Science.gov

Sample records for pilot plant operating

  1. Operation results of the DIOS pilot plant

    SciTech Connect

    Ishikawa, Minoru

    1996-12-31

    DIOS, the Direct Iron Ore Smelting Reduction Process, is now reaching the final stage of its research and development program. The aim of the project is to establish a substitutive or a supplementary industrial iron making process for the blast furnace process. Four campaigns, from the third to sixth, of 500 t/d pilot plant testing operation were conducted in the 1994 fiscal year, from April 1994 to March 1995. Furthermore, the seventh to tenth campaigns were conducted in the 1995 fiscal year. From the sixth to tenth campaign were conducted with a smelting reduction furnace partially installed water cooled panels. Testing operations of high production rate using several kinds of coal with different volatile matter contents were carried out. A material flow has been still more improved to realize a stable coupling operation of integrated furnaces, i.e., a preheating furnace, PRF1, a prereduction furnace, PRF2 and a smelting reduction furnace, SRF. These testing operations were conducted in a joint research project of the Center for Coal Utilization, Japan and the Japan Iron and Steel Federation with a subsidy for promoting coal production and utilization technologies from the Agency of Natural Resources and Energy, MITI.

  2. Pilot plant for flue gas treatment-continuous operation tests

    NASA Astrophysics Data System (ADS)

    Chmielewski, A. G.; Tymiński, B.; Licki, J.; Iller, E.; Zimek, Z.; Radzio, B.

    1995-09-01

    Tests of continous operation have been performed on pilot plant at EPS Kawęczyn in the wide range of SO2 concentration (500-3000 ppm).The bag filter has been applied for aerosol separation. The high efficiences of SO2 and NOX removal, approximately 90% were obtained and influenced by such process parameters as: dose, gas temperature and ammonia stoichiometry. The main apparatus of the pilot plant (e.g. both accelerators) have proved their reliability in hard industrial conditions.

  3. Arsenic pilot plant operation and results : Anthony, New Mexico.

    SciTech Connect

    Aragon, Malynda Jo; Everett, Randy L.; Siegel, Malcolm Dean; Aragon, Alicia R.; Kottenstette, Richard Joseph; Holub, William E., Jr.; Wright, Jerome L.; Dwyer, Brian P.

    2007-09-01

    Sandia National Laboratories (SNL) is conducting pilot scale evaluations of the performance and cost of innovative water treatment technologies aimed at meeting the recently revised arsenic maximum contaminant level (MCL) for drinking water. The standard of 10 {micro}g/L (10 ppb) is effective as of January 2006. The pilot tests have been conducted in New Mexico where over 90 sites that exceed the new MCL have been identified by the New Mexico Environment Department. The pilot test described in this report was conducted in Anthony, New Mexico between August 2005 and December 2006 at Desert Sands Mutual Domestic Water Consumers Association (MDWCA) (Desert Sands) Well No.3. The pilot demonstrations are a part of the Arsenic Water Technology Partnership program, a partnership between the American Water Works Association Research Foundation (AwwaRF), SNL and WERC (A Consortium for Environmental Education and Technology Development). The Sandia National Laboratories pilot demonstration at the Desert Sands site obtained arsenic removal performance data for fourteen different adsorptive media under intermittent flow conditions. Well water at Desert Sands has approximately 20 ppb arsenic in the unoxidized (arsenite-As(III)) redox state with moderately high total dissolved solids (TDS), mainly due to high sulfate, chloride, and varying concentrations of iron. The water is slightly alkaline with a pH near 8. The study provides estimates of the capacity (bed volumes until breakthrough at 10 ppb arsenic) of adsorptive media in the same chlorinated water. Adsorptive media were compared side-by-side in ambient pH water with intermittent flow operation. This pilot is broken down into four phases, which occurred sequentially, however the phases overlapped in most cases.

  4. Arsenic pilot plant operation and results:Weatherford, Oklahoma.

    SciTech Connect

    Aragon, Malynda Jo; Arora, H. (Narasimhan Consulting Services Inc., Phoenix, Arizona); Karori, Saqib (Narasimhan Consulting Services Inc., Phoenix, Arizona); Pathan, Sakib

    2007-05-01

    Narasimhan Consulting Services, Inc. (NCS), under a contract with the Sandia National Laboratories (SNL), designed and operated pilot scale evaluations of the adsorption and coagulation/filtration treatment technologies aimed at meeting the recently revised arsenic maximum contaminant level (MCL) for drinking water. The standard of 10 {micro}g/L (10 ppb) is effective as of January 2006. The pilot demonstration is a project of the Arsenic Water Technology Partnership program, a partnership between the American Water Works Association Research Foundation (AwwaRF), SNL and WERC (A Consortium for Environmental Education and Technology Development). The pilot evaluation was conducted at Well 30 of the City of Weatherford, OK, which supplies drinking water to a population of more than 10,400. Well water contained arsenic in the range of 16 to 29 ppb during the study. Four commercially available adsorption media were evaluated side by side for a period of three months. Both adsorption and coagulation/filtration effectively reduced arsenic from Well No.30. A preliminary economic analysis indicated that adsorption using an iron oxide media was more cost effective than the coagulation/ filtration technology.

  5. ARCHITECTURAL FLOOR PLAN OF OPERATING AREA HOT PILOT PLANT (CPP640). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ARCHITECTURAL FLOOR PLAN OF OPERATING AREA HOT PILOT PLANT (CPP-640). INL DRAWING NUMBER 200-0640-00-279-111678. ALTERNATE ID NUMBER 8952-CPP-640-A-1. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  6. Design and operation of the Sandia Pilot Plant

    SciTech Connect

    Morris, M.E.

    1980-01-01

    An 8 ton/day dry sewage sludge irradiator was designed and constructed at Sandia National Laboratories in the last half of 1977 and in 1978; and was charged with /sup 137/Cs and made operational in the spring of 1979. The design of the major subsystems of the irradiator is described. Subsequent operational experiences are also summarized.

  7. CATALYTIC REDUCTION OF NITROGEN OXIDES WITH AMMONIA: UTILITY PILOT PLANT OPERATION

    EPA Science Inventory

    The report describes work to demonstrate, on a utility pilot plant scale, the performance, reliability, and practicability of reducing nitrogen oxides (NOx) emissions from steam boilers by reduction of NOx with ammonia over a platinum catalyst. A utility pilot plant treating a sl...

  8. Waste Isolation Pilot Plant Title I operator dose calculations. Final report, LATA report No. 90

    SciTech Connect

    Hughes, P.S.; Rigdon, L.D.

    1980-02-01

    The radiation exposure dose was estimated for the Waste Isolation Pilot Plant (WIPP) operating personnel who do the unloading and transporting of the transuranic contact-handled waste. Estimates of the radiation source terms for typical TRU contact-handled waste were based on known composition and properties of the waste. The operations sequence for waste movement and storage in the repository was based upon the WIPP Title I data package. Previous calculations had been based on Conceptual Design Report data. A time and motion sequence was developed for personnel performing the waste handling operations both above and below ground. Radiation exposure calculations were then performed in several fixed geometries and folded with the time and motion studies for individual workers in order to determine worker exposure on an annual basis.

  9. 300-FF-1 Operable Unit physical separation of soils pilot plant study

    SciTech Connect

    Freeman-Pollard, J.R.

    1994-01-15

    Alternative Remedial Technologies, Inc. (ART) was selected in a competitive selection process to conduct a pilot study for the physical separation of soils in the North Process Pond of the 300 Area at the Hanford Site. In January 1994, ART mobilized its 15 tons-per-hour pilot plant to the site. The plant was initially staged in a commercial area to allow for pretest inspections and minor modifications. The plant was specifically designed for use as a physical separations unit and consisted of a feed hopper, wet screens, hydrocyclones, as well as settling and dewatering equipment. The plant was supported in the field with prescreening equipment, mobile generators, air compressors, and water storage tanks. The plant was moved into the surface contamination area on March 24, 1994. The testing was conducted during the period March 23, 1994 through April 13, 1994. Two soil types were treated during the testing: a natural soil contaminated with low levels of uranium, cesium, cobalt, and heavy metals, and a natural soil contaminated with a uranium carbonate material that was visually recognizable by the presence of a green sludge material in the soil matrix. The ``green`` material contained significantly higher levels of the same contaminants. Both source materials were treated by the plant in a manner that fed the material, produced clean gravel and sand fractions, and concentrated the contaminants in a sludge cake. Process water was recycled during the operations. The testing was extremely successful in that for both source waste streams, it was demonstrated that volume reductions of greater than 90% could be achieved while also meeting the test performance criteria. The volume reduction for the natural soils averaged a 93.8%, while the ``green`` soils showed a 91.4% volume reduction.

  10. EXPOSURE AND RELEASE ESTIMATIONS FOR FILTER PRESS AND TRAY DRYER OPERATIONS BASED ON PILOT PLANT DATA

    EPA Science Inventory

    Worker exposures and chemical releases associated with a plate-and-frame filter press and a stationary tray dryer were studied in a pilot plant. he equipment was representative of those in a chemical manufacturing plant; the filter press was previously used at a chemical plant, a...

  11. Operating boundaries of full-scale advanced water reuse treatment plants: many lessons learned from pilot plant experience.

    PubMed

    Bele, C; Kumar, Y; Walker, T; Poussade, Y; Zavlanos, V

    2010-01-01

    Three Advanced Water Treatment Plants (AWTP) have recently been built in South East Queensland as part of the Western Corridor Recycled Water Project (WCRWP) producing Purified Recycled Water from secondary treated waste water for the purpose of indirect potable reuse. At Luggage Point, a demonstration plant was primarily operated by the design team for design verification. The investigation program was then extended so that the operating team could investigate possible process optimisation, and operation flexibility. Extending the demonstration plant investigation program enabled monitoring of the long term performance of the microfiltration and reverse osmosis membranes, which did not appear to foul even after more than a year of operation. The investigation primarily identified several ways to optimise the process. It highlighted areas of risk for treated water quality, such as total nitrogen. Ample and rapid swings of salinity from 850 to 3,000 mg/l-TDS were predicted to affect the RO process day-to-day operation and monitoring. Most of the setpoints used for monitoring under HACCP were determined during the pilot plant trials. PMID:20935373

  12. Aerobic thermophilic treatment of sewage sludge at pilot plant scale. 1. Operating conditions.

    PubMed

    Ponti, C; Sonnleitner, B; Fiechter, A

    1995-01-15

    The aerobic thermophilic treatment process of sewage sludge was studied at different bioreactor scales in a pilot plant installation. Since, for a satisfactory sludge disinfection, the Swiss legislation requires minimal incubation times of all volume elements, the bioreactors were operated in repetitive batch mode (draw and fill). Different retention times and frequencies of the volume changes were applied in order to prove the capability of the particular operation modes in assuring high degradative potential. The main enzymatic activity involved during the aerobic treatment was proteolysis: the RQ values ranged between 0.8 and 0.9 depending on the applied operating conditions. Although not in a linear manner, the efficiency of the microflora decreased as the bioreactor scale increased, when this increase corresponded with a reduction of the specific power input. The sludge oxidation rates can be tuned by some process operating conditions such as the volume change frequency, the changed volume quantities and the retention times. It was possible to improve the microbial degradative efficiency by an increased frequency of the changes, while the mean retention time influenced in particular the ultimate product quality, described as residual organic matter content of the sludge. The microflora present was also satisfactorily active at mean hydraulic retention times of less than 10 h. The organic matter concentration of the inlet sewage sludge plays an important role: it influences the aerobic degradation process positively. PMID:7765808

  13. Operation result of 40kW class MCFC pilot plant

    SciTech Connect

    Saitoh, H.; Hatori, S.; Hosaka, M.; Uematsu, H.

    1996-12-31

    Ishikawajima-Harima Heavy Industries Co., Ltd. developed unique Molten Carbonate Fuel Cell (MCFC) system based on our original concept. To demonstrate the possibility of this system, based on MCFC technology of consigned research from New Energy and Industrial Technology Development Organization (NEDO) in Japan, we designed 40kW class MCFC pilot plant which had all equipments required as a power plant and constructed in our TO-2 Technical Center. This paper presents the test results of the plant.

  14. Concepts for operational period panel seal design at the Waste Isolation Pilot Plant

    SciTech Connect

    Hansen, F.D.; Lin, M.S.; Van Sambeek, L.L.

    1993-07-01

    Concepts for underground panel or drift seals at the Waste Isolation Pilot Plant are developed to satisfy sealing requirements of the operational period. The concepts are divided into two groups. In the ``NOW`` group, design concepts are considered in which a sleeve structure is installed in the panel access immediately after excavation and before waste is emplaced. In the ``LATER`` group, no special measures are taken during excavation or before waste emplacement; the seal is installed at a later date, perhaps up to 35 years after the drift is excavated. Three concepts are presented in both the NOW and LATER groups. A rigid sleeve, a yielding sleeve, and steel rings with inflatable tubes are proposed as NOW concepts. One steel ring concept and two concrete monoliths are proposed for seals emplaced in older drifts. Advantages and disadvantages are listed for each concept. Based on the available information, it appears most feasible to recommend a LATER concept using a concrete monolith as a preferred seal for the operational period. Each concept includes the potential of remedial grout and/or construction of a chamber that could be used for monitoring leakage from a closed panel during the operational period. Supporting in situ demonstrations of elements of the concepts are recommended.

  15. A 10-MWe solar-thermal central-receiver pilot plant: Solar facilities design integration. Plant operating/training manual (RADL-Item 2-36)

    NASA Astrophysics Data System (ADS)

    1982-07-01

    Plant and system level operating instructions are provided for the Barstow Solar Pilot Plant. Individual status instructions are given that identify plant conditions, process controller responsibilities, process conditions and control accuracies, operating envelopes, and operator cautions appropriate to the operating condition. Transition operating instructions identify the sequence of activities to be carried out to accomplish the indicated transition. Most transitions involve the startup or shutdown of an individual flowpath. Background information is provided on collector field operations, and the heliostat groupings and specific commands used in support receiver startup are defined.

  16. PILOT PLANT STUDY OF THE EFFECT OF A SURFACE ELECTRIC FIELD ON FABRIC FILTER OPERATION

    EPA Science Inventory

    The paper gives results of a pilot plant study of electrostatically augmented fabric filtration (ESFF) to transfer laboratory technology to the field environment. (Note: Electrostatic fields at the fabric surface of fabric dust collectors have been observed in the laboratory to r...

  17. OPERATIONAL EXPERIENCE OF THE EPA OWNED BENCH SCALE PILOT PLANT FOR EVALUATING SCR DENOX CATALYSTS

    EPA Science Inventory

    The paper discusses the use of EPA's bench-scale pilot plant to evaluate catalysts used in the ammonia (NH3)-based technology and process for selective catalytic reduction (SCR) of nitrogen oxides. A key objective was to establish the performance of SCR catalysts on U.S. uels and...

  18. Pilot-plant study of the effect of a surface electric-field on fabric filter operation

    SciTech Connect

    VanOsdell, D.W.; Furlong, D.A.; Hovis, L.S.

    1985-10-01

    The paper gives results of a pilot-plant study of electrostatically augmented fabric filtration (ESFF) to transfer laboratory technology to the field environment. (Note: Electrostatic fields at the fabric surface of fabric dust collectors have been observed in the laboratory to reduce the flow resistance of the collected dust and to reduce the dust penetration into the fabric.) Conclusions include: (1) using an electric field parallel to the fabric surface, without particle charging, to enhance fabric filter operation is operable at pilot scale (the pilot plant operated on flue gas from an industrial boiler); (2) the electrical hardware developed for the pulse-cleaned baghouse is workable and durable in the operating environment and has potential for commercial use; (3) at any given face velocity, the ESFF baghouse has a reduced residual pressure drop and a reduced rate of pressure drop increase when compared with a conventional fabric filter; (4) the pulse-cleaned ESFF baghouse could be operated in a stable fashion at filter face velocities up to about twice that at which the conventional baghouse was stable; and (5) the pilot unit results are consistent with dust cake expansion and lowered porosity due to a tendency to form dendritic structures as the dust cake collects.

  19. Nondestructive measurements in support of Waste Isolation Pilot Plant at Rockwell Hanford Operations: problems and methods

    SciTech Connect

    Westsik, G.A.

    1986-05-01

    The 234-5Z Analytical Laboratory, located in the 200 West Area of the Hanford Site, has been requested to provide waste package measurement capability for both the Plutonium/Uranium Extraction (PUREX) Plant and Plutonium Finishing Plant (PFP) in support of the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC). The requested WIPP values are sensitive to changes in isotopic distribution. Unfortunately, the determination of the isotopic distribution of an individual waste item or drum is difficult. The problems and uncertainties encountered in providing the values are discussed. Also, examples of calculations for the WIPP-WAC are shown.

  20. 1997 annual ground control operating plan for the Waste Isolation Pilot Plant

    SciTech Connect

    1997-02-01

    This plan presents background information and a working guide to assist Mine Operations and Engineering in developing strategies for addressing ground control issues at the Waste Isolation Pilot Plant (WIPP). With the anticipated receipt of waste in late 1997, this document provides additional detail to Panel 1 activities and options. The plan also serves as a foundation document for development and revision of the annual long-term ground control plan. Section 2.0 documents the current status of all underground excavations with respect to location, geology, geometry, age, ground support, operational use, projected life, and physical conditions. Section 3.0 presents the methods used to evaluate ground conditions, including visual observations of the roof, ribs, and floor, inspection of observation holes, and review of instrumentation data. Section 4.0 lists several ground support options and specific applications of each. Section 5.0 discusses remedial ground control measures that have been implemented to date. Section 6.0 presents projections and recommendations for ground control actions based on the information in Sections 2.0 through 5.0 of this plan and on a rating of the critical nature of each specific area. Section 7.0 presents a summary statement, and Section 8.0 includes references. Appendix A provides an overview and critique of ground control systems that have been, or may be, used at the site. Because of the dynamic nature of the underground openings and associated geotechnical activities, this plan will be revised as additional data are incorporated.

  1. Initial Assessment of Sulfur-Iodine Process Safety Issues and How They May Affect Pilot Plant Design and Operation

    SciTech Connect

    Robert S. Cherry

    2006-09-01

    The sulfur-iodine process to make hydrogen by the thermochemical splitting of water is under active development as part of a U.S. Department of Energy program. An integrated lab scale system is currently being designed and built. The next planned stage of development is a pilot plant with a thermal input of about 500 kW, equivalent to about 30,000 standard liters per hour of hydrogen production. The sulfur-iodine process contains a variety of hazards, including temperatures up to 850 ºC and hazardous chemical species including SO2, H2SO4, HI, I2, and of course H2. The siting and design of a pilot plant must consider these and other hazards. This report presents an initial analysis of the hazards that might affect pilot plant design and should be considered in the initial planning. The general hazards that have been identified include reactivity, flammability, toxicity, pressure, electrical hazards, and industrial hazards such as lifting and rotating equipment. Personnel exposure to these hazards could occur during normal operations, which includes not only running the process at the design conditions but also initial inventory loading, heatup, startup, shutdown, and system flushing before equipment maintenance. Because of the complexity and severity of the process, these ancillary operations are expected to be performed frequently. In addition, personnel could be exposed to the hazards during various abnormal situations which could include unplanned phase changes of liquids or solids, leaks of process fluids or cooling water into other process streams, unintentional introducion of foreign species into the process, and unexpected side reactions. Design of a pilot plant will also be affected by various codes and regulations such as the International Building Code, the International Fire Code, various National Fire Protection Association Codes, and the Emergency Planning and Community Right-to-Know Act.

  2. H-coal pilot plant. Phase II. Construction. Phase III. Operation. Annual report No. 3

    SciTech Connect

    Not Available

    1981-02-04

    At the request of DOE Oak Ridge, ASFI agreed to assume responsibility for completion of Plant construction in December, 1979, at which time Badger Plants' on-site work was ended. This construction effort consisted of electric heat tracing and insulation of piping and instrumentation. At the close of the reporting period the work was completed, or was projected to be completed, within the ASFI budgeted amounts and by dates that will not impact Plant operations. Engineering design solutions were completed for problems encountered with such equipment as the High Pressure Letdown Valves; Slurry Block Valves; Slurry Pumps; the Bowl Mill System; the Dowtherm System; and the Ebullating Pump. A Corrosion Monitoring Program was established. With the exception of Area 500, the Antisolvent Deashing Unit, all operating units were commissioned and operated during the reporting period. Coal was first introduced into the Plant on May 29, 1980, with coal operations continuing periodically through September 30, 1980. The longest continuous coal run was 119 hours. A total of 677 tons of Kentucky No. 11 Coal were processed during the reporting period. The problems encountered were mechanical, not process, in nature. Various Environmental and Health programs were implemented to assure worker safety and protection and to obtain data from Plant operations for scientific analysis. These comprehensive programs will contribute greatly in determining the acceptability of long term H-Coal Plant operations.

  3. Pilot plant UF/sub 6/ to UF/sub 4/ test operations report

    SciTech Connect

    Bicha, W.J.; Fallings, M.; Gilbert, D.D.; Koch, G.E.; Levine, P.J.; McLaughlin, D.F.; Nuhfer, K.R.; Reese, J.C.

    1987-02-01

    The FMPC site includes a plant designed for the reduction of uranium hexafluoride (UF/sub 6/) to uranium tetrafluoride (UF/sub 4/). Limited operation of the upgraded reduction facility began in August 1984 and continued through January 19, 1986. A reaction vessel ruptured on that date causing the plant operation to be shut down. The DOE conducted a Class B investigation with the findings of the investigation board issued in preliminary form in May 1986 and as a final recommendation in July 1986. A two-phase restart of the plant was planned and implemented. Phase I included implementing safety system modifications, changing reaction vessel temperature control strategy, and operating the reduction plant under an 8-week controlled test. The results of the test period are the subject of this report. 41 figs., 11 tabs.

  4. PROBABILISTIC SAFETY ASSESSMENT OF OPERATIONAL ACCIDENTS AT THE WASTE ISOLATION PILOT PLANT

    SciTech Connect

    Rucker, D.F.

    2000-09-01

    This report presents a probabilistic safety assessment of radioactive doses as consequences from accident scenarios to complement the deterministic assessment presented in the Waste Isolation Pilot Plant (WIPP) Safety Analysis Report (SAR). The International Council of Radiation Protection (ICRP) recommends both assessments be conducted to ensure that ''an adequate level of safety has been achieved and that no major contributors to risk are overlooked'' (ICRP 1993). To that end, the probabilistic assessment for the WIPP accident scenarios addresses the wide range of assumptions, e.g. the range of values representing the radioactive source of an accident, that could possibly have been overlooked by the SAR. Routine releases of radionuclides from the WIPP repository to the environment during the waste emplacement operations are expected to be essentially zero. In contrast, potential accidental releases from postulated accident scenarios during waste handling and emplacement could be substantial, which necessitates the need for radiological air monitoring and confinement barriers (DOE 1999). The WIPP Safety Analysis Report (SAR) calculated doses from accidental releases to the on-site (at 100 m from the source) and off-site (at the Exclusive Use Boundary and Site Boundary) public by a deterministic approach. This approach, as demonstrated in the SAR, uses single-point values of key parameters to assess the 50-year, whole-body committed effective dose equivalent (CEDE). The basic assumptions used in the SAR to formulate the CEDE are retained for this report's probabilistic assessment. However, for the probabilistic assessment, single-point parameter values were replaced with probability density functions (PDF) and were sampled over an expected range. Monte Carlo simulations were run, in which 10,000 iterations were performed by randomly selecting one value for each parameter and calculating the dose. Statistical information was then derived from the 10,000 iteration

  5. Pilot program to identify valve failures which impact the safety and operation of light water nuclear power plants

    SciTech Connect

    Tsacoyeanes, J. C.; Raju, P. P.

    1980-04-01

    The pilot program described has been initiated under the Department of Energy Light Water Reactor Safety Research and Development Program and has the following specific objectives: to identify the principal types and causes of failures in valves, valve operators and their controls and associated hardware, which lead to, or could lead to plant trip; and to suggest possible remedies for the prevention of these failures and recommend future research and development programs which could lead to minimizing these valve failures or mitigating their effect on plant operation. The data surveyed cover incidents reported over the six-year period, beginning 1973 through the end of 1978. Three sources of information on valve failures have been consulted: failure data centers, participating organizations in the nuclear power industry, and technical documents.

  6. Shipping Remote Handled Transuranic Waste to the Waste Isolation Pilot Plant - An Operational Experience

    SciTech Connect

    Anderson, S.; Bradford, J.; Clements, T.; Crisp, D.; Sherick, M.; D'Amico, E.; Lattin, W.; Watson, K.

    2008-07-01

    On January 18, 2007, the first ever shipment of Remote Handled Transuranic (RH TRU) waste left the gate at the Idaho National Laboratory (INL), headed toward the Waste Isolation Pilot Plant (WIPP) for disposal, thus concluding one of the most stressful, yet rewarding, periods the authors have ever experienced. The race began in earnest on October 16, 2006, with signature of the New Mexico Environment Department Secretary's Final Order, ruling that the '..draft permit as changed is hereby approved in its entirety.' This established the effective date of the approved permit as November 16, 2006. The permit modification was a consolidation of several Class 3 modification requests, one of which included incorporation of RH TRU requirements and another of which incorporated the requirements of Section 311 of Public Law 108-137. The obvious goal was to complete the first shipment by November 17. While many had anticipated its approval, the time had finally come to actually implement, and time seemed to be the main item lacking. At that point, even the most aggressive schedule that could be seriously documented showed a first ship date in March 2007. Even though planning for this eventuality had started in May 2005 with the arrival of the current Idaho Cleanup Project (ICP) contractor (and even before that), there were many facility and system modifications to complete, startup authorizations to fulfill, and many regulatory audits and approvals to obtain before the first drum could be loaded. Through the dedicated efforts of the ICP workers, the partnership with Department of Energy (DOE) - Idaho, the coordinated integration with the Central Characterization Project (CCP), the flexibility and understanding of the regulatory community, and the added encouragement of DOE - Carlsbad Field Office and at Headquarters, the first RH TRU canister was loaded on December 22, 2006. Following final regulatory approval on January 17, 2007, the historic event finally occurred the

  7. Retrofit of Soederberg smelter at Alusaf Bayside plant. Part 2: Start-up and operation of pilot plant

    SciTech Connect

    Ferreira, J.A.

