any other shared parasite species between age and sex classes.

  5. Estrogenic plant consumption predicts red colobus monkey (Procolobus rufomitratus) hormonal state and behavior

    PubMed Central

    Wasserman, Michael D.; Chapman, Colin A.; Milton, Katharine; Gogarten, Jan F.; Wittwer, Dan J.; Ziegler, Toni E.

    2012-01-01

    Numerous studies have examined the effects of anthropogenic endocrine disrupting compounds; however, very little is known about the effects of naturally occurring plant-produced estrogenic compounds (i.e., phytoestrogens) on vertebrates. To examine the seasonal pattern of phytoestrogen consumption and its relationship to hormone levels (407 fecal samples analyzed for estradiol and cortisol) and social behavior (aggression, mating, and grooming) in a primate, we conducted an 11-month field study of red colobus (Procolobus rufomitratus) in Kibale National Park, Uganda. The percent of diet from estrogenic plants averaged 10.7% (n = 45 weeks; range: 0.7 – 32.4%). Red colobus fed more heavily on estrogenic Millettia dura young leaves during weeks of higher rainfall, and the consumption of this estrogenic item was positively correlated to both their fecal estradiol and cortisol levels. Social behaviors were related to estradiol and cortisol levels, as well as the consumption of estrogenic plants and rainfall. The more the red colobus consumed estrogenic plants the higher their rates of aggression and copulation and the lower their time spent grooming. Our results suggest that the consumption of estrogenic plants has important implications for primate health and fitness through interactions with the endocrine system and changes in hormone levels and social behaviors. PMID:23010620

  6. Sickness behaviour associated with non-lethal infections in wild primates

    PubMed Central

    Ghai, Ria R.; Fugère, Vincent; Chapman, Colin A.; Goldberg, Tony L.; Davies, T. Jonathan

    2015-01-01

    Non-lethal parasite infections are common in wildlife, but there is little information on their clinical consequences. Here, we pair infection data from a ubiquitous soil-transmitted helminth, the whipworm (genus Trichuris), with activity data from a habituated group of wild red colobus monkeys (Procolobus rufomitratus tephrosceles) in Kibale National Park, Uganda. We use mixed-effect models to examine the relationship between non-lethal parasitism and red colobus behaviour. Our results indicate that red colobus increased resting and decreased more energetically costly behaviours when shedding whipworm eggs in faeces. Temporal patterns of behaviour also changed, with individuals switching behaviour less frequently when whipworm-positive. Feeding frequency did not differ, but red colobus consumption of bark and two plant species from the genus Albizia, which are used locally in traditional medicines, significantly increased when animals were shedding whipworm eggs. These results suggest self-medicative plant use, although additional work is needed to verify this conclusion. Our results indicate sickness behaviours, which are considered an adaptive response by hosts during infection. Induction of sickness behaviour in turn suggests that these primates are clinically sensitive to non-lethal parasite infections. PMID:26311670

  7. Divergent Simian Arteriviruses Cause Simian Hemorrhagic Fever of Differing Severities in Macaques.

    PubMed

    Wahl-Jensen, Victoria; Johnson, Joshua C; Lauck, Michael; Weinfurter, Jason T; Moncla, Louise H; Weiler, Andrea M; Charlier, Olivia; Rojas, Oscar; Byrum, Russell; Ragland, Dan R; Huzella, Louis; Zommer, Erika; Cohen, Melanie; Bernbaum, John G; Caì, Yíngyún; Sanford, Hannah B; Mazur, Steven; Johnson, Reed F; Qin, Jing; Palacios, Gustavo F; Bailey, Adam L; Jahrling, Peter B; Goldberg, Tony L; O'Connor, David H; Friedrich, Thomas C; Kuhn, Jens H

    2016-02-23

    Simian hemorrhagic fever (SHF) is a highly lethal disease in captive macaques. Three distinct arteriviruses are known etiological agents of past SHF epizootics, but only one, simian hemorrhagic fever virus (SHFV), has been isolated in cell culture. The natural reservoir(s) of the three viruses have yet to be identified, but African nonhuman primates are suspected. Eleven additional divergent simian arteriviruses have been detected recently in diverse and apparently healthy African cercopithecid monkeys. Here, we report the successful isolation in MARC-145 cell culture of one of these viruses, Kibale red colobus virus 1 (KRCV-1), from serum of a naturally infected red colobus (Procolobus [Piliocolobus] rufomitratus tephrosceles) sampled in Kibale National Park, Uganda. Intramuscular (i.m.) injection of KRCV-1 into four cynomolgus macaques (Macaca fascicularis) resulted in a self-limiting nonlethal disease characterized by depressive behavioral changes, disturbance in coagulation parameters, and liver enzyme elevations. In contrast, i.m. injection of SHFV resulted in typical lethal SHF characterized by mild fever, lethargy, lymphoid depletion, lymphoid and hepatocellular necrosis, low platelet counts, increased liver enzyme concentrations, coagulation abnormalities, and increasing viral loads. As hypothesized based on the genetic and presumed antigenic distance between KRCV-1 and SHFV, all four macaques that had survived KRCV-1 injection died of SHF after subsequent SHFV injection, indicating a lack of protective heterotypic immunity. Our data indicate that SHF is a disease of macaques that in all likelihood can be caused by a number of distinct simian arteriviruses, although with different severity depending on the specific arterivirus involved. Consequently, we recommend that current screening procedures for SHFV in primate-holding facilities be modified to detect all known simian arteriviruses. Outbreaks of simian hemorrhagic fever (SHF) have devastated captive

