These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Measuring the effectiveness of a pilot scale bioreactor for removing Microcystis in an outdoor pond system.  

PubMed

A pilot scale fluidized bed bioreactor to control the cyanobacterium, Microcystis, was tested in an outdoor experimental pond system (28 m3) over a 57 day period. The pond system was inoculated with a wild bloom of Microcystis, and the bioreactor was preinoculated with an oligochaete, Aeolosoma hemprichi, which is known to prey on colonial Microcystis. This and other Microcystis predators such as the rotifer, Philodina erythrophthalma were observed to colonize the bioreactor during the experiment. The bioreactor performance in removing Microcystis was estimated using a mathematical model and a multiple regression analysis of the chlorophyll-a concentration, which was a satisfactory surrogate for the Microcystis cell density in the ponds. The estimated specific decrease in chlorophyll-a concentration due to bioreactor treatment was 0.04 day-1, which was equal to the net removal of 4.3 x 10(11) Microcystis cells day(-1) from the treated pond. PMID:19068838

Itayama, Tomoaki; Iwami, Norio; Koike, Mitsuyo; Kuwabara, Takashi; Whangchai, Niwooti; Inamori, Yuhei

2008-11-15

2

Treatment of a denim producing textile industry wastewater using pilot-scale membrane bioreactor  

Microsoft Academic Search

The objective of this study was to investigate the performance of a pilot-scale membrane bioreactor (MBR) system for the treatment of a highly concentrated mixed wastewater from wet processes (dyeing, finishing, and sizing) of a denim producing textile industry. The MBR system, containing a submerged hollow fiber membrane module in the aeration tank, was operated aerobically for about 3 months

N. O. Yigit; N. Uzal; H. Koseoglu; I. Harman; H. Yukseler; U. Yetis; G. Civelekoglu; M. Kitis

2009-01-01

3

Performance of Pilot-Scale Sulfate-Reducing Bioreactors Treating Acidic Saline Water Under Semi-Arid Conditions  

Microsoft Academic Search

Groundwater drains used to manage saline watertables in the semi-arid zone of south-western Australia can discharge acidic\\u000a saline water with high concentrations of metals to waterways. Mitigating the acidity impacts of the waters requires sulfate-reducing\\u000a bioreactors capable of functioning under semi-arid conditions with limited source materials. Two simple pilot-scale bioreactor\\u000a designs using straw and sheep manure mixtures were evaluated over

Brad P. Degens

4

Influence of supplemental heat addition on performance of pilot-scale bioreactor landfills.  

PubMed

Implementation of supplemental heat addition as a means of improving bioreactor landfill performance was investigated. The experimental work was conducted with two pilot-scale bioreactor setups (control cell and heated cell) operated for 280 days. Supplemental heat was introduced by recirculating leachate heated up to 35 °C compared to the control which used similar quantities of leachate at room temperature (21 ± 1 °C). The temporal and spatial effects of recirculating heated leachate on the landfill internal temperature were determined, and performance was assessed in terms of leachate parameters and biogas production. Recirculation of heated leachate helped establish balanced anaerobic microbial consortia that led to earlier (70 days) and greater (1.4-fold) organic matter degradation rates, as well as threefold higher methane production compared to the non-heated control. Despite the significant enhancements in performance resulting from supplemental heat addition, heated leachate recirculation did not significantly impact waste temperatures, and the effects were mainly restricted to short periods after recirculation and mostly at the upper layers of the waste. These findings suggest that improvements in bioreactor landfill performance may be achieved without increasing the temperature of the whole in-place waste, but rather more economically by raising the temperature at the leachate/waste interface which is also exposed to the maximum moisture levels within the waste matrix. PMID:23780222

Abdallah, Mohamed; Kennedy, Kevin; Narbaitz, Roberto; Warith, Mostafa; Sartaj, Majid

2014-02-01

5

Microbial biosafety of pilot-scale bioreactor treating MTBE and TBA-contaminated drinking water supply  

PubMed Central

A pilot-scale sand-based fluidized bed bioreactor (FBBR) was utilized to treat both methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) from a contaminated aquifer. To evaluate the potential for re-use of the treated water, we tested for a panel of water quality indicator microorganisms and potential waterborne pathogens including total coliforms, E. coli, Salmonella and Shigella spp., Campylobacter jejuni, Aeromonas hydrophila, Legionella pneumophila, Vibrio cholerae, Yersinia enterocolytica and Mycobacterium avium in both influent and treated waters from the bioreactor. Total bacteria decreased during FBBR treatment. E. coli, Salmonella and Shigella spp., C. jejuni, V. cholerae, Y. enterocolytica and M. avium were not detected in aquifer water or bioreactor treated water samples. For those pathogens detected, including total coliforms, L. pneumophila and A. hydrophila, numbers were usually lower in treated water than influent samples, suggesting removal during treatment. The detection of particular bacterial species reflected their presence or absence in the influent waters. PMID:22321859

Schmidt, Radomir; Klemme, David A.; Scow, Kate; Hristova, Krassimira

2012-01-01

6

Evaluation of two pilot scale membrane bioreactors for the elimination of selected surfactants from municipal wastewaters  

NASA Astrophysics Data System (ADS)

SummaryThe removal of selected surfactants, linear alkylbenzene sulfonates (LAS), coconut diethanol amides (CDEA) and alkylphenol ethoxylates and their degradation products were investigated using a two membrane bioreactor (MBR) with hollow fiber and plate and frame membranes. The two pilot plants MBR run in parallel to a full-scale conventional activated sludge (CAS) treatment. A total of eight influent samples with the corresponding effluent samples were analysed by solid phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS-MS). The results indicate that both MBR have a better effluent quality in terms of chemical and biological oxygen demand (COD and BOD), NH4+, concentration and total suspended solids (TSS). MBR showed a better similar performance in the overall elimination of the total nonylphenolic compounds, achieving a 75% of elimination or a 65% (the same elimination reached by CAS). LAS and CDEA showed similar elimination in the three systems investigated and no significant differences were observed.

González, Susana; Petrovic, Mira; Barceló, Damiá

2008-07-01

7

Pilot-scale culture of Hypericum perforatum L. adventitious roots in airlift bioreactors for the production of bioactive compounds.  

PubMed

Hypericum perforatum L. (St. John's Wort) is an important medicinal plant which is widely used in the treatment for depression and irritable bowel syndrome. It is also used as a dietary supplement. Major bioactive phytochemicals of H. perforatum are phenolics and flavonoids. Quality of these phytochemicals is dramatically influenced by environmental and biological factors in the field grown plants. As an alternative, we have developed adventitious root cultures in large-scale bioreactors for the production of useful phytochemicals. Adventitious roots of H. perforatum were cultured in 500 l pilot-scale airlift bioreactors using half-strength Murashige and Skoog medium with an ammonium and nitrate ratio of 5:25 mM and supplemented with 1.0 mg l(-1) indole butyric acid, 0.1 mg l(-1) kinetin, and 3 % sucrose for the production of bioactive phenolics and flavonoids. Then 4.6 and 6.3 kg dry biomass were realized in the 500 l each of drum-type and balloon-type bioreactors, respectively. Accumulation of 66.9 mg g(-1) DW of total phenolics, 48.6 mg g(-1) DW of total flavonoids, 1.3 mg g(-1) DW of chlorogenic acid, 0.01 mg g(-1) DW of hyperin, 0.04 mg g(-1) DW of hypericin, and 0.01 mg g(-1) DW of quercetin could be achieved with adventitious roots cultured in 500 l balloon-type airlift bioreactors. Our findings demonstrate the possibilities of using H. perforatum adventitious root cultures for the production of useful phytochemicals to meet the demand of pharmaceutical and food industry. PMID:25096393

Cui, Xi-Hua; Murthy, Hosakatte Niranjana; Paek, Kee-Yoeup

2014-09-01

8

Ethanol production in a membrane bioreactor: pilot-scale trials in a corn wet mill.  

PubMed

Pilot plant trials were conducted in a corn wet mill with a 7000-L membrane recycle bioreactor (MRB) that integrated ceramic microfiltration membranes in a semi-closed loop configuration with a stirred-tank reactor. Residence times of 7.5-10 h with ethanol outputs of 10-11.5% (v/v) were obtained when the cell concentration was 60-100 g/L dry wt of yeast, equivalent to about 10(9)-10(10) cells/mL. The performance of the membrane was dependent on the startup mode and pressure management techniques. A steady flux of 70 L/(m2 x h) could be maintained for several days before cleaning was necessary. The benefits of the MRB include better productivity; a clear product stream containing no particulates or yeast cells, which should improve subsequent stripping and distillation operations; and substantially reduced stillage handling. The capital cost of the MRB is $21-$34/(m3 x yr) ($0.08-$0.13/[gal x yr]) of ethanol capacity. Operating cost, including depreciation, energy, membrane replacement, maintenance, labor, and cleaning, is $4.5-9/m3 ($0.017-$0.034/gal) of ethanol. PMID:11963857

Escobar, J M; Rane, K D; Cheryan, M

2001-01-01

9

Long-term pilot scale investigation of novel hybrid ultrafiltration-osmotic membrane bioreactors  

E-print Network

. � FO water flux was maintained constant for more than four months with the UFO-MBR. G R A P H I C A L membrane bioreactor (OMBR) and a novel hybrid ultrafiltration OMBR (UFO-MBR) were investigated for extended bioreactor (UFO-MBR). Results from long-term OMBR and UFO-MBR investigations revealed that the overall

10

Performance evaluation of a pilot-scale anaerobic membrane bioreactor (AnMBR) treating ethanol thin stillage.  

PubMed

The ethanol industry has grown rapidly during the past ten years, mainly due to increasing oil prices. However, efficient and cost-effective solutions for treating thin stillage wastewater have still to be developed. The anaerobic membrane bioreactor (AnMBR) technology combines classical anaerobic treatment in a completely-stirred tank reactor (CSTR) with membrane separation. The combination of these two technologies can achieve a superior effluent quality and also increase biogas production compared to conventional anaerobic solutions. A pilot-scale AnMBR treating thin stillage achieved very high treatment efficiencies in terms of chemical oxygen demand (COD) and total suspended solids (TSS) removal (>98%). An average permeate flux of 4.3 L/m2 x h was achieved at relatively low transmembrane pressure (TMP) values (0.1-0.2 bars) with flat-sheet membranes. Experience gained during the pilot-scale studies provides valuable information for scaling up of AnMBRs treating complex and high-strength wastewaters. PMID:22988609

Dereli, R K; Urban, D R; Heffernan, B; Jordan, J A; Ewing, J; Rosenberger, G T; Dunaev, T I

2012-01-01

11

Correlation between mass transfer coefficient kLa and relevant operating parameters in cylindrical disposable shaken bioreactors on a bench-to-pilot scale  

PubMed Central

Background Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation. Results A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham’s ?-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures. Conclusion The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/? 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale. PMID:24289110

2013-01-01

12

Control of membrane fouling during hyperhaline municipal wastewater treatment using a pilot-scale anoxic/aerobic-membrane bioreactor system.  

PubMed

Membrane fouling limits the effects of long-term stable operation of membrane bioreactor (MBR). Control of membrane fouling can extend the membrane life and reduce water treatment cost effectively. A pilot scale anoxic/aerobic-membrane bioreactor (A/O-MBR, 40 L/hr) was used to treat the hyperhaline municipal sewage from a processing zone of Tianjin, China. Impact factors including mixed liquid sludge suspension (MLSS), sludge viscosity (micro), microorganisms, extracellular polymeric substances (EPS), aeration intensity and suction/suspended time on membrane fouling and pollution control were studied. The relationships among various factors associated with membrane fouling were analyzed. Results showed that there was a positive correlation among MLSS, sludge viscosity and trans-membrane pressure (TMP). Considering water treatment efficiency and stable operation of the membrane module, MLSS of 5 g/L was suggested for the process. There was a same trend among EPS, sludge viscosity and TMP. Numbers and species of microorganisms affected membrane fouling. Either too high or too low aeration intensity was not conducive to membrane fouling control. Aeration intensity of 1.0 m3/hr (gas/water ratio of 25:1) is suggested for the process. A long suction time caused a rapid increase in membrane resistance. However, long suspended time cannot prevent the increase of membrane resistance effectively even though a suspended time was necessary for scale off particles from the membrane surface. The suction/suspended time of 12 min/3 min was selected for the process. The interaction of various environmental factors and operation conditions must be considered synthetically. PMID:22432256

Sun, Jingmei; Rong, Jiangxiu; Dai, Lifeng; Liu, Baoshan; Zhu, Wenting

2011-01-01

13

Microbial community structure and dynamics in a pilot-scale submerged membrane bioreactor aerobically treating domestic wastewater under real operation conditions  

Microsoft Academic Search

A pilot scale submerged ultra-filtration membrane bioreactor (MBR) was used for the aerobic treatment of domestic wastewater over 9 months of year 2006 (28th March to 21st December). The MBR was installed at a municipal wastewater facility (EMASAGRA, Granada, Spain) and was fed with real wastewater. The experimental work was divided in 4 stages run under different sets of operation conditions.

M. Molina-Muñoz; J. M. Poyatos; M. Sánchez-Peinado; E. Hontoria; J. González-López; B. Rodelas

2009-01-01

14

Biodegradation by bioaugmentation of dairy wastewater by fungal consortium on a bioreactor lab-scale and on a pilot-scale.  

PubMed

A fungal consortium including Aspergillus niger, Mucor hiemalis and Galactomyces geotrichum was tested for the treatment of dairy wastewater. The bio-augmentation method was tested at lab-scale (4 L), at pilot scale (110 L) and at an industrial scale in Wastewater Treatment Plants (WWTP). The positive impact of fungal addition was confirmed when fungi was beforehand accelerated by pre-culture on whey (5 g/L lactose) or on the dairy effluent. Indeed, chemical oxygen demand (COD) removal yields increased from 55% to 75% for model medium, diluted milk. While after inoculation of an industrial biological tank from a dairy factory with the fungal consortium accelerated by pre-cultivation in a 1000 L pilot plant, the outlet COD values decreased from values above the standard one (100 mg/L) to values in the range of 50-70 mg/L. In addition, there was a clear impact of fungal addition on the 'hard' or non-biodegradable COD owing to the significant reduction of the increase of the COD on BOD5 ratio between the inlet and the outlet of the biological tank of WWTP. It was in the range of 451%-1111% before adding fungal consortium, and in the range of 257%-153% after bio-augmentation with fungi. An inoculated bioreactor with fungal consortium was developed at lab-scale and demonstrated successfully at pilot scale in PMID:24520735

Djelal, Hayet; Amrane, Abdeltif

2013-09-01

15

Pilot-scale temperate-climate treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR).  

PubMed

A pilot-scale staged anaerobic fluidized membrane bioreactor (SAF-MBR) was operated continuously for 485 days, without chemical cleaning of membranes, treating primary-settled domestic wastewater with wastewater temperature between 8 and 30°C and total hydraulic retention time (HRT) between 4.6 and 6.8h. Average chemical oxygen demand (COD) and biochemical oxygen demand (BOD5) removals averaged 81% and 85%, respectively, during the first winter at 8-15°C before full acclimation had occurred. However, subsequently when fully acclimated, summer and winter COD removals of 94% and 90% and BOD5 removals of 98% and 90%, respectively, were obtained with average effluent COD never higher than 23 mg/L nor BOD5 higher than 9 mg/L. Operational energy requirement of 0.23 kW h/m(3) could be met with primary and secondary methane production, and could be reduced further through hydraulic change. Biosolids production in all seasons averaged 0.051 g volatile suspended solids per g COD removed. PMID:24632631

Shin, Chungheon; McCarty, Perry L; Kim, Jeonghwan; Bae, Jaeho

2014-05-01

16

Microbiological Analysis of an Active Pilot-Scale Mobile Bioreactor Treating Organic Contaminants  

SciTech Connect

Samples were obtained for microbiological analysis from a granular activated carbon fluidized bed bioreactor (GAC-FBR). This GAC-FBR was in operation at a former manufactured gas plant (MGP) Site in Augusta Georgia for in situ groundwater bioremediation of organics. The samples included contaminated site groundwater, GAC-FBR effluent, and biofilm coated granular activated carbon at 5, 9, and 13 feet within the GAC-FBR column. The objective of this analysis was to correlate contaminant removal with microbiological activity within the GAC-FBR.

Brigmon, R.L. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1997-11-26

17

Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale.  

PubMed

The aim of this study was to assess the effect of several operational variables on both biological and separation process performance in a submerged anaerobic membrane bioreactor pilot plant that treats urban wastewater. The pilot plant is equipped with two industrial hollow-fibre ultrafiltration membrane modules (PURON® Koch Membrane Systems, 30 m² of filtration surface each). It was operated under mesophilic conditions (at 33 °C), 70 days of SRT, and variable HRT ranging from 20 to 6h. The effects of the influent COD/SO?-S ratio (ranging from 2 to 12) and the MLTS concentration (ranging from 6 to 22 g L?¹) were also analysed. The main performance results were about 87% of COD removal, effluent VFA below 20 mg L?¹ and biogas methane concentrations over 55% v/v. Methane yield was strongly affected by the influent COD/SO?-S ratio. No irreversible fouling problems were detected, even for MLTS concentrations above 22 g L?¹. PMID:21820896

Giménez, J B; Robles, A; Carretero, L; Durán, F; Ruano, M V; Gatti, M N; Ribes, J; Ferrer, J; Seco, A

2011-10-01

18

Start-up period investigation of pilot-scale submerged membrane electro-bioreactor (SMEBR) treating raw municipal wastewater.  

PubMed

Submerged membrane electro-bioreactor (SMEBR) is a new hybrid technology for wastewater treatment employing electrical field and microfiltration in a nutrient-removing activated sludge process. A pilot SMEBR system was located at the wastewater treatment plant in the City of l'Assomption (Quebec, Canada) with the objective of investigating the start-up period performance under variable organic loadings and environmental conditions with respect to effluent quality, membrane fouling, and sludge properties. The pilot SMEBR facility was fed with the raw de-gritted municipal wastewater. At steady state operation, the removal efficiencies of ammonia (as NH3(+)-N), phosphorus (as PO4(3-)-P), and COD were 99%, 99%, and 92%, respectively. No substantial increase in the monitored transmembrane pressure as 0.02kPad(-1) was reported. The time necessary to filter 100mL of the sludge sample has decreased by 78% after treatment whilst the sludge volume index averaged 119mLg(-1). Energy requirements were in the range of 1.1-1.6kWhm(-3) of wastewater. It was concluded that the SMEBR is a very competitive technology when compared to conventional membrane systems as it can enhance treatment performance to an appreciable extent, remove phosphorus and reduce fouling. PMID:24290298

Hasan, Shadi W; Elektorowicz, Maria; Oleszkiewicz, Jan A

2014-02-01

19

Pilot-scale passive bioreactors for the treatment of acid mine drainage: efficiency of mushroom compost vs. mixed substrates for metal removal.  

PubMed

Pilot-scale field-testing of passive bioreactors was performed to evaluate the efficiency of a mixture of four substrates (cow manure compost, mushroom compost, sawdust, and rice straw) relative to mushroom compost alone, and of the effect of the Fe/Mn ratio, during the treatment of acid mine drainage (AMD) over a 174-day period. Three 141 L columns, filled with either mushroom compost or the four substrate mixture (in duplicate), were set-up and fed with AMD from a closed mine site, in South Korea, using a 4-day hydraulic retention time. In the former bioreactor, effluent deterioration was observed over 1-2 months, despite the good efficiency predicted by the physicochemical characterization of mushroom compost. Steady state effluent quality was then noted for around 100 days before worsening in AMD source water occurred in response to seasonal variations in precipitation. Such changes in AMD quality resulted in performance deterioration in all reactors followed by a slow recovery toward the end of testing. Both substrates (mushroom compost and mixtures) gave satisfactory performance in neutralizing pH (6.1-7.8). Moreover, the system was able to consistently reduce sulfate from day 49, after the initial leaching out from organic substrates. Metal removal efficiencies were on the order of Al (?100%) > Fe (68-92%) > Mn (49-61%). Overall, the mixed substrates showed comparable performance to mushroom compost, while yielding better effluent quality upon start-up. The results also indicated mushroom compost could release significant amounts of Mn and sulfate during bioreactor operation. PMID:22892144

Song, Hocheol; Yim, Gil-Jae; Ji, Sang-Woo; Neculita, Carmen Mihaela; Hwang, Taewoon

2012-11-30

20

Comparison between a fixed bed hybrid membrane bioreactor and a conventional membrane bioreactor for municipal wastewater treatment: a pilot-scale study.  

PubMed

A hybrid membrane bioreactor (HMBR) was developed, by adding biofilm support media into a conventional membrane bioreactor (CMBR), and operated in parallel with a CMBR. Results showed that effluent quality was significantly better with the HMBR. The removal efficiencies of COD, BOD5, NH4(+)-N and TN with the HMBR were 84%, 98%, 97% and 75%, respectively, as compared to 80%, 96%, 93% and 38% with the CMBR. There were no differences in phosphorus removal. The membrane fouling rate in the HMBR was on average only 57% of that in the CMBR. The lower concentration of colloidal biopolymer clusters in the HMBR sludge, probably due to their retention by the biofilm, could be partially responsible for this difference. Filterability and settleability of the sludge were also better in the HMBR. Consequently, it is concluded that the addition of fixed support media for biofilm growth can improve the performance of CMBRs. PMID:24291797

Rodríguez-Hernández, L; Esteban-García, A L; Tejero, I

2014-01-01

21

EMERGING TECHNOLOGY SUMMARY: PILOT-SCALE DEMONSTRATION OF A TWO-STAGE METHANOTROPHIC BIOREACTOR FOR BIODEGRADATION OF TRICHLOROETHENE IN GROUNDWATER  

EPA Science Inventory

BioTrol, Inc., developed a two-stage, methanotrophic, bioreactor system for remediation of water contaminated with trichloroethylene (TCE) and other chlorinated, volatile, aliphatic hydrocarbons. The first stage was a suspended-growth culture vessel with a bubbleless methane tran...

22

Pilot study: Fixed-film bioreactor to enhance carbon adsorption  

SciTech Connect

A pilot study was performed to evaluate a novel bioreactor for treatment of groundwater at a former wood-preserving facility. Groundwater, impacted with wood-treating preservatives, is currently being recovered and treated using chemical/physical pretreatment followed by granular activated carbon (GAC) adsorption. The bioreactor was evaluated to reduce GAC usage. The study tested AlliedSignal`s Immobilized Cell Bioreactor (ICB) on a sidestream from the groundwater treatment system. The ICB technology is a fixed-film, fixed-bed bioreactor that utilizes a dual microbe support media system consisting of (1) a patented, carbon-coated, polyurethane foam packing; and (2) conventional, random, plastic packing. The ICB was tested at four discrete operating conditions representing hydraulic retention times of 16.6, 8.3, 4.2, and 2.1 h. Influent and effluent samples collected at each condition were analyzed for chemical oxygen demand (COD), phenolics, polycyclic aromatic hydrocarbons (PAHs), and benzene, toluene, ethylbenzene, and xylenes (BTEX). Results indicated that a maximum removal of 86.9% for COD, 96.3% for total phenols, 98.9% for total PAHs, and 97.2% for BTEX. Based on these data, a full-scale ICB as a pretreatment step would decrease GAC usage by a factor of 3.5.

Gromicko, G.J. [Groundwater Technology, Inc., Moon Township, PA (United States); Smock, M.; Wong, A.D. [Chester Environmental, Moon Township, PA (United States); Sheridan, B. [AlliedSignal, Inc., Des Plaines, IL (United States)

1995-12-31

23

Performance evaluation of a pilot-scale anaerobic membrane bioreactor (AnMBR) treating ethanol thin stillage  

Microsoft Academic Search

The ethanol industry has grown rapidly during the past ten years, mainly due to increasing oil prices. However, efficient and cost-effective solutions for treating thin stillage wastewater have still to be developed. The anaerobic membrane bioreactor (AnMBR) technology combines classical anaerobic treatment in a completely-stirred tank reactor (CSTR) with membrane separation. The combination of these two technologies can achieve a

R. K. Dereli; D. R. Urban; B. Heffernan; J. A. Jordan; J. Ewing; G. T. Rosenberger; T. I. Dunaev

2012-01-01

24

Design of an airlift loop bioreactor and pilot scales studies with fluidic oscillator induced microbubbles for growth of a microalgae Dunaliella salina  

Microsoft Academic Search

This study was conducted to test the feasibility of growing microalgae on steel plant exhaust gas, generated from the combustion of offgases from steel processing, which has a high CO2 content. Two field trials of batch algal biomass growth, mediated by microbubble transfer processes in an airlift loop bioreactor showed only steady growth of biomass with 100% survival rate. The

William B. Zimmerman; Mohammad Zandi; H. C. Hemaka Bandulasena; Václav Tesa?; D. James Gilmour; Kezhen Ying

2011-01-01

25

Realistic model of a solid substrate fermentation packed-bed pilot bioreactor  

Microsoft Academic Search

For any given large-scale solid substrate fermentation (SSF) bioreactor, to assess how well a control system will work in practice requires the most realistic model possible. This model needs to account fully for complicated dynamic reactor behaviour and, in addition, has to include a specific noise model that is capable of reproducing the disturbances observed in SSF bioreactor measurements. In

Mario Fernández-Fernández; J. Ricardo Pérez-Correa

2007-01-01

26

Bioreactor  

NASA Technical Reports Server (NTRS)

The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators

1996-01-01

27

Dissolved oxygen concentration profiles in a production-scale bioreactor  

Microsoft Academic Search

A five-compartment model for the liquid flow and the oxygen transfer into the liquid phase of a large-scale bioreactor is presented. The aim of the model is to predict the following reactor operating variables: 1) the overall oxygen transfer capacity of the reactor; 2) the local liquid dissolved oxygen concentrations, for estimation of bad aerated zones which can introduce negative

N. M. G. Oosterhuis; N. W. F. Kossen

1984-01-01

28

Final Pilot Performance Rating Scales.  

ERIC Educational Resources Information Center

These rating scales are intended for evaluation of student pilot performance. Each student is evaluated individually on the basis of video recordings of the student in flight. Ten point rating lines are used for the ten criterion performance elements of each of three maneuvers, (1) Final Turn to Landing, (2) Lazy Eight, and (3) Vertical S "A".…

Horner, Walter R.; And Others

29

Clinical scale rapid expansion of lymphocytes for adoptive cell transfer therapy in the WAVE® bioreactor  

PubMed Central

Background To simplify clinical scale lymphocyte expansions, we investigated the use of the WAVE®, a closed system bioreactor that utilizes active perfusion to generate high cell numbers in minimal volumes. Methods We have developed an optimized rapid expansion protocol for the WAVE bioreactor that produces clinically relevant numbers of cells for our adoptive cell transfer clinical protocols. Results TIL and genetically modified PBL were rapidly expanded to clinically relevant scales in both static bags and the WAVE bioreactor. Both bioreactors produced comparable numbers of cells; however the cultures generated in the WAVE bioreactor had a higher percentage of CD4+ cells and had a less activated phenotype. Conclusions The WAVE bioreactor simplifies the process of rapidly expanding tumor reactive lymphocytes under GMP conditions, and provides an alternate approach to cell generation for ACT protocols. PMID:22475724

2012-01-01

30

Pilot study of a submerged membrane bioreactor for water reclamation.  

PubMed

The objective of this pilot study was to investigate the operational conditions of newly developed MBR modules for water reclamation under tropical conditions. MUDC-620A MBR modules with hollow fibre PVDF membranes from Asahi-Kasei Chemicals were used in the study. The pilot plant with capacity of 50 m(3)/d was operated continuously (24-hour) over four months on site of Ulu Pandan Water Reclamation Plant (UPWRP) in Singapore. During the study, the MLSS in membrane tank was in the range of 6,840 approximately 9,540 mg/L. Filtration operation mode of the membrane unit was 9 minutes on production and 1 minute backwash. The air scouring for the membranes was 0.18-0.30 Nm(3)/h per m(2) membrane area all of the time. Trials on different membrane fluxes were conducted to obtain the sustainable flux. The analytical results showed that COD, TOC, T-N and NH4-N of the treated water were <30 mg/L, 5-7 mg/L, <13 mg/L and <0.1 mg/L, respectively, which met the requirement of Industrial Water for reuse. TMP was in the range of 12-40 kPa and could be recovered after cleaning with 2,000 mg/L sodium hypochlorite solution. Sludge clogging could be a challenge for long-term operation with the current module design. It was concluded that it was feasible for MUDC-620A MBR to operate at a net flux of 25-29 LMH (or 0.6-0.7 m/d) for treating the municipal wastewater at UPWRP. PMID:19955652

Qin, Jian-Jun; Oo, Maung Htun; Tao, Guihe; Kekre, Kiran A; Hashimoto, Tomotaka

2009-01-01

31

Oxygen-controlled Biosurfactant Production in a Bench Scale Bioreactor  

NASA Astrophysics Data System (ADS)

Rhamnolipids have been pointed out as promising biosurfactants. The most studied microorganisms for the aerobic production of these molecules are the bacteria of the genus Pseudomonas. The aim of this work was to produce a rhamnolipid-type biosurfactant in a bench-scale bioreactor by one strain of Pseudomonas aeruginosa isolated from oil environments. To study the microorganism growth and production dependency on oxygen, a nondispersive oxygenation device was developed, and a programmable logic controller (PLC) was used to set the dissolved oxygen (DO) concentration. Using the data stored in a computer and the predetermined characteristics of the oxygenation device, it was possible to evaluate the oxygen uptake rate (OUR) and the specific OUR (SOUR) of this microorganism. These rates, obtained for some different DO concentrations, were then compared to the bacterial growth, to the carbon source consumption, and to the rhamnolipid and other virulence factors production. The SOUR presented an initial value of about 60.0 mg02/gdw h. Then, when the exponential growth phase begins, there is a rise in this rate. After that, the SOUR reduces to about 20.0 mg02/gdw h. The carbon source consumption is linear during the whole process.

de Kronemberger, Frederico Araujo; Anna, Lidia Maria Melo Santa; Fernandes, Ana Carolina Loureiro Brito; de Menezes, Reginaldo Ramos; Borges, Cristiano Piacsek; Freire, Denise Maria Guimarães

32

Pilot scale microfiltration at Manitowoc  

Microsoft Academic Search

Microfiltration of Lake Michigan Water for the production of drinking water was investigated using a 60 GPM Memcor microfiltration pilot plant for nine months at Manitowoc WI. The performance characteristics of a microfiltration pilot plant for varying surface water conditions were analyzed and modeled. Statistical regression was used to determine and develop quantitative relationships between time of operation and several

Nilaksh Kothari; J. S. Taylor

1998-01-01

33

Correlation between microbial community structure and biofouling in a laboratory scale membrane bioreactor with synthetic wastewater  

Microsoft Academic Search

Membrane biofouling was investigated in a laboratory-scale membrane bioreactor (MBR) to determine how microbial community structure influences the fouling process and the potential for quorum sensing. Differences in microbial communities of the mixed liquor and the membrane fouling layer were evaluated using pyrosequencing. During continuous MBR operation, macroscopic engineering parameters such as total cell concentration and organic removal rate were

SooYeon Lim; Seil Kim; Kyung-Min Yeon; Byoung-In Sang; Jongsik Chun; Chung-Hak Lee

34

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

Microsoft Academic Search

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon

Ramin Yazdani; Jeff Kieffer; Heather Akau

2002-01-01

35

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

Microsoft Academic Search

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches while providing superior environmental protection. The overall objective is to manage landfill solid waste for rapid waste decomposition, maximum landfill gas generation and capture, and minimum long-term environmental consequences.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2002-01-01

36

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

Microsoft Academic Search

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon

Ramin Yazdani; Jeff Kieffer; Heather Akau

2003-01-01

37

Full Scale Bioreactor Landfill for Carbon Sequestration and Greenhouse Emission Control  

Microsoft Academic Search

The Yolo County Department of Planning and Public Works constructed a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective was to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration

Ramin Yazdani; Jeff Kieffer; Kathy Sananikone; Don Augenstein

2005-01-01

38

Process model comparison and transferability across bioreactor scales and modes of operation for a mammalian cell bioprocess.  

PubMed

A Monod kinetic model, logistic equation model, and statistical regression model were developed for a Chinese hamster ovary cell bioprocess operated under three different modes of operation (batch, bolus fed-batch, and continuous fed-batch) and grown on two different bioreactor scales (3 L bench-top and 15 L pilot-scale). The Monod kinetic model was developed for all modes of operation under study and predicted cell density, glucose glutamine, lactate, and ammonia concentrations well for the bioprocess. However, it was computationally demanding due to the large number of parameters necessary to produce a good model fit. The transferability of the Monod kinetic model structure and parameter set across bioreactor scales and modes of operation was investigated and a parameter sensitivity analysis performed. The experimentally determined parameters had the greatest influence on model performance. They changed with scale and mode of operation, but were easily calculated. The remaining parameters, which were fitted using a differential evolutionary algorithm, were not as crucial. Logistic equation and statistical regression models were investigated as alternatives to the Monod kinetic model. They were less computationally intensive to develop due to the absence of a large parameter set. However, modeling of the nutrient and metabolite concentrations proved to be troublesome due to the logistic equation model structure and the inability of both models to incorporate a feed. The complexity, computational load, and effort required for model development has to be balanced with the necessary level of model sophistication when choosing which model type to develop for a particular application. PMID:23143896

Craven, Stephen; Shirsat, Nishikant; Whelan, Jessica; Glennon, Brian

2013-01-01

39

A pilot study for oil refinery wastewater treatment using a fixed-film bioreactor  

Microsoft Academic Search

Biological treatment of industrial oil refinery wastewater is a well-established method for remediation of these wastes. We have designed a new bioreactor system to increase the efficiency of biological treatment systems by (1) allowing greater organic loads, (2) minimizing production of sludge waste by-products, and (3) increasing process stability and resistance to shock loading. A fixed-film bioreactor system was constructed

Chih-Ju G Jou; Guo-Chiang Huang

2003-01-01

40

WTP Pilot-Scale Evaporation Tests  

SciTech Connect

This report documents the design, assembly, and operation of a Pilot-Scale Evaporator built and operated by SRTC in support of Waste Treatment Plant (WTP) Project at the DOE's Hanford Site. The WTP employs three identical evaporators, two for the Waste Feed and one for the Treated LAW. The Pilot-Scale Evaporator was designed to test simulants for both of these waste streams. The Pilot-Scale Evaporator is 1/76th scale in terms of evaporation rates. The basic configuration of forced circulation vacuum evaporator was employed. A detailed scaling analysis was performed to preserve key operating parameters such as basic loop configuration, system vacuum, boiling temperature, recirculation rates, vertical distances between important hardware pieces, reboiler heat transfer characteristics, vapor flux, configuration of demisters and water spray rings. Three evaporation test campaigns were completed. The first evaporation run used water in order to shake down the system. The water runs were important in identifying a design flaw that inhibited mixing in the evaporator vessel, thus resulting in unstable boiling operation. As a result the loop configuration was modified and the remaining runs were completed successfully. Two simulant runs followed the water runs. Test 1: Simulated Ultrafiltration Recycles with HLW SBS, and Test 2: Treated AN102 with Envelop C LAW. Several liquid and offgas samples were drawn from the evaporator facility for regulatory and non-regulatory analyses. During Test 2, the feed and the concentrate were spiked with organics to determine organic partitioning. The decontamination factor (DF) for Test 1 was measured to be 110,000 (more than the expected value of 100,000). Dow Corning Q2-3183A antifoam agent was tested during both Tests 1 and 2. It was determined that 500 ppm of this antifoam agent was sufficient to control the foaminess to less than 5 per cent of the liquid height. The long-term testing (around 100 hours of operation) did not show any fouling of reboiler or other loop piping. The Pilot-Scale Evaporator will be used in the Semi-Integrated Pilot Plant tests. Additionally, the Pilot-Scale design can easily accommodate hardware changes that result from the development of the full-scale evaporator to resolve any issues arising from the startup or operation of the full-scale facility.

QURESHI, ZAFAR

2004-03-01

41

Screening of phenylpyruvic acid producers and optimization of culture conditions in bench scale bioreactors.  

PubMed

Alpha keto acids are deaminated forms of amino acids that have received significant attention as feed and food additives in the agriculture and medical industries. To date, their production has been commonly performed at shake-flask scale with low product concentrations. In this study, production of phenylpyruvic acid (PPA), which is the alpha keto acid of phenylalanine was investigated. First, various microorganisms were screened to select the most efficient producer. Thereafter, growth parameters (temperature, pH, and aeration) were optimized in bench scale bioreactors to maximize both PPA and biomass concentration in bench scale bioreactors, using response surface methodology. Among the four different microorganisms evaluated, Proteus vulgaris was the most productive strain for PPA production. Optimum temperature, pH, and aeration conditions were determined as 34.5 °C, 5.12, and 0.5 vvm for PPA production, whereas 36.9 °C, pH 6.87, and 0.96 vvm for the biomass production. Under these optimum conditions, PPA concentration was enhanced to 1,054 mg/L, which was almost three times higher than shake-flask fermentation concentrations. Moreover, P. vulgaris biomass was produced at 3.25 g/L under optimum conditions. Overall, this study demonstrated that optimization of growth parameters improved PPA production in 1-L working volume bench-scale bioreactors compared to previous studies in the literature and was a first step to scale up the production to industrial production. PMID:24861313

Coban, Hasan B; Demirci, Ali; Patterson, Paul H; Elias, Ryan J

2014-11-01

42

Large-scale growth of the Plasmodium falciparum malaria parasite in a wave bioreactor.  

PubMed

We describe methods for the large-scale in vitro culturing of synchronous and asynchronous blood-stage Plasmodium falciparum parasites in sterile disposable plastic bioreactors controlled by wave-induced motion (wave bioreactor). These cultures perform better than static flask cultures in terms of preserving parasite cell cycle synchronicity and reducing the number of multiple-infected erythrocytes. The straight-forward methods described here will facilitate the large scale production of malaria parasites for antigen and organelle isolation and characterisation, for the high throughput screening of compound libraries with whole cells or extracts, and the development of live- or whole-cell malaria vaccines under good manufacturing practice compliant standards. PMID:22326740

Dalton, John P; Demanga, Corine G; Reiling, Sarah J; Wunderlich, Juliane; Eng, Jenny W L; Rohrbach, Petra

2012-01-01

43

Perchlorate remediation using packed-bed bioreactors and electricity generation in microbial fuel cells (MFCs)  

Microsoft Academic Search

Two pilot-scale fixed bed bioreactors were operated in continuous mode in order to treat groundwater contaminated by perchlorate. The bioreactors were constructed and operated side-by-side at the Texas Street Well Facility in Redlands, California. Each reactor was packed with either sand or plastic media. A perchlorate-reducing bacterium, Dechlorosoma sp. KJ, was used to inoculate the bioreactors. Perchlorate was successfully removed

Booki Min

2005-01-01

44

Scale up aspects of sparged insect-cell bioreactors  

Microsoft Academic Search

In this chapter we have attempted to evaluate the most important parameters which can be useful for the purpose of design and scale up. Insect cells and animal cells in general can be grown well in large vessels. However, none of the theories and parameters discussed in this chapter have been validated on a larger scale than laboratory and small

J. Tramper; J. M. Vlak; C. D. Gooijer

45

A test facility for fritted spargers of production-scale-bioreactors  

PubMed Central

The production of therapeutic proteins requires qualification of equipment components and appropriate validation procedures for all operations. Since protein productions are typically performed in bioreactors using aerobic cultivation processes air sparging is an essential factor. As recorded in literature, besides ring spargers and open pipe, sinter frits are often used as sparging elements in large scale bioreactors. Due to the manufacturing process these frits have a high lot-to-lot product variability. Experience shows this is a practical problem for use in production processes of therapeutic proteins, hence frits must be tested before they can be employed. The circumstance of checking quality and performance of frits as sparging elements was investigated and various possibilities have been compared. Criteria have been developed in order to evaluate the sparging performance under conditions comparable to those in production bioreactors. The oxygen mass transfer coefficient (kLa) was chosen as the evaluation criterion. It is well known as an essential performance measure for fermenters in the monoclonal antibody production. Therefore a test rig was constructed able to automatically test frit-spargers with respect to their kLa-values at various gas throughputs. Performance differences in the percent range could be detected. PMID:21161376

Sieblist, C.; Aehle, M.; Pohlscheidt, M.; Jenzsch, M.

2010-01-01

46

Application of bioreactor design principles and multivariate analysis for development of cell culture scale down models.  

PubMed

A bench scale cell culture model representative of manufacturing scale (2,000?L) was developed based on oxygen mass transfer principles, for a CHO-based process producing a recombinant human protein. Cell culture performance differences across scales are characterized most often by sub-optimal performance in manufacturing scale bioreactors. By contrast in this study, reduced growth rates were observed at bench scale during the initial model development. Bioreactor models based on power per unit volume (P/V), volumetric mass transfer coefficient (kL a), and oxygen transfer rate (OTR) were evaluated to address this scale performance difference. Lower viable cell densities observed for the P/V model were attributed to higher sparge rates and reduced oxygen mass transfer efficiency (kL a) of the small scale hole spargers. Increasing the sparger kL a by decreasing the pore size resulted in a further decrease in growth at bench scale. Due to sensitivity of the cell line to gas sparge rate and bubble size that was revealed by the P/V and kL a models, an OTR model based on oxygen enrichment and increased P/V was selected that generated endpoint sparge rates representative of 2,000?L scale. This final bench scale model generated similar growth rates as manufacturing. In order to take into account other routinely monitored process parameters besides growth, a multivariate statistical approach was applied to demonstrate validity of the small scale model. After the model was selected based on univariate and multivariate analysis, product quality was generated and verified to fall within the 95% confidence limit of the multivariate model. Biotechnol. Bioeng. 2015;112: 84-97. © 2014 Wiley Periodicals, Inc. PMID:25042258

Tescione, Lia; Lambropoulos, James; Paranandi, Madhava Ram; Makagiansar, Helena; Ryll, Thomas

2015-01-01

47

Feeding strategies enhance high cell density cultivation and protein expression in milliliter scale bioreactors.  

PubMed

Miniature bioreactors under parallel fed-batch operations are not only useful screening tools for bioprocess development but also provide a suitable basis for eventual scale-up. In this study, three feeding strategies were investigated: besides the established intermittent feeding by a liquid handler, an optimized microfluidic device and a new enzymatic release system were applied for parallel fed-batch cultivation of Escherichia coli HMS174(DE3) and BL21(DE3) strains in stirred-tank bioreactors on a 10 mL scale. Lower fluctuation in dissolved oxygen (DO) and higher optical densities were measured in fed-batch processes applying the microfluidic device or the enzymatic glucose/fructose release system (conversion of intermittently added sucrose by an invertase), but no difference in dry cell weights (DCW) were observed. With all three feeding strategies high cell densities were realized on a milliliter scale with final optical density measured at 600 nm (OD600 ) of 114-133 and final DCW concentrations of 69-70 g L(-1) . The effect of feeding strategies on the expression of two heterologous proteins was investigated. Whereas no impact was observed on the expression of the spider silk protein eADF4(C16), the fluorescence of enhanced green fluorescence protein (eGFP) was reproducibly lower, if an intermittent glucose feed was applied. Thus, the impact of feeding strategy on expression is strongly dependent on the E. coli strain and/or expressed protein. As a completely continuous feed supply is difficult to realize in miniature bioreactors, the enzymatic release approach from this study can be easily applied in all microfluidic system to reduce fluctuations of glucose supply and DO concentrations. PMID:25104316

Faust, Georg; Janzen, Nils H; Bendig, Christoph; Römer, Lin; Kaufmann, Klaus; Weuster-Botz, Dirk

2014-10-01

48

Full-scale leachate-recirculating MSW landfill bioreactor assessments  

SciTech Connect

The integrated waste management hierarchy philosophy continues to develop as a useful tool to solve solid waste issues in an environmentally responsible manner. Recent statistics indicate that approximately two thirds of municipal solid waste in the United States is disposed in landfills. Current landfill operational technique involves the preparation of a waste containment facility, the filling of the waste unit, installation of the final cover, and the maintenance of the unit. This method of operation has proven to be reasonably effective in waste disposal, effectively minimizing risk by collecting the liquid that percolates through the waste, called leachates, at the bottom of the landfill, and controlling landfill gas with collection systems. Concerns over the longevity of containment systems components present questions that cannot be answered without substantial performance data. Landfills, as currently operated, serve to entomb dry waste. Therefore, the facility must be maintained in perpetuity, consuming funds and ultimately driving up waste collection costs. This presentation will describe a new form of solid waste landfill operation, it is a technique that involves controlled natural processes to break down landfilled waste, and further minimize risk to human health and the environment. A landfill operated in an active manner will encourage and control natural decomposition of landfilled waste. This can be accomplished by collecting leachate, and reinjecting it into the landfilled waste mass. Keeping the waste mass moist will lead to a largely anaerobic system with the capacity to rapidly stabilize the landfilled waste mass via physical, chemical and biological methods. The system has proven the ability to breakdown portions of the waste mass, and to degrade toxic materials at the laboratory scale.

Carson, D.A. [Environmental Protection Agency, Cincinnati, OH (United States)

1995-10-01

49

Production of alginate by Azotobacter vinelandii grown at two bioreactor scales under oxygen-limited conditions.  

PubMed

The oxygen transfer rate (OTR) was evaluated as a scale-up criterion for alginate production in 3- and 14-L stirred fermentors. Batch cultures were performed at different agitation rates (200, 300, and 600 rpm) and airflow rates (0.25, 0.5, and 1 vvm), resulting in different maximum OTR levels (OTRmax). Although the two reactors had a similar OTRmax (19 mmol L(-1) h(-1)) and produced the same alginate concentration (3.8 g L(-1)), during the cell growth period the maximum molecular weight of the alginate was 1,250 kDa in the 3-L stirred fermentor and 590 kDa in 14-L stirred fermentor. The results showed for the first time the evolution of the molecular weight of alginate and OTR profiles for two different scales of stirred fermentors. There was a different maximum specific oxygen uptake rate between the two fermenters, reaching 8.3 mmol g(-1) h(-1) in 3-L bioreactor and 10.6 mmol g(-1) h(-1) in 14-L bioreactor, which could explain the different molecular weights observed. These findings open the possibility of using [Formula: see text] instead of OTRmax as a scaling criterion to produce polymers with similar molecular weights during fermentation. PMID:24173209

Díaz-Barrera, Alvaro; Gutierrez, Javiera; Martínez, Fabiola; Altamirano, Claudia

2014-06-01

50

On the fluid dynamics of a laboratory scale single-use stirred bioreactor  

PubMed Central

The commercial success of mammalian cell-derived recombinant proteins has fostered an increase in demand for novel single-use bioreactor (SUB) systems that facilitate greater productivity, increased flexibility and reduced costs (Zhang et al., 2010). These systems exhibit fluid flow regimes unlike those encountered in traditional glass/stainless steel bioreactors because of the way in which they are designed. With such disparate hydrodynamic environments between SUBs currently on the market, traditional scale-up approaches applied to stirred tanks should be revised. One such SUB is the Mobius® 3 L CellReady, which consists of an upward-pumping marine scoping impeller. This work represents the first experimental study of the flow within the CellReady using a Particle Image Velocimetry (PIV) approach, combined with a biological study into the impact of these fluid dynamic characteristics on cell culture performance. The PIV study was conducted within the actual vessel, rather than using a purpose-built mimic. PIV measurements conveyed a degree of fluid compartmentalisation resulting from the up-pumping impeller. Both impeller tip speed and fluid working volume had an impact upon the fluid velocities and spatial distribution of turbulence within the vessel. Cell cultures were conducted using the GS-CHO cell-line (Lonza) producing an IgG4 antibody. Disparity in cellular growth and viability throughout the range of operating conditions used (80–350 rpm and 1–2.4 L working volume) was not substantial, although a significant reduction in recombinant protein productivity was found at 350 rpm and 1 L working volume (corresponding to the highest Reynolds number tested in this work). The study shows promise in the use of PIV to improve understanding of the hydrodynamic environment within individual SUBs and allows identification of the critical hydrodynamic parameters under the different flow regimes for compatibility and scalability across the range of bioreactor platforms. PMID:24864128

Odeleye, A.O.O.; Marsh, D.T.J.; Osborne, M.D.; Lye, G.J.; Micheletti, M.