    1996-10-01

    Construction, commissioning and the first of operation of twelve 165 kA pointed pilot cells with prebaked anodes at Alusaf works are described. These pilot cells were developed, using VAW technology, to reduce the emission levels and increase productivity of the 14 year old 120 kA VSS lines at Bayside smelter. VAW was contracted to design a cell that utilizes as much of the existing hardware as possible and that fits into the existing floor space. Results of extensive modeling showed that major parts of the existing busbar system could be kept. The amperage of the modernized prebake cells could be increased to 165 kA. Twelve prototype pots were commissioned in July 1994. During the first year of operation excellent production results were achieved. The production of these cells are {approx_equal} 56% higher than for the VSS cells. The pilot pots have a current efficiency in excess of 95%, specific energy consumption of 13.6 kWh/kg Al and a net carbon consumption of 410 kg/ton Al.

  8. Start-up operations at the Fenton Hill HDR Pilot Plant

    SciTech Connect

    Ponden, R.F.

    1991-01-01

    With the completion of the surface test facilities at Fenton Hill, the Hot Dry Rock (HDR) Geothermal Energy Program at Los Alamos is moving steadily into the next stage of development. Start-up operations of the surface facilities have begun in preparation for testing the Phase II reservoir and the initial steady-state phase of operations. A test program has been developed that will entail a number of operational strategies to characterize the thermal performance of the reservoir. The surface facilities have been designed to assure high reliability while providing the flexibility and control to support the different operating modes. This paper presents a review of the system design and provides a discussion of the preliminary results of plant operations and equipment performance.

  9. Arsenic pilot plant operation and results - Socorro Springs, New Mexico - phase 1.

    SciTech Connect

    Aragon, Malynda Jo; Everett, Randy L.; Siegel, Malcolm Dean; Kottenstette, Richard Joseph; Holub, William E. Jr; Wright, Jeremy B.; Dwyer, Brian P.

    2007-05-01

    Sandia National Laboratories (SNL) is conducting pilot scale evaluations of the performance and cost of innovative water treatment technologies aimed at meeting the recently revised arsenic maximum contaminant level (MCL) for drinking water. The standard of 10 {micro}g/L (10 ppb) is effective as of January 2006. The first pilot tests have been conducted in New Mexico where over 90 sites that exceed the new MCL have been identified by the New Mexico Environment Department. The pilot test described in this report was conducted in Socorro New Mexico between January 2005 and July 2005. The pilot demonstration is a project of the Arsenic Water Technology Partnership program, a partnership between the American Water Works Association Research Foundation (AwwaRF), SNL and WERC (A Consortium for Environmental Education and Technology Development). The Sandia National Laboratories pilot demonstration at the Socorro Springs site obtained arsenic removal performance data for five different adsorptive media under constant ambient flow conditions. Well water at Socorro Springs has approximately 42 ppb arsenic in the oxidized (arsenate-As(V)) redox state with moderate amounts of silica, low concentrations of iron and manganese and a slightly alkaline pH (8). The study provides estimates of the capacity (bed volumes until breakthrough at 10 ppb arsenic) of adsorptive media in the same chlorinated water. Near the end of the test the feedwater pH was lowered to assess the affect on bed capacity and as a prelude to a controlled pH study (Socorro Springs Phase 2).

  10. Design and economic benefits from the operation of pulse-jet fabric filter pilot plants

    SciTech Connect

    Emerson, R.D. ); Bustard, C.J.; Holstein, D.B. )

    1992-01-01

    This paper reports that utility power plant flue gas particulate collection is generally accomplished by either electrostatic precipitation (ESP) or fabric filtration (FF). The majority of existing units use ESP's but an increase in the use of FF's occurred during the 1970's and 80's. This was partially due to advances in FF state-of-the-art technology and the tightening of regulatory requirements. Fabric filtration is usually accomplished by reverse gas (RGFF), shake and deflate (SDFF), or pulse jet (PJFF) methods. Regardless of the method, the efficiency and reliability of operation are of paramount importance, especially when six minute averaging (or similar) is required for opacity measurements. Many items enter into the efficiency and reliability of FF's with a primary one being the performance of the fabric itself. The fabric could possibly fail in a given situation and as a minimum would impact outlet emissions, cleaning frequency, and pressure drop. The fabric's performance is very much a function of the flue gas conditions and flyash characteristics.

  11. Steam activation of a bituminous coal in a multistage fluidized bed pilot plant: Operation and simulation model

    SciTech Connect

    Martin-Gullon, I.; Asensio, M.; Marcilla, A.; Font, R.

    1996-11-01

    A hydrodynamic and kinetic model was developed and applied to simulate the experimental data from a three-stage fluidized bed pilot plant with downcomers. This was used to study the activated carbon production from a Spanish bituminous coal by steam gasification. The steam gasification kinetics, considering the influence of inhibitors, were also determined in a thermobalance. With the kinetic equation and the experimental solids residence time distribution of the pilot plant, the model simulates the overall process that takes place in the reactor. The proposed model is able to reproduce the experimental results satisfactorily.

  12. The Pilot Conditioning Plant Gorleben

    SciTech Connect

    Willax, H.O.; Lahr, H.

    1995-12-31

    In the Federal Republic of Germany, the feasibility of direct disposal of spent fuel elements has been examined and their safety aspects evaluated in the years between 1979 and 1985. In an assessment of the results, the Federal Government concluded that the technology of direct disposal has to be developed. According to this decision in April 1986, there was the application for the erection and operation of the Pilot Conditioning Plant (PKA) for the conditioning of spent fuel elements and other radioactive waste. Since February 1990, the PKA has been under construction and the hot commissioning will be in 1997.

  13. Operating a pilot-scale nitrification/distillation plant for complete nutrient recovery from urine.

    PubMed

    Fumasoli, Alexandra; Etter, Bastian; Sterkele, Bettina; Morgenroth, Eberhard; Udert, Kai M

    2016-01-01

    Source-separated urine contains most of the excreted nutrients, which can be recovered by using nitrification to stabilize the urine before concentrating the nutrient solution with distillation. The aim of this study was to test this process combination at pilot scale. The nitrification process was efficient in a moving bed biofilm reactor with maximal rates of 930 mg N L(-1) d(-1). Rates decreased to 120 mg N L(-1) d(-1) after switching to more concentrated urine. At high nitrification rates (640 mg N L(-1) d(-1)) and low total ammonia concentrations (1,790 mg NH4-N L(-1) in influent) distillation caused the main primary energy demand of 71 W cap(-1) (nitrification: 13 W cap(-1)) assuming a nitrogen production of 8.8 g N cap(-1) d(-1). Possible process failures include the accumulation of the nitrification intermediate nitrite and the selection of acid-tolerant ammonia-oxidizing bacteria. Especially during reactor start-up, the process must therefore be carefully supervised. The concentrate produced by the nitrification/distillation process is low in heavy metals, but high in nutrients, suggesting a good suitability as an integral fertilizer. PMID:26744953

  14. Thermochemical Conversion Pilot Plant (Fact Sheet)

    SciTech Connect

    Not Available

    2013-06-01

    The state-of-the-art thermochemical conversion pilot plant includes several configurable, complementary unit operations for testing and developing various reactors, filters, catalysts, and other unit operations. NREL engineers and scientists as well as clients can test new processes and feedstocks in a timely, cost-effective, and safe manner to obtain extensive performance data on processes or equipment.

  15. Coal log pipeline pilot plant study

    SciTech Connect

    Liu, H.; Lenau, C.W.; Burkett, W.

    2000-07-01

    After 8 years of extensive R and D in the new technology of coal log pipeline (CLP), a pilot plant is being built to demonstrate and test a complete CLP system for coal transportation. The system consists of a coal log fabrication plant, a 3,000-ft-length, 6-inch-diameter underground pipeline loop to transport 5.4-inch diameter coal logs, a log injection/ejection system, a pump bypass, a reservoir that serves as both the intake and the outlet of the CLP systems, an instrumentation system that includes pressure transducers, coal log sensors, and flowmeters, and an automatic control system that includes PLCs and a central computer. The pilot plant is to be completed in May of Year 2000. Upon completion of construction, the pilot plant will be used for running various types of coal, testing the degradation rate of drag reduction in CLP using Polyox (polyethylene oxide), testing the reliability of a special coal log sensor invented at the University of Missouri, testing the reliability and the efficiency of the pump-bypass system for pumping coal log trains through the pipe, and testing various hardware components and software for operating the pilot plant. Data collected from the tests will be used for designing future commercial systems of CLP. The pilot plant experiments are to be completed in two years. Then, the technology of CLP will be ready for commercial use.

  16. 27 CFR 19.31 - Pilot operations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Pilot operations. 19.31... Alternate Methods Or Procedures and Experimental Operations § 19.31 Pilot operations. Except for the filing... regulatory provision in this part for temporary pilot or experimental operations for the purpose...

  17. Exposure and release estimations for filter-press and tray-dryer operations based on pilot-plant data. Final report

    SciTech Connect

    Marshall, M.C.; Howard, H.K.

    1992-03-20

    Worker exposures and chemical releases associated with a plate-and-frame filter press and a stationary tray dryer were studied in a pilot plant. The equipment was representative of those in a chemical manufacturing plant; the filter press was previously used at a chemical plant, and the dryer trays were the same size used by dye manufacturers. A randomized series of eight experiments identified the most influential variables for inhalation exposure during the tray drying unit operation which used approximately 100 kg of CaCO3. The range of conditions studied in the eight experiments provide inhalation exposure data for evaluating the impact of physical properties, the activities performed, and the influence of worker technique.

  18. 27 CFR 19.63 - Pilot operations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Pilot operations. 19.63... Activities Not Subject to This Part § 19.63 Pilot operations. The appropriate TTB officer may waive any regulatory provisions of 26 U.S.C. Chapter 51, and of the regulations in this part, for temporary pilot...

  19. Development of 1000kW-class MCFC pilot plant

    SciTech Connect

    Ooue, M.; Yasue, H.; Takasu, K.; Tsuchitori, T.

    1996-12-31

    This pilot plant is a part of the New Sunshine Program which has proceeded by the Agency of Industrial Science and Technology of the Ministry of International Trade and Industry. MCFC Research Association is entrusted with the development of the pilot plant, and constructing it at Kawagoe site. Following items will be verified by this pilot plant operation. (a) Development of 250kW class stack and confirmation of stack performance and decay rate. (b) System verification such as basic process, control system and operation characteristics, toward commercialization. (c) To get design data for demonstration plant.

  20. Operation of the solvent-refined-coal pilot plant, Wilsonville, Alabama. Annual technical report, January-December 1980

    SciTech Connect

    Lewis, H.E.

    1981-08-01

    The plant was in operation for the equivalent of 247 days, an on-stream factor of 67.7%. Kentucky 9 coals from the Lafayette, Dotiki and Fies mines were processed. During 1980, the operating conditions and equipment were adjusted to evaluate potential process improvements. These experiments produced significant results in the following areas: Operating V103 High Pressure Separator in the hot mode; varying T102 Vacuum Column operating temperature; adding light SRC (LSRC), a product of the third stage of the Critical Solvent Deashing (CSD) unit, to the process solvent; investigating the effects of the chlorine content of the feed coal on corrosion in the process vessels; evaluating the effects of adding sodium carbonate on corrosion rates; operating under conditions of low severity; i.e., low reactor temperature and long residence time; and testing an alternate CSD deashing solvent. A series of simulation runs investigating the design operating conditions for a planned 6000 ton per day SRC-I demonstation plant were also completed. Numerous improvements were made in the CSD processing area, and the components for a hydrotreating unit were installed.

  1. Control of the growth of Microthrix parvicelle by using an aerobic selector--results of pilot and full scale plant operation.

    PubMed

    Lebek, M; Rosenwinkel, K H

    2002-01-01

    A two-stage wastewater treatment plant experiences bulking sludge problems in winter, correlating with Microthixparvicella abundance. Pilot and full-scale studies of the use of an aerobic selector to control M. parvicella had little success, probably resulting from long chain fatty acid retention in foam at the tank surface. Initial pilot studies with reduced foam retention showed better results. PMID:12216674

  2. Advanced Gasifier Pilot Plant Concept Definition

    SciTech Connect

    Steve Fusselman; Alan Darby; Fred Widman

    2005-08-31

    This report presents results from definition of a preferred commercial-scale advanced gasifier configuration and concept definition for a gasification pilot plant incorporating those preferred technologies. The preferred commercial gasifier configuration was established based on Cost Of Electricity estimates for an IGCC. Based on the gasifier configuration trade study results, a compact plug flow gasifier, with a dry solids pump, rapid-mix injector, CMC liner insert and partial quench system was selected as the preferred configuration. Preliminary systems analysis results indicate that this configuration could provide cost of product savings for electricity and hydrogen ranging from 15%-20% relative to existing gasifier technologies. This cost of product improvement draws upon the efficiency of the dry feed, rapid mix injector technology, low capital cost compact gasifier, and >99% gasifier availability due to long life injector and gasifier liner, with short replacement time. A pilot plant concept incorporating the technologies associated with the preferred configuration was defined, along with cost and schedule estimates for design, installation, and test operations. It was estimated that a 16,300 kg/day (18 TPD) pilot plant gasifier incorporating the advanced gasification technology and demonstrating 1,000 hours of hot-fire operation could be accomplished over a period of 33 months with a budget of $25.6 M.

  3. 14 CFR 61.94 - Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Student pilot seeking a sport pilot... Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations at... operational control tower in other airspace. (a) A student pilot seeking a sport pilot certificate or...

  4. 14 CFR 61.94 - Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Student pilot seeking a sport pilot... Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations at... operational control tower in other airspace. (a) A student pilot seeking a sport pilot certificate or...

  5. 14 CFR 61.94 - Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Student pilot seeking a sport pilot... Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations at... operational control tower in other airspace. (a) A student pilot seeking a sport pilot certificate or...

  6. 14 CFR 61.94 - Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Student pilot seeking a sport pilot... Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations at... operational control tower in other airspace. (a) A student pilot seeking a sport pilot certificate or...

  7. 14 CFR 61.94 - Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Student pilot seeking a sport pilot... Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations at... operational control tower in other airspace. (a) A student pilot seeking a sport pilot certificate or...

  8. Pilot Plant Makes Oxygen Difluoride

    NASA Technical Reports Server (NTRS)

    Humphrey, Marshall F.; Lawton, Emil A.

    1989-01-01

    Pilot plant makes oxygen difluoride highly-energetic, space-storable oxidizer not made commercially. Designed to handle reactants, product, and byproduct, most of which highly reactive, corrosive, and toxic. Oxygen difluoride evolves continuously from reactor containing potassium hydroxide in water at 10 degree C. Collection tanks alternated; one filled while other drained to storage cylinder. Excess OF2 and F2 dissipated in combustion of charcoal in burn barrel. Toxic byproduct, potassium fluoride, reacted with calcium hydroxide to form nontoxic calcium fluoride and to regenerate potassium hydroxide. Equipment processes toxic, difficult-to-make substance efficiently and safely.

  9. Wilsonville SRC-I pilot plant: I. Fractionation area corrosion studies; II. Hot vs. normal separation mode of operation

    SciTech Connect

    Lee, J.M.

    1981-04-01

    Extensive corrosion studies in solvent recovery columns have been done with different coals (mainly Kentucky number 9 Lafayette, Dotiki and Fies). Sodium carbonate (0.1 to 1.1% of coal) was added as neutralizer to control corrosion rate. Chloride balance runs were made for isolation of corrosive streams with high chlorine content. A caustic wash program of inlet streams has been developed for selective treatment of corrosive streams as an alternative means for possible replacement of sodium carbonate addition. High chlorine content coals such as Kentucky number 9 Lafayette and Dotiki (0.2 to 0.3%) were very corrosive, compared to low chlorine content coal, Kentucky number 9 Fies (< 0.1%). Sodium carbonate addition (0.6 to 0.7% of coal) reduced corrosion rate from 500 MPY to an insignificant level of less than 5 MPY. Caustic wash of solvents could reduce corrosion rate by 50%, removing most corrosive compounds present in the 440 to 480/sup 0/F boiling fraction. Extensive studies for the hot separator mode of operation have been done as a means of saving substantial energy by elimination of dissolver slurry cooling (0.3 MM Btu/hr) and reheating for solvent recovery (1 MM Btu/h). Impacts of the hot separator mode on plant operability, product quality and Kerr-McGee CSD Unit recovery have been studied. The hot separator mode of operation was carried out by controlling the V103 temperature to 740/sup 0/F. It was observed that preasphaltene contents increased in the SRC products such as V110 L/F SRC and CSD feed; CSD unit recovery was not affected significantly; solvent quality was not affected significantly.

  10. Pilot interministerial operation for remote sensing

    NASA Technical Reports Server (NTRS)

    Delamare, J. M.; Bied-Charreton, M.; Couzy, A.; Jahan, A.; Ledder, J.; Pasquet, J.

    1979-01-01

    Advantages and disadvantages of traditional methods of obtaining required information for land and resources management and the possibilities of remote sensing are discussed. The services available, organization and objectives of the pilot operation are presented. Emphasis is placed on multidisciplinary dialog among designers, builders, operators, interpreters and users in all phases. The principles, operation and practical applications of remote sensing systems and processing systems under the pilot operation are presented.

  11. Design and operation of a pilot-plant for the processing of sugarcane juice into sugar at the Southern Regional Research Center in Louisiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A pilot-plant facility to process sugarcane juice into sugar and molasses has been developed under a limited budget at the Southern Regional Research Center of the United States Department of Agriculture in New Orleans, Louisiana. The batch plant (27.9 m2) includes juice heating, clarification, eva...

  12. Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants

    SciTech Connect

    Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

    1981-02-01

    This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

  13. Experience in the commercial operation of the pilot asynchronized turbogenerator T3FA-110 at cogeneration plant-22 (TETs-22) of the Mosenergo Company

    SciTech Connect

    Zinakov, V. E.; Chernyshev, E. V.; Kuzin, G. A.; Voronov, V. K.; Labunets, I. A.

    2006-01-15

    Results of commercial operation of a world pioneer asynchronized turbogenerator T3FA-110 with a capacity of 11 MW and full air cooling at a cogeneration plant are presented. The turbogenerator developed jointly by the Electric Power Research Institute and the Elektrosila Company differs from traditional synchronous generators by the presence on the rotor of two mutually orthogonal windings, a two-channel reverse thyristor excitation system, and a special control system. The special features of design and control allow such generators to operate in the modes of both production and high consumption of reactive power at normal static and dynamic stability. This widens the range of regulation of the voltage level in the connected electric network and makes it possible to bring parallel-connected synchronous generators to optimum operation conditions. The generator can work without excitation for a long time at 70% load. Commercial operation of the pilot T3FA-110 turbogenerator started in December 2003 at TETs-22 of the Mosenergo Company and has proved its full correspondence to the design engineering parameters. A program of wide use of such turbogenerators in the United Power System of Russia (RAO 'EES Rossii' Co.) has been developed.

  14. Corrosion coupon studies at coal liquefaction pilot plants

    SciTech Connect

    Keiser, J.R.; Baylor, V.B.; Howell, M.; Newsome, J.F.

    1983-09-01

    As part of the Fossil Energy Materials Program at Oak Ridge National Laboratory, we have supplied corrosion coupons to coal-liquefaction pilot plants for exposure in selected vessels. These vessels were chosen on the basis of previous corrosion experience, anticipated corrosion behavior (especially important when operating conditions were changed), accessibility, and availability. Alloys exposed were selected to give a series with a corrosion resistance ranging from less than to greater than that thought to be needed for each application. Corrosion rates calculated from weight changes of the exposed coupons provide information useful in selecting materials for coal-liquefaction plants. The results presented are from coupons exposed in the Wilsonville, Alabama, and Fort Lewis, Washington, Solvent Refined Coal pilot plants; the Catlettsburg, Kentucky, H-Coal Pilot Plant; and the Baytown, Texas, Exxon Coal Liquefaction Pilot Plant.

  15. PILOT PLANT EXPLORATION OF SLOW RATE FILTRATION

    EPA Science Inventory

    Alternatives to conventional coagulation water filtration plants (those that utilize coagulation, flocculation, sedimentation and filtration) may be appropriate for some small water utilities. One such alternative is slow rate filtration. This paper describes pilot plant studies ...

  16. UV disinfection pilot plant study at the Savannah River Site

    SciTech Connect

    Huffines, R.L.; Beavers, B.A.

    1993-01-01

    An ultraviolet light disinfection system pilot plant was operated at the Savannah River Site Central Shops sanitary wastewater treatment package plant July 14, 1992 through August 13, 1992. The purpose was to determine the effectiveness of ultraviolet light disinfection on the effluent from the small package-type wastewater treatment plants currently used on-site. This pilot plant consisted of a rack of UV lights suspended in a stainless steel channel through which a sidestream of effluent from the treatment plant clarifier was pumped. Fecal coliform analyses were performed on the influent to and effluent from the pilot unit to verify the disinfection process. UV disinfection was highly effective in reducing fecal coliform colonies within NPDES permit limitations even under process upset conditions. The average fecal coliform reduction exceeded 99.7% using ultraviolet light disinfection under normal operating conditions at the package treatment plants.

  17. UV disinfection pilot plant study at the Savannah River Site

    SciTech Connect

    Huffines, R.L.; Beavers, B.A.

    1993-05-01

    An ultraviolet light disinfection system pilot plant was operated at the Savannah River Site Central Shops sanitary wastewater treatment package plant July 14, 1992 through August 13, 1992. The purpose was to determine the effectiveness of ultraviolet light disinfection on the effluent from the small package-type wastewater treatment plants currently used on-site. This pilot plant consisted of a rack of UV lights suspended in a stainless steel channel through which a sidestream of effluent from the treatment plant clarifier was pumped. Fecal coliform analyses were performed on the influent to and effluent from the pilot unit to verify the disinfection process. UV disinfection was highly effective in reducing fecal coliform colonies within NPDES permit limitations even under process upset conditions. The average fecal coliform reduction exceeded 99.7% using ultraviolet light disinfection under normal operating conditions at the package treatment plants.

  18. MINI PILOT PLANT FOR DRINKING WATER RESEARCH

    EPA Science Inventory

    The Water Supply & Water Resources Division (WSWRD) has constructed 2 mini-pilot plant systems used to conduct drinking water research. These two systems each have 2 parallel trains for comparative research. The mini-pilot plants are small conventional drinking water treatment ...

  19. Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing

    SciTech Connect

    J. Francfort

    2005-03-01

    The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

  20. PILOT: An intelligent distributed operations support system

    NASA Technical Reports Server (NTRS)

    Rasmussen, Arthur N.

    1993-01-01

    The Real-Time Data System (RTDS) project is exploring the application of advanced technologies to the real-time flight operations environment of the Mission Control Centers at NASA's Johnson Space Center. The system, based on a network of engineering workstations, provides services such as delivery of real time telemetry data to flight control applications. To automate the operation of this complex distributed environment, a facility called PILOT (Process Integrity Level and Operation Tracker) is being developed. PILOT comprises a set of distributed agents cooperating with a rule-based expert system; together they monitor process operation and data flows throughout the RTDS network. The goal of PILOT is to provide unattended management and automated operation under user control.

  1. Waste Isolation Pilot Plant Safety Analysis Report

    SciTech Connect

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

  2. Technical operations and data collection details of the in situ WIPP (Waste Isolation Pilot Plant) Materials Interface Interaction Test

    SciTech Connect

    Molecke, M.A.

    1988-01-01

    The WIPP Materials Interface Interaction Tests (MIIT) experiments involve the in situ testing of multiple ''pineapple-slice'' shaped samples of simulated (nonradioactive) waste glasses, potential canister and overpack metals, brine, and rock salt in the salt repository environment at WIPP. This series of experiments involves multiple emplacements of various US and foreign glass waste forms (all nonradioactive) in contact with/interacting with several container metals, rock salt, brine, etc., all maintained at approximately 90 /+-/ 5/degree/C. The focus of this paper is on the technical aspects and operations of the MIIT experimental program, including assorted repository-relevant observations and experience gathered after more than two years of in situ test operation. As such, this is primarily a descriptive ''hardware'' and test operations document; test data are presented in parallel documents. 12 refs., 1 fig.

  3. Pilot-plant automation for catalytic hydrotreating of heavy residua

    SciTech Connect

    Akimoto, O.; Iwamoto, Y.; Kodama, S.; Takeuchi, C.

    1983-08-01

    Chiyoda's 52 microreactors, bench-scale test units and pilot plants are each used depending on the purpose of the process development for heavy oil upgrading. The microreactors are effective for catalyst screening. Heavier fractions such as asphaltene and sludge materials often disturbed steady state operation. Many unique devices for the test units and improvement of operation procedures make extended operation easy as well as increasing reliability. The computerized data acquisition and data filing systems minimize the work not only for operators but for all research personnel. Currently, about 40 pilot plant units are continuously running while the others are in preparation. Fully automated operation requires only three for data checking at night. In the daytime, seven operators take care of feed supply, product removal and condition changes. For start-up and shut-down, one operator can handle three microreactors, but only one bench-scale unit or pilot plant. Planning is underway for an improved start-up system for the pilot plants using personal computers. This system automatically sets feed rate and raises reactor temperature.

  4. 46 CFR 97.90-1 - Pilot boarding operation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Pilot boarding operation. 97.90-1 Section 97.90-1... OPERATIONS Pilot Boarding Operations § 97.90-1 Pilot boarding operation. (a) The master shall ensure that pilot boarding equipment is maintained as follows: (1) The equipment must be kept clean and in...

  5. 46 CFR 78.90-1 - Pilot boarding operation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Pilot boarding operation. 78.90-1 Section 78.90-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Pilot Boarding Operations § 78.90-1 Pilot boarding operation. (a) The master shall ensure that pilot...

  6. 46 CFR 78.90-1 - Pilot boarding operation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Pilot boarding operation. 78.90-1 Section 78.90-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Pilot Boarding Operations § 78.90-1 Pilot boarding operation. (a) The master shall ensure that pilot...