  8. Partial Molecular Characterization of Two Simian Immunodeficiency Viruses (SIV) from African Colobids: SIVwrc from Western Red Colobus (Piliocolobus badius) and SIVolc from Olive Colobus (Procolobus verus)

    PubMed Central

    Courgnaud, Valerie; Formenty, Pierre; Akoua-Koffi, Chantal; Noe, Ronald; Boesch, Christophe; Delaporte, Eric; Peeters, Martine

    2003-01-01

    In order to study primate lentivirus evolution in the Colobinae subfamily, in which only one simian immunodeficiency virus (SIV) has been described to date, we screened additional species from the three different genera of African colobus monkeys for SIV infection. Blood was obtained from 13 West African colobids, and HIV cross-reactive antibodies were observed in 5 of 10 Piliocolobus badius, 1 of 2 Procolobus verus, and 0 of 1 Colobus polykomos specimens. Phylogenetic analyses of partial pol sequences revealed that the new SIVs were more closely related to each other than to the other SIVs and especially did not cluster with the previously described SIVcol from Colobus guereza. This study presents evidence that the three genera of African colobus monkeys are naturally infected with an SIV and indicates also that there was no coevolution between virus and hosts at the level of the Colobinae subfamily. PMID:12477880

  9. Do food availability, parasitism, and stress have synergistic effects on red colobus populations living in forest fragments?

    PubMed

    Chapman, Colin A; Wasserman, Michael D; Gillespie, Thomas R; Speirs, Michaela L; Lawes, Michael J; Saj, Tania L; Ziegler, Toni E

    2006-12-01

    Identifying factors that influence animal density is a fundamental goal in ecology that has taken on new importance with the need to develop informed management plans. This is particularly the case for primates as the tropical forest that supports many species is being rapidly converted. We use a system of forest fragments adjacent to Kibale National Park, Uganda, to examine if food availability and parasite infections have synergistic affects on red colobus (Piliocolobus tephrosceles) abundance. Given that the size of primate populations can often respond slowly to environmental changes, we also examined how these factors influenced cortisol levels. To meet these objectives, we monitored gastrointestinal parasites, evaluated fecal cortisol levels, and determined changes in food availability by conducting complete tree inventories in eight fragments in 2000 and 2003. Red colobus populations declined by an average of 21% among the fragments; however, population change ranged from a 25% increase to a 57% decline. The cumulative basal area of food trees declined by an average of 29.5%; however, forest change was highly variable (a 2% gain to a 71% decline). We found that nematode prevalence averaged 58% among fragments (range 29-83%). The change in colobus population size was correlated both with food availability and a number of indices of parasite infections. A path analysis suggests that change in food availability has a strong direct effect on population size, but it also has an indirect effect via parasite infections. 2006 Wiley-Liss, Inc.

  10. Primate vaginal microbiomes exhibit species specificity without universal Lactobacillus dominance.

    PubMed

    Yildirim, Suleyman; Yeoman, Carl J; Janga, Sarath Chandra; Thomas, Susan M; Ho, Mengfei; Leigh, Steven R; White, Bryan A; Wilson, Brenda A; Stumpf, Rebecca M

    2014-12-01

    Bacterial communities colonizing the reproductive tracts of primates (including humans) impact the health, survival and fitness of the host, and thereby the evolution of the host species. Despite their importance, we currently have a poor understanding of primate microbiomes. The composition and structure of microbial communities vary considerably depending on the host and environmental factors. We conducted comparative analyses of the primate vaginal microbiome using pyrosequencing of the 16S rRNA genes of a phylogenetically broad range of primates to test for factors affecting the diversity of primate vaginal ecosystems. The nine primate species included: humans (Homo sapiens), yellow baboons (Papio cynocephalus), olive baboons (Papio anubis), lemurs (Propithecus diadema), howler monkeys (Alouatta pigra), red colobus (Piliocolobus rufomitratus), vervets (Chlorocebus aethiops), mangabeys (Cercocebus atys) and chimpanzees (Pan troglodytes). Our results indicated that all primates exhibited host-specific vaginal microbiota and that humans were distinct from other primates in both microbiome composition and diversity. In contrast to the gut microbiome, the vaginal microbiome showed limited congruence with host phylogeny, and neither captivity nor diet elicited substantial effects on the vaginal microbiomes of primates. Permutational multivariate analysis of variance and Wilcoxon tests revealed correlations among vaginal microbiota and host species-specific socioecological factors, particularly related to sexuality, including: female promiscuity, baculum length, gestation time, mating group size and neonatal birth weight. The proportion of unclassified taxa observed in nonhuman primate samples increased with phylogenetic distance from humans, indicative of the existence of previously unrecognized microbial taxa. These findings contribute to our understanding of host-microbe variation and coevolution, microbial biogeography, and disease risk, and have important