2014-01-01

51

A laboratory and pilot plant scaled continuous stirred reactor separator for the production of ethanol from sugars, corn grits/starch or biomass streams  

SciTech Connect

An improved bio-reactor has been developed to allow the high speed, continues, low energy conversion of various substrates to ethanol. The Continuous Stirred Reactor Separator (CSRS) incorporates gas stripping of the ethanol using a recalculating gas stream between cascading stirred reactors in series. We have operated a 4 liter lab scale unit, and built and operated a 24,000 liter pilot scale version of the bioreactor. High rates of fermentation are maintained in the reactor stages using a highly flocculent yeast strain. Ethanol is recovered from the stripping gas using a hydrophobic solvent absorber (isothermal), after which the gas is returned to the bioreactor. Ethanol can then be removed from the solvent to recover a highly concentrated ethanol product. We have applied the lab scale CSRS to sugars (glucose/sucrose), molasses, and raw starch with simultaneous saccharification and fermentation of the starch granules (SSF). The pilot scale CSRS has been operated as a cascade reactor using dextrins as a feed. Operating data from both the lab and pilot scale CSRS are presented. Details of how the system might be applied to cellulosics, with some preliminary data are also given.

Dale, M.C.; Lei, Shuiwang; Zhou, Chongde

1995-10-01

52

Scale-up cultivation of Chlorella ellipsoidea from indoor to outdoor in bubble column bioreactors.  

PubMed

The cultivation of Chlorella ellipsoidea in bubble column bioreactors was investigated at different scales under indoor and outdoor conditions. The algal cells were able to quickly adapt to the outdoor conditions and achieved a growth rate of 31.55mg L(-1)day(-1). Due to differences in light and temperature, the outdoor culture produced a higher percentage of unsaturated fatty acids compared to the indoor cultures, while the amino acid composition was unaffected. The overall cost of the biomass produced by the 200L outdoor cultivation (58.70US$/kg-dry weight) was estimated to be more than 7 times lower than that of the 20L indoor cultivation (431.39US$/kg-dry weight). Together these results provide a basis for the cultivation of C. ellipsoidea for the large-scale production of biofuels, high-value nutrients and/or recombinant proteins. PMID:24495537

Wang, Shi-Kai; Hu, Yi-Ru; Wang, Feng; Stiles, Amanda R; Liu, Chun-Zhao

2014-03-01

53

Adaptive predictive control of dissolved oxygen concentration in a laboratory-scale bioreactor.  

PubMed

We present an algorithm for the adaptive control of dissolved oxygen concentration in a bioreactor, based on the agitation rate. The dynamics are represented by an incremental first-order model with variable dead-time and parameters. These are estimated on-line by a recursive least-squares identification method with a forgetting factor and a constant sensitivity. The model is employed to predict the behaviour of the dissolved oxygen concentration over a finite horizon, using an original method which requires little computation. Then, a Generalized Predictive Control optimisation strategy computes the agitation rate from the predictions and the desired set point, while gradually updating the controller smoothness. This algorithm, which requires little preliminary knowledge, has been implemented on a laboratory-scale fed-batch bioreactor for which the use of conventional controllers showed limited performance, due to the unpredictable and evolutive nature of the dynamics. The new controller proved to be robust and effective over a wide range of operating conditions, while requiring no operator adjustments. PMID:8573319

Diaz, C; Dieu, P; Feuillerat, C; Lelong, P; Salomé, M

1995-11-21

54

Pilot-scale development of anaerobic filter technology for municipal wastewater treatment  

SciTech Connect

The use of anaerobic filter technology for the treatment of low-strength municipal wastewater was studied by Oak Ridge National Laboratory (ORNL) in Knoxville, Tennessee, with a pilot-scale (e.g., 190-m/sup 3//d) facility from August 1981 to October 1983. The Knoxville project (described by the acronym ANFLOW for the anaerobic, upflow characteristics of the technology) was a tenfold scale-up of a previous ORNL study in Oak Ridge, Tennessee. Pollutant loading rates used in this study ranged from 0.1 to 0.7 kg/m/sup 3/ x d for total suspended solids (TSS) and from 0.1 to 0.4 kg/m/sup 3/ x d for biochemical oxygen demand (BOD); the hydraulic retention time ranged from 9 to 10 h. Removal efficiencies for TSS and BOD were 80 and 70%, respectively. This performance was maintained in ambient cold-weather tests (water temperature, approx.12/sup 0/C), even though the rate of solids accumulation in the bioreactor was higher because of decreased biological activity, which normally converts solids to off-gas. The solids inventory in the bioreactor appeared to be diminished during warmer weather. 26 refs., 16 figs., 3 tabs.

Genung, R.K.; Donaldson, T.L.; Reed, G.D.

1985-01-01

55

Improvement of metabolic performance of primary hepatocytes in hyperoxic cultures by vitamin C in a novel small-scale bioreactor  

Microsoft Academic Search

Our small-scale bioreactor with a gas-permeable membrane has previously been shown to allow direct oxygenation of primary hepatocytes in collagenous sandwich cultures. In this work the applicability of this system for studying the response of hepatocytes to different ambient oxygen concentrations above the normoxic situation and the effect of the antioxidant vitamin C (ASC) on hepatocyte functionality in different oxygen

Stephanie Schmitmeier; Angelika Langsch; Wolfgang Schmidt-Heck; Inka Jasmund; Augustinus Bader

2007-01-01

56

Textile wastewater treatment in a bench-scale anaerobic-biofilm anoxic-aerobic membrane bioreactor combined with nanofiltration  

Microsoft Academic Search

This study evaluated the treatability of textile wastewaters in a bench-scale experimental system, comprising an anaerobic biofilter, an anoxic reactor and an aerobic membrane bioreactor (MBR). The MBR effluent was thereafter treated by a nanofiltration (NF) membrane. The proposed system was demonstrated to be effective in the treatment of the textile wastewater under the operating conditions applied in the study.

Selene Grilli; Daniela Piscitelli; Davide Mattioli; Stefania Casu; Alessandro Spagni

2011-01-01

57

Biogasification of community-derived biomass and solid wastes in a pilot-scale SOLCON reactor  

SciTech Connect

The Institute of Gas Technology has developed a novel, solids- concentrating (SOLCON) bioreactor to convert a variety of individual or mixed feedstocks (biomass and wastes) to methane at higher rates and efficiencies than those obtained from conventional high-rate anaerobic digesters. The biogasification studies are being conducted in a pilot-scale experimental test unit (ETU) located in the Walt Disney World Resort Complex, Orlando, Florida. This paper describes the ETU facility, the logistics of feedstock integration, the SOLCON reactor design and operating techniques, and the results obtained during 4 years of stable, uninterrupted operation with different feedstocks. The SOLCON reactor consistently outperformed the conventional stirred-tank reactor by 20% to 50%.

Srivastava, V.J.; Biljetina, R.; Isaacson, H.R.; Hayes, T.D.

1988-01-01

58

Feasibility study to upgrade a textile wastewater treatment plant by a hollow fibre membrane bioreactor for effluent reuse  

Microsoft Academic Search

A pilot plant membrane bioreactor has been tested in parallel with a full-scale activated sludge wastewater treatment plant fed on the wastewater from a textile factory. The possibility to upgrade the final effluent for internal reuse was investigated. The pilot and full-scale plants are located in a textile factory (Boselli & C., Olgiate Comasco, North Italy) which manufactures and finishes

F. Malpei; L. Bonomo; A. Rozzi

2003-01-01

59

Disposable Bioreactors for Plant Micropropagation and Mass Plant Cell Culture  

NASA Astrophysics Data System (ADS)

Different types of bioreactors are used at Nestlé R&D Centre - Tours for mass propagation of selected plant varieties by somatic embryogenesis and for large scale culture of plants cells to produce metabolites or recombinant proteins. Recent studies have been directed to cut down the production costs of these two processes by developing disposable cell culture systems. Vegetative propagation of elite plant varieties is achieved through somatic embryogenesis in liquid medium. A pilot scale process has recently been set up for the industrial propagation of Coffea canephora (Robusta coffee). The current production capacity is 3.0 million embryos per year. The pre-germination of the embryos was previously conducted by temporary immersion in liquid medium in 10-L glass bioreactors. An improved process has been developed using a 10-L disposable bioreactor consisting of a bag containing a rigid plastic box ('Box-in-Bag' bioreactor), insuring, amongst other advantages, a higher light transmittance to the biomass due to its horizontal design. For large scale cell culture, two novel flexible plastic-based disposable bioreactors have been developed from 10 to 100 L working volumes, validated with several plant species ('Wave and Undertow' and 'Slug Bubble' bioreactors). The advantages and the limits of these new types of bioreactor are discussed, based mainly on our own experience on coffee somatic embryogenesis and mass cell culture of soya and tobacco.

Ducos, Jean-Paul; Terrier, Bénédicte; Courtois, Didier

60

Development, parallelization, and automation of a gas-inducing milliliter-scale bioreactor for high-throughput bioprocess design (HTBD).  

PubMed

A novel milliliter-scale bioreactor equipped with a gas-inducing impeller was developed with oxygen transfer coefficients as high as in laboratory and industrial stirred-tank bioreactors. The bioreactor reaches oxygen transfer coefficients of >0.4 s(-1). Oxygen transfer coefficients of >0.2 s(-1) can be maintained over a range of 8- to 12-mL reaction volume. A reaction block with integrated heat exchangers was developed for 48-mL-scale bioreactors. The block can be closed with a single gas cover spreading sterile process gas from a central inlet into the headspace of all bioreactors. The gas cover simultaneously acts as a sterile barrier, making the reaction block a stand-alone device that represents an alternative to 48 parallel-operated shake flasks on a much smaller footprint. Process control software was developed to control a liquid-handling system for automated sampling, titration of pH, substrate feeding, and a microtiter plate reader for automated atline pH and atline optical density analytics. The liquid-handling parameters for titration agent, feeding solution, and cell samples were optimized to increase data quality. A simple proportional pH-control algorithm and intermittent titration of pH enabled Escherichia coli growth to a dry cell weight of 20.5 g L(-1) in fed-batch cultivation with air aeration. Growth of E. coli at the milliliter scale (10 mL) was shown to be equivalent to laboratory scale (3 L) with regard to growth rate, mu, and biomass yield, Y(XS). PMID:15669089

Puskeiler, R; Kaufmann, K; Weuster-Botz, D

2005-03-01

61

Production of polyhydroxyalkanoates (PHA) by bacterial consortium from excess sludge fermentation liquid at laboratory and pilot scales.  

PubMed

The generation of polyhydroxyalkanoates (PHA) from excess sludge fermentation liquid (SFL) was studied at lab and pilot scale. A PHA-accumulated bacterial consortium (S-150) was isolated from activated sludge using simulated SFL (S-SFL) contained high concentration volatile fatty acids (VFA) and nitrogen. The maximal PHA content accounted for 59.18% in S-SFL and dropped to 23.47% in actual SFL (L-SFL) of the dry cell weight (DCW) at lab scale. The pilot-scale integrated system comprised an anaerobic fermentation reactor (AFR), a ceramic membrane system (CMS) and a PHA production bio-reactor (PHAR). The PHA content from pilot-scale SFL (P-SFL) finally reached to 59.47% DCW with the maximal PHA yield coefficient (YP/S) of 0.17gPHA/gCOD. The results indicated that VFA-containing SFL was suitable for PHA production. The adverse impact of excess nitrogen and non-VFAs in SFL might be eliminated by pilot-scale domestication, which might resulted in community structure optimization and substrate selective ability improvement of S-150. PMID:25194265

Jia, Qianqian; Xiong, Huilei; Wang, Hui; Shi, Hanchang; Sheng, Xinying; Sun, Run; Chen, Guoqiang

2014-11-01

62

Cell culture experiments planned for the space bioreactor  

NASA Technical Reports Server (NTRS)

Culturing of cells in a pilot-scale bioreactor remains to be done in microgravity. An approach is presented based on several studies of cell culture systems. Previous and current cell culture research in microgravity which is specifically directed towards development of a space bioprocess is described. Cell culture experiments planned for a microgravity sciences mission are described in abstract form.

Morrison, Dennis R.; Cross, John H.

1987-01-01

63

TREATMENT OF MUNICIPAL WASTEWATERS BY THE FLUIDIZED BED BIOREACTOR PROCESS  

EPA Science Inventory

A 2-year, large-scale pilot investigation was conducted at the City of Newburgh Water Pollution Control Plant, Newburgh, NY, to demonstrate the application of the fluidized bed bioreactor process to the treatment of municipal wastewaters. The experimental effort investigated the ...

64

Bench-scale study on zero excess activated sludge production process coupled with ozonation unit in membrane bioreactor  

Microsoft Academic Search

In this bench-scale study, two promising processes for minimizing excess activated sludge (EAS) production, i.e., membrane bioreactor (MBR) and sludge ozonation (SO), were coupled in this study into the MBR-SO process to treat domestic wastewater for 80 days, and the vital related operational factors were also investigated. Mathematical models were developed to elucidate the relationships among process control parameters and

Zheng Wang; Lin Wang; Bao Z. Wang; Yi F. Jiang; Shuo Liu

2008-01-01

65

NF performance at full and pilot scale  

Microsoft Academic Search

Productivity and water quality from the Roy W. Likens membrane facility in Palm Coast, Fla., were accurately simulated by three membrane pilot plants in a four-month field investigation using various sizes of a film membrane manufactured by the same company and operated under the same conditions. All plants used the same source water, groundwater that is moderately hard (330 mg\\/L

Luke A. Mulford; James S. Taylor; David M. Nickerson; Shaio-Shing Chen

1999-01-01

66

Biogeochemistry of a Field-Scale Sulfate Reducing Bioreactor Treating Mining Influenced Water  

NASA Astrophysics Data System (ADS)

Acidity, metal release, and toxicity may be environmental health concerns in areas influenced by mining. Mining influenced waters (MIW) can be remediated through the establishment of Sulfate Reducing Bioreactors (SRBRs) as part of engineered passive treatment systems. The objective of our research is an enhanced understanding of the biogeochemistry in SRBRs by combining molecular biological and geochemical techniques. Bioreactor reactive substrate, settling pond water, and effluent (from the SRBR) were collected from a field scale SRBR in Arizona, which has been in operation for approximately 3 years. Schematically, the water passes through the SRBR; combines with flow that bypasses the SRBR into the and goes into the mixing pond, and finally is released as effluent to aerobic polishing cells. High throughput sequencing of extracted DNA revealed that Proteobacteria dominated the reactive substrate (61%), settling pond (93%), and effluent (50%), with the next most abundant phylum in all samples (excluding uncultured organisms) being Bacteriodes (1-17%). However, at the superclass level, the three samples were more variable. Gammaproteobacteria dominated the reactive substrate (35%), Betaproteobacteria in the settling pond (63%) and finally the effluent was dominated by Epsilonproteobacteria (Helicobacteraceae) (43%). Diversity was most pronounced in association with the reactor matrix, and least diverse in the settling pond. Putative functional analysis revealed a modest presence of sulfate/sulfur reducing bacteria (SRB) (>5%) in both the matrix and settling pond but a much higher abundance (43%) of sulfur reducing bacteria in the effluent. Interestingly this effluent population was composed entirely of the family Helicobacteraceae (sulfur reduction II via polysulfide pathway). Other putative functions of interest include metal reduction in the matrix (3%) and effluent (3%), as well as polysaccharide degradation, which was largely abundant in all samples (21-38%). Acid digests and micro-focused X-ray fluorescent and absorption spectroscopy revealed precipitation heterogeneities exist between surface samples taken near the front of the influent pipe (west) and downstream (east). Zinc was disproportionately immobilized at the front of the reactor (~10-fold higher), while a higher portion (~3-fold) of iron precipitates was observed downstream. Microfocused XAS further revealed matrix heterogeneities consisting of clusters of stellar shaped sulfur / iron precipitates. An enhanced understanding of the biogeochemistry of SRBRs has applications in passive remediation of contaminated MIW and an interdisciplinary understanding of metal immobilization at the microbe-mineral interface.

Drennan, D.; Lee, I.; Landkamer, L.; Figueroa, L. A.; Webb, S.; Sharp, J. O.

2012-12-01

67

Treatment of cosmetic wastewater by a full-scale membrane bioreactor (MBR).  

PubMed

This work evaluates the treatment of wastewater from a personal care products factory by a full-scale side-stream membrane bioreactor (MBR) intermittently fed. The wastewater contained particulate and soluble chemical oxygen demand (COD) which is partially removed by physicochemical pretreatment. Steady removal efficiencies above 98 % were achieved for BOD5, COD and suspended solids. Fats, oils and grease present in the raw wastewater were also successfully removed. The MBR was operated at an average permeate flux of 12 L/m2?·?h (LMH) working at a transmembrane pressure of 272?±?97 mbar. The soluble microbial products concentration remained fairly stable at 175?±?25 and 85?±?15 mg/L for proteins and carbohydrates, respectively. This maintained the filtration characteristics of the mixed liquor unaltered over a long-term basis, which was evidenced by a constant permeability of 43?±?19 LMH/bar. Most of the trace organics detected in the wastewater were completely removed and only some fragrances were detected in the permeate at trace concentrations. PMID:24958535

Monsalvo, Victor M; Lopez, Jesus; Mohedano, Angel F; Rodriguez, Juan J

2014-11-01

68

Assessment of energy-saving strategies and operational costs in full-scale membrane bioreactors.  

PubMed

The energy-saving strategies and operational costs of stand-alone, hybrid, and dual stream full-scale membrane bioreactors (MBRs) with capacities ranging from 1100 to 35,000 m(3) day(-1) have been assessed for seven municipal facilities located in Northeast Spain. Although hydraulic load was found to be the main determinant factor for the energy consumption rates, several optimisation strategies have shown to be effective in terms of energy reduction as well as fouling phenomenon minimization or preservation. Specifically, modifications of the biological process (installation of control systems for biological aeration) and of the filtration process (reduction of the flux or mixed liquor suspended solids concentration and installation of control systems for membrane air scouring) were applied in two stand-alone MBRs. After implementing these strategies, the yearly specific energy demand (SED) in flat-sheet (FS) and hollow-fibre (HF) stand-alone MBRs was reduced from 1.12 to 0.71 and from 1.54 to 1.12 kW h(-1) m(-3), respectively, regardless of their similar yearly averaged hydraulic loads. The strategies applied in the hybrid MBR, namely, buffering the influent flow and optimisation of both biological aeration and membrane air-scouring, reduced the SED values by 14%. These results illustrate that it is possible to apply energy-saving strategies to significantly reduce MBR operational costs, highlighting the need to optimise MBR facilities to reconsider them as an energy-competitive option. PMID:24463730

Gabarrón, S; Ferrero, G; Dalmau, M; Comas, J; Rodriguez-Roda, I

2014-02-15

69

Penn State University Pilot-scale Tests of Fixed Bed  

E-print Network

in a packed bed reactor · Reactor performance compared with other studies · Stability of the bacterium used · Reactor scale up- effect of dispersion in a packed bed reactor · Reactor performance compared with otherPenn State University Pilot-scale Tests of Fixed Bed Reactors for Perchlorate Degradation: Plastic

70

A xenogeneic-free bioreactor system for the clinical-scale expansion of human mesenchymal stem/stromal cells.  

PubMed

The large cell doses (>1?×?10(6) ?cells/kg) used in clinical trials with mesenchymal stem/stromal cells (MSC) will require an efficient production process. Moreover, monitoring and control of MSC ex-vivo expansion is critical to provide a safe and reliable cell product. Bioprocess engineering approaches, such as bioreactor technology, offer the adequate tools to develop and optimize a cost-effective culture system for the rapid expansion of human MSC for cellular therapy. Herein, a xenogeneic (xeno)-free microcarrier-based culture system was successfully established for bone marrow (BM) MSC and adipose tissue-derived stem/stromal cell (ASC) cultivation using a 1L-scale controlled stirred-tank bioreactor, allowing the production of (1.1?±?0.1)?×?10(8) and (4.5?±?0.2)?×?10(7) cells for BM MSC and ASC, respectively, after 7 days. Additionally, the effect of different percent air saturation values (%Airsat ) and feeding regime on the proliferation and metabolism of BM MSC was evaluated. No significant differences in cell growth and metabolic patterns were observed under 20% and 9%Airsat . Also, the three different feeding regimes studied-(i) 25% daily medium renewal, (ii) 25% medium renewal every 2 days, and (iii) fed-batch addition of concentrated nutrients and growth factors every 2 days-yielded similar cell numbers, and only slight metabolic differences were observed. Moreover, the immunophenotype (positive for CD73, CD90 and CD105 and negative for CD31, CD80 and HLA-DR) and multilineage differentiative potential of expanded cells were not affected upon bioreactor culture. These results demonstrated the feasibility of expanding human MSC from different sources in a clinically relevant expansion configuration in a controlled microcarrier-based stirred culture system under xeno-free conditions. The further optimization of this bioreactor culture system will represent a crucial step towards an efficient GMP-compliant clinical-scale MSC production system. PMID:24420557

Dos Santos, Francisco; Campbell, Andrew; Fernandes-Platzgummer, Ana; Andrade, Pedro Z; Gimble, Jeffrey M; Wen, Yuan; Boucher, Shayne; Vemuri, Mohan C; da Silva, Cláudia L; Cabral, Joaquim M S

2014-06-01

71

Overall functional gene diversity of microbial communities in three full-scale activated sludge bioreactors.  

PubMed

Understanding microbial community composition is thought to be crucial for improving process functioning and stabilities of full-scale activated sludge reactors in wastewater treatment plants (WWTPs). However, functional gene compositions of microbial communities within them have not been clearly elucidated. To gain a complete picture of microbial community, in this study, GeoChip 4.2 was used to profile the overall functional genes of three full-scale activated sludge bioreactors, the 16S rRNA gene diversities of which had been unveiled by 454-pyrosequencing in our previous investigation. Triplicate activated sludge samples from each system were analyzed, with the detection of 38,507 to 40,654 functional genes. A high similarity of 77.3-81.2 % shared functional genes was noted among the nine samples, verified by the high 16S rRNA gene similarity with shared operational taxonomic units (OTUs) constituting 66.4-70.0 % of the detected sequences in each system. Correlation analyses showed that the abundances of a wide array of functional genes were associated with system performances. For example, the abundances of carbon degradation genes were strongly correlated to chemical oxygen demand (COD) removal efficiencies (r?=?0.8697, P?

Xia, Yu; Wang, Xiaohui; Wen, Xianghua; Ding, Kun; Zhou, Jizhong; Yang, Yunfeng; Zhang, Yu

2014-08-01

72

Water Research 38 (2004) 4760 Perchlorate removal in sand and plastic media bioreactors  

E-print Network

was examined using two side-by-side pilot-scale fixed-bed bioreactors packed with sand or plastic media; Fixed-bed reactor; Groundwater; Perchlorate; Sand 1. Introduction The large-scale contamination of many) and in the plastic medium reactor at flow rates of o0.063 L/s. Acetate in the sand reactor was removed from 4378

73

High cell density cultivation of Rhodococcus opacus for lipid production at a pilot-plant scale.  

PubMed

The triacylglycerol (TAG)-accumulating bacterium Rhodococcus opacus strain PD630 was investigated with respect to the fermentative production of TAGs consisting of an unusually high fraction of fatty acids with an odd-number of carbon atoms and unsaturated monoenic fatty acids from sugar beet molasses and sucrose. Fed-batch fermentations were optimized at the 30-1 scale in a stirred tank bioreactor at 30 degrees C using a mineral salts medium, which contained sugar beet molasses and sucrose as sole carbon sources. Approximately 37.5 g cell dry matter (CDM) per liter was the highest cell density that was obtained at that scale with a TAG content in the cells of 52%. This fermentative process was also applied to a 500-1 pilot-plant scale. Cell densities as high as 18.4 g CDM per liter were obtained, and 42% of the sucrose present in the medium was converted into cell mass which consisted of 38.4% TAGs. PMID:11414319

Voss, I; Steinbüchel, A

2001-05-01

74

Formulation variables affecting drug release from xanthan gum matrices at laboratory scale and pilot scale  

Microsoft Academic Search

The purpose of this research was to study processing variables at the laboratory and pilot scales that can affect hydration\\u000a rates of xanthan gum matrices containing diclofenac sodium and the rate of drug release. Tablets from the laboratory scale\\u000a and pilot scale proceedings were made by wet granulation. Swelling indices of xanthan gum formulations prepared with different\\u000a amounts of water

Nashiru Billa; Kah-Hay Yuen

2000-01-01

75

Pilot-scale experimental pyrolysis plant: Mechanical and operational aspects  

Microsoft Academic Search

The objective of the present communication is to discuss a pilot-scale experimental pyrolysis plant both mechanically and operationally. The different components of the plant such as material feeding unit, nitrogen supplying unit, rotary kiln reactor, condensing units, filters, instrumentation and cooling mechanism, are discussed.

F. Fortuna; G. Cornacchia; M. Mincarini; V. K. Sharma

1997-01-01

76

Initial Scale Development: Sample Size for Pilot Studies  

ERIC Educational Resources Information Center

Pilot studies are often recommended by scholars and consultants to address a variety of issues, including preliminary scale or instrument development. Specific concerns such as item difficulty, item discrimination, internal consistency, response rates, and parameter estimation in general are all relevant. Unfortunately, there is little discussion…

Johanson, George A.; Brooks, Gordon P.

2010-01-01

77

PILOT SCALE EVALUATION OF PHOTOLYTIC OZONATION FOR TRIHALOMETHANE PRECURSOR REMOVAL  

EPA Science Inventory

The use of ozone combined with ultraviolet radiation has been studied at the pilot-scale for removing trihalomethane (THM) precursors from potable water. The effects of variations in ozone dose rate, UV intensity and other parameters were first studied using a synthetic feedwater...

78

Mixing characterisation of full-scale membrane bioreactors: CFD modelling with experimental validation  

Microsoft Academic Search

Membrane Bioreactors (MBRs) have been successfully used in aerobic biological wastewater treatment to solve the perennial problem of effective solids–liquid separation. The optimisation of MBRs requires knowledge of the membrane fouling, biokinetics and mixing. However, research has mainly concentrated on the fouling and biokinetics (Ng and Kim, 2007). Current methods of design for a desired flow regime within MBRs are

M. Brannock; Y. Wang; G. Leslie

2010-01-01

79

Application of inverse fluidization in wastewater treatment: From laboratory to full-scale bioreactors  

SciTech Connect

The inverse fluidization is a new multiphase gas-liquid or gas-liquid-solid system. The first studies of two phase (liquid-solid) inverse fluidization were originally published independently by Shimodaira et al. [6], Nikolov et al. [5] and Fan et al. [2]. The main difference between the classic and inverse fluidization is that the solid particle density in the inverse fluidized bed is less than the density of the continuous fluid and therefore the bed is fluidized by a downflow of the fluid. Schematic illustration of both classic and inverse fluidized beds is shown in Figure 1. One of the most important recent applications of fluidized beds is in the field of bioreactor engineering. It is well known that almost all types of microorganisms spontaneously attach themselves to any inert solid surface in contact with the liquid growth media. The microorganisms use exopolysaccharide {open_quotes}bridges{close_quotes} to attach themselves to the solid support and to each other. This structure of microorganisms and exopolysaccharides is known as biofilm. The fluidized bed bioreactors are used primarily for processes in which the fluidized particles are used as an inert solid support. There is a problem when the biofilm microorganisms multiply and the biofilm thickness increase. This limits diffusion of oxygen and/or the organic substrate to the deeper layers of the biofilm. Starvation of the microorganisms at the base of the biofilm causes pieces of the biofilm to detach (Figure 2) and leads to ineffective bioreactor operation. The maximal biofilm thickness at which no diffusional limitation is observed (phase 3 in Figure 2), is usually around 100 {mu}m. Therefore, to operate the bioreactor efficiently, the biofilm thickness should be approximately 100 {mu}m. The use of inverse fluidization can solve this problem. 6 refs., 10 figs.

Karamanev, D.G. [Ecole Polytechnique, Montreal (Canada); Nikolov, L.N. [Sofia Univ. (Bulgaria)

1996-12-31

80

Anaerobic digestibility of marine microalgae Phaeodactylum tricornutum in a lab-scale anaerobic membrane bioreactor  

Microsoft Academic Search

The biomass of industrially grown Phaeodactylum tricornutum was subjected in a novel way to bio-methanation at 33A degrees C, i.e., in an anaerobic membrane bioreactor (AnMBR) at a hydraulic retention time of 2.5 days, at solid retention times of 20 to 10 days and at loading rates in the range of 2.6-5.9 g biomass-COD L(-1) day(-1) with membrane fluxes ranging

C. Zamalloa; J. De Vrieze; N. Boon; W. Verstraete

2012-01-01

81

Pilot-scale tests of HEME and HEPA dissolution process  

SciTech Connect

A series of pilot-scale demonstration tests for the dissolution of High Efficiency Mist Eliminators (HEME`s) and High Efficiency Particulate Airfilters (HEPA) were performed on a 1/5th linear scale. These fiberglass filters are to be used in the Defense Waste Processing Facility (DWPF) to decontaminate the effluents from the off-gases generated during the feed preparation process and vitrification. When removed, these filters will be dissolved in the Decontamination Waste Treatment Tank (DWTT) using 5 wt% NaOH solution. The contaminated fiberglass is converted to an aqueous stream which will be transferred to the waste tanks. The filter metal structure will be rinsed with process water before its disposal as low-level solid waste. The pilot-scale study reported here successfully demonstrated a simple one step process using 5 wt% NaOH solution. The proposed process requires the installation of a new water spray ring with 30 nozzles. In addition to the reduced waste generated, the total process time is reduced to 48 hours only (66% saving in time). The pilot-scale tests clearly demonstrated that the dissolution process of HEMEs has two stages - chemical digestion of the filter and mechanical erosion of the digested filter. The digestion is achieved by a boiling 5 wt% caustic solutions, whereas the mechanical break down of the digested filter is successfully achieved by spraying process water on the digested filter. An alternate method of breaking down the digested filter by increased air sparging of the solution was found to be marginally successful are best. The pilot-scale tests also demonstrated that the products of dissolution are easily pumpable by a centrifugal pump.

Qureshi, Z.H.; Strege, D.K.

1994-06-01

82

Scale-up of biotransformation process in stirred tank reactor using dual impeller bioreactor.  

PubMed

The gas-liquid mass transfer coefficient K(L)a in the fermenter is a strong function of mode of energy dissipation and physico-chemical properties of the liquid media. A combination of disc turbine (DT) and pitched blade turbine down flow (PTD) impellers has been tested in laboratory bioreactor for gas hold-up and gas-liquid mass transfer performance for the growth and biotransformation medium for an yeast isolate VS1 capable of biotransforming benzaldehyde to L-phenyl acetyl carbinol (L-PAC) and compared with those in water.Correlations have been developed for the prediction of the fractional gas hold-up and gas-liquid mass transfer coefficient for the above media. The mass transfer coefficient and respiration rate have been determined in the shake flask for the growth as well as for biotransformation medium. These results, then have been used to optimize the operating parameters (impeller speed and aeration) for growth and biotransformation in a laboratory bioreactor. The comparison of cell mass production and L-PAC production in the bioreactor has been done with that obtained in shake flask studies. PMID:11356367

Shukla, V B.; Parasu Veera, U; Kulkarni, P R.; Pandit, A B.

2001-07-01

83

MTBE BIODEGRADATION IN A GRAVITY FLOW, HIGH-BIOMASS RETAINING BIOREACTOR  

EPA Science Inventory

The aerobic biodegradation of methyl tert-butyl ether (MtBE), a widely used fuel oxygenate, was investigated using a pilot-scale biomass-retaining bioreactor called a Biomass Concentrator Reactor (BCR). The reactor was operated for a year at a flow rate of 2500 L/d on Ci...

84

STRATEGY USING BIOREACTORS AND SPECIALLY SELECTED MICROORGANISMS FOR BIOREMEDIATION OF GROUNDWATER CONTAMINATED WITH CREOSOTE AND PENTACHLOROPHENOL  

EPA Science Inventory

A two-stage, continuous-flow, sequential inoculation bioreactor strategy for the bioremediation of ground water contaminated with creosote and pentachlorophenol (PCP) was evaluated at the bench- and pilot-scale levels. erformance of continually stirred tank reactors (CSTR) using ...

85

Ammonia Oxidizing Bacteria Community Dynamics in a Pilot-Scale Wastewater Treatment Plant  

PubMed Central

Background Chemoautotrophic ammonia oxidizing bacteria (AOB) have the metabolic ability to oxidize ammonia to nitrite aerobically. This metabolic feature has been widely used, in combination with denitrification, to remove nitrogen from wastewater in wastewater treatment plants (WWTPs). However, the relative influence of specific deterministic environmental factors to AOB community dynamics in WWTP is uncertain. The ecological principles underlying AOB community dynamics and nitrification stability and how they are related are also poorly understood. Methodology/Principal Findings The community dynamics of ammonia oxidizing bacteria (AOB) in a pilot-scale WWTP were monitored over a one-year period by Terminal Restriction Fragment Length Polymorphism (T-RFLP). During the study period, the effluent ammonia concentrations were almost below 2 mg/L, except for the first 60 days, indicting stable nitrification. T-RFLP results showed that, during the test period with stable nitrification, the AOB community structures were not stable, and the average change rate (every 15 days) of AOB community structures was 10%±8%. The correlations between T-RFLP profiles and 10 operational and environmental parameters were tested by Canonical Correlation Analysis (CCA) and Mantel test. The results indicated that the dynamics of AOB community correlated most strongly with Dissolved Oxygen (DO), effluent ammonia, effluent Biochemical Oxygen Demand (BOD) and temperature. Conclusions/Significance This study suggests that nitrification stability is not necessarily accompanied by a stable AOB community, and provides insight into parameters controlling the AOB community dynamics within bioreactors with stable nitrification. PMID:22558415

Wang, Xiaohui; Wen, Xianghua; Xia, Yu; Hu, Ma; Zhao, Fang; Ding, Kun

2012-01-01

86

Production and Isolation of Azaspiracid-1 and -2 from Azadinium spinosum Culture in Pilot Scale Photobioreactors  

PubMed Central

Azaspiracid (AZA) poisoning has been reported following consumption of contaminated shellfish, and is of human health concern. Hence, it is important to have sustainable amounts of the causative toxins available for toxicological studies and for instrument calibration in monitoring programs, without having to rely on natural toxin events. Continuous pilot scale culturing was carried out to evaluate the feasibility of AZA production using Azadinium spinosum cultures. Algae were harvested using tangential flow filtration or continuous centrifugation. AZAs were extracted using solid phase extraction (SPE) procedures, and subsequently purified. When coupling two stirred photobioreactors in series, cell concentrations reached 190,000 and 210,000 cell·mL?1 at steady state in bioreactors 1 and 2, respectively. The AZA cell quota decreased as the dilution rate increased from 0.15 to 0.3 day?1, with optimum toxin production at 0.25 day?1. After optimization, SPE procedures allowed for the recovery of 79 ± 9% of AZAs. The preparative isolation procedure previously developed for shellfish was optimized for algal extracts, such that only four steps were necessary to obtain purified AZA1 and -2. A purification efficiency of more than 70% was achieved, and isolation from 1200 L of culture yielded 9.3 mg of AZA1 and 2.2 mg of AZA2 of >95% purity. This work demonstrated the feasibility of sustainably producing AZA1 and -2 from A. spinosum cultures. PMID:22822378

Jauffrais, Thierry; Kilcoyne, Jane; Sechet, Veronique; Herrenknecht, Christine; Truquet, Philippe; Herve, Fabienne; Berard, Jean Baptiste; Nulty, Ciara; Taylor, Sarah; Tillmann, Urban; Miles, Christopher O.; Hess, Philipp

2012-01-01

87

Pilot-scale chemical-biological system for efficient H2S removal from biogas.  

PubMed

A pilot-scale chemical-biological process was performed efficiently to remove corrosive H2S from biogas. Consecutive 356-d livestock biogas purification was conducted at various H2S loading rates. The average inlet H2S concentration was 3542 ppm, and a removal efficiency of 95% was achieved with gas retention time of 288 s. This system showed robust performance during operation with stable parameters. Purified biogas with an average of 59% CH4 was collected for power production. Moreover, 28.3 kW h of power was produced by using a 30 kW biogas generator under 300 LPM biogas flow rate. During the 30-d shut down test, the jarosite formation resulted in pH decrease and appearance of Leptospirillum sp. and Sulfobacillus sp. in the bioreactor. However, the cell density of the inoculated Acidithiobacillus ferrooxidans was maintained above 5×10(7) CFU/g-AC during long-term operation. Thus, given the successful H2S elimination, the chemical-biological process is a feasible system for biogas purification. PMID:23186660

Lin, Wei-Chih; Chen, Yu-Pei; Tseng, Ching-Ping

2013-05-01

88

Synthesis of arsenic graft adsorbents in pilot scale  

NASA Astrophysics Data System (ADS)

Synthesis of arsenic (As) adsorbents in pilot scale was carried out with a synthesizing apparatus by radiation-induced graft polymerization of 2-hydroxyethyl methacrylate phosphoric acid monomer (PA), which consists of phosphoric acid mono- (50%) and di- (50%) ethyl methacrylate esters onto a nonwoven cotton fabric (NCF), and following chemical modification by contact with a zirconium (Zr) solution. The apparatus which was equipped with reaction tanks, a washing tank and a pump can produce up to 0.3 m×14 m size of the As(V) adsorbent in one reaction. A degree of grafting of 150% was obtained at an irradiation dose of 20 kGy with 5% of PA solution mixed with deionized water for 1 h at 40 °C. Finally, after Zr(IV) was loaded onto a NCF with 5 mmol/L of Zr(IV) solution, the graft adsorbent for the removal of As(V) was achieved in pilot-scale. The adsorbent which was synthesized in pilot scale was evaluated in batch mode adsorption with 1 ppm (mg/l) of As(V) solution for 2 h at room temperature. As a result, the adsorption capacity for As(V) was 0.02 mmol/g-adsorbent.

Hoshina, Hiroyuki; Kasai, Noboru; Shibata, Takuya; Aketagawa, Yasushi; Takahashi, Makikatsu; Yoshii, Akihiro; Tsunoda, Yasuhiko; Seko, Noriaki

2012-08-01

89

Oxygen transfer in membrane bioreactors treating synthetic greywater  

Microsoft Academic Search

Mass transfer coefficients (kLa) were studied in two pilot scale membrane bioreactors (MBR) with different setup configurations treating 200L\\/h of synthetic greywater with mixed liquor suspended solids' (MLSS) concentrations ranging from 4.7 to 19.5g\\/L. Besides the MLSS concentration, mixed liquor volatile suspended solids (MLVSS), total solids (TS), volatile solids (VS), chemical oxygen demand (COD) and anionic surfactants of the sludge

Jochen Henkel; Mladen Lemac; Martin Wagner; Peter Cornel

2009-01-01

90

Modeling scaleup effects on a small pilot-scale fluidized-bed reactor for fuel ethanol production  

SciTech Connect

Domestic ethanol use and production are presently undergoing significant increases along with planning and construction of new production facilities. Significant efforts are ongoing to reduce ethanol production costs by investigating new inexpensive feedstocks (woody biomass) and by reducing capital and energy costs through process improvements. A key element in the development of advanced bioreactor systems capable of very high conversion rates is the retention of high biocatalyst concentrations within the bioreactor and a reaction environment that ensures intimate contact between substrate and biocatalyst. One very effective method is to use an immobilized biocatalyst that can be placed into a reaction environment that provides effective mass transport, such as a fluidized bed. Mathematical descriptions are needed based on fundamental principles and accepted correlations that describe important physical phenomena. We describe refinements and semi-quantitatively extend the predictive model of Petersen and Davison to a multiphase fluidized-bed reactor (FBR) that was scaled-up for ethanol production. Axial concentration profiles were evaluated by solving coupled differential equations for glucose and carbon dioxide. The pilot-scale FBR (2 to 5 m tall, 10.2-cm ID, and 23,000 L month{sup -1} capacity) was scaled up from bench-scale reactors (91 to 224 cm long, 2.54 to 3.81 cm ID, and 400 to 2,300 L month{sup -1} capacity). Significant improvements in volumetric productivites (50 to 200 g EtOH h{sup -1} L{sup -1} compared with 40 to 110 for bench-scale experiments and 2 to 10 for reported industrial benchmarks) and good operability were demonstrated.

Webb, O.F.; Davison, B.H.; Scott, T.C.

1995-09-01

91

Kinetic modeling and scale up of lipoic acid (LA) production from Saccharomyces cerevisiae in a stirred tank bioreactor.  

PubMed

Scale up studies for production of lipoic acid (LA) from Saccharomyces cerevisiae have been reported in this paper for the first time. LA production in batch mode was carried out in a stirred tank bioreactor at varying agitation and aeration with maximum LA production of 512 mg/L obtained at 350 rpm and 25 % dissolved oxygen in batch culture conditions. Thus, LA production increased from 352 mg/L in shake flask to 512 mg/L in batch mode in a 5 L stirred tank bioreactor. Biomass production under these conditions was mathematically explained using logistic equation and data obtained for LA production and substrate utilization were successfully fitted using Luedeking-Piret and Mercier's models. The kinetic studies showed LA production to be growth associated. Further enhancement of LA production was carried out using fed-batch (variable volume) and semi-continuous modes of fermentation. Semi-continuous fermentation with three feeding cycles of sucrose effectively increased the production of LA from 512 to 725 mg/L. PMID:23178984

Jayakar, Shilpa S; Singhal, Rekha S

2013-08-01

92

Mycelium differentiation and development of Streptomyces coelicolor in lab-scale bioreactors: Programmed cell death, differentiation, and lysis are closely linked to undecylprodigiosin and actinorhodin production  

PubMed Central

Streptomycetes are mycelium-forming bacteria that produce two thirds of clinically relevant secondary metabolites. Secondary metabolite production is activated at specific developmental stages of Streptomyces life cycle. Despite this, Streptomyces differentiation in industrial bioreactors tends to be underestimated and the most important parameters managed are only indirectly related to differentiation: modifications to the culture media, optimization of productive strains by random or directed mutagenesis, analysis of biophysical parameters, etc. In this work the relationship between differentiation and antibiotic production in lab-scale bioreactors was defined. Streptomyces coelicolor was used as a model strain. Morphological differentiation was comparable to that occurring during pre-sporulation stages in solid cultures: an initial compartmentalized mycelium suffers a programmed cell death, and remaining viable segments then differentiate to a second multinucleated antibiotic-producing mycelium. Differentiation was demonstrated to be one of the keys to interpreting biophysical fermentation parameters and to rationalizing the optimization of secondary metabolite production in bioreactors. PMID:24240146

Rioseras, Beatriz; López-García, María Teresa; Yagüe, Paula; Sánchez, Jesús; Manteca, Ángel

2013-01-01

93

Modeling energy consumption in membrane bioreactors for wastewater treatment in north Africa.  

PubMed

Two pilot-scale membrane bioreactors were operated alongside a full-sized activated sludge plant in Tunisia in order to compare specific energy demand and treated water quality. Energy consumption rates were measured for the complete membrane bioreactor systems and for their different components. Specific energy demand was measured for the systems and compared with the activated sludge plant, which operated at around 3 kWh m(-3). A model was developed for each membrane bioreactor based on both dynamic and steady-state mass balances, microbial kinetics and stoichiometry, and energy balance. Energy consumption was evaluated as a function of mixed-liquor suspended solids concentration, net permeate fluxes, and the resultant treated water quality. This work demonstrates the potential for using membrane bioreactors in decentralised domestic water treatment in North Africa, at energy consumption levels similar or lower than conventional activated sludge systems, with the added benefit of producing treated water suitable for unrestricted crop irrigation. PMID:24734471

Skouterisl, George; Arnot, Tom C; Jraou, Mouna; Feki, Firas; Sayadi, Sami

2014-03-01

94

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Laptop computer sits atop the Experiment Control Computer for a NASA Bioreactor. The flight crew can change operating conditions in the Bioreactor by using the graphical interface on the laptop. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

1996-01-01

95

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

1996-01-01

96

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Interior view of the gas supply for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

1996-01-01

97

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell and with thermal blankets partially removed. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

1996-01-01

98

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Exterior view of the NASA Bioreactor Engineering Development Unit flown on Mir. The rotating wall vessel is behind the window on the face of the large module. Control electronics are in the module at left; gas supply and cooling fans are in the module at back. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

1996-01-01

99

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Interior of a Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

1996-01-01

100

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Electronics control module for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

1996-01-01

101

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Astronaut John Blaha replaces an exhausted media bag and filled waste bag with fresh bags to continue a bioreactor experiment aboard space station Mir in 1996. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. This image is from a video downlink. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

1998-01-01

102

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

The heart of the bioreactor is the rotating wall vessel, shown without its support equipment. Volume is about 125 mL. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

1998-01-01

103

Rotating Bioreactor  

NASA Technical Reports Server (NTRS)

The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators.

1988-01-01

104

Membrane bioreactor for pharmaceutically active compounds removal: Effects of carbamazepine on mixed microbial communities implied in the treatment  

Microsoft Academic Search

The aim of this work consists in evaluating the influence of carmabazepine (CBZ) (i) on the endogenous and exogenous respirations, in batch reactors, of bacterial populations taken from a conventional activated sludge process (CAS) and a pilot-scale membrane bioreactor (MBR) and (ii) on COD removal, sludge production and oxygen requirement of a lab-sale MBR system. In batch experiments, the increase

Michael Aubenneau; Alexandre Tahar; Claude Casellas; Christelle Wisniewski

2010-01-01

105

Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants  

Microsoft Academic Search

Eight pharmaceuticals, two polycyclic musk fragrances and nine endocrine disrupting chemicals were analysed in several waste water treatment plants (WWTPs). A membrane bioreactor in pilot scale was operated at different solid retention times (SRTs) and the results obtained are compared to conventional activated sludge plants (CASP) operated at different SRTs. The SRT is an important design parameter and its impact

M. Clara; B. Strenn; O. Gans; E. Martinez; N. Kreuzinger; H. Kroiss

2005-01-01

106

Bioreactor principles  

NASA Technical Reports Server (NTRS)

Cells cultured on Earth (left) typically settle quickly on the bottom of culture vessels due to gravity. In microgravity (right), cells remain suspended and aggregate to form three-dimensional tissue. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

2001-01-01

107

Efficient large-scale generation of functional hepatocytes from mouse embryonic stem cells grown in a rotating bioreactor with exogenous growth factors and hormones  

PubMed Central

Introduction Embryonic stem (ES) cells are considered a potentially advantageous source of hepatocytes for both transplantation and the development of bioartificial livers. However, the efficient large-scale generation of functional hepatocytes from ES cells remains a major challenge, especially for those methods compatible with clinical applications. Methods In this study, we investigated whether a large number of functional hepatocytes can be differentiated from mouse ES (mES) cells using a simulated microgravity bioreactor. mES cells were cultured in a rotating bioreactor in the presence of exogenous growth factors and hormones to form embryoid bodies (EBs), which then differentiated into hepatocytes. Results During the rotating culture, most of the EB-derived cells gradually showed the histologic characteristics of normal hepatocytes. More specifically, the expression of hepatic genes and proteins was detected at a higher level in the differentiated cells from the bioreactor culture than in cells from a static culture. On further growing, the EBs on tissue-culture plates, most of the EB-derived cells were found to display the morphologic features of hepatocytes, as well as albumin synthesis. In addition, the EB-derived cells grown in the rotating bioreactor exhibited higher levels of liver-specific functions, such as glycogen storage, cytochrome P450 activity, low-density lipoprotein, and indocyanine green uptake, than did differentiated cells grown in static culture. When the EB-derived cells from day-14 EBs and the cells’ culture supernatant were injected into nude mice, the transplanted cells were engrafted into the recipient livers. Conclusions Large quantities of high-quality hepatocytes can be generated from mES cells in a rotating bioreactor via EB formation. This system may be useful in the large-scale generation of hepatocytes for both cell transplantation and the development of bioartificial livers. PMID:24294908

2013-01-01

108

Heavy-metal toxicity phenomena in laboratory-scale ANFLOW bioreactors  

SciTech Connect

An energy-conserving wastewater treatment system was developed based on an anaerobic, upflow (ANFLOW) bioreactor. Since many applications of the ANFLOW process could involve the treatment of wastewaters containing heavy metals, the potentially toxic effects of these metals on the biological processes occurring in ANFLOW columns (primarily acetogenesis and methanogenesis) were investigated. Both step and pulse inputs of zinc ranging from 100 to 1000 mg/L were added to synthetic wastewaters being treated in ANFLOW columns with 0.057-m/sup 3/ volumes. Column responses were used to develop descriptive models for toxicity phenomena in such systems. It was found that an inhibition function could be defined and used to modify a model based on plugflow with axial dispersion and first-order kinetics for soluble substrate removal. The inhibitory effects of zinc on soluble substrate removal were found to be predominantly associated with its sorption by biosolids. Sorption initially occurred in the lower regions of the column, but was gradually observed in higher regions as the sorption capacity of the lower regions was exhausted. Sorption phenomena could be described with the Freundlich equation. Sorption processes were accompanied by shifts of biological processes to regions higher in the columns. A regenerative process was observed when feeding of wastewaters without zinc was resumed. It was postulated that regeneration could be based on sloughing of layers of biofilms, or other biosolids involved in zinc sorption, followed by continued growth of lower layers of biofilms not involved in heavy-metal sorption.