  7. 46 CFR 97.90-1 - Pilot boarding operation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Pilot boarding operation. 97.90-1 Section 97.90-1... OPERATIONS Pilot Boarding Operations § 97.90-1 Pilot boarding operation. (a) The master shall ensure that pilot boarding equipment is maintained as follows: (1) The equipment must be kept clean and in...

  8. TASK 3: PILOT PLANT GASIFIER TESTING

    SciTech Connect

    Fusselman, Steve

    2015-11-01

    Aerojet Rocketdyne (AR) has developed an innovative gasifier concept incorporating advanced technologies in ultra-dense phase dry feed system, rapid mix injector, and advanced component cooling to significantly improve gasifier performance, life, and cost compared to commercially available state-of-the-art systems. Design, fabrication and initial testing of the pilot plant compact gasifier was completed in 2011 by a development team led by AR. Findings from this initial test program, as well as subsequent gasifier design and pilot plant testing by AR, identified a number of technical aspects to address prior to advancing into a demonstration-scale gasifier design. Key among these were an evaluation of gasifier ability to handle thermal environments with highly reactive coals; ability to handle high ash content, high ash fusion temperature coals with reliable slag discharge; and to develop an understanding of residual properties pertaining to gasification kinetics as carbon conversion approaches 99%. The gasifier did demonstrate the ability to withstand the thermal environments of highly reactive Powder River Basin coal, while achieving high carbon conversion in < 0.15 seconds residence time. Continuous operation with the high ash fusion temperature Xinyuan coal was demonstrated in long duration testing, validating suitability of outlet design as well as downstream slag discharge systems. Surface area and porosity data were obtained for the Xinyuan and Xinjing coals for carbon conversion ranging from 85% to 97%, and showed a pronounced downward trend in surface area per unit mass carbon as conversion increased. Injector faceplate measurements showed no incremental loss of material over the course of these experiments, validating the commercially traceable design approach and supportive of long injector life goals. Hybrid testing of PRB and natural gas was successfully completed over a wide range of natural gas feed content, providing test data to anchor predictions

  9. Conceptual design of a black liquor gasification pilot plant

    SciTech Connect

    Kelleher, E. G.

    1987-08-01

    In July 1985, Champion International completed a study of kraft black liquor gasification and use of the product gases in a combined cycle cogeneration system based on gas turbines. That study indicated that gasification had high potential as an alternative to recovery boiler technology and offered many advantages. This paper describes the design of the plant, the construction of the pilot plant, and finally presents data from operation of the plant.

  10. Enzymes desulfurizing diesel fuel in pilot plant tests

    SciTech Connect

    Rhodes, A.K.

    1995-05-15

    Energy BioSystems Corp., The Woodlands, Texas, is collecting data from a new 5 b/d, continuous-operation, biocatalytic desulfurization (BDS) pilot plant. Hurdles to commercialization are catalyst activity, stability, and fermentation yield. Since 1990, however, Energy BioSystems Corp. (EBC) has made great strides in improving all three of these factors. The BDS process uses enzymes to remove organically bound sulfur from petroleum streams at mild temperatures and atmospheric pressure. Objectives of the pilot plant studies include: validating and refining the computer simulations used to control the process and establishing the process design basis. So far, the results from pilot plant operations have met expectations. The projected 45% desulfurization rate has been achieved, within a few percent. This rate was simply the target for the initial evaluation experiments, and that the process is capable of desulfurizing almost to extinction.

  11. PFBC plant operations

    SciTech Connect

    Kinsinger, F.L. )

    1992-01-01

    By operating a fluidized bed at elevated pressures, known as pressurized fluidized bed combustion (PFBC), advantages can be gained over atmospheric fluidized bed technology. Operating the process at elevated pressures allows electrical production from both the steam and the gas cycles which results in higher plant efficiencies. Additional benefits of operating at elevated pressures include the further reduction of emissions and the reduction in the physical size of the power plant. This paper describes the operation of a PFBC plant and its application at the Tidd clean coal demonstration project. Actual operating experience will be presented.

  12. 46 CFR 196.95-1 - Pilot boarding operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... used, a pilot ladder must be kept on deck adjacent to the hoist and available for immediate use. 46 CFR... 46 Shipping 7 2011-10-01 2011-10-01 false Pilot boarding operations. 196.95-1 Section 196.95-1... Pilot Boarding Operations § 196.95-1 Pilot boarding operations. (a) The master shall ensure that...

  13. PILOT PLANT DESIGN FOR CHEMICAL DESULFURIZATION OF COAL

    EPA Science Inventory

    The report gives results of a program for design and operational planning of facilities for testing the Meyers Process for chemical removal of pyritic sulfur from coal. Two options were evaluated: a complete pilot plant test of the process at a 0.5-ton per hour scale; and scale-u...

  14. PILOT PLANT PROJECT FOR REMOVING ORGANIC SUBSTANCES FROM DRINKING WATER

    EPA Science Inventory

    This report describes research on the European practice of preozonation of water to modify naturally occurring organics, followed by bacteria activated carbon (BAC) adsorption to remove trihalomethane precursors. A 100-gal/min pilot plant was designed, constructed and operated to...

  15. PILOT PLANT EVALUATION OF CRITICAL FLUID EXTRACTIONS FOR ENVIRONMENTAL APPLICATIONS

    EPA Science Inventory

    The report gives results of using liquefied-gas solvents in a pilot plant study to extract oil from mill scale (a steel mill by-product) and bleaching clay (a vegetable oil filtering media). The process, operated on a semi-batch cycle, involved two extractors and a solvent recove...

  16. PILOT PLANT EVALUATION OF ALTERNATIVE ACTIVATED SLUDGE SYSTEMS

    EPA Science Inventory

    Step feed, plug flow and complete mix activated sludge systems were compared on a pilot plant scale under similar operating conditions with the same municipal wastewater. The process loading to each system was varied over a wide range during the course of the investigation. Exten...

  17. Pretraining plant operators

    SciTech Connect

    George, T.J.; Claypoole, G.T.; Sherren, D.C.

    1980-06-01

    A new approach to training utility plant operators who can cope with the increasing technological demands of plant operation precedes industry training programs with formal entry-level training at educational and research facilities. This pretraining allows potential operators to be screened and offers an appropriate curriculum prior to employment. The educational guidelines can be set out in a manual and reinforced with qualification tests, counseling, and student assessments. Classroom instruction can give students a basic knowledge of plant procedures. Students who aim for managerial positions can continue beyond the vocational technical setting to university courses. (DCK)

  18. NCP oilseed processing pilot plant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are very few toll processors that can perform small-scale processing of oilseeds, oils and co-products in one location and none is situated in the Midwest. In the past, our pilot-scale trials were conducted in different facilities in the U.S. and Canada. To address this limitation, the NCP p...

  19. BIMOMASS GASIFICATION PILOT PLANT STUDY

    EPA Science Inventory

    The report gives results of a gasification pilot program using two biomass feedstocks: bagasse pellets and wood chips. he object of the program was to determine the properties of biomass product gas and its suitability as a fuel for gas-turbine-based power generation cycles. he f...

  20. 46 CFR 35.01-55 - Pilot boarding operation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Pilot boarding operation. 35.01-55 Section 35.01-55... Requirements § 35.01-55 Pilot boarding operation. (a) The master shall ensure that pilot boarding equipment is... or spreader step on a pilot ladder must be replaced in kind with an approved replacement step...

  1. 46 CFR 35.01-55 - Pilot boarding operation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Pilot boarding operation. 35.01-55 Section 35.01-55... Requirements § 35.01-55 Pilot boarding operation. (a) The master shall ensure that pilot boarding equipment is... or spreader step on a pilot ladder must be replaced in kind with an approved replacement step...

  2. 500-kW DCHX pilot-plant evaluation testing

    SciTech Connect

    Hlinak, A.; Lee, T.; Loback, J.; Nichols, K.; Olander, R.; Oshmyansky, S.; Roberts, G.; Werner, D.

    1981-10-01

    Field tests with the 500 kW Direct Contact Pilot Plant were conducted utilizing brine from well Mesa 6-2. The tests were intended to develop comprehensive performance data, design criteria, and economic factors for the direct contact power plant. The tests were conducted in two phases. The first test phase was to determine specific component performance of the DCHX, turbine, condensers and pumps, and to evaluate chemical mass balances of non-condensible gases in the IC/sub 4/ loop and IC/sub 4/ in the brine stream. The second test phase was to provide a longer term run at nearly fixed operating conditions in order to evaluate plant performance and identify operating cost data for the pilot plant. During these tests the total accumulated run time on major system components exceeded 1180 hours with 777 hours on the turbine prime mover. Direct contact heat exchanger performance exceeded the design prediction.

  3. The Second Opening of the Waste Isolation Pilot Plant? Review of Salient Characteristics and Unique Operational Considerations for Remote Handled Transuranic Waste

    SciTech Connect

    Anastas, G.; Walker, B.A.

    2003-02-24

    The U.S. Department of Energy (DOE) intends to dispose of remote handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP) beginning in 2005. (1) Four principle regulatory agencies are involved in the process of approving the RH TRU waste activities. The DOE is responsible for operational activities. The U. S. Nuclear Regulatory Commission (NRC) approves the design and use of shipping containers. The U.S. Environmental Protection Agency (EPA) is responsible for assuring safe and environmentally effective long-term disposal of the radioactive component of the waste and operational environmental monitoring. The New Mexico Environment Department (NMED) is responsible for the handling and the disposal of the non-radioactive hazardous component of the waste. The Environmental Evaluation Group (EEG) is responsible for performing independent technical oversight of all WIPP activities, and will comment on documents and practices for the various regulated RH TRU waste activities. The DOE has already obtained the necessary approvals from the NRC, and has submitted a Class 3 Modification request to the NMED. On December 16, 2002 the DOE Carlsbad Field Office (CBFO) provided the EPA with a notice of proposed change, in accordance with 40 CFR 194.4 (b) (3), to receive and dispose of remote handled transuranic waste. (2) WIPP procedures for the management of RH TRU waste at the site are being developed. While there are no issues with current NRC Certificates of Compliance for the RH TRU waste shipping containers, it is likely that there will be some controversy over other aspects of the currently planned RH TRU waste program. These issues may include: (1) the published RH TRU waste inventory, (2) the characterization of the radionuclide portion of the waste, for which one planned method is to use dose-to-Curie conversions, and (3) the plans to use bounding estimates for the hazardous portion of the WIPP waste, rather than measuring VOCs on a container

  4. Intro to NREL's Thermochemical Pilot Plant

    SciTech Connect

    Magrini, Kim

    2013-09-27

    NREL's Thermochemical Pilot Plant converts biomass into higher hydrocarbon fuels and chemicals.NREL is researching biomass pyrolysis. The lab is examining how to upgrade bio-oils via stabilization. Along with this, NREL is developing the engineering system requirements for producing these fuels and chemicals at larger scales.

  5. Argonne National Laboratory's Recycling Pilot Plant

    ScienceCinema

    Spangenberger, Jeff; Jody, Sam;

    2013-04-19

    Argonne has a Recycling Pilot Plant designed to save the non-metal portions of junked cars. Here, program managers demonstrate how plastic shredder residue can be recycled. (Currently these automotive leftovers are sent to landfills.) For more information, visit Argonne's Transportation Technology R&D Center Web site at http://www.transportation.anl.gov.

  6. Intro to NREL's Thermochemical Pilot Plant

    ScienceCinema

    Magrini, Kim

    2014-06-10

    NREL's Thermochemical Pilot Plant converts biomass into higher hydrocarbon fuels and chemicals.NREL is researching biomass pyrolysis. The lab is examining how to upgrade bio-oils via stabilization. Along with this, NREL is developing the engineering system requirements for producing these fuels and chemicals at larger scales.

  7. Argonne National Laboratory's Recycling Pilot Plant

    SciTech Connect

    Spangenberger, Jeff; Jody, Sam

    2009-01-01

    Argonne has a Recycling Pilot Plant designed to save the non-metal portions of junked cars. Here, program managers demonstrate how plastic shredder residue can be recycled. (Currently these automotive leftovers are sent to landfills.) For more information, visit Argonne's Transportation Technology R&D Center Web site at http://www.transportation.anl.gov.

  8. INSPECTIONS OF THE WASTE ISOLATION PILOT PLANT.

    EPA Science Inventory

    The Waste Isolation Pilot Plant (WIPP) is a disposal system for radioactive wastes. Developed by the Department of Energy (DOE), the WIPP is located near Carlsbad in southeastern New Mexico. The DOE is burying radioactive waste 2150 feet underground in an ancient layer of salt ...

  9. Improve safety with pilot operated relief valves

    SciTech Connect

    Emerson, G.

    1996-10-01

    A weakness inherent in balanced bellows pressure relief valves (PRVs) that can cause premature failure can be avoided by using pilot operated PRVs as an alternative. Now better able to handle adverse service conditions, pilot operated PRVs are suitable for a wide range of gas, liquid and mixed-phase services. Traditionally, however, balanced bellows PRVs have been applied as overpressure protection for three notable reasons: a constant PRV set pressure with the presence of variable, superimposed back pressure (at the PRV outlet prior to its opening); valve stability and adequate capacity when built-up back pressure (at the PRV outlet during its relief cycle) exceeds 10%; and spring and guided parts barriered from the process fluid. With these benefits in mind, balanced bellows PRVs have been generally adapted by many hydrocarbon processing companies that have experienced costly, and often dangerous, premature bellows failures. Corrosion, valve instability and/or bellows flutter are causes of these failures.

  10. Control of fractionation-area corrosion at SRC pilot plants

    SciTech Connect

    Keiser, J.R.; Judkins, R.R.; Baylor, V.B.; Canfield, D.R.; Barnett, W.P.

    1981-10-01

    Fractionating columns at the Fort Lewis, Washington, and Wilsonville, Alabama, Solvent Refined Coal pilot plants have experienced severe corrosion. This corrosion is most serious for materials exposed in the 230 to 250/sup 0/C (446 to 482/sup 0/F) range. Corrosion rates as high as 25 mm/year (1000 mils/year) on carbon steel and 6.4 mm/year (250 mils/year) on type 18-8 stainless steels have been observed. This corrosion problem has been studied at ORNL through exposure of coupons in the columns, analysis of failed components from the pilot plants, chemical analysis of liquids from the pilot plants, and operation of laboratory experiments. The in-plant exposure of coupons has shown that certain nickel-base alloys have adequate corrosion resistance for the environment. Chemical analyses of pilot plant liquids have shown that the presence of appreciable levels of water-soluble chloride is a necessary but not sufficient condition for these oils to be corrosive. By analysis of Fort Lewis and Wilpaw Shale (Kb), Fox Hills Sandstone (Kfh), and the Hell Creek formation (Khc). Anomaly No. 31 is over an area underlain by Recent alluvium (Qal).

  11. Performance of a second-generation PFB pilot plant combustor

    SciTech Connect

    Conn, R.; Van Hook, J.; Robertson, A.; Bonk, D.

    1995-07-01

    Second-generation pressurized fluidized bed combustion (PFBC) plants promise higher efficiency with lower costs of electricity and lower stack emissions. With a conventional reheat steam cycle and a 3% sulfur Pittsburgh No. 8 coal, a 45% efficiency (HHV of coal basis) and a cost of electricity 20% lower than that of a pulverized-coal-fired plant with stack gas scrubbing are being projected. This advanced plant concept incorporates three major steps: carbonization, circulating fluidized bed combustion and topping combustion. Foster Wheeler Development Corporation has constructed and operated a second-generation PFB pilot plant at the Foster Wheeler research facility (the John Blizard Research Center) in Livingston, New Jersey. Results of the pilot plant combustor portion of the test program supporting the development of this new type of plant are presented. The fuels evaluated in this test program included several char-sorbent residues produced in a pressurized carbonizer pilot plant and their parent coals. The data confirmed the viability of the PFB combustor concept in terms of both combustion and emissions performance.

  12. Waste Isolation Pilot Plant Salt Decontamination Testing

    SciTech Connect

    Rick Demmer; Stephen Reese

    2014-09-01

    On February 14, 2014, americium and plutonium contamination was released in the Waste Isolation Pilot Plant (WIPP) salt caverns. At the request of WIPP’s operations contractor, Idaho National Laboratory (INL) personnel developed several methods of decontaminating WIPP salt, using surrogate contaminants and also americium (241Am). The effectiveness of the methods is evaluated qualitatively, and to the extent possible, quantitatively. One of the requirements of this effort was delivering initial results and recommendations within a few weeks. That requirement, in combination with the limited scope of the project, made in-depth analysis impractical in some instances. Of the methods tested (dry brushing, vacuum cleaning, water washing, strippable coatings, and mechanical grinding), the most practical seems to be water washing. Effectiveness is very high, and it is very easy and rapid to deploy. The amount of wastewater produced (2 L/m2) would be substantial and may not be easy to manage, but the method is the clear winner from a usability perspective. Removable surface contamination levels (smear results) from the strippable coating and water washing coupons found no residual removable contamination. Thus, whatever is left is likely adhered to (or trapped within) the salt. The other option that shows promise is the use of a fixative barrier. Bartlett Nuclear, Inc.’s Polymeric Barrier System (PBS) proved the most durable of the coatings tested. The coatings were not tested for contaminant entrapment, only for coating integrity and durability.

  13. Waste Isolation Pilot Plant borehole data

    SciTech Connect

    1995-04-01

    Data pertaining to all the surface boreholes used at the WIPP site for site characterization hydrological testing and resource evaluation exist in numerous source documents. This project was initiated to develop a comprehensive data base that would include the data on all WIPP related surface boreholes from the Atomic Energy Commission, Waste Isolation Pilot Plant Energy Research and Development Administration, Department of Energy, and Hydrologic Test Borehole Programs. The data compiled from each borehole includes: operator, permit number, location, total depth, type of well, driller, drilling record, casing record, plugging schedule, and stratigraphic summary. There are six groups of boreholes contained in this data base, they are as follows: Commercially Drilled Potash Boreholes, Energy Department Wells, Geologic Exploration Boreholes, Hydrologic Test Boreholes, Potash Boreholes, and Subsurface Exploration Boreholes. There were numerous references which contained borehole data. In some cases the data found in one document was inconsistent with data in another document. In order to ensure consistency and accuracy in the data base, the same references were used for as many of the boreholes as possible. For example, all elevations and locations were taken from Compilation and Comparison of Test-Hole Location Surveys in the Vicinity of the WIPP Site. SAND 88-1065, Table 3-5. There are some sections where a data field is left blank. In this case, the information was either not applicable or was unavailable.

  14. High efficiency waste to energy facility -- Pilot plant design

    SciTech Connect

    Orita, Norihiko; Kawahara, Yuuzou; Takahashi, Kazuyoshi; Yamauchi, Toru; Hosoda, Takuo

    1998-07-01

    Waste To Energy facilities are commonly acceptable to the environment and give benefits in two main areas: one is a hygienic waste disposal and another is waste heat energy recovery to save fossil fuel consumption. Recovered energy is used for electricity supply, and it is required to increase the efficiency of refuse to electric energy conversion, and to spread the plant construction throughout the country of Japan, by the government. The national project started in 1992, and pilot plant design details were established in 1995. The objective of the project is to get 30% of energy conversion efficiency through the measure by raising the steam temperature and pressure to 500 C and 9.8 MPa respectively. The pilot plant is operating under the design conditions, which verify the success of applied technologies. This paper describes key technologies which were used to design the refuse burning boiler, which generates the highest steam temperature and pressure steam.

  15. Pilot plant becomes demonstration plant design

    SciTech Connect

    Robertson, A.; Hook, J. van; Burkhard, F.

    1995-11-01

    Advanced or second-generation pressurized fluidized bed combustion plants (APFBC) that generate electricity offer utilities the potential for significantly increased efficiencies with reduced costs of electricity and lower emissions while burning the nation`s abundant supply of high-sulfur coal. The three major objectives of Phase 3 are: test a 1.2-MWe equivalent carbonizer and Circulating Pressurized Fluidized Bed Combustor (CPFBC) with their associated ceramic candle filters as an integrated subsystem; evaluate the effect of coal-water paste feed on carbonizer performance; and revise the commercial plant performance and economic predictions where necessary. This report describes the project.

  16. Waste Isolation Pilot Plant Environmental Monitoring Plan

    SciTech Connect

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2004-02-19

    U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problem; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) has been written to contain the rationale and design criteria for the monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document any proposed changes in the environmental monitoring program. Guidance for preparation of Environmental Monitoring Plans is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance. The plan will be effective when it is approved by the appropriate Head of Field Organization or their designee. The plan discusses major environmental monitoring and hydrology activities at the WIPP and describes the programs established to ensure that WIPP operations do not

  17. The development of the MELiSSA Pilot Plant Facility

    NASA Astrophysics Data System (ADS)

    Godia, Francesc; Dussap, Claude-Gilles; Dixon, Mike; Peiro, Enrique; Fossen, Arnaud; Lamaze, Brigitte; Brunet, Jean; Demey, Dries; Mas-Albaigès, Joan L.

    MELiSSA (Micro-Ecological Life Support System Alternative) is a closed artificial ecosystem intended as a tool for the development of a bio-regenerative life support system for longterm manned missions. The MELiSSA loop is formed by five interconnected compartments, organized in three different loops (solid, liquid and gas). This compartments are microbial bioreactors and higher plant chambers. The MELiSSA Pilot Plant facility has been designed to achieve the preliminary terrestrial demonstration of the MELiSSA concept at pilot scale, using animals as a model for the crew compartent. The experience gained in the operation of such a facility will be highly relevant for planning future life support systems in Space. In this communication, the latests developments in the MELiSSA Pilot Plant will be reported. Particularly, the completion of the design phase and instalation of all the different compartments will be discussed in detail. Each of the compartments had to be designed and constructed according to very specific characteristics, associated to the biological systems to be cultured, as part of the complete MELiSSA loop (anerobic, oxygenic, thermophilic, heterotrophic, autotrophic, axenic, photosynthetic, etc.). Additionally, the sizing of each reactor (ranging from 8 to 100 Liters, depending of each particular compartment) should compile with the global integration scenario proposed, and with the final goal of connection of all compartments to provide a demonstration of the MELiSSA concept, and generate data for the design and operation of future biological life support systems.

  18. New "wet type" electron beam flue gas treatment pilot plant

    NASA Astrophysics Data System (ADS)

    Tan, Erdal; Ünal, Suat; Doğan, Alişan; Letournel, Eric; Pellizzari, Fabien

    2016-02-01

    We describe a new pilot plant for flue gas cleaning by a high energy electron beam. The special feature of this pilot plant is a uniquely designed reactor called VGS® (VIVIRAD Gas Scrubber, patent pending), that allows oxidation/reduction treating flue gas in a single step. The VGS® process combines a scrubber and an advanced oxidation/reduction process with the objective of optimizing efficiency and treatment costs of flue gas purification by electron accelerators. Promising treatment efficiency was achieved for SOx and NOx removal in early tests (99.2% and 80.9% respectively). The effects of various operational parameters on treatment performance and by-product content were investigated during this study.

  19. Operational problems experienced by single pilots in instrument meteorological conditions

    NASA Technical Reports Server (NTRS)

    Weislogel, S.

    1981-01-01

    The development and implementation of a search strategy to extract pertinent reports from the Aviation Safety Reporting System-2 (ASRS-2) database are described. For any particular occurence to be pertinent to the study, it must have satisfied the following conditions: the aircraft must be of the type usually flown by a single pilot; operation on an IFR flight plan in instrument meteorological conditions; pilot experienced an operational problem. The occurances consist of reports by the pilot about his own performance, by the pilot about the system performance, or by an air traffic controller about a pilot's performance.

  20. Five-megawatt geothermal-power pilot-plant project

    SciTech Connect

    Not Available

    1980-08-29

    This is a report on the Raft River Geothermal-Power Pilot-Plant Project (Geothermal Plant), located near Malta, Idaho; the review took place between July 20 and July 27, 1979. The Geothermal Plant is part of the Department of Energy's (DOE) overall effort to help commercialize the operation of electric power plants using geothermal energy sources. Numerous reasons were found to commend management for its achievements on the project. Some of these are highlighted, including: (a) a well-qualified and professional management team; (b) effective cost control, performance, and project scheduling; and (c) an effective and efficient quality-assurance program. Problem areas delineated, along with recommendations for solution, include: (1) project planning; (2) facility design; (3) facility construction costs; (4) geothermal resource; (5) drilling program; (6) two facility construction safety hazards; and (7) health and safety program. Appendices include comments from the Assistant Secretary for Resource Applications, the Controller, and the Acting Deputy Director, Procurement and Contracts Management.

  1. Waste Isolation Pilot Plant, Land Management Plan

    SciTech Connect

    Not Available

    1993-12-01

    To reflect the requirement of section 4 of the Wastes Isolation Pilot Plant Land Withdrawal Act (the Act) (Public Law 102-579), this land management plan has been written for the withdrawal area consistent with the Federal Land Policy and Management Act of 1976. The objective of this document, per the Act, is to describe the plan for the use of the withdrawn land until the end of the decommissioning phase. The plan identifies resource values within the withdrawal area and promotes the concept of multiple-use management. The plan also provides opportunity for participation in the land use planning process by the public and local, State, and Federal agencies. Chapter 1, Introduction, provides the reader with the purpose of this land management plan as well as an overview of the Waste Isolation Pilot Plant. Chapter 2, Affected Environment, is a brief description of the existing resources within the withdrawal area. Chapter 3, Management Objectives and Planned Actions, describes the land management objectives and actions taken to accomplish these objectives.

  2. Single pilot IFR operating problems determined from accidental data analysis

    NASA Technical Reports Server (NTRS)

    Forsyth, D. L.; Shaughnessy, J. D.