  11. No evidence for transmission of SIVwrc from western red colobus monkeys (piliocolobus badius badius) to wild west african chimpanzees (pan troglodytes verus) despite high exposure through hunting

    PubMed Central

    2011-01-01

    Background Simian Immunodeficiency Viruses (SIVs) are the precursors of Human Immunodeficiency Viruses (HIVs) which have lead to the worldwide HIV/AIDS pandemic. By studying SIVs in wild primates we can better understand the circulation of these viruses in their natural hosts and habitat, and perhaps identify factors that influence susceptibility and transmission within and between various host species. We investigated the SIV status of wild West African chimpanzees (Pan troglodytes verus) which frequently hunt and consume the western red colobus monkey (Piliocolobus badius badius), a species known to be infected to a high percentage with its specific SIV strain (SIVwrc). Results Blood and plasma samples from 32 wild chimpanzees were tested with INNO-LIA HIV I/II Score kit to detect cross-reactive antibodies to HIV antigens. Twenty-three of the samples were also tested for antibodies to 43 specific SIV and HIV lineages, including SIVwrc. Tissue samples from all but two chimpanzees were tested for SIV by PCRs using generic SIV primers that detect all known primate lentiviruses as well as primers designed to specifically detect SIVwrc. Seventeen of the chimpanzees showed varying degrees of cross-reactivity to the HIV specific antigens in the INNO-LIA test; however no sample had antibodies to SIV or HIV strain - and lineage specific antigens in the Luminex test. No SIV DNA was found in any of the samples. Conclusions We could not detect any conclusive trace of SIV infection from the red colobus monkeys in the chimpanzees, despite high exposure to this virus through frequent hunting. The results of our study raise interesting questions regarding the host-parasite relationship of SIVwrc and wild chimpanzees in their natural habitat. PMID:21284842

  12. Characterization of the Fecal Microbiome from Non-Human Wild Primates Reveals Species Specific Microbial Communities

    PubMed Central

    Yildirim, Suleyman; Yeoman, Carl J.; Sipos, Maksim; Torralba, Manolito; Wilson, Brenda A.; Goldberg, Tony L.; Stumpf, Rebecca M.; Leigh, Steven R.; White, Bryan A.; Nelson, Karen E.

    2010-01-01

    Background Host-associated microbes comprise an integral part of animal digestive systems and these interactions have a long evolutionary history. It has been hypothesized that the gastrointestinal microbiome of humans and other non-human primates may have played significant roles in host evolution by facilitating a range of dietary adaptations. We have undertaken a comparative sequencing survey of the gastrointestinal microbiomes of several non-human primate species, with the goal of better understanding how these microbiomes relate to the evolution of non-human primate diversity. Here we present a comparative analysis of gastrointestinal microbial communities from three different species of Old World wild monkeys. Methodology/Principal Findings We analyzed fecal samples from three different wild non-human primate species (black-and-white colobus [Colubus guereza], red colobus [Piliocolobus tephrosceles], and red-tailed guenon [Cercopithecus ascanius]). Three samples from each species were subjected to small subunit rRNA tag pyrosequencing. Firmicutes comprised the vast majority of the phyla in each sample. Other phyla represented were Bacterioidetes, Proteobacteria, Spirochaetes, Actinobacteria, Verrucomicrobia, Lentisphaerae, Tenericutes, Planctomycetes, Fibrobacateres, and TM7. Bray-Curtis similarity analysis of these microbiomes indicated that microbial community composition within the same primate species are more similar to each other than to those of different primate species. Comparison of fecal microbiota from non-human primates with microbiota of human stool samples obtained in previous studies revealed that the gut microbiota of these primates are distinct and reflect host phylogeny. Conclusion/Significance Our analysis provides evidence that the fecal microbiomes of wild primates co-vary with their hosts, and that this is manifested in higher intraspecies similarity among wild primate species, perhaps reflecting species specificity of the microbiome in

  13. Full-Length Genome Characterization of a Novel Simian Immunodeficiency Virus Lineage (SIVolc) from Olive Colobus (Procolobus verus) and New SIVwrcPbb Strains from Western Red Colobus (Piliocolobus badius badius) from the Taï Forest in Ivory Coast▿

    PubMed Central

    Liégeois, Florian; Lafay, Bénédicte; Formenty, Pierre; Locatelli, Sabrina; Courgnaud, Valérie; Delaporte, Eric; Peeters, Martine