Rivera, A.L.

1982-04-01

109

Photosynthetic biomass and H2 production by green algae: from bioengineering to bioreactor scale-up.  

PubMed

The development of clean borderless fuels is of vital importance to human and environmental health and global prosperity. Currently, fuels make up approximately 67% of the global energy market (total market = 15 TW year(-1)) (Hoffert et al. 1998). In contrast, global electricity demand accounts for only 33% (Hoffert et al. 1998). Yet, despite the importance of fuels, almost all CO(2) free energy production systems under development are designed to drive electricity generation (e.g. clean-coal technology, nuclear, photovoltaic, wind, geothermal, wave and hydroelectric). In contrast, and indeed almost uniquely, biofuels also target the much larger fuel market and so in the future will play an increasingly important role in maintaining energy security (Lal 2005). Currently, the main biofuels that are at varying stages of development include bio-ethanol, liquid carbohydrates [e.g. biodiesel or biomass to liquid (BTL) products], biomethane and bio-H(2). This review is focused on placing bio-H(2) production processes into the context of the current biofuels market and summarizing advances made both at the level of bioengineering and bioreactor design. PMID:18251920

Hankamer, Ben; Lehr, Florian; Rupprecht, Jens; Mussgnug, Jan H; Posten, Clemens; Kruse, Olaf

2007-09-01

110

Computational study of culture conditions and nutrient supply in a hollow membrane sheet bioreactor for large-scale bone tissue engineering.  

PubMed

Successful bone tissue culture in a large implant is still a challenge. We have previously developed a porous hollow membrane sheet (HMSh) for tissue engineering applications (Afra Hadjizadeh and Davod Mohebbi-Kalhori, J Biomed. Mater. Res. Part A [2]). This study aims to investigate culture conditions and nutrient supply in a bioreactor made of HMSh. For this purpose, hydrodynamic and mass transport behavior in the newly proposed hollow membrane sheet bioreactor including a lumen region and porous membrane (scaffold) for supporting and feeding cells with a grooved section for accommodating gel-cell matrix was numerically studied. A finite element method was used for solving the governing equations in both homogenous and porous media. Furthermore, the cell resistance and waste production have been included in a 3D mathematical model. The influences of different bioreactor design parameters and the scaffold properties which determine the HMSh bioreactor performance and various operating conditions were discussed in detail. The obtained results illustrated that the novel scaffold can be employed in the large-scale applications in bone tissue engineering. PMID:24077884

Khademi, Ramin; Mohebbi-Kalhori, Davod; Hadjizadeh, Afra

2014-03-01

111

Optimization of xylanase production by filamentous fungi in solid-state fermentation and scale-up to horizontal tube bioreactor.  

PubMed

Five microorganisms, namely Aspergillus niger CECT 2700, A. niger CECT 2915, A. niger CECT 2088, Aspergillus terreus CECT 2808, and Rhizopus stolonifer CECT 2344, were grown on corncob to produce cell wall polysaccharide-degrading enzymes, mainly xylanases, by solid-state fermentation (SSF). A. niger CECT 2700 produced the highest amount of xylanases of 504?±?7 U/g dry corncob (dcc) after 3 days of fermentation. The optimization of the culture broth (5.0 g/L NaNO3, 1.3 g/L (NH4)2SO4, 4.5 g/L KH2PO4, and 3 g/L yeast extract) and operational conditions (5 g of bed loading, using an initial substrate to moistening medium of 1:3.6 (w/v)) allowed increasing the predicted maximal xylanase activity up to 2,452.7 U/g dcc. However, different pretreatments of materials, including destarching, autoclaving, microwave, and alkaline treatments, were detrimental. Finally, the process was successfully established in a laboratory-scale horizontal tube bioreactor, achieving the highest xylanase activity (2,926 U/g dcc) at a flow rate of 0.2 L/min. The result showed an overall 5.8-fold increase in xylanase activity after optimization of culture media, operational conditions, and scale-up. PMID:24728763

Pérez-Rodríguez, N; Oliveira, F; Pérez-Bibbins, B; Belo, I; Torrado Agrasar, A; Domínguez, J M

2014-06-01

112

Linkages between microbial functional potential and wastewater constituents in large-scale membrane bioreactors for municipal wastewater treatment.  

PubMed

Large-scale membrane bioreactors (MBRs) have been widely used for the municipal wastewater treatment, whose performance relies on microbial communities of activated sludge. Nevertheless, microbial functional structures in MBRs remain little understood. To gain insight into functional genes and their steering environmental factors, we adopted GeoChip, a high-throughput microarray-based tool, to examine microbial genes in four large-scale, in-operation MBRs located in Beijing, China. The results revealed substantial microbial gene heterogeneity (43.7-85.1% overlaps) among different MBRs. Mantel tests indicated that microbial nutrient cycling genes were significantly (P < 0.05) correlated to influent COD, [Formula: see text] -N, TP or sulfate, which signified the importance of microbial mediation of wastewater constituent removal. In addition, functional genes shared by all four MBRs contained a large number of genes involved in antibiotics resistance, metal resistance and organic remediation, suggesting that they were required for degradation or resistance to toxic compounds in wastewater. The linkages between microbial functional structures and environmental variables were also unveiled by the finding of hydraulic retention time, influent COD, [Formula: see text] -N, mixed liquid temperature and humic substances as major factors shaping microbial communities. Together, the results presented demonstrate the utility of GeoChip-based microarray approach in examining microbial communities of wastewater treatment plants and provide insights into the forces driving important processes of element cycling. PMID:24675272

Sun, Yanmei; Shen, Yue-xiao; Liang, Peng; Zhou, Jizhong; Yang, Yunfeng; Huang, Xia

2014-06-01

113

MGP soil remediation in a slurry-phase system: A pilot-scale test  

Microsoft Academic Search

An overall protocol for remediating manufactured gas plant (MGP) soils generally includes bench-scale evaluation of the technology, pilot-scale demonstration, and full-scale implementation. This paper summarizes the results of the bench-scale and pilot-scale study for treating an MGP soil with IGT`s integrated Chemical\\/Biological Treatment (CBT) or Manufactured Gas Plant Remediation (MGP-REM) process in the slurry-phase mode of application. MGP soils are

Bill Y. Liu; V. J. Srivastava; J. R. Paterek; S. P. Pradhan; J. R. Pope; T. D. Hayes; D. G. Linz; D. E. Jerger

1993-01-01

114

Anaerobic digestibility of marine microalgae Phaeodactylum tricornutum in a lab-scale anaerobic membrane bioreactor.  

PubMed

The biomass of industrially grown Phaeodactylum tricornutum was subjected in a novel way to bio-methanation at 33°C, i.e., in an anaerobic membrane bioreactor (AnMBR) at a hydraulic retention time of 2.5 days, at solid retention times of 20 to 10 days and at loading rates in the range of 2.6-5.9 g biomass-COD L(-1) day(-1) with membrane fluxes ranging from 1 to 0.8 L m(-2) h(-1). The total COD recovered as biogas was in the order of 52%. The input suspension was converted to a clear effluent rich in total ammonium nitrogen (546 mg TAN L(-1)) and phosphate (141 mg PO(4)-P L(-1)) usable as liquid fertilizer. The microbial community richness, dynamics, and organization in the reactor were interpreted using the microbial resource management approach. The AnMBR communities were found to be moderate in species richness and low in dynamics and community organization relative to UASB and conventional CSTR sludges. Quantitative polymerase chain reaction analysis revealed that Methanosaeta sp. was the dominant acetoclastic methanogen species followed by Methanosarcina sp. This work demonstrated that the use of AnMBR for the digestion of algal biomass is possible. The fact that some 50% of the organic matter is not liquefied means that the algal particulates in the digestate constitute a considerable fraction which should be valorized properly, for instance as slow release organic fertilizer. Overall, 1 kg of algae dry matter (DM) could be valorized in the form of biogas ( euro 2.07), N and P in the effluent (euro 0.02) and N and P in the digestate (euro 0.04), thus totaling about euro 2.13 per kilogram algae DM. PMID:22005739

Zamalloa, Carlos; De Vrieze, Jo; Boon, Nico; Verstraete, Willy

2012-01-01

115

Pilot-scale evaluation of supported liquid membrane extraction  

SciTech Connect

An evaluation of a solvent extraction system employing supported liquid membranes has recently been completed by Rockwell Hanford Operations. The focus was on a pilot-scale, tube and shell arrangement configured for continuous operation. The tube bundle consisted of 333 polypropylene microporous fibers with a total surface of 3.6 mS. Results are reported for the evaluation of operating parameters such as flow rates and corresponding aqueous pressure differences, solvent impregnation techniques, and test system durability. Chemical and physical test results, including permeability data, are also reported for the systems nitrate ion/nitric acid/tertiary amine and (nonradioactive) Group IA-IIA metal/nitric acid/phosphoric acid extractant.

Dworzak, W.R.; Naser, A.J.

1987-01-01

116

SAES St 909 pilot scale methane cracking tests  

SciTech Connect

Pilot scale (0.5 kg) SAES St 909 methane cracking tests were conducted for potential tritium process applications. Up to 1400 hours tests were done at 700 deg.C, 202.7 kPa (1520 torr) with a 0.03 sLPM feed of methane plus impurities, in a 20 vol% hydrogen, balance helium, stream. Carbon dioxide gettered by St 909 can be equated to an equivalent amount of methane gettered, but equating nitrogen to an equivalent amount of methane was nitrogen feed composition dependent. A decreased hydrogen feed increased methane getter rates while a 30 deg.C drop in one furnace zone increased methane emissions by over a factor of 30. The impact of gettered nitrogen can be somewhat minimized if nitrogen feed to the bed has been stopped and sufficient time given to recover the methane cracking rate. (authors)

Klein, J. E.; Sessions, H. T. [Savannah River National Laboratory, Aiken, SC 29808 (United States)

2008-07-15

117

Pilot Scale Tests Alden/Concepts NREC Turbine  

SciTech Connect

Alden Research Laboratory, Inc. has completed pilot scale testing of the new Alden/Concepts NREC turbine that was designed to minimize fish injury at hydropower projects. The test program was part of the U.S. Department of Energy's Advanced Hydropower Turbine Systems Program. The prototype turbine operating point was 1,000 cfs at 80ft head and 100 rpm. The turbine was design to: (1) limit peripheral runner speed; (2) have a high minimum pressure; (3) limit pressure change rates; (4) limit the maximum flow shear; (5) minimize the number and total length of leading blade edges; (6) maximize the distance between the runner inlet and the wicket gates and minimize clearances (i.e., gaps) between other components; and (7) maximize the size of flow passages.

Thomas C. Cook; George E.Hecker; Stephen Amaral; Philip Stacy; Fangbiao Lin; Edward Taft

2003-09-30

118

Odour in composting processes at pilot scale: monitoring and biofiltration.  

PubMed

Although odour emissions associated with the composting process, especially during the hydrolytic stage, are widely known, their impact on surrounding areas is not easily quantifiable, For this reason, odour emissions during the first stage ofcomposting were evaluated by dynamic olfactometry at pilot scale in order to obtain results which can be extrapolated to industrial facilities. The composting was carried out in a commercial dynamic respirometer equipped with two biofilters at pilot scale filled with prunings (Populus) and mature compost obtained from the organic fraction of municipal solid waste. Given that the highest odour emissions occur in the first stage of the composting process, this stage was carried out in a closed system to better control the odour emissions, whose maximum value was estimated to be 2.78 ouF S-1 during the experiments. Odour concentration, the dynamic respiration index and temperature showed the same evolution during composting, thus indicating that odour could be a key variable in the monitoring process. Other variables such as total organic carbon (CTOC) and pH were also found to be significant in this study due to their influence over odour emissions. The efficiency of the biofilters (empty bed residence time of 86 s) was determined by quantifying the odour emissions at the inlet and outlet of both biofilters. The moisture content in the biofilters was found to be an important variable for improving odour removal efficiency, while the minimum moisture percentage to obtain successful results was found to be 55% (odour removal efficiency of 95%). PMID:24956758

Gutiérrez, M C; Serrano, A; Martín, M A; Chica, A F

2014-08-01

119

Pilot-scale verification test for Hanford grout  

SciTech Connect

The Grout Treatment Facility (GTF) at Hanford, Washington will process the low-level fraction of selected double-shell tank (DST) wastes on the Hanford Site, to produce a cementitious waste form. This facility, which is operated by Westinghouse Hanford Company (Westinghouse Hanford), mixes liquid wastes with cementitious materials and pumps the resulting grout slurry into large [5,300 cubic meters (m{sup 3})] concrete vaults. Once in the vault, the grout cures to produce a waste form that immobilizes radioactive and hazardous constituents through chemical reactions and/or microencapsulation. Although this disposal scheme has several advantages, pouring grout into large vaults raises concerns about how to handle the heat generated from the exothermic hydration reactions that occur as the grout cures. WHC`s current strategy for addressing the problem of hydration heat is to fill the vault in stages and use forced ventilation in the airspace above the grout to speed heat removal. The varying composition of Hanford tank waste requires that each tank be processed in a separate campaign using a grout formulation specifically designed for that waste. The next tank scheduled for treatment is DST 241-AN-106. A four-phase process for developing the grout formulation development process is used to assure that the formulation will meet various processing and waste form requirements. These phases are: (1) laboratory formulation development studies and modeling with simulated wastes, (2) laboratory variability studies with simulated waste, (3) pilot-scale verification tests with simulated wastes, and (4) laboratory verification tests with actual waste. This paper presents an overview of the pilot-scale verification tests conducted as part of the grout formulation development for the 241-AN-106 tank waste. The paper specifically discusses results dealing with (1) the grout slurry critical flow rate and (2) the ability to handle grout hydration heat with forced ventilation.

Bagaasen, L.M.; Powell, W.J.

1993-02-01

120

Biofouling in Membrane Bioreactor  

Microsoft Academic Search

A membrane bioreactor (MBR) combines membrane separation and biological treatment, normally involving the activated sludge process, in municipal wastewater treatment. Despite excellent performance over years of full?scale operation, the interactions between microbes and the membrane in the MBR process, which determine its design and operational criteria, remain unclear. This report reviewed research regarding how numerous process parameters impact biofouling rates

A. Ramesh; D. J. Lee; M. L. Wang; J. P. Hsu; R. S. Juang; K. J. Hwang; J. C. Liu; S. J. Tseng

2006-01-01

121

Biotechnological production of 20-alpha-dihydrodydrogesterone at pilot scale.  

PubMed

The human sex hormone progesterone plays an essential and complex role in a number of physiological processes. Progesterone deficiency is associated with menstrual disorders and infertility as well as premature birth and abortion. For progesterone replacement therapy, the synthetic progestogen dydrogesterone is commonly used. In the body, this drug is metabolized to 20?-dihydrodydrogesterone (20?-DHD), which also shows extensive pharmacological effects and hence could act as a therapeutic agent itself. In this study, we describe an efficient biotechnological production procedure for 20?-DHD that employs the stereo- and regioselective reduction of dydrogesterone in a whole-cell biotransformation process based on recombinant fission yeast cells expressing the human enzyme AKR1C1 (20?-hydroxysteroid dehydrogenase, 20?-HSD). In a fed-batch fermentation at pilot scale (70 L) with a genetically improved production strain and under optimized reaction conditions, an average 20?-DHD production rate of 190 ?M day(-1) was determined for a total biotransformation time of 136 h. Combined with an effective and reliable downstream processing, a continuous production rate of 12.3?±?1.4 g 20?-DHD per week and fermenter was achieved. We thus established an AKR-dependent whole-cell biotransformation process that can also be used for the production of other AKR1C1 substrates (as exemplarily shown by the production of 20?-dihydroprogesterone in gram scale) and is in principle suited for the production of further human AKR metabolites at industrial scale. PMID:21494755

Naumann, Julia Maria; Zöllner, Andy; Dr?gan, C?lin-Aurel; Messinger, Josef; Adam, Joachim; Bureik, Matthias

2011-09-01

122

PILOT SCALE EVALUATION OF NOX COMBUSTION CONTROL FOR PULVERIZED COAL: PHASE II FINAL REPORT  

EPA Science Inventory

The report gives results of an investigation of advanced NOx control techniques on a pilot scale test facility firing pulverized coal. The 440 kW pilot scale test facility can simulate front wall, opposed, or tangentially fired utility and industrial boilers. Baseline and control...

123

Pilot scale test of a produced water-treatment system for initial removal of organic compounds  

SciTech Connect

A pilot-scale test to remove polar and non-polar organics from produced water was performed at a disposal facility in Farmington NM. We used surfactant-modified zeolite (SMZ) adsorbent beds and a membrane bioreactor (MBR) in combination to reduce the organic carbon content of produced water prior to reverse osmosis (RO). Reduction of total influent organic carbon (TOC) to 5 mg/L or less is desirable for efficient RO system operation. Most water disposed at the facility is from coal-bed gas production, with oil production waters intermixed. Up to 20 gal/d of produced water was cycled through two SMZ adsorbent units to remove volatile organic compounds (BTEX, acetone) and semivolatile organic compounds (e.g., napthalene). Output water from the SMZ units was sent to the MBR for removal of the organic acid component of TOC. Removal of inorganic (Mn and Fe oxide) particulates by the SMZ system was observed. The SMZ columns removed up to 40% of the influent TOC (600 mg/L). BTEX concentrations were reduced from the initial input of 70 mg/L to 5 mg/L by the SMZ and to an average of 2 mg/L after the MBR. Removal rates of acetate (input 120-170 mg/L) and TOC (input up to 45 mg/L) were up to 100% and 92%, respectively. The water pH rose from 8.5 to 8.8 following organic acid removal in the MBR; this relatively high pH was likely responsible for observed scaling of the MBR internal membrane. Additional laboratory studies showed the scaling can be reduced by metered addition of acid to reduce the pH. Significantly, organic removal in the MBR was accomplished with a very low biomass concentration of 1 g/L throughout the field trial. An earlier engineering evaluation shows produced water treatment by the SMZ/MBR/RO system would cost from $0.13 to $0.20 per bbl at up to 40 gpm. Current estimated disposal costs for produced water are $1.75 to $4.91 per bbl when transportation costs are included, with even higher rates in some regions. Our results suggest that treatment by an SMZ/MBR/RO system may be a feasible alternative to current methods for produced water treatment and disposal.

Sullivan, Enid J [Los Alamos National Laboratory; Kwon, Soondong [UT-AUSTIN; Katz, Lynn [UT-AUSTIN; Kinney, Kerry [UT-AUSTIN

2008-01-01

124

Nitrification performance and microbial ecology of nitrifying bacteria in a full-scale membrane bioreactor treating TFT-LCD wastewater.  

PubMed

This study investigated nitrification performance and nitrifying community in one full-scale membrane bioreactor (MBR) treating TFT-LCD wastewater. For the A/O MBR system treating monoethanolamine (MEA) and dimethyl sulfoxide (DMSO), no nitrification was observed, due presumably to high organic loading, high colloidal COD, low DO, and low hydraulic retention time (HRT) conditions. By including additional A/O or O/A tanks, the A/O/A/O MBR and the O/A/O MBR were able to perform successful nitrification. The real-time PCR results for quantification of nitrifying populations showed a high correlation to nitrification performance, and can be a good indicator of stable nitrification. Terminal restriction fragment length polymorphism (T-RFLP) results of functional gene, amoA, suggest that Nitrosomonas oligotropha-like AOB seemed to be important to a good nitrification in the MBR system. In the MBR system, Nitrobacter- and Nitrospira-like NOB were both abundant, but the low nitrite environment is likely to promote the growth of Nitrospira-like NOB. PMID:22595093

Whang, Liang-Ming; Wu, Yi-Ju; Lee, Ya-Chin; Chen, Hong-Wei; Fukushima, Toshikazu; Chang, Ming-Yu; Cheng, Sheng-Shung; Hsu, Shu-Fu; Chang, Cheng-Huey; Shen, Wason; Huang, Chung Kai; Fu, Ryan; Chang, Barkley

2012-10-01

125

Nitrogen and organic matter removal from slaughterhouse wastewater in a lab-scale aerobic fixed-film bioreactor.  

PubMed

This paper presents the behaviour of a laboratory scale Aerobic Fixed-Film Bioreactor (Ae-FFB) with arranged media including its initial start up phase. It examines the viability of the Ae-FFB to remove nitrogen and organic matter from poultry slaughterhouse wastewater. After 12 days of operation while rapid growth of nitrifying bacteria took place, nitrogen and organic loading rates were increased progressively by up to 0.2 kg TKN m(-3) day(-1) and 0.8 kg COD m(-3) day(-1) respectively, reaching nitrogen and organic matter removal efficiencies of up to 92%. Heterotrophic bacteria, mainly placed in the suspended biomass accumulated at the bottom of the reactor, were found to be competing with nitrifying bacteria for oxygen, which limited nitrification efficiency. Despite operating with dissolved oxygen concentrations of around 3.5 mg 1(-1), an important contribution of the denitrification process was observed that removed up to 50% of oxidised nitrogen, depending on the availability of biodegradable organic matter. PMID:15369291

Del Pozo, R; Diez, V; Salazar, G

2004-06-01

126

Serum-free scaled up expansion and differentiation of murine embryonic stem cells to osteoblasts in suspension bioreactors.  

PubMed

The use of embryonic stem cell (ESC) derived cells has emerged as a potential alternative treatment for a number of degenerative diseases, including musculoskeletal diseases. Conventional ESC culturing methods use fetal bovine serum (FBS) as a major supplemental component of culture media, which is undesirable for clinical applications. These cultures are usually performed in small-scale static vessels (gelatin-coated dishes), which limit the number of cells that can be generated. It is essential to develop effective, reproducible protocols for efficient scalable production of ESC-derived cells. Here we present serum-free bioreactor protocols for (1) expansion and (2) differentiation of embryonic stem cells to osteoblasts. Cultivation of mESCs in serum-free media, supplemented with 15% knockout serum replacement (KSR) resulted in a 27.1- and 48.6-fold expansion in static culture and suspension respectively by day 5 of culture. Further induction to osteoblasts with a differentiation cocktail was verified by up-regulation of osterix and osteocalcin. Mineralization was also enhanced, as indicated by an increase in the calcium deposition by osteogenic cells by day 28. These results will serve as the basis for developing protocols with human ESCs as a new treatment alternative for musculoskeletal diseases. PMID:20564618

Alfred, Roz; Gareau, Tia; Krawetz, Roman; Rancourt, Derrick; Kallos, Michael S

2010-08-01

127

High cell density cultivation of Rhodococcus opacus for lipid production at a pilot-plant scale  

Microsoft Academic Search

The triacylglycerol (TAG)-accumulating bacterium Rhodococcus opacus strain PD630 was investigated with respect to the fermentative production of TAGs consisting of an unusually high fraction of fatty acids with an odd-number of carbon atoms and unsaturated monoenic fatty acids from sugar beet molasses and sucrose. Fed-batch fermentations were optimized at the 30-l scale in a stirred tank bioreactor at 30°C using

I. Voss; A. Steinbüchel

2001-01-01

128

A comparative study of the industrial discharges effect on the anaerobic treatment of domestic wastewater in both experimental and pilot-plant scales.  

PubMed

The aim of this study was to compare the effect of industrial discharges on the anaerobic treatment of domestic wastewater in both laboratory and pilot-plant scales at mesophilic conditions. The laboratory experiment results have shown the low process efficiency of anaerobic treatment of DW by the use of an adapted or a non-adapted methanogenic inoculum. These experiments performed in batch digesters were further confirmed by scaling up to a pilot-plant anaerobic membrane bioreactor (MBR). The treatment inefficiency in both laboratory and pilot-plant experiments could be related to the presence of toxic compounds due to the wastewater contamination by industrial discharges. The toxic character of DW was proved by the phytotoxicity and microtoxicity tests. Indeed, the luminescence inhibition percentages started at an average of 21% in the morning and reached more than 84% in the late afternoon. Moreover, the toxicity results have shown a direct relation with methanization results. Indeed, when the average microtoxicity increased to 73%, the average germination index value and the methanization efficiency expressed as the average methane percentage in the produced biogas decreased to 0% and 14.5%, respectively. PMID:21121456

Saddoud, Ahlem; Abdelkafi, Slim; Aloui, Fathi; Sayadi, Sami

2010-11-01

129

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Biotechnology Specimen Temperature Controller (BSTC) will cultivate cells until their turn in the bioreactor; it can also be used in culturing experiments that do not require the bioreactor. The BSTC comprises four incubation/refrigeration chambers individually set at 4 to 50 deg. C (near-freezing to above body temperature). Each chamber holds three rugged tissue chamber modules (12 total), clear Teflon bags holding 30 ml of growth media, all positioned by a metal frame. Every 7 to 21 days (depending on growth rates), an astronaut uses a shrouded syringe and the bags' needleless injection ports to transfer a few cells to a fresh media bag, and to introduce a fixative so that the cells may be studied after flight. The design also lets the crew sample the media to measure glucose, gas, and pH levels, and to inspect cells with a microscope. The controller is monitored by the flight crew through a 23-cm (9-inch) color computer display on the face of the BSTC. This view shows the BTSC with the front panel open. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

1998-01-01

130

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Biotechnology Specimen Temperature Controller (BSTC) will cultivate cells until their turn in the bioreactor; it can also be used in culturing experiments that do not require the bioreactor. The BSTC comprises four incubation/refrigeration chambers individually set at 4 to 50 degreesC (near-freezing to above body temperature). Each chamber holds three rugged tissue chamber modules (12 total), clear Teflon bags holding 30 ml of growth media, all positioned by a metal frame. Every 7 to 21 days (depending on growth rates), an astronaut uses a shrouded syringe and the bags' needleless injection ports to transfer a few cells to a fresh media bag, and to introduce a fixative so that the cells may be studied after flight. The design also lets the crew sample the media to measure glucose, gas, and pH levels, and to inspect cells with a microscope. The controller is monitored by the flight crew through a 23-cm (9-inch) color computer display on the face of the BSTC. This view shows the BTSC with the front panel open. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

1998-01-01

131

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101823 for a version without labels, and No. 0103180 for an operational schematic.

1998-01-01

132

SAES ST 909 PILOT SCALE METHANE CRACKING TESTS  

SciTech Connect

Pilot scale (500 gram) SAES St 909 methane cracking tests were conducted to determine material performance for tritium process applications. Tests that ran up to 1400 hours have been performed at 700 C, 202.7 kPa (1520 torr) with a 30 sccm feed of methane, with various impurities, in a 20 vol% hydrogen, balance helium, stream. A 2.5 vol% methane feed was reduced below 30 ppm for 631 hours. A feed of 1.1 vol% methane plus 1.4 vol% carbon dioxide was reduced below 30 ppm for 513 hours. The amount of carbon dioxide gettered by St 909 can be equated to an equivalent amount of methane gettered to estimate a reduced bed life for methane cracking. The effect of 0.4 vol % and 2.1 vol% nitrogen in the feed reduced the time to exceed 30 ppm methane to 362 and 45 hours, respectively, but the nitrogen equivalence to reduced methane gettering capacity was found to be dependent on the nitrogen feed composition. Decreased hydrogen concentrations increased methane getter rates while a drop of 30 C in one bed zone increased methane emissions by over a factor of 30. The impact of gettered nitrogen can be somewhat minimized if the nitrogen feed to the bed has been stopped and sufficient time given to recover the methane cracking rate.

Klein, J; Henry Sessions, H

2007-07-02

133

Supervisory control of a pilot-scale cooling loop  

SciTech Connect

We combine a previously developed strategy for Fault Detection and Identification (FDI) with a supervisory controller in closed loop. The combined method is applied to a model of a pilot-scale cooling loop of a nuclear plant, which includes Kalman filters and a model-based predictive controller as part of normal operation. The system has two valves available for flow control meaning that some redundancy is available. The FDI method is based on likelihood ratios for different fault scenarios which in turn are derived from the application of the Kalman filter. A previously introduced extension of the FDI method is used here to enable detection and identification of non-linear faults like stuck valve problems and proper accounting of the time of fault introduction. The supervisory control system is designed so to take different kinds of actions depending on the status of the fault diagnosis task and on the type of identified fault once diagnosis is complete. Some faults, like sensor bias and drift, are parametric in nature and can be adjusted without need for reconfiguration of the regulatory control system. Other faults, like a stuck valve problem, require reconfiguration of the regulatory control system. The whole strategy is demonstrated for several scenarios.

Kris Villez; Venkat Venkatasubramanian; Humberto Garcia

2011-08-01

134

Removal of dissolved organic matter by granular-activated carbon adsorption as a pretreatment to reverse osmosis of membrane bioreactor effluents  

Microsoft Academic Search

The adsorption of dissolved organic matter (DOM) on granular-activated carbon (GAC) as a pretreatment to reverse osmosis (RO) desalination of membrane bioreactor (MBR) effluents was studied in lab- and pilot-scale columns. The pattern and efficiency of DOM adsorption and fate of the hydrophobic (HPO), transphilic (TPI) and hydrophilic (HPI) fractions were characterized, as well as their impact on organic fouling

Shirra Gur-Reznik; Ilan Katz; Carlos G. Dosoretz

2008-01-01

135

Lightweight alumina refractory aggregate. Phase 2, Pilot scale development  

SciTech Connect

Kilogram quantities of refractory aggregate were prepared from both a paste and a pelletized form of extruder feed material in both bench and pilot-scale equipment. The 99{sup +} % alumina aggregate exhibited a bulk density approaching 2.5 g/cm{sup 3} and a fired strength slightly lower than fused alumina. Based on initial evaluation by two refractory manufacturers in brick or castable applications, the new aggregate offered adequate strength with thermal conductivity reductions up to 34%, depending on the temperature and application of the new aggregate in these initial trials. The new aggregate was simply substituted for Tabular{trademark} in the refractory formulation. Thus, there is room for improvement through formulation optimization with the lightweight aggregate. The new aggregate offers a unique combination of density, strength, and thermal properties not available in current aggregate. To this point in time, technical development has led to a pelletized formulation with borderline physical form leaving the Eirich mixer. The formulation requires further development to provide more latitude for the production of pelletized material without forming paste, while still reducing the bulk density slightly to reach the 2.5 g/cm{sup 3} target. The preferred, pelletized process flowsheet was outlined and a preliminary economic feasibility study performed based on a process retrofit into Alcoa`s Arkansas tabular production facilities. Based on an assumed market demand of 20,000 mt/year and an assumed selling price of $0.65/lb (25% more than the current selling price of Tabular{trademark}, on a volume basis), economics were favorable. Decision on whether to proceed into Phase 3 (full- scale demonstration) will be based on a formal market survey in 1994 October.

Swansiger, T.G.; Pearson, A.

1994-11-01

136

Integrated L-phenylalanine separation in an E. coli fed-batch process: from laboratory to pilot scale.  

PubMed

Pilot-scale reactive-extraction technology for fully integrated L-phenylalanine (L-Phe) separation in Escherichia coli fed-batch fermentations was investigated in order to prevent an inhibition of microbial L-Phe production by-product accumulation. An optimal reactive-extraction system, consisting of an organic kerosene phase with the cation-selective carrier DEHPA (di-2-ethylhexyl phosphonic acid) and an aqueous stripping phase including sulphuric acid, was found particularly efficient. Using this system with two membrane contactors, mass-transfer coefficients of up to 288 x 10(-7) cm s(-1) for the aqueous/organic and 77 x 10(-7) cm s(-1) for the organic/stripping phase were derived from experimental data using a simple modelling approach. Concentration factors higher than 4 were achieved in the stripping phase as compared to the aqueous donor phase. Reactive extraction enabled a 98% cation portion of L-Phe in the stripping phase, leading to final product purity higher than 99% after L-Phe precipitation. A doubling of L-Phe/glucose yield was observed when kerosene/DEHPA was added to the fermentation solution in the bioreactor to experimentally simulate a fully integrated L-Phe separation process. PMID:14505008

Maass, D; Gerigk, M R; Kreutzer, A; Weuster-Botz, D; Wubbolts, M; Takors, R

2002-06-01

137

APPLYING FABRIC FILTRATION TO REFUSE-FIRED BOILERS: A PILOT-SCALE INVESTIGATION  

EPA Science Inventory

The report gives results of a pilot-scale investigation to determine the techno-economic feasibility of applying fabric filter dust collectors to solid refuse fired boilers. The pilot facility, installed on a slipstream of a 135,000 lb/hr boiler, was sized to handle 9000 acfm at ...

138

EVALUATION OF SOLIDS DEWATERING FOR A PILOT-SCALE THIOSORBIC LIME SO2 SCRUBBER  

EPA Science Inventory

The paper gives results of an evaluation of solids dewatering for a pilot-scale thiosorbic lime SO2 scrubber. Pilot plant data showed that the dissolved magnesium in thiosorbic lime caused deterioration of solids dewatering properties. The slurry settling rate increased when the ...

139

Multimembrane Bioreactor  

NASA Technical Reports Server (NTRS)

Set of hydrophilic and hydrophobic membranes in bioreactor allows product of reaction to be separated, while nutrients fed to reacting cells and byproducts removed from them. Separation process requires no externally supplied energy; free energy of reaction sufficient. Membranes greatly increase productivity of metabolizing cells by continuously removing product and byproducts, which might otherwise inhibit reaction, and by continuously adding oxygen and organic nutrients.

Cho, Toohyon; Shuler, Michael L.

1989-01-01

140

NOX REMOVAL WITH COMBINED SELECTIVE CATALYTIC REDUCTION AND SELECTIVE NONCATALYTIC REDUCTION: PILOT- SCALE TEST RESULTS  

EPA Science Inventory

Pilot-scale tests were conducted to develop a combined nitrogen oxide (NOx) reduction technology using both selective catalytic reduction (SCR) and selective noncatalytic reduction (SNCR). A commercially available vanadium-and titatnium-based composite honeycomb catalyst and enh...

141

CHLORINE DECAY AND BIOFILM STUDIES IN A PILOT SCALE DRINKING WATER DISTRIBUTION DEAD END PIPE SYSTEM  

EPA Science Inventory

Chlorine decay experiments using a pilot-scale water distribution dead end pipe system were conducted to define relationships between chlorine decay and environmental factors. These included flow rate, biomass concentration and biofilm density, and initial chlorine concentrations...

142

Instrumentation and Evaluation of a Pilot Scale Fluidized Bed Biomass Gasification System  

E-print Network

A pilot scale fluidized bed biomass gasifier developed at Texas A&M University in College Station, Texas was instrumented with thermocouples, pressure transducers and motor controllers for monitoring gasification temperature and pressure, air flow...

Maglinao, Amado L

2009-12-04

143

Analysis of microbial communities developed on the fouling layers of a membrane-coupled anaerobic bioreactor applied to wastewater treatment  

Microsoft Academic Search

The structure of the biofouling layers formed on a pilot-scale membrane-coupled upflow anaerobic sludge blanket bioreactor (UASB) used to treat urban wastewater was analyzed by scanning electron microscopy and electron-dispersive X-ray microanalysis. For comparison, control samples of the membranes were fed either UASB effluent or raw wastewater in a laboratory-scale experiment. Microbial diversity in the fouling materials was analyzed by

Kadiya Calderón; Belén Rodelas; Nathalie Cabirol; Jesús González-López; Adalberto Noyola

2011-01-01

144

The effects of operating conditions on lactose crystallization in a pilot-scale spray dryer  

Microsoft Academic Search

The effects of operating conditions on the rate of drying and degree of crystallinity of lactose have been explored in a pilot-scale spray dryer. Temperature, moisture content, feed flow rate, atomizing air-flow rate, main air-flow rate and particle size have been varied to estimate the range of crystallinity of lactose obtainable in a pilot-scale spray dryer. Modulated differential scanning calorimetry

Debolina Das; Hazalea A. Husni; Timothy A. G. Langrish

2010-01-01

145

Summary of Pilot-Scale Activities with Mercury Contaminated Sludges (U)  

SciTech Connect

Technologies for treatment of low level mixed wastes (LLMW) are currently being investigated by the Mixed Waste Focus Area (MWFA) of the Department of Energy (DOE). The Savannah River Technology Center (SRTC) has been chartered by the MWFA to study vitrification treatment of the wastes through an Office of Technology Development (OTD) Technical Task Plan (TTP). SRTC`s efforts have included crucible-scale studies and pilot-scale testing on simulated LLMW sludges, resins, soils, and other solid wastes. Results from the crucible-scale studies have been used as the basis for the pilot-scale demonstrations. One of the streams to be investigated in fiscal year (FY) 1995 by SRTC was a mercury waste. In FY 1995, SRTC performed crucible-scale studies with mercury contaminated soil. This waste stream was selected because of the large number of DOE sites that have an inventory of contaminated or hazardous soil. More importantly, it was readily available for treatment. Pilot-scale studies were to be completed in FY 1995, but could not be completed due to a reduction in funding. Since the main driver for focusing on a mercury waste stream was to determine how the mercury could be treated, a compilation of pilot-scale tests with mercury sludges performed under the guidance of SRTC is provided in this report. The studies summarized in this report include several pilot-scale vitrification demonstrations with simulated radioactive sludges that contained mercury. The pilot-scale studies were performed at the SRTC in the Integrated Defense Waste Processing Facility (DWPF) Melter System (IDMS). The studies involved complete glass and offgas product characterization. Future pilot-scale studies with mercury streams will likely be performed with mercury contaminated soils, sediments, or sludges because of the need to dispose of this technically challenging waste stream. (Abstract Truncated)

Cicero, C.A. [Westinghouse Savannah River Company, AIKEN, SC (United States); Hutson, N.D.; Zamecnik, J.R.; Smith, M.E.; Miller, D. H.; Ritter, J.A.; Hardy, B.J.; Jantzen, C.M.

1995-10-02

146

Pilot-scale cooling tower to evaluate corrosion, scaling, and biofouling control strategies for cooling system makeup water  

NASA Astrophysics Data System (ADS)

Pilot-scale cooling towers can be used to evaluate corrosion, scaling, and biofouling control strategies when using particular cooling system makeup water and particular operating conditions. To study the potential for using a number of different impaired waters as makeup water, a pilot-scale system capable of generating 27 000 kJ/h heat load and maintaining recirculating water flow with a Reynolds number of 1.92 × 104 was designed to study these critical processes under conditions that are similar to full-scale systems. The pilot-scale cooling tower was equipped with an automatic makeup water control system, automatic blowdown control system, semi-automatic biocide feeding system, and corrosion, scaling, and biofouling monitoring systems. Observed operational data revealed that the major operating parameters, including temperature change (6.6 °C), cycles of concentration (N = 4.6), water flow velocity (0.66 m/s), and air mass velocity (3660 kg/h m2), were controlled quite well for an extended period of time (up to 2 months). Overall, the performance of the pilot-scale cooling towers using treated municipal wastewater was shown to be suitable to study critical processes (corrosion, scaling, biofouling) and evaluate cooling water management strategies for makeup waters of complex quality.

Chien, S. H.; Hsieh, M. K.; Li, H.; Monnell, J.; Dzombak, D.; Vidic, R.

2012-02-01

147

Bag Bioreactor Based on Wave-Induced Motion: Characteristics and Applications  

NASA Astrophysics Data System (ADS)

Today wave-mixed bag bioreactors are common devices in modern biotechnological processes where simple, safe and flexible production has top priority. Numerous studies that have been published on ex vivo generation of cells, viruses and therapeutic agents during the last 10 years have confirmed their suitability and even superiority to stirred bioreactors made from glass or stainless steel for animal as well as plant cell cultivations. In these studies the wave-mixed bag bioreactors enabled middle to high cell density and adequate productivity in laboratory and pilot scale. This mainly results from low-shear conditions and highly efficient oxygen transfer for cell cultures, as demonstrated for the widely used BioWave®.Starting with an overview of wave-mixed bag bioreactors and their common operation strategies, this chapter delineates engineering aspects of BioWave®, which like Wave Reactor™ and BIOSTAT®CultiBag RM originates from the prototype of a wave-mixed bag bioreactor introduced in 1998. Subsequently, the second part of the chapter focuses on reported BioWave® applications. Conditions and results from cultivations with animal cells, plant cells, microbial cells and nematodes are presented and discussed.

Eibl, Regine; Werner, Sören; Eibl, Dieter

148

Membrane bioreactor: a new treatment tool  

Microsoft Academic Search

A new process that combines membrane bioreactor (MBR) technology and powdered activated carbon (PAC) has been developed at industrial scale. This process denitrifies, removes natural organic matter (NOM) and pesticides, and disinfects. Denitrification is carried out by heterotrophic bacteria using ethanol as a carbon source. PAC added to the bioreactor adsorbs pesticides and a fraction of NOM. The membrane keeps

Vincent Urbain; Raymond Benoit; Jacques Manem

1996-01-01

149

FOAM FLOTATION TREATMENT OF INDUSTRIAL WASTEWATERS: LABORATORY AND PILOT SCALE  

EPA Science Inventory

A floc foam flotation pilot plant reduced lead and zinc in dilute solution to very low concentrations. The results suggest a number of design improvements. A simple diffusion model does not adequately describe axial dispersion at high column leadings. The floc foam flotation of z...

150

PILOT SCALE EXPERIMENTS TO IMPROVE PERFORMANCE OF ELECTROSTATIC PRECIPITATORS  

EPA Science Inventory

The paper describes pilot plant experience with techniques with a potential for improving the performance of electrostatic precipitators (ESPs) by using a novel rapping reentrainment collector and flexible steel cable (in place of solid large-diameter discharge electrodes) for bo...

151

Laboratory and pilot scale pretreatment of sugarcane bagasse by acidified aqueous glycerol solutions.  

PubMed

Pretreatment of sugarcane bagasse with acidified aqueous glycerol solution was evaluated at both laboratory and pilot scales. Laboratory scale pretreatment (4.00 g dry mass in 40.00 g liquid) with glycerol solutions containing ? 20 wt.% water and 1.2 wt.% HCl at 130°C for 60 min resulted in biomass having glucan digestibilities of ? 88%. Comparable glucan enzymatic digestibility of 90% was achieved with bagasse pretreated at pilot scale (10 kg dry mass in 60 kg liquid) using a glycerol solution containing 0.4 wt.% HCl and 17 wt.% water at 130°C for 15 min. We attribute more efficient pretreatment at pilot scale (despite shorter reaction time and reduced acid content) to improved mixing and heat transfer in a horizontal reactor. Pretreatment of sugarcane bagasse with acid-catalysed glycerol solutions likely produces glycerol-glycosides, which together with hydrolysed lignin are potential substrates for the production of biopolymers. PMID:23612157

Zhang, Zhanying; Wong, Heng H; Albertson, Peter L; Doherty, William O S; O'Hara, Ian M

2013-06-01

152

ADVANCED HYBRID PARTICULATE COLLECTOR - PILOT-SCALE TESTING  

SciTech Connect

A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed at the Energy and Environmental Research Center (EERC) with U.S. Department of Energy (DOE) funding. In addition to DOE and the EERC, the project team includes W.L. Gore and Associates, Inc., Allied Environmental Technologies, Inc., and the Big Stone power station. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique approach to develop a compact but highly efficient system. Filtration and electrostatics are employed in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. The objective of the AHPC is to provide >99.99% particulate collection efficiency for particle sizes from 0.01 to 50 {micro}m and be applicable for use with all U.S. coals at a lower cost than existing technologies. In previous field tests with the AHPC, some minor bag damage was observed that appeared to be caused by electrical effects. Extensive studies were then carried out to determine the reason for the bag damage and to find possible solutions without compromising AHPC performance. The best solution to prevent the bag damage was found to be perforated plates installed between the electrodes and the bags, which can block the electric field from the bag surface and intercept current to the bags. The perforated plates not only solve the bag damage problem, but also offer many other advantages such as operation at higher A/C (air-to-cloth) ratios, lower pressure drop, and an even more compact geometric arrangement. For this project, AHPC pilot-scale tests were carried out to understand the effect of the perforated plate configuration on bag protection and AHPC overall performance and to optimize the perforated plate design. Five different perforated plate configurations were evaluated in a coal combustion system. The AHPC performed extremely well even at a low current level (1.5-3.0 mA) and a low pulse trigger pressure of 6.5 in. W.C. (1.62 kPa), resulting in a bag-cleaning interval of over 40 min at an A/C ratio of 12 ft/min (3.7 m/min) for most of the test period. The longest bag-cleaning interval was 594 min, which is the best to date. The residual drag was reduced to the range from 0.25 to 0.35 in. H{sub 2}O/ft/min, showing an excellent bag-cleaning ability under the perforated plate configurations. The K{sub 2}C{sub i} at the current level of 3 mA was as low as 1.0, indicating excellent ESP performance. All the results are the best achieved to date.

Ye Zhuang; Stanley J. Miller; Michael E. Collings; Michelle R. Olderbak

2001-09-30

153

Virus removal retention challenge tests performed at lab scale and pilot scale during operation of membrane units.  

PubMed

The determination of the virus retention capabilities of UF units during operation is essential for the operators of drinking water treatment facilities in order to guarantee an efficient and stable removal of viruses through time. In previous studies, an effective method (MS2-phage challenge tests) was developed by the Water Research Center of Veolia Environnement for the measurement of the virus retention rates (Log Removal Rate, LRV) of commercially available hollow fiber membranes at lab scale. In the present work, the protocol for monitoring membrane performance was transferred from lab scale to pilot scale. Membrane performances were evaluated during pilot trial and compared to the results obtained at lab scale with fibers taken from the pilot plant modules. PFU culture method was compared to RT-PCR method for the calculation of LRV in both cases. Preliminary tests at lab scale showed that both methods can be used interchangeably. For tests conducted on virgin membrane, a good consistency was observed between lab and pilot scale results with the two analytical methods used. This work intends to show that a reliable determination of the membranes performances based on RT-PCR analytical method can be achieved during the operation of the UF units. PMID:21252428

Humbert, H; Machinal, C; Labaye, Ivan; Schrotter, J C

2011-01-01

154

The low-energy electron accelerator lea for pilot scale operations  

NASA Astrophysics Data System (ADS)

An electron processor equipped with a linear cathode has been developed for use in pilot scale radiation processing. It can provide electron beam powers up to 6 kW at energies between 150 and 200 keV. The design of some components of the processor system and first results of its operation as part of a pilot unit for curing of furniture elements will be discussed.

Mehnert, R.; Klenert, P.

155

Pilot-scale constructed wetlands for petroleum-contaminated groundwater.  

PubMed

A pilot study was conducted to determine the feasibility of using constructed treatment wetlands to remediate recovered groundwater from the subsurface of a former refinery site. The pilot system consisted of four subsurface flow treatment cells operated in an upward vertical flow mode and equipped with subsurface aeration lines. The treatment system showed minimal capability for methyl-tert-butyl ether removal, but did effectively remove total petroleum hydrocarbons-deisel range organics and total benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes (total BTEX). Effluent benzene concentrations were less than 0.05 mg/L in 70% of the samples from a treatment cell using subsurface aeration and a wetland sod amendment. Based on 1 year of operating data, cumulative mass removal approached 80% for benzene and 88% for total BTEX. PMID:17605326

Bedessem, Marjorie E; Ferro, Ari M; Hiegel, Trevor

2007-06-01

156

PILOT-SCALE INVESTIGATION OF CLOSED-LOOP FLY ASH SLUICING. VOLUME 2. APPENDICES  

EPA Science Inventory

The report gives results of a pilot-scale demonstration of the technical feasibility of closed-loop operation of fly ash sluicing systems. Chemical species leached from the ash increase the dissolved solids concentration of recycled sluice water to a point where equipment scaling...