    1978-01-01

    The accident reports examined were restricted to instrument rated pilots flying in IFR weather. A brief examination was made of accidents which occurred during all phases of flight and which were due to all causes. A detailed examination was made of those accidents which involved a single pilot which occurred during the landing phases of flight, and were due to pilot error. Problem areas found include: (1) landing phase operations especially final approach, (2) pilot weather briefings, (3) night approaches in low IFR weather, (4) below minimum approaches, (5) aircraft icing, (6) imprecise navigation, (7) descending below minimum IFR altitudes, (8) fuel mismanagement, (9) pilot overconfidence, and (10) high pilot workload especially in twins. Some suggested areas of research included: (1) low cost deicing systems, (2) standardized navigation displays, (3) low cost low-altitude warning systems, (4) improved fuel management systems, (5) improved ATC communications, (6) more effective pilot training and experience acquisition methods, and (7) better weather data dissemination techniques.

  3. The waste isolation pilot plant regulatory compliance program

    SciTech Connect

    Mewhinney, J.A.; Kehrman, R.F.

    1996-06-01

    The passage of the WIPP Land Withdrawal Act of 1992 (LWA) marked a turning point for the Waste Isolation Pilot Plant (WIPP) program. It established a Congressional mandate to open the WIPP in as short a time as possible, thereby initiating the process of addressing this nation`s transuranic (TRU) waste problem. The DOE responded to the LWA by shifting the priority at the WIPP from scientific investigations to regulatory compliance and the completion of prerequisites for the initiation of operations. Regulatory compliance activities have taken four main focuses: (1) preparing regulatory submittals; (2) aggressive schedules; (3) regulator interface; and (4) public interactions

  4. Engineered Barriers in the Waste Isolation Pilot Plant

    SciTech Connect

    Ghose, Shankar

    2002-07-01

    The Waste Isolation Pilot Plant (WIPP) is a deep geological repository being developed by the Department of Energy as a research and disposal facility in the bedded salt deposit of New Mexico. WIPP is essentially an underground salt mine at 2150 feet (655 meters) below the surface and operates on multiple barrier mechanism. Engineered barriers provide an additional protective measure to prevent the movement of fluid towards the accessible environment. Four types of engineered barriers are used in the WIPP disposal system. This paper presents an analysis of the effectiveness of the engineered barriers in various repository environments. (authors)

  5. Waste Water Plant Operators Manual.

    ERIC Educational Resources Information Center

    Washington State Coordinating Council for Occupational Education, Olympia.

    This manual for sewage treatment plant operators was prepared by a committee of operators, educators, and engineers for use as a reference text and handbook and to serve as a training manual for short course and certification programs. Sewage treatment plant operators have a responsibility in water quality control; they are the principal actors in…

  6. Pre-Study Walkthrough with a Commercial Pilot for a Preliminary Single Pilot Operations Experiment

    NASA Technical Reports Server (NTRS)

    O'Connor-Dreher, Ryan; Roberts, Z.; Ziccardi, J.; Vu, K-P. L.; Strybel, T.; Koteskey, Robert William; Lachter, Joel B.; Vi Dao, Quang; Johnson, Walter W.; Battiste, V.

    2013-01-01

    The number of crew members in commercial flights has decreased to two members, down from the five-member crew required 50 years ago. One question of interest is whether the crew should be reduced to one pilot. In order to determine the critical factors involved in safely transitioning to a single pilot, research must examine whether any performance deficits arise with the loss of a crew member. With a concrete understanding of the cognitive and behavioral role of a co-pilot, aeronautical technologies and procedures can be developed that make up for the removal of the second aircrew member. The current project describes a pre-study walkthrough process that can be used to help in the development of scenarios for testing future concepts and technologies for single pilot operations. Qualitative information regarding the tasks performed by the pilots can be extracted with this technique and adapted for future investigations of single pilot operations.

  7. 46 CFR 196.95-1 - Pilot boarding operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... used, a pilot ladder must be kept on deck adjacent to the hoist and available for immediate use. 46 CFR... 46 Shipping 7 2010-10-01 2010-10-01 false Pilot boarding operations. 196.95-1 Section 196.95-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS...

  8. APS Alternative Fuel (Hydrogen) Pilot Plant - Monitoring System Report

    SciTech Connect

    James Francfort; Dimitri Hochard

    2005-07-01

    The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA), along with Electric Transportation Applications and Arizona Pubic Service (APS), is monitoring the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant to determine the costs to produce hydrogen fuels (including 100% hydrogen as well as hydrogen and compressed natural gas blends) for use by fleets and other operators of advanced-technology vehicles. The hydrogen fuel cost data will be used as benchmark data by technology modelers as well as research and development programs. The Pilot Plant can produce up to 18 kilograms (kg) of hydrogen per day by electrolysis. It can store up to 155 kg of hydrogen at various pressures up to 6,000 psi. The dispenser island can fuel vehicles with 100% hydrogen at 5,000 psi and with blends of hydrogen and compressed natural gas at 3,600 psi. The monitoring system was designed to track hydrogen delivery to each of the three storage areas and to monitor the use of electricity on all major equipment in the Pilot Plant, including the fuel dispenser island. In addition, water used for the electrolysis process is monitored to allow calculation of the total cost of plant operations and plant efficiencies. The monitoring system at the Pilot Plant will include about 100 sensors when complete (50 are installed to date), allowing for analysis of component, subsystems, and plant-level costs. The monitoring software is mostly off-the-shelve, with a custom interface. The majority of the sensors input to the Programmable Automation Controller as 4- to 20-mA analog signals. The plant can be monitored over of the Internet, but the control functions are restricted to the control room equipment. Using the APS general service plan E32 electric rate of 2.105 cents per kWh, during a recent eight-month period when 1,200 kg of hydrogen was produced and the plant capacity factor was 26%, the electricity cost to produce one kg of hydrogen was $3.43. However, the

  9. The Waste Isolation Pilot Plant: An International Center of Excellence

    SciTech Connect

    Matthews, Mark

    2003-02-25

    The United States Department of Energy's Carlsbad Field Office (CBFO) is responsible for the successful management of transuranic radioactive waste (TRUW) in the United States. TRUW is a long-lived radioactive waste/material (LLRM). CBFO's responsibilities includes the operation of the Waste Isolation Pilot Plant (WIPP), which is a deep geologic repository for the safe disposal of U.S. defense-related TRUW and is located 42 kilometers (km) east of Carlsbad, New Mexico. WIPP is the only deep-geological disposal site for LLRM that is operating in the world today. CBFO also manages the National Transuranic Waste Program (NTP), which oversees TRU waste management from generation to disposal. As of February 2003, approximately 1500 shipments of waste have been safely transported to the WIPP, which has been operating since March 1999.

  10. OPTIMIZATION OF TREATMENT PLANT OPERATION

    EPA Science Inventory

    A review of the literature on upgrading the operation of wastewater treatment plants covers 61 citations concerning management, operation, maintenance, and training; process control and modelling; instrumentation and automation; and energy savings.

  11. High Temperature Calcination - MACT Upgrade Equipment Pilot Plant Test

    SciTech Connect

    Richard D. Boardman; B. H. O'Brien; N. R. Soelberg; S. O. Bates; R. A. Wood; C. St. Michel

    2004-02-01

    About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste are stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Calcination at high-temperature conditions (600 C, with alumina nitrate and calcium nitrate chemical addition to the feed) is one of four options currently being considered by the Department of Energy for treatment of the remaining tank wastes. If calcination is selected for future processing of the sodium-bearing waste, it will be necessary to install new off-gas control equipment in the New Waste Calcining Facility (NWCF) to comply with the Maximum Achievable Control Technology (MACT) standards for hazardous waste combustors and incinerators. This will require, as a minimum, installing a carbon bed to reduce mercury emissions from their current level of up to 7,500 to <45 {micro}g/dscm, and a staged combustor to reduce unburned kerosene fuel in the off-gas discharge to <100 ppm CO and <10 ppm hydrocarbons. The staged combustor will also reduce NOx concentrations of about 35,000 ppm by 90-95%. A pilot-plant calcination test was completed in a newly constructed 15-cm diameter calciner vessel. The pilot-plant facility was equipped with a prototype MACT off-gas control system, including a highly efficient cyclone separator and off-gas quench/venturi scrubber for particulate removal, a staged combustor for unburned hydrocarbon and NOx destruction, and a packed activated carbon bed for mercury removal and residual chloride capture. Pilot-plant testing was performed during a 50-hour system operability test January 14-16, followed by a 100-hour high-temperature calcination pilot-plant calcination run January 19-23. Two flowsheet blends were tested: a 50-hour test with an aluminum-to-alkali metal molar ratio (AAR) of 2.25, and a 50-hour test with an AAR of 1.75. Results of the testing

  12. CONSTRUCTION PROGRESS PHOTO OF HOT PILOT PLANT (CPP640) LOOKING NORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO OF HOT PILOT PLANT (CPP-640) LOOKING NORTHEAST SHOWING DECK FORMING FOR SOUTH SECTION OF OPERATING CORRIDOR; CONSTRUCTION 44 PERCENT COMPLETE. INL PHOTO NUMBER NRTS-60-3624. Holmes, Photographer, 7/25/1960 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  13. AMMONIA ABSORPTION/AMMONIUM BISULFATE REGENERATION PILOT PLANT FOR FLUE GAS DESULFURIZATION

    EPA Science Inventory

    The report gives results of a pilot-plant study of the ammonia absorption/ammonium bisulfate regeneration process for removing SO2 from the stack gas of coal-fired power plants. Data were developed on the effects of such operating variable in the absorption of SO2 by ammoniacal l...

  14. Waste Isolation Pilot Plant 2001 Site Environmental Report

    SciTech Connect

    Westinghouse TRU Solutions, Inc.

    2002-09-20

    The United States (U.S.) Department of Energy's (DOE) Carlsbad Field Office (CBFO) and Westinghouse TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2001 Site Environmental Report summarizes environmental data from calendar year (CY) 2001 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above Orders and guidance documents require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED). The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2001. WIPP received its first shipment of waste on March 26, 1999. In 2001, no evidence was found of any adverse effects from WIPP on the surrounding environment.

  15. Waste Isolation Pilot Plant 1999 Site Environmental Report

    SciTech Connect

    Evans, Roy B.; Adams, Amy; Martin, Don; Morris, Randall C.; Reynolds, Timothy D.; Warren, Ronald W.

    2000-09-30

    The U.S. Department of Energy's (DOE)Carlsbad Area Office and the Westinghouse Waste Isolation Division (WID) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 1999 Site Environmental Report summarizes environmental data from calendar year 1999 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during calendar year 1999. WIPP received its first shipment of waste on March 26, 1999. In 1999, no evidence was found of any adverse effects from WIPP on the surrounding environment. Radionuclide concentrations in the environment surrounding WIPP were not statistically higher in 1999 than in 1998.

  16. Waste Isolation Pilot Plant CY 2000 Site Environmental Report

    SciTech Connect

    Westinghouse TRU Solutions, LLC; Environmental Science and Research Foundation, Inc.

    2001-12-31

    The U.S. Department of Energy's (DOE) Carlsbad Field Office and Westinghouse TRU Solutions, LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2000 Site Environmental Report summarizes environmental data from calendar year (CY) 2000 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T), and the Waste Isolation Pilot Plant Environmental Protect ion Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2000. The format of this report follows guidance offered in a June 1, 2001 memo from DOE's Office of Policy and Guidance with the subject ''Guidance for the preparation of Department of Energy (DOE) Annual Site Environmental Reports (ASERs) for Calendar Year 2000.'' WIPP received its first shipment of waste on March 26, 1999. In 2000, no evidence was found of any adverse

  17. Environmental monitoring at Kahe Point, Oahu, Hawaii for OTEC pilot-plant development

    SciTech Connect

    Dengler, A.T.; Harms, V.; Hartwig, E.O.; Quinby-Hunt, M.S.; Wilde, P.

    1982-08-01

    Two 40 MWe Ocean Thermal Energy Conversion (OTEC) Pilot Plant programs are in the initial phase of development near Kahe Point, Oahu, Hawaii. The two options being examined are: (1) a shelf-seated artificial island, connected via a causeway to Oahu, using stainless steel heat exchangers, with the thermal resource enhanced by effluent from a near-by power plant, ammonia working fluid and biocide (chlorine) cleaning; and (2) a shelf mount tower 1 mile off shore using submerged aluminum heat exchangers, R-22 working fluid, and slurry cleaning with biocide (chlorine) backup. Environmental Technical Requirements are described including: siting criteria; environmental design, and operational criteria; thermal resource evaluation and variability; physical, chemical, and biological data requirements; and regulatory requirements. Due to siting, design, and operational differences the proposed two pilot plant options have individual environmental monitoring criteria and requirements. Due to the close spatial proximity of the proposed pilot plants they also have required environmental data which are common to both.

  18. PILOT PLANT TESTING OF ELECTROSTATIC FABRIC FILTRATION AT HARRINGTON STATION

    EPA Science Inventory

    The paper gives results of pilot plant tests of electrostatic fabric filtration (ESFF) at Harrington Station, near Amarillo, Texas. In early 1983, the pilot baghouse at Harrington Station was modified to conduct a testing program for ESFF. The tests conducted there successfully d...

  19. The disturbed rock zone at the Waste Isolation Pilot Plant.

    SciTech Connect

    Hansen, Francis D.

    2003-12-01

    The Disturbed Rock Zone constitutes an important geomechanical element of the Waste Isolation Pilot Plant. The science and engineering underpinning the disturbed rock zone provide the basis for evaluating ongoing operational issues and their impact on performance assessment. Contemporary treatment of the disturbed rock zone applied to the evaluation of the panel closure system and to a new mining horizon improves the level of detail and quantitative elements associated with a damaged zone surrounding the repository openings. Technical advancement has been realized by virtue of ongoing experimental investigations and international collaboration. The initial portion of this document discusses the disturbed rock zone relative to operational issues pertaining to re-certification of the repository. The remaining sections summarize and document theoretical and experimental advances that quantify characteristics of the disturbed rock zone as applied to nuclear waste repositories in salt.

  20. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    SciTech Connect

    Not Available

    1993-12-31

    The DOE has mandated in DOE Order 5400.1 that its operations will be conducted in an environmentally safe manner. The Waste Isolation Pilot Plant (WIPP) will comply with DOE Order 5400.1 and will conduct its operations in a manner that ensures the safety of the environment and the public. This document outlines how the WIPP will protect and preserve groundwater within and surrounding the WIPP facility. Groundwater protection is just one aspect of the WIPP environmental protection effort. The WIPP groundwater surveillance program is designed to determine statistically if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will be determined and appropriate corrective action initiated.

  1. Diagnosing Physical Plant Operation

    ERIC Educational Resources Information Center

    McKay, B. P.; Smith, H. W.

    1972-01-01

    Describes a survey designed to help administrators evaluate functional aspects, adequacy of employee work areas, quality of housekeeping methods, maintenance response, interior and exterior appearances, alteration and renovation satisfaction, employee feelings about parking adequacy, plant security, and attraction and function of roads and…

  2. Waste Isolation Pilot Plant Environmental Monitoring Plan

    SciTech Connect

    None, None

    2008-03-12

    U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problems; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) explains the rationale and design criteria for the environmental monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document changes in the environmental monitoring program. Guidance for preparation of EMPs is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance.

  3. Waste isolation pilot plant disposal room model

    SciTech Connect

    Butcher, B.M.

    1997-08-01

    This paper describes development of the conceptual and mathematical models for the part of the Waste Isolation Pilot Plant (WIPP) repository performance assessment that is concerned with what happens to the waste over long times after the repository is decommissioned. These models, collectively referred to as the {open_quotes}Disposal Room Model,{close_quotes} describe the repository closure process during which deformation of the surrounding salt consolidates the waste. First, the relationship of repository closure to demonstration of compliance with the Environmental Protection Agency (EPA) standard (40 CFR 191 Appendix C) and how sensitive performance results are to it are examined. Next, a detailed description is provided of the elements of the disposal region, and properties selected for the salt, waste, and other potential disposal features such as backfill. Included in the discussion is an explanation of how the various models were developed over time. Other aspects of closure analysis, such as the waste flow model and method of analysis, are also described. Finally, the closure predictions used in the final performance assessment analysis for the WIPP Compliance Certification Application are summarized.

  4. Arizona Public Service - Alternative Fuel (Hydrogen) Pilot Plant Design Report

    SciTech Connect

    James E. Francfort

    2003-12-01

    Hydrogen has promise to be the fuel of the future. Its use as a chemical reagent and as a rocket propellant has grown to over eight million metric tons per year in the United States. Although use of hydrogen is abundant, it has not been used extensively as a transportation fuel. To assess the viability of hydrogen as a transportation fuel and the viability of producing hydrogen using off-peak electric energy, Pinnacle West Capital Corporation (PNW) and its electric utility subsidiary, Arizona Public Service (APS) designed, constructed, and operates a hydrogen and compressed natural gas fueling station—the APS Alternative Fuel Pilot Plant. This report summarizes the design of the APS Alternative Fuel Pilot Plant and presents lessons learned from its design and construction. Electric Transportation Applications prepared this report under contract to the U.S. Department of Energy’s Advanced Vehicle Testing Activity. The Idaho National Engineering and Environmental Laboratory manages these activities for the Advanced Vehicle Testing Activity.

  5. ITER LHe Plants Parallel Operation

    NASA Astrophysics Data System (ADS)

    Fauve, E.; Bonneton, M.; Chalifour, M.; Chang, H.-S.; Chodimella, C.; Monneret, E.; Vincent, G.; Flavien, G.; Fabre, Y.; Grillot, D.

    The ITER Cryogenic System includes three identical liquid helium (LHe) plants, with a total average cooling capacity equivalent to 75 kW at 4.5 K.The LHe plants provide the 4.5 K cooling power to the magnets and cryopumps. They are designed to operate in parallel and to handle heavy load variations.In this proceedingwe will describe the presentstatusof the ITER LHe plants with emphasis on i) the project schedule, ii) the plantscharacteristics/layout and iii) the basic principles and control strategies for a stable operation of the three LHe plants in parallel.

  6. Safeguards techniques in a pilot conditioning plant for spent fuel

    SciTech Connect

    Leitner, E.; Rudolf, K.; Weh, R. )

    1991-01-01

    The pilot conditioning plant at Gorleben, Germany, is designed as a multi-purpose plant. Its primary task is the conditioning of spent fuel assemblies into a form suitable for final disposal. As a pilot plant, it allows furthermore for the development and testing of various conditioning techniques. In terms of international safeguards, the pilot conditioning plant is basically considered an item facility. Entire fuel assemblies enter the plant in transport casks, whereas bins filled with fuel rods or canisters containing cut fuel rods leave the facility in final disposal packages (e.g. POLLUX). Each POLLUX final disposal package content is uniquely correlated to a definite number of fuel assemblies which have entered the conditioning process. For this type of facility, containment/surveillance (C/S) should take over the major role in nuclear material safeguards. This paper discusses the safeguards at the Gorleben plant.

  7. Sealing concepts for the Waste Isolation Pilot Plant (WIPP) site

    SciTech Connect

    Christensen, C.L.; Gulick, C.W.; Lambert, S.J.

    1982-09-01

    The Waste Isolation Pilot Plant (WIPP) facility is proposed for development in the southeast portion of the State of New Mexico. The proposed horizon is in bedded salt located approximately 2150 ft below the surface. The purpose of the WIPP is to provide an R&D facility to demonstrate the safe disposal of radioactive wastes resulting from defense activities of the United States. As such, it will include a disposal demonstration for transuranic (TRU) wastes and an experimental area to address issues associated with disposal of defense high level wastes (DHLW) in bedded salt. All DHLW used in the experiments are planned for retrieval at the termination of testing; the TRU waste can be permanently disposed of at the site after the pilot phase is complete. This report addresses only the Plugging and Sealing program, which will result in an adequate and acceptable technology for final sealing and decommissioning of the facility at the WIPP site. The actual plugging operations are intended to be conducted on a commercial industrial basis through contracts issued by the DOE. This report is one in a series that is based on a technical program of modeling, laboratory materials testing and field demonstration which will provide a defensible basis for the actual plugging operations to be conducted by the DOE for final closure of the facility.

  8. Presentation of the Cordy pilot plant

    NASA Astrophysics Data System (ADS)

    Lorrain, Bruno; Sobrero, R.

    1993-05-01

    This pilot has been set up to test the Avlis materials in conditions similar to those of a separator. It has therefore been designed as a corrosion loop where the feed is in gaseous phase and the circulation in liquid phase. The temperature is everywhere maintained above the uranium melting point. The facility includes an evaporation apparatus supplied by Leybold S.A., a set of 14 resistors controlled by a regulating system (Eurotherm software), and a cooled inner vessel aimed at the creation of a cold zone in the main vacuum vessel. A 60 kW scanning spot-focusing gun is used, set horizontally on the vacuum vessel. A coil and two magnetic arms set against the crucible create a constant and non homogeneous electromagnetic field which bends the electron beam towards the pool. The field configuration maintains a part of the back-scattered electrons in the crucible. The gun can be isolated from the vacuum vessel by a valve during the maintenance operations such as an emission filament replacement, the test materials being maintained in temperature and under vacuum. During the experiment a video camera records the condensation of the liquid metal in the upper part of the vessel and another camera gives a picture of the electron beam impact on the bath. Conclusions on the behavior of the materials are essentially post-mortem although the development of the gaseous phase is followed by mass spectrometry.

  9. Operate a Nuclear Power Plant.

    ERIC Educational Resources Information Center

    Frimpter, Bonnie J.; And Others

    1983-01-01

    Describes classroom use of a computer program originally published in Creative Computing magazine. "The Nuclear Power Plant" (runs on Apple II with 48K memory) simulates the operating of a nuclear generating station, requiring students to make decisions as they assume the task of managing the plant. (JN)

  10. Raft River binary-cycle geothermal pilot power plant final report

    SciTech Connect

    Bliem, C.J.; Walrath, L.F.

    1983-04-01

    The design and performance of a 5-MW(e) binary-cycle pilot power plant that used a moderate-temperature hydrothermal resource, with isobutane as a working fluid, are examined. Operating problems experienced and solutions found are discussed and recommendations are made for improvements to future power plant designs. The plant and individual systems are analyzed for design specification versus actual performance figures.

  11. SOXAL{trademark} pilot plant demonstration at Niagara Mohawk`s Dunkirk Station

    SciTech Connect

    Strangway, P.K.

    1995-12-31

    This paper describes a six-month, nominal three megawatt (3 MW) pilot plant demonstration of the SOXAL{trademark} regenerative flue gas desulfurization (FGD) process at Niagara Mohawk Power Corporation`s Dunkirk, NY coal-fired power station. Using a slip-stream of flue gas from an actual coal-fired boiler, the pilot plant successfully demonstrated the absorption of sulfur dioxide and the simultaneous regeneration of sodium-based scrubbing liquor via bipolar membrane electrodialysis. Sulfur dioxide removal efficiency of greater than 98% was routinely achieved. The absorption and regeneration stages were both proven reliable and controllable. The pilot plant was successfully operated in both continuous and decoupled modes of operation, thus demonstrating the flexibility of this process.

  12. Aviation Weather for Pilots and Flight Operations Personnel.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD. National Weather Service.

    The revised Aviation Weather book discusses each aspect of weather as it relates to aircraft operations and flight safety. The book is not an aircraft operating manual and omits all reference to specific weather services. Much of the book has been devoted to marginal, hazardous, and violent weather. It teaches pilots to learn to appreciate good…

  13. Decentralization of operating reactor licensing reviews: NRR Pilot Program

    SciTech Connect

    Hannon, J.N.

    1984-07-01

    This report, which has incorporated comments received from the Commission and ACRS, describes the program for decentralization of selected operating reactor licensing technical review activities. The 2-year pilot program will be reviewed to verify that safety is enhanced as anticipated by the incorporation of prescribed management techniques and application of resources. If the program fails to operate as designed, it will be terminated.

  14. Final environmental impact statement. Waste Isolation Pilot Plant

    SciTech Connect

    Not Available

    1980-10-01

    This volume contains the appendices for the Final Environmental Impact Statement for the Waste Isolation Pilot Plant (WIPP). Alternative geologic environs are considered. Salt, crystalline rock, argillaceous rock, and tuff are discussed. Studies on alternate geologic regions for the siting of WIPP are reviewed. President Carter's message to Congress on the management of radioactive wastes and the findings and recommendations of the interagency review group on nuclear waste management are included. Selection criteria for the WIPP site including geologic, hydrologic, tectonic, physicochemical compatability, and socio-economic factors are presented. A description of the waste types and the waste processing procedures are given. Methods used to calculate radiation doses from radionuclide releases during operation are presented. A complete description of the Los Medanos site, including archaeological and historic aspects is included. Environmental monitoring programs and long-term safety analysis program are described. (DMC)

  15. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    SciTech Connect

    Washington TRU Solutions

    2002-09-24

    U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program, requires each DOE site to prepare a Groundwater Protection Management Program Plan. This document fulfills the requirement for the Waste Isolation Pilot Plant (WIPP). This document was prepared by the Hydrology Section of the Westinghouse TRU Solutions LLC (WTS) Environmental Compliance Department, and it is the responsibility of this group to review the plan annually and update it every three years. This document is not, nor is it intended to be, an implementing document that sets forth specific details on carrying out field projects or operational policy. Rather, it is intended to give the reader insight to the groundwater protection philosophy at WIPP.

  16. Fossil power plant operating procedures

    SciTech Connect

    Not Available

    1984-01-01

    This three-volume text presents the theory and interaction of all components within a system. Startup, normal, emergency, and shutdown operating techniques are discussed for each component and subsystem within the sixteen systems addressed. In addition to the plant systems, pump operation, fluid piping, instrumentation and control, and piping and instrument drawings (P and IDs) are covered.

  17. Long-term operation of a partial nitritation pilot plant treating leachate with extremely high ammonium concentration prior to an anammox process.