    2009-01-01

    Simian immunodeficiency viruses (SIVs) are found in an extensive number of African primates and humans continue to be exposed to these viruses by hunting and handling of primate bushmeat. Full-length genome sequences were obtained from SIVs derived from two Colobinae species inhabiting the Taï forest, Ivory Coast, each belonging to a different genus: SIVwrc from western red colobus (Piliocolobus badius badius) (SIVwrcPbb-98CI04 and SIVwrcPbb-97CI14) and SIVolc (SIVolc-97CI12) from olive colobus (Procolobus verus). Phylogenetic analysis showed that western red colobus are the natural hosts of SIVwrc, and SIVolc is also a distinct species-specific lineage, although distantly related to the SIVwrc lineage across the entire length of its genome. Overall, both SIVwrc and SIVolc, are also distantly related to the SIVlho/sun lineage across the whole genome. Similar to the group of SIVs (SIVsyk, SIVdeb, SIVden, SIVgsn, SIVmus, and SIVmon) infecting members of the Cercopithecus genus, SIVs derived from western red and olive colobus, L'Hoest and suntailed monkeys, and SIVmnd-1 from mandrills form a second group of viruses that cluster consistently together in phylogenetic trees. Interestingly, the divergent SIVcol lineage, from mantled guerezas (Colobus guereza) in Cameroon, is also closely related to SIVwrc, SIVolc, and the SIVlho/sun lineage in the 5′ part of Pol. Overall, these results suggest an ancestral link between these different lentiviruses and highlight once more the complexity of the natural history and evolution of primate lentiviruses. PMID:18922864

  14. Absence of Frequent Herpesvirus Transmission in a Nonhuman Primate Predator-Prey System in the Wild

    PubMed Central

    Murthy, Sripriya; Couacy-Hymann, Emmanuel; Metzger, Sonja; Nowak, Kathrin; De Nys, Helene; Boesch, Christophe; Wittig, Roman; Jarvis, Michael A.; Leendertz, Fabian H.

    2013-01-01

    Emergence of viruses into the human population by transmission from nonhuman primates (NHPs) represents a serious potential threat to human health that is primarily associated with the increased bushmeat trade. Transmission of RNA viruses across primate species appears to be relatively frequent. In contrast, DNA viruses appear to be largely host specific, suggesting low transmission potential. Herein, we use a primate predator-prey system to study the risk of herpesvirus transmission between different primate species in the wild. The system was comprised of western chimpanzees (Pan troglodytes verus) and their primary (western red colobus, Piliocolobus badius badius) and secondary (black-and-white colobus, Colobus polykomos) prey monkey species. NHP species were frequently observed to be coinfected with multiple beta- and gammaherpesviruses (including new cytomegalo- and rhadinoviruses). However, despite frequent exposure of chimpanzees to blood, organs, and bones of their herpesvirus-infected monkey prey, there was no evidence for cross-species herpesvirus transmission. These findings suggest that interspecies transmission of NHP beta- and gammaherpesviruses is, at most, a rare event in the wild. PMID:23885068

  15. Absence of frequent herpesvirus transmission in a nonhuman primate predator-prey system in the wild.

    PubMed

    Murthy, Sripriya; Couacy-Hymann, Emmanuel; Metzger, Sonja; Nowak, Kathrin; De Nys, Helene; Boesch, Christophe; Wittig, Roman; Jarvis, Michael A; Leendertz, Fabian H; Ehlers, Bernhard

    2013-10-01

    Emergence of viruses into the human population by transmission from nonhuman primates (NHPs) represents a serious potential threat to human health that is primarily associated with the increased bushmeat trade. Transmission of RNA viruses across primate species appears to be relatively frequent. In contrast, DNA viruses appear to be largely host specific, suggesting low transmission potential. Herein, we use a primate predator-prey system to study the risk of herpesvirus transmission between different primate species in the wild. The system was comprised of western chimpanzees (Pan troglodytes verus) and their primary (western red colobus, Piliocolobus badius badius) and secondary (black-and-white colobus, Colobus polykomos) prey monkey species. NHP species were frequently observed to be coinfected with multiple beta- and gammaherpesviruses (including new cytomegalo- and rhadinoviruses). However, despite frequent exposure of chimpanzees to blood, organs, and bones of their herpesvirus-infected monkey prey, there was no evidence for cross-species herpesvirus transmission. These findings suggest that interspecies transmission of NHP beta- and gammaherpesviruses is, at most, a rare event in the wild.

  16. Female transference and mate choice among Tana River red colobus.

    PubMed

    Marsh, C W

    1979-10-18

    Red colobus are one of a small number of primate species in which females have been reported to transfer between breeding groups more commonly than males. Several authors have hypothesised that in such species transference may serve to reduce the risk to females of producing offspring of lower fitness through inbreeding. The hypothesis offers no explanation of why females rather than males are responsible for outbreeding in these species, but remains plausible so long as male membership of breeding groups is relatively stable; for once members of one sex have evolved dispersal mechanisms reducing the risk of inbreeding, pressures on the other sex to do likewise will be lowered. Hence, if both sexes commonly migrate, the hypothesis is weakened. I describe here the membership dynamics of a group of Tana River red colobus, Colobus badius rufomitratus, which provide the first evidence of high rates of membership turnover by both sexes in primates, and speculate that the function of female transference in this case may be related to mate choice and the avoidance of infanticide.