157

PILOT-SCALE INVESTIGATION OF CLOSED-LOOP FLY ASH SLUICING. VOLUME 1. FINAL REPORT  

EPA Science Inventory

The report gives results of a pilot-scale demonstration of the technical feasibility of closed-loop operation of fly ash sluicing systems. Chemical species leached from the ash increase the dissolved solids concentration of recycled sluice water to a point where equipment scaling...

158

PILOT SCALE PROCESS EVALUATION OF REBURNING FOR IN-FURNACE NOX REDUCTION  

EPA Science Inventory

The report gives results of coal and natural gas reburning application tests to a pilot scale 3.0 MWt furnace to provide the scaling information required for commercial application of reburning to pulverized-coal-fired boilers. Initial parametric studies had been conducted in a 2...

159

Pilot Scale Study of Excess Sludge Production Reduction in Wastewater Treatment by Ozone  

E-print Network

Pilot Scale Study of Excess Sludge Production Reduction in Wastewater Treatment by Ozone Yuan Ma-scale reactors were operated at the LaPrairie Wastewater Treatment plant (one control and one ozonated) to investigate the sludge reduction potential of partially ozonating sludge return activated sludge (RAS

Barthelat, Francois

160

High-solids anaerobic digestion: comparison of three pilot scales.  

PubMed

Two experiments were undertaken in three different experimental set-ups in order to compare them: an industrial 21-m3 pilot reactor, a new 40-l laboratory pilot reactor and bmp type plasma bottles. Three consecutive batch dry digestion tests of municipal solid waste were performed under mesophilic conditions with the same feedstock in all vessels. Biogas and methane production at the end of the tests were similar (around 200 m3 CH4STP/tVS) for both pilot reactors and were different from the bottle tests. The dynamics of methane production and VFA accumulation concurred. However, the maximal levels of VFA transitory accumulation varied between reactors and between runs in a same reactor. Ammonia levels were similar in both reactors. These results show that the new reactor accurately imitates the conditions found in the larger one. Adaptation of microorganisms to the waste and operating conditions was also pointed out along the consecutive batches. Thermophilic semi-continuous tests were performed in both reactors with similar conditions. The methane production efficiencies were similar. PMID:19029716

Guendouz, J; Buffière, P; Cacho, J; Carrère, M; Delgenes, J-P

2008-01-01

161

Swine manure-based pilot-scale algal biomass production system for fuel production and wastewater treatment--a case study.  

PubMed

Integration of wastewater treatment with algae cultivation is one of the promising ways to achieve an economically viable and environmentally sustainable algal biofuel production on a commercial scale. This study focused on pilot-scale algal biomass production system development, cultivation process optimization, and integration with swine manure wastewater treatment. The areal algal biomass productivity for the cultivation system that we developed ranged from 8.08 to 14.59 and 19.15-23.19 g/m(2) × day, based on ash-free dry weight and total suspended solid (TSS), respectively, which were higher than or comparable with those in literature. The harvested algal biomass had lipid content about 1.77-3.55%, which was relatively low, but could be converted to bio-oil via fast microwave-assisted pyrolysis system developed in our lab. The lipids in the harvested algal biomass had a significantly higher percentage of total unsaturated fatty acids than those grown in lab conditions, which may be attributed to the observed temperature and light fluctuations. The nutrient removal rate was highly correlated to the biomass productivity. The NH?-N, TN, COD, and PO?-P reduction rates for the north-located photo-bioreactor (PBR-N) in July were 2.65, 3.19, 7.21, and 0.067 g/m(2) × day, respectively, which were higher than those in other studies. The cultivation system had advantages of high mixotrophic growth rate, low operating cost, as well as reduced land footprint due to the stacked-tray bioreactor design used in the study. PMID:24203276

Min, Min; Hu, Bing; Mohr, Michael J; Shi, Aimin; Ding, Jinfeng; Sun, Yong; Jiang, Yongcheng; Fu, Zongqiang; Griffith, Richard; Hussain, Fida; Mu, Dongyan; Nie, Yong; Chen, Paul; Zhou, Wenguang; Ruan, Roger

2014-02-01

162

Summary of pilot-scale activities with resorcinol ion exchange resin  

SciTech Connect

The Mixed Waste Focus Area (MWFA) of the Department of Energy (DOE) is currently investigating vitrification technology for treatment of low level mixed wastes (LLMW). They have chartered the Savannah River Technology Center (SRTC) to study vitrification of the wastes through an Office of Technology Development (OTD) Technical Task Plan (TTP). SRTC`s efforts have included crucible-scale studies and pilot scale testing on simulated LLMW sludges, resins, soils, and other solid wastes. Results from the crucible-scale studies have been used as the basis for the pilot-scale demonstrations. As part of the fiscal year (FY) 1995 activities, SRTC performed crucible-scale studies with organic resins. This waste stream was selected because of the large number of DOE sites, as well as commercial industries, that use resins for treatment of liquid wastes. Pilot-scale studies were to be completed in FY 1995, but could not be due to a reduction in funding. Instead, a compilation of pilot-scale tests with organic resins performed under the guidance of SRTC was provided in this report. The studies which will be discussed used a resorcinol- formaldehyde resin loaded with non-radioactive cesium, which was fed with simulated wastewater treatment sludge feed. The first study was performed at the SRTC in the mini-melter, 1/100th scale of the Defense Waste Processing Facility (DWPF) melter, and also involved limited crucible-scale studies to determine the resin loading obtainable. The other study was performed at the DOE/Industrial Center for Vitrification Research (Center) and involved both crucible and pilot-scale testing in the Stir-Melter stirred-melter. Both studies were successful in vitrifying the resin in simulated radioactive sludge and glass additive feeds.

Cicero, C.A. [Westinghouse Savannah River Company, AIKEN, SC (United States); Bickford, D.F.; Sargent, T.N.; Andrews, M.K.; Bibler, J.P.; Bibler, N.E.; Jantzen, C.M.

1995-10-02

163

Oxygen transfer in membrane bioreactors treating synthetic greywater.  

PubMed

Mass transfer coefficients (k(L)a) were studied in two pilot scale membrane bioreactors (MBR) with different setup configurations treating 200L/h of synthetic greywater with mixed liquor suspended solids' (MLSS) concentrations ranging from 4.7 to 19.5g/L. Besides the MLSS concentration, mixed liquor volatile suspended solids (MLVSS), total solids (TS), volatile solids (VS), chemical oxygen demand (COD) and anionic surfactants of the sludge were measured. Although the pilot plants differed essentially in their configurations and aeration systems, similar alpha-factors at the same MLSS concentration could be determined. A comparison of the results to the published values of other authors showed that not the MLSS concentration but rather the MLVSS concentration seems to be the decisive parameter which influences the oxygen transfer in activated sludge systems operating at a high sludge retention time (SRT). PMID:19217638

Henkel, Jochen; Lemac, Mladen; Wagner, Martin; Cornel, Peter

2009-04-01

164

Performance of a flat-sheet submerged membrane bioreactor during long-term treatment of municipal wastewater  

Microsoft Academic Search

A pilot-scale submerged membrane bioreactor (SMBR) with anoxic and oxic tanks was operated in an attempt to reduce the problems concerning effective removal of organic matter and nutrients from municipal wastewater. A fl at type membrane with a pore size of 0.038 ?m and having a total surface area of 3.60 m was used in the experiments. During the operation,

Mustafa Turan; Ozgur Ozdemir; Abdullah Z. Turan; Oktay Ozkan; Hurrem Bayhan; Erol Aykar

2011-01-01

165

Pilot-scale bioremediation of a petroleum hydrocarbon-contaminated clayey soil from a sub-Arctic site.  

PubMed

Bioremediation is a potentially cost-effective solution for petroleum contamination in cold region sites. This study investigates the extent of biodegradation of petroleum hydrocarbons (C16-C34) in a pilot-scale biopile experiment conducted at 15°C for periods up to 385 days, with a clayey soil, from a crude oil-impacted site in northern Canada. Although several studies on bioremediation of petroleum hydrocarbon-contaminated soils from cold region sites have been reported for coarse-textured, sandy soils, there are limited studies of bioremediation of petroleum contamination in fine-textured, clayey soils. Our results indicate that aeration and moisture addition was sufficient for achieving 47% biodegradation and an endpoint of 530mg/kg for non-volatile (C16-C34) petroleum hydrocarbons. Nutrient amendment with 95mg-N/kg showed no significant effect on biodegradation compared to a control system without nutrient but similar moisture content. In contrast, in a biopile amended with 1340 mg-N/kg, no statistically significant biodegradation of non-volatile fraction was detected. Terminal Restriction Fragment Length Polymorphism (T-RFLP) analyses of alkB and 16S rRNA genes revealed that inhibition of hydrocarbon biodegradation was associated with a lack of change in microbial community composition. Overall, our data suggests that biopiles are feasible for attaining the bioremediation endpoint in clayey soils. Despite the significantly lower biodegradation rate of 0.009day(-1) in biopile tank compared to 0.11day(-1) in slurry bioreactors for C16-C34 hydrocarbons, the biodegradation extents for this fraction were comparable in these two systems. PMID:25218258

Akbari, Ali; Ghoshal, Subhasis

2014-09-15

166

Experimental plan for the assessment of air toxic emissions from a pilot-scale combustion unit  

SciTech Connect

The operation of a 500-pound-per-hour pilot-scale combustion unit will be characterized in terms of the formation, distribution, and fate of toxic substances. The coal fired during the air toxics testing will be the same coal batch that had been fired in a full-scale utility boiler during a recent assessment of air toxic emissions. A description of the pilot unit and expected operating conditions during the air toxics testing is provided, along with a summary of the test plan. This test plan is designed to obtain the necessary data on the concentration of trace elements associated with the vapor phase, particulate phase, and particulate size fraction enabling a comparison of these results form the pilot unit and the full-scale utility. Calculation of material balances around the pilot combustion unit, the baghouse, and the overall system as well as baghouse removal efficiencies will be performed. Based on the results of this air toxics characterization effort, an assessment will be made of the value of the pilot unit as a facility for the evaluation of sampling and analytical improvements, development of continuous emissions monitors, and future control systems evaluations.

Hargis, R.A.; Pennline, H.W. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center

1995-12-31

167

Use of sorbents for air toxics control in a pilot-scale COHPAC baghouse  

SciTech Connect

With funding from EPRI and Public Service Electric and Gas (PSE and G), ADA Technologies has been operating a COHPAC (COmpact Hybrid PArticulate Collector) pulse-jet pilot plant at PSE and G's Hudson station in Jersey City, NJ to expand the application of COHPAC in anticipation of hazardous air pollutants (HAP) regulations. The pilot extracts a slipstream of flue gas from downstream of Hudson's full-scale ESP (a four-field Research Cottrell unit). A series of tests has been run over the past two and one-half years to evaluate the injection of dry sorbents upstream of the COHPAC pilot for removal of acid gases and mercury from the flue gas slipstream. The COHPAC baghouse subsequently removes the sorbent material from the flue gas. Gas samples were taken upstream of sorbent injection and downstream of the pilot to characterize the ability of the sorbents to remove targeted HAPs. The operation of the pilot was also monitored during testing to characterize the impact of sorbent injection on the performance of the baghouse. Data collected during 1998 are compared to data from 1997, when the pilot was operated at a higher air-to-cloth ratio.

Butz, J.R.; Chang, R.; Waugh, E.G.; Jensen, B.K.; Lapatnick, L.N.

1999-07-01

168

PILOT SCALE REACTOR FOR ELECTROCHEMICAL DECHLORINATION OF MODEL CHLORINATED CONTAMINANTS  

EPA Science Inventory

Electrochemical degradation (ECD) is a promising technology for in-situ remediation of diversely contaminated submarine matrices, by the application of low level DC electric fields. This study, prompted by successful bench-scale electrochemical dechlorination of Trichloroe...

169

PILOT-SCALE STUDIES ON THE EFFECT OF BROMINE ADDITION ON THE EMISSIONS OF CHLORINATED ORGANIC COMBUSTION BY-PRODUCTS  

EPA Science Inventory

The paper reports on a study to evaluate organic combustion by-product emissions while feeding varying amounts of bromine (Br) and chlorine (Cl) into a pilot-scale incinerator burning surrogate waste materials. (NOTE: Adding brominated organic compounds to a pilot-scale incinerat...

170

ON-SITE ENGINEERING REPORT OF THE SLURRY-PHASE BIOLOGICAL REACTOR FOR PILOT-SCALE TESTING ON CONTAMINATED SOIL  

EPA Science Inventory

The performance of pilot-scale bioslurry treatment on creosote-contaminated soil was evaluated. ive reactors containing 66 L of slurry (30% soil by weight), were operated in parallel. he soil was a sandy soil with minor gravel content. he pilot-scale phase utilized an inoculum of...

171

ON-SITE ENGINEERING REPORT OF THE SLURRY-PHASE BIOLOGICAL REACTOR FOR PILOT-SCALE TESTING ON CONTAMINATED SOIL  

EPA Science Inventory

The performance of pilot-scale bioslurry treatment on creosote-contaminated soil was evaluated. Five reactors containing 66 L of slurry (30% soil by weight), were operated in parallel. The soil was a sandy soil with minor gravel content. The pilot-scale phase utilized an inoculum...

172

EVALUATION OF PILOT-SCALE POLLUTION CONTROL DEVICES FOR HAZARDOUS WASTE INCINERATION  

EPA Science Inventory

The paper summarizes the results of emission tests carried out on three pilot-scale air pollution control devices. The units were connected to a slip stream from the ENSCO, Inc. hazardous waste incinerator at El Dorado, Arkansas. The three units were a Hydro Sonic System wet scru...

173

EVALUATION OF PILOT-SCALE AIR POLLUTION CONTROL DEVICES ON A MUNICIPAL WATERFALL INCINERATOR  

EPA Science Inventory

The project report describes the results of a program for the testing of two pilot-scale pollution control devices, a fabric filter, and a venturi scrubber at the Braintree, Massachusetts Municipal Solid Waste Incinerator. It includes operation, sampling, and analytical efforts a...

174

Photodechlorination of Aroclor 1254 in a Pilot-Scale Flow through Photoreactor  

Microsoft Academic Search

A novel pilot-scale flow through photoreactor has been designed with the intent to apply it in the field. The photoreactor uses a new plastic coil, instead of the conventional quartz tube. The photoreactor consists of six ultraviolet UV lamps with five around the coil and one at the center. Laboratory investigations were conducted using the photoreactor to treat neat Aroclor

Aarti Jakher; Gopal Achari; Cooper H. Langford

2007-01-01

175

REBURNING THERMAL AND CHEMICAL PROCESSES IN A TWO-DIMENSIONAL PILOT-SCALE SYSTEM  

EPA Science Inventory

The paper describes an experimental investigation of the thermal and chemical processes influencing NOx reduction by natural gas reburning in a two-dimensional pilot-scale combustion system. Reburning effectiveness for initial NOx levels of 50-500 ppm and reburn stoichiometric ra...

176

PILOT-SCALE EVALUATION OF LIMB (LIMESTONE INJECTION MULTISTAGE BURNER) TECHNOLOGY  

EPA Science Inventory

The report gives results of pilot-scale studies of sulfur capture in the EPA's Limestone Injection Multistage Burner (LIMB) process and the effect of LIMB on particulate properties and electrostatic precipitator (ESP) performance. The sulfur capture studies showed that hydrated l...

177

Performance of a Pilot-Scale Biofilters and Constructed Wetland with Ornamental Plants in Greywater Treatment  

Microsoft Academic Search

Partially treated black water from septic tanks and grey water from households in Kuching City were polluting the Sarawak River. A pilot scale ecological sanitation was implemented where blackwater was held in septic tanks and greywater was channeled to a grease trap, biofilters and a constructed wetland before discharge. The objectives of this study were to evaluate the efficiency of

Teck-Yee Ling; Kasing Apun; Siti-Rubiah Zainuddin

178

Test report for the trial burn of Dinoseb in a pilot-scale incinerator. Final report  

Microsoft Academic Search

The U.S. Environmental Protection Agency (EPA) has determined that the herbicide Dinoseb represents a significant human health hazard. EPA estimates that there are approximately 5 million gallons affected by this action. As part of a program by the EPA Office of Research and Development (ORD) to determine which technically viable disposal option is appropriate, pilot-scale test burns were made of

D. Oberacker; M. Wool; F. Villa; H. Mason

1989-01-01

179

STUDY OF RAPPING REENTRAINMENT EMISSIONS FROM A PILOT-SCALE ELECTROSTATIC PRECIPITATOR  

EPA Science Inventory

The article gives results of a test program to determine the quantity and size distribution of rapping reentrainment emissions from a large pilot-scale electrostatic precipitator (ESP) at TVA's Bull Run steam plant. The ESP current density and specific collection area were varied...

180

EVALUATION OF THE THERMAL STABILITY POHC INCINERABILITY RANKING IN A PILOT-SCALE ROTARY KILN INCINERATOR  

EPA Science Inventory

A series of pilot-scale incineration tests was performed at EPA's Incineration Research Facility to evaluate the thermal stability-based POHC incinerability ranking. In the tests, mixtures of 12 P0HCs with predicted incinerability spanning the range af most to least difficult to ...

181

Co-gasification of hardwood chips and crude glycerol in a pilot scale downdraft gasifier  

Microsoft Academic Search

Seeking appropriate approaches to utilize the crude glycerol produced in biodiesel production is very important for the economic viability and environmental impacts of biodiesel industry. Gasification may be one of options for addressing this issue. Co-gasification of hardwood chips blending with crude glycerol in various loading levels was undertaken in the study involving a pilot scale fixed-bed downdraft gasifier. The

Lin Wei; Lester O. Pordesimo; Agus Haryanto; James Wooten

2011-01-01

182

SYSTEMS RELIABILITY AND PERFORMANCE: PILOT-SCALE INCINERATION OF CHLORINATED BENZENES AT THE COMBUSTION RESEARCH FACILITY  

EPA Science Inventory

A series of 34 test burns was conducted between August 1983 and January 1984 in the pilot-scale rotary kiln incineration system at the USEPA Combustion Research Facility (CRF), using chlorinated benzenes as surrogate Principal Organic Hazardous Components (POHCs), over a range of...

183

Characterization of simulated low-level waste grout produced in a pilot-scale test  

SciTech Connect

The objectives of a pilot-scale grout test were to determine the homogeneity of the grout produced under conditions similar to those planned for the TGF, to evaluate performance of candidate grout processing equipment for the TGF, and to evaluate properties of grout that was produced during continuous operation over an extended time period and cured in a large monolith. This report addresses the first and third objectives. Tests were conducted on pilot-scale grout slurry, simulated waste solution, dry solids blend samples, and cured grout samples. Grout slurry collected at two points during the pilot-scale test and slurry produced in the laboratory were characterized by measuring rheology, drainable liquid, and penetration resistance. Cured grout samples included samples collected during the pilot-scale test and cured in the laboratory, samples produced in the laboratory, samples obtained from tubes inserted into the monolith, and samples from cored sections of the monolith. Tests conducted on the cured samples included compressive strength, density, ultrasonic pulse velocity, leachability, and microstructural characterization. 10 refs., 12 figs., 16 tabs.

Lokken, R.O.; Reimus, M.A.; Martin, P.F.C.; Geldart, S.E.

1988-02-01

184

Photocatalysis with solar energy at a pilot-plant scale: an overview  

Microsoft Academic Search

Advanced oxidation processes (AOPs) are characterized by a common chemical feature: the capability of exploiting the high reactivity of OH radicals in driving oxidation processes which are suitable for achieving the complete abatement and through mineralization of even less reactive pollutants. This paper reviews the use of sunlight to produce OH radicals. The experimental systems necessary for performing pilot-plant scale

Sixto Malato; Julián Blanco; Alfonso Vidal; Christoph Richter

2002-01-01

185

PILOT-SCALE EVALUATION OF NEW RESIN APPLICATION EQUIPMENT FOR FIBER- REINFORCED PLASTICS  

EPA Science Inventory

The article gives results of a pilot-scale evaluation of new resin application equipment for fiber- reinforced plastics. The study, an evaluation and comparison of styrene emissions, utilized Magnum's FIT(TM) nozzle with conventional spray guns and flow coaters (operated at both ...

186

OPERATIONAL EXPERIENCE OF THE EPA OWNED BENCH SCALE PILOT PLANT FOR EVALUATING SCR DENOX CATALYSTS  

EPA Science Inventory

The paper discusses the use of EPA's bench-scale pilot plant to evaluate catalysts used in the ammonia (NH3)-based technology and process for selective catalytic reduction (SCR) of nitrogen oxides. A key objective was to establish the performance of SCR catalysts on U.S. uels and...

187

FATE OF SEX HORMONES IN TWO PILOT-SCALE MUNICIPAL WASTEWATER TREATMENT PLANTS: CONVENTIONAL TREATMENT  

EPA Science Inventory

The fate of seven sex hormones (estrone (E1), estradiol (E2), estriol (E3), ethinylestradiol (EE2), testosterone, androstenedione, and progesterone) was determined in two pilot-scale wastewater treatment plants operated under conventional loading conditions. The levels of hormon...

188

SHIRCO PILOT-SCALE INFRARED INCINERATION SYSTEM AT THE ROSE TOWNSHIP DEMODE ROAD SUPERFUND SITE  

EPA Science Inventory

Under the Superfund Innovative Technology Evaluation or SITE Program, an evaluation was made of the Shirco Pilot-Scale Infrared Incineration System during 17 separate test runs under varying operating conditions. The tests were conducted at the Demode Road Superfund site in Ros...

189

Water-soluble polymer ultrafiltration process at pilot scale: Study of hydrodynamics and factors limiting flux  

Microsoft Academic Search

In the present work, the hydrodynamic behaviour of a water-soluble polymer (ethoxylated polyethylenimine) ultrafiltration process has been studied at pilot scale using multichannel ceramic membranes. In a first step, the effects of tangential velocity, transmembrane pressure and temperature on both polymer rejection coefficients and permeate fluxes, have been studied for a given polymer concentration. Secondly, two discontinuous closed-loop experiments have

Javier Llanos; Ángel Pérez; Pablo Cañizares

2009-01-01

190

Pilot scale experience on IGCC hot gas cleanup  

SciTech Connect

Enviropower Inc. is developing and commercializing a simplified IGCC process which applies pressurized air-blown gasification technology and hot gas cleanup. Hot gas cleanup consists of a sulfur removal system using regenerable sorbent and a filter unit having ceramic candle filter elements. During coal gasification test runs the major emphasis in development of hot gas cleanup was focused on testing of the sulfur removal system. The ceramic filter unit testing was already in the category of routine operation. The filter cleaning strategy was mainly based on a constant cycle time using on-line pulsing with pressurized nitrogen. The filter unit is completely integrated with the control system of the pilot plant. Dust loadings below 5 ppmw in product gas and vapor-phase alkali (Na+K) concentrations below 0.05 ppmw were measured after filtration. These values are below the levels generally required by gas turbine manufacturers and well below the environmental standards. As part of the CRADA, two different types of regenerable zinc titanate sorbents (1.5ZnO{center_dot}TiO{sub 2}) were used in the test runs in the new sulfur removal system. As a result, steady-state operation of the sulfider and regenerator fluidized bed reactors linked together was obtained at design pressures and temperatures. Very high sulfur removal efficiency in the sulfider with both sorbents was achieved, as well as continuous production of SO{sub 2}-containing off-gas from the regenerator.

Lehtovaara, A.; Konttinen, J. [Enviropower Inc., Tampere (Finland)

1995-12-31

191

Pilot Scale Study of Vegetable Oil Extraction by Surfactant-Assisted Aqueous Extraction Process  

Microsoft Academic Search

A number of aqueous extraction processes (AEP) have been studied as substitutes for hexane in oilseed extraction. In our previous batch-scale work, we have shown that the aqueous surfactant-based method could effectively extract up to 95% peanut and canola oils at 25°C. The goal of this work is to perform a semi-continuous pilot-scale study of the aqueous surfactant-based method for

Linh D. Do; David A. Sabatini

2011-01-01

192

Properties of Pyrolytic Chars and Activated Carbons Derived from Pilot-Scale Pyrolysis of Used Tires  

Microsoft Academic Search

Used tires were pyrolyzed in a pilot-scale quasi-inert rotary kiln. Influences of variables, such as time, temperature, and agent flow, on the activation of obtained char were subsequently investigated in a laboratory-scale fixed bed. Meso-porous pores are found to be dominant in the pore structures of raw char. Brunauer-Emmett-Teller (BET) surfaces of activated chars increased linearly with carbon burnoff. The

S.-Q. Li; Q. Yao; S.-E. Wen; Y. Chi; J.-H. Yan

2005-01-01

193

Pilot-scale production of lipase using palm oil mill effluent as a basal medium and its immobilization by selected materials.  

PubMed

A pilot-scale production of lipase using palm oil mill effluent (POME) as a fermentation basal medium was carried out, and parameters for immobilization of the produced lipase were optimized. Lipase production in a 300-L bioreactor was performed using two proposed strategies, constant power per volume (P/V) and constant tip speed. Moreover, lipase immobilization on different materials was also investigated. Lipase production was performed using liquid-state bioconversion of POME as the medium and Candida cylindracea as the inoculum. The fermentation medium was composed of 1% total suspended solids (TSS) of POME, 0.5% (w/v) peptone, 0.7% (v/v) Tween-80, and 2.2% inoculum. The medium composition was decided on the basis of the medium optimization results of a previous study. The fermentation was carried out for 48 h at 30°C and pH 6. The maximum lipase production was 5.72U/mL and 21.34 U/mL, obtained from the scale-up strategies of constant tip speed and P/V, respectively. Four accessible support materials were screened for their potential use in immobilization. The most suitable support material was found to be activated carbon, with a maximum immobilization of 94%. PMID:25017863

Asih, Devi Ratna; Alam, Zahangir; Salleh, Noor; Salihu, Aliyu

2014-01-01

194

Bio-reactor chamber  

NASA Technical Reports Server (NTRS)

A bioreactor for cell culture is disclosed which provides for the introduction of fresh medium without excessive turbulent action. The fresh medium enters the bioreactor through a filter with a backwash action which prevents the cells from settling on the filter. The bioreactor is sealed and depleted medium is forced out of the container as fresh medium is added.

Chandler, Joseph A. (inventor)

1989-01-01

195

Biological conversion of synthesis gas. Topical report: Bioreactor studies  

SciTech Connect

The purpose of the proposed research is to develop a technically and economically feasible process for biologically producing H{sub 2} from synthesis gas while, at the same time, removing harmful sulfur gas compounds. Six major tasks are being studied: culture development, where the best cultures are selected and conditions optimized for simultaneous hydrogen production and sulfur gas removal; mass transfer and kinetic studies in which equations necessary for process design are developed; bioreactor design studies, where the cultures chosen in Task 1 are utilized in continuous reaction vessels to demonstrate process feasibility and define operating conditions; evaluation of biological synthesis gas conversion under limiting conditions in preparation for industrial demonstration studies; process scale-up where laboratory data are scaled to larger-size units in preparation for process demonstration in a pilot-scale unit; and economic evaluation, where process simulations are used to project process economics and identify high cost areas during sensitivity analyses. The purpose of this report is to present results from bioreactor studies involving H{sub 2} production by water gas shift and H{sub 2}S removal to produce elemental sulfur. Many of the results for H{sub 2} production by Rhodospirillum rubrum have been presented during earlier contracts. Thus, this report concentrates mainly on H{sub 2}S conversion to elemental sulfur by R. rubrum.

Basu, R.; Klasson, K.T.; Clausen, E.C.; Gaddy, J.L.

1993-09-01

196

Large-scale data mining pilot project in human genome  

SciTech Connect

This whitepaper briefly describes a new, aggressive effort in large- scale data Livermore National Labs. The implications of `large- scale` will be clarified Section. In the short term, this effort will focus on several @ssion-critical questions of Genome project. We will adapt current data mining techniques to the Genome domain, to quantify the accuracy of inference results, and lay the groundwork for a more extensive effort in large-scale data mining. A major aspect of the approach is that we will be fully-staffed data warehousing effort in the human Genome area. The long term goal is strong applications- oriented research program in large-@e data mining. The tools, skill set gained will be directly applicable to a wide spectrum of tasks involving a for large spatial and multidimensional data. This includes applications in ensuring non-proliferation, stockpile stewardship, enabling Global Ecology (Materials Database Industrial Ecology), advancing the Biosciences (Human Genome Project), and supporting data for others (Battlefield Management, Health Care).

Musick, R.; Fidelis, R.; Slezak, T.

1997-05-01

197

Test report for the trial burn of Dinoseb in a pilot-scale incinerator. Final report  

SciTech Connect

The U.S. Environmental Protection Agency (EPA) has determined that the herbicide Dinoseb represents a significant human health hazard. EPA estimates that there are approximately 5 million gallons affected by this action. As part of a program by the EPA Office of Research and Development (ORD) to determine which technically viable disposal option is appropriate, pilot-scale test burns were made of a mixture of Dinoseb products at the John Zink Company Research Incineration Facility in Tulsa, Oklahoma. The mixture represented the various Dinoseb products to be destroyed. The rationale for doing the pilot-scale test was that specific performance data were needed to address, with confidence, any public or permitting questions that may arise in authorizing a full-scale incineration disposal operation. The test burns were successfully performed between February 18 and February 26, 1988. The report gives an overall summary of the test program.

Oberacker, D.; Wool, M.; Villa, F.; Mason, H.

1989-06-01

198

Construction and validation of background data scales for the selection of pilots: a comparison of three scaling approaches  

E-print Network

the predictive characteristics of three biographical information scoring methodologies. The theoretical value of factorial and rational scaling has been noted in the biodata literature, however previous research has suggested that these two methods are at a... disadvantage to empirical keys because they lack predictive power. Life history information was obtained from a combined sample of 656 aircraft pilots and biodata scores were generated via appropriate factorial, empirical, and rational techniques. Results...

Fuentes, Rick R

2012-06-07

199

Molecular Assessment of Inoculated and Indigenous Bacteria in Biofilms from a Pilot-Scale Perchlorate-Reducing Bioreactor  

E-print Network

°C prior to analysis. Microbial community DNA was ex- tracted from successive washes of thawed biofilm mate- rial for PCR-based community profiling by 16S-23S ribosomal intergenic spacer analysis (RISA). No DNA sequences characteristic of strain KJ were recovered from any RISA bands. The most intense bands

200

MGP soil remediation in a slurry-phase system: A pilot-scale test  

SciTech Connect

An overall protocol for remediating manufactured gas plant (MGP) soils generally includes bench-scale evaluation of the technology, pilot-scale demonstration, and full-scale implementation. This paper summarizes the results of the bench-scale and pilot-scale study for treating an MGP soil with IGT`s integrated Chemical/Biological Treatment (CBT) or Manufactured Gas Plant Remediation (MGP-REM) process in the slurry-phase mode of application. MGP soils are contaminated primarily with polynuclear aromatic hydrocarbons (PAHs). An MGP site in New Jersey was the subject of this study. Soils from the site were used for the bench-scale evaluation of the integrated Chemical/Biological Treatment. The bench-scale study started with biological pre-treatment followed by chemical treatment and biological polishing. Results of the bench-scale study showed that this process was effective in degrading EPA Total as well as EPA Carcinogenic PAHs. A test matrix was developed to assess this technology at a pilot-scale facility. The test matrix consisted of at least eight semi-continuous runs designed to evaluate the effects of PAH concentration, total solids concentration, residence time, and a number of chemical reagent additions. An operating permit for 14 days was obtained to evaluate the process primarily for air emission data and secondarily for PAH degradation data. The PAH data showed that the MGP-REM process was very effective in degrading carcinogenic PAHs even under sub-optimal operating conditions. The field data also showed that the emissions of volatile organic compounds were well below the regulatory limits.

Liu, Bill Y.; Srivastava, V.J.; Paterek, J.R.; Pradhan, S.P. [Institute of Gas Technology, Chicago, IL (United States); Pope, J.R. [Elizabethtown Gas Co., Union, NJ (United States); Hayes, T.D.; Linz, D.G. [Gas Research Institute, Chicago, IL (United States); Jerger, D.E. [OHM Corp., Findlay, OH (United States)

1993-12-31

201

Membrane bio-reactor for textile wastewater treatment plant upgrading.  

PubMed

Textile industries carry out several fiber treatments using variable quantities of water, from five to forty times the fiber weight, and consequently generate large volumes of wastewater to be disposed of. Membrane Bio-reactors (MBRs) combine membrane technology with biological reactors for the treatment of wastewater: micro or ultrafiltration membranes are used for solid-liquid separation replacing the secondary settling of the traditional activated sludge system. This paper deals with the possibility of realizing a new section of one existing WWTP (activated sludge + clariflocculation + ozonation) for the treatment of treating textile wastewater to be recycled, equipped with an MBR (76 l/s as design capacity) and running in parallel with the existing one. During a 4-month experimental period, a pilot-scale MBR proved to be very effective for wastewater reclamation. On average, removal efficiency of the pilot plant (93% for COD, and over 99% for total suspended solids) was higher than the WWTP ones. Color was removed as in the WWTP. Anionic surfactants removal of pilot plant was lower than that of the WWTP (90.5 and 93.2% respectively), while the BiAS removal was higher in the pilot plant (98.2 vs. 97.1). At the end cost analysis of the proposed upgrade is reported. PMID:16235750

Lubello, C; Gori, R

2005-01-01

202

Production of Phytochemicals in Plant Cell Bioreactors  

Microsoft Academic Search

Plant cell culture provides a viable alternative over whole plant cultivation for the production of useful phytochemicals.\\u000a In order to successfully cultivate the plant cells at large scale, some engineering parameters such as cell aggregation, mixing,\\u000a aeration and shear sensitivity are taken into account for selection of a suitable bioreactor. Increased productivity in a\\u000a bioreactor can be achieved by selection

Saurabh Chattopadhyay; A. K. Srivastava; V. S. Bisaria

203

Vermicomposting of sludges from paper mill and dairy industries with Eisenia andrei: A pilot-scale study  

Microsoft Academic Search

We studied vermicomposting with Eisenia andrei of sludges from a paper mill mixed with cattle manure in a six-month pilot-scale experiment. Initially, a small-scale laboratory experiment was carried out to determine the growth and reproduction rates of earthworms in the different substrates tested. In the pilot-scale experiment, the number of earthworms increased between 22- and 36-fold and total biomass increased

C. Elvira; L. Sampedro; E. Benítez; R. Nogales

1998-01-01

204

INVESTIGATING SUSPENSION OF MST SLURRIES IN A PILOT-SCALE WASTE TANK  

SciTech Connect

The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for suspending monosodium titanate (MST), crystalline silicotitanate (CST), and simulated sludge. The purpose of this pilot scale testing is for the pumps to suspend the MST particles so that MST can be removed from the tank. The pilot-scale tank is a 1/10.85 linear scaled model of Tank 41H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 41H. The pump locations correspond to the proposed locations in Tank 41H by the SCIX program (Risers B5 and B2 for two pump configurations and Risers B5, B3, and B1 for three pump configurations).

Poirier, M.; Restivo, M.; Steeper, T.; Williams, M.; Qureshi, Z.

2011-01-24

205

Characterization of double-shell slurry feed grout produced in a pilot-scale test  

SciTech Connect

Current plans for disposal of the low-level fraction of selected double-shell tank (DST) wastes at Hanford, Washington include grouting. Grout disposal in this context is the process of mixing low-level liquid waste with cementitious powders. and pumping the resultant slurry to near-surface, underground concrete vaults. Once the slurry is in the vaults. the hydration reactions that occur result in the formation of a highly impermeable solid product that binds and encapsulates the radioactive and hazardous constituents. Westinghouse Hanford Company (WHC) operates the Grout Treatment Facility (GTF) for the US Department of Energy (DOE). Pacific Northwest Laboratory(a) (PNL) provides support to the Grout Disposal Program through laboratory support activities, radioactive grout leach testing. performance assessments, and pilot-scale tests. A pilot-scale test was conducted in November 1988 using a simulated Double-Shell Slurry Feed (DSSF) waste. The main objective of the pilot-scale test was to demonstrate the processability of a DSSF grout formulation that was developed using laboratory equipment and to provide information on scale-up. The dry blend used in this test included 47 wt% class F fly ash, 47 wt% blast furnace slag, and 6 wt% type I/II portland cement. The dry blend was mixed with the simulated waste at a ratio of 9 lb/gal and pumped to a 2800-gal, insulated tank at about 10.4 gpm. Samples of simulated DSSF waste. dry blend, grout slurry, and cured grout were obtained during and after the pilot-scale test for testing and product characterization. Major conclusions of these activities are included.

Lokken, R.O.; Martin, P.F.C.; Shade, J.W.

1992-12-01

206

Influence of mixed liquor properties and aeration intensity on membrane fouling in a submerged membrane bioreactor at high mixed liquor suspended solids concentrations  

Microsoft Academic Search

This paper presents the results of 195 days of pilot-scale submerged membrane bioreactor (SMBR) experiments on settled municipal wastewater. Short-term and long-term thickening experiments were performed at a constant membrane flux of 30L\\/(m2h) to determine the impact of the following mixed liquor properties: colloidal material, soluble COD, soluble microbial products, extracellular polymeric substances, and viscosity along with aeration intensity on

R. Shane Trussell; Rion P. Merlo; Slawomir W. Hermanowicz; David Jenkins

2007-01-01

207

Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: effect of organic loading rate.  

PubMed

The effects of organic loading rate on the performance and stability of anaerobic co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) were investigated on a pilot-scale reactor. The results showed that stable operation was achieved with organic loading rates (OLR) of 1.2-8.0 kg volatile solid (VS) (m(3)d)(-1), with VS reduction rates of 61.7-69.9%, and volumetric biogas production of 0.89-5.28 m(3) (m(3)d)(-1). A maximum methane production rate of 2.94 m(3) (m(3)d)(-1) was achieved at OLR of 8.0 kg VS (m(3)d)(-1) and hydraulic retention time of 15 days. With increasing OLRs, the anaerobic reactor showed a decrease in VS removal rate, average pH value and methane concentration, and a increase of volatile fatty acid concentration. By monitoring the biogas production rate (BPR), the anaerobic digestion system has a higher acidification risk under an OLR of 8.0 kg VS (m(3)d)(-1). This result remarks the possibility of relating bioreactor performance with BPR in order to better understand and monitor anaerobic digestion process. PMID:22459511

Liu, Xiao; Wang, Wei; Shi, Yunchun; Zheng, Lei; Gao, Xingbao; Qiao, Wei; Zhou, Yingjun

2012-11-01

208

Pilot-scale equipment development for pyrochemical treatment of spent oxide fuel.  

SciTech Connect

Fundamental objectives regarding spent nuclear fuel treatment technologies include, first, the effective distribution of spent fuel constituents among product and stable waste forms and, second, the minimization and standardization of waste form types and volumes. Argonne National Laboratory (ANL) has developed and is presently demonstrating the electrometallurgical treatment of sodium-bonded metal fuel from Experimental Breeder Reactor II, resulting in an uranium product and two stable waste forms, i.e. ceramic and metallic. Engineering efforts are underway at ANL to develop pilot-scale equipment which would precondition irradiated oxide fuel via pyrochemical processing and subsequently allow for electrometallurgical treatment of such non-metallic fuels into standard product and waste forms. This paper highlights the integration of proposed spent oxide fuel treatment with existing electrometallurgical processes. System designs and technical bases for development of pilot-scale oxide reduction equipment are also described.

Herrmann, S. D.

1999-06-08

209

Pilot-scale base hydrolysis processing of HMX-based plastic-bonded explosives  

SciTech Connect

Los Alamos National Laboratory has demonstrated that many energetic materials can be rendered non-energetic via reaction with sodium hydroxide or ammonia. This process is known as base hydrolysis. A pilot scale reactor has been developed to process up to 20 kg of plastic bonded explosive in a single batch operation. In this report, we discuss the design and operation of the pilot scale reactor for the processing of PBX 9404, a standard Department of Energy plastic bonded explosive containing HMX and nitrocellulose. Products from base hydrolysis, although non-energetic, still require additional processing before release to the environment Decomposition products, destruction efficiencies, and rates of reaction for base hydrolysis will be presented. Hydrothermal processing, previously known as supercritical water oxidation, has been proposed for converting organic products from hydrolysis to carbon dioxide, nitrogen, and nitrous oxide. Base hydrolysis in combination with hydrothermal processing may yield a viable alternative to open burning/open detonation for destruction of many energetic materials.

Flesner, R.L.; Dell`orco, P.C.; Spontarelli, T.; Bishop, R.L.; Skidmore, C.; Uher, K.J.; Kramer, J.F.

1996-07-01

210

Modeling the Pyrochemical Reduction of Spent UO2 Fuel in a Pilot-Scale Reactor  

SciTech Connect

A kinetic model has been derived for the reduction of oxide spent nuclear fuel in a radial flow reactor. In this reaction, lithium dissolved in molten LiCl reacts with UO2 and fission product oxides to form a porous, metallic product. As the reaction proceeds, the depth of the porous layer around the exterior of each fuel particle increases. The observed rate of reaction has been found to be only dependent upon the rate of diffusion of lithium across this layer, consistent with a classic shrinking core kinetic model. This shrinking core model has been extended to predict the behavior of a hypothetical, pilot-scale reactor for oxide reduction. The design of the pilot-scale reactor includes forced flow through baskets that contain the fuel particles. The results of the modeling indicate that this is an essential feature in order to minimize the time needed to achieve full conversion of the fuel.

Steven D. Herrmann; Michael F. Simpson

2006-08-01

211

Leachate Treatment in Newly Built Peat Filters: A Pilot-Scale Study  

Microsoft Academic Search

The purpose of this short-term pilot-scale (1 m3) experiment was to focus on the efficiency of leachate treatment during the initial period of a newly built peat filter.\\u000a The initial start-up period of a filter is dynamic and differs for different types of peat and leachate. Reduction of biochemical\\u000a oxygen demand (BOD), chemical oxygen demand (COD), and nutrient concentrations from

Pille Kängsepp; Margit Kõiv; Mait Kriipsalu; Ülo Mander

212

Preliminary evaluation of metals removal in three pilot-scale constructed wetland systems  

Microsoft Academic Search

Pilot-scale surface-flow, subsurface-flow and floating aquatic plant constructed wetland system designs were installed and evaluated to determine the effectiveness of constructed wetlands to immobilize and remove metals such as cadmium, zinc, copper, chromium, lead and nickel in tertiary effluent wastewater in a Midwestern US climate (central Illinois). Following wetland treatment, average concentrations of copper decreased from 56.6?g\\/l in influent to

Guang Jin; Tim Kelley; Nara Vargas; Mike Callahan

2003-01-01

213

TREATMENT OF METAL-CONTAMINATED WATERS BY A PILOT-SCALE CONSTRUCTED WETLAND  

Microsoft Academic Search

Waters with an acidic pH (from 2.8 to 4.1) and contaminated with radioactive elements (uranium, radium), toxic heavy metals (copper, cadmium, lead, manganese) and sulphates were treated by a pilot-scale passive system consisting of a constructed wetland. The wetland was a pond with a rectangular shape and was 8 m long, 4 m wide and 0.7 m deep. The pond

S. N. Groudev; P. S. Georgiev; A. T. Angelov; I. I. Spasova; T. Mitrov

214

Water Treatment and Performance Characteristics Evaluation of a Pilot-Scale Recirculating Aquaculture System  

Microsoft Academic Search

To minimize the impact on the environment and land requirements, a pilot-scale recirculating aquaculture system was engineered and investigated in a greenhouse. The system included a three-step particulates separation device, fluidized bed reactors (FBR), UV treatment and cooling. Japanese flounder (Paralichthys olivaceus) were raised from initial mean weight 4.9 plusmn 0.6g to final mean weight 35.8 plusmn 14.6g after 140

Yan Zaisheng; Liu Changfa; Wang Shihe; He Jie; Liu Yuan; Zhang Liyong; Zhang Junxin

2008-01-01

215

Pilot-scale testing of pyrolysis for the volume reduction of organic waste  

Microsoft Academic Search

Pilot-scale pyrolysis units have been in operation since 1980 to test the efficiency of thermal treatment of transuranic (TRU) solid waste to retrieve the TRUs and to reduce the volume of wastes such as spent solvent, spent resin, and others. These wastes are generated by reprocessing, fuel production, and utilities. NUKEM has developed a criticality-safe, ring-slab reactor to decompose solid

G. Kemmler; E. Schlich

1982-01-01

216

Combined Crystallization and Drying in a Pilot-Scale Spray Dryer  

Microsoft Academic Search

Combined crystallization and drying of lactose solutions was performed in a pilot-scale spray dryer over a wide range of operating conditions. The effect of different parameters, including temperature, moisture content, atomizing air flow rate, liquid feed rate, main drying air flow rate, and particle size, on the degree of crystallinity of the spray-dried powders was analyzed. Water-induced crystallization (WIC) and

Debolina Das; Timothy A. G. Langrish

2012-01-01

217

Interactions Between Bromine and Chlorine in a Pilot-Scale Hazardous Waste Incinerator  

Microsoft Academic Search

Experiments were performed in a 73 kW (250,000 Btu\\/hr) pilot-scale rotary kiln incinerator simulator equipped with a 73 kW (250,000 Btu\\/hr) secondary combustion chamber during which a complex organic mixture containing bromine (Br) and chlorine (Cl) was incinerated. Detailed measurements of products of incomplete combustion (PICs) were made, including volatile and semi-volatile organics, as well as polychlorinated and polybrominated dibenzo-p-dioxins

Paul Lemieux; Jeffrey Ryan; Chris Lutes; Kevin Bruce

218

Anaerobic treatment of biodiesel by-products in a pilot scale reactor  

Microsoft Academic Search

In this work, long-term operation of a pilot scale mixed anaerobic reactor processing crude glycerol and rapeseed meal is\\u000a discussed. These materials are generated as by-products of biodiesel production. Mixed reactor was operated under mesophilic\\u000a conditions for the period of 654 days. Total cumulative production of biogas reached 379 m3 (at atmospheric pressure and ambient temperature). Maximum volumetric loading achieved

Nina Kolesárová; Miroslav Hut?an; Viera Špalková; Rastislav Kuffa; Igor Bodík

2011-01-01

219

Electrocoagulation pretreatment of seawater prior to ultrafiltration: Pilot-scale applications for military water purification systems  

Microsoft Academic Search

The objectives were to investigate the performance of a pilot-scale electrocoagulation (EC) reactor and to determine the feasibility of using in-line EC as a pretreatment to ultrafiltration (UF) of seawater. Work was conducted at Port Hueneme, CA, using components of a U.S. military water purification system. Ferric chloride in-line coagulation was also tested. Both the EC and ferric chloride pretreatments

Thomas C. Timmes; Hyun-Chul Kim; Brian A. Dempsey

2010-01-01

220

Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment  

Microsoft Academic Search

A pilot-scale wetland was constructed to assess the feasibility of treating the wastewater from a tool industry in Santo Tomé, Santa Fe, Argentina. The wastewater had high conductivity and pH, and contained Cr, Ni and Zn. This paper describes the growth of vegetation in the experimental wetland and the nutrient and metal removal.The wetland was 6×3×0.4m. Water discharge was 1000ld?1

H. R. Hadad; M. A. Maine; C. A. Bonetto

2006-01-01

221

High-solids aerobic decomposition: pilot-scale reactor development and experimentation  

Microsoft Academic Search

Pilot-scale reactors have been constructed to mimic the central core of an aerated static bed or in-vessel composting process. The 770 litre reactors were instrumented to measure temporal and spatial variations in temperature, oxygen and moisture content. Experiments were performed with a synthetic food waste (SFW) and digested biosolids using four different aeration rates and two initial moisture contents.An analysis

J. S. VanderGheynst; J. M. Gossett; L. P. Walker

1997-01-01

222

Evaluation of pilot-scale in-vessel composting for food waste treatment  

Microsoft Academic Search

This study is aimed to evaluate the performance of pilot-scale in-vessel composting for food wastes treatment. The composting plant was installed with 324m3 of the composting bay volume and 14,000kg\\/day of the composting material flow rate. The evaluations studied included the operational indices, the compost maturity indices, and the quality of the final compost. Blowers of this system were useful

Joung-Dae Kim; Joon-Seok Park; Byung-Hoon In; Daekeun Kim; Wan Namkoong

2008-01-01

223

Characterization of trace element emissions from a pilot-scale coal combustion unit  

SciTech Connect

The flue gas cleanup projects in the in-house research program at the Pittsburgh Energy Technology Center range from laboratory-scale work to testing with the combustion products of coal at a scale equivalent to about 0.75 MW of electric power generation. The largest unit is a 500-pound-per-hour coal combustor, complete with ductwork, spray dryer, baghouse, and ancillary equipment. Over the past year, tests to investigate the distribution and fate of trace elements have been conducted with this pilot unit. These investigations are an integral component of the Air Toxics and Fine Particulate Control subprogrammatic area of the AR and ET Power Systems Program. The overall effort of this area focuses on the improvement of existing technologies and the development of new technologies for the control of hazardous air pollutants and fine particulates associated with coal combustion. A major endeavor within the subprogram is the characterization of trace elements in flue gas from coal combustion, including a special emphasis on mercury speciation. The study described in this paper examined the results from an investigation on the pilot unit; the distribution of trace elements in the ash streams and flue gas stream, material recoveries for the system, baghouse removal efficiencies, and enrichment of ash particulate. Also, a preliminary comparison between the results from the pilot unit and a full-scale utility that burned coal from the same coal batch is provided.