    PubMed

    Ganigué, Ramon; Gabarró, Jordi; Sànchez-Melsió, Alexandre; Ruscalleda, Maël; López, Helio; Vila, Xavier; Colprim, Jesús; Balaguer, M Dolors

    2009-12-01

    The goal of this work was to demonstrate the feasibility of treating leachate with high ammonium concentrations using the SBR technology, as a preparative step for the treatment in an anammox reactor. The cycle was based on a step-feed strategy, alternating anoxic and aerobic conditions. Results of the study verified the viability of this process, treating an influent with concentration up to 5000 mg N-NH(4)(+) L(-1). An effluent with about 1500-2000 mg N-NH(4)(+) L(-1) and 2000-3000 mg N-NO(2)(-) L(-1) was achieved, presenting a nitrite to ammonium molar ratio close to the 1.32 required by the anammox. Furthermore, taking advantage of the biodegradable organic matter, the operational strategy allowed denitrifying about 200 mg N-NO(2)(-) L(-1). The extreme operational conditions during the long-term resulted on the selection of a sole AOB phylotype, identified by molecular techniques as Nitrosomonas sp. IWT514. PMID:19577465

  18. The DOE Bioethanol Pilot Plant: A Tool for Commercialization

    SciTech Connect

    Brown, H.

    2000-08-31

    With funding from the DOE National Biofuels Program, NREL has constructed a fermentation pilot plant facility. The plant was explicitly designed to assist industry and outside researchers develop commercial bioprocessing technology. Companies that are exploring biofuels technologies can utilize the facilities and expertise of NREL through a variety of flexible business-venture arrangements.

  19. INTERIOR PHOTO OF HOT PILOT PLANT SECOND FLOOR DEPICTING DETAIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR PHOTO OF HOT PILOT PLANT SECOND FLOOR DEPICTING DETAIL OF SHIELDED CAVE (CPP-640) LOOKING SOUTHWEST. PHOTO TAKEN FROM NORTH. INL PHOTO NUMBER HD-54-40-2. Mike Crane, Photographer, 7/2006 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  20. ARCHITECTURAL ROOF PLAN AND WESTSOUTHEAST ELEVATIONS OF HOT PILOT PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ARCHITECTURAL ROOF PLAN AND WEST-SOUTHEAST ELEVATIONS OF HOT PILOT PLANT (CPP-640). INL DRAWING NUMBER 200-0640-00-279-111680. ALTERNATE ID NUMBER 8952-CPP-640-A-3. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  1. ARCHITECTURAL SECTIONS A, B, C, D, OF HOT PILOT PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ARCHITECTURAL SECTIONS A, B, C, D, OF HOT PILOT PLANT (CPP-640). INL DRAWING NUMBER 200-0640-00-279-111681. ALTERNATE ID NUMBER 8952-CPP-640-A-5. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  2. FATE OF SEX HORMONES IN TWO PILOT-SCALE MUNICIPAL WASTEWATER TREATMENT PLANTS: CONVENTIONAL TREATMENT

    EPA Science Inventory

    The fate of seven sex hormones (estrone (E1), estradiol (E2), estriol (E3), ethinylestradiol (EE2), testosterone, androstenedione, and progesterone) was determined in two pilot-scale wastewater treatment plants operated under conventional loading conditions. The levels of hormon...

  3. Design, test and commercialization considerations of OTEC pilot plant riser cables

    SciTech Connect

    Garrity, T. F.; Eaton, R.; Dalton, T.; Pieroni, C.; Walsh, J. P.

    1980-01-01

    Discussion addresses riser cable system development for OTEC pilot plants transmitting power in the range of 10 to 40 MW. Specifically, design, testing and status of riser cable system development are reviewed. Further discussion encompasses unique technical, hardware and operational considerations associated with the commercialization of riser cable systems.

  4. HITACHI ZOSEN NOX FLUE GAS TREATMENT PROCESS. VOLUME 1. PILOT PLANT EVALUATION

    EPA Science Inventory

    The report gives results of a pilot plant evaluation of the Hitachi Zosen NOx flue gas treatment process. The project--evaluating selective catalytic reduction (SCR) of NOx on a coal-fired source--operated for 1-1/2 years. A newly developed catalyst, NOXNON 600, was successfully ...

  5. FIRST TRIALS OF CHEMICALLY ACTIVE FLUIDIZED-BED (CAFB) PILOT PLANT ON COAL

    EPA Science Inventory

    The report gives results of a minirun, carried out on a 0.75-MWe continuous, chemically active fluidized-bed (CAFB) pilot plant during July-August 1976, as part of a program to extend the CAFB process to operate on coal. After 8.5 hours of gasification on Texas lignite and Illino...

  6. Use of a Modern Polymerization Pilot-Plant for Undergraduate Control Projects.

    ERIC Educational Resources Information Center

    Mendoza-Bustos, S. A.; And Others

    1991-01-01

    Described is a project where students gain experience in handling large volumes of hazardous materials, process start up and shut down, equipment failures, operational variations, scaling up, equipment cleaning, and run-time scheduling while working in a modern pilot plant. Included are the system design, experimental procedures, and results. (KR)

  7. Integrated Pilot Plant for a Large Cold Crucible Induction Melter

    SciTech Connect

    Do Quang, R.; Jensen, A.; Prod'homme, A.; Fatoux, R.; Lacombe, J.

    2002-02-26

    COGEMA has been vitrifying high-level liquid waste produced during nuclear fuel reprocessing on an industrial scale for over 20 years, with two main objectives: containment of the long lived fission products and reduction of the final volume of waste. Research performed by the French Atomic Energy Commission (CEA) in the 1950s led to the selection of borosilicate glass as the most suitable containment matrix for waste from spent nuclear fuel and to the development of the induction melter technology. This was followed by the commissioning of the Marcoule Vitrification Facility (AVM) in 1978. The process was implemented at a larger scale in the late 1980s in the R7 and T7 facilities of the La Hague reprocessing plant. COGEMA facilities have produced more than 11,000 high level glass canisters, representing more than 4,500 metric tons of glass and 4.5 billion curies. To further improve the performance of the vitrification lines in the R7 and T7 facilities, the CEA and COGEMA have been developing the Cold Crucible Melter (CCM) technology since the 1980s. This technology benefits from the 20 years of COGEMA HLW vitrification experience and ensures a virtually unlimited equipment service life and extensive flexibility in dealing with different types of waste. The high specific power directly transferred by induction to the melt allows high operating temperatures without any impact on the process equipment. In addition, the mechanical stirring of the melter significantly reduces operating constraints. COGEMA is already providing the CCM technology to international customers for nuclear and non-nuclear applications and plans to implement it in the La Hague vitrification plant for the vitrification of highly concentrated and corrosive solutions produced by uranium/molybdenum fuel reprocessing. The paper presents the CCM project that led to the building and start-up of this evolutionary and flexible pilot plant. It also describes the plant's technical characteristics and

  8. BIOMASS GASIFICATION PILOT STUDY PLANT STUDY

    EPA Science Inventory

    The report gives results of a gasification pilot program using two biomass feedstocks: bagasse pellets and wood chips. he object of the program was to determine the properties of biomass product gas and its suitability as a fuel for gas-turbine-based power generation cycles. he f...

  9. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    SciTech Connect

    Westinghouse TRU Solutions

    2000-12-01

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 1998, to March 31, 2000. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, and amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Area Office's (hereinafter the ''CAO'') compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. An issue was identified in the 1998 BECR relating to a potential cross-connection between the fire-water systems and the site domestic water system. While the CAO and its managing and operating contractor (hereinafter the ''MOC'') believe the site was always in compliance with cross-connection control requirements, hardware and procedural upgrades w ere implemented in March 1999 to strengthen its compliance posture. Further discussion of this issue is presented in section 30.2.2 herein. During this reporting period WIPP received two letters and a compliance order alleging violation of certain requirements outlined in section 9(a)(1) of the LWA. With the exception of one item, pending a final decision by the New Mexico Environment Department (NMED), all alleged violations have been resolved without the assessment of fines or penalties. Non-mixed TRU waste shipments began on March 26, 1999. Shipments continued through November 26, 1999, the effective date of the Waste Isolation Pilot Plant Hazardous Waste Facility Permit (NM4890139088-TSDF). No shipments regulated under the Hazardous Waste Facility Permit were received at WIPP during this BECR reporting period.

  10. The ATLAS PanDA Pilot in Operation

    NASA Astrophysics Data System (ADS)

    Nilsson, P.; Caballero, J.; De, K.; Maeno, T.; Stradling, A.; Wenaus, T.; ATLAS Collaboration

    2011-12-01

    The Production and Distributed Analysis system (PanDA) [1-2] was designed to meet ATLAS [3] requirements for a data-driven workload management system capable of operating at LHC data processing scale. Submitted jobs are executed on worker nodes by pilot jobs sent to the grid sites by pilot factories. This paper provides an overview of the PanDA pilot [4] system and presents major features added in light of recent operational experience, including multi-job processing, advanced job recovery for jobs with output storage failures, gLExec [5-6] based identity switching from the generic pilot to the actual user, and other security measures. The PanDA system serves all ATLAS distributed processing and is the primary system for distributed analysis; it is currently used at over 100 sites worldwide. We analyze the performance of the pilot system in processing real LHC data on the OSG [7], EGI [8] and Nordugrid [9-10] infrastructures used by ATLAS, and describe plans for its evolution.

  11. Installation of the Pulse-Plate Column Pilot Plant

    SciTech Connect

    Nick R. Mann

    2009-07-01

    There are three primary types of solvent extraction equipment utilized in the nuclear industry for reprocessing of used nuclear fuel; pulse columns, mixer-settlers, and centrifugal contactors. Considerable research and development has been performed at the INL and throughout the DOE complex on the application of centrifugal contactors for used fuel reprocessing and these contactors offer many significant advantages. However, pulse columns have been used extensively in the past in throughout the world for aqueous separations processes and remain the preferred equipment by many commercial entities. Therefore, a pulse-plate column pilot plant has been assembled as part of the Advanced Fuel Cycle Initiative to support experimentation and demonstration of pulse column operation. This will allow the training of personnel in the operation of pulse columns. Also, this capability will provide the equipment to allow for research to be conducted in the operation of pulse columns with advanced solvents and processes developed as part of the fuel cycle research and development being performed in the AFCI program.

  12. Assessing the Flipped Classroom in Operations Management: A Pilot Study

    ERIC Educational Resources Information Center

    Prashar, Anupama

    2015-01-01

    The author delved into the results of a flipped classroom pilot conducted for an operations management course module. It assessed students' perception of a flipped learning environment after making them experience it in real time. The classroom environment was construed using a case research approach and students' perceptions were studied using…

  13. [Pilot plant for microbiological synthesis. Engineer and technological aspects].

    PubMed

    Lukanin, A V

    2007-01-01

    A biotechnological pilot plant (National Research Centre of Antibiotics) and its technical potentialities in production of various biosynthetic products are described. Some engineer and technological aspects of the fermentation equipment and particularly sterilization of the media and apparatus, fermentation broth aeration under sterile conditions and control of biosynthesis technological parameters (t degrees, pO2, P, pH, foaming, etc.) are considered. The pilot plant is designed for fermentation processes under aseptic conditions with the use practically of any object, from bacteria to tissue cultures. PMID:20583471

  14. 14 CFR 61.58 - Pilot-in-command proficiency check: Operation of aircraft requiring more than one pilot flight...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... military flight check required for a pilot in command with instrument privileges, in an aircraft that the military requires to be operated by more than one pilot flight crewmember. (e) A check or test described in... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Pilot-in-command proficiency...

  15. 14 CFR 61.58 - Pilot-in-command proficiency check: Operation of aircraft requiring more than one pilot flight...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... military flight check required for a pilot in command with instrument privileges, in an aircraft that the military requires to be operated by more than one pilot flight crewmember. (e) A check or test described in... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Pilot-in-command proficiency...

  16. Final report on the power production phase of the 10 MW/sub e/ Solar Thermal Central Receiver Pilot Plant

    SciTech Connect

    Radosevich, L.G.

    1988-03-01

    This report describes the evaluations of the power production testing of Solar One, the 10 MW/sub e/ Solar Thermal Central Receiver Pilot Plant near Barstow, California. The Pilot Plant, a cooperative project of the US Department of Energy and utility firms led by the Southern California Edison Company, began a three year period of power production operation in August 1984. During this period, plant performance indicators, such as capacity factor, system efficiency, and availability, were studied to assess the operational capability of the Pilot Plant to reliably supply electrical power. Also studied was the long-term performance of such key plant components as the heliostats and the receiver. During the three years of power production, the Pilot Plant showed an improvement in performance. Considerable increases in capacity factor, system efficiency, and availability were achieved. Heliostat operation was reliable, and only small amounts of mirror corrosion were observed. Receiver tube leaks did occur, however, and were the main cause of the plant's unscheduled outages. The Pilot Plant provided valuable lessons which will aid in the design of future solar central receiver plants. 53 refs., 46 figs., 4 tabs.

  17. Pilot gasification and hot gas cleanup operations

    SciTech Connect

    Rockey, J.M.; Galloway, E.; Thomson, T.A.; Rutten, J.; Lui, A.

    1995-12-31

    The Morgantown Energy Technology Center (METC) has an integrated gasification hot gas cleanup facility to develop gasification, hot particulate and desulfurization process performance data for IGCC systems. The objective of our program is to develop fluidized-bed process performance data for hot gas desulfurization and to further test promising sorbents from lab-scale screening studies at highpressure (300 psia), and temperatures (1,200{degrees}F) using coal-derived fuel gases from a fluid-bed gasifier. The 10-inch inside diameter (ID), nominal 80 lb/hr, air blown gasifier is capable of providing about 300 lb/hr of low BTU gas at 1,000{degrees}F and 425 psig to downstream cleanup devices. The system includes several particle removal stages, which provide the capability to tailor the particle loading to the cleanup section. The gas pressure is reduced to approximately 300 psia and filtered by a candle filter vessel containing up to four filter cartridges. For batch-mode desulfurization test operations, the filtered coal gas is fed to a 6-inch ID, fluid-bed reactor that is preloaded with desulfurization sorbent. Over 400 hours of gasifier operation was logged in 1993 including 384 hours of integration with the cleanup rig. System baseline studies without desulfurization sorbent and repeatability checks with zinc ferrite sorbent were conducted before testing with the then most advanced zinc titanate sorbents, ZT-002 and ZR-005. In addition to the desulfurization testing, candle filters were tested for the duration of the 384 hours of integrated operation. One filter was taken out of service after 254 hours of filtering while another was left in service. At the conclusion of testing this year it is expected that 3 candles, one each with 254, 530, and 784 hours of filtering will be available for analysis for effects of the exposure to the coal gas environment.

  18. Quantifying Pilot Visual Attention in Low Visibility Terminal Operations

    NASA Technical Reports Server (NTRS)

    Ellis, Kyle K.; Arthur, J. J.; Latorella, Kara A.; Kramer, Lynda J.; Shelton, Kevin J.; Norman, Robert M.; Prinzel, Lawrence J.

    2012-01-01

    Quantifying pilot visual behavior allows researchers to determine not only where a pilot is looking and when, but holds implications for specific behavioral tracking when these data are coupled with flight technical performance. Remote eye tracking systems have been integrated into simulators at NASA Langley with effectively no impact on the pilot environment. This paper discusses the installation and use of a remote eye tracking system. The data collection techniques from a complex human-in-the-loop (HITL) research experiment are discussed; especially, the data reduction algorithms and logic to transform raw eye tracking data into quantified visual behavior metrics, and analysis methods to interpret visual behavior. The findings suggest superior performance for Head-Up Display (HUD) and improved attentional behavior for Head-Down Display (HDD) implementations of Synthetic Vision System (SVS) technologies for low visibility terminal area operations. Keywords: eye tracking, flight deck, NextGen, human machine interface, aviation

  19. Final Report: RPP-WTP Semi-Integrated Pilot Plant

    SciTech Connect

    Duignan, M. R.; Adamson, D. J.; Calloway, T. B.; Fowley, M. D.; Qureshi, Z. H.; Steimke, J. L.; Williams, M. R.; Zamecnik, J. R.

    2005-06-01

    In August 2004 the last of the SIPP task testing ended--a task that formally began with the issuance of the RPP-WTP Test Specification in June 2003. The planning for the task was a major effort in itself and culminated with the input of all stakeholders, DOE, Bechtel National, Inc., Washington Group International, in October 2003 at Hanford, WA (Appendix A). This report documents the activities carried out as a result of that planning. Campaign IV, the fourth and final step towards the Semi-Integrated Pilot Plant (SIPP) task, conducted by the Savannah River National Laboratory (SRNL) at the Savannah River Site, was to take the several recycle streams produced in Campaign III, the third step of the task, and combine them with other simulated recycle and chosen waste streams. (Campaign III was fed recycles from Campaign II, as Campaign II was fed by Campaign I.) The combined stream was processed in a fashion that mimicked the pretreatment operations of the DOE River Protection Project--Waste Treatment and Immobilization Plant (RPP-WTP) with the exception of the Ion Exchange Process. The SIPP task is considered semi-integrated because it only deals with the pretreatment operations of the RPP-WTP. That is, the pilot plant starts by receiving waste from the tank farm and ends when waste is processed to the point of being sent for vitrification. The resulting pretreated LAW and HLW simulants produced by the SIPP were shipped to VSL (Vitreous State Laboratory) and successfully vitrified in pilot WTP melters. Within the SIPP task these steps are referred to as Campaigns and there were four Campaigns in all. Campaign I, which is completely different than other campaigns, subjected a simulant of Hanford Tank 241-AY-102/C-106 (AY102) waste to cross-flow ultrafiltration only and in that process several important recycle streams were produced as a result of washing the simulant and cleaning the cross-flow filter. These streams were fed to subsequent campaigns and that work was

  20. Virtual pilot plants: What is the goal and what technology development is needed?

    SciTech Connect

    Bryden, K.M.; O'Brien, T.J.

    2000-07-01

    Within the coal utilization industry, moving virtual reality from a visualization tool to a design tool has the potential to reduce design time and cost, improve plant design and operation, and reduce the risk associated with new technologies. The goal of developing this technology is to enable an engineering design team based in disparate geographical locations to interact simultaneously with the virtual pilot plant and to see immediately the effect on performance of their design changes. In order to promote this capability, the US Department of Energy has identified virtual demonstrations as one of the key supporting technologies needed for the development of Vision 21 plants. This will require that many computational intensive technologies be enhanced and closely integrated: computer aided design/engineering (CAD/CAE), computational fluid dynamics (CFD), finite element analysis, intelligent process control, systems analysis, information management, and advanced visualization. Virtual pilot plants will create a design environment that will be a low-cost alternative to a physical pilot plant, allowing changes in plant operation and design to be rapidly and inexpensively tested. Following construction, the virtual environment will be used as the front-end of a total information system containing all of the design, construction, operation, research scale, pilot scale, and economic information available on the system. The information will be intuitively accessible by going to the place of interest in the virtual plant and entering the dimension of interest. The goal of the virtual demonstration will be to provide easily accessible information at any level of detail to anyone who needs it from policy maker to operating engineer.

  1. The design of future central receiver power plants based on lessons learned from the Solar One Pilot Plant

    SciTech Connect

    Kolb, G.J.

    1991-01-01

    The 10-MW{sub e} Solar One Pilot Plant was the world's largest solar central receiver power plant. During its power production years it delivered over 37,000 MWhrs (net) to the utility grid. In this type of electric power generating plant, large sun-tracking mirrors called heliostats reflect and concentrate sunlight onto a receiver mounted on top a of a tower. The receiver transforms the solar energy into thermal energy that heats water, turning it into superheated steam that drives a turbine to generate electricity. The Solar One Pilot Plant successfully demonstrated the feasibility of generating electricity with a solar central receiver power plant. During the initial 2 years the plant was tested and 4 years the plant was operated as a power plant, a great deal of data was collected relating to the efficiency and reliability of the plant's various systems. This paper summarizes these statistics and compares them to goals developed by the US Department of Energy. Based on this comparison, improvements in the design and operation of future central receiver plants are recommended. Research at Sandia National Laboratories and the US utility industry suggests that the next generation of central receiver power plants will use a molten salt heat transfer fluid rather than water/steam. Sandia has recently completed the development of the hardware needed in a molten salt power plant. Use of this new technology is expected to solve many of the performance problems encountered at Solar One. Projections for the energy costs from these future central receiver plants are also presented. For reference, these projections are compared to the current energy costs from the SEGS parabolic trough plants now operating in Southern California.

  2. The design of future central receiver power plants based on lessons learned from the Solar One Pilot Plant

    NASA Astrophysics Data System (ADS)

    Kolb, G. J.

    The 10-MW(sub e) Solar One Pilot Plant was the world's largest solar central receiver power plant. During its power production years it delivered over 37,000 MWhrs (net) to the utility grid. In this type of electric power generating plant, large sun-tracking mirrors called heliostats reflect and concentrate sunlight onto a receiver mounted on top of a tower. The receiver transforms the solar energy into thermal energy that heats water, turning it into superheated steam that drives a turbine to generate electricity. The Solar One Pilot Plant successfully demonstrated the feasibility of generating electricity with a solar central receiver power plant. During the initial 2 years the plant was tested and 4 years the plant was operated as a power plant, a great deal of data was collected relating to the efficiency and reliability of the plant's various systems. This paper summarizes these statistics and compares them to goals developed by the U.S. Department of Energy. Based on this comparison, improvements in the design and operation of future central receiver plants are recommended. Research at Sandia National Laboratories and the U.S. utility industry suggests that the next generation of central receiver power plants will use a molten salt heat transfer fluid rather than water/steam. Sandia has recently completed the development of the hardware needed in a molten salt power plant. Use of this new technology is expected to solve many of the performance problems encountered at Solar One. Projections for the energy costs from these future central receiver plants are also presented. For reference, these projections are compared to the current energy costs from the SEGS parabolic trough plants now operating in Southern California.

  3. Hydrothermal Oxidation Hazardous Waste Pilot Plant Test Bed

    SciTech Connect

    Welland, H.; Reed, W.; Valentich, D.; Charlton, T.

    1995-03-01

    The Idaho National Engineering Laboratory (INEL) is fabricating a Hydrothermal Oxidation (HTO) Hazardous Waste Pilot Plant Test Bed to evaluate and test various HTO reactor concepts for initial processing of the U.S. Department of Energy (DOE) mixed wastes. If the HTO process is successful it will significantly reduce the volume of DOE mixed wastes by destroying the organic constituents.

  4. NREL Bioprocessing Pilot Plant: Available for Industrial Use

    SciTech Connect

    Not Available

    2003-10-01

    Microbial bioprocessing can produce a myriad of valuable products. If you are an industry needing small- or large-scale trials to test or advance a bioprocessing technology, National Bioenergy Center (NBC) facilities at the National Renewable Energy Laboratory (NREL) in Golden, Colorado, may allow you to use world-class systems and expertise without the expense of building your own pilot plant.

  5. Dissolution Studies With Pilot Plant and Actual INTEC Calcines

    SciTech Connect

    Herbst, Ronald Scott; Garn, Troy Gerry

    1999-04-01

    The dissolution of Idaho Nuclear Technology and Engineering Center (INTEC) pilot plant calcines was examined to determine solubility of calcine matrix components in acidic media. Two representatives pilot plant calcine types were studied: Zirconia calcine and Zirconia/ Sodium calcine. Dissolution of these calcines was evaluated using lower initial concentrations of nitric acid than used in previous tests to decrease the [H+] concentration in the final solutions. Lower [H+] concentrations contribute to more favorable TRUEX/SREX solvent extraction flowsheet performance. Dissolution and analytical results were also obtained for radioactive calcines produced using high sodium feeds blended with non-radioactive A1(NO3)3 solutions to dilute the sodium concentration and prevent bed agglomeration during the calcination process. Dissolution tests indicated >95 wt. % of the initial calcine mass can be dissolved using the baseline dissolution procedure, with the exception that higher initial nitric acid concentrations are required. The higher initial acid concentration is required for stoichiometric dissolution of the oxides, primarily aluminum oxide. Statistically designed experiments using pilot plant calcine were performed to determine the effect of mixing rate on dissolution efficiency. Mixing rate was determined to provide minimal effects on wt. % dissolution. The acid/calcine ratio and temperature were the predominate variables affecting the wt. % dissolution, a result consistent with previous studies using other similar types of pilot plant calcines.

  6. Dissolution studies with pilot plant and actual INTEC calcines

    SciTech Connect

    Herbst, R.S.; Garn, T.G.

    1999-04-01

    The dissolution of Idaho Nuclear Technology and Engineering Center (INTEC) pilot plant calcines was examined to determine solubility of calcine matrix components in acidic media. Two representatives pilot plant calcine types were studied: Zirconia calcine and Zirconia/Sodium calcine. Dissolution of these calcines was evaluated using lower initial concentrations of nitric acid than used in previous tests to decrease the [H+] concentration in the final solutions. Lower [H+] concentrations contribute to more favorable TRUEX/SREX solvent extraction flowsheet performance. Dissolution and analytical results were also obtained for radioactive calcines produced using high sodium feeds blended with non-radioactive Al(NO{sub 3}){sub 3} solutions to dilute the sodium concentration and prevent bed agglomeration during the calcination process. Dissolution tests indicated {gt}95 wt.% of the initial calcine mass can be dissolved using the baseline dissolution procedure, with the exception that higher initial nitric acid concentrations are required. The higher initial acid concentration is required for stoichiometric dissolution of the oxides, primarily aluminum oxide. Statistically designed experiments using pilot plant calcine were performed to determine the effect of mixing rate on dissolution efficiency. Mixing rate was determined to provide minimal effects on wt.% dissolution. The acid/calcine ratio and temperature were the predominate variables affecting the wt.% dissolution, a result consistent with previous studies using other similar types of pilot plant calcines.

  7. 7 CFR 1412.48 - Planting Transferability Pilot Project.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... a program of crop rotation on the farm to achieve agronomic and pest and disease management benefits... PROGRAM AND AVERAGE CROP REVENUE ELECTION PROGRAM FOR THE 2008 AND SUBSEQUENT CROP YEARS Direct and... § 1412.47, for each of the 2009 and subsequent crop years, the Planting Transferability Pilot...

  8. 7 CFR 1412.48 - Planting Transferability Pilot Project.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... a program of crop rotation on the farm to achieve agronomic and pest and disease management benefits... PROGRAM AND AVERAGE CROP REVENUE ELECTION PROGRAM FOR THE 2008 AND SUBSEQUENT CROP YEARS Direct and... § 1412.47, for each of the 2009 and subsequent crop years, the Planting Transferability Pilot...