  17. Feeding behaviour of red colobus and black and white colobus in East Africa.

    PubMed

    Clutton-Brock, T H

    1975-01-01

    The feeding behaviour of one troop of red colobus (Colobus badius tephrosceles) was observed between August 1969 and June 1970 in the Gombe National Park. Similar observations were made on two troops of red colobus and two of black and white colobus (C. guereza uellensis) in Kibale Forest Reserve, Uganda, between August and October 1970. The red colobus at Gombe were highly selective in their choice of food, feeding on the leaves, shoots, flowers and fruit of a wide variety of tree species. The animals appeared to choose a varied diet, eating different foods in different feeding bouts on the same day. The amount of time which they spent feeding on different foods varied seasonally, usually in association with changes in food availability. Different parts of the animals' range provided them with different kinds of food. The feeding behaviour of the red colobus troops at Kibale was similar to that of the Bombe troop. In contrast, black and white colobus at Kibale fed almost exclusively on mature leaves during at least one period of the year and fed largely on two tree species only. These differences in feeding behaviour may explain why red colobus live in large troops in large ranges whiel black and white colobus live in small troops in small ranges.

  18. Parasitology of five primates in Mahale Mountains National Park, Tanzania.

    PubMed

    Kooriyama, Takanori; Hasegawa, Hideo; Shimozuru, Michito; Tsubota, Toshio; Nishida, Toshisada; Iwaki, Takashi

    2012-10-01

    Parasitological surveillance in primates has been performed using coprological observation and identification of specimens from chimpanzees (Pan troglodytes schweinfurthii) in Mahale Mountains National Park, Tanzania (Mahale). In this study, we conducted coprological surveillance to identify the fauna of parasite infection in five primate species in Mahale: red colobus (Procolobus badius tephrosceles), red-tailed monkeys (Cercopithecus ascanius schmidti), vervet monkeys (Cercopithecus aethiops pygerythrus), yellow baboons (Papio cynocephalus), and chimpanzees. Fecal samples were examined microscopically, and parasite identification was based on the morphology of cysts, eggs, larvae, and adult worms. Three nematodes (Oesophagostomum spp., Strongyloides sp., and Trichuris sp.), Entamoeba coli, and Entamoeba spp. were found in all five primate species. The following infections were identified: Bertiella studeri was found in chimpanzees and yellow baboons; Balantidium coli was found in yellow baboons; three nematodes (Streptopharagus, Primasubulura, an undetermined genus of Spirurina) and Dicrocoeliidae gen. sp. were found in red-tailed monkeys, vervet monkeys, and yellow baboons; Chitwoodspirura sp. was newly identified in red colobus and red-tailed monkeys; Probstmayria gombensis and Troglocorys cava were newly identified in chimpanzees, together with Troglodytella abrassarti; and Enterobius sp. was newly identified in red colobus. The parasitological data reported for red colobus, vervet monkeys, and yellow baboons in Mahale are the first reports for these species.

  19. Competing pressures on populations: long-term dynamics of food availability, food quality, disease, stress and animal abundance.

    PubMed

    Chapman, Colin A; Schoof, Valérie A M; Bonnell, Tyler R; Gogarten, Jan F; Calmé, Sophie

    2015-05-26

    Despite strong links between sociality and fitness that ultimately affect the size of animal populations, the particular social and ecological factors that lead to endangerment are not well understood. Here, we synthesize approximately 25 years of data and present new analyses that highlight dynamics in forest composition, food availability, the nutritional quality of food, disease, physiological stress and population size of endangered folivorous red colobus monkeys (Procolobus rufomitratus). There is a decline in the quality of leaves 15 and 30 years following two previous studies in an undisturbed area of forest. The consumption of a low-quality diet in one month was associated with higher glucocorticoid levels in the subsequent month and stress levels in groups living in degraded forest fragments where diet was poor was more than twice those in forest groups. In contrast, forest composition has changed and when red colobus food availability was weighted by the protein-to-fibre ratio, which we have shown positively predicts folivore biomass, there was an increase in the availability of high-quality trees. Despite these changing social and ecological factors, the abundance of red colobus has remained stable, possibly through a combination of increasing group size and behavioural flexibility. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  20. Craniofacial variation and dietary adaptations of African colobines.

    PubMed

    Koyabu, Daisuke B; Endo, Hideki

    2009-06-01

    African colobine monkeys show considerable craniofacial variation among species, although the evolutionary causes of this diversity are unclear. In light of growing evidence that diet varies considerably among colobine species, we investigated whether colobine craniofacial morphology varies as a function of their diet. We compared craniofacial morphology among five African species: Colobus angolensis, C. guereza, C. polykomos, Piliocolobus badius, and P. verus. Matrix correlation analysis indicated a significant correlation between species-specific morphological distance and dietary distance matrices. The mechanical advantage of the masseter muscle was higher in seed-eaters (C. angolensis and C. polykomos) and lower in those that eat mainly young leaves (C. guereza, P. badius, and P. verus). Canonical correspondence analysis revealed that the durophagous colobines possess relatively wider bigonial breadths, anteroposteriorly shorter faces, shorter postcanine tooth rows, more medially positioned dental batteries, wider bizygomatic arches, and anteroposteriorly longer zygomatic arches. Under the constrained lever model, these morphological features suggest that durophagous colobines have the capacity to generate relatively greater maximum bite forces. However, no consistent relationship was observed between diet and variation in the mandibular corpus and symphysis, implying that robust mandibles are not necessarily adaptations for stress resistance. Factors that may influence mandibular robusticity include allometry of symphyseal curvature and canine tooth support. Finally, linear measures of mandibular robusticity may suffer from error.