Hargis, R.A.; Pennline, H.W. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center

1996-12-31

224

106-AN grout pilot-scale test HGTP-93-0501-02  

SciTech Connect

The Grout Treatment Facility (GTF) at Hanford, Washington will process the low-level fraction of selected double-shell tank (DST) wastes into a cementitious waste form. This facility, which is operated by Westinghouse Hanford Company (WHC), mixes liquid waste with cementitious materials to produce a waste form that immobilizes hazardous constituents through chemical reactions and/or microencapsulation. Over 1,000,000 gal of Phosphate/Sulfate Waste were solidified in the first production campaign with this facility. The next tank scheduled for treatment is 106-AN. After conducting laboratory studies to select the grout formulation, part of the normal formulation verification process is to conduct tests using the 1/4-scale pilot facilities at the Pacific Northwest Laboratory (PNL). The major objectives of these pilot-scale tests were to determine if the proposed grout formulation could be processed in the pilot-scale equipment and to collect thermal information to help determine the best way to manage the grout hydration heat.

Bagaasen, L.M.

1993-05-01

225

Laboratory and pilot field-scale testing of surfactants for environmental restoration of chlorinated solvent DNAPLs  

SciTech Connect

This project is composed of two phases and has the objective of demonstrating surfactant-enhanced aquifer remediation (SEAR) as a practical remediation technology at DOE sites with ground water contaminated by dense, non-aqueous phase liquids (DNAPLs), in particular, chlorinated solvents. The first phase of this project, Laboratory and Pilot Field Scale Testing, which is the subject of the work so far, involves (1) laboratory experiments to examine the solubilization of multiple component DNAPLs, e.g., solvents such as perchloroethylene (PCE) and trichloroethylene (TCE), by dilute surfactant solutions, and (2) a field test to demonstrate SEAR technology on a small scale and in an existing well.

Jackson, R.E. [INTERA, Inc., Austin, TX (United States); Fountain, J.C. [State Univ. of New York, Buffalo, NY (United States)

1994-12-31

226

DESIGN OPTIMIZATION OF THE CHLORINATION PROCESS. VOLUME I: COMPARISON OF OPTIMIZED PILOT SYSTEM WITH EXISTING FULL-SCALE SYSTEMS  

EPA Science Inventory

Parallel wastewater effluent chlorination studies were done on a mobile optimized chlorination pilot system and the full-scale system at eight different treatment plants. Disinfection efficiency was measured by total coliform enumeration and chlorine residual tests. Parallel flow...

227

Bioreactors for Tissue Engineering  

Microsoft Academic Search

\\u000a A variety of bioreactor designs exist today as a result of previous efforts by engineers and researchers to construct optimal\\u000a systems for a particular tissue engineering application. The primary purpose of any bioreactor is to provide a sterile cell\\u000a culture environment that can be tightly controlled. A bioreactor can be as simple as a petri dish and as complex as

Scott Maxson; David Orr; Karen J. L. Burg

228

Bioreactors for Bioartificial Organs  

Microsoft Academic Search

\\u000a In this chapter, the design of bioreactors constituting the core of some bioartificial organs is discussed. Initially, the\\u000a problem of cell sourcing is shortly addressed. Then, criteria and limitations to current bioreactor design for bioartificial\\u000a organs are presented. Design equations are separately obtained and discussed for bioreactors implanted in extravascular body\\u000a compartments or connected to the blood circulation of the

G. Catapano

229

Modeling Sorbent Injection for Mercury Control in Baghouse Filters: II—Pilot-Scale Studies and Model Evaluation  

Microsoft Academic Search

Activated carbon injection for Hg control in a 500-lb\\/hr pilot-scale coal-fired furnace equipped with a fabric filter for particulate control was evaluated at different operating conditions. The pilot-scale tests showed that Hg removal was improved at lower temperatures and higher C\\/Hg ratios. The two-stage mathematical model developed to describe Hg removal using powdered activated carbon injection upstream of a baghouse

Joseph R. V. Flora; Richard A. Hargis; William J. O’Dowd; Henry W. Pennline; Radisav D. Vidic

2003-01-01

230

Compare pilot-scale and industry-scale models of pulverized coal combustion in an ironmaking blast furnace  

NASA Astrophysics Data System (ADS)

In order to understand the complex phenomena of pulverized coal injection (PCI) process in blast furnace (BF), mathematical models have been developed at different scales: pilot-scale model of coal combustion and industry-scale model (in-furnace model) of coal/coke combustion in a real BF respectively. This paper compares these PCI models in aspects of model developments and model capability. The model development is discussed in terms of model formulation, their new features and geometry/regions considered. The model capability is then discussed in terms of main findings followed by the model evaluation on their advantages and limitations. It is indicated that these PCI models are all able to describe PCI operation qualitatively. The in-furnace model is more reliable for simulating in-furnace phenomena of PCI operation qualitatively and quantitatively. These models are useful for understanding the flow-thermo-chemical behaviors and then optimizing the PCI operation in practice.

Shen, Yansong; Yu, Aibing; Zulli, Paul

2013-07-01

231

Multi-scale modelling of bioreactor-separator system for wastewater treatment with two-dimensional activated sludge floc dynamics.  

PubMed

A simple "first generation" multi-scale computational model of the formation of activated sludge flocs at micro-scale and reactor performance at macro-scale is proposed. The model couples mass balances for substrates and biomass at reactor scale with an individual-based approach for the floc morphology, shape and micro-colony development. Among the novel model processes included are the group attachment/detachment of micro-flocs to the core structure and the clustering of nitrifiers. Simulation results qualitatively describe the formation of micro-colonies of ammonia and nitrite oxidizers and the extracellular polymeric substance produced by heterotrophic microorganisms, as typically observed in fluorescence in situ hybridization images. These results are the first step towards realistic multi-scale multispecies models of the activated sludge wastewater treatment systems and a generic modelling strategy that could be extended to other engineered biological systems. PMID:24246170

Ofi?eru, Irina D; Bellucci, Micol; Picioreanu, Cristian; Lavric, Vasile; Curtis, Thomas P

2014-03-01

232

PILOT-SCALE HYDRAULIC TESTING OF RESORCINOL FORMALDEHYDE ION EXCHANGE RESIN  

SciTech Connect

Savannah River National Laboratory (SRNL) performed pilot-scale hydraulic/chemical testing of spherical resorcinol formaldehyde (RF) ion exchange (IX) resin for the River Protection Project Hanford Tank Waste Treatment & Immobilization Plant (WTP) Project. The RF resin cycle testing was conducted in two pilot-scale IX columns, 1/4 and 1/2 scale. A total of twenty-three hydraulic/chemical cycles were successfully completed on the spherical RF resin. Seven of the cycles were completed in the 12-inch IX Column and sixteen cycles were completed in the 24-inch IX Column. Hydraulic testing showed that the permeability of the RF resin remained essentially constant, with no observed trend in the reduction of the permeability as the number of cycles increased. The permeability during the pilot-scale testing was 2 1/2 times better than the design requirements of the WTP full-scale system. The permeability of the resin bed was uniform with respect to changes in bed depth. Upflow Regeneration and Simulant Introduction in the IX columns revealed another RF resin benefit; negligible radial pressures to the column walls from the swelling of resin beads. In downflow of the Regeneration and Simulant Introduction steps, the resin bed particles pack tightly together and produce higher hydraulic pressures than that found in upflow. Also, upflow Simulant Introduction produced an ideal level bed for the twenty cycles completed using upflow Simulant Introduction. Conversely, the three cycles conducted using downflow Simulant Introduction produced an uneven bed surface with erosion around the thermowells. The RF resin bed in both columns showed no tendency to form fissures or pack more densely as the number of cycles increased. Particle size measurements of the RF resin showed no indication of particle size change (for a given chemical) with cycles and essentially no fines formation. Micrographs comparing representative bead samples before and after testing indicated no change in bead morphology. The skeletal density of the RF resin in the 24-inch IX Column increased slightly with cycling (in both hydrogen and sodium form). The chemical solutions used in the pilot-scale testing remained clear throughout testing, indicating very little chemical breakdown of the RF resin beads. The RF resin particles did not break down and produce fines, which would have resulted in higher pressure drops across the resin bed. Three cesium (Cs) loading tests were conducted on the RF resin in pilot-scale IX columns. Laboratory analyses concluded the Cs in the effluent never exceeded the detection limit. Therefore, there was no measurable degradation in cesium removal performance. Using the pilot-scale systems to add the RF resin to the columns and removing the resin from the columns was found to work well. The resin was added and removed from the columns three times with no operational concerns. Whether the resin was in sodium or hydrogen form, the resin flowed well and resulted in an ideal resin bed formation during each Resin Addition. During Resin Removal, 99+ % of the resin was easily sluiced out of the IX column. The hydraulic performance of the spherical RF resin during cycle testing was found to be superior to all other tested IX resins, and SRNL testing indicates that the resin should hold up to many cycles in actual radioactive Cs separation. The RF resin was found to be durable in the long term cycle testing and should result in a cost saving in actual operations when compared to other IX resins.

Adamson, D

2007-01-09

233

PILOT-SCALE HYDRAULIC TESTING OF RESORCINOL FORMALDEHYDE ION EXCHANGE RESIN  

SciTech Connect

Savannah River National Laboratory (SRNL) performed pilot-scale hydraulic/chemical testing of spherical resorcinol formaldehyde (RF) ion exchange (IX) resin for the River Protection Project-Hanford Tank Waste Treatment & Immobilization Plant (WTP) Project. The RF resin cycle testing was conducted in two pilot-scale IX columns, 1/4 and 1/2 scale. A total of twenty-three hydraulic/chemical cycles were successfully completed on the spherical RF resin. Seven of the cycles were completed in the 12 inch IX Column and sixteen cycles were completed in the 24 inch IX Column. Hydraulic testing showed that the permeability of the RF resin remained essentially constant, with no observed trend in the reduction of the permeability as the number of cycles increased. The permeability during the pilot-scale testing was 2 1/2 times better than the design requirements of the WTP full-scale system. The permeability of the resin bed was uniform with respect to changes in bed depth. Upflow Regeneration and Simulant Introduction in the IX columns revealed another RF resin benefit; negligible radial pressures to the column walls from the swelling of resin beads. In downflow of the Regeneration and Simulant Introduction steps, the resin bed particles pack tightly together and produce higher hydraulic pressures than that found in upflow. Also, upflow Simulant Introduction produced an ideal level bed for the twenty cycles completed using upflow Simulant Introduction. Conversely, the three cycles conducted using downflow Simulant Introduction produced an uneven bed surface with erosion around the thermowells. The RF resin bed in both columns showed no tendency to form fissures or pack more densely as the number of cycles increased. Particle size measurements of the RF resin showed no indication of particle size change (for a given chemical) with cycles and essentially no fines formation. Micrographs comparing representative bead samples before and after testing indicated no change in bead morphology. The skeletal density of the RF resin in the 24 inch IX Column increased slightly with cycling (in both hydrogen and sodium form). The chemical solutions used in the pilot-scale testing remained clear throughout testing, indicating very little chemical breakdown of the RF resin beads. The RF resin particles did not break down and produce fines, which would have resulted in higher pressure drops across the resin bed. Three cesium (Cs) loading tests were conducted on the RF resin in pilot-scale IX columns. Laboratory analyses concluded the Cs in the effluent never exceeded the detection limit. Therefore, there was no measurable degradation in cesium removal performance. Using the pilot-scale systems to add the RF resin to the columns and removing the resin from the columns was found to work well. The resin was added and removed from the columns three times with no operational concerns. Whether the resin was in sodium or hydrogen form, the resin flowed well and resulted in an ideal resin bed formation during each Resin Addition. During Resin Removal, 99+ % of the resin was easily sluiced out of the IX column. The hydraulic performance of the spherical RF resin during cycle testing was found to be superior to all other tested IX resins, and SRNL testing indicates that the resin should hold up to many cycles in actual radioactive Cs separation. The RF resin was found to be durable in the long term cycle testing and should result in a cost saving in actual operations when compared to other IX resins.

Adamson, D

2006-11-08

234

Optimal Homogenization of Perfusion Flows in Microfluidic Bio-Reactors: A Numerical Study  

E-print Network

Optimal Homogenization of Perfusion Flows in Microfluidic Bio-Reactors: A Numerical Study Fridolin of Denmark, DTU Nanotech, Kongens Lyngby, Denmark Abstract In recent years, the interest in small-scale bio-reactors microfluidic bio-reactors, we develop a general design of a continually feed bio- reactor with uniform

235

Trace element distribution and mercury speciation in a pilot-scale coal combustor burning Blacksville coal  

SciTech Connect

A series of tests have been conducted on a nominal 500-pound-per-hour, pilot-scale combustion unit to characterize trace element emissions and mercury speciation. The coal fired during the testing was a Blacksville {number_sign}2, medium-sulfur coal, similar to that used by other researchers investigating mercury speciation. A description of the pilot unit operating conditions during the testing is provided. A summary of the gas/solid distribution of trace elements at various locations within the system, material balances, and baghouse removal efficiencies is also supplied. EPA Method 29 was used to determine trace element and speciated mercury concentrations before and after the baghouse. A comparison of these results with past trace element results from this unit and with the findings of other researchers who have used Blacksville coal is also presented. The pilot-scale combustion unit has been characterized in terms of trace element distribution during two tests while burning a medium-sulfur bituminous Blacksville coal. EPA sampling methodology at the inlet to the baghouse and at the stack was used. Results indicate that most of the elements are removed across the baghouse with the exception of mercury and selenium. Both of these elements were found predominantly in the vapor phase. The average mercury speciation revealed that the vapor-phase mercury was primarily in the oxidized form, which is consistent with the findings of other research with Blacksville coal. Material recoveries for most of the elements were very good. The average recovery for mercury further validates that this pilot unit will be a viable system for mercury sampling and control methods.

Hargis, R.A.; Pennline, H.W. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technical Center

1997-12-31

236

Tapered fluidized bed bioreactor for environmental control and fuel production  

SciTech Connect

Fluidized bed bioreactors are under development for use in environmental control and energy production. The most effective systems utilize a tapered portion either throughout the column or at the top of the column. This taper allows a wide range of operating conditions without loss of the fluidized particulates, and in general, results in more stable operation. The system described here utilize fixed films of microorganisms that have attached themselves to the fluidized particles. Preliminary investigations of the attachment indicate that reactor performance is related to film thickness. The biological denitrification of aqueous waste streams is typical of processes under development that utilize fluidized bed bioreactors. This development has progressed to the pilot plant scale where two 20-cm-diam x 800-cm fluidized beds in series accept aqueous wastes with nitrate concentrations as high as 10,000 mg/l and denitrification rates greater than 50 g/l/day using residence times of less than 30 minutes in each reactor. Other applications include aerobic degradation of phenolic wastes at rates greater than 25 g/l/day and the conversion of glucose to ethanol.

Scott, C.D.; Hancher, C.W.; Arcuri, E.J.

1980-01-01

237

Bioremediation of heavy metals using biostimulation in laboratory bioreactor.  

PubMed

The present research study investigates bioremediation potential of biostimulated microbial culture isolated from heavy metals waste disposal contaminated site located at Bhayander (east), Mumbai, India. The physicochemical and microbial characterization including heavy metal contaminants have been studied at waste disposal site. The microorganisms adapted at heavy metal-contaminated environment were isolated, cultured, and biostimulated in minimal salt medium under aerobic conditions in a designed and developed laboratory bioreactor. Heavy metals such as Fe, Cu, and Cd at a selected concentration of 25, 50, and 100 ?g/ml were taken in bioreactor wherein biostimulated microbial culture was added for bioremediation of heavy metals under aerobic conditions. The remediation of heavy metals was studied at an interval of 24 h for a period of 21 days. The biostimulated microbial consortium has been found effective for remediation of Cd, Cu, and Fe at higher concentration, i.e., 100 mg/l up to 98.5%, 99.6%, and 100%, respectively. Fe being a micronutrient was remediated completely compared to Cu and Cd. During the bioaccumulation of heavy metals by microorganisms, environmental parameters such as pH, total alkalinity, electronic conductivity, biological oxygen demand, chemical oxygen demand, etc. were monitored and assessed. The pilot scale study would be applicable to remediate heavy metals from waste disposal contaminated site to clean up the environment. PMID:22270588

Fulekar, M H; Sharma, Jaya; Tendulkar, Akalpita

2012-12-01

238

Enhanced pilot-scale fed-batch L-phenylalanine production with recombinant Escherichia coli by fully integrated reactive extraction  

Microsoft Academic Search

A fully integrated process for the microbial production and recovery of the aromatic amino acid L-phenylalanine is presented. Using a recombinant L-tyrosine (L-Tyr) auxotrophic Escherichia coli production strain, a fed-batch fermentation process was developed in a 20-l-scale bioreactor. Concentrations of glucose and L-Tyr were closed-loop-controlled in a fed-batch process. After achieving final L-phenylalanine (L-Phe) titres >30 g\\/l the process strategy

M. Gerigk; D. Maass; A. Kreutzer; G. Sprenger; J. Bongaerts; M. Wubbolts; R. Takors

2002-01-01

239

Instrumented Bioreactors BIOMATERIALS  

E-print Network

) and for screening the effects of chemical and biological warfare agents. Approach Materials Science and Engineering (University of Colorado), a leading tissue engineering researcher, to develop a new bioreactor for cell-seeded to use this bioreactor to investigate the effects of polymer chemistry on scaffold durability, helping

240

NASA Bioreactor Demonstration System  

NASA Technical Reports Server (NTRS)

Leland W. K. Chung (left), Director, Molecular Urology Therapeutics Program at the Winship Cancer Institute at Emory University, is principal investigator for the NASA bioreactor demonstration system (BDS-05). With him is Dr. Jun Shu, an assistant professor of Orthopedics Surgery from Kuming Medical University China. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: Emory University.

2002-01-01

241

Piloting the perinatal obsessive-compulsive scale (POCS): development and validation.  

PubMed

Onset/worsening of obsessive-compulsive disorder (OCD) during the perinatal period are frequently seen clinically. No specific tool assessing the unique content, context, severity, and onset of perinatal OCD exists. A self-report scale of perinatal obsessions and compulsions, the Perinatal Obsessive-Compulsive Scale (POCS), was developed and validated. A total of 162 women (67 pregnant, 95 postpartum) participated in this pilot study. They completed the POCS as well as the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS). The POCS has good construct validity, reflected by representative items, high internal consistency, good concurrent validity and discriminative capacity. The most common obsessions were fear of having an unhealthy baby at birth, contamination, the baby being taken away, and infant death. Behavioral compulsions such as repeating rituals, asking for reassurance, checking, and cleaning mirrored these obsessions. The POCS helps clinicians detect perinatal OCD while giving perinatal women an opportunity to openly discuss socially sensitive issues. PMID:21824744

Lord, Catherine; Rieder, Amber; Hall, Geoffrey B C; Soares, Claudio N; Steiner, Meir

2011-12-01

242

Pilot-scale treatability test plan for the 200-UP-1 groundwater Operable Unit  

SciTech Connect

This document presents the treatability test plan for pilot-scale pump and treat testing at the 200-UP-1 Operable Unit. This treatability test plan has been prepared in response to an agreement between the US Department of Energy, the US Environmental Protection Agency, and the Washington State Department of Ecology, as documented in Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1989a) Change Control Form M-13-93-03 (Ecology et al. 1994). The agreement also requires that, following completion of the activities described in this test plan, a 200-UP-1 Operable Unit interim remedial measure (IRM) proposed plan be developed for use in preparing an interim action record of decision (ROD). The IRM Proposed Plan will be supported by the results of the testing described in this treatability test plan, as well as by other 200-UP-1 Operable Unit activities (e.g., limited field investigation, development of a qualitative risk assessment). Once issued, the interim action ROD will specify the interim action for groundwater contamination at the 200-UP-1 Operable Unit. The approach discussed in this treatability test plan is to conduct a pilot-scale pump and treat test for the contaminant plume associated with the 200-UP-1 Operable Unit. Primary contaminants of concern are uranium and technetium-99; the secondary contaminant of concern is nitrate. The pilot-scale treatability testing presented in this test plan has as its primary purpose to assess the performance of aboveground treatment systems with respect to the ability to remove the primary contaminants in groundwater withdrawn from the contaminant plume.

Wittreich, C.D.

1994-05-01

243

Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale.  

PubMed

The technical feasibility and performance of photocatalytic degradation of six water-soluble pesticides (cymoxanil, methomyl, oxamyl, dimethoate, pyrimethanil and telone) have been studied at pilot-plant scale in two well-defined systems which are of special interest because natural solar UV light can be used: heterogeneous photocatalysis with titanium dioxide and homogeneous photocatalysis by photo-Fenton. TiO(2) photocatalysis tests were performed in a 35L solar pilot plant with three Compound Parabolic Collectors (CPCs) under natural illumination and a 75L solar pilot plant with four CPC units was used for homogeneous photocatalysis tests. The initial pesticide concentration studied was 50 mg L(-1) and the catalyst concentrations employed were 200 mg L(-1) of TiO(2) and 20 mg L(-1) of iron. Both toxicity (Vibrio fischeri, Biofix) and biodegradability (Zahn-Wellens test) of the initial pesticide solutions were also measured. Total disappearance of the parent compounds and nearly complete mineralization were attained with all pesticides tested. Treatment time, hydrogen peroxide consumption and release of heteroatoms are discussed. PMID:16839679

Oller, I; Gernjak, W; Maldonado, M I; Pérez-Estrada, L A; Sánchez-Pérez, J A; Malato, S

2006-12-01

244

Recovery of cellulase activity after ethanol stripping in a novel pilot-scale unit.  

PubMed

Recycling of enzymes has a potential interest during cellulosic bioethanol production as purchasing enzymes is one of the largest expenses in the process. By recycling enzymes after distillation, loss of sugars and ethanol are avoided, but depending on the distillation temperature, there is a potential risk of enzyme degradation. Studies of the rate of enzyme denaturation based on estimation of the denaturation constant K D was performed using a novel distillation setup allowing stripping of ethanol at 50-65 °C. Experiments were performed in a pilot-scale stripper, where the effect of temperature (55-65 °C) and exposure to gas-liquid and liquid-heat transmission interfaces were tested on a mesophilic and thermostable enzyme mixture in fiber beer and buffer. Lab-scale tests were included in addition to the pilot-scale experiments to study the effect of shear, ethanol concentration, and PEG on enzyme stability. When increasing the temperature (up to 65 °C) or ethanol content (up to 7.5 % w/v), the denaturation rate of the enzymes increased. Enzyme denaturation occurred slower when the experiments were performed in fiber beer compared to buffer only, which could be due to PEG or other stabilizing substances in fiber beer. However, at extreme conditions with high temperature (65 °C) and ethanol content (7.5 % w/v), PEG had no enzyme stabilizing effect. The novel distillation setup proved to be useful for maintaining enzyme activity during ethanol extraction. PMID:24549412

Skovgaard, Pernille Anastasia; Christensen, Børge Holm; Felby, Claus; Jørgensen, Henning

2014-04-01

245

Pilot scale benzene stripping column testing: Review of test data and application to the ITP columns  

SciTech Connect

Radioactive cesium will be removed from aqueous high level waste (HLW) solutions by precipitation with sodium tetraphenyl borate (TPB) in the In-Tank Precipitation (ITP) process. Benzene is generated due to the radiolysis of TPB, and dissolves into the decontaminated salt solution (DSS) and into the water used to wash (WW) the precipitate. These solutions will be processed through stripping columns to reduce the benzene concentration to satisfy limits for disposal of the DSS and for temporary storage of the WW. A pilot scale testing program to evaluate the stripping column operation in support of ITP startup activities has been completed. Equipment and test plans were developed so that data obtained from the pilot scale testing would be directly applicable to full scale column operation and could be used to project hydraulic performance and stripping efficiency of both columns. A review of the test data indicate that the ITP stripping columns will be capable of reducing benzene concentrations in salt solutions to satisfy Saltstone and Tank 22 acceptance limits. An antifoam (AF) will be required to maintain the column differential pressure below the vendor recommendation of 40 inches wc so that design feed rates can be achieved. Additionally, the testing program indicated that the nitrogen rate can be decreased from the ITP column design rates and still satisfy benzene concentration requirements in the product.

Georgeton, G.K.; Gaughan, T.P.; Taylor, G.A.

1993-09-10

246

Bioreactor Landfill Demonstration Project  

NSDL National Science Digital Library

Managed by the Florida Center for Solid and Hazardous Waste Management, this Website provides information on the Bioreactor Landfill Demonstration Project. The slow decomposition rates in current municipal landfills have prompted research in bioreactor landfills, which operate under the "wet cell" theory where moisture is added to enhance degradation. The Research section contains a plethora of material, including the Bioreactor Presentation, which consists of 60 slides outlining the project and solid waste issues, and A Proposed Bioreactor Landfill Demonstration Project, which is the proposal that started the project. The proposal is a great source of background information about bioreactor landfills. Though not all of the topics listed on the site have active links, the information available is worthwhile.

247

Elimination and fate of selected micro-organic pollutants in a full-scale anaerobic/anoxic/aerobic process combined with membrane bioreactor for municipal wastewater reclamation.  

PubMed

The occurrence and elimination of 19 micro-organic pollutants including endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in a full-scale anaerobic/anoxic/aerobic-membrane bioreactor process was investigated. The investigated process achieved over 70% removal of the target EDCs and 50%-100% removal of most of the PPCPs, with influent concentration ranging from ng/L to ?g/L. Three PPCPs, carbamazepine, diclofenac and sulpiride were not well removed, with the removal efficiency below 20%. A rough mass balance suggests that the targets were eliminated through sludge-adsorption and/or biodegradation, the former of which was particularly significant for the removal of hydrophobic compounds. The two-phase fate model was employed to describe the kinetics of sludge-adsorption and biodegradation. It was found that the fast sludge adsorption (indicated by mass-transfer rates greater than 10 for most compounds) is responsible for the rapid decline of the aqueous concentration of the targets in the first compartment of the treatment process (i.e. in the anaerobic tank). In contrast, the slow biodegradation proved to be the rate-determining step for the entire degradation process, and the rates are generally positively related to the dissolved oxygen level. On the other hand, this study showed that the removal rates of most targets can reach a quasi-plateau in 5 h under aerobic conditions, indicating that hydraulic retention time of ca. 5 h in aerobic tanks should be sufficient for the elimination of most targets. PMID:20723962

Xue, Wenchao; Wu, Chunying; Xiao, Kang; Huang, Xia; Zhou, Haidong; Tsuno, Hiroshi; Tanaka, Hiroaki

2010-12-01

248

Large-scale functional expression of WT and truncated human adenosine A2A receptor in Pichia pastoris bioreactor cultures  

Microsoft Academic Search

BACKGROUND: The large-scale production of G-protein coupled receptors (GPCRs) for functional and structural studies remains a challenge. Recent successes have been made in the expression of a range of GPCRs using Pichia pastoris as an expression host. P. pastoris has a number of advantages over other expression systems including ability to post-translationally modify expressed proteins, relative low cost for production

Shweta Singh; Adrien Gras; Cédric Fiez-Vandal; Jonathan Ruprecht; Rohini Rana; Magdalena Martinez; Philip G Strange; Renaud Wagner; Bernadette Byrne

2008-01-01

249

Pilot-scale ion-exchange centrifugal partition chromatography: purification of sinalbin from white mustard seeds.  

PubMed

The purification of p-hydroxybenzylglucosinolate (sinalbin) on a multigram scale from a crude aqueous extract of white mustard seeds (Sinapis alba var. concerta) was successfully achieved by scaling up a strong ion-exchange centrifugal partition chromatography (SIXCPC) laboratory procedure. Thus, the one-step sinalbin purification was performed with 2.35 g of crude extract in approximately 170 min (830 mg/h) up to 70.3 g in approximately 160 min (26.3 g/h) by switching from a 200 mL laboratory scale column to a 5.7 L pilot-scale column. The required biphasic solvent system contained ethyl acetate, n-butanol, and water in 3:2:5 v/v/v proportions, Aliquat 336 (trioctylmethyl ammonium chloride) was added to the organic stationary phase (80 mM) and acted as ion-exchanger. Potassium iodide in the aqueous mobile phase (80 mM) was used as sinalbin displacer. The 28.5 mass scale factor arose from the increase in mobile phase flow-rate (from 2 to 50 mL/min), from the higher mass of injected white mustard seed extract (from 12 to 350 g), and from the calculated productivity (from 830 mg to 26.3 g). These results demonstrate that industry scale production of glucosinolates is easily performed by SIXCPC, thus providing pure reference standards for pharmacology studies. PMID:19479767

Toribio, Alix; Nuzillard, Jean-Marc; Pinel, Benoît; Boudesocque, Leslie; Lafosse, Michel; De La Poype, François; Renault, Jean-Hugues

2009-06-01

250

Pilot-Scale Demonstration of hZVI Process for Treating Flue Gas Desulfurization Wastewater at Plant Wansley, Carrollton, GA  

E-print Network

and develop the hZVI technology, a pilot-scale demonstration had been conducted to continuously treat 1-2 gpm of the FGD wastewater for five months at Plant Wansley, a coal-fired power plant of Georgia Power. This demonstrated that the scaled-up system...

Peddi, Phani 1987-

2011-12-06

251

EVALUATION OF PILOT-SCALE AIR POLLUTION CONTROL DEVICES ON A REFUSE AND COAL-FIRED BOILER  

EPA Science Inventory

The project report describes the operation of pilot-scale air pollution control devices to gather data on air pollution efficiency versus several different operating parameters on various waste-as-fuel combustio processes. It also includes a test of a full scale fabric filter use...

252

Manufacturing Cost Analysis for YSZ-Based FlexCells at Pilot and Full Scale Production Scales  

SciTech Connect

Significant reductions in cell costs must be achieved in order to realize the full commercial potential of megawatt-scale SOFC power systems. The FlexCell designed by NexTech Materials is a scalable SOFC technology that offers particular advantages over competitive technologies. In this updated topical report, NexTech analyzes its FlexCell design and fabrication process to establish manufacturing costs at both pilot scale (10 MW/year) and full-scale (250 MW/year) production levels and benchmarks this against estimated anode supported cell costs at the 250 MW scale. This analysis will show that even with conservative assumptions for yield, materials usage, and cell power density, a cost of $35 per kilowatt can be achieved at high volume. Through advancements in cell size and membrane thickness, NexTech has identified paths for achieving cell manufacturing costs as low as $27 per kilowatt for its FlexCell technology. Also in this report, NexTech analyzes the impact of raw material costs on cell cost, showing the significant increases that result if target raw material costs cannot be achieved at this volume.

Scott Swartz; Lora Thrun; Robin Kimbrell; Kellie Chenault

2011-05-01

253

Characterization results for 106-AN grout produced in a pilot-scale test  

SciTech Connect

The Grout Treatment Facility (GTF) at Hanford. Washington, will process the low-level fraction of selected double-shell tank (DST) wastes into a cementitious waste form. This facility, which is operated by Westinghouse Hanford Company (WHC), mixes liquid waste with cementitious materials to produce a waste form that immobilizes hazardous constituents through chemical reactions and/or microencapsulation. Over one million gallons of phosphate/sulfate waste were solidified in the first production campaign with this facility. The next tank waste scheduled for treatment is 106-AN (the waste from Tank 241-AN-106). After laboratory studies were conducted to select the grout formulation, tests using the 1/4-scale pilot facilities at the Pacific Northwest Laboratory (PNL) were conducted as part of the formulation verification process. The major objectives of these pilot-scale tests were to determine if the proposed grout formulation could be processed in the pilotscale equipment. to collect thermal information to help determine the best way to manage the grout hydration heat, and to characterize the solidified grout.

Lokken, R.O.; Bagaasen, L.M.; Martin, P.F.C.; Palmer, S.E.; Anderson, C.M.

1993-06-01

254

Development of a pilot scale anaerobic digester for biogas production from cow manure and whey mix.  

PubMed

This paper presents results from anaerobic digestion of cow manure and whey mix. A pilot scale anaerobic digester, 128 l in volume, has been developed, to operate under batch and fed-batch conditions. The versatile and unique characteristics of the instrument allowed testing the methane production directly in the farm. The digester performance was evaluated with two calibration tests, the main for a period of 56 days. The study test was divided into three phases, one for each type of feeding operation (batch, fed-batch, batch). The initial phase of digestion resulted in 57 l-CH(4)/kg-VS, the second phase had a yield of 86.6 l-CH(4)/kg-VS and the third one had a production of 67 l-CH(4)/kg-VS. The total methane yield was equal to 211.4 l-CH(4)/kg-VS. Using the obtained pilot plant results to a real scale diary production cycle, it was possible to evaluate an electricity production equal to 8.86 kwh per 1 t/d. The conducted tests did show that there is a good potential to the use of a cow manure and whey biomass mix for biogas production. PMID:19559606

Comino, Elena; Rosso, Maurizio; Riggio, Vincenzo

2009-11-01

255

Pilot-scale fluoride-containing wastewater treatment by the ballasted flocculation process.  

PubMed

A pilot-scale ballasted flocculation system was used to remove fluoride from one type of industrial wastewater. The system included the formation of calcium fluoride (CaF2) using calcium hydroxide followed by coagulation sedimentation. Calcium fluoride was recycled as nuclei for enhancing CaF2 precipitation and as a ballasting agent for improving fluoride removal and flocculation efficiency. Factors affecting fluoride and turbidity removal efficiencies, including pH in the CaF2-reacting tank and coagulation-mixing tank, sludge recycling ratio, and dosages of FeCl3 and polyacrylamide (PAM), were investigated in the pilot-scale system. The recycled CaF2 precipitates improved CaF2 formation kinetics, enhanced fluoride removal and flocculation performance. Under the optimized condition, the ballast flocculation process reduced fluoride concentration from 288.9 to 10.67 mg/L and the turbidity from 129.6 NTU to below 2.5 NTU. PMID:23823549

Wang, Bin-Yuan; Chen, Zhong-Lin; Zhu, Jia; Shen, Ji-Min; Han, Ying

2013-01-01

256

INVESTIGATING SUSPENSION OF MST, CST, AND SIMULATED SLUDGE SLURRIES IN A PILOT-SCALE WASTE TANK  

SciTech Connect

The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for suspending and resuspending monosodium titanate (MST), crystalline silicotitanate (CST), and simulated sludge. The purpose of this pilot scale testing is for the pumps to resuspend the MST, CST, and simulated sludge particles so that they can be removed from the tank, and to suspend the MST so it can contact strontium and actinides. The pilot-scale tank is a 1/10.85 linear scaled model of Tank 41H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 41H. The pump locations correspond to the proposed locations in Tank 41H by the SCIX program (Risers B5, B3, and B1). Previous testing showed that three Submersible Mixer Pumps (SMPs) will provide sufficient power to initially suspend MST in an SRS waste tank, and to resuspend MST that has settled in a waste tank at nominal 45 C for four weeks. The conclusions from this analysis are: (1) Three SMPs will be able to resuspend more than 99.9% of the MST and CST that has settled for four weeks at nominal 45 C. The testing shows the required pump discharge velocity is 84% of the maximum discharge velocity of the pump. (2) Three SMPs will be able to resuspend more than 99.9% of the MST, CST, and simulated sludge that has settled for four weeks at nominal 45 C. The testing shows the required pump discharge velocity is 82% of the maximum discharge velocity of the pump. (3) A contact time of 6-12 hours is needed for strontium sorption by MST in a jet mixed tank with cooling coils, which is consistent with bench-scale testing and actinide removal process (ARP) operation.

Poirier, M.; Qureshi, Z.; Restivo, M.; Steeper, T.; Williams, M.

2011-05-24

257

Composting clam processing wastes in a laboratory- and pilot-scale in-vessel system.  

PubMed

Waste materials from the clam processing industry (offal, shells) have several special characteristics such as a high salinity level, a high nitrogen content, and a low C/N ratio. The traditional disposal of clam waste through landfilling is facing the challenges of limited land available, increasing tipping fees, and strict environmental and regulatory scrutiny. The aim of this work is to investigate the performance of in-vessel composting as an alternative for landfill application of these materials. Experiments were performed in both laboratory-scale (5L) and pilot-scale (120L) reactors, with woodchips as the bulking agent. In the laboratory-scale composting test, the clam waste and woodchips were mixed in ratios from 1:0.5 to 1:3 (w/w, wet weight). The high ratios resulted in a better temperature performance, a higher electrical conductivity, and a higher ash content than the low-ratio composting. The C/N ratio of the composts was in the range of 9:1-18:1. In the pilot-scale composting test, a 1:1 ratio of clam waste to woodchips was used. The temperature profile during the composting process met the US Environmental Protection Agency sanitary requirement. The final cured compost had a C/N ratio of 14.6, with an ash content of 167.0+/-14.1g/kg dry matter. In addition to the major nutrients (carbon, nitrogen, calcium, magnesium, phosphorus, potassium, sulfur, and sodium), the compost also contained trace amounts of zinc, manganese, copper, and boron, indicating that the material can be used as a good resource for plant nutrients. PMID:18406125

Hu, Zhenhu; Lane, Robert; Wen, Zhiyou

2009-01-01

258

Creative use of pilot points to address site and regional scale heterogeneity in a variable-density model  

USGS Publications Warehouse

Pilot points for parameter estimation were creatively used to address heterogeneity at both the well field and regional scales in a variable-density groundwater flow and solute transport model designed to test multiple hypotheses for upward migration of fresh effluent injected into a highly transmissive saline carbonate aquifer. Two sets of pilot points were used within in multiple model layers, with one set of inner pilot points (totaling 158) having high spatial density to represent hydraulic conductivity at the site, while a second set of outer points (totaling 36) of lower spatial density was used to represent hydraulic conductivity further from the site. Use of a lower spatial density outside the site allowed (1) the total number of pilot points to be reduced while maintaining flexibility to accommodate heterogeneity at different scales, and (2) development of a model with greater areal extent in order to simulate proper boundary conditions that have a limited effect on the area of interest. The parameters associated with the inner pilot points were log transformed hydraulic conductivity multipliers of the conductivity field obtained by interpolation from outer pilot points. The use of this dual inner-outer scale parameterization (with inner parameters constituting multipliers for outer parameters) allowed smooth transition of hydraulic conductivity from the site scale, where greater spatial variability of hydraulic properties exists, to the regional scale where less spatial variability was necessary for model calibration. While the model is highly parameterized to accommodate potential aquifer heterogeneity, the total number of pilot points is kept at a minimum to enable reasonable calibration run times.

Dausman, Alyssa M.; Doherty, John; Langevin, Christian D.

2010-01-01

259

Bioreactors: design and operation  

SciTech Connect

The bioreactor provides a central link between the starting feedstock and the product. The reaction yield and selectivity are determined by the biocatalyst, but productivity is often determined by the process technology; as a consequence, biochemical reaction engineering becomes the interface for the biologist and engineer. Developments in bioreactor design, including whole cell immobilization, immobilized enzymes, continuous reaction, and process control, will increasingly reflect the need for cross-disciplinary interaction in the biochemical process industry. This paper examines the strategy for selection and design of bioreactors and identifies the limits and constraints in their use. 25 references, 3 figures, 3 tables.

Cooney, C.L.

1983-02-11

260

PILOT SCALE TESTING OF MONOSODIUM TITANATE MIXING FOR THE SRS SMALL COLUMN ION EXCHANGE PROCESS - 11224  

SciTech Connect

The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and select actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for suspending monosodium titanate (MST), crystalline silicotitanate (CST), and simulated sludge. The purpose of this pilot scale testing is to determine the requirements for the pumps to suspend the MST particles so that they can contact the strontium and actinides in the liquid and be removed from the tank. The pilot-scale tank is a 1/10.85 linear scaled model of SRS Tank 41H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 41H. The pump locations correspond to the proposed locations in Tank 41H by the SCIX program (Risers B5 and B2 for two pump configurations and Risers B5, B3, and B1 for three pump configurations). The conclusions from this work follow: (i) Neither two standard slurry pumps nor two quad volute slurry pumps will provide sufficient power to initially suspend MST in an SRS waste tank. (ii) Two Submersible Mixer Pumps (SMPs) will provide sufficient power to initially suspend MST in an SRS waste tank. However, the testing shows the required pump discharge velocity is close to the maximum discharge velocity of the pump (within 12%). (iii) Three SMPs will provide sufficient power to initially suspend MST in an SRS waste tank. The testing shows the required pump discharge velocity is 66% of the maximum discharge velocity of the pump. (iv) Three SMPs are needed to resuspend MST that has settled in a waste tank at nominal 45 C for four weeks. The testing shows the required pump discharge velocity is 77% of the maximum discharge velocity of the pump. Two SMPs are not sufficient to resuspend MST that settled under these conditions.

Poirier, M.; Restivo, M.; Williams, M.; Herman, D.; Steeper, T.

2011-01-25

261

Bioreactor design concepts  

NASA Technical Reports Server (NTRS)

Two parallel lines of work are underway in the bioreactor laboratory. One of the efforts is devoted to the continued development and utilization of a laboratory research system. That system's design is intended to be fluid and dynamic. The sole purpose of such a device is to allow testing and development of equipment concepts and procedures. Some of the results of those processes are discussed. A second effort is designed to produce a flight-like bioreactor contained in a double middeck locker. The result of that effort has been to freeze a particular bioreactor design in order to allow fabrication of the custom parts. The system is expected to be ready for flight in early 1988. However, continued use of the laboratory system will lead to improvements in the space bioreactor. Those improvements can only be integrated after the initial flight series.

Bowie, William

1987-01-01

262

Space Bioreactor Science Workshop  

NASA Technical Reports Server (NTRS)

The first space bioreactor has been designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and a slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small (500 ml) bioreactor is being constructed for flight experiments in the Shuttle middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption, and control of low shear stress on cells. Applications of microcarrier cultures, development of the first space bioreactor flight system, shear and mixing effects on cells, process control, and methods to monitor cell metabolism and nutrient requirements are among the topics covered.

Morrison, Dennis R. (editor)

1987-01-01

263

Pilot-scale evaluation of chemical oxidation for MTBE-contaminated soil  

SciTech Connect

The US Environmental Protection Agency (USEPA) has tentatively classified MTBE as a possible human carcinogen, thus further emphasizing the importance for study of fate, transport, and environmental effects of MTBE. The treatment of subsurface contaminants (e.g., MTBE) from leaking underground storage tank (LUST) sites presents many complex challenges. Many techniques have been employed for the remediation of contaminants in soil and groundwater at LUST sites. Under sponsorship of US EPA's National Risk Management Research Laboratory, IT Corporation has conducted evaluations of chemical oxidation of MTBE contaminated soil using Fenton's Reagent (hydrogen peroxide catalyzed by ferrous sulfate), simulating both ex-situ and in-situ soil remediation. Bench-scale ex-situ tests have shown up to 90% degradation of MTBE within 12 hours. Pilot-scale MTBE oxidation tests were conducted in a stainless paddle-type mixer with a 10 cubic foot mixing volume. The reactor was designed with a heavy duty mixer shaft assembly to homogenize soil and included provisions for contaminant and reagent addition, mixing, and sample acquisition. The tests were performed by placing 400 pounds of a synthetic soil matrix (consisting of a mixture of top soil, sand, gravel and clay) in the reactor, spiking with 20 ppm of MTBE, and mixing thoroughly. The variables evaluated in the pilot-scale tests included reaction time, amount of hydrogen peroxide, and amount of ferrous sulfate. After 8 hours of reaction, using 4 times the stoichiometric quantity of hydrogen peroxide and a 10:1 hydrogen peroxide: ferrous iron weight ratio, approximately 60% MTBE degradation was observed. When 10 times the stoichiometric quantity of hydrogen peroxide was used (with the same ratio of hydrogen peroxide to ferrous iron), 90% MTBE degradation was observed. When the same test was performed without any ferrous iron addition, 75% MTBE degradation was observed.

Rahman, M.; Schupp, D.A.; Krishnan, E.R.; Tafuri, A.N.; Chen, C.T.

1999-07-01

264

Pilot-scale process evaluation of reburning for in-furnace NOx reduction. Final report, October 1984October 1985  

Microsoft Academic Search

This report gives results of coal and natural gas reburning application tests to a pilot-scale 3.0-MWt furnace to provide the scaling information required for commercial application of reburning to pulverized-coal-fired boilers. Initial parametric studies had been conducted in a 23-kWt bench scale reactor to quantify the impact of fuel and process parameters on reburning effectiveness. The results of this investigation

J. M. McCarthy; B. J. Overmoe; S. L. Chen; W. R. Seeker; D. W. Pershing

1986-01-01

265

Bioreactors: Design and Operation  

NASA Astrophysics Data System (ADS)

The bioreactor provides a central link between the starting feedstock and the product. The reaction yield and selectivity are determined by the biocatalyst, but productivity is often determined by the process technology; as a consequence, biochemical reaction engineering becomes the interface for the biologist and engineer. Developments in bioreactor design, including whole cell immobilization, immobilized enzymes, continuous reaction, and process control, will increasingly reflect the need for cross-disciplinary interaction in the biochemical process industry.

Cooney, Charles L.

1983-02-01

266

Pilot-scale treatability test plan for the 200-BP-5 operable unit  

SciTech Connect

This document presents the treatability test plan for pilot-scale pump and treat testing at the 200-BP-5 Operable Unit. This treatability test plan has been prepared in response to an agreement between the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA), and the State of Washington Department of Ecology (Ecology), as documented in Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement, Ecology et al. 1989a) Change Control Form M-13-93-03 (Ecology et al. 1994) and a recent 200 NPL Agreement Change Control Form (Appendix A). The agreement also requires that, following completion of the activities described in this test plan, a 200-BP-5 Operable Unit Interim Remedial Measure (IRM) Proposed Plan be developed for use in preparing an Interim Action Record of Decision (ROD). The IRM Proposed Plan will be supported by the results of this treatability test plan, as well as by other 200-BP-5 Operable Unit activities (e.g., development of a qualitative risk assessment). Once issued, the Interim Action ROD will specify the interim action(s) for groundwater contamination at the 200-BP-5 Operable Unit. The treatability test approach is to conduct a pilot-scale pump and treat test for each of the two contaminant plumes associated with the 200-BP-5 Operable Unit. Primary contaminants of concern are {sup 99}Tc and {sup 60}Co for underwater affected by past discharges to the 216-BY Cribs, and {sup 90}Sr, {sup 239/240}Pu, and Cs for groundwater affected by past discharges to the 216-B-5 Reverse Well. The purpose of the pilot-scale treatability testing presented in this testplan is to provide the data basis for preparing an IRM Proposed Plan. To achieve this objective, treatability testing must: Assess the performance of groundwater pumping with respect to the ability to extract a significant amount of the primary contaminant mass present in the two contaminant plumes.

Not Available

1994-08-01

267

Organic matter removal during pilot-scale soil aquifer treatment for domestic wastewater in the tropics.  