  9. 7 CFR 1412.48 - Planting Transferability Pilot Project.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... a program of crop rotation on the farm to achieve agronomic and pest and disease management benefits... PROGRAM AND AVERAGE CROP REVENUE ELECTION PROGRAM FOR THE 2008 AND SUBSEQUENT CROP YEARS Direct and... § 1412.47, for each of the 2009 and subsequent crop years, the Planting Transferability Pilot...

  10. 7 CFR 1412.48 - Planting Transferability Pilot Project.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... a program of crop rotation on the farm to achieve agronomic and pest and disease management benefits... PROGRAM AND AVERAGE CROP REVENUE ELECTION PROGRAM FOR THE 2008 AND SUBSEQUENT CROP YEARS Direct and... § 1412.47, for each of the 2009 and subsequent crop years, the Planting Transferability Pilot...

  11. 7 CFR 1412.48 - Planting Transferability Pilot Project.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... a program of crop rotation on the farm to achieve agronomic and pest and disease management benefits... PROGRAM AND AVERAGE CROP REVENUE ELECTION PROGRAM FOR THE 2008 AND SUBSEQUENT CROP YEARS Direct and... § 1412.47, for each of the 2009 and subsequent crop years, the Planting Transferability Pilot...

  12. Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report

    SciTech Connect

    Britt, Phillip F

    2015-03-01

    Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report. Summaries of conclusions, analytical processes, and analytical results. Analysis of samples taken from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in support of the WIPP Technical Assessment Team (TAT) activities to determine to the extent feasible the mechanisms and chemical reactions that may have resulted in the breach of at least one waste drum and release of waste material in WIPP Panel 7 Room 7 on February 14, 2014. This report integrates and summarizes the results contained in three separate reports, described below, and draws conclusions based on those results. Chemical and Radiochemical Analyses of WIPP Samples R-15 C5 SWB and R16 C-4 Lip; PNNL-24003, Pacific Northwest National Laboratory, December 2014 Analysis of Waste Isolation Pilot Plant (WIPP) Underground and MgO Samples by the Savannah River National Laboratory (SRNL); SRNL-STI-2014-00617; Savannah River National Laboratory, December 2014 Report for WIPP UG Sample #3, R15C5 (9/3/14); LLNL-TR-667015; Lawrence Livermore National Laboratory, January 2015 This report is also contained in the Waste Isolation Pilot Plant Technical Assessment Team Report; SRNL-RP-2015-01198; Savannah River National Laboratory, March 17, 2015, as Appendix C: Analysis Integrated Summary Report.

  13. Wave-operated power plant

    SciTech Connect

    Ghesquiere, H.

    1980-08-12

    This wave-operated power plant comprises a perforated caisson breakwater in which propellers, or turbines, are mounted in the perforations or openings and drives hydraulic pumps connected thereto, which in turn drives a hydraulic motor coupled to an electric generator. One-way flap valves are mounted in the openings. Some of said flap valves allow the rushing waves to enter the caisson, while the other flap valves allow the water to flow out of the caisson.

  14. Cycling operation of fossil plants

    SciTech Connect

    Bhatnagar, U.S.; Weiss, M.D.; White, W.H. ); Buchanan, T.L.; Harvey, L.E.; Shewchuk, P.K.; Weinstein, R.E. )

    1991-05-01

    This report presents a methodology for examining the economic feasibility of converting fossil power plants from baseload to cycling service. It employs this approach to examine a proposed change of Pepco's Potomac River units 3, 4, and 5 from baseload operation of two-shift cycling. The project team first reviewed all components and listed potential cycling effects involved in the conversion of Potomac River units 3, 4, and 5. They developed general cycling plant screening criteria including the number of hot, warm, or cold restart per year and desired load ramp rates. In addition, they evaluated specific limitations on the boiler, turbine, and the balance of plant. They estimated the remaining life of the facility through component evaluation and boiler testing and also identified and prioritized potential component deficiencies by their impact on key operational factors: safety, heat rate, turn down, startup/shutdown time, and plant availability. They developed solutions to these problems; and, since many solutions mitigate more than one problem, they combined and reprioritized these synergistic solutions. Economic assessments were performed on all solutions. 13 figs., 20 tabs.

  15. Mapping of cavitational activity in a pilot plant dyeing equipment.

    PubMed

    Actis Grande, G; Giansetti, M; Pezzin, A; Rovero, G; Sicardi, S

    2015-11-01

    A large number of papers of the literature quote dyeing intensification based on the application of ultrasound (US) in the dyeing liquor. Mass transfer mechanisms are described and quantified, nevertheless these experimental results in general refer to small laboratory apparatuses with a capacity of a few hundred millilitres and extremely high volumetric energy intensity. With the strategy of overcoming the scale-up inaccuracy consequent to the technological application of ultrasounds, a dyeing pilot-plant prototype of suitable liquor capacity (about 40 L) and properly simulating several liquor to textile hydraulic relationships was designed by including US transducers with different geometries. Optimal dyeing may be obtained by optimising the distance between transducer and textile material, the liquid height being a non-negligible operating parameter. Hence, mapping the cavitation energy in the machinery is expected to provide basic data on the intensity and distribution of the ultrasonic field in the aqueous liquor. A flat ultrasonic transducer (absorbed electrical power of 600 W), equipped with eight devices emitting at 25 kHz, was mounted horizontally at the equipment bottom. Considering industrial scale dyeing, liquor and textile substrate are reciprocally displaced to achieve a uniform colouration. In this technology a non uniform US field could affect the dyeing evenness to a large extent; hence, mapping the cavitation energy distribution in the machinery is expected to provide fundamental data and define optimal operating conditions. Local values of the cavitation intensity were recorded by using a carefully calibrated Ultrasonic Energy Meter, which is able to measure the power per unit surface generated by the cavitation implosion of bubbles. More than 200 measurements were recorded to define the map at each horizontal plane positioned at a different distance from the US transducer; tap water was heated at the same temperature used for dyeing tests (60

  16. A Validated Task Analysis of the Single Pilot Operations Concept

    NASA Technical Reports Server (NTRS)

    Wolter, Cynthia A.; Gore, Brian F.

    2015-01-01

    The current day flight deck operational environment consists of a two-person Captain/First Officer crew. A concept of operations (ConOps) to reduce the commercial cockpit to a single pilot from the current two pilot crew is termed Single Pilot Operations (SPO). This concept has been under study by researchers in the Flight Deck Display Research Laboratory (FDDRL) at the National Aeronautics and Space Administration's (NASA) Ames (Johnson, Comerford, Lachter, Battiste, Feary, and Mogford, 2012) and researchers from Langley Research Centers (Schutte et al., 2007). Transitioning from a two pilot crew to a single pilot crew will undoubtedly require changes in operational procedures, crew coordination, use of automation, and in how the roles and responsibilities of the flight deck and ATC are conceptualized in order to maintain the high levels of safety expected of the US National Airspace System. These modifications will affect the roles and the subsequent tasks that are required of the various operators in the NextGen environment. The current report outlines the process taken to identify and document the tasks required by the crew according to a number of operational scenarios studied by the FDDRL between the years 2012-2014. A baseline task decomposition has been refined to represent the tasks consistent with a new set of entities, tasks, roles, and responsibilities being explored by the FDDRL as the move is made towards SPO. Information from Subject Matter Expert interviews, participation in FDDRL experimental design meetings, and study observation was used to populate and refine task sets that were developed as part of the SPO task analyses. The task analysis is based upon the proposed ConOps for the third FDDRL SPO study. This experiment possessed nine different entities operating in six scenarios using a variety of SPO-related automation and procedural activities required to guide safe and efficient aircraft operations. The task analysis presents the roles and

  17. Environmental protection implementation plan for the Waste Isolation Pilot Plant, November 9, 1989--November 9, 1990

    SciTech Connect

    Bitner, K.A.; Flynn, D.T.; Ice, L.G. ); Goodbar, A.K.; Jones, S.B.; Wilt, B.M. . Waste Isolation Div.)

    1990-02-09

    This Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with US Department Energy (DOE) Order 5400.1 and covers the time period of January 1, 1990 through December 31, 1990. The purpose of this EPIP is to provide management direction to ensure that the Waste Isolation Pilot Plant (WIPP) is operated and managed in a manner that will protect, maintain, and, where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies. The WIPP was authorized by Public Law 96-164 to provide a research and development facility for demonstrating the safe disposal of radioactive wastes produced by national defense activities. The DOE is developing the WIPP facility as deep geologic repository constructed in a thick bedded salt formation 655 meters (2,150 feet) below the land surface. It is currently planned that the WIPP facility will operate in a pilot plant mode for the first five years of operation. During this phase, DOE proposes to conduct certain tests designed to demonstrate safe handling and disposal operations. Procedures for evaluating facility performance relative to standards promulgated by the US Environmental Protection Agency (EPA) ((40 CFR Part 191)) will be evaluated during the first five years of operation. At the end of the five year pilot plant phase a decision will be made as to whether to make the WIPP facility a permanent repository. 33 refs., 5 figs.

  18. Cycling operation of fossil plants

    SciTech Connect

    Devendorf, D.; Kulczycky, T.G. )

    1991-05-01

    A necessity for many utilities today is the cycling of their fossil units. Fossil plants with their higher fuel costs are being converted to cycling operation to accommodate daily load swings and to decrease the overall system fuel costs. For a large oil-fired unit, such as Oswego Steam Station Unit 5, millions of dollars can be saved annually in fuel costs if the unit operates in a two-shift mode. However, there are also penalties attributable to cycling operation which are associated with availability and thermal performance. The objectives of Niagara Mohawk Power Corporation were to minimize the losses in availability and performance, and the degradation in the life of the equipment by incorporating certain cycling modifications into the unit. The objective of this project was to evaluate the effectiveness of three of these cycling modifications: (1) the superheater and turbine bypass (Hot Restart System), (2) the use of variable pressure operation, and (3) the full-flow condensate polishing system. To meet this objective, Unit 5 was tested using the cycling modifications, and a dynamic mathematical model of this unit was developed using the Modular Modeling System (MMS) Code from EPRI. This model was used to evaluate various operating modes and to assist in the assessment of operating procedures. 15 refs., 41 figs., 22 tabs.

  19. Waste Isolation Pilot Plant simulated RH TRU waste experiments: Data and interpretation pilot

    SciTech Connect

    Molecke, M.A.; Argueello, G.J.; Beraun, R.

    1993-04-01

    The simulated, i.e., nonradioactive remote-handled transuranic waste (RH TRU) experiments being conducted underground in the Waste Isolation Pilot Plant (WIPP) were emplaced in mid-1986 and have been in heated test operation since 9/23/86. These experiments involve the in situ, waste package performance testing of eight full-size, reference RH TRU containers emplaced in horizontal, unlined test holes in the rock salt ribs (walls) of WIPP Room T. All of the test containers have internal electrical heaters; four of the test emplacements were filled with bentonite and silica sand backfill materials. We designed test conditions to be ``near-reference`` with respect to anticipated thermal outputs of RH TRU canisters and their geometrical spacing or layout in WIPP repository rooms, with RH TRU waste reference conditions current as of the start date of this test program. We also conducted some thermal overtest evaluations. This paper provides a: detailed test overview; comprehensive data update for the first 5 years of test operations; summary of experiment observations; initial data interpretations; and, several status; experimental objectives -- how these tests support WIPP TRU waste acceptance, performance assessment studies, underground operations, and the overall WIPP mission; and, in situ performance evaluations of RH TRU waste package materials plus design details and options. We provide instrument data and results for in situ waste container and borehole temperatures, pressures exerted on test containers through the backfill materials, and vertical and horizontal borehole-closure measurements and rates. The effects of heat on borehole closure, fracturing, and near-field materials (metals, backfills, rock salt, and intruding brine) interactions were closely monitored and are summarized, as are assorted test observations. Predictive 3-dimensional thermal and structural modeling studies of borehole and room closures and temperature fields were also performed.

  20. Enabling CSPA Operations Through Pilot Involvement in Longitudinal Approach Spacing

    NASA Technical Reports Server (NTRS)

    Battiste, Vernol (Technical Monitor); Pritchett, Amy

    2003-01-01

    Several major airports around the United States have, or plan to have, closely-spaced parallel runways. This project complemented current and previous research by examining the pilots ability to control their position longitudinally within their approach stream.This project s results considered spacing for separation from potential positions of wake vortices from the parallel approach. This preventive function could enable CSPA operations to very closely spaced runways. This work also considered how pilot involvement in longitudinal spacing could allow for more efficient traffic flow, by allowing pilots to keep their aircraft within tighter arrival slots then air traffic control (ATC) might be able to establish, and by maintaining space within the arrival stream for corresponding departure slots. To this end, this project conducted several research studies providing an analytic and computational basis for calculating appropriate aircraft spacings, experimental results from a piloted flight simulator test, and an experimental testbed for future simulator tests. The following sections summarize the results of these three efforts.

  1. The 1996 performance assessment for the Waste Isolation Pilot Plant

    SciTech Connect

    Anderson, D.R.; Jow, H.N.; Marietta, M.G.; Chu, M.S.Y.; Shephard, L.E.; Helton, J.C.; Basabilvazo, G.

    1998-07-01

    The Waste Isolation Pilot Plant (WIPP) is under development by the US Department of Energy (DOE) for the geologic disposal of transuranic (TRU) waste that has been generated at government defense installations in the United States. The WIPP is located in an area of low population density in southeastern New Mexico. Waste disposal will take place in excavated chambers in a bedded salt formation approximately 655 m below the land surface. This presentation describes a performance assessment (PA) carried out at Sandia National Laboratories (SNL) to support the Compliance Certification Application (CCA) made by the DOE to the US Environmental Protection Agency (EPA) in October, 1996, for the certification of the WIPP for the disposal of TRU waste. Based on the CCA supported by the PA described in this presentation, the EPA has issued a preliminary decision to certify the WIPP for the disposal of TRU waste. At present (April 1998), it appears likely that the WIPP will be in operation by the end of 1998.

  2. Waste Isolation Pilot Plant Annual Site Environmental Report for 2010

    SciTech Connect

    2011-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2010 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: (1) Characterize site environmental management performance. (2) Summarize environmental occurrences and responses reported during the calendar year. (3) Confirm compliance with environmental standards and requirements. (4) Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the WIPP. DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit Number NM4890139088-TSDF (Permit) further requires that the ASER be provided to the New Mexico Environment Department (NMED).

  3. Pilot plant for biomethanation of dairy-industry wastes

    SciTech Connect

    Ghosh, S.; Fukushi, K.; Liu, T.

    1994-12-31

    This project was undertaken to demonstrate the application of two-phase anaerobic digestion (TPAD) for simultaneous stabilization and biomethanation of high-COD cheese-waste-dairy-manure mixtures by a pilot-plant operation in Wellsville, Utah. The TPAD system exhibited a total COD (TCOD) reduction of up to 97% with feed COD concentration of 60,000 to 45,000 mg/l. The TCOD reduction decreased as the variability as well as the strength of the feed increased. A quick surge of the feed TCOD concentration to 125,000 mg/l effected a large drop in TCOD reduction, but the integrity of the methane digester, which produced 78 {approximately}87 mol% methane-content gas, was measured and TPAD system performance could be restored to normal levels by diluting the feed to obtain TCOD concentrations below 70,000 mg/l. The TPAD system exhibited a methane yield of 0.27 m{sup 3}/kg TCOD charged (0.36 m{sup 3}/kg TCOD removed).

  4. The determination of residence times in a pilot plant

    NASA Astrophysics Data System (ADS)

    Ramírez, F. Pablo; Cortés, M. Eugenia

    2004-01-01

    It is well known that residence time distributions (RTD) are very important in many chemical processes such as separation, reforming, hydrocracking, fluid catalytic cracking, hydrodesulfuration, hydrogenation among others [3 Procédés de transformation, Editions Technip, Institute Francais du Petrole, Paris, France, 1998]. In addition, tracers can be used to measure the velocity, distribution and residence time of any stream through any part of an industrial [Guidebook on Radioisotope Tracers in Industry, IAEA, Vienna, 1990] or experimental system. Perhaps the best quality of radiotracers is that they do not interfere with normal unit operations or production scheduling. In this paper are presented the RTDs obtained in a pilot plant for a hydrogenation process [IMP, Technical Report, Determinación del tiempo de residencia promedio en el reactor de la planta piloto de hidroagotamiento de crudo, 2002]. The RTDs show a random phenomenon, which is not typical of this type of chemical processes. Several RTDs were determined in order to confirm this random behavior. The data were obtained using as a tracer a radioactive form of sodium iodide containing iodine-131 [The Condensed Chemical Dictionary, 10th Ed., Van Nostrand Reinhold, USA, 1981]. The process works with two phases in a countercurrent flow, inside a packed column. The liquid phase goes down by gravity. The gas phase goes up due to pressure difference [3 Procédés de transformation, Editions Technip, Institute Francais du Petrole, Paris, France, 1998]. The tracer was selected such that it would follow the liquid phase.

  5. A historical review of Waste Isolation Pilot Plant backfill development

    SciTech Connect

    KRUMHANSL,JAMES L.; MOLECKE,MARTIN A.; PAPENGUTH,HANS W.; BRUSH,LAURENCE H.

    2000-06-05

    Backfills have been part of Sandia National Laboratories' [Sandia's] Waste Isolation Pilot Plant [WIPP] designs for over twenty years. Historically, backfill research at Sandia has depended heavily on the changing mission of the WIPP facility. Early testing considered heat producing, high level, wastes. Bentonite/sand/salt mixtures were evaluated and studies focused on developing materials that would retard brine ingress, sorb radionuclides, and withstand elevated temperatures. The present-day backfill consists of pure MgO [magnesium oxide] in a pelletized form and is directed at treating the relatively low contamination level, non-heat producing, wastes actually being disposed of in the WIPP. Its introduction was motivated by the need to scavenging CO{sub 2} [carbon dioxide] from decaying organic components in the waste. However, other benefits, such as a substantial desiccating capacity, are also being evaluated. The MgO backfill also fulfills a statutory requirement for assurance measures beyond those needed to demonstrate compliance with the US Environmental Protection Agency [EPA] regulatory release limits. However, even without a backfill, the WIPP repository design still operates within EPA regulatory release limits.

  6. Waste Isolation Pilot Plant Annual Site Enviromental Report for 2008

    SciTech Connect

    Washington Regulatory and Enviromnetal Services

    2009-09-21

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2008 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to characterize site environmental management performance; summarize environmental occurrences and responses reported during the calendar year; confirm compliance with environmental standards and requirements; highlight significant facility programs and efforts; and describe how compliance and environmental improvement is accomplished through the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the Waste Isolation Pilot Plant (WIPP). DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit (HWFP) Number NM4890139088-TSDF (treatment, storage, and disposal facility) further requires that the ASER be provided to the New Mexico Environment Department (NMED). The WIPP mission is to safely dispose of transuranic (TRU) radioactive waste generated by the production of nuclear weapons and other activities related to the national defense of the United States. In 2008, 5,265 cubic meters (m3) of TRU waste were disposed of at the WIPP facility, including 5,216 m3 of contact-handled (CH) TRU waste and 49 m3 of remote-handled (RH) TRU waste. From the first

  7. Baseline designs of moored and grazing 40-MW OTEC pilot plants. Volume A: Detailed report

    NASA Astrophysics Data System (ADS)

    George, J. F.; Richards, D.

    1980-06-01

    Baseline designs of two types of floating Ocean Thermal Energy Conversion (OTEC) pilot plants are presented. Both designs feature floating concrete hull structures that house up to 40 MW sub e (net) of OTEC power systems. One plant is designed for moored operation at an island site, and use underwater cables to transmit electric power to a shore-based utility company. The other plant is self-propelled and cruises slowly through tropical waters, using the OTEC electric power to produce an energy intensive product onboard, where it is stored for later transshipment to market.

  8. Comparison of Options for a Pilot Plant Fusion Nuclear Mission

    SciTech Connect

    Brown, T; Goldston, R J; El-Guebaly, L; Kessel, C; Neilson, G H; Malang, S; Menard, J E; Prager, S; Waganer, L; Titus, P; Zarnstorff, M

    2012-08-27

    A fusion pilot plant study was initiated to clarify the development needs in moving from ITER to a first of a kind fusion power plant, following a path similar to the approach adopted for the commercialization of fission. The pilot plant mission encompassed component test and fusion nuclear science missions plus the requirement to produce net electricity with high availability in a device designed to be prototypical of the commercial device. Three magnetic configuration options were developed around this mission: the advanced tokamak (AT), spherical tokamak (ST) and compact stellarator (CS). With the completion of the study and separate documentation of each design option a question can now be posed; how do the different designs compare with each other as candidates for meeting the pilot plant mission? In a pro/con format this paper will examine the key arguments for and against the AT, ST and CS magnetic configurations. Key topics addressed include: plasma parameters, device configurations, size and weight comparisons, diagnostic issues, maintenance schemes, availability influences and possible test cell arrangement schemes.

  9. The pilot plant for electron beam food processing

    NASA Astrophysics Data System (ADS)

    Migdal, W.; Walis, L.; Chmielewski, A. G.

    1993-07-01

    In the frames of the national programme on the application of irradiation for food preservation and hygienization an experimental plant for electron beam processing has been established in INCT. The pilot plant has been constructed inside an old fort what decreases significantly the cost of the investment. The pilot plant is equipped with a small research accelerator Pilot (10 MeV, 1 kW) and an industrial unit Elektronika (10 MeV, 10 kW). This allows both laboratory and full technological scale testing of the elaborated process to be conducted. The industrial unit is being equipped with e-/X conversion target, for high density products irradiation. On the basis of the research there were performed at different scientific institutions in Poland, health authorities have issued permissions for permanent treatment of spices, garlic, onions and temporary permissions for mushrooms, and potatoes. Dosimetric methods have been elaborated for the routine use at the plant. In the INCT laboratory methods for the control of e-/X treated food have been established.

  10. Waste Isolation Pilot Plant Site Environmental Report for calendar year 1989

    SciTech Connect

    Not Available

    1989-01-01

    This is the 1989 Site Environmental Report (SER) for the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP is a government owned and contractor-operated facility. The WIPP project is operated by Westinghouse Electric Corporation for the US Department of Energy (DOE). The mission of the WIPP is to provide a research and development facility to demonstrate the safe disposal of transuranic (TRU) waste generated by the defense activities of the US Government. This report provides a comprehensive description of environmental activities at the WIPP during calendar year 1989. The WIPP facility will not receive waste until all concerns affecting opening the WIPP are addressed to the satisfaction of the Secretary of Energy. Therefore, this report describes the status of the preoperational activities of the Radiological Environmental Surveillance (RES) program, which are outlined in the Radiological Baseline Program for the Waste Isolation Pilot Plant (WTSD-TME-057). 72 refs., 13 figs., 20 tabs.

  11. Microbial process translation--laboratory to pilot plant at the Frederick Cancer Research Center.

    PubMed

    Langlykke, A F

    1978-01-01

    In summary, operations in the FCRC pilot plant have included training an operating staff, operability trials, equipment modification and repair, and supplementation of the original equipment to gain greater versatility. In addition to effort spent on proving and improving the capacity of the pilot plant, development studies and production operations involving translation of laboratory operations to pilot level or volume have included: 1. Development of a production process for interferon as described above. As a by-product of the interferon program, samples of cell culture have been studied in the Basic Research Division of FCRC for the production of lymphokines. 2. Production of starting materials (cell paste) for carboxypeptidase G1, using three different organisms, and production of refined material from the FCRC 252 organism as described herein. 3. Production of large quantities of crude phenylalanine ammonia lyase in the form of cell paste for Prof. Creed Abell at the University of Texas, Medical Branch, at Galveston,. 4. Production of a crude staphylococcal nuclease for the program of Dr. David Sachs, National Cancer Institute, Bethesda, Maryland. 5. Developmental studies and limited production of a crude cysteine desulfhydrase according to the protocols of Dr. J. Uren, Sidney Farber Cancer Center, Boston, Massachusetts. 6. Preliminary production studies on the agent produced by Culture FCRC 14, discovered in the CFL search program. 7. Developmental fermentation studies on the antitumor antibiotic, piperazinedione 593A [6], in preparation for production of quantities of this antibiotic to support clinical studies under the auspices of the National Cancer Institute. PMID:705017

  12. Proposed OTEC Punta Tuna Pilot Plant

    SciTech Connect

    Marina, J.; Perez, F.

    1981-01-01

    Siting features and the design of a 40 MWe prototype OTEC for installation at Punta Tuna, Puerto Rico are presented. An annual average temperature gradient of 40 F from surface to 3,000 ft depth, a sharp coastal drop-off, projected benign environmental effects, and expensive indigenous power supplies are seen as favorable for fixed, floating, or grazing OTEC plants. The Punta Tuna design is for a platform fitted with generators in 300 ft of water, submarine cable power transmission, fiberglass seawater pipes, NH3 as a working fluid, and heat exchangers at the 300 ft depth, below hurricane wind and wave action. Methods of installing the 3,000 ft cold water pipes are discussed, and the use of OTEC derived electricity for aluminum smelting in the Caribbean is indicated.

  13. Commander Brand and Pilot Overmyer operate controls on forward flight deck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    On forward flight deck, Commander Brand and Pilot Overmyer operate controls from commanders and pilots seats. Overall view taken from the aft flight deck looking forward shows Overmyer pointing to data on Panel 7 (F7) CRT 1 screen.

  14. Commander Brand and Pilot Overmyer operate controls on forward flight deck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    On forward flight deck, Commander Brand and Pilot Overmyer operate controls from commanders and pilots seats. Overall view taken from the aft flight deck looking forward shows both astronauts reviewing procedures and checking CRT screen data.