  1. Lack of Evidence of Simian Immunodeficiency Virus Infection Among Nonhuman Primates in Taï National Park, Côte d’Ivoire: Limitations of Noninvasive Methods and SIV Diagnostic Tools for Studies of Primate Retroviruses

    PubMed Central

    Roeder, Amy D.; Bruford, Michael W.; Noë, Ronald; Delaporte, Eric; Peeters, Martine

    2013-01-01

    It is now well established that the human immunodeficiency viruses, HIV-1 and HIV-2, are the results of cross-species transmissions of simian immunodeficiency viruses (SIV) naturally infecting nonhuman primates in sub-Saharan Africa. SIVs are found in many African primates, and humans continue to be exposed to these viruses by hunting and handling primate bushmeat. Sooty mangabeys (Cercocebus atys) and western red colobus (Piliocolobus badius badius) are infected with SIV at a high rate in the Taï Forest, Côte d’Ivoire. We investigated the SIV infection and prevalence in 6 other monkey species living in the Taï Forest using noninvasive methods. We collected 127 fecal samples from 2 colobus species (Colobus polykomos and Procolobus verus) and 4 guenon species (C. diana, C. campbelli, C. petaurista, and C. nictitans). We tested these samples for HIV cross-reactive antibodies and performed reverse transcriptase-polymerase chain reactions (RT-PCR) targeting the gag, pol, and env regions of the SIV genome. We screened 16 human microsatellites for use in individual discrimination and identified 4–6 informative markers per species. Serological analysis of 112 samples yielded negative (n=86) or uninterpretable (n=26) results. PCR analysis on 74 samples confirmed the negative results. These results may reflect either the limited number of individuals sampled or a low prevalence of infection. Further research is needed to improve the sensitivity of noninvasive methods for SIV detection. PMID:23950618

  2. Co-infection and cross-species transmission of divergent Hepatocystis lineages in a wild African primate community★

    PubMed Central

    Thurber, Mary I.; Ghai, Ria R.; Hyeroba, Hyeroba; Weny, Geoffrey; Tumukunde, Alex; Chapman, Colin A.; Wiseman, Roger W.; Dinis, Jorge; Steeil, James; Greiner, Ellis C.; Friedrich, Thomas C.; O’Connor, David H.; Goldberg, Tony L.

    2013-01-01

    Hemoparasites of the apicomplexan family Plasmodiidae include the etiological agents of malaria, as well as a suite of non-human primate parasites from which the human malaria agents evolved. Despite the significance of these parasites for global health, little information is available about their ecology in multi-host communities. Primates were investigated in Kibale National Park, Uganda, where ecological relationships among host species are well characterized. Blood samples were examined for parasites of the genera Plasmodium and Hepatocystis using microscopy and PCR targeting the parasite mitochondrial cytochrome b gene, followed by Sanger sequencing. To assess co-infection, “deep sequencing” of a variable region within cytochrome b was performed. Out of nine black-and-white colobus (Colobus guereza), one blue guenon (Cercopithecus mitis), five grey-cheeked mangabeys (Lophocebus albigena), 23 olive baboons (Papio anubis), 52 red colobus (Procolobus rufomitratus) and 12 red-tailed guenons (Cercopithecus ascanius), 79 infections (77.5%) were found, all of which were Hepatocystis spp. Sanger sequencing revealed 25 different parasite haplotypes that sorted phylogenetically into six species-specific but morphologically similar lineages. “Deep sequencing” revealed mixed-lineage co-infections in baboons and red colobus (41.7% and 64.7% of individuals, respectively) but not in other host species. One lineage infecting red colobus also infected baboons, but always as the minor variant, suggesting directional cross-species transmission. Hepatocystis parasites in this primate community are a diverse assemblage of cryptic lineages, some of which co-infect hosts and at least one of which can cross primate species barriers. PMID:23603520

  3. Is Markhamia lutea's abundance determined by animal foraging?

    PubMed

    Chapman, Colin A; Bonnell, Tyler R; Sengupta, Raja; Goldberg, Tony L; Rothman, Jessica M

    2013-11-15

    Understanding the determinants of tropical forest tree richness and spatial distribution is a central goal of forest ecology; however, the role of herbivorous mammals has received little attention. Here we explore the potential for red colobus monkeys ( Procolobus rufomitratus ) to influence the abundance of Markhamia lutea trees in a tropical forest by feeding extensively on the tree's flowers, such that this tree population is not able to regularly set fruit. Using 14 years of data from Kibale National Park, Uganda, we quantify M. lutea flower and fruit production. Similarly, using 21 years of data, we quantify temporal changes in the abundance of stems in size classes from 1 m tall and above. Our analyses demonstrate that M. lutea is rarely able to produce fruit and that this corresponds to a general decline in its abundance across all size classes. Moreover, using 7 years of feeding records, we demonstrate that red colobus feed on M. lutea , consuming large amounts of leaf and flower buds whenever they were available, suggesting that this behavior limits fruit production. Therefore, we suggest that red colobus are presently important for structuring the distribution and abundance of M. lutea in Kibale. This dynamic raises the intriguing question of how a large M. lutea population was able to originally establish. There is no evidence of a change in red colobus population size; however, if this old-growth forest is in a non-equilibrium state, M. lutea may have become established when red colobus ate a different diet.