PubMed

The potential of enhancing water uses using soil aquifer treatment (SAT) is an interesting alternative for tropical regions, limited only by lack of knowledge on its performance in local conditions and the feasibility of adapting this technology. A SAT pilot study was conducted to analyze the phenomena associated with the transformation of organic matter (OM) from domestic wastewater. Chemically enhanced primary effluent collected at the Cañaveralejo wastewater treatment plant (Cali, Colombia) was used to feed pilot-scale SAT units at a rate of 1.25 m.d?¹. Dissolved organic carbon (DOC) removal in a 5.0 m length and 0.1 m diameter column packed with sand was 64.4%, while a similar column packed with a Mollisol soil from Valle del Cauca region yielded 56.2%. Oxygen availability was an important factor in OM degradation, given that the sand column degraded OM aerobically and the soil column degraded OM under oxic as well as anoxic conditions. SAT acted as a reliable barrier for DOC in tropical conditions. Nevertheless, operational problems such as clogging indicated that probably Mollisol soil may not be the suitable for SAT or that this particular effluent requires further pre-treatment before SAT. PMID:25098874

Ascúntar-Ríos, D; Madera-Parra, C A; Peña-Varón, M R; Sharma, S K

2014-01-01

268

Biodegradation by bioaugmentation of dairy wastewater by fungal consortium on a bioreactor lab-scale and on a pilot-scale  

E-print Network

-culture on whey (5 g/L lactose) or on the dairy effluent. Indeed, Chemical oxygen demand (COD) removal yields to the conventional wastewater treatment plant (activated sludge) in decreasing chemical oxygen demand (COD) owing, have a high pH as well as a high biochemical oxygen demand (BOD), because of the detergents and milk

Boyer, Edmond

269

Hanford Waste Vitrification program pilot-scale ceramic melter Test 23  

SciTech Connect

The pilot-scale ceramic melter test, was conducted to determine the vitrification processing characteristics of simulated Hanford Waste Vitrification Plant process slurries and the integrated performance of the melter off-gas treatment system. Simulated melter feed was prepared and processed to produce glass. The vitrification system, achieved an on-stream efficiency of greater than 98%. The melter off-gas treatment system included a film cooler, submerged bed scrubber, demister, high-efficiency mist eliminator, preheater, and high-efficiency particulate air filter (HEPA). Evaluation of the off-gas system included the generation, nature, and capture efficiency of gross particulate, semivolatile, and noncondensible melter products. 17 refs., 48 figs., 61 tabs.

Goles, R.W.; Nakaoka, R.K.

1990-02-01

270

Antibacterial and enzymatic activity of microbial community during wastewater treatment by pilot scale vermifiltration system.  

PubMed

The present study investigated microbial community diversity and antibacterial and enzymatic properties of microorganisms in a pilot-scale vermifiltration system during domestic wastewater treatment. The study included isolation and identification of diverse microbial community by culture-dependent method from a vermifilter (VF) with earthworms and a conventional geofilter (GF) without earthworms. The results of the four months study revealed that presence of earthworms in VF could efficiently remove biochemical oxygen demand (BOD), chemical oxygen demand (COD), total and fecal coliforms, fecal streptococci and other pathogens. Furthermore, the burrowing activity of earthworms promoted the aeration conditions in VF which led to the predominance of the aerobic microorganisms, accounting for complex microbial community diversity. Antibacterial activity of the isolated microorganisms revealed the mechanism behind the removal of pathogens, which is reported for the first time. Specifically, cellulase, amylase and protease activity is responsible for biodegradation and stabilization of organic matter. PMID:24907572

Arora, Sudipti; Rajpal, Ankur; Bhargava, Renu; Pruthi, Vikas; Bhatia, Akansha; Kazmi, A A

2014-08-01

271

Co-gasification of hardwood chips and crude glycerol in a pilot scale downdraft gasifier.  

PubMed

Seeking appropriate approaches to utilize the crude glycerol produced in biodiesel production is very important for the economic viability and environmental impacts of biodiesel industry. Gasification may be one of options for addressing this issue. Co-gasification of hardwood chips blending with crude glycerol in various loading levels was undertaken in the study involving a pilot scale fixed-bed downdraft gasifier. The results indicated that crude glycerol loading levels affected the gasifier's performance and the quality of syngas produced. When crude glycerol loading level increased, the CO, CH(4), and tar concentrations of the syngas also increased but particle concentration decreased. Though further testing is suggested, downdraft gasifiers could be run well with hardwood chips blending with liquid crude glycerol up to 20 (wt%). The syngas produced had relatively good quality for fueling internal combustion engines. This study provides a considerable way to utilize crude glycerol. PMID:21435871

Wei, Lin; Pordesimo, Lester O; Haryanto, Agus; Wooten, James

2011-05-01

272

Slag Characterization: A Necessary Tool for Modeling and Simulating Refractory Corrosion on a Pilot Scale  

NASA Astrophysics Data System (ADS)

The slag in pyrometallurgical operations plays a major role affecting the life of furnace refractory. As such, comprehensive mineralogical and chemical slag examination, physical property determination including the slag melting point or liquidus, and viscosity are necessary for precise understanding of a slag. At the RHI Technology Center Leoben, Austria, the main objective of slag characterization work is to reach a better understanding of refractory corrosion. This corrosion testwork is performed at the laboratory and pilot scale. Typically, corrosion tests are performed in an induction furnace or rotary kiln, with the main purpose being the improved selection of the most suitable refractory products to improve refractory performance in operating metallurgical furnaces. This article focuses on characterization of samples of six non-ferrous, customer-provided slags. This includes slag from a copper Peirce-Smith converter, a short rotary furnace for lead smelting, a titania-processing furnace, and a Ni-Cu top blowing rotary converter (TBRC) plant.

Gregurek, D.; Wenzl, C.; Reiter, V.; Studnicka, H. L.; Spanring, A.

2014-09-01

273

[Pilot-scale study on riparian mixed plant zones treating polluted river water].  

PubMed

The polluted river water is treated with pilot-scale riparian zones of no aquatic plant, Vetiveria zizanioides + submerged plants, and weed+ Typha angustifolia L. + Phragmites communis. It is shown that the vegetation water zones are better than the no vegetation water zone and Vetiveria zizanioides + submerged plants zone is the best in improving water quality. The average removals of the Vetiveria zizanioides + submerged plant zone is 43.5% COD, 71.1% ammonia and 69.3% total phosphorus respectively. The dissolved oxygen (DO) and temperature of effluents from the three water zones are also investigated. It shows that DO of effluent from the vegetation zones are more stable than that of effluent from the no vegetation zone, and the temperature of the effluent from the vegetation zones are lower than that from the no vegetation zones. The submerged plants have special role in water quality improvement, and should be studied further. PMID:16767981

Li, Rui-hua; Guan, Yun-tao; He, Miao; Hu, Hong-yin; Jiang, Zhan-peng

2006-04-01

274

HWVP pilot-scale vitrification system campaign: LFCM-8 summary report  

SciTech Connect

The Hanford Waste Vitrification Plant (HWVP) is being designed to treat the high-level radiative waste (HLW) stored in underground storage tanks as an alkaline sludge. Tank waste will first be retrieved and pretreated to minimize solids requiring vitrification as HLW. The glass product resulting from HWVP operations will be stored onsite in stainless steel canisters until the HLW repository is available for final disposal. The first waste stream scheduled to be processed by the HWVP is the neutralized current acid waste (NCAW) stored in double-shell storage tanks. The Pacific Northwest Laboratory (PNL) is supporting Westinghouse Hanford Company (WHC) by providing research, development, and engineering expertise in defined areas. As a part of this support, pilot-scale testing is being conducted to support closure of HWVP design and development issues. Testing results will verify equipment design performance, establish acceptable and optimum process parameters, and support product qualification activities.

Perez, J.M.; Whitney, L.D.; Buchmiller, W.C.; Daume, J.T.; Whyatt, G.A.

1996-04-01

275

Pilot-scale anaerobic digestion of screenings from wastewater treatment plants.  

PubMed

The anaerobic digestion of screenings from a municipal wastewater treatment plant was studied in a 90 L pilot-scale digester operated at 35 degrees C under semi-continuous conditions. In the first 4 weeks, a dry solids residence time of 28 days was applied, but the installation of inhibitory conditions was observed. Feeding was therefore suspended for 4 weeks to allow the digester to recover from inhibition, and then progressively increased up to a constant load of 6 kg of raw waste per week, corresponding to an average residence time of about 35 days of dry solids. At this stage, biogas production stabilized between 513 and 618 Nl/kg VS(added) per week, with methane contents around 61% v/v. The results of this work thereby supported the feasibility of (co-)digestion as a potential alternative treatment of screenings from municipal wastewater treatment plants. PMID:20655208

Le Hyaric, Ronan; Canler, Jean-Pierre; Barillon, Bruno; Naquin, Pascale; Gourdon, Rémy

2010-12-01

276

Methane fermentation of a mixture of seaweed and milk at a pilot-scale plant.  

PubMed

In this study, a pilot-scale plant was built to examine the practicality of producing biogas from seaweeds, widely available in Japan. Laminaria sp. and Ulva sp. seaweeds were mixed with other organic waste (milk) and used as fermentation materials. Though quantities and ratios of the materials were varied, the ratio of generated methane to input chemical oxygen demand (COD) was largely stable (0.2-0.3m(3) methane/kg COD) and the organic acid concentration in the methane fermentation solution was low (<1200 ppm) during prolonged operation. These findings indicate that stable methane fermentation was achieved and that mixing with other organic material was effective in suppressing fluctuations in material amounts caused by the variable supply of seaweeds. Our results demonstrate the practical feasibility of biogas generation using seaweeds. PMID:20656554

Matsui, Toru; Koike, Yoji

2010-11-01

277

Evaluation of pilot-scale in-vessel composting for food waste treatment.  

PubMed

This study is aimed to evaluate the performance of pilot-scale in-vessel composting for food wastes treatment. The composting plant was installed with 324 m3 of the composting bay volume and 14,000 kg/day of the composting material flow rate. The evaluations studied included the operational indices, the compost maturity indices, and the quality of the final compost. Blowers of this system were useful in maintaining aerobic condition (over 6% oxygen concentration in off-gas) through the entire compost bay. The levels of indices evaluated remained constant in the final part of composting. The final compost was satisfactory for its agricultural application. It was revealed in this study that bulk density bore a linear relation to moisture content during composting, and the final compost without bulking agent showed negative correlation between heavy metal and organic matters content. PMID:18023532

Kim, Joung-Dae; Park, Joon-Seok; In, Byung-Hoon; Kim, Daekeun; Namkoong, Wan

2008-06-15

278

Phosphorus removal by expanded clay--six years of pilot-scale constructed wetlands experience.  

PubMed

Constructed wetlands, which facilitate phosphorus removal via precipitation, adsorption, and biological assimilation, offer a promising appropriate technology for advanced treatment in wastewater treatment plants. Because adsorption and precipitation are pointed out as the major phosphorus-removal mechanisms, the selection of a medium with high phosphorus-sorption capacity is important to obtain a sustained phosphorus removal. The objective of this study was to evaluate two kinds of lightweight expanded clay aggregates (LWAs)--Filtralite NR and Filtralite MR (Maxit Group, Avelar, Portugal)--as substrates in constructed wetlands to improve phosphorus-removal performance. Laboratory experiments were performed to test the potential of the LWAs to remove phosphorus from a phosphate solution. The experimental data were well-fitted by both the Langmuir and Freundlich isotherm models. Pilot-scale investigations were carried out to evaluate the phosphorus removal under field conditions. Four subsurface constructed wetlands were operated since June 2002; two of them were planted with Phragmites australis, and the other two were unplanted. The beds were filled with the two kinds of LWAs. Total phosphorous and pH were monitored since 2003, at a mean hydraulic load of 50 +/- 4 L/(m2 x d), during 6 years. The inflow phosphorus concentration was in the range 4 to 13 mg/L. Under the conditions used, beds with Filtralite MR had better efficiency, and the bed with Filtralite MR planted with Phragmites australis provided a phosphorus effluent mean concentration of 0.7 +/- 0.2 mg/L, during the trial period. This study presents the first long-term pilot-scale data for constructed wetlands using LWAs. PMID:20183979

Mateus, Dina M R; Pinho, Henrique J O

2010-02-01

279

Pilot-scale of MecTool{trademark}: A novel approach to in-situ remediation  

SciTech Connect

The MecTool{trademark} is an in situ mixing and fluid delivery system consisting of a 4 to 14 feet in diameter boring/mixing tool, a hollow stem kelly bar with an integral fluid delivery system, high torque earth-drilling equipment, an off-gas collection system, and computerized control and monitoring. The MecTool{trademark} has been used in several field treatments. demonstrations and studies. To further the technology and to provide a technical basis for the MecTool{trademark} treatment system, a mini-MecTool{trademark} was used to evaluate pilot-scale performance. The mini-MecTool{trademark} is a miniature version of the field unit and consists of a hollow Kelly bar and a 10 inch diameter auger with injection ports. A sandy clay soil representing a typical unsaturated zone soil was spiked with contaminants of interest (organics, metals and radionuclides). The spiked soil was treated with the mini-MecTool{trademark} unit using hot air stripping for removal of volatile organics, stabilization to reduce the volatilization of organics and to fix metals and radionuclides, peroxide injection for wet oxidation of the organics and bioremediation to degrade the volatile organics. For comparison, laboratory controls representing ideal treatment conditions were also performed for these same four technologies. In each case, the mini-MecTool{trademark} pilot-scale test was compared to the laboratory control sample treated under optimum conditions. The MecTool{trademark} in-situ methodology showed good promise for the range of contaminants considered.

Hemmings, R.; Hoeffner, S.; Schafer, J. [Rust Federal Services, Anderson, SC (United States); Kappler, R. [Millgard Environmental Corp., Livonia, MI (United States)

1994-12-31

280

Pilot-scale grout production test with a simulated low-level waste  

SciTech Connect

Plans are underway at the Hanford Site near Richland, Washington, to convert the low-level fraction of radioactive liquid wastes to a grout form for permanent disposal. Grout is a mixture of liquid waste and grout formers, including portland cement, fly ash, and clays. In the plan, the grout slurry is pumped to subsurface concrete vaults on the Hanford Site, where the grout will solidify into large monoliths, thereby immobilizing the waste. A similar disposal concept is being planned at the Savannah River Laboratory site. The underground disposal of grout was conducted at Oak Ridge National Laboratory between 1966 and 1984. Design and construction of grout processing and disposal facilities are underway. The Transportable Grout Facility (TGF), operated by Rockwell Hanford Operations (Rockwell) for the Department of Energy (DOE), is scheduled to grout Phosphate/Sulfate N Reactor Operations Waste (PSW) in FY 1988. Phosphate/Sulfate Waste is a blend of two low-level waste streams generated at Hanford's N Reactor. Other wastes are scheduled to be grouted in subsequent years. Pacific Northwest Laboratory (PNL) is verifying that Hanford grouts can be safely and efficiently processed. To meet this objective, pilot-scale grout process equipment was installed. On July 29 and 30, 1986, PNL conducted a pilot-scale grout production test for Rockwell. During the test, 16,000 gallons of simulated nonradioactive PSW were mixed with grout formers to produce 22,000 gallons of PSW grout. The grout was pumped at a nominal rate of 15 gpm (about 25% of the nominal production rate planned for the TGF) to a lined and covered trench with a capacity of 30,000 gallons. Emplacement of grout in the trench will permit subsequent evaluation of homogeneity of grout in a large monolith. 12 refs., 34 figs., 5 tabs.

Fow, C.L.; Mitchell, D.H.; Treat, R.L.; Hymas, C.R.

1987-05-01

281

Closure for milliliter scale bioreactor  

DOEpatents

A closure for a microreactor includes a cap that is configured to be inserted into a well of the microreactor. The cap, or at least a portion of the cap, is compliant so as to form a seal with the well when the cap is inserted. The cap includes an aperture that provides an airway between the inside of the well to the external environment when the cap is inserted into the well. A porous plug is inserted in the aperture, e.g., either directly or in tube that extends through the aperture. The porous plug permits gas within the well to pass through the aperture while preventing liquids from passing through to reduce evaporation and preventing microbes from passing through to provide a sterile environment. A one-way valve may also be used to help control the environment in the well.

Klein, David L. (Palo Alto, CA); Laidlaw, Robert D. (Albany, CA); Andronaco, Gregory (Palo Alto, CA); Boyer, Stephen G. (Moss Beach, CA)

2010-12-14

282

PILOT-SCALE REMOVAL OF FLUORIDE FROM LEGACY PLUTONIUM MATERIALS USING VACUUM SALT DISTILLATION  

SciTech Connect

Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. In 2011, SRNL adapted the technology for the removal of fluoride from fluoride-bearing salts. The method involved an in situ reaction between potassium hydroxide (KOH) and the fluoride salt to yield potassium fluoride (KF) and the corresponding oxide. The KF and excess KOH can be distilled below 1000{deg}C using vacuum salt distillation (VSD). The apparatus for vacuum distillation contains a zone heated by a furnace and a zone actively cooled using either recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attaned, heating begins. Volatile salts distill from the heated zone to the cooled zone where they condense, leaving behind the non-volatile material in the feed boat. Studies discussed in this report were performed involving the use of non-radioactive simulants in small-scale and pilot-scale systems as well as radioactive testing of a small-scale system with plutonium-bearing materials. Aspects of interest include removable liner design considerations, boat materials, in-line moisture absorption, and salt deposition.

Pierce, R. A.; Pak, D. J.

2012-09-11

283

Bioreactor technology: a novel industrial tool for high-tech production of bioactive molecules and biopharmaceuticals from plant roots.  

PubMed

Plants are the richest source for different bioactive molecules. Because of the vast number of side effects associated with synthetic pharmaceuticals, medical biotechnologists turned to nature to provide new promising therapeutic molecules from plant biofactories. The large-scale availability of the disease- and pesticide-free raw material is, however, restricted in vivo. Many bioactive plant secondary metabolites are accumulated in roots. Engineered plants can also produce human therapeutic proteins. Vaccines and diagnostic monoclonal antibodies can be won from their roots, so that engineered plants hold immense potential for the biopharmaceutical industry. To obtain sufficient amounts of the plant bioactive molecules for application in human therapy, adventitious and hairy roots have to be cultured in in vitro systems. High-tech pilot-scale bioreactor technology for the establishment of a long-term adventitious root culture from biopharmaceutical plants has recently been established. In this review, I briefly discuss a technology for cultivating bioactive molecule-rich adventitious and hairy roots from plants using a high-tech bioreactor system, as well as the principles and application of genome-restructuring mechanisms for plant-based biopharmaceutical production from roots. High-tech bioreactor-derived bioactive phytomolecules and biopharmaceuticals hold the prospect of providing permanent remedies for improving human well-being. PMID:17136730

Sivakumar, Ganapathy

2006-12-01

284

Bench- and pilot-scale thermal desorption treatability studies on pesticide-contaminated soils from Rocky Mountain Arsenal  

SciTech Connect

Thermal desorption is being considered as a potential remediation technology for pesticide-contaminated soils at the Rocky Mountain Arsenal (RMA) in Denver, Colorado. From 1988 through 1992, numerous laboratory- and bench-scale indirect-heated thermal desorption (IHTD) treatability studies have been performed on various soil medium groups from the arsenal. RMA has contracted Argonne National Laboratory to conduct a pilot-scale direct-fired thermal desorption (DFTD) treatability study on pesticide-contaminated RMA soil. The purpose of this treatability study is to evaluate the overall effectiveness of the DFTD technology on contaminated RMA soils and to provide data upon which future conceptual design assumptions and cost estimates for a full-scale system can be made. The equipment used in the DFTD treatability study is of large enough scale to provide good full-scale design parameters and operating conditions. The study will also provide valuable-emissions and materials-handling data. Specifically this program will determine if DFTD can achieve reductions in soil contamination below the RMA preliminary remediation goals (PRGs), define system operating conditions for achieving the PRGs, and determine the fate of arsenic and other hazardous metals at these operating conditions. This paper intends to compare existing data from a bench-scale IHTD treatability study using equipment operated in the batch mode to new data from a pilot-scale DFTD operated in a parallel-flow continuous mode. Delays due to materials-handling problems and permit issues have delayed the start of the pilot-scale DFTD testing. The first pilot-scale test is scheduled for the flat week in January 1995. The available data will be presented March 9, 1995, at the Seventh Annual Gulf Coast Environmental Conference in Houston, Texas.

Swanstrom, C.P. [Argonne National Lab., IL (United States); Besmer, M. [Rocky Mountain Arsenal, Denver, CO (United States)

1995-03-09

285

Solid transport in a pyrolysis pilot-scale rotary kiln: preliminary results—stationary and dynamic results  

Microsoft Academic Search

Experiments for the investigation of the flow of granular solids in a pyrolysis pilot-scale rotary kiln are presented. These experiments consisted first in measuring the volumetric filling ratio (steady-state experiences) for several operating conditions and second in recording the exit flow rates after a positive or negative step in one of the operating parameters (dynamic experiences). A dynamical model computing

N. Descoins; J.-L. Dirion; T. Howes

2005-01-01

286

Design and performance of a pilot-scale constructed wetland treatment system for natural gas storage produced water  

Microsoft Academic Search

To test the hypothesis that water produced from natural gas storage wells could be treated effectively by constructed wetland treatment systems, a modular pilot-scale system was designed, built, and used for treating gas storage produced waters. Four simulated waters representing the range of contaminant concentrations typical of actual produced waters were treated, and the system’s performance was monitored. Freshwater wetland

Laura E. Kanagy; Brenda M. Johnson; James W. Castle; John H. Rodgers

2008-01-01

287

Evaluating the efficiency and temporal variation of pilot-scale constructed wetlands and steel slag phosphorus removing  

E-print Network

. Rizzo a , Greg Druschel c , Nancy Hayden a , Eamon Twohig b a College of Engineering and Mathematical Available online 24 May 2010 Keywords: Agricultural livestock wastewater Hybrid systems Slag filter systems of three hybrid and three integrated, saturated flow, pilot-scale constructed wetlands (CWs) were tested

Vermont, University of

288

A PILOT-SCALE STUDY OF THE PRECURSORS LEADING TO THE FORMATION OF MIXED BROMO-CHLORO DIOXINS AND FURANS  

EPA Science Inventory

The paper gives results of experiments in a pilot-scale rotary kiln incinerator simulator where a mixture of chlorinated and brominated surrogate waste was burned in the presence of injected fly-ash from a coal-fired utility boiler. Measurements were made of semivolatile products...

289

Underground tank vitrification: A pilot-scale in situ vitrification test of a tank containing a simulated mixed waste sludge  

SciTech Connect

This report documents research on sludge vitrification. The first pilot scale in-situ vitrification test of a simulated underground tank was successfully completed by researchers at Pacific Northwest Laboratory. The vitrification process effectively immobilized the vast majority of radionuclides simulants and toxic metals were retained in the melt and uniformly distributed throughout the monolith.

Thompson, L.E.; Powell, T.D.; Tixier, J.S.; Miller, M.C. [Pacific Northwest Lab., Richland, WA (United States); Owczarski, P.C. [Science Applications International Corp., Richland, WA (United States)

1993-09-01

290

PILOT-SCALE STUDIES ON THE EFFECT OF BROMINE ADDITION ON THE EMISSIONS OF CHLORINATED ORGANIC COMBUSTION BY-PRODUCTS  

EPA Science Inventory

The addition of brominated organic compounds to the feed of a pilot-scale incinerator burning chlorinated waste has been found previously, under some circumstances, to enhance emissions of volatile and semivolatile organic chlorinated products of incomplete combustion (PiCs) incl...

291

INTERACTIONS BETWEEN BROMINE AND CHLORINE IN A PILOT-SCALE HAZARDOUS WASTE INCINERATOR (EPA/600/A-96/066)  

EPA Science Inventory

The paper discusses experiments that were performed in a 73-kW pilot-scale rotary-kiln incinerator simulator equipped with a 73-kW secondary combustion chamber during which a complex organic mixture containing bromine (Br) and chlorine (Cl) was incinerated. Detailed measurements ...

292

RECYCLING A NONIONIC AQUEOUS-BASED METAL-CLEANING SOLUTION WITH A CERAMIC MEMBRANE: PILOT SCALE EVALUATION  

EPA Science Inventory

The effectiveness of a zirconium dioxide (ZrO2) membrane filter was evaluated for recycling a nonionic aqueous metal cleaning bath under real-world conditions. The pilot-scale study consisted of four 7- to 16-day filtration runs, each processed a portion of the cleaning bath duri...

293

RECYCLING A NONIONIC AQUEOUS-BASED METAL-CLEANING SOLUTION WITH A CERAMIC MEMBRANE: PILOT SCALE EVALUATION: JOURNAL ARTICLE  

EPA Science Inventory

NRMRL-CIN-1189 Ferguson*, T.D., Chen, A.S.C., and Stencel, N. Recycling a Nonionic Aqueous-Based Metal-Cleaning Solution with a Ceramic Membrane: Pilot Scale Evaluation. Published in: Environmental Progress 20 (2):123-132 (2001). The effectiveness of a zirconium dioxide (ZrO2) ...

294

CONTROL OF AIR EMISSIONS FROM HAZARDOUS WASTE COMBUSTION SOURCES: FIELD EVALUATIONS OF PILOT-SCALE AIR POLLUTION CONTROL DEVICES  

EPA Science Inventory

Pilot scale air pollution control devices supplied by Hydro-Sonic Systems, ETS, Inc., and Vulcan Engineering Company were installed at the ENSCO, Inc. Incinerator in El Dorado, Arkansas, in the spring of 1984. Each of these units treated an uncontrolled slipstream of the incinera...

295

Towards direct potable reuse with forward osmosis: Technical assessment of long-term process performance at the pilot scale  

E-print Network

Towards direct potable reuse with forward osmosis: Technical assessment of long-term process 26 April 2013 Available online 23 May 2013 Keywords: Forward osmosis Osmotic dilution Reverse osmosis the performance of forward osmosis (FO) at the pilot scale to achieve simultaneous seawater desalination

296

SIZE DISTRIBUTIONS OF TRACE METALS IN FLUE GAS PARTICULATE FROM A PILOT-SCALE ROTARY KILN INCINERATOR  

EPA Science Inventory

The distributions of nine trace metals in flue gas particulate by particle size range were determined as part of a pilot-scale hazardous waste incineration test program. hese tests were conducted in the rotary kiln incinerator system at the U.S. EPA's Incineration Research Facili...

297

CONTROL OF AIR POLLUTION EMISSIONS FROM MOLYBDENUM ROASTING. VOLUME 3. PILOT SCALE TEST RESULTS FOR MAGNESIUM OXIDE SCRUBBING  

EPA Science Inventory

A research project was conducted to determine the feasibility of applying the magnesium oxide (MgO) scrubbing system to smelter off-gas streams containing approximately one percent SO2. Pilot scale (4000 cu Nm/hr) tests of the MgO system using a packed tower absorber with no rege...

298

PILOT-SCALE DEMONSTRATION OF A SLURRY-PHASE BIOLOGICAL REACTOR FOR CREOSOTE-CONTAMINATED SOIL - APPLICATION ANALYSIS REPORT  

EPA Science Inventory

In support of the U.S. Environmental Protection Agency?s (EPA) Superfund Innovative Technology Evaluation (SITE) Program, a pilot-scale demonstration of a slurry-phase bioremediation process was performed May 1991 at the EPA?s Test & Evaluation Facility in Cincinnati, OH. In this...

299

TECHNOLOGY EVALUATION REPORT: PILOT-SCALE DEMONSTRATION OF A SLURRY-PHASE BIOLOGICAL REACTOR FOR CREOSOTE-CONTAMINATED SOIL  

EPA Science Inventory

This report documents a pilot-scale test of a slurry-phase biological reactor for treatment of creosote-contaminated soil. he technology used was a reactor system in which an aqueous slurry of soil was mixed with appropriate nutrients and seeded with microorganisms to enhance the...

300

Process modeling of hydrothermal treatment of municipal solid waste to form high solids slurries in a pilot scale system  

Microsoft Academic Search

Two models are developed for characterizing the hydrothermal decomposition of municipal solid waste (MSW) in a pilot scale facility. The process modeled involves the use of high pressure steam to directly heat surrogate MSW, newspaper, to temperatures and pressures where decomposition reactions breakdown the organic matter to form a coal like solid having properties which make it suitable as a

Thorsness

1995-01-01

301

NASA Classroom Bioreactor  

NASA Technical Reports Server (NTRS)

Exploration of space provides a compelling need for cell-based research into the basic mechanisms that underlie the profound changes that occur in terrestrial life that is transitioned to low gravity environments. Toward that end, NASA developed a rotating bioreactor in which cells are cultured while continuously suspended in a cylinder in which the culture medium rotates with the cylinder. The randomization of the gravity vector accomplished by the continuous rotation, in a low shear environment, provides an analog of microgravity. Because cultures grown in bioreactors develop structures and functions that are much closer to those exhibited by native tissue than can be achieved with traditional culture methods, bioreactors have contributed substantially to advancing research in the fields of cancer, diabetes, infectious disease modeling for vaccine production, drug efficacy, and tissue engineering. NASA has developed a Classroom Bioreactor (CB) that is built from parts that are easily obtained and assembled, user-friendly and versatile. It can be easily used in simple school settings to examine the effect cultures of seeds or cells. An educational brief provides assembly instructions and lesson plans that describes activities in science, math and technology that explore free fall, microgravity, orbits, bioreactors, structure-function relationships and the scientific method.

Scully, Robert

2004-01-01

302

Fuel-grade ethanol transport and impacts to groundwater in a pilot-scale aquifer tank.  

PubMed

Fuel-grade ethanol (76L of E95, 95%v/v ethanol, 5%v/v hydrocarbon mixture as a denaturant) was released at the water table in an 8150-L continuous-flow tank packed with fine-grain masonry sand. Ethanol, which is buoyant and hygroscopic, quickly migrated upwards and spread laterally in the capillary zone. Horizontal migration of ethanol occurred through a shallow thin layer with minimal vertical dispersion, and was one order of magnitude slower than the preceding bromide tracer. Dyes, one hydrophobic (Sudan-IV) and one hydrophilic (Fluorescein) provided evidence that the fuel hydrocarbons phase separated from the E95 mixture as ethanol was diluted by pore water and its cosolvent effect was diminished. Most of the added ethanol (98%) was recovered in the effluent wells that captured the flow through the high water content regions above the water table. Complementary bench-scale 2-D visualization experiments with E95 confirmed hydrocarbon phase separation, residual NAPL formation and migration within the capillary fringe. These results corroborate previous bench-scale studies showing that ethanol has high affinity for vadose-zone pore water and can migrate through the capillary zone. The pilot-scale tank experiment provides the first hydrocarbon and ethanol concentration measurements (and thus, quantification of impacts to groundwater quality) from a subsurface spill of E95 in a well-characterized system with a well-defined source. It also provides the first quantitative near-field-scale evidence that capillarity can significantly retard the vertical dispersion and horizontal advection of ethanol. Such effects could be important determinants of the extent of ethanol migration and longevity as well as groundwater impacts. PMID:17126874

Cápiro, Natalie L; Stafford, Brent P; Rixey, William G; Bedient, Philip B; Alvarez, Pedro J J

2007-02-01

303

Plant cell cultures: bioreactors for industrial production.  

PubMed

The recent biotechnology boom has triggered increased interest in plant cell cultures, since a number of firms and academic institutions investigated intensively to rise the production of very promising bioactive compounds. In alternative to wild collection or plant cultivation, the production of useful and valuable secondary metabolites in large bioreactors is an attractive proposal; it should contribute significantly to future attempts to preserve global biodiversity and alleviate associated ecological problems. The advantages of such processes include the controlled production according to demand and a reduced man work requirement. Plant cells have been grown in different shape bioreactors, however, there are a variety of problems to be solved before this technology can be adopted on a wide scale for the production of useful plant secondary metabolites. There are different factors affecting the culture growth and secondary metabolite production in bioreactors: the gaseous atmosphere, oxygen supply and CO2 exchange, pH, minerals, carbohydrates, growth regulators, the liquid medium rheology and cell density. Moreover agitation systems and sterilization conditions may negatively influence the whole process. Many types ofbioreactors have been successfully used for cultivating transformed root cultures, depending on both different aeration system and nutrient supply. Several examples of medicinal and aromatic plant cultures were here summarized for the scale up cultivation in bioreactors. PMID:21520713

Ruffoni, Barbara; Pistelli, Laura; Bertoli, Alessandra; Pistelli, Luisa

2010-01-01

304

Final report for the pilot-scale thermal treatment of Lower East Fork Poplar Creek floodplain soils  

SciTech Connect

IT Corporation (IT) was contracted by Martin Marietta Energy Systems, Inc. (Energy Systems) to perform a pilot-scale demonstration of the effectiveness of thermal desorption as a remedial technology for removing mercury from the Lower East Fork Poplar Creek (LEFPC) floodplain soil. Previous laboratory studies by Energy Systems suggested that this technology could reduce mercury to very low levels. This pilot-scale demonstration study was initiated to verify on an engineering scale the performance of thermal desorption. This report includes the details of the demonstration study, including descriptions of experimental equipment and procedures, test conditions, sampling and analysis, quality assurance (QA), detailed test results, and an engineering assessment of a conceptual full-scale treatment facility. The specific project tasks addressed in this report were performed between October 1993 and June 1994. These tasks include soil receipt, preparation, and characterization; prepilot (bench-scale) desorption tests; front-end materials handling tests; pilot tests; back-end materials handling tests; residuals treatment; and engineering scale-up assessment.

NONE

1994-09-01

305

Experimental investigation of orbitally shaken bioreactor hydrodynamics  

NASA Astrophysics Data System (ADS)

The growing interest in the use of orbitally shaken bioreactors for mammalian cells cultivation raises challenging hydrodynamic issues. Optimizations of mixing and oxygenation, as well as similarity relations between different culture scales are still lacking. In the present study, we investigated the relation between the shape of the free surface, the mixing process and the velocity fields, using specific image processing of high speed visualization and Laser Doppler velocimetry. Moreover, similarity parameters were identified for scale-up purposes.

Reclari, Martino; Dreyer, Matthieu; Farhat, Mohamed

2010-11-01

306

Properties of pyrolytic chars and activated carbons derived from pilot-scale pyrolysis of used tires.  

PubMed

Used tires were pyrolyzed in a pilot-scale quasi-inert rotary kiln. Influences of variables, such as time, temperature, and agent flow, on the activation of obtained char were subsequently investigated in a laboratory-scale fixed bed. Mesoporous pores are found to be dominant in the pore structures of raw char. Brunauer-Emmett-Teller (BET) surfaces of activated chars increased linearly with carbon burnoff. The carbon burnoff of tire char achieved by carbon dioxide (CO2) under otherwise identical conditions was on average 75% of that achieved by steam, but their BET surfaces are almost the same. The proper activation greatly improved the aqueous adsorption of raw char, especially for small molecular adsorbates, for example, phenol from 6 to 51 mg/g. With increasing burnoff, phenol adsorption exhibited a first-stage linear increase followed by a rapid drop after 30% burnoff. Similarly, iodine adsorption first increased linearly, but it held as the burnoff exceeded 40%, which implied that the reduction of iodine adsorption due to decreasing micropores was partially made up by increasing mesopores. Both raw chars and activated chars showed appreciable adsorption capacity of methylene-blue comparable with that of commercial carbons. Thus, tire-derived activated carbons can be used as an excellent mesoporous adsorbent for larger molecular species. PMID:16259427

Li, S Q; Yao, Q; Wen, S E; Chi, Y; Yan, J H

2005-09-01

307

Immobilization of simulated high-level radioactive waste in borosilicate glass: Pilot scale demonstrations  

SciTech Connect

The Integrated DWPF Melter System (IDMS), operated by the Savannah River Laboratory, is a pilot scale facility used in support of the start-up and operation of the Department of Energy`s Defense Waste Processing Facility. The IDMS has successfully demonstrated, on an engineering scale (one-fifth), that simulated high level radioactive waste (HLW) sludge can be chemically treated with formic acid to adjust both its chemical and physical properties, and then blended with simulated precipitate hydrolysis aqueous (PHA) product and borosilicate glass frit to produce a melter feed which can be processed into a durable glass product. The simulated sludge, PHA and frit were blended, based on a product composition program, to optimize the loading of the waste glass as well as to minimize those components which can cause melter processing and/or glass durability problems. During all the IDMS demonstrations completed thus far, the melter feed and the resulting glass that has been produced met all the required specifications, which is very encouraging to future DWPF operations. The IDMS operations also demonstrated that the volatile components of the melter feed (e.g., mercury, nitrogen and carbon, and, to a lesser extent, chlorine, fluorine and sulfur) did not adversely affect the melter performance or the glass product.

Ritter, J.A.; Hutson, N.D.; Zamecnik, J.R.; Carter, J.T.

1991-12-31

308

Pilot scale comparison of enhanced coagulation with magnetic resin plus coagulation systems.  

PubMed

Previous work has shown that magnetic ion-exchange treatment before coagulation gives high natural organic matter (NOM) removal and reduced levels of disinfection byproduct when compared to conventional enhanced coagulation. The impact of the resin process on the downstream floc formation process after coagulation and the subsequent effect on clarification has not previously been shown. Water containing high concentrations of NOM were treated at pilot scale using (1) conventional enhanced coagulation and compared with (2) treatment using magnetic resin followed by coagulation at reduced doses of 50-70%. Bench scale testing was also carried out to determine floc properties for systems with and without resin pretreatment It was demonstrated that pretreatment using magnetic resin was able to significantly reduce the turbidity load onto filters as a result of the formation of a large and more robust floc. Resin pretreatment also improved NOM removal and reduced disinfection byproduct formation when compared with conventional coagulation. The turbidity load on to the filters following resin pretreatment was 1.5 +/- 0.7 NTU, whereas this value was 2.9 +/- 0.3 NTU for conventional coagulation. Flocs produced with resin pretreatment were larger than those produced by conventional coagulation, with a median floc size of 1000 microm compared to 600 microm. The improvement in floc properties following magnetic resin pretreatment was proposed to be due to the removal of NOM thatwas characteristic of carboxylic acids before the coagulation stage. PMID:18351105

Jarvis, Peter; Mergen, Max; Banks, Jenny; McIntosh, Brian; Parsons, Simon A; Jefferson, Bruce

2008-02-15

309

Developing eThread Pipeline Using SAGA-Pilot Abstraction for Large-Scale Structural Bioinformatics  

PubMed Central

While most of computational annotation approaches are sequence-based, threading methods are becoming increasingly attractive because of predicted structural information that could uncover the underlying function. However, threading tools are generally compute-intensive and the number of protein sequences from even small genomes such as prokaryotes is large typically containing many thousands, prohibiting their application as a genome-wide structural systems biology tool. To leverage its utility, we have developed a pipeline for eThread—a meta-threading protein structure modeling tool, that can use computational resources efficiently and effectively. We employ a pilot-based approach that supports seamless data and task-level parallelism and manages large variation in workload and computational requirements. Our scalable pipeline is deployed on Amazon EC2 and can efficiently select resources based upon task requirements. We present runtime analysis to characterize computational complexity of eThread and EC2 infrastructure. Based on results, we suggest a pathway to an optimized solution with respect to metrics such as time-to-solution or cost-to-solution. Our eThread pipeline can scale to support a large number of sequences and is expected to be a viable solution for genome-scale structural bioinformatics and structure-based annotation, particularly, amenable for small genomes such as prokaryotes. The developed pipeline is easily extensible to other types of distributed cyberinfrastructure. PMID:24995285

Ragothaman, Anjani; Feinstein, Wei; Jha, Shantenu; Kim, Joohyun

2014-01-01

310

Measuring Water in Bioreactor Landfills  

NASA Astrophysics Data System (ADS)

Methane is an important greenhouse gas, and landfills are the largest anthropogenic source in many developed countries. Bioreactor landfills have been proposed as one means of abating greenhouse gas emissions from landfills. Here, the decomposition of organic wastes is enhanced by the controlled addition of water or leachate to maintain optimal conditions for waste decomposition. Greenhouse gas abatement is accomplished by sequestration of photosynthetically derived carbon in wastes, CO2 offsets from energy use of waste derived gas, and mitigation of methane emission from the wastes. Maintaining optimal moisture conditions for waste degradation is perhaps the most important operational parameter in bioreactor landfills. To determine how much water is needed and where to add it, methods are required to measure water within solid waste. However, there is no reliable method that can measure moisture content simply and accurately in the heterogeneous environment typical of landfills. While well drilling and analysis of solid waste samples is sometimes used to determine moisture content, this is an expensive, time-consuming, and destructive procedure. To overcome these problems, a new technology recently developed by hydrologists for measuring water in the vadose zone --- the partitioning tracer test (PTT) --- was evaluated for measuring water in solid waste in a full-scale bioreactor landfill in Yolo County, CA. Two field tests were conducted in different regions of an aerobic bioreactor landfill, with each test measuring water in ? 250 ft3 of solid waste. Tracers were injected through existing tubes inserted in the landfill, and tracer breakthrough curves were measured through time from the landfill's gas collection system. Gas samples were analyzed on site using a field-portable gas chromatograph and shipped offsite for more accurate laboratory analysis. In the center of the landfill, PTT measurements indicated that the fraction of the pore space filled with water was 29%, while the moisture content, the mass of water divided by total wet mass of solid waste, was 28%. Near the sloped sides of the landfill, PTT results indicated that only 7.1% of the pore space was filled with water, while the moisture content was estimated to be 6.9%. These measurements are in close agreement with gravimetric measurements made on solid waste samples collected after each PTT: moisture content of 27% in the center of the landfill and only 6% near the edge of the landfill. We discuss these measurements in detail, the limitations of the PTT method for landfills, and operational guidelines for achieving unbiased measurements of moisture content in landfills using the PTT method.

Han, B.; Gallagher, V. N.; Imhoff, P. T.; Yazdani, R.; Chiu, P.

2004-12-01

311

Novel developments in bioreactor design and separations technology  

SciTech Connect

Recent advances in more efficient separation processes and advanced bioreactor concepts are discussed in this paper. Separation processes include solvent extraction, solid sorbents, and integrated processes. Advanced bioreactor systems include continuous columnar bioactors and immobilization of biocatalyst. These advanced technological approaches promise to increase productivity and decrease cost and energy requirements of biological processing systems. This is especially true for large-scale fermentation for commodity-type chemicals. 10 refs., 2 figs. (DMC)

Scott, C.D.

1984-01-01

312

Pilot-scale ISCO treatment of a MtBE contaminated site using a Fenton-like process.  

PubMed

This paper reports about a pilot-scale feasibility study of In-Situ Chemical Oxidation (ISCO) application based on the use of stabilized hydrogen peroxide catalyzed by naturally occurring iron minerals (Fenton-like process) to a site formerly used for fuel storage and contaminated by MtBE. The stratigraphy of the site consists of a 2-3 meter backfill layer followed by a 3-4 meter low permeability layer, that confines the main aquifer, affected by a widespread MtBE groundwater contamination with concentrations up to 4000 ?g/L, also with the presence of petroleum hydrocarbons. The design of the pilot-scale treatment was based on the integration of the results obtained from experimental and numerical modeling accounting for the technological and regulatory constraints existing in the site to be remediated. In particular, lab-scale batch tests allowed the selection of the most suitable operating conditions. Then, this information was implemented in a numerical software that allowed to define the injection and monitoring layout and to predict the propagation of hydrogen peroxide in groundwater. The pilot-scale field results confirmed the effective propagation of hydrogen peroxide in nearly all the target area (around 75 m(2) using 3 injection wells). As far as the MtBE removal is concerned, the ISCO application allowed us to meet the clean-up goals in an area of 60 m(2). Besides, the concentration of TBA, i.e. a potential by-product of MtBE oxidation, was actually reduced after the ISCO treatment. The results of the pilot-scale test suggest that ISCO may be a suitable option for the remediation of the groundwater plume contaminated by MtBE, providing the background data for the design and cost-estimate of the full-scale treatment. PMID:24518270

Innocenti, Ivan; Verginelli, Iason; Massetti, Felicia; Piscitelli, Daniela; Gavasci, Renato; Baciocchi, Renato

2014-07-01

313

Microliter-bioreactor array with buoyancy-driven stirring for human hematopoietic stem cell culture  

E-print Network

Microliter-bioreactor array with buoyancy-driven stirring for human hematopoietic stem cell culture of hematopoietic stem cell HSC cultures. Exploring a wide range of experimental conditions at the microliter scale-scale bioreactors for stem cell production at the clinical level. The controlled stirring inside the wells

Meinhart, Carl

314

SUPERCRITICAL WATER PARTIAL OXIDATION PHASE I - PILOT-SCALE TESTING/FEASIBILTY SUDIES FINAL REPORT  

SciTech Connect

General Atomics (GA) is developing Supercritical Water Partial Oxidation (SWPO) as a means of producing hydrogen from low-grade biomass and other waste feeds. The Phase I Pilot-scale Testing/Feasibility Studies have been successfully completed and the results of that effort are described in this report. The key potential advantage of the SWPO process is the use of partial oxidation in-situ to rapidly heat the gasification medium, resulting in less char formation and improved hydrogen yield. Another major advantage is that the high-pressure, high-density aqueous environment is ideal for reacting and gasifying organics of all types. The high water content of the medium encourages formation of hydrogen and hydrogen-rich products and is especially compatible with high water content feeds such as biomass materials. The high water content of the medium is also effective for gasification of hydrogen-poor materials such as coal. A versatile pilot plant for exploring gasification in supercritical water has been established at GA's facilities in San Diego. The Phase I testing of the SWPO process with wood and ethanol mixtures demonstrated gasification efficiencies of about 90%, comparable to those found in prior laboratory-scale SCW gasification work carried out at the University of Hawaii at Manoa (UHM), as well as other biomass gasification experience with conventional gasifiers. As in the prior work at UHM, a significant amount of the hydrogen found in the gas phase products is derived from the water/steam matrix. The studies at UHM utilized an indirectly heated gasifier with an activated carbon catalyst. In contrast, the GA studies utilized a directly heated gasifier without catalyst, plus a surrogate waste fuel. Attainment of comparable gasification efficiencies without catalysis is an important advancement for the GA process, and opens the way for efficient hydrogen production from low-value, dirty feed materials. The Phase I results indicate that a practical means to overcome limitations on biomass slurry feed concentration and preheat temperature is to coprocess an auxiliary high heating value material. SWPO coprocessing of two high-water content wastes, partially dewatered sewage sludge and trap grease, yields a scenario for the production of hydrogen at highly competitive prices. It is estimated that there are hundreds if not thousands of potential sites for this technology across the US and worldwide. The economics for plants processing 40 tpd sewage sludge solids augmented with grease trap waste are favorable over a significant range of cost parameters such as sludge disposal credit and capital financing. Hydrogen production costs for SWPO plants of this size are projected to be about $3/GJ or less. Economics may be further improved by future developments such as pumping of higher solids content sludges and improved gasifier nozzle designs to reduce char and improve hydrogen yields. The easiest market entry for SWPO is expected to be direct sales to municipal wastewater treatment plants for use with sewage sludge in conjunction with trap grease, as both of these wastes are ubiquitous and have reasonably well-defined negative value (i.e., the process can take credit for reduction of well-defined disposal costs for these streams). Additionally, waste grease is frequently recovered at municipal wastewater treatment plants where it is already contaminated with sewage. SWPO should also be favorable to other market applications in which low or negative value, high water content biomass is available in conjunction with a low or negative value fuel material. For biomass slurries primary candidates are sewage sludge, manure sludge, and shredded and/or composted organic municipal solid waste (MSW) slurries. For the high heating value stream primary candidates are trap grease, waste plastic or rubber slurries, and coal or coke slurries. Phase II of the SWPO program will be focused on verifying process improvements identified during Phase I, and then performing extended duration testing with the GA pilot plant. Tests of at least 1

SPRITZER.M; HONG,G

2005-01-01

315

Formation, physical characteristics and microbial community structure of aerobic granules in a pilot-scale sequencing batch reactor for real wastewater treatment  

Microsoft Academic Search

In this study, aerobic granular sludge was successfully developed in a pilot-scale sequencing batch reactor (SBR) installed on site to treat real wastewater using traditional activated sludge as inoculum. Compared with 1 or 2 months required by lab-scale reactor for aerobic granulation, it took about 400 days for activated sludge to transform into granule-dominant sludge in the pilot-scale SBR on

Yong-Qiang Liu; Benjamin Moy; Yun-Hua Kong; Joo-Hwa Tay

2010-01-01

316

Bioreactors Stem Cells  

E-print Network

Keywords Bioreactors Stem Cells Regenerative Medicine Tissue Engineering Pharmacology » Prof. M.; yeZhelyev, M.; eMMrich, F.; o'regan, r.; bader, a. Quantum dots for human mesenchymal stem cells and mechanical forces mediated to the cells by the matrix. The in vivo extracellular matrix constitutes

Schüler, Axel

317

Bioreactors Modeling and Control  

E-print Network

- Bioreactors: · Enzymatic reactors · Cultivation of microorganisms/cells ("fermenters") ThyssenKrupp Stainless · Recombinant m.o., mammalian (or insect) cells pharmaceuticals Processes: ·Biofuels ·Food industry for P. chrysogenum 3 ... #12;Enzymatic reactors: ex-vivo enzyme or enzymes "Fermenters" (not quite

Grossmann, Ignacio E.