  15. Waste Isolation Pilot Plant (WIPP) fact sheet

    SciTech Connect

    Not Available

    1993-10-01

    Pursuant to the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (RCRA), as amended (42 USC 6901, et seq.), and the New Mexico Hazardous Waste Act (Section 74-4-1 et seq., NMSA 1978), Permit is issued to the owner and operator of the US DOE, WIPP site (hereafter called the Permittee(s)) to operate a hazardous waste storage facility consisting of a container storage unit (Waste Handling Building) and two Subpart X miscellaneous below-ground storage units (Bin Scale Test Rooms 1 and 3), all are located at the above location. The Permittee must comply with all terms and conditions of this Permit. This Permit consists of the conditions contained herein, including the attachments. Applicable regulations cited are the New Mexico Hazardous Waste Management Regulations, as amended 1992 (HWMR-7), the regulations that are in effect on the date of permit issuance. This Permit shall become effective upon issuance by the Secretary of the New Mexico Environment Department and shall be in effect for a period of ten (10) years from issuance. This Permit is also based on the assumption that all information contained in the Permit application and the administrative record is accurate and that the activity will be conducted as specified in the application and the administrative record. The Permit application consists of Revision 3, as well as associated attachments and clarifying information submitted on January 25, 1993, and May 17, 1993.

  16. Physics-Based Prognostics for Optimizing Plant Operation

    SciTech Connect

    Leonard J. Bond; Don B. Jarrell

    2005-03-01

    Scientists at the Pacific Northwest National Laboratory (PNNL) have examined the necessity for optimization of energy plant operation using 'DSOM{reg_sign}'--Decision Support Operation and Maintenance and this has been deployed at several sites. This approach has been expanded to include a prognostics components and tested on a pilot scale service water system, modeled on the design employed in a nuclear power plant. A key element in plant optimization is understanding and controlling the aging process of safety-specific nuclear plant components. This paper reports the development and demonstration of a physics-based approach to prognostic analysis that combines distributed computing, RF data links, the measurement of aging precursor metrics and their correlation with degradation rate and projected machine failure.

  17. 17 CFR 249.821 - Form PILOT, information required of self-regulatory organizations operating pilot trading systems...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Note: For Federal Register citations affecting Form PILOT, see the List of CFR Sections Affected, which... required of self-regulatory organizations operating pilot trading systems pursuant to § 240.19b-5 of this... trading systems pursuant to § 240.19b-5 of this chapter. This form shall be used by all...

  18. 17 CFR 249.821 - Form PILOT, information required of self-regulatory organizations operating pilot trading systems...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Note: For Federal Register citations affecting Form PILOT, see the List of CFR Sections Affected, which... required of self-regulatory organizations operating pilot trading systems pursuant to § 240.19b-5 of this... trading systems pursuant to § 240.19b-5 of this chapter. This form shall be used by all...

  19. 17 CFR 249.821 - Form PILOT, information required of self-regulatory organizations operating pilot trading systems...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Note: For Federal Register citations affecting Form PILOT, see the List of CFR Sections Affected, which... required of self-regulatory organizations operating pilot trading systems pursuant to § 240.19b-5 of this... trading systems pursuant to § 240.19b-5 of this chapter. This form shall be used by all...

  20. 17 CFR 249.821 - Form PILOT, information required of self-regulatory organizations operating pilot trading systems...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Note: For Federal Register citations affecting Form PILOT, see the List of CFR Sections Affected, which... required of self-regulatory organizations operating pilot trading systems pursuant to § 240.19b-5 of this... trading systems pursuant to § 240.19b-5 of this chapter. This form shall be used by all...

  1. 17 CFR 249.821 - Form PILOT, information required of self-regulatory organizations operating pilot trading systems...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Note: For Federal Register citations affecting Form PILOT, see the List of CFR Sections Affected, which... required of self-regulatory organizations operating pilot trading systems pursuant to § 240.19b-5 of this... trading systems pursuant to § 240.19b-5 of this chapter. This form shall be used by all...

  2. Telescience Testbed Pilot Project - Evaluation environment for Space Station operations

    NASA Technical Reports Server (NTRS)

    Wiskerchen, Michael J.; Leiner, Barry M.

    1988-01-01

    The objectives of the Telescience Testbed Pilot Program (TTPP) are discussed. The purpose of the TTPP, which involves 15 universities in cooperation with various NASA centers, is to demonstrate the utility of a user-oriented rapid prototyping testbed approach to developing and refining science requirements and validation concepts and approaches for the information systems of the Space Station era and beyond. It is maintained that the TTPP provides an excellent environment, with low programmatic schedule and budget risk, for testing and evaluating new operations concepts and technologies.

  3. The effects of display and autopilot functions on pilot workload for Single Pilot Instrument Flight Rule (SPIFR) operations

    NASA Technical Reports Server (NTRS)

    Hoh, Roger H.; Smith, James C.; Hinton, David A.

    1987-01-01

    An analytical and experimental research program was conducted to develop criteria for pilot interaction with advanced controls and displays in single pilot instrument flight rules (SPIFR) operations. The analytic phase reviewed fundamental considerations for pilot workload taking into account existing data, and using that data to develop a divided attention SPIFR pilot workload model. The pilot model was utilized to interpret the two experimental phases. The first experimental phase was a flight test program that evaluated pilot workload in the presence of current and near-term displays and autopilot functions. The second experiment was conducted on a King Air simulator, investigating the effects of co-pilot functions in the presence of very high SPIFR workload. The results indicate that the simplest displays tested were marginal for SPIFR operations. A moving map display aided the most in mental orientation, but had inherent deficiencies as a stand alone replacement for an HSI. Autopilot functions were highly effective for reducing pilot workload. The simulator tests showed that extremely high workload situations can be adequately handled when co-pilot functions are provided.

  4. A simulator investigation of the use of digital data link for pilot/ATC communications in a single pilot operation

    NASA Technical Reports Server (NTRS)

    Hinton, David A.; Lohr, Gary W.

    1988-01-01

    Studies have shown that radio communications between pilots and air traffic control contribute to high pilot workload and are subject to various errors. These errors result from congestion on the voice radio channel, and missed and misunderstood messages. The use of digital data link has been proposed as a means of reducing this workload and error rate. A critical factor, however, in determining the potential benefit of data link will be the interface between future data link systems and the operator of those systems, both in the air and on the ground. The purpose of this effort was to evaluate the pilot interface with various levels of data link capability, in simulated general aviation, single-pilot instrument flight rule operations. Results show that the data link reduced demands on pilots' short-term memory, reduced the number of communication transmissions, and permitted the pilots to more easily allocate time to critical cockpit tasks while receiving air traffic control messages. The pilots who participated unanimously indicated a preference for data link communications over voice-only communications. There were, however, situations in which the pilot preferred the use of voice communications, and the ability for pilots to delay processing the data link messages, during high workload events, caused delays in the acknowledgement of messages to air traffic control.

  5. Waste Isolation Pilot Plant Environmental Monitoring Plan

    SciTech Connect

    Westinghouse Electric Company Waste Isolation Division

    1999-09-29

    DOE Order 5400.1, General Environmental Protection Program Requirements (DOE, 1990a), requires each DOE facility to prepare an EMP. This document is prepared for WIPP in accordance with the guidance contained in DOE Order 5400.1; DOE Order 5400.5, Radiation Protection of the Public and Environment (DOE, 1990b); Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T; DOE, 1991); and the Title 10 Code of Federal Regulations (CFR) 834, Radiation Protection of the Public and Environment (Draft). Many sections of DOE Order 5400.1 have been replaced by DOE Order 231.1 (DOE, 1995), which is the driver for the Annual Site Environmental Report (ASER) and the guidance source for preparing many environmental program documents. The WIPP project is operated by Westinghouse Electric Company, Waste Isolation Division (WID), for the DOE. This plan defines the extent and scope of the WIPP's effluent and environmental monitoring programs during the facility's operational life and also discusses the WIPP's quality assurance/quality control (QA/QC) program as it relates to environmental monitoring. In addition, this plan provides a comprehensive description of environmental activities at WIPP including: A summary of environmental programs, including the status of environmental monitoring activities A description of the WIPP project and its mission A description of the local environment, including demographics An overview of the methodology used to assess radiological consequences to the public, including brief discussions of potential exposure pathways, routine and accidental releases, and their consequences Responses to the requirements described in the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE, 1991). This document references DOE orders and other federal and state regulations affecting environmental monitoring programs at the site. WIPP procedures, which implement

  6. Fabric filter testing at the TVA Atmospheric Fluidized-bed Combustion (AFBC) Pilot Plant

    SciTech Connect

    Cushing, K.M.; Bush, P.V.; Snyder, T.R.

    1988-05-01

    Experience with fluidized bed combustion (FBC) units on a research and industrial scale has indicated that FBC power plants could be a viable alternative to pulverized-coal power plants with wet limestone scrubbers or spray dryers. To provide design confidence and the flexibility to evaluate process improvements, the Tennessee Valley Authority constructed a 20-MW(e) AFBC (bubbling bed) Pilot Plant. Subseqently, EPRI and Southern Research Institute entered into a program to monitor the performance of the fabric filter at the pilot plant. The objective of the program was to determine if unique characteristics of AFBC operation or emissions would require special design criteria or operating procedures in the application of fabric filtration to utility-size AFBC boilers. With reverse-gas cleaning the fabric filter experienced high tubesheet pressure drop while operating at low filtering air-to-cloth values and with low residual dustcake areal densities compared to fabric filters downstream from pulverized-coal boilers. This implied that the AFBC fly ash had properties distinct from those of pulverized-coal fly ash. Implementaion of reverse-gas cleaning with sonic assistance resulted in lower operating pressure drops at higher filtering air-to-cloth values, although slightly higher than comparable data from baghouses filtering pulverized-coal fly ash. Fly ash analyses showed that the AFBC ash particles are generally smaller, more irregualr in shape, and the dustcakes are lighter and more porous than those formed from pulverized-coal fly ashes. 8 refs., 18 figs., 7 tabs.

  7. Central receiver solar thermal power system, Phase 1: CDRL Item 2, pilot plant preliminary design report. Volume VII. Pilot plant cost and commercial plant cost and performance

    SciTech Connect

    Hallet, Jr., R. W.; Gervais, R. L.

    1980-05-01

    Detailed cost and performance data for the proposed tower focus pilot plant and commercial plant are given. The baseline central receiver concept defined by the MDAC team consists of the following features: (A) an external receiver mounted on a tower, and located in a 360/sup 0/ array of sun-tracking heliostats which comprise the collector subsystem. (B) feedwater from the electrical power generation subsystem is pumped through a riser to the receiver, where the feedwater is converted to superheated steam in a single pass through the tubes of the receiver panels. (C) The steam from the receiver is routed through a downcomer to the ground and introduced to a turbine directly for expansion and generation of electricity, and/or to a thermal storage subsystem, where the steam is condensed in charging heat exchangers to heat a dual-medium oil and rock thermal storage unit (TSU). (D) Extended operation after daylight hours is facilitated by discharging the TSU to generate steam for feeding the admission port of the turbine. (E) Overall control of the system is provided by a master control unit, which handles the interactions between subsystems that take place during startup, shutdown, and transitions between operating modes. (WHK)

  8. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    SciTech Connect

    Washinton TRU Solutions LLC

    2002-09-30

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 2000, to March 31, 2002. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Field Office's (CBFO) compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. In the prior BECR, the CBFO and the management and operating contractor (MOC)committed to discuss resolution of a Letter of Violation that had been issued by the New Mexico Environment Department (NMED) in August 1999, which was during the previous BECR reporting period. This Letter of Violation alleged noncompliance with hazardous waste aisle spacing, labeling, a nd tank requirements. At the time of publication of the prior BECR, resolution of the Letter of Violation was pending. On July 7, 2000, the NMED issued a letter noting that the aisle spacing and labeling concerns had been adequately addressed and that they were rescinding the violation alleging that the Exhaust Shaft Catch Basin failed to comply with the requirements for a hazardous waste tank. During the current reporting period, WIPP received a Notice of Violation and a compliance order alleging the violation of the New Mexico Hazardous Waste Regulations and the WIPP Hazardous Waste Facility Permit (HWFP).

  9. Waste Isolation Pilot Plant land management plan

    SciTech Connect

    1996-05-01

    On October 30, 1992, the WIPP Land Withdrawal Act became law. This Act transferred the responsibility for the management of the WIPP Land Withdrawal Area (WILWA) from the Secretary of the Interior to the Secretary of Energy. In accordance with sections 3(a)(1) and (3) of the Act, these lands {open_quotes}{hor_ellipsis}are withdrawn from all forms of entry, appropriation, and disposal under the public land laws{hor_ellipsis}{close_quotes}and are reserved for the use of the Secretary of Energy {open_quotes}{hor_ellipsis}for the construction, experimentation, operation, repair and maintenance, disposal, shutdown, monitoring, decommissioning, and other activities, associated with the purposes of WIPP as set forth in the Department of Energy National Security and Military Applications of Nuclear Energy Act of 1980 and this Act.{close_quotes}. As a complement to this LMP, a MOU has been executed between the DOE and the BLM, as required by section 4(d) of the Act. The state of New Mexico was consulted in the development of the MOU and the associated Statement of Work (SOW).

  10. Modeling of the AISI Two-Zone Smelter, Part II: Physical Modeling and the AISI Pilot Plant Trials

    SciTech Connect

    Keller, Joseph George; Zhang, X.; Fuehan, R. J.; Vassilicos, A.; Sarma, B.

    2001-06-01

    Physical modeling experiments were conducted for the American Iron and Steel Institute (AISI) two-zone smelter process. The effects of geometrical and operating parameters on backmixing flow rates were investigated. It was found that the driving force for a backmixing flow in the AISI smelter comes from gas stirring in a liquid bath. The backmixing flow rate in the AISI smelter is proportional to a bath depth and an opening area of a barrier. Based on the results of the physical modeling experiments, a dimensional analysis was performed to extrapolate the water modeling results to the operating conditions in the AISI pilot plant. Copper tracer trials were conducted at the AISI pilot plant to investigate the backmixing flow of the AISI two-zone smelter process. The results obtained from the pilot plant trials and the water modeling experiments were compared.

  11. Extended operating cycles in ethylene plants

    SciTech Connect

    Bruin, C.J. de

    1994-12-31

    Length of ethylene plant operating cycles is mainly determined by: legislative requirements for statutory inspection, need for periodic major maintenance, and fouling depending on operating conditions and plant design provisions. After consultations with local authorities the authors were led to believe that requirement and scope of inspection may be relaxed. Equipment fouling is the principal operating cause for scheduled shutdowns. Based on actual experience in the Moerdijk Lower Olefins Plants key operating and design aspects influencing equipment fouling are discussed.

  12. Hydrometallurgical recovery of germanium from coal gasification fly ash: pilot plant scale evaluation

    SciTech Connect

    Arroyo, F.; Fernandez-Pereira, C.; Olivares, J.; Coca, P.

    2009-04-15

    In this article, a hydrometallurgical method for the selective recovery of germanium from fly ash (FA) has been tested at pilot plant scale. The pilot plant flowsheet comprised a first stage of water leaching of FA, and a subsequent selective recovery of the germanium from the leachate by solvent extraction method. The solvent extraction method was based on Ge complexation with catechol in an aqueous solution followed by the extraction of the Ge-catechol complex (Ge(C{sub 6}H{sub 4}O{sub 2}){sub 3}{sup 2-}) with an extracting organic reagent (trioctylamine) diluted in an organic solvent (kerosene), followed by the subsequent stripping of the organic extract. The process has been tested on a FA generated in an integrated gasification with combined cycle (IGCC) process. The paper describes the designed 5 kg/h pilot plant and the tests performed on it. Under the operational conditions tested, approximately 50% of germanium could be recovered from FA after a water extraction at room temperature. Regarding the solvent extraction method, the best operational conditions for obtaining a concentrated germanium-bearing solution practically free of impurities were as follows: extraction time equal to 20 min; aqueous phase/organic phase volumetric ratio equal to 5; stripping with 1 M NaOH, stripping time equal to 30 min, and stripping phase/organic phase volumetric ratio equal to 5. 95% of germanium were recovered from water leachates using those conditions.

  13. Separation of packaging plastics by froth flotation in a continuous pilot plant.

    PubMed

    Carvalho, Teresa; Durão, Fernando; Ferreira, Célia

    2010-11-01

    The objective of the research was to apply froth flotation to separate post-consumer PET (Polyethylene Terephthalate) from other packaging plastics with similar density, in a continuously operated pilot plant. A representative sample composed of 85% PET, 2.5% PVC (Polyvinyl Chloride) and 11.9% PS (Polystyrene) was subjected to a combination of alkaline treatment and surfactant adsorption followed by froth flotation. A mineral processing pilot plant, owned by a Portuguese mining company, was adapted for this purpose. The experimentation showed that it is possible to produce an almost pure concentrate of PET, containing 83% of the PET in feed, in a single bank of mechanical flotation cells. The concentrate grade attained was 97.2% PET, 1.1% PVC and 1.1% PS. By simulation it was shown that the Portuguese recycling industry specifications can be attained if one cleaning and one scavenger stages are added to the circuit. PMID:20576423

  14. Separation of packaging plastics by froth flotation in a continuous pilot plant

    SciTech Connect

    Carvalho, Teresa; Durao, Fernando; Ferreira, Celia

    2010-11-15

    The objective of the research was to apply froth flotation to separate post-consumer PET (Polyethylene Terephthalate) from other packaging plastics with similar density, in a continuously operated pilot plant. A representative sample composed of 85% PET, 2.5% PVC (Polyvinyl Chloride) and 11.9% PS (Polystyrene) was subjected to a combination of alkaline treatment and surfactant adsorption followed by froth flotation. A mineral processing pilot plant, owned by a Portuguese mining company, was adapted for this purpose. The experimentation showed that it is possible to produce an almost pure concentrate of PET, containing 83% of the PET in feed, in a single bank of mechanical flotation cells. The concentrate grade attained was 97.2% PET, 1.1% PVC and 1.1% PS. By simulation it was shown that the Portuguese recycling industry specifications can be attained if one cleaning and one scavenger stages are added to the circuit.

  15. Metallurgical study of a failed heat exchanger in a h-coal pilot plant

    SciTech Connect

    Gray, R.J.; Keiser, J.R.; DeVan, J.H.; Searles, R.

    1981-01-01

    The H-Coal Pilot Plant at Catlettsburg, Kentucky, is designed to process 600 tons of coal per day and produce synthetic fuels. On September 20, 1980, operation of the pilot plant was interrupted when a heat exchanger (a reactor effluent vapor/steam thermo syphon reboiler) failed. Three alloy 800 (Fe-32Ni-21Cr) tubes in the bottom return section (cold end) of the heat exchanger blew out of the tubesheet. The system was shut down and a team of investigators began an intense study. After examination of the fractured tubes by optical and scanning electron microscopy, a conclusion was made that stress corrosion cracking originating at the exterior surface was the cause of the failure. Other tubes were found that were approaching a state of failure. 11 figures.

  16. Experimental results: Pilot plant calcine dissolution and liquid feed stability

    SciTech Connect

    Herbst, R.S.; Fryer, D.S.; Brewer, K.N.; Johnson, C.K.; Todd, T.A.

    1995-02-01

    The dissolution of simulated Idaho Chemical Processing Plant pilot plant calcines, containing none of the radioactive actinides, lanthanides or fission products, was examined to evaluate the solubility of calcine matrix materials in acidic media. This study was a necessary precursor to dissolution and optimization experiments with actual radionuclide-containing calcines. The importance of temperature, nitric acid concentration, ratio of acid volume to calcine mass, and time on the amount, as a weight percentage of calcine dissolved, was evaluated. These parameters were studied for several representative pilot plant calcine types: (1) Run No. 74 Zirconia calcine; (2) Run No. 17 Zirconia/Sodium calcine; (3) Run No. 64 Zirconia/Sodium calcine; (3) Run No. 1027 Alumina calcine; and (4) Run No. 20 Alumina/Zirconia/Sodium calcine. Statistically designed experiments with the different pilot plant calcines indicated the effect of the studied process variables on the amount of calcine dissolved decreases in the order: Acid/Calcine Ratio > Temperature > HNO{sub 3} Concentration > Dissolution Time. The following conditions are suitable to achieve greater than 90 wt. % dissolution of most Zr, Al, or Na blend calcines: (1) Maximum nitric acid concentration of 5M; (2) Minimum acid/calcine ratio of 10 mL acid/1 gram calcine; (3) Minimum dissolution temperature of 90{degrees}C; and (4) Minimum dissolution time of 30 minutes. The formation of calcium sulphate (CaSO{sub 4}) precipitates was observed in certain dissolved calcine solutions during the dissolution experiments. Consequently, a study was initiated to evaluate if and under what conditions the resulting dissolved calcine solutions would be unstable with regards to precipitate formation. The results indicate that precipitate formation in the calcine solutions prepared under the above proposed dissolution conditions are not anticipated.

  17. Astronaut John H. Casper uses Portable In-flight Landing Operations Trainer (PILOT)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut John H. Casper, mission commander, participates in an experiment that measures the effects of space flight on pilot proficiency. Astronauts Casper and Andrew M. Allen, pilot, continued the testing of the Portable In-flight Landing Operations Trainer (PILOT), which first flew onboard Columbia in October of 1993.

  18. Decontamination and decommissioning of a fuel reprocessing pilot plant

    SciTech Connect

    Heine, W.F.; Speer, D.R.

    1988-01-01

    SYNOPSIS The strontium Semiworks Pilot Fuel Reprocessing Plant at the Hanford Site in Washington State was decommissioned by a combination of dismantlement and entombment. The facility contained 9600 Ci of Sr-90 and 10 Ci of plutonium. Process cells were entombed in place. The above-grade portion of one cell with 1.5-m- (5-ft-) thick walls and ceilings was demolished by means of expanding grout. A contaminated stack was remotely sandblasted and felled by explosives. The entombed structures were covered with a 4.6-m- (15-ft-) thick engineered earthen barrier. 5 figs., 2 tabs.

  19. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    SciTech Connect

    Washington Regulatory and Environmental Services

    2004-10-25

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed and authorized for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 2002, to March 31, 2004. As required by the WIPP Land Withdrawal Act (LWA) (Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico.

  20. Geotechnical Perspectives on the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect

    Francke, Chris T.; Hansen, Frank D.; Knowles, M. Kathyn; Patchet, Stanley J.; Rempe, Norbert T.

    1999-08-05

    The Waste Isolation Pilot Plant (WIPP) is the first nuclear waste repository certified by the United States Environmental Protection Agency. Success in regulatory compliance resulted from an excellent natural setting for such a repository, a facility with multiple, redundant safety systems, and from a rigorous, transparent scientific and technical evaluation. The WIPP story, which has evolved over the past 25 years, has generated a library of publications and analyses. Details of the multifaceted program are contained in the cited references. Selected geotechnical highlights prove the eminent suitability of the WIPP to serve its congressionally mandated purpose.

  1. Waste Isolation Pilot Plant Annual Site Environmental Report for 2012

    SciTech Connect

    2013-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2012 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: Characterize site environmental management performance; Summarize environmental occurrences and responses reported during the calendar year; Confirm compliance with environmental standards and requirements; Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS).

  2. Physical and numerical modeling of the external fluid mechanics of OTEC pilot plants

    SciTech Connect

    Singarella, P.N.; Adams, E.E.

    1982-03-01

    This study examined the near field external fluid mechanics of symmetrical OTEC pilot plant designs (20 to 80 MWe) under realistic deep water conditions. The objective was to assess the environmental impact of different plant configurations and to determine if pilot plants can be expected to operate without degrading the thermal resource available for power production. Physical modeling studies were conducted to investigate the variation of near field plume dynamics and the sensitivity of recirculation to different pilot plant designs. Experiments were conducted in a thermally stratified 12m x 18m x 0.6m basin, at an undistorted length scale ratio of 1:300, which allowed the upper 170m of the ocean to be studied. Measurements included temperature, dye concentration and visual observation from photographs. Both mixed and non-mixed discharge concepts were investigated. Discharge port design included two, four or eight discrete circular ports, with significant variations in the MWe/port ratio, issuing either horizontally or vertically. A range of ambient uniform current speeds was investigated while an ambient density profile, representative of potential sites off of Hawaii and Pureto Rico, was chosen. A previously calibrated integral jet model was tested against experimental observation to develop a valid, predictive tool that would facilitate study of conditions that were not modeled with the present experimental set-up. The model was modified to more accurately represent the dynamics of the OTEC discharge in the near field. The potential environmental impact of the discharge plume from an OTEC plant over a broad range of realistic conditions was assessed through additional sensitivity simulations. Results indicate that little recirculation occurs for the designs considered in this study. The recirculation that does occur appears to be the result of plume upwash in the lee of the plant and, possibly, internal wake effects on the plant bow.

  3. TREATMENT OF COMBINED SEWER OVERFLOWS BY HIGH GRADIENT MAGNETIC SEPARATION. ON-SITE TESTING WITH MOBILE PILOT PLANT TRAILER

    EPA Science Inventory

    Seeded water treatment using a SALA high gradient magnetic separator pilot plant system was conducted on combined sewer overflows and raw sewage at SALA Magnetics in Cambridge, MA and at on-site locations in the Boston area. Special emphasis was placed on specific design and oper...

  4. Operational results of pilot cell test with cermet inert'' anodes

    SciTech Connect

    Alcorn, T.R.; Tabereaux, A.T.; Richards, N.E. . Mfg. Technology Lab.); Windisch, C.F. Jr.; Strachan, D.M. ); Gregg, J.S.; Frederick, M.S. )

    1993-02-01

    The operational performance of a six-pack'' of cermet anodes and corrosion rates was evaluated in a six kA pilot reduction cell at Reynolds' Manufacturing Technology Laboratory. Two separate test periodswere conducted with the cermet anodes; the first period was in conjunction with the Pacific Northwest Laboratory and the second with ELTECH Research Corporation. Both tests used identical NiO-NiFe[sub 2]O[sub 4]-Cu anodes manufactured by Ceramic Magnetics, Inc.. The ELTECH testing involved the in situ coating of the anodes with cerium oxide. Primary evaluations for both test periods were conducted at target conditions of alumina saturation and 0.5 amp/cm[sup 2] anode current density. Individual anodes remained in operation for 25 days during the two and one-half month testing period. Operational difficulties developed throughout the test due to breakage of the anode conductor stems, cracking and breaking of the cermet anodes, unequal anode current distribution, and alumina muck build-up in the cell. These operational problems are discussed as well as an estimate of anode corrosion rates based on metal impurity levels in the aluminum metal pad.