  4. Spatial variation in mandibular bone elastic modulus and its effect on structural bending stiffness: A test case using the Taï Forest monkeys.

    PubMed

    Le, Kim N; Marsik, Matthew; Daegling, David J; Duque, Ana; McGraw, William Scott

    2017-03-01

    We investigated how heterogeneity in material stiffness affects structural stiffness in the cercopithecid mandibular cortical bone. We assessed (1) whether this effect changes the interpretation of interspecific structural stiffness variation across four primate species, (2) whether the heterogeneity is random, and (3) whether heterogeneity mitigates bending stress in the jaw associated with food processing. The sample consisted of Taï Forest, Cote d'Ivoire, monkeys: Cercocebus atys, Piliocolobus badius, Colobus polykomos, and Cercopithecus diana. Vickers indentation hardness samples estimated elastic moduli throughout the cortical bone area of each coronal section of postcanine corpus. For each section, we calculated maximum area moment of inertia, I max (structural mechanical property), under three models of material heterogeneity, as well as spatial autocorrelation statistics (Moran's I, I MORAN ). When the model considered material stiffness variation and spatial patterning, I max decreased and individual ranks based on structural stiffness changed. Rank changes were not significant across models. All specimens showed positive (nonrandom) spatial autocorrelation. Differences in I MORAN were not significant among species, and there were no discernable patterns of autocorrelation within species. Across species, significant local I MORAN was often attributed to proximity of low moduli in the alveolar process and high moduli in the basal process. While our sample did not demonstrate species differences in the degree of spatial autocorrelation of elastic moduli, there may be mechanical effects of heterogeneity (relative strength and rigidity) that do distinguish at the species or subfamilial level (i.e., colobines vs. cercopithecines). The potential connections of heterogeneity to diet and/or taxonomy remain to be discovered. © 2016 Wiley Periodicals, Inc.

  5. Microsatellite DNA Suggests that Group Size Affects Sex-biased Dispersal Patterns in Red Colobus Monkeys

    PubMed Central

    Miyamoto, Michael M.; Allen, Julie M.; Gogarten, Jan F.; Chapman, Colin A.

    2013-01-01

    Dispersal is a major life history trait of social organisms influencing the behavioral and genetic structure of their groups. Unfortunately, primate dispersal is difficult to quantify, because of the rarity of these events and our inability to ascertain if individuals dispersed or died when they disappear. Socioecological models have been partially developed to understand the ecological causes of different dispersal systems and their social consequences. However, these models have yielded confusing results when applied to folivores. The folivorous red colobus monkey (Procolobus rufomitratus) in Kibale National Park, Uganda is thought to exhibit female-biased dispersal, although both sexes have been observed to disperse and there remains considerable debate over the selective pressures favoring the transfers of males and females and the causes of variation in the proportion of each sex to leave the natal group. We circumvent this problem by using microsatellite DNA data to investigate the prediction that female dispersal will be more frequent in larger groups as compared to smaller ones. The rationale for this prediction is that red colobus exhibit increased within-group competition in bigger groups, which should favor higher female dispersal rates and ultimately lower female relatedness. Genetic data from two unequally sized neighboring groups of red colobus demonstrate increased female relatedness within the smaller group, suggesting females are less likely to disperse when there is less within-group competition. We suggest that the dispersal system is mediated to some degree by scramble competition and group size. Since red colobus group sizes have increased throughout Kibale by over 50% in the last decade, these changes may have major implications for the genetic structure and ultimately the population viability of this endangered primate. PMID:23307485

  6. Co-infection and cross-species transmission of divergent Hepatocystis lineages in a wild African primate community.

    PubMed

    Thurber, Mary I; Ghai, Ria R; Hyeroba, David; Weny, Geoffrey; Tumukunde, Alex; Chapman, Colin A; Wiseman, Roger W; Dinis, Jorge; Steeil, James; Greiner, Ellis C; Friedrich, Thomas C; O'Connor, David H; Goldberg, Tony L