318

A pilot-scale homogenization-assisted negative pressure cavitation extraction of Astragalus polysaccharides.  

PubMed

This paper reported a new, green and effective extraction technique for polysaccharides, namely homogenization-assisted negative pressure cavitation extraction (HNPCE), which succeeded in the extraction of Astragalus polysaccharides (APs). Central composite design and kinetic model were applied to optimize the extraction conditions, and the optimal parameters were obtained as follows: homogenization time 70s, negative pressure -0.068MPa, extraction temperature 64.8°C, ratio of water to material 13.4 and extraction time 53min. The proposed method exhibited considerable predominance in terms of higher APs yield (16.74%) with much lower temperature and shorter duration, as against the reported hot water extraction method (14.33% of APs yield with 100°C and 3h). Moreover, FT-IR results showed that HNPCE method did not alter the primary structure of polysaccharides. Furthermore, the pilot-scale application of HNPCE was successfully performed with 16.62% of APs yield. Thus, HNPCE is an excellent alternative method for the extraction of polysaccharides from Astragalus or other plant materials in industry. PMID:24661891

Jiao, Jiao; Wei, Fu-Yao; Gai, Qing-Yan; Wang, Wei; Luo, Meng; Fu, Yu-Jie; Ma, Wei

2014-06-01

319

Characterization of intermediate products of solar photocatalytic degradation of ranitidine at pilot-scale.  

PubMed

In the present study the mechanisms of solar photodegradation of H(2)-receptor antagonist ranitidine (RNTD) were studied in a well-defined system of a pilot plant scale Compound Parabolic Collector (CPC) reactor. Two types of heterogeneous photocatalytic experiments were performed: catalysed by titanium-dioxide (TiO(2)) semiconductor and by Fenton reagent (Fe(2+)/H(2)O(2)), each one with distilled water and synthetic wastewater effluent matrix. Complete disappearance of the parent compounds and discreet mineralization were attained in all experiments. Furthermore, kinetic parameters, main intermediate products, release of heteroatoms and formation of carboxylic acids are discussed. The main intermediate products of photocatalytic degradation of RNTD have been structurally elucidated by tandem mass spectrometry (MS(2)) experiments performed at quadrupole-time of flight (QqToF) mass analyzer coupled to ultra-performance liquid chromatograph (UPLC). RNTD displayed high reactivity towards OH radicals, although a product of conduction band electrons reduction was also present in the experiment with TiO(2). In the absence of standards, quantification of intermediates was not possible and only qualitative profiles of their evolution could be determined. The proposed TiO(2) and photo-Fenton degradation routes of RNTD are reported for the first time. PMID:20207392

Radjenovi?, Jelena; Sirtori, Carla; Petrovi?, Mira; Barceló, Damià; Malato, Sixto

2010-04-01

320

Pilot-scale production of mesoporous silica-based adsorbent for CO2 capture  

NASA Astrophysics Data System (ADS)

This study presents a pilot-scale spray drying system designed to manufacture spherical mesoporous silica particles (MSP) that is capable of producing up to 100 g per hour. The MSP fabricated via a nozzle pressure of 4 kg/cm2 and a drying temperature of 200 °C possess a high specific area of 1012 m2/g, a narrow pore size distribution with an average pore diameter of 2.4 nm, and large pore volume of 0.81 cm3/g. They were further modified with a tetraethylenepentamine (TEPA-MSP) to enhance CO2 adsorption selectivity from gas streams. The adsorption capacity of 15% CO2 on TEPA-MSP was significantly influenced by adsorption temperature and water vapor of air streams, and reached a maximum of 87.05 mg/g (1.98 mmol/g) at 60 °C and 129.19 mg/g (2.94 mmol/g) at a water vapor of 6.98%. The adsorption capacities and the physicochemical properties of TEPA-MSP were preserved through 20 cycles of adsorption-desorption operation. A comparative study revealed that the TEPA-MSP had better adsorption performance of 15% CO2 than the TEPA-modified granular activated carbon and zeolite. These results suggest that the TEPA-MSP can be stably employed in the prolonged cyclic CO2 adsorption and that they possess good potential for CO2 capture from flue gas.

Wang, Hou Chuan; Lu, Chungsying; Bai, Hsunling; Hwang, Jyh Feng; Lee, Hsiu Hsia; Chen, Wang; Kang, Yuhao; Chen, Shing-Ting; Su, Fengsheng; Kuo, Shih-Chun; Hu, Fang-Chun

2012-07-01

321

Quality and Quantity of Leachate in Aerobic Pilot-Scale Landfills  

NASA Astrophysics Data System (ADS)

In this study, two pilot-scale aerobic landfill reactors with (A1) and without (A2) leachate recirculation are used to obtain detailed information on the quantity and quality of leachate in aerobic landfills. The observed parameters of leachate quality are pH, chloride (Cl-), chemical oxygen demand (COD), biological oxygen demand (BOD), total Kjeldahl nitrogen (TKN), ammonia nitrogen (NH3-N), and nitrate (NO3 --N). pH values of the leachate increased to 7 after 50 days in reactor A1 and after 70 days in reactor A2. Cl- concentrations increased rapidly to 6100 (A1) and 6900 (A2) mg/L after 80 days, from initial values of 3000 and 2800 mg/L, respectively. COD and BOD values decreased rapidly in the A1 landfill reactor, indicating the rapid oxidation of organic matter. The BOD/COD ratio indicates that leachate recirculation slightly increases the degradation of solid waste in aerobic landfills. NH3-N concentrations decreased as a result of the nitrification process. Denitrification occurred in parts of the reactors as a result of intermittent aeration; this process causes a decrease in NO3 - concentrations. There is a marked difference between the A1 and A2 reactors in terms of leachate quantity. Recirculated leachate made up 53.3% of the leachate generated from the A1 reactor during the experiment, while leachate quantity decreased by 47.3% with recirculation when compared with the aerobic dry landfill reactor.

Bilgili, Memmet Sinan; Demir, Ahmet; Özkaya, Bestamin

2006-08-01

322

Pilot-scale study of efficient vermicomposting of agro-industrial wastes.  

PubMed

Pilot-scale vermicomposting was explored using Eudrilus eugeniae for 90 days with 45 days preliminary decomposition using different agro-industrial wastes as substrates. Spent wash and pressmud were mixed together (referred to as PS) and then combined with cow dung (CD) at five different ratios of PS:CD, namely, 25:75 (T1), 50:50 (T2), 75:25 (T3), 85:15 (T4) and 100 (T5), with two replicates for each treatment. All vermibeds expressed a significant decrease in pH (11.4-14.8%), organic carbon (4.2-30.5%) and an increase in total nitrogen (6-29%), AP (5-29%), exchangeable potash (6-21%) and turnover rate (52-66%). Maximum mortality (18.10%) of worms was recorded in T5 treatment. A high manurial value and a matured product was achieved in T3 treatment. The data reveal that pressmud mixed with spent wash can be decomposed through vermicomposting and can help to enhance the quality of vermicompost. PMID:22720423

Kumar, Vaidyanathan Vinoth; Shanmugaprakash, M; Aravind, J; Namasivayam, S Karthick Raja

2012-01-01

323

[Formation and characterization of aerobic granules in a pilot-scale reactor for real wastewater treatment].  

PubMed

Microbial granules were successfully developed in a pilot-scale sequencing batch reactor (SBR) for the treatment of real municipal wastewater. The aerobic granules developed had good settleability with a settling velocity of > 21 mh-1. The mature granular sludge was capable of simultaneous removal of chemical oxygen demand (COD), nitrogen (N) and phosphorus (P). With the cycle of 3 h, the effluent COD, ammonium nitrogen (NH+4 -N) and total nitrogen (TN) concentrations were <50 mg L-1, <5. 0 mg L-1, and <15 mgL-1, respectively. The removal efficiency for TN and total phosphorus (TP) was about 50%. Examinations by confocallaser scanning microscopy (CLSM) showed that extracellular polymeric substances (EPS) were uniformly distributed throughout the granules, forming the granule structure matrix. X-ray diffraction (XRD) analysis indicated the presence of SiO2 and other metal oxides inside aerobic granules, implying that minerals in real wastewater might function as the seed in the initial stage of aerobic granulation. PMID:25055677

Yang, Shu-Fang; Zhang, Jian-Jun; Zou, Gao-Long; Du, Zhi-Li

2014-05-01

324

Rapid cultivation of aerobic granular sludge in a pilot scale sequencing batch reactor.  

PubMed

Aerobic granular sludge which had good performance to pollutants removal was successfully cultivated within 18 days in a pilot scale sequencing batch reactor, about 25% mature aerobic granular sludge was inoculated when the setting time of activated sludge was reduced to 10 min. Anaerobic biological selector was implemented to inhibit filamentous bacteria overgrowth, where the maximum COD could reach to 1703.74 mg/L. The cultivated aerobic granular sludge was irregular and pale yellow, average particle size, SVI, SV??/SV?, PN/PS, EPS and water content were 1.58 mm, 67.64 mL/g, 0.91, 2.17, 268.90 mg EPS/g MLVSS and 98.16% on the 18th day. Mechanism of rapid granulation mainly included crystal nucleus hypothesis and selection pressure hypothesis. The inoculated aerobic granules could maintain stable under short setting time environment, making it directly as the crystal nucleus and the carriers for new particles without obvious disintegration, which eventually shortened the granulation time greatly. PMID:24905043

Long, Bei; Yang, Chang-zhu; Pu, Wen-hong; Yang, Jia-kuan; Jiang, Guo-sheng; Dan, Jing-feng; Li, Chun-yang; Liu, Fu-biao

2014-08-01

325

Pilot-Scale Selenium Bioremediation of San Joaquin Drainage Water with Thauera selenatis  

PubMed Central

This report describes a simple method for the bioremediation of selenium from agricultural drainage water. A medium-packed pilot-scale biological reactor system, inoculated with the selenate-respiring bacterium Thauera selenatis, was constructed at the Panoche Water District, San Joaquin Valley, Calif. The reactor was used to treat drainage water (7.6 liters/min) containing both selenium and nitrate. Acetate (5 mM) was the carbon source-electron donor reactor feed. Selenium oxyanion concentrations (selenate plus selenite) in the drainage water were reduced by 98%, to an average of 12 (plusmn) 9 (mu)g/liter. Frequently (47% of the sampling days), reactor effluent concentrations of less than 5 (mu)g/liter were achieved. Denitrification was also observed in this system; nitrate and nitrite concentrations in the drainage water were reduced to 0.1 and 0.01 mM, respectively (98% reduction). Analysis of the reactor effluent showed that 91 to 96% of the total selenium recovered was elemental selenium; 97.9% of this elemental selenium could be removed with Nalmet 8072, a new, commercially available precipitant-coagulant. Widespread use of this system (in the Grasslands Water District) could reduce the amount of selenium deposited in the San Joaquin River from 7,000 to 140 lb (ca. 3,000 to 60 kg)/year. PMID:16535401

Cantafio, A. W.; Hagen, K. D.; Lewis, G. E.; Bledsoe, T. L.; Nunan, K. M.; Macy, J. M.

1996-01-01

326

Characterization of membrane foulants in a pilot-scale tunnel construction wastewater treatment process.  

PubMed

A pilot-scale combination of a microfiltration (MF) and a reverse osmosis (RO) membrane system was applied on-site to treat tunnel construction wastewater. The MF membrane system initially removed contaminants (turbidity of less than 0.3 NTU) in the form of particulate materials in the feed water, thereby allowing the combined MF-RO system to efficiently remove more than 99% of known organic and inorganic contaminants and qualify the reclaimed water for reuse. The MF membrane autopsy analysis using X-ray fluorescence (XRF) and inductively coupled plasma-mass spectrometry (ICP-MS) revealed that the dominant foulants were inorganic deposits involving Si, Al and Fe, comprising the main components of cement materials, as well as deposits involving heavy metals such as Mn, Cu and Zn in the form of particles. Thus, thick cake contaminants shown by field emission scanning electron microscope (FE-SEM) images might be induced via suspended solids consisting of cement and clay materials and metals. PMID:25222740

Lee, Jae-Hyun; Kim, Jong-Oh; Jeong, Se-Uk; Cho, Hyun Uk; Cho, Kyung Hwa; Kim, Young Mo

2014-11-01

327

Microbial community structure of a pilot-scale thermophilic anaerobic digester treating poultry litter.  

PubMed

The microbial community structure of a stable pilot-scale thermophilic continuous stirred tank reactor digester stabilized on poultry litter was investigated. This 40-m(3) digester produced biogas with 57% methane, and chemical oxygen demand removal of 54%. Bacterial and archaeal diversity were examined using both cloning and pyrosequencing that targeted 16S rRNA genes. The bacterial community was dominated by phylum Firmicutes, constituting 93% of the clones and 76% of the pyrotags. Of the Firmicutes, class Clostridia (52% pyrotags) was most abundant followed by class Bacilli (13% pyrotags). The bacterial libraries identified 94 operational taxonomic units (OTUs) and pyrosequencing identified 577 OTUs at the 97% minimum similarity level. Fifteen OTUs were dominant (?2% abundance), and nine of these were novel unclassified Firmicutes. Several of the dominant OTUs could not be classified more specifically than Clostridiales, but were most similar to plant biomass degraders, including Clostridium thermocellum. Of the rare pyrotag OTUs (<0.5% abundance), 75% were Firmicutes. The dominant methanogen was Methanothermobacter which has hydrogenotrophic metabolism, and accounted for >99% of the archaeal clones. Based on the primary methanogen, as well as digester chemistry (high VA and ammonia levels), we propose that bacterial acetate oxidation is the primary pathway in this digester for the control of acetate levels. PMID:23989973

Smith, Ami M; Sharma, Deepak; Lappin-Scott, Hilary; Burton, Sara; Huber, David H

2014-03-01

328

Pilot-scale production of grout with simulated double-shell slurry feed. Final report  

SciTech Connect

This report describes the pilot-scale production of grout with simulated double-shell slurry feed (DSSF) waste performed in November 1988, and the subsequent thermal behavior of the grout as it cured in a large, insulated vessel. The report was issued in draft form in April 1989 and comments were subsequently received; however, the report was not finalized until 1994. In finalizing this report, references or information gained after the report was drafted in April 1989 have not been incorporated to preserve the report`s historical perspective. This report makes use of criteria from Ridelle (1987) to establish formulation criteria. This document has since been superseded by a document prepared by Reibling and Fadeef (1991). However, the reference to Riddelle (1987) and any analysis based on its content have been maintained within this report. In addition, grout is no longer being considered as the waste form for disposal of Hanford`s low-level waste. However, grout disposal is being maintained as an option in case there is an emergency need to provide additional tank space. Current plans are to vitrify low-level wastes into a glass matrix.

Whyatt, G.A.

1994-08-01

329

Mesophilic biomethanation and treatment of poultry waste-water using pilot scale UASB reactor.  

PubMed

The feasibility of applying the up-flow anaerobic sludge blanket (UASB) treatment for poultry waste (faeces) water was examined. A continuous-flow UASB pilot scale reactor of 3.50 L capacity using mixed culture was operated for 95 days to assess the treatability of poultry waste-water and its methane production. The maximum chemical oxygen demand (COD) removed was found to be 78% when organic loading rate (OLR) was 2.9 kg COD m(-3) day(-1) at hydraulic retention times (HRT) of 13.2 hr. The average biogas recovery was 0.26 m3 CH4 kg COD with an average methane content of 57% at mean temperature of 30 degrees C. Data indicate more rapid methanogenesis with higher loading rates and shorter hydraulic retention times. At feed concentration of 4.8 kg COD m(-3) day(-1), anaerobic digestion was severely retarded at all hydraulic retention time tested. This complication in the reactor operations may be linked to build-up of colloidal solids often associated with poultry waste water and ammonia toxicity. Isolates from granular sludge and effluent were found to be facultative anaerobes most of which were Pseudomonas genera. PMID:12180651

Atuanya, Ernest I; Aigbirior, Moses

2002-07-01

330

Soluble microbial products in pilot-scale drinking water biofilters with acetate as sole carbon source.  

PubMed

A comprehensive study on formation and characteristics of soluble microbial products (SMP) during drinking water biofiltration was made in four parallel pilot-scale ceramic biofilters with acetate as the substrate. Excellent treatment performance was achieved while microbial biomass and acetate carbon both declined with the depth of filter. The SMP concentration was determined by calculating the difference between the concentration of dissolved organic carbon (DOC), biodegradable dissolved organic carbon (BDOC) and acetate carbon. The results revealed that SMP showed an obvious increase from 0 to 100 cm depth of the filter. A rising specific ultraviolet absorbance (SUVA) was also found, indicating that benzene or carbonyl might exist in these compounds. SMP produced during this drinking water biological process were proved to have weak mutagenicity and were not precursors of by-products of chlorination disinfection. The volatile parts of SMP were half-quantity analyzed and most of them were dicarboxyl acids, others were hydrocarbons or benzene with 16-17 carbon atoms. PMID:24620619

Zhang, Ying; Ye, Chengsong; Gong, Song; Wei, Gu; Yu, Xin; Feng, Lin

2013-04-01

331

Kinetics of hydrocarbon and pesticide removal from clay soils during thermal treatment in a pilot-scale rotary kiln  

SciTech Connect

The kinetics of hydrocarbon removal from contaminated clay soils during thermal treatment in rotary kilns were studied experimentally, and kinetic parameters were obtained for simple first-order models. Results are given for seven hydrocarbons: toluene, naphthalene, n-hexadecane, lindane ({gamma}-HCH or 1,2,3,4,5,6-hexachlorocyclohexane), DDT (1,1{prime}-(2,2,2-trichloroethylidene) bis [4-chlorobenzene]), DDD (1,1{prime}-(2,2-dichloroethylidene) bis [4-chlorobenzene]), and DDE (1,1-dichloro-2,2-bis [p-chlorophenyl] ethylene). The activation energies ranged from 18 kJ/mol for toluene on wet soil, to 90 kJ/mol for the chlorinated pesticides. All the kinetic data were obtained in a 130 kW pilot-scale rotary kiln. The wall temperature of the kiln was 700 C for the pesticides. Three of the hydrocarbons, toluene, naphthalene and n-hexadecane, were studied on both wet soil (5.0 and 8.5 wt%) and on oven-dried soil at temperatures ranging from 300 to 650 C in order to understand better the effects of water on desorption rates. Water increases the rate of desorption of toluene but decreases the rates for the heavier compounds. The pilot-scale data and correlations should be useful to those who are operating and/or designing rotary kilns to remediate soils thermally. A methodology for taking pilot-scale results and using them to estimate full-scale performance is given.

Silcox, G.D.; Larsen, F.S. [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Chemical and Fuels Engineering] [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Chemical and Fuels Engineering; Owens, W.D. [Reaction Engineering International, Salt Lake City, UT (United States)] [Reaction Engineering International, Salt Lake City, UT (United States); Choroszy-Marshall, M. [Ciba-Geigy Corp., Tarrytown, NY (United States)] [Ciba-Geigy Corp., Tarrytown, NY (United States)

1995-12-31

332

Characterization of double-shell slurry feed grout produced in a pilot-scale test. Hanford Grout Technology Program  

SciTech Connect

Current plans for disposal of the low-level fraction of selected double-shell tank (DST) wastes at Hanford, Washington include grouting. Grout disposal in this context is the process of mixing low-level liquid waste with cementitious powders. and pumping the resultant slurry to near-surface, underground concrete vaults. Once the slurry is in the vaults. the hydration reactions that occur result in the formation of a highly impermeable solid product that binds and encapsulates the radioactive and hazardous constituents. Westinghouse Hanford Company (WHC) operates the Grout Treatment Facility (GTF) for the US Department of Energy (DOE). Pacific Northwest Laboratory(a) (PNL) provides support to the Grout Disposal Program through laboratory support activities, radioactive grout leach testing. performance assessments, and pilot-scale tests. A pilot-scale test was conducted in November 1988 using a simulated Double-Shell Slurry Feed (DSSF) waste. The main objective of the pilot-scale test was to demonstrate the processability of a DSSF grout formulation that was developed using laboratory equipment and to provide information on scale-up. The dry blend used in this test included 47 wt% class F fly ash, 47 wt% blast furnace slag, and 6 wt% type I/II portland cement. The dry blend was mixed with the simulated waste at a ratio of 9 lb/gal and pumped to a 2800-gal, insulated tank at about 10.4 gpm. Samples of simulated DSSF waste. dry blend, grout slurry, and cured grout were obtained during and after the pilot-scale test for testing and product characterization. Major conclusions of these activities are included.

Lokken, R.O.; Martin, P.F.C.; Shade, J.W.

1992-12-01

333

PILOT-SCALE TESTING OF THE SUSPENSION OF MST, CST, AND SIMULATED SLUDGE SLURRIES IN A SLUDGE TANK  

SciTech Connect

The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Following strontium, actinide, and cesium removal, the concentrated solids will be transported to a sludge tank (i.e., monosodium titanate (MST)/sludge solids to Tank 42H or Tank 51H and crystalline silicotitanate (CST) to Tank 40H) for eventual transfer to the Defense Waste Processing Facility (DWPF). Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for mixing MST, CST, and simulated sludge. The purpose of this pilot scale testing is to determine the pump requirements for mixing MST and CST with sludge in a sludge tank and to determine whether segregation of particles occurs during settling. Tank 40H and Tank 51H have four Quad Volute pumps; Tank 42H has four standard pumps. The pilot-scale tank is a 1/10.85 linear scaled model of Tank 40H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 40H. The pump locations correspond to the current locations in Tank 40H (Risers B2, H, B6, and G). The pumps are pilot-scale Quad Volute pumps. Additional settling tests were conducted in a 30 foot tall, 4 inch inner diameter clear column to investigate segregation of MST, CST, and simulated sludge particles during settling.

Poirier, M.; Qureshi, Z.; Restivo, M.; Steeper, T.; Williams, M.; Herman, D.

2011-08-02

334

HANFORD MEDIUM-LOW CURIE WASTE PRETREATMENT ALTERNATIVES PROJECT FRACTIONAL CRYSTALLIZATION PILOT SCALE TESTING FINAL REPORT  

SciTech Connect

The Fractional Crystallization Pilot Plant was designed and constructed to demonstrate that fractional crystallization is a viable way to separate the high-level and low-activity radioactive waste streams from retrieved Hanford single-shell tank saltcake. The focus of this report is to review the design, construction, and testing details of the fractional crystallization pilot plant not previously disseminated.

HERTING DL

2008-09-16

335

Disposable bioreactors: the current state-of-the-art and recommended applications in biotechnology  

Microsoft Academic Search

Disposable bioreactors have increasingly been incorporated into preclinical, clinical, and production-scale biotechnological\\u000a facilities over the last few years. Driven by market needs, and, in particular, by the developers and manufacturers of drugs,\\u000a vaccines, and further biologicals, there has been a trend toward the use of disposable seed bioreactors as well as production\\u000a bioreactors. Numerous studies documenting their advantages in use

Regine Eibl; Stephan Kaiser; Renate Lombriser; Dieter Eibl

2010-01-01

336

Fixed-bed bioreactor system for the microbial solubilization of coal  

DOEpatents

A fixed-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fixed-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the large scale production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fixed-bed bioreactor. 1 fig., 1 tab.

Scott, C.D.; Strandberg, G.W.

1987-09-14

337

Tryptophan over-producing cell suspensions of Catharanthus roseus (L) G. Don and their up-scaling in stirred tank bioreactor: detection of a phenolic compound with antioxidant potential.  

PubMed

Five cell suspension lines of Catharanthus roseus resistant to 5-methyl tryptophan (5-MT; an analogue of tryptophan) were selected and characterized for growth, free tryptophan content and terpenoid indole alkaloid accumulation. These lines showed differential tolerance to analogue-induced growth inhibition by 30 to 70 mg/l 5-MT supplementation (LD(50) = 7-15 mg/l). Lines P40, D40, N30, D50 and P70 recorded growth indices (i.e. percent increment over the initial inoculum weight) of 840.9, 765.0, 643.9, 585.7 and 356.5 in the absence and, 656.7, 573.9, 705.8, 489.0 and 236.0 in the presence of 5-MT after 40 days of culture, respectively. A corresponding increment in the free tryptophan level ranging from 46.7 to 160.0 ?g/g dry weight in the absence and 168.0 to 468.0 ?g/g dry weight in the presence was noted in the variant lines. Higher tryptophan accumulation of 368.0 and 468.0 g/g dry weight in lines N30 and P40 in 5-MT presence also resulted in higher alkaloid accumulation (0.65 to 0.90 % dry weight) in them. High-performance liquid chromatography (HPLC) analysis of the crude alkaloid extracts of the selected lines did not show the presence of any pharmaceutically important monomeric or dimeric alkaloids except catharanthine in traces in the N30 line that was also unique in terms of a chlorophyllous green phenotype. The N30 line under optimized up-scaling conditions in a 7-l stirred tank bioreactor using Murashige and Skoog medium containing 2 mg/l ?-naphthalene acetic acid and 0.2 mg/l kinetin attained 18-folds biomass accumulation within 8 weeks. Interestingly, the cell biomass yield was enhanced to 30-folds if 30 mg/l 5-MT was added in the bioreactor vessel one week prior to harvest. Crude alkaloid extract of the cells grown in shake flask and this bioreactor batch also showed the formation of yellow-coloured crystals which upon (1)HNMR and ESI-MS analysis indicated a phenolic identity. This crude alkaloid extract of bioreactor-harvested cells containing this compound at 50 ?g/ml concentration registered 65.21, 17.75, 97.0, 100 % more total antioxidant capacity, reducing power, total phenolic content, and ferric-reducing antioxidant power, respectively, when compared with that of extracts of cells grown in shake flask cultures. The latter, however, showed 57.47 % better radical scavenging activity (DPPH) than the bioreactor-harvested cells. PMID:22678752

Verma, Priyanka; Mathur, Ajay K; Masood, Nusrat; Luqman, Suaib; Shanker, Karuna

2013-02-01

338

Hydrodynamics of non-Newtonian liquids in external-loop airlift bioreactors  

Microsoft Academic Search

In order to obtain further information on the behaviour and optimal design of external-circulation-loop airlift bioreactors, the liquid circulating velocity was studied using highly viscous pseudoplastic solutions of starch and antibiotic biosynthesis liquids of Penicillium chrysogenum, Streptomyces griseus, Streptomyces erythreus, Bacillus licheniformis and Cephalosporium acremonium. Measurements of liquid circulation velocity were made in laboratory and pilot plant external-loop airlift bioreactors,

M. Gavrilescu; R. Z. Tudose

1998-01-01

339

Design and performance of a pilot-scale constructed wetland treatment system for natural gas storage produced water.  

PubMed

To test the hypothesis that water produced from natural gas storage wells could be treated effectively by constructed wetland treatment systems, a modular pilot-scale system was designed, built, and used for treating gas storage produced waters. Four simulated waters representing the range of contaminant concentrations typical of actual produced waters were treated, and the system's performance was monitored. Freshwater wetland cells planted with Schoenoplectus californicus and Typha latifolia were used to treat fresh and brackish waters. Saline and hypersaline waters were treated by saltwater wetland cells planted with Spartina alterniflora and by reverse osmosis. Effective removal of cadmium, copper, lead, and zinc was achieved by the pilot-scale system. Results suggest that use of specifically designed constructed wetland treatment systems provides a flexible and effective approach for treating gas storage produced waters over a wide range of compositions. PMID:17566728

Kanagy, Laura E; Johnson, Brenda M; Castle, James W; Rodgers, John H

2008-04-01

340

Coaching as Part of a Pilot Quality Rating Scale Initiative: Challenges to--and Supports for--the Change-Making Process  

ERIC Educational Resources Information Center

Several nonprofit agencies in a large Midwestern city provide assistance to early care and education programs participating in a pilot Quality Rating Scale (QRS) initiative by pairing them with itinerant consultants, who are known as coaches. Despite this assistance, not all programs improve their QRS score. Furthermore, while pilot stakeholders…

Ackerman, Debra J.

2008-01-01

341

Integrated L-phenylalanine separation in an E. coli fed-batch process: from laboratory to pilot scale  

Microsoft Academic Search

Pilot-scale reactive-extraction technology for fully integrated L-phenylalanine (L-Phe) separation in Escherichia coli fed-batch fermentations was investigated in order to prevent an inhibition of microbial L-Phe production by-product accumulation. An optimal reactive-extraction system, consisting of an organic kerosene phase with the cation-selective carrier DEHPA (di-2-ethylhexyl phosphonic acid) and an aqueous stripping phase including sulphuric acid, was found particularly efficient. Using this

D. Maass; M. Gerigk; A. Kreutzer; D. Weuster-Botz; M. Wubbolts; R. Takors

2002-01-01

342

A Pilot-Scale Study of the Design and Operation Parameters of a Pulse-Jet Baghouse  

Microsoft Academic Search

Filtration curves and pulse-jet cleaning performance of different design and operating conditions of a pilot-scale pulse-jet baghouse are investigated. The effective residual pressure loss is used as an index of bag cleaning effect, while the average pulse overpressure inside the bag is used as an index of bag cleaning intensity. It is found that filtration curves vary with the initial

Hsin-Chung Lu; Chuen-Jinn Tsai

1998-01-01

343

A pilot-scale evaluation of magnetic ion exchange treatment for removal of natural organic material and inorganic anions  

Microsoft Academic Search

The objective of this research was to evaluate a magnetic ion exchange process (MIEX) for the removal of natural organic material (NOM) and bromide on a continuous-flow pilot-scale basis under different operating conditions and raw water characteristics. The most important operating variable was the effective resin dose (ERD), which is the product of the steady-state resin concentration in the contactor

Treavor H. Boyer; Philip C. Singer

2006-01-01

344

Monitoring wolves ( Canis lupus ) by non-invasive genetics and camera trapping: a small-scale pilot study  

Microsoft Academic Search

Monitoring populations of elusive large carnivores like wolves (Canis lupus), which are often distributed at low density in widespread forested areas, is difficult or exceedingly expensive. Aiming\\u000a to assess the power of two indirect monitoring methods, non-invasive genetic sampling and camera trapping, we designed a small-scale\\u000a pilot study that was carried out from 2006 to 2008 in and around the

Marco Galaverni; Davide Palumbo; Elena Fabbri; Romolo Caniglia; Claudia Greco; Ettore Randi

345

High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control.  

PubMed

Decreasing the timeframe for cell culture process development has been a key goal toward accelerating biopharmaceutical development. Advanced Microscale Bioreactors (ambr™) is an automated micro-bioreactor system with miniature single-use bioreactors with a 10-15 mL working volume controlled by an automated workstation. This system was compared to conventional bioreactor systems in terms of its performance for the production of a monoclonal antibody in a recombinant Chinese Hamster Ovary cell line. The miniaturized bioreactor system was found to produce cell culture profiles that matched across scales to 3 L, 15 L, and 200 L stirred tank bioreactors. The processes used in this article involve complex feed formulations, perturbations, and strict process control within the design space, which are in-line with processes used for commercial scale manufacturing of biopharmaceuticals. Changes to important process parameters in ambr™ resulted in predictable cell growth, viability and titer changes, which were in good agreement to data from the conventional larger scale bioreactors. ambr™ was found to successfully reproduce variations in temperature, dissolved oxygen (DO), and pH conditions similar to the larger bioreactor systems. Additionally, the miniature bioreactors were found to react well to perturbations in pH and DO through adjustments to the Proportional and Integral control loop. The data presented here demonstrates the utility of the ambr™ system as a high throughput system for cell culture process development. PMID:24449637

Rameez, Shahid; Mostafa, Sigma S; Miller, Christopher; Shukla, Abhinav A

2014-01-01

346

Pyrosequence analysis of bacterial communities in aerobic bioreactors treating polycyclic aromatic hydrocarbon-contaminated soil.  

PubMed

Two aerobic, lab-scale, slurry-phase bioreactors were used to examine the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil and the associated bacterial communities. The two bioreactors were operated under semi-continuous (draw-and-fill) conditions at a residence time of 35 days, but one was fed weekly and the other monthly. Most of the quantified PAHs, including high-molecular-weight compounds, were removed to a greater extent in the weekly-fed bioreactor, which achieved total PAH removal of 76%. Molecular analyses, including pyrosequencing of 16S rRNA genes, revealed significant shifts in the soil bacterial communities after introduction to the bioreactors and differences in the abundance and types of bacteria in each of the bioreactors. The weekly-fed bioreactor displayed a more stable bacterial community with gradual changes over time, whereas the monthly-fed bioreactor community was less consistent and may have been more strongly influenced by the influx of untreated soil during feeding. Phylogenetic groups containing known PAH-degrading bacteria previously identified through stable-isotope probing of the untreated soil were differentially affected by bioreactor conditions. Sequences from members of the Acidovorax and Sphingomonas genera, as well as the uncultivated "Pyrene Group 2" were abundant in the bioreactors. However, the relative abundances of sequences from the Pseudomonas, Sphingobium, and Pseudoxanthomonas genera, as well as from a group of unclassified anthracene degraders, were much lower in the bioreactors compared to the untreated soil. PMID:21369833

Singleton, David R; Richardson, Stephen D; Aitken, Michael D

2011-11-01

347

Hepatocyte function within a stacked double sandwich culture plate cylindrical bioreactor for bioartificial liver system.  

PubMed

Bioartificial liver (BAL) system is promising as an alternative treatment for liver failure. We have developed a bioreactor with stacked sandwich culture plates for the application of BAL. This bioreactor design addresses some of the persistent problems in flat-bed bioreactors through increasing cell packing capacity, eliminating dead flow, regulating shear stress, and facilitating the scalability of the bioreactor unit. The bioreactor contained a stack of twelve double-sandwich-culture plates, allowing 100 million hepatocytes to be housed in a single cylindrical bioreactor unit (7 cm of height and 5.5 cm of inner diameter). The serial flow perfusion through the bioreactor increased cell-fluid contact area for effective mass exchange. With the optimal perfusion flow rate, shear stress was minimized to achieve high and uniform cell viabilities across different plates in the bioreactor. Our results demonstrated that hepatocytes cultured in the bioreactor could re-establish cell polarity and maintain liver-specific functions (e.g. albumin and urea synthesis, phase I&II metabolism functions) for seven days. The single bioreactor unit can be readily scaled up to house adequate number of functional hepatocytes for BAL development. PMID:22889484

Xia, Lei; Arooz, Talha; Zhang, Shufang; Tuo, Xiaoye; Xiao, Guangfa; Susanto, Thomas Adi Kurnia; Sundararajan, Janani; Cheng, Tianming; Kang, Yuzhan; Poh, Hee Joo; Leo, Hwa Liang; Yu, Hanry

2012-11-01

348

Pyrosequence analysis of bacterial communities in aerobic bioreactors treating polycyclic aromatic hydrocarbon-contaminated soil  

PubMed Central

Two aerobic, lab-scale, slurry-phase bioreactors were used to examine the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil and the associated bacterial communities. The two bioreactors were operated under semi-continuous (draw-and-fill) conditions at a residence time of 35 days, but one was fed weekly and the other monthly. Most of the quantified PAHs, including high-molecular-weight compounds, were removed to a greater extent in the weekly-fed bioreactor, which achieved total PAH removal of 76%. Molecular analyses, including pyrosequencing of 16S rRNA genes, revealed significant shifts in the soil bacterial communities after introduction to the bioreactors and differences in the abundance and types of bacteria in each of the bioreactors. The weekly-fed bioreactor displayed a more stable bacterial community with gradual changes over time, whereas the monthly-fed bioreactor community was less consistent and may have been more strongly influenced by the influx of untreated soil during feeding. Phylogenetic groups containing known PAH-degrading bacteria previously identified through stable-isotope probing of the untreated soil were differentially affected by bioreactor conditions. Sequences from members of the Acidovorax and Sphingomonas genera, as well as the uncultivated ‘‘Pyrene Group 2’’ were abundant in the bioreactors. However, the relative abundances of sequences from the Pseudomonas, Sphingobium, and Pseudoxanthomonas genera, as well as from a group of unclassified anthracene degraders, were much lower in the bioreactors compared to the untreated soil. PMID:21369833

Richardson, Stephen D.; Aitken, Michael D.

2011-01-01

349

Energy efficiency in membrane bioreactors.  

PubMed

Energy consumption remains the key factor for the optimisation of the performance of membrane bioreactors (MBRs). This paper presents the results of the detailed energy audits of six full-scale MBRs operated by Suez Environnement in France, Spain and the USA based on on-site energy measurement and analysis of plant operation parameters and treatment performance. Specific energy consumption is compared for two different MBR configurations (flat sheet and hollow fibre membranes) and for plants with different design, loads and operation parameters. The aim of this project was to understand how the energy is consumed in MBR facilities and under which operating conditions, in order to finally provide guidelines and recommended practices for optimisation of MBR operation and design to reduce energy consumption and environmental impacts. PMID:23787304

Barillon, B; Martin Ruel, S; Langlais, C; Lazarova, V

2013-01-01

350

Bioreactor for blood product production.  

PubMed

The feasibility of ex vivo blood production is limited by both biological and engineering challenges. From an engineering perspective, these challenges include the significant volumes required to generate even a single unit of a blood product, as well as the correspondingly high protein consumption required for such large volume cultures. Membrane bioreactors, such as hollow fiber bioreactors (HFBRs), enable cell densities approximately 100-fold greater than traditional culture systems and therefore may enable a significant reduction in culture working volumes. As cultured cells, and larger molecules, are retained within a fraction of the system volume, via a semipermeable membrane it may be possible to reduce protein consumption by limiting supplementation to only this fraction. Typically, HFBRs are complex perfusion systems having total volumes incompatible with bench scale screening and optimization of stem cell-based cultures. In this article we describe the use of a simplified HFBR system to assess the feasibility of this technology to produce blood products from umbilical cord blood-derived CD34(+) hematopoietic stem progenitor cells (HSPCs). Unlike conventional HFBR systems used for protein manufacture, where cells are cultured in the extracapillary space, we have cultured cells in the intracapillary space, which is likely more compatible with the large-scale production of blood cell suspension cultures. Using this platform we direct HSPCs down the myeloid lineage, while targeting a 100-fold increase in cell density and the use of protein-free bulk medium. Our results demonstrate the potential of this system to deliver high cell densities, even in the absence of protein supplementation of the bulk medium. PMID:22405378

Doran, Michael R; Aird, Ian Alexander; Marturana, Flavia; Timmins, Nicholas; Atkinson, Kerry; Nielsen, Lars K

2012-01-01

351

In-Flight Validation of a Pilot Rating Scale for Evaluating Failure Transients in Electronic Flight Control Systems  

NASA Technical Reports Server (NTRS)

Engineering development and qualification of a Research Flight Control System (RFCS) for the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A has motivated the development of a pilot rating scale for evaluating failure transients in fly-by-wire flight control systems. The RASCAL RFCS includes a highly-reliable, dual-channel Servo Control Unit (SCU) to command and monitor the performance of the fly-by-wire actuators and protect against the effects of erroneous commands from the flexible, but single-thread Flight Control Computer. During the design phase of the RFCS, two piloted simulations were conducted on the Ames Research Center Vertical Motion Simulator (VMS) to help define the required performance characteristics of the safety monitoring algorithms in the SCU. Simulated failures, including hard-over and slow-over commands, were injected into the command path, and the aircraft response and safety monitor performance were evaluated. A subjective Failure/Recovery Rating (F/RR) scale was developed as a means of quantifying the effects of the injected failures on the aircraft state and the degree of pilot effort required to safely recover the aircraft. A brief evaluation of the rating scale was also conducted on the Army/NASA CH-47B variable stability helicopter to confirm that the rating scale was likely to be equally applicable to in-flight evaluations. Following the initial research flight qualification of the RFCS in 2002, a flight test effort was begun to validate the performance of the safety monitors and to validate their design for the safe conduct of research flight testing. Simulated failures were injected into the SCU, and the F/RR scale was applied to assess the results. The results validate the performance of the monitors, and indicate that the Failure/Recovery Rating scale is a very useful tool for evaluating failure transients in fly-by-wire flight control systems.

Kalinowski, Kevin F.; Tucker, George E.; Moralez, Ernesto, III

2006-01-01

352

Impact of colloidal and soluble organic material on membrane performance in membrane bioreactors for municipal wastewater treatment  

Microsoft Academic Search

Two parallel membrane bioreactors (2m3 each) were operated over a period of 2 years. Both pilots were optimised for nitrification, denitrification, and enhanced biological phosphorous elimination, treating identical municipal wastewater under comparable operating conditions. The only constructional difference between the pilots was the position of the denitrification zone (pre-denitrification in pilot 1 and post-denitrification in pilot 2). Despite identical modules

S. Rosenberger; C. Laabs; B. Lesjean; R. Gnirss; G. Amy; M. Jekel; J.-C. Schrotter

2006-01-01

353

A pilot-scale study on biofilters for controlling animal rendering process odours.  

PubMed

Heating of animal tissue during the process of rendering liberates a variety of odorous compounds. The performance of biofiltration in removing these odours was investigated using pilot-scale biofilters containing different media (sand, finely and coarsely crushed wood bark, and bark/soil mixture). Odour-removal performance of the biofilters was determined using olfactometry. Biofilter odour removal efficiencies of between 29.7% and 99.9% were measured at influent odour concentrations of between 143,100 and 890,000 odour units m(-3), and various air loading rates (0.074-0.592 m(-3) air m(-3) medium min(-1)). Biofilters with bark or bark/soil media and low air loading rates gave the best odour removal. The bark and sand biofilters generally maintained good odour reduction for about three years at an air loading rate of 0.148 m(-3) air m(-3) medium min(-1). Drainage from the biofilters contained significant concentrations of nitrogenous and organic compounds, suggesting that controlled leaching has the potential to remove accumulated substances in biofilter media from rendering gas emissions and increase the longevity of a biofilter system. High pressure drop across biofilter media can adversely affect the odour removal performance. Sand and fine bark, due to their small particle size, caused high pressure drops. Coarse bark showed negligible pressure drop at several examined air loading rates. Pressure drop also increased with moisture content, particularly in sand and fine bark biofilters. Overall pressure drop characteristics of the biofilters described in this paper were maintained without significant change over the three year operation. PMID:11762474

Luo, J

2001-01-01

354

Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation.  

PubMed

A pilot-scale field test system with an inner loop nested within an outer loop was constructed for in situ U(VI) bioremediation at a US Department of Energy site, Oak Ridge, TN. The outer loop was used for hydrological protection of the inner loop where ethanol was injected for biostimulation of microorganisms for U(VI) reduction/immobilization. After 2 years of biostimulation with ethanol, U(VI) levels were reduced to below drinking water standard (<30 microg l(-1)) in the inner loop monitoring wells. To elucidate the microbial community structure and functions under in situ uranium bioremediation conditions, we used a comprehensive functional gene array (GeoChip) to examine the microbial functional gene composition of the sediment samples collected from both inner and outer loop wells. Our study results showed that distinct microbial communities were established in the inner loop wells. Also, higher microbial functional gene number, diversity and abundance were observed in the inner loop wells than the outer loop wells. In addition, metal-reducing bacteria, such as Desulfovibrio, Geobacter, Anaeromyxobacter and Shewanella, and other bacteria, for example, Rhodopseudomonas and Pseudomonas, are highly abundant in the inner loop wells. Finally, the richness and abundance of microbial functional genes were highly correlated with the mean travel time of groundwater from the inner loop injection well, pH and sulfate concentration in groundwater. These results suggest that the indigenous microbial communities can be successfully stimulated for U bioremediation in the groundwater ecosystem, and their structure and performance can be manipulated or optimized by adjusting geochemical and hydrological conditions. PMID:20237512

Xu, Meiying; Wu, Wei-Min; Wu, Liyou; He, Zhili; Van Nostrand, Joy D; Deng, Ye; Luo, Jian; Carley, Jack; Ginder-Vogel, Matthew; Gentry, Terry J; Gu, Baouhua; Watson, David; Jardine, Philip M; Marsh, Terence L; Tiedje, James M; Hazen, Terry; Criddle, Craig S; Zhou, Jizhong

2010-08-01

355

Pilot-scale Tests to Vitrify Korean Low-Level Wastes  

SciTech Connect

Korea is under preparation of its first commercial vitrification plant to handle LLW from her Nuclear Power Plants (NPPs). The waste streams include three categories: combustible Dry Active Wastes (DAW), borate concentrates, and spent resin. The combustible DAW in this research contains vinyl bag, paper, and protective cloth and rubber shoe. The loaded resin was used to simulate spent resin from NPPs. As a part of this project, Nuclear Environment Technology Institute (NETEC) has tested an operation mode utilizing its pilot-scale plant and the mixed waste surrogates of resin and DAW. It has also proved, with continuous operation for more than 100 hours, the consistency and operability of the plant including cold crucible melter and its off-gas treatment equipment. Resin and combustible DAW were simultaneously fed into the glass bath with periodic addition of various glass frits as additives, so that it achieved a volume reduction factor larger than 70. By adding various glass frits, this paper discusses about maintaining the viscosity and electrical conductivity of glass bath within their operable ranges, but not about obtaining a durable glass product. The operating mode starts with a batch of glass where a titanium ring is buried. When the induced power ignites the ring, the joule heat melts the surrounding glass frit along with the oxidation heat of titanium. As soon as the molten bath is prepared, in the first stage of the mode, the wastes consisting of loaded resin and combustible DAW are fed with no or minimum addition of glass frits. Then, in the second stage, the bath composition is kept as constant as possible. This operation was successful in terms of maintaining the glass bath under operable condition and produced homogeneous glass. This operation mode could be adapted in commercial stage.

Choi, K.; Kim, C.-W.; Park, J. K.; Shin, S. W.; Song, M.-J.; Brunelot, P.; Flament, T.

2002-02-26

356

Salmonella transfer during pilot plant scale washing and roller conveying of tomatoes.  

PubMed

Salmonella transfer during washing and roller conveying of inoculated tomatoes was quantified using a pilot scale tomato packing line equipped with plastic, foam, or brush rollers. Red round tomatoes (2.3 kg) were dip inoculated with Salmonella enterica serovar Typhimurium LT2 (avirulent) (4 log CFU/g), air dried for 2 h, and then washed in sanitizer-free water for 2 min. Inoculated tomatoes were then passed single file over a 1.5-m conveyor equipped with plastic, foam, or brush rollers followed by 25 previously washed uninoculated tomatoes. Tomato samples were collected after 2 min of both washing and roller conveying, with all 25 uninoculated tomatoes collected individually after conveying. Roller surface samples were collected before and after conveying the uninoculated tomatoes. Both tomato and surface samples were quantitatively examined for Salmonella by direct plating or membrane filtration using xylose lysine Tergitol 4 agar. Regardless of the roller type, Salmonella populations on inoculated tomatoes did not significantly (P < 0.05) decrease during contact with the roller conveyors. After conveying uninoculated tomatoes over contaminated foam rollers, 96% of the 25 tomatoes were cross-contaminated with Salmonella at >100 CFU per tomato. With plastic rollers, 24 and 76% of tomatoes were cross-contaminated with Salmonella at 10 to 100 and 1 to 10 CFU per tomato, respectively. In contrast, only 8% of 25 tomatoes were cross-contaminated with brush rollers with Salmonella populations of 1 to 10 CFU per tomato. Overall, cross-contamination was greatest with foam, followed by plastic and brush rollers (P < 0.05). Adding peroxyacetic acid or chlorine to the wash water significantly decreased cross-contamination during tomato conveying, with chlorine less effective in controlling Salmonella on foam compared with plastic and brush rollers. PMID:24674428

Wang, Haiqiang; Ryser, Elliot T

2014-03-01

357

Comparison of model-based and conventional controllers on a pilot-scale heat exchanger.  