  5. Operational results of pilot cell test with cermet ``inert`` anodes

    SciTech Connect

    Alcorn, T.R.; Tabereaux, A.T.; Richards, N.E.; Windisch, C.F. Jr.; Strachan, D.M.; Gregg, J.S.; Frederick, M.S.

    1993-02-01

    The operational performance of a ``six-pack`` of cermet anodes and corrosion rates was evaluated in a six kA pilot reduction cell at Reynolds` Manufacturing Technology Laboratory. Two separate test periodswere conducted with the cermet anodes; the first period was in conjunction with the Pacific Northwest Laboratory and the second with ELTECH Research Corporation. Both tests used identical NiO-NiFe{sub 2}O{sub 4}-Cu anodes manufactured by Ceramic Magnetics, Inc.. The ELTECH testing involved the in situ coating of the anodes with cerium oxide. Primary evaluations for both test periods were conducted at target conditions of alumina saturation and 0.5 amp/cm{sup 2} anode current density. Individual anodes remained in operation for 25 days during the two and one-half month testing period. Operational difficulties developed throughout the test due to breakage of the anode conductor stems, cracking and breaking of the cermet anodes, unequal anode current distribution, and alumina muck build-up in the cell. These operational problems are discussed as well as an estimate of anode corrosion rates based on metal impurity levels in the aluminum metal pad.

  6. Tung FDG Test Facility. Phase 2, Pilot plant demonstration. Final report

    SciTech Connect

    1995-06-01

    The Tung FGD Process is a regenerative process which extracts SO{sub 2} from a scrubbing liquor into an organic medium using mixer-settlers followed by steam-stripping the SO{sub 2} off from the organic medium. For the process to operate satisfactorily, (1) the organic must be stable, (2) phase separation must be relatively fast, (3) crud (i.e. solids in-between two phases) must not form and (4) SO{sub 2} must be able to be stripped off from the organic medium readily. The demonstration confirmed that the first three conditions can be met satisfactorily. Much lower stripping efficiency was attained in the pilot plant demonstration than what was previously attained in a bench-scale demonstration. Engineering analysis showed that the pilot plant stripping column was scaled up from the bench-scale column incorrectly. A new scale-up criterion for stripping a relatively viscous liquid medium is proposed based upon pilot plant data.

  7. Taxonomy of the nuclear plant operator's role

    SciTech Connect

    Kisner, R.A.; Fullerton, A.M.; Frey, P.R.; Dougherty, E.M.

    1981-01-01

    A program is presently under way at the Oak Ridge National Laboratory (ORNL) to define the functional design requirements of operational aids for nuclear power plant operators. A first and important step in defining these requirements is to develop an understanding of the operator's role or function. This paper describes a taxonomy of operator functions that applies during all operational modes and conditions of the plant. Other topics such as the influence of automation, role acceptance, and the operator's role during emergencies are also discussed. This systematic approach has revealed several areas which have potential for improving the operator's ability to perform his role.

  8. Space Solar Power Concepts: Demonstrations to Pilot Plants

    NASA Technical Reports Server (NTRS)

    Carrington, Connie K.; Feingold, Harvey; Howell, Joe T. (Technical Monitor)

    2002-01-01

    The availability of abundant, affordable power where needed is a key to the future exploration and development of space as well as future sources of clean terrestrial power. One innovative approach to providing such power is the use of wireless power transmission (WPT). There are at least two possible WPT methods that appear feasible; microwave and laser. Microwave concepts have been generated, analyzed and demonstrated. Technologies required to provide an end-to-end system have been identified and roadmaps generated to guide technology development requirements. Recently, laser W T approaches have gained an increased interest. These approaches appear to be very promising and will possibly solve some of the major challenges that exist with the microwave option. Therefore, emphasis is currently being placed on the laser WPT activity. This paper will discuss the technology requirements, technology roadmaps and technology flight experiments demonstrations required to lead toward a pilot plant demonstration. Concepts will be discussed along with the modeling techniques that are used in developing them. Feasibility will be addressed along with the technology needs, issues and capabilities for particular concepts. Flight experiments and demonstrations will be identified that will pave the road from demonstrations to pilot plants and beyond.

  9. Waste Isolation Pilot Plant Site Environmental Report Calendar Year 2002

    SciTech Connect

    Washington Regulatory and Environmental Services

    2003-09-17

    The United States (U.S.) Department of Energy (DOE) Carlsbad Field Office (CBFO) and Washington TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environment, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2002 Site Environmental Report summarizes environmental data from calendar year 2002 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, and Guidance for the Preparation of DOE Annual Site Environmental Reports (ASERs) for Calendar Year 2002 (DOE Memorandum EH-41: Natoli:6-1336, April 4, 2003). These Orders and the guidance document require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED).

  10. Water Treatment Pilot Plant Design Manual: Low Flow Conventional/Direct Filtration Water Treatment Plant for Drinking Water Treatment Studies

    EPA Science Inventory

    This manual highlights the project constraints and concerns, and includes detailed design calculations and system schematics. The plant is based on engineering design principles and practices, previous pilot plant design experiences, and professional experiences and may serve as ...

  11. A high containment polymodal pilot-plant fermenter--design concepts.

    PubMed

    Hambleton, P; Griffiths, J B; Cameron, D R; Melling, J

    1991-01-01

    A 225 dm3 pilot-plant bioreactor system has been designed and constructed that is suitable for biohazardous fermentations. The design enables operation at containment levels above the requirements of good industrial large-scale practice (GILSP) without secondary containment of the whole plant. The main biosafety features of the systems include the use of steam barriers on O-ring seals, supply lines and stirrer seals, multiple O-ring seals, piping of condensate lines and pressure relief systems to a 'kill tank', double filtration of inlet and off gases and a mobile isolation unit that allows localised containment of sample valve and probe entry ports. The fermenter can, with minor modifications, be operated as a bottom-or top-stirred reactor for the culture of microbial or animal cells, or as an airlift reactor. The design offers considerable flexibility that could prove cost-effective for process development and production. The relevance of the various design features to enable bioreactor operations at pilot-plant scale to be carried out in compliance with current guidelines for large-scale culture of recombinant microorganisms and microbial pathogens is discussed. PMID:1367227

  12. The start-up of the DIOS pilot plant (DIOS Project)

    SciTech Connect

    Sawada, Terutoshi

    1995-12-01

    The DIOS process has been successfully developed as an 8-year project commenced in April 1988. Based on the results of the element studies reported at the previous conference and at other meetings, the pilot plant, with a designed capacity of 500 t/d, was constructed and started up in october 1993. After the starting operation with the single smelting reduction furnace in the beginning of the first campaign, the pilot plant has been principally operated in integration, that is, with the smelting reduction furnace connected with the preheating and prereduction furnaces. So far five campaigns have been successfully conducted on schedule. The operation has been improved gradually and the designed performance has been achieved. New processes are targeted at the direct use of coal and iron ore fines to eliminate not only the problematic coke ovens but also pellet and sinter plants. The direct smelting reduction processes currently at the most advanced stage of development are the DIOS in Japan, the AISI in the USA and the HIsmelt in Australia.

  13. SCALEUP OF ALUMINUM PHOSPHATE CATALYST FOR PILOT PLANT LPDMEtm RUN

    SciTech Connect

    Andrew W. Wang

    2002-05-15

    The Liquid Phase Dimethyl Ether (LPDME{trademark}) process converts synthesis gas to dimethyl ether in a single slurry bubble column reactor. A mixed slurry of methanol synthesis catalyst and methanol dehydration catalyst in a neutral mineral oil simultaneously synthesizes methanol from syngas and converts some of it to dimethyl ether and water. The reaction scheme is: 2H{sub 2} + CO = CH{sub 3}OH 2CH{sub 3}OH = CH{sub 3}OCH{sub 3} + H{sub 2}O H{sub 2}O + CO = CO{sub 2} + H{sub 2}. Most of the water produced in this reaction is converted to hydrogen by reduction with carbon monoxide (water gas shift reaction). This synergy permits higher per pass conversion than methanol synthesis alone. The enhancement in conversion occurs because dehydration of the methanol circumvents the equilibrium constraint of the syngas-to-methanol step. The slurry bubble column reactor provides the necessary heat transfer capacity to handle the greater heat duty associated with high conversion. In order to improve the stability of the catalyst system, non-stoichiometric aluminum phosphate was proposed as the dehydration catalyst for the LPDME{trademark} process. This aluminum phosphate material is a proprietary catalyst. This catalyst system of a standard methanol catalyst and the aluminum phosphate provided stable process performance that met the program targets under our standard test process conditions in the laboratory. These targets are (1) an initial methanol equivalent productivity of 28 gmol/kg/hr, (2) a CO{sub 2}-free, carbon selectivity of 80% to dimethyl ether and (3) stability of both catalysts equivalent to that of the methanol catalyst in the absence of the aluminum phosphate. A pilot plant trial of the LPDME{trademark} process using the aluminum phosphate catalyst was originally planned for March 1998 at the DOE-owned, Air Products (APCI)-operated facility at LaPorte, Texas. Because the aluminum phosphate catalyst is not commercially available, we initiated a scaleup project

  14. SCALEUP OF ALUMINUM PHOSPHATE CATALYST FOR PILOT PLANT LPDMEtm RUN

    SciTech Connect

    Andrew W. Wang

    2002-01-01

    The Liquid Phase Dimethyl Ether (LPDME{trademark}) process converts synthesis gas to dimethyl ether in a single slurry bubble column reactor. A mixed slurry of methanol synthesis catalyst and methanol dehydration catalyst in a neutral mineral oil simultaneously synthesizes methanol from syngas and converts some of it to dimethyl ether and water. The reaction scheme is shown below: 2H{sub 2} + CO = CH{sub 3}OH; 2CH{sub 3}OH = CH{sub 3}OCH{sub 3} + H{sub 2}O; H{sub 2}O + CO = CO{sub 2} + H{sub 2}. Most of the water produced in this reaction is converted to hydrogen by reduction with carbon monoxide (water gas shift reaction). This synergy permits higher per pass conversion than methanol synthesis alone. The enhancement in conversion occurs because dehydration of the methanol circumvents the equilibrium constraint of the syngas-to-methanol step. The slurry bubble column reactor provides the necessary heat transfer capacity to handle the greater heat duty associated with high conversion. In order to improve the stability of the catalyst system, non-stoichiometric aluminum phosphate was proposed as the dehydration catalyst for the LPDME{trademark} process. This aluminum phosphate material is a proprietary catalyst. This catalyst system of a standard methanol catalyst and the aluminum phosphate provided stable process performance that met the program targets under our standard test process conditions in the laboratory. These targets are (1) an initial methanol equivalent productivity of 28 gmol/kg/hr, (2) a CO{sub 2}-free, carbon selectivity of 80% to dimethyl ether and (3) stability of both catalysts equivalent to that of the methanol catalyst in the absence of the aluminum phosphate. A pilot plant trial of the LPDME{trademark} process using the aluminum phosphate catalyst was originally planned for March 1998 at the DOE-owned, Air Products (APCI)-operated facility at LaPorte, Texas. Because the aluminum phosphate catalyst is not commercially available, we initiated a

  15. AIR DISPERSION MODELING AT THE WASTE ISOLATION PILOT PLANT

    SciTech Connect

    Rucker, D.F.

    2000-08-01

    One concern at the Waste Isolation Pilot Plant (WIPP) is the amount of alpha-emitting radionuclides or hazardous chemicals that can become airborne at the facility and reach the Exclusive Use Area boundary as the result of a release from the Waste Handling Building (WHB) or from the underground during waste emplacement operations. The WIPP Safety Analysis Report (SAR), WIPP RCRA Permit, and WIPP Emergency Preparedness Hazards Assessments include air dispersion calculations to address this issue. Meteorological conditions at the WIPP facility will dictate direction, speed, and dilution of a contaminant plume of respirable material due to chronic releases or during an accident. Due to the paucity of meteorological information at the WIPP site prior to September 1996, the Department of Energy (DOE) reports had to rely largely on unqualified climatic data from the site and neighboring Carlsbad, which is situated approximately 40 km (26 miles) to the west of the site. This report examines the validity of the DOE air dispersion calculations using new meteorological data measured and collected at the WIPP site since September 1996. The air dispersion calculations in this report include both chronic and acute releases. Chronic release calculations were conducted with the EPA-approved code, CAP88PC and the calculations showed that in order for a violation of 40 CFR61 (NESHAPS) to occur, approximately 15 mCi/yr of 239Pu would have to be released from the exhaust stack or from the WHB. This is an extremely high value. Hence, it is unlikely that NESHAPS would be violated. A site-specific air dispersion coefficient was evaluated for comparison with that used in acute dose calculations. The calculations presented in Section 3.2 and 3.3 show that one could expect a slightly less dispersive plume (larger air dispersion coefficient) given greater confidence in the meteorological data, i.e. 95% worst case meteorological conditions. Calculations show that dispersion will decrease

  16. The Waste Isolation Pilot Plant (WIPP) Groundwater Monitoring Program

    NASA Astrophysics Data System (ADS)

    Hillesheim, M. B.; Beauheim, R. L.

    2006-12-01

    The development of a groundwater monitoring program is an integral part of any radioactive waste disposal facility. Monitoring improves our understanding of the geologic and hydrologic framework, which improves conceptual models and the quality of groundwater models that provide data input for performance assessment. The purpose of a groundwater monitoring program is to provide objective evidence that the hydrologic system is behaving as expected (i.e., performance confirmation). Monitoring should not be limited to near-field observations but should include the larger natural system in which the repository is situated. The Waste Isolation Pilot Plant (WIPP), a U.S. Department of Energy (DOE) facility designed for the safe disposal of transuranic wastes resulting from U.S. defense programs, can serve as a model for other radioactive waste disposal facilities. WIPP has a long-established groundwater monitoring program that is geared towards meeting compliance certification requirements set forth by the U.S. Environmental Protection Agency (EPA). The primary task of the program is to measure various water parameters (e.g.., water level, pressure head, chemical and physical properties) using a groundwater monitoring network that currently consists of 85 wells in the vicinity of the WIPP site. Wells are completed to a number of water-bearing horizons and are monitored on a monthly basis. In many instances, they are also instrumented with programmable pressure transducers that take high-frequency measurements that supplement the monthly measurements. Results from higher frequency measurements indicate that the hydrologic system in the WIPP vicinity is in a transient state, responding to both natural and anthropogenic stresses. The insights gathered from the monitoring, as well as from hydrologic testing activities, provide valuable information that contributes to groundwater modeling efforts and performance assessment. Sandia is a multi program laboratory operated by

  17. Plant Operation: Work Week, Administration

    ERIC Educational Resources Information Center

    Nation's Schools and Colleges, 1975

    1975-01-01

    A four-day work week for maintenance workers in the Jefferson County Public Schools in Lakewood, Colorado, reduces absenteeism and increases productivity; a basic manual for physical plant directors is reviewed. (Author/MLF)

  18. Study to determine the IFR operational profile and problems of the general aviation single pilot

    NASA Technical Reports Server (NTRS)

    Weislogel, G. S.

    1983-01-01

    General aviation single pilot operating under instrument flight rules (GA SPIFR) was studied. The objectives of the study were to (1) develop a GA SPIFR operational profile, (2) identify problems experienced by the GA SPIFR pilot, and (3) identify research tasks which have the potential for eliminating or reducing the severity of the problems. To obtain the information necessary to accomplish these objectives, a mail questionnaire survey of instrument rated pilots was conducted. The general aviation IFR single pilot operational profile and selected data analysis examples are presented.

  19. Letdown valve (anti eroded type for slurry use) on 150 t/d coal liquefaction pilot plant

    SciTech Connect

    Kamada, Mitsushi; Kobayashi, Masatoshi; Yoshida, Haruhiko; Yamagiwa, Hisashi

    1999-07-01

    The letdown valve developed by NEDO has been tested on the 150 t/d coal liquefaction pilot plant using the NEDOL process for more than 6,000 hours of on-coal operation. Several factors affecting the damage of the letdown valve that handled a fluid containing coal-derived oil, catalyst and residue including ash have been evaluated. The countermeasure for the damage has been studied to develop an advanced letdown valve to be used demonstration plant.

  20. Experience with the combustion of alternate fuels in a CFB pilot plant

    SciTech Connect

    Alliston, M.G.; Probst, S.G.; Wu, S.; Edvardsson, C.M.

    1995-12-31

    A circulating fluidized bed pilot plant has been operated for several years in Williamsport, Pennsylvania, by Tampella Power Corporation to test the combustion characteristics of many different types of fuels. The fuels tested at the facility include: bituminous and anthracite coals; bituminous (gob) and anthracite (culm) waste; fluid and delayed petroleum coke; Colorado and Israel oil shales; tire derived fuel (TDF); refuse derived fuel (RDF); paper mill sludge and bark; and refinery process off-gas. Each of these fuels presented special fuel and ash handling problems that needed to be addressed before successful testing could be accomplished; these problems are more urgent on the pilot scale than in the commercial scale due to the corresponding reduction in equipment size. Each of these fuels also behaved differently in terms of combustion characteristics and gaseous emissions, as would be expected on the basis of their vastly different physical and chemical properties. This paper describes the major experiences obtained during the pilot plant testing of each of these alternative fuels, including summaries of the tested fuels and their measured emissions, limestone performance when applicable, and practical considerations.

  1. Heavy metal removal by chemical reduction with sodium borohydride. A pilot-plant study

    SciTech Connect

    Gomez-Lahoz, C.; Garcia-Herruzo, F.; Rodriguez-Maroto, J.M.; Rodriguez, J.J. )

    1992-10-01

    A 1,000/h continuous pilot-plant study dealing with Cu{sup 2+} and Co{sup 2+} removal from simulated industrial wastewater by means of chemical reduction with sodium borohydride is presented. Initial metal concentrations in the 25 to 40 mg range have been tested. Residual concentrations lower than 0.1 mg have been achieved when operating under optimal conditions. Prior addition of sodium dithionite was required to avoid reoxidation problems arising from dissolved oxygen. Flocculation-sedimentation and sand filtration have been studied for sludge separation.

  2. Reconsolidation of salt as applied to permanent seals for the Waste Isolation Pilot Plant

    SciTech Connect

    Hansen, F.D.; Callahan, G.D.; Van Sembeek, L.L.

    1993-07-01

    Reconsolidated salt is a fundamental component of the permanent seals for the Waste Isolation Pilot Plant. As regulations are currently understood and seal concepts envisioned, emplaced salt is the sole long-term seal component designed to prevent the shafts from becoming preferred pathways for rating gases or liquids. Studies under way in support of the sealing function of emplaced salt include laboratory testing of crushed salt small-scale in situ tests, constitutive modeling of crushed salt, calculations of the opening responses during operation and closure, and design practicalities including emplacement techniques. This paper briefly summarizes aspects of these efforts and key areas of future work.

  3. Perspective of the Science Advisor to the Waste Isolation Pilot Plant

    SciTech Connect

    WEART,WENDELL D.

    1999-09-03

    In 1975 Sandia National Laboratories (SNL) was asked by the predecessor to the Department of Energy to assume responsibility for the scientific programs necessary to assure the safe and satisfactory development of a geologic repository in the salt beds of southeast New Mexico. Sandia has continued in the role of Science Advisor to the Waste Isolation Pilot Plant (WIPP) to the present time. This paper will share the perspectives developed over the past 25 years as the project was brought to fruition with successful certification by the Environmental Protection Agency (EPA) on May 13, 1998 and commencement of operations on April 26, 1999.

  4. Waste acceptance criteria for the Waste Isolation Pilot Plant. Revision 4

    SciTech Connect

    Not Available

    1991-12-01

    This Revision 4 of the Waste Acceptance Criteria (WAC), WIPP-DOE-069, identifies and consolidates existing criteria and requirements which regulate the safe handling and preparation of Transuranic (TRU) waste packages for transportation to and emplacement in the Waste Isolation Pilot Plant (WIPP). This consolidation does not invalidate any existing certification of TRU waste to the WIPP Operations and Safety Criteria (Revision 3 of WIPP-DOE--069) and/or Transportation: Waste Package Requirements (TRUPACT-II Safety Analysis Report for Packaging [SARP]). Those documents being consolidated, including Revision 3 of the WAC, currently support the Test Phase.

  5. Software/firmware design specification for 10-MWe solar-thermal central-receiver pilot plant

    SciTech Connect

    Ladewig, T.D.

    1981-03-01

    The software and firmware employed for the operation of the Barstow Solar Pilot Plant are completely described. The systems allow operator control of up to 2048 heliostats, and include the capability of operator-commanded control, graphic displays, status displays, alarm generation, system redundancy, and interfaces to the Operational Control System, the Data Acquisition System, and the Beam Characterization System. The requirements are decomposed into eleven software modules for execution in the Heliostat Array Controller computer, one firmware module for execution in the Heliostat Field Controller microprocessor, and one firmware module for execution in the Heliostat Controller microprocessor. The design of the modules to satisfy requirements, the interfaces between the computers, the software system structure, and the computers in which the software and firmware will execute are detailed. The testing sequence for validation of the software/firmware is described. (LEW)

  6. Baseline designs of moored and grazing 40-MW OTEC pilot plants. Volume A. Detailed report

    SciTech Connect

    George, J.F.; Richards, D.

    1980-06-01

    The Applied Physics Laboratory (APL) of the Johns Hopkins University has engineered baseline designs of two types of floating Ocean Thermal Energy Conversion (OTEC) pilot plants. Both designs feature floating concrete hull structures that house up to 40 MW/sub e/(net) of OTEC power systems. One plant is designed for moored operation at an island site, and uses underwater cables to transmit electric power to a shore-based utility company. The other plant is self-propelled and cruises slowly through tropical waters, using the OTEC electric power to produce an energy-intensive product onboard, where it is stored for later transshipment to market. The work is documented in two volumes. This volume is the Detailed Report, which develops the design rationale, summarizes important calculations, outlines areas for future work, and presents a study of system costs.

  7. Operation of industrial-scale electron beam wastewater treatment plant

    NASA Astrophysics Data System (ADS)

    Han, Bumsoo; Kyu Kim, Jin; Kim, Yuri; Seung Choi, Jang; Young Jeong, Kwang

    2012-09-01

    Textile dyeing processes consume large amount of water, steam and discharge filthy and colored wastewater. A pilot scale e-beam plant with an electron accelerator of 1 MeV, 40 kW had constructed at Daegu Dyeing Industrial Complex (DDIC) in 1997 for treating 1,000 m3 per day. Continuous operation of this plant showed the preliminary e-beam treatment reduced bio-treatment time and resulted in more significant decreasing TOC, CODCr, and BOD5. Convinced of the economics and efficiency of the process, a commercial plant with 1 MeV, 400 kW electron accelerator has constructed in 2005. This plant improves the removal efficiency of wastewater with decreasing the retention time in bio-treatment at around 1 kGy. This plant is located on the area of existing wastewater treatment facility in DDIC and the treatment capacity is 10,000 m3 of wastewater per day. The total construction cost for this plant was USD 4 M and the operation cost has been obtained was not more than USD 1 M per year and about USD 0.3 per each m3 of wastewater.

  8. Pilot interaction with cockpit automation - Operational experiences with the Flight Management System

    NASA Technical Reports Server (NTRS)

    Sarter, Nadine B.; Woods, David D.

    1992-01-01

    Results are presented of two studies on the potential effect of cockpit automation on the pilot's performance, which provide data on pilots' difficulties with understanding and operating one of the core systems of cockpit automation, the Flight Management System (FMS). The results of both studies indicate that, although pilots do become proficient in standard FMS operations through ground training and subsequent flight experience, they still have difficulties tracking the FMS status and behavior in certain flight contexts and show gaps in the understanding of the functional structure of the system. The results suggest that design-related factors such as opaque interfaces contribute to these difficulties, which can affect the pilot's situation awareness.

  9. Demonstration of a 100-kWth high-temperature solar thermochemical reactor pilot plant for ZnO dissociation

    NASA Astrophysics Data System (ADS)

    Koepf, E.; Villasmil, W.; Meier, A.

    2016-05-01

    Solar thermochemical H2O and CO2 splitting is a viable pathway towards sustainable and large-scale production of synthetic fuels. A reactor pilot plant for the solar-driven thermal dissociation of ZnO into metallic Zn has been successfully developed at the Paul Scherrer Institute (PSI). Promising experimental results from the 100-kWth ZnO pilot plant were obtained in 2014 during two prolonged experimental campaigns in a high flux solar simulator at PSI and a 1-MW solar furnace in Odeillo, France. Between March and June the pilot plant was mounted in the solar simulator and in-situ flow-visualization experiments were conducted in order to prevent particle-laden fluid flows near the window from attenuating transparency by blocking incoming radiation. Window flow patterns were successfully characterized, and it was demonstrated that particle transport could be controlled and suppressed completely. These results enabled the successful operation of the reactor between August and October when on-sun experiments were conducted in the solar furnace in order to demonstrate the pilot plant technology and characterize its performance. The reactor was operated for over 97 hours at temperatures as high as 2064 K; over 28 kg of ZnO was dissociated at reaction rates as high as 28 g/min.

  10. The MELISSA pilot plant facility as as integration test-bed for advanced life support systems

    NASA Technical Reports Server (NTRS)

    Godia, F.; Albiol, J.; Perez, J.; Creus, N.; Cabello, F.; Montras, A.; Masot, A.; Lasseur, Ch

    2004-01-01

    The different advances in the Micro Ecological Life Support System Alternative project (MELISSA), fostered and coordinated by the European Space Agency, as well as in other associated technologies, are integrated and demonstrated in the MELISSA Pilot Plant laboratory. During the first period of operation, the definition of the different compartments at an individual basis has been achieved, and the complete facility is being re-designed to face a new period of integration of all these compartments. The final objective is to demonstrate the potentiality of biological systems such as MELISSA as life support systems. The facility will also serve as a test bed to study the robustness and stability of the continuous operation of a complex biological system. This includes testing of the associated instrumentation and control for a safe operation, characterization of the chemical and microbial safety of the system, as well as tracking the genetic stability of the microbial strains used. The new period is envisaged as a contribution to the further development of more complete biological life support systems for long-term manned missions, that should be better defined from the knowledge to be gained from this integration phase. This contribution summarizes the current status of the Pilot Plant and the planned steps for the new period. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.