    2013-07-01

    Hemoparasites of the apicomplexan family Plasmodiidae include the etiological agents of malaria, as well as a suite of non-human primate parasites from which the human malaria agents evolved. Despite the significance of these parasites for global health, little information is available about their ecology in multi-host communities. Primates were investigated in Kibale National Park, Uganda, where ecological relationships among host species are well characterized. Blood samples were examined for parasites of the genera Plasmodium and Hepatocystis using microscopy and PCR targeting the parasite mitochondrial cytochrome b gene, followed by Sanger sequencing. To assess co-infection, "deep sequencing" of a variable region within cytochrome b was performed. Out of nine black-and-white colobus (Colobus guereza), one blue guenon (Cercopithecus mitis), five grey-cheeked mangabeys (Lophocebus albigena), 23 olive baboons (Papio anubis), 52 red colobus (Procolobus rufomitratus) and 12 red-tailed guenons (Cercopithecus ascanius), 79 infections (77.5%) were found, all of which were Hepatocystis spp. Sanger sequencing revealed 25 different parasite haplotypes that sorted phylogenetically into six species-specific but morphologically similar lineages. "Deep sequencing" revealed mixed-lineage co-infections in baboons and red colobus (41.7% and 64.7% of individuals, respectively) but not in other host species. One lineage infecting red colobus also infected baboons, but always as the minor variant, suggesting directional cross-species transmission. Hepatocystis parasites in this primate community are a diverse assemblage of cryptic lineages, some of which co-infect hosts and at least one of which can cross primate species barriers. Copyright © 2013 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  7. Host density and human activities mediate increased parasite prevalence and richness in primates threatened by habitat loss and fragmentation.

    PubMed

    Mbora, David N M; McPeek, Mark A

    2009-01-01

    1. Habitat loss and fragmentation are the principal causes of the loss of biological diversity. In addition, parasitic diseases are an emerging threat to many animals. Nevertheless, relatively few studies have tested how habitat loss and fragmentation influence the prevalence and richness of parasites in animals. 2. Several studies of nonhuman primates have shown that measures of human activity and forest fragmentation correlate with parasitism in primates. However, these studies have not tested for the ecological mechanism(s) by which human activities or forest fragmentation influence the prevalence and richness of parasites. 3. We tested the hypothesis that increased host density due to forest fragmentation and loss mediates increases in the prevalence and richness of gastrointestinal parasites in two forest primates, the Tana River red colobus (Procolobus rufomitratus, Peters 1879) and mangabey (Cercocebus galeritus galeritus, Peters 1879). We focused on population density because epidemiological theory states that host density is a key determinant of the prevalence and richness of directly transmitted parasites in animals. 4. The Tana River red colobus and mangabey are endemic to a highly fragmented forest ecosystem in eastern Kenya where habitat changes are caused by a growing human population increasingly dependent on forest resources and on clearing forest for cultivation. 5. We found that the prevalence of parasites in the two monkeys was very high compared to primates elsewhere. Density of monkeys was positively associated with forest area and disturbance in forests. In turn, the prevalence and richness of parasites was significantly associated with monkey density, and attributes indicative of human disturbance in forests. 6. We also found significant differences in the patterns of parasitism between the colobus and the mangabey possibly attributable to differences in their behavioural ecology. Colobus are arboreal folivores while mangabeys are terrestrial

  8. Fecal Microbiomes of Non-Human Primates in Western Uganda Reveal Species-Specific Communities Largely Resistant to Habitat Perturbation

    PubMed Central

    McCORD, ALEIA I.; CHAPMAN, COLIN A.; WENY, GEOFFREY; TUMUKUNDE, ALEX; HYEROBA, DAVID; KLOTZ, KELLY; KOBLINGS, AVERY S.; MBORA, DAVID N.M.; CREGGER, MELISSA; WHITE, BRYAN A.; LEIGH, STEVEN R.; GOLDBERG, TONY L.

    2014-01-01

    Primate gastrointestinal microbial communities are becoming increasingly appreciated for their relevance to comparative medicine and conservation, but the factors that structure primate “microbiomes” remain controversial. This study examined a community of primates in Kibale National Park, Uganda, to assess the relative importance of host species and location in structuring gastrointestinal microbiomes. Fecal samples were collected from primates in intact forest and from primates in highly disturbed forest fragments. People and livestock living nearby were also included, as was a geographically distant population of related red colobus in Kenya. A culture-free microbial community fingerprinting technique was used to analyze fecal microbiomes from 124 individual red colobus (Procolobus rufomitratus), 100 individual black-and-white colobus (Colobus guereza), 111 individual red-tailed guenons (Cercopithecus ascanius), 578 human volunteers, and 364 domestic animals, including cattle (Bos indicus and B. indicus × B. taurus crosses), goats (Caprus hircus), sheep (Ovis aries), and pigs (Sus scrofa). Microbiomes sorted strongly by host species, and forest fragmentation did not alter this pattern. Microbiomes of Kenyan red colobus sorted distinctly from microbiomes of Ugandan red colobus, but microbiomes from these two red colobus populations clustered more closely with each other than with any other species. Microbiomes from red colobus and black-and-white colobus were more differentiated than would be predicted by the phylogenetic relatedness of these two species, perhaps reflecting heretofore underappreciated differences in digestive physiology between the species. Within Kibale, social group membership influenced intra-specific variation among microbiomes. However, intra-specific variation was higher among primates in forest fragments than among primates in intact forest, perhaps reflecting the physical separation of fragments. These results suggest that, in this