PubMed

This pilot-scale heat exchanger demonstration compares two relatively simple nonlinear model-based control strategies to conventional proportional-integral (PI) control. The two nonlinear controllers, generic model control (GMC) and process-model based control (PMBC), use a first-principles model thereby providing characterization of the nonlinear process throughout the operating range. There are two approaches to GMC, one uses a dynamic model, the other a steady-state model. This work uses the steady-state model; accordingly, will use the term GMC-SS, which can be classified as output characterization for a PI controller, making it relatively simple to implement. PMBC uses a dynamic model and adapts to represent the process. These two nonlinear controllers were selected for this application evaluation because of their simplicity (they can be implemented in-house within many commercial control systems), diversity (steady-state and dynamic models), and demonstrated utility for control of nonlinear single-input-single-output processes. The application and results are presented and discussed. Summarizing the results: Within a small temperature operating range PI provides good control, but over the full operating range, the nonlinear and variable delay of the process lead to poor control with PI. GMC can handle the nonlinear issues, but using the convenient steady-state model; it also, provides poor control because of the variable delay associated with flow rate. PMBC was able to provide good control throughout the entire operating range. PMBC has a further advantage of only having one tuning coefficient, while PI and GMC-SS have two. PMID:23453195

Raul, Pramod R; Srinivasan, Haritha; Kulkarni, Sanket; Shokrian, Mazdak; Shrivastava, Glory; Russell Rhinehart, R

2013-05-01

358

DEMONSTRATION OF PILOT-SCALE PERVAPORATION SYSTEMS FOR VOLATILE ORGANIC COMPOUND REMOVAL FROM A SURFACTANT ENHANCED AQUIFER REMEDIATION FLUID. II. HOLLOW FIBER MEMBRANE MODULES  

EPA Science Inventory

Pilot-scale demonstration of pervaporation-based removal of volatile organic compounds from a surfactant enhanced aquifer remediation (SEAR) fluid has been conducted at USEPA's Test & Evaluation Facility using hollow fiber membrane modules. The membranes consisted of microporous...

359

Hydrodynamics of non-Newtonian liquids in external-loop airlift bioreactors  

Microsoft Academic Search

Gas holdup investigation was performed in two external-loop airlift bioreactors of laboratory (VL=1.189·10х m 1.880·10х m3; HR=1.16 m 1.56 m; HD= 1.10 m; AD\\/AR= 0.111 m 1.000) and pilot scale (VL=0.157т.170 m3; HR=4.3ц.7 m; HD=4.0ц.4 m;AD\\/AR=0.04т.1225), respectively, using as liquid phase non-Newtonian starch solutions of different concentration with K=0.061х.518 Pa sn and n=0.86т.39 and fermentation broths of P. chrysogenum, S.

M. Gavrilescu; R. Z. Tudose

1997-01-01

360

Microbial adaptation to biodegrade toxic organic micro-pollutants in membrane bioreactor using different sludge sources.  

PubMed

Biodegradation of toxic organic micro-pollutants in municipal solid waste (MSW) leachate by membrane bioreactor (MBR) was investigated. The MBR systems were seeded with different sludge sources, one was from a pilot-scale MBR system treating MSW leachate and the other was from an activated sludge sewage treatment plant. The biodegradation of BPA, 2,6-DTBP, BHT, DEP, DBP and DEHP, DCP and BBzP, by sludge from both reactors were found improved with time. However, enhanced biodegradation of micro-pollutants was observed in MBR operated under long sludge age condition. Bacterial population analyses determined by PCR-DGGE revealed the development of phenol and phthalate degrading bacteria consortium in MBR sludge during its operation. PMID:24791712

Boonnorat, Jarungwit; Chiemchaisri, Chart; Chiemchaisri, Wilai; Yamamoto, Kazuo

2014-08-01

361

Isolation of hemoglobin from bovine erythrocytes by controlled hemolysis in the membrane bioreactor.  

PubMed

In this work, we describe an optimized procedure based on gradual hemolysis for the isolation of hemoglobin derived from bovine slaughterhouse erythrocytes in a membrane bioreactor. The membrane bioreactor system that provided high yields of hemoglobin (mainly oxyhemoglobin derivate) and its separation from the empty erythrocyte membranes (ghosts) was designed at a pilot scale. Ten different concentrations of hypotonic media were assessed from the aspect of the extent of hemolysis, hematocrit values of the erythrocyte suspensions, cell swelling, and membrane deformations induced by decreased salt concentration. Effective gradual osmotic hemolysis with an extent of hemolysis of 88% was performed using 35 mM Na-phosphate/NaCl buffer of pH 7.2-7.4. Under these conditions most of the cell membranes presented the appearance of the normal ghosts under phase contrast microscope. The hemoglobin purity of >80% was confirmed by SDS-PAGE. Kinetic studies showed that maximal concentration of hemoglobin was reached after 40 min, but the process cycle at which recovery of 83% was achieved lasted for 90 min. The dynamics of both steps, (1) transport through the membrane of erythrocytes during process of hemolysis and (2) transport through the reactor filters, were evaluated. PMID:22252906

Stojanovi?, Radoslava; Ili?, Vesna; Manojlovi?, Verica; Bugarski, Diana; Devi?, Marija; Bugarski, Branko

2012-03-01

362

Effect of sludge retention time on microbial behaviour in a submerged membrane bioreactor  

Microsoft Academic Search

To clarify the effect of sludge retention time (SRT) on performance and microbial behaviour in a submerged membrane bioreactor for the treatment of domestic wastewater, four runs of a laboratory scale reactor with hydraulic retention time of 5 h and SRTs of 5, 10, 20 and 40 days, respectively, were conducted. The membrane bioreactor process was capable of achieving over

Xia Huang; Ping Gui; Yi Qian

2001-01-01

363

Nitrification performance in a membrane bioreactor treating industrial wastewater.  

PubMed

The influence of industrial (pharmaceutical and chemical) wastewater composition on membrane bioreactor (MBR) performance was investigated in a pilot-scale installation. The study focussed on nitrification performance, which was evaluated based on influent and effluent parameters as well as batch nitrification rate tests. The industrial wastewater was pumped into the MBR in a mixture with municipal wastewater at constant flow rate. The loading of the MBR with industrial wastewater was increased stepwise from 0 to 75% share in the mixed influent to study the adaptation of nitrifying bacteria. Stable nitrification performance was observed until the content of industrial wastewater in the influent reached 40%, with effluent values of around 0.56 mg L(-1) NH4-N and 98.3% ammonia removal. Breakdown of nitratation was observed at a 40% industrial wastewater dose and breakdown of nitritation at a 50% dose, respectively. However, after several months of adaptation, both processes recovered. No nitrification was observed when the industrial wastewater share exceeded 50%. Adaptation of nitrifying bacteria in the MBR was also confirmed by results of kinetic tests. The inhibition effect of the concentrated industrial wastewater to the MBR sludge decreased substantially after several months of exposure, while the inhibition of referential activated sludge remained constant. PMID:23764592

Dvo?ák, Lukáš; Svojitka, Jan; Wanner, Ji?í; Wintgens, Thomas

2013-09-01

364

Energy Efficient Aluminum Production - Pilot-Scale Cell Tests - Final Report for Phase I and Phase II  

SciTech Connect

A cermet anode that produces oxygen and a cathode material that is wetted by aluminum can provide a dimensionally stable inter-electrode distance in the Hall-Heroult cell. This can be used to greatly improve the energy and/or productivity efficiencies. The concept, which was developed and tested, uses a system of vertically interleaved anodes and cathodes. The major advantage of this concept is the significant increase in electrochemical surface area compared to a horizontal orientation of anode and cathode that is presently used in the Hall-Heroult process. This creates an additional advantage for energy reduction of 1.3 kWh/lb or a 20% productivity improvement. The voltages obtained in an optimized cell test met the energy objectives of the project for at least two weeks. An acceptable current efficiency was never proven, however, during either pilot scale or bench scale tests with the vertical plate configuration. This must be done before a vertical cell can be considered viab le. Anode corrosion rate must be reduced by at least a factor of three in order to produce commercial purity aluminum. It is recommended that extensive theoretical and bench scale investigations be done to improve anode materials and to demonstrate acceptable current efficiencies in a vertical plate cell before pilot scale work is continued.

R. A. Christini

1999-12-30

365

Removal of MS2, Q? and GA bacteriophages during drinking water treatment at pilot scale.  

PubMed

The removal of MS2, Q? and GA, F-specific RNA bacteriophages, potential surrogates for pathogenic waterborne viruses, was investigated during a conventional drinking water treatment at pilot scale by using river water, artificially and independently spiked with these bacteriophages. The objective of this work is to develop a standard system for assessing the effectiveness of drinking water plants with respect to the removal of MS2, Q? and GA bacteriophages by a conventional pre-treatment process (coagulation-flocculation-settling-sand filtration) followed or not by an ultrafiltration (UF) membrane (complete treatment process). The specific performances of three UF membranes alone were assessed by using (i) pre-treated water and (ii) 0.1 mM sterile phosphate buffer solution (PBS), spiked with bacteriophages. These UF membranes tested in this work were designed for drinking water treatment market and were also selected for research purpose. The hypothesis serving as base for this study was that the interfacial properties for these three bacteriophages, in terms of electrostatic charge and the degree of hydrophobicity, could induce variations in the removal performances achieved by drinking water treatments. The comparison of the results showed a similar behaviour for both MS2 and Q? surrogates whereas it was particularly atypical for the GA surrogate. The infectious character of MS2 and Q? bacteriophages was mostly removed after clarification followed by sand filtration processes (more than a 4.8-log reduction) while genomic copies were removed at more than a 4.0-log after the complete treatment process. On the contrary, GA bacteriophage was only slightly removed by clarification followed by sand filtration, with less than 1.7-log and 1.2-log reduction, respectively. After the complete treatment process achieved, GA bacteriophage was removed with less than 2.2-log and 1.6-log reduction, respectively. The effectiveness of the three UF membranes tested in terms of bacteriophages removal showed significant differences, especially for GA bacteriophage. These results could provide recommendations for drinking water suppliers in terms of selection criteria for membranes. MS2 bacteriophage is widely used as a surrogate for pathogenic waterborne viruses in Europe and the United States. In this study, the choice of MS2 bacteriophage as the best surrogate to be used for assessment of the effectiveness of drinking water treatment in removal of pathogenic waterborne viruses in worst conditions is clearly challenged. It was shown that GA bacteriophage is potentially a better surrogate as a worst case than MS2. Considering GA bacteriophage as the best surrogate in this study, a chlorine disinfection step could guaranteed a complete removal of this model and ensure the safety character of drinking water plants. PMID:22421032

Boudaud, Nicolas; Machinal, Claire; David, Fabienne; Fréval-Le Bourdonnec, Armelle; Jossent, Jérôme; Bakanga, Fanny; Arnal, Charlotte; Jaffrezic, Marie Pierre; Oberti, Sandrine; Gantzer, Christophe

2012-05-15

366

Effect of plants and filter materials on bacteria removal in pilot-scale constructed wetlands.  

PubMed

Due to the lack of testing units or appropriate experimental approaches, only little is known about the removal of bacteria in constructed wetlands. However, improved performance in terms of water sanitation requires a detailed understanding of the ongoing processes. Therefore, we analyzed the microbial diversity and the survival of Enterobacteriaceae in six pilot-scale constructed wetland systems treating domestic wastewater: two vertical sand filters, two vertical expanded clay filters and two horizontal sand filters (each planted and unplanted). Samples were taken from the in- and outflow, from the rhizosphere, and from the bulk soil at various depths. Colony-forming units of heterotrophic bacteria and coliforms were analyzed and the removal of bacteria between the in- and outflow was determined to within 1.5-2.5 orders of magnitude. To access the taxon-specific biodiversity of potential pathogens in the filters and to reduce the complexity of the analysis, specific primers for Enterobacteriaceae were developed. While performing PCR-SSCP analyses, a pronounced decrease in diversity from the inflow to the outflow of treated wastewater was observed. No differences were observed between the bulk soil of planted and unplanted vertical filters. Some bands appeared in the rhizosphere that were not present in the bulk soil, indicating the development of specific communities stimulated by the plants. The fingerprinting of the rhizosphere of plants grown on sand or expanded clay exhibited many differences, which show that different microbial communities exist depending on the soil type of the filters. The use of the taxon-specific primers enabled us to evaluate the fate of the Enterobacteriaceae entering the wetlands and to localize harboring in the rhizosphere. The most abundant bands of the profiles were sequenced: Pantoea agglomerans was found in nearly all samples from the soil but not in the effluent, whereas Citrobacter sp. could not be removed by the horizontal unplanted sand and vertical planted expanded clay filters. These results show that the community in wetland system is strongly influenced by the filtration process, the filter material and the plants. PMID:15862336

Vacca, Gabriela; Wand, Helmut; Nikolausz, Marcell; Kuschk, Peter; Kästner, Matthias

2005-04-01

367

Construction and evaluation of simulated pilot scale landfill lysimeter in Bangladesh.  

PubMed

This research concentrates the design, construction and evaluation of simulated pilot scale landfill lysimeter at KUET campus, Khulna, Bangladesh. Both the aerobic and anaerobic conditions having a base liner and two different types of cap liner were simulated. After the design of a reference cell, the construction of landfill lysimeter was started in January 2008 and completed in July 2008. In all construction process locally available civil construction materials were used. The municipal solid waste (MSW) of 2800-2985 kg having the total volume of 2.80 m(3) (height 1.6 m) and moisture content of 65% was deposited in each lysimeter by applying required compaction energy. In contrast, both the composition in terms of methane (CH(4)), carbon dioxide (CO(2)) and oxygen (O(2)) as well as the flow rate of landfill gas (LFG) generated from MSW in landfill lysimeter were measured and varied significantly in relation to the variation of lysimeter operational condition. Moreover, anaerobic lysimeter-C shows the highest composition of LFG in compare to the anaerobic lysimeter-B due to the providing of lower compaction of cap liner in anaerobic lysimeter-C. Here, it is interesting to note that in absence of compacted clay liner (CCL) and hence percolation of rainwater that facilitates rapid degradation of MSW in aerobic lysimeter-A has resulted in the highest settlement than that of anaerobic landfill lysimeter-B and C. Moreover, in case of anaerobic lysimeter-B and C, the leachate generation was lower than that of aerobic lysimeter-A due to the providing of cap liner in anaerobic lysimeter-B and C, played an important role to reduce the percolation of rainwater. The study also reveals that the leachate pollution index (LPI) has decreased in relation to the increasing of elapsed period as well as the LPI for collection system of aerobic lysimeter-A was higher than that of the collection system of anaerobic lysimeter-B and C. Finally, it can be depicted that LPI for lysimeter was significantly high and proper treatment will be necessary before discharging the lysimeter leachate into the water bodies. PMID:22464865

Rafizul, Islam M; Howlader, Milon Kanti; Alamgir, Muhammed

2012-11-01

368

Considering environmental water demands in global-scale water stress assessments: a pilot study  

NASA Astrophysics Data System (ADS)

Freshwater ecosystems need certain water flow regimes to sustain their animal and plant communities. Thus, there is not only a human demand for water (i.e. for domestic, industrial and agricultural purposes) but also a demand by freshwater ecosystems, here called environmental water demand. In order to achieve a sustainable development of river basins, both human and environmental water demands need to be taken into account in water management. For a comparative global-scale analysis of freshwater scarcity, it is therefore useful to compute river- basin specific budgets which contain the following terrestrial water flows (or rather flow components): 1) total renewable water resources (runoff), 2) human water withdrawals (and consumptive water uses) and 3) environmental water demands. In a pilot study, the global water availability and use model WaterGAP 2 (spatial resolution 0.5 degree) was used to derive such budgets for all river basins of the worlds. Its sectoral water use modules estimate human water withdrawals and consumptive water uses, while its hydrological module WGHM computes monthly values of surface runoff, groundwater recharge and river discharge. WGHM calculates both natural and actual discharge by simulating the reduction of river discharge by human water consumption. It is tuned against observed discharge at 724 gauging stations (representing about 50% of the global land area) to achieve a good simulation of the long-term average river discharge. Validation efforts have shown than WGHM can satisfactorily simulate the 90% reliable monthly discharge Q90 of river basins larger than 20,000 km2. Based on these capabilities of WaterGAP 2, a first estimate of basin-specific annual environmental water demands was derived as the sum of a low flow and a high flow requirement. Drawing on experience from South Africa, Q90 was assumed to represent the low flow that the ecosystems can tolerate, as it is the flow value that is not reached in 1 out of 10 months. High flows are needed to flush the system, and the high flow requirement was assumed to increase with flow variability, i.e. with decreasing Q90 to long-term average discharge ratio. As an indicator of the human infringement on environmental water demands, water withdrawals as a proportion of the water available for human use is computed, where "water available for human use" is defined as the difference between long-term average river discharge and environmental water demand.

Doell, P.; Shmaktin, V.; Revenga, C.

2003-04-01

369

Membrane bioreactor for waste gas treatment  

Microsoft Academic Search

SummaryThis thesis describes the design and testing of a membrane bioreactor (MBR) for removal of organic pollutants from air. In such a bioreactor for biological gas treatment pollutants are degraded by micro-organisms. The membrane bioreactor is an alternative to other types of bioreactors for waste gas treatment, such as compost biofilters and bioscrubbers. Propene was used as a model pollutant

M. W. Reij

1997-01-01

370

PILOT-SCALE ASSESSMENT OF CONVENTIONAL PARTICULATE CONTROL TECHNOLOGY FOR PRESSURIZED FLUIDIZED-BED COMBUSTION EMISSIONS  

EPA Science Inventory

The report gives results of an evaluation of electrostatic precipitator (ESP) and fabric filter particulate control technology for the EPA/Exxon pressurized fluidized-bed combustion (PFBC) Miniplant in Linden, NJ. EPA's mobile ESP and fabric filter pilot facilities were slipstrea...

371

HYDROTHERMAL TREATMENT OF WHEAT STRAW ON PILOT PLANT SCALE Anders Thygesena  

E-print Network

plant. In this study, the pilot plant reactor was used for hydrothermal treatment of wheat straw/L was treated, the liquid extract contained solubilised polymeric hemicellulose corresponding to 9 g xylose bioethanol production. The cellulose cannot be enzymatically hydrolyzed to glucose without a physical

372

Residual moisture reduction of coarse coal using air purging. 2. Pilot scale studies  

Microsoft Academic Search

CSIRO and Novatech Consulting have been developing air purging as a new way of reducing the moisture content of coarse coal product from vibrating basket centrifuges. The process involves injecting a turbulent stream of high velocity air through the coal bed as it traverses the centrifuge basket. This paper describes the results obtained when the process was trialed at pilot

R. Davy; B. Johnston; S. Nicol; L. Stapleton; C. Veal

2001-01-01

373

PILOT-SCALE FIELD TESTS OF HIGH-GRADIENT MAGNETIC FILTRATION  

EPA Science Inventory

The report gives results of using a 5100 cu m/hr mobile pilot plant to evaluate the effectiveness and economics of applying high-gradient magnetic filtration (HGMF) to particulate emission control. A 4-1/2 month test program was conducted at a Pennsylvania sintering plant to char...

374

Ammonia removal from wastewaters using natural Australian zeolite. 2. Pilot-scale study using continuous packed column process  

SciTech Connect

A pilot-scale process was designed and operated to investigate the continuous removal of ammonia from sewage using natural zeolite from Australia. The process consisted of a fixed-bed ion-exchange system operated in the downflow mode. Evaluation of the pilot process was initially undertaken for ammonia removal from tap water spiked with ammonium chloride to provide performance data in the absence of competing cations. The performance of the pilot process was then assessed using sewage as feed. Breakthrough curves were constructed for a range of treatment flow rates. Existing models for packed bed performance were shown to be able to predict the breakthrough behavior of the process. The results of a study are presented that show that Australian natural zeolite, clinoptilolite, may be successfully employed in a fixed-bed ion-exchange process to achieve high ammonia removal efficiencies from aqueous solution at rates commensurate with sand filtration. The rate of uptake of ammonium by the zeolite is sufficient to support a continuous high rate process.

Cooney, E.L.; Booker, N.A.; Shallcross, D.C.; Stevens, G.W.

1999-10-01

375

Removal of volatile organic compounds at extreme shock-loading using a scaled-up pilot rotating drum biofilter.  

PubMed

A pilot-scale rotating drum biofilter (RDB), which is a novel biofilter design that offers flexible flow-through configurations, was used to treat complex and variable volatile organic compound (VOC) emissions, including shock loadings, emanating from paint drying operations at an Army ammunition plant. The RDB was seeded with municipal wastewater activated sludge. Removal efficiencies up to 86% and an elimination capacity of 5.3 g chemical oxygen demand (COD) m(-3) hr(-1) were achieved at a filter-medium contact time of 60 sec. Efficiency increased at higher temperatures that promote higher biological activity, and decreased at lower pH, which dropped down to pH 5.5 possibly as a result of carbon dioxide and volatile fatty acid production and ammonia consumption during VOC degradation. In comparison, other studies have shown that a bench-scale RDB could achieve a removal efficiency of 95% and elimination capacity of 331 g COD m(-3) hr(-1). Sustainable performance of the pilot-scale RDB was challenged by the intermittent nature of painting operations, which typically resulted in 3-day long shutdown periods when bacteria were not fed. This challenge was overcome by adding sucrose (2 g/L weekly) as an auxiliary substrate to sustain metabolic activity during shutdown periods. PMID:19044156

Sawvel, Russell A; Kim, Byung; Alvarez, Pedro J J

2008-11-01

376

Laboratory and Pilot Scale Evaluation of a Permeable Reactive Barrier Technology for Use at Rocky Flats Environmental Technology Site (RFETS)  

SciTech Connect

Three reactive materials were evaluated to identify the optimum treatment reagent for use in a Permeable Reactive Barrier Treatment System at Rocky Flats Environmental Technology Site (RFETS). The three reactive media evaluated included high carbon steel iron filings, an iron-silica alloy in the form of a foam aggregate, and a pellicular humic acid based sorbent (Humasorb from Arctech) mixed with sand. Each material was tested in the laboratory at column scale using simulated site water. All three materials showed promise for the 903 Mound Site; however, the iron filings were determined to be the most cost effective media. In order to validate the laboratory results, the iron filings were further tested at a pilot scale (field columns) using actual site water. Pilot test results were similar to laboratory results; consequently, the iron filings were chosen for the full scale demonstration of this reactive barrier technology. Design parameters including saturated hydraulic conductivity, treatment residence time, and head loss across the media were provided to the design team in support of the final design.

Dwyer, B.P.; Hankins, M.G.

1999-02-01

377

Perfusion Bioreactor Module  

NASA Technical Reports Server (NTRS)

Perfusion bioreactor module, self-contained, closed-loop cell-culture system that operates in microgravity or on Earth. Equipment supports growth or long-term maintenance of cultures of human or other fragile cells for experiments in basic cell biology or process technology. Designed to support proliferation (initially at exponential rates of growth) of cells in complex growth medium and to maintain confluent cells in defined medium under conditions optimized to permit or encourage selected functions of cells, including secretion of products of cells into medium.

Morrison, Dennis R.

1990-01-01

378

A comparison of impulse drying to double felted pressing on pilot- scale shoe presses and roll presses  

SciTech Connect

Pilot-scale shoe press and roll press experiments have been conducted to compare impulse drying and double felted pressing. Both ceramic coated and Beloit Type C press rolls have been evaluated. The experiments show that impulse drying can provide significantly higher outgoing solids than double felled pressing at the same impulse. For example, at an impulse of 0.234 MPa seconds (34 psi seconds), sheets at an ingoing solids of 52% were impulse dried (using the Beloit Type C press roll) to 68% solids while optimized double felled pressing could only yield press dryness of, at most, 60%.

Orloff, D.I.

1992-08-01

379

Sensing in tissue bioreactors  

NASA Astrophysics Data System (ADS)

Specialized sensing and measurement instruments are under development to aid the controlled culture of cells in bioreactors for the fabrication of biological tissues. Precisely defined physical and chemical conditions are needed for the correct culture of the many cell-tissue types now being studied, including chondrocytes (cartilage), vascular endothelial cells and smooth muscle cells (blood vessels), fibroblasts, hepatocytes (liver) and receptor neurones. Cell and tissue culture processes are dynamic and therefore, optimal control requires monitoring of the key process variables. Chemical and physical sensing is approached in this paper with the aim of enabling automatic optimal control, based on classical cell growth models, to be achieved. Non-invasive sensing is performed via the bioreactor wall, invasive sensing with probes placed inside the cell culture chamber and indirect monitoring using analysis within a shunt or a sampling chamber. Electroanalytical and photonics-based systems are described. Chemical sensing for gases, ions, metabolites, certain hormones and proteins, is under development. Spectroscopic analysis of the culture medium is used for measurement of glucose and for proteins that are markers of cell biosynthetic behaviour. Optical interrogation of cells and tissues is also investigated for structural analysis based on scatter.

Rolfe, P.

2006-03-01

380

Simulating the gas hydrate production test at Mallik using the pilot scale pressure reservoir LARS  

NASA Astrophysics Data System (ADS)

LARS, the LArge Reservoir Simulator, allows for one of the few pilot scale simulations of gas hydrate formation and dissociation under controlled conditions with a high resolution sensor network to enable the detection of spatial variations. It was designed and built within the German project SUGAR (submarine gas hydrate reservoirs) for sediment samples with a diameter of 0.45 m and a length of 1.3 m. During the project, LARS already served for a number of experiments simulating the production of gas from hydrate-bearing sediments using thermal stimulation and/or depressurization. The latest test simulated the methane production test from gas hydrate-bearing sediments at the Mallik test site, Canada, in 2008 (Uddin et al., 2011). Thus, the starting conditions of 11.5 MPa and 11°C and environmental parameters were set to fit the Mallik test site. The experimental gas hydrate saturation of 90% of the total pore volume (70 l) was slightly higher than volumes found in gas hydrate-bearing formations in the field (70 - 80%). However, the resulting permeability of a few millidarcy was comparable. The depressurization driven gas production at Mallik was conducted in three steps at 7.0 MPa - 5.0 MPa - 4.2 MPa all of which were used in the laboratory experiments. In the lab the pressure was controlled using a back pressure regulator while the confining pressure was stable. All but one of the 12 temperature sensors showed a rapid decrease in temperature throughout the sediment sample, which accompanied the pressure changes as a result of gas hydrate dissociation. During step 1 and 2 they continued up to the point where gas hydrate stability was regained. The pressure decreases and gas hydrate dissociation led to highly variable two phase fluid flow throughout the duration of the simulated production test. The flow rates were measured continuously (gas) and discontinuously (liquid), respectively. Next to being discussed here, both rates were used to verify a model of gas hydrate dissociation applying the foamy oil approach, a method earlier adopted to model the Mallik production test (see abstract Abendroth et al., this volume). Combined with a dense set of data from a cylindrical electrical resistance tomography (ERT) array (see abstract Priegnitz et al., this volume), very valuable information were gained on the spatial as well as temporal formation and dissociation of gas hydrates as well as changes in permeability and resulting pathways for the fluid flow. Here we present the set-up and execution of the experiment and discuss the results from temperature and flow measurements with respect to the gas hydrate dissociation and characteristics of resulting fluid flow. Uddin, M., Wright, F., and Coombe, D. 2011. Numerical Study of Gas Evolution and Transport Behaviours in Natural Gas-Hydrate Reservoirs. Journal of Canadian Petroleum Technology 50, 70-89.

Heeschen, Katja; Spangenberg, Erik; Schicks, Judith M.; Priegnitz, Mike; Giese, Ronny; Luzi-Helbing, Manja

2014-05-01

381

Pilot-Scale TRUEX Flowsheet Testing for Separation of Actinides and Lanthanides from Used Nuclear Fuel  

SciTech Connect

Advanced aqueous separation processes are being developed for the recycling of used nuclear fuel as part of the U.S. Department of Energy Nuclear Energy Advanced Fuel Cycle Initiative. The Transuranic Extraction (TRUEX) Process is being developed as part of these advanced separations processes for the separation of actinides and lanthanides from the used nuclear fuel. Testing of a TRUEX flowsheet has been performed using a thirty stage, 5-cm centrifugal contactor pilot plant. This testing was performed using a non-radioactive feed surrogate and data were collected and analyzed to evaluate removal efficiencies of the lanthanides, mass transfer efficiency of the lanthanides in the extraction and strip sections of the flowsheet, and the temperature profile of the process solutions throughout the centrifugal contactor pilot plant. Results indicate >99.9% separation for all lanthanides and mass transfer efficiencies typically ranging from 85% to 100%. Solution temperatures for each contactor stage, as well as general process performance, are also described.

Jack D. Law; Troy G. Garn; David H. Meikrantz; Jamie Warburton

2010-01-01

382

Cells growing in NASA Bioreactor  

NASA Technical Reports Server (NTRS)

For 5 days on the STS-70 mission, a bioreactor cultivated human colon cancer cells, which grew to 30 times the volume of control specimens grown on Earth. This significant result was reproduced on STS-85 which grew mature structures that more closely match what are found in tumors in humans. Shown here, clusters of cells slowly spin inside a bioreactor. On Earth, the cells continually fall through the buffer medium and never hit bottom. In space, they are naturally suspended. Rotation ensures gentle stirring so waste is removed and fresh nutrient and oxygen are supplied. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

1998-01-01

383

Cultivation of Mammalian Cells Using a Single-use Pneumatic Bioreactor System.  

PubMed

Recent advances in mammalian, insect, and stem cell cultivation and scale-up have created tremendous opportunities for new therapeutics and personalized medicine innovations. However, translating these advances into therapeutic applications will require in vitro systems that allow for robust, flexible, and cost effective bioreactor systems. There are several bioreactor systems currently utilized in research and commercial settings; however, many of these systems are not optimal for establishing, expanding, and monitoring the growth of different cell types. The culture parameters most challenging to control in these systems include, minimizing hydrodynamic shear, preventing nutrient gradient formation, establishing uniform culture medium aeration, preventing microbial contamination, and monitoring and adjusting culture conditions in real-time. Using a pneumatic single-use bioreactor system, we demonstrate the assembly and operation of this novel bioreactor for mammalian cells grown on micro-carriers. This bioreactor system eliminates many of the challenges associated with currently available systems by minimizing hydrodynamic shear and nutrient gradient formation, and allowing for uniform culture medium aeration. Moreover, the bioreactor's software allows for remote real-time monitoring and adjusting of the bioreactor run parameters. This bioreactor system also has tremendous potential for scale-up of adherent and suspension mammalian cells for production of a variety therapeutic proteins, monoclonal antibodies, stem cells, biosimilars, and vaccines. PMID:25349946

Obom, Kristina M; Cummings, Patrick J; Ciafardoni, Janelle A; Hashimura, Yasunori; Giroux, Daniel

2014-01-01

384

Laboratory and bin-scale tests of gas generation for the Waste Isolation Pilot Plant  

SciTech Connect

The design-basis, defense-related, transuranic (TRU) waste to be emplaced in the Waste Isolation Pilot Plant (WIPP) could, if sufficient H{sub 2}O and nutrients were present, produce as much as 1,500 moles of gas per drum of waste. Anoxic corrosion of Fe and Fe-base alloys and microbial degradation of cellulosics are the processes of greatest concern, but radiolysis of brine could also be important. 19 refs., 1 fig., 1 tab.

Brush, L.H.; Molecke, M.A.; Lappin, A.R. (Sandia National Labs., Albuquerque, NM (United States)); Westerman, R.E. (Pacific Northwest Lab., Richland, WA (United States)); Tong, X.; Black, J.N.P.; Grbic-Galic, D. (Stanford Univ., CA (United States). Dept. of Civil Engineering); Vreeland, R.E. (West Chester Univ., PA (United States). Dept. of Biology); Reed, D.T. (Argonne National Lab., IL (United Stat

1991-01-01

385

Anaerobic treatment of fibreboard manufacturing wastewaters in a pilot scale hybrid usbf reactor  

Microsoft Academic Search

The treatment of fibreboard manufacturing (FBM) wastewaters was carried out in an industrial pilot plant, which consisted of a hybrid upflow sludge bed filter (USBF) anaerobic reactor and a coagulation–flocculation unit as a pre-treatment. COD removal efficiencies of 90–93% were attained in the anaerobic reactor operating at 37°C at organic loading rates (OLR) of 6.5–8.5kgCOD\\/m3d. Flocculant sludges were used as

José M. Fernández; Francisco Omil; Ramón Méndez; Juan M. Lema

2001-01-01

386

Modelling effects of subgrid-scale mixture fraction variance in LES of a piloted diffusion flame  

Microsoft Academic Search

A posteriori analysis of the statistics of two large-eddy simulation (LES) solutions describing a piloted methane–air (Sandia D) flame is performed on a series of grids with progressively increased resolution reaching about 10.5 million cells. Chemical compositions, density and temperature fields are modelled with a steady flamelet approach and parametrised by the mixture fraction. The difference between the LES solutions

Konstantin A. Kemenov; Haifeng Wang; Stephen B. Pope

2012-01-01

387

Evaluation of solids dewatering for a pilot-scale thiosorbic lime SO/sub 2/ scrubber  

SciTech Connect

Pilot plant data showed that the dissolved magnesium in thiosorbic lime caused deterioration of solids dewatering properties. The slurry settling rate increased when the slurry shear stresses caused by the hold tank stirrer and recirculation pump were reduced. The application of flocculant also increased the slurry solids settling rate. Compared with rotary drum vacuum filtering, better liquid/solids separation occurred with a centrifuge. Other related performance results are also discussed.

Chang, J.C.S.; Brna, T.G.

1987-01-01

388

The scaling properties of the effluent water from Kizildere power station, Turkey, and recommendation for a pilot plant in view of district heating applications  

Microsoft Academic Search

During a recent prefeasibility study for applying the effluent geothermal water from the Power Plant at Kizildere for district heating purposes, the chemistry of the water was checked and the scaling properties noted. This paper deals with the results of chemical testing and the nature of scaling observed by tests in a local heating system at Kizildere. Furthermore, a pilot

B LINDAL; H KRISTMANNSDOTTIR

1989-01-01

389

Modeling sorbent injection for mercury control in baghouse filters: II--pilot-scale studies and model evaluation.  

PubMed

Activated carbon injection for Hg control in a 500-lb/hr pilot-scale coal-fired furnace equipped with a fabric filter for particulate control was evaluated at different operating conditions. The pilot-scale tests showed that Hg removal was improved at lower temperatures and higher C/Hg ratios. The two-stage mathematical model developed to describe Hg removal using powdered activated carbon injection upstream of a baghouse filter was used to obtain Langmuir isotherm parameters as a function of temperature by fitting the model to a subset of experimental data. The predictive capability of the model was then tested by comparing model calculations with additional experimental data from this system obtained using different operating temperatures and sorbent to Hg ratios. Model predictions were in good agreement with experimentally measured Hg removal efficiency. Based on the model predictions, Hg removal in the duct appears to be limited and higher C/Hg ratio, lower operating temperature, and longer cleaning cycle of the baghouse filter should be utilized to achieve higher Hg removal in this system. PMID:12708513

Flora, Joseph R V; Hargis, Richard A; O'Dowd, William J; Pennline, Henry W; Vidic, Radisav D

2003-04-01

390

Performance evaluation of the pilot-scale, double-shell tank ventilation system using simulated aerosol streams  

SciTech Connect

Radioactive waste slurries are currently being stored in underground tanks on the Hanford Site. The slurries that are being stored in the double-shell tanks (DSTs) are various mixtures of radioactive solids, liquids, and aqueous wastes. The tanks must be maintained at a negative pressure relative to atmospheric pressure to safeguard against pressurization and the subsequent leakage of entrained radioactive aerosols to the environment. A ventilation system must be capable of withdrawing the total volume of off gas generated from the tanks while maintaining the tanks at a negative pressure. Westinghouse Hanford Company (WHC) has identified a need to improve the efficiency of the ventilation system being used on the tank farms to meet the more restrictive release limits for radioactive isotopes. Kaiser Engineers Hanford Company (KEH) has been contracted by WHC to design the new ventilation system for the existing tank farms. WHC contracted the Pacific Northwest Laboratory (PNL) to fabricate and test the prototypic pilot-scale design prior to finalizing the design of the ventilation system. The PNL has conducted tests to determine (1) the effectiveness of the system for removal of vapors condensable at 35{degrees}F, (2) the effectiveness for removal of soluble and insoluble aerosols, and (3) the life span of the mist eliminators to be used in the new system. The results of extensive testing of the pilot-scale system with condensables and both soluble and insoluble aerosols are presented in this report. 7 refs., 25 figs., 8 tabs.

Brouns, T.M.; Peterson, M.E.

1989-12-01

391

Measurement and capture of fine and ultrafine particles from a pilot-scale pulverized coal combustor with an electrostatic precipitator.  

PubMed

Experiments were carried out in a pilot-scale pulverized coal combustor at the Energy and Environmental Research Center (EERC) burning a Powder River Basin (PRB) subbituminous coal. A scanning mobility particle sizer (SMPS) and an electrical low-pressure impactor (ELPI) were used to measure the particle size distributions (PSDs) in the range of 17 nm to 10 microm at the inlet and outlet of the electrostatic precipitator (ESP). At the ESP inlet, a high number concentration of ultrafine particles was found, with the peak at approximately 75 nm. A trimodal PSD for mass concentration was observed with the modes at approximately 80-100 nm, 1-2 microm, and 10 microm. The penetration of ultrafine particles through the ESP increased dramatically as particle size decreased below 70 nm, attributable to insufficient or partial charging of the ultrafine particles. Injection of nanostructured fine-particle sorbents for capture of toxic metals in the flue gas caused high penetration of the ultrafine particles through the ESP. The conventional ESP was modified to enhance charging using soft X-ray irradiation. A slipstream of flue gas was introduced from the pilot-scale facility and passed through this modified ESP. Enhancement of particle capture was observed with the soft X-ray irradiation when moderate voltages were used in the ESP, indicating more efficient charging of fine particles. PMID:19583155

Li, Ying; Suriyawong, Achariya; Daukoru, Michael; Zhuang, Ye; Biswas, Pratim

2009-05-01

392

Enhanced anaerobic biodegradation of OCDD-contaminated soils by Pseudomonas mendocina NSYSU: microcosm, pilot-scale, and gene studies.  

PubMed

In this study, microcosm and pilot-scale experiments were performed to investigate the capability and effectiveness of Pseudomonas mendocina NSYSU (P. mendocina NSYSU) on the bioremediation of octachlorodibenzo-p-dioxin (OCDD)-contaminated soils. The objectives were to evaluate the (1) characteristics of P. mendocina NSYSU, (2) feasibility of enhancing OCDD biodegradation with the addition of P. mendocina NSYSU and lecithin, and (3) variation in microbial diversity and genes responsible for the dechlorination of OCDD. P. mendocina NSYSU was inhibited when salinity was higher than 7%, and it could biodegrade OCDD under reductive dechlorinating conditions. Lecithin could serve as the solubilization agent causing the enhanced solubilization and dechlorination of OCDD. Up to 71 and 62% of OCDD could be degraded after 65 days of incubation under anaerobic conditions with and without the addition of lecithin, respectively. Decreased OCDD concentrations caused significant increase in microbial diversity. Results from the pilot-scale study show that up to 75% of OCDD could be degraded after a 2.5-month operational period with lecithin addition. Results from the gene analyses show that two genes encoding the extradiol/intradiol ring-cleavage dioxygenase and five genes encoding the hydrolase in P. mendocina NSYSU were identified and played important roles in OCDD degradation. PMID:24997259

Tu, Y T; Liu, J K; Lin, W C; Lin, J L; Kao, C M

2014-08-15

393

Xylanase and laccase based enzymatic kraft pulp bleaching reduces adsorbable organic halogen (AOX) in bleach effluents: a pilot scale study.  

PubMed

In present study, xylanase and laccase were produced in a cost-effective manner up to 10 kg substrate level and evaluated in elemental chlorine free bleaching of Eucalyptus kraft pulp. Compared to the pulp pre-bleached with xylanase (15%) or laccase (25%) individually, the ClO2 savings were higher with sequential treatment of xylanase followed by laccase (35%) at laboratory scale. The sequential enzyme treatment when applied at pilot scale (50 kg pulp), resulted in improved pulp properties (50% reduced post color number, 15.71% increased tear index) and reduced AOX levels (34%) in bleach effluents. The decreased AOX level in effluents will help to meet AOX discharge limits, while improved pulp properties will be value addition to the paper. PMID:25036336

Sharma, Abha; Thakur, Vasanta Vadde; Shrivastava, Anita; Jain, Rakesh Kumar; Mathur, Rajeev Mohan; Gupta, Rishi; Kuhad, Ramesh Chander

2014-10-01

394

Yearlong evaluation of performance and durability of a pilot-scale Revolving Algal Biofilm (RAB) cultivation system.  

PubMed

Current algal cultivation has been mainly performed in open ponds or photobioreactors in which algal cells are suspended and harvested through flocculation and centrifugation. A unique attachment based Revolving Algal Biofilm (RAB) cultivation system was recently developed for easy biomass harvest with enhanced biomass productivity. The objective of this research was to evaluate the performance (durability, algal growth, and the geometry) of the RAB system at pilot-scale. A yearlong test of the RAB system was successfully conducted at a greenhouse facility at Boone, Iowa, USA. The RAB resulted in an average of 302% increase in biomass productivity compared to a standard raceway pond, with a maximum biomass productivity (ash free) of 18.9g/m(2)-day being achieved. The RAB with a vertical configuration generated higher productivity than the triangular RAB. Collectively, the research shows that the RAB as an efficient algal culture system has great potential for being deployed at commercial scale. PMID:25189508

Gross, Martin; Wen, Zhiyou

2014-11-01

395

Measurement and Estimation in Bioreactors.  

National Technical Information Service (NTIS)

The paper deals with measurement problems in bioreactors and how on-line estimation methods can be applied to help solve them by using indirect measurements and algorithmic techniques. An adaptive filter based method that provides a simultaneous state and...

A. Halme

1987-01-01

396

Ecotoxicity assessment of artificial groundwater recharge with reclaimed water: a pilot-scale study.  

PubMed

A demonstration of artificial groundwater recharge with tertiary effluent was evaluated using a set of bioassays (acute toxicity to Daphnia, genotoxicity, estrogenic and antiestrogenic toxicity). Around 95 % genotoxicity and 53 % antiestrogenicity were removed from the feed water by ozonation, whereas significant reduction of acute toxicity to Daphnia magna was achieved during a 3 days vadose soil treatment. The toxicity was further removed to the same level as the local groundwater during a 20 days aquifer soil treatment. The pilot study has shown that ozonation and soil treatments can improve the quality of municipal wastewater treatment plant effluents for possible groundwater recharge purposes. PMID:24072260

Zhang, Xue; Zhao, Xuan

2013-11-01

397

Instrumentation and operational requirements for pilot-scale CO/sub 2/ enhanced oil recovery projects  

SciTech Connect

This report describes an instrumentation system to monitor a miscible displacement pilot flood under carefully controlled conditions. The primary focus is on CO/sub 2/ flooding but the results apply equally well to other types of miscible floods. Included are discussions of the physical processes in a CO/sub 2/ flood, a review of existing CO/sub 2/ floods, instrumentation available, site selection and characterization, operation of the flood, simulator evaluation, and cost estimates for this type of project. Throughout the report it is emphasized that determination of residual oil saturation before and after the flood is crucial to evaluation of the results.

Lyle, Jr., W. D.; Eisenhawer, S. W.

1980-06-01

398

Controlled-Turbulence Bioreactors  

NASA Technical Reports Server (NTRS)

Two versions of bioreactor vessel provide steady supplies of oxygen and nutrients with little turbulence. Suspends cells in environment needed for sustenance and growth, while inflicting less damage from agitation and bubbling than do propeller-stirred reactors. Gentle environments in new reactors well suited to delicate mammalian cells. One reactor kept human kidney cells alive for as long as 11 days. Cells grow on carrier beads suspended in liquid culture medium that fills cylindrical housing. Rotating vanes - inside vessel but outside filter - gently circulates nutrient medium. Vessel stationary; magnetic clutch drives filter cylinder and vanes. Another reactor creates even less turbulence. Oxygen-permeable tubing wrapped around rod extending along central axis. Small external pump feeds oxygen to tubing through rotary coupling, and oxygen diffuses into liquid medium.

Wolf, David A.; Schwartz, Ray; Trinh, Tinh

1989-01-01

399

Anaerobic treatment of brewery wastewater with an internal membrane bioreactor.  

PubMed

Anaerobic treatment is growing very popular these days because of low sludge production compared to activated sludge processes. The drawback of the process is the risk of sludge washout, especially when the formation of granular sludge is not expected. By using an internal anaerobic bioreactor this problem can be overcome. A lab scale internal anaerobic membrane bioreactor was operated at SEGHERSbetter technology for Water N.V. to which brewery wastewater was fed (COD=2300 mg/l). Hollow fibres were inserted into the anaerobic bioreactor, from which the effluent was extracted by underpressure. The COD-removal was excellent and very constant at a value of 95%. No suspended solids were present in the effluent. The membrane permeability stabilised at relatively low value of 18 l/m2.h.bar due to an irreversible adhesion of constituents in the bioreactor. No growth of biomass was found during two months of operation. Inocculated granular sludge fell apart into loose flocs within several weeks of the startup, not affecting biological performance. The internal anaerobic membrane bioreactor is a promising new area within the field of wastewater treatment. It is expected that this process will have an important future. PMID:15954573

Cornelissen, E R; van Buggenhout, S; van Ermen, S; De Smedt, M; Van Impe, J; Koning, J

2001-01-01

400

Membrane Bioreactor With Pressure Cycle  

NASA Technical Reports Server (NTRS)

Improved class of multilayer membrane bioreactors uses convention forced by differences in pressure to overcome some of diffusional limitations of prior bioreactors. In reactor of new class, flow of nutrient solution reduces adverse gradients of concentration, keeps cells supplied with fresh nutrient, and sweeps away products faster than diffusion alone. As result, overall yield and rate of reaction increased. Pressures in sweeping gas and nutrient alternated to force nutrient liquid into and out of biocatalyst layer through hyrophilic membrane.

Efthymiou, George S.; Shuler, Michael L.

1991-01-01

401

Bioreactor Mass Transport Studies  

NASA Technical Reports Server (NTRS)

The objectives of the proposed research efforts were to develop both a simulation tool and a series of experiments to provide a quantitative assessment of mass transport in the NASA rotating wall perfused vessel (RWPV) bioreactor to be flown on EDU#2. This effort consisted of a literature review of bioreactor mass transport studies, the extension of an existing scalar transport computer simulation to include production and utilization of the scalar, and the evaluation of experimental techniques for determining mass transport in these vessels. Since mass transport at the cell surface is determined primarily by the relative motion of the cell assemblage and the surrounding fluid, a detailed assessment of the relative motion was conducted. Results of the simulations of the motion of spheres in the RWPV under microgravity conditions are compared with flight data from EDU#1 flown on STS-70. The mass transport across the cell membrane depends upon the environment, the cell type, and the biological state of the cell. Results from a literature review of cell requirements of several scalars are presented. As a first approximation, a model with a uniform spatial distribution of utilization or production was developed and results from these simulations are presented. There were two candidate processes considered for the experimental mass transport evaluations. The first was to measure the dissolution rate of solid or gel beads. The second was to measure the induced fluorescence of beads as a stimulant (for example hydrogen peroxide) is infused into the vessel. Either technique would use video taped images of the process for recording the quantitative results. Results of preliminary tests of these techniques are discussed.

Kleis, Stanley J.; Begley, Cynthia M.

1997-01-01

402

Mercury Emissions Control in Coal Combustion Systems Using Potassium Iodide: Bench-Scale and Pilot-Scale Studies  

E-print Network

- bed reactor (PBR) packed with granular or powder KI and (2) an aerosol flow reactor (AFR and removal of Hg in air and coal combustion exhaust. Two bench-scale reactor systems were used: (1) a packed

Li, Ying

403

Halogenated aromatics from steel production: results of a pilot-scale investigation.  

PubMed

The potential environmental impact of emissions of halogenated aromatics from the steel industry is of growing concern. It has been suggested that electric arc furnaces are the only industrial source with constant or increasing emissions of dioxins to air. Here the results are reported from a pilot plant study on how scrap composition and various treatment alternatives affect the formation and release of chlorinated and brominated aromatics. The experiments were conducted with a statistical mixture design, and it is shown that scrap composition has a significant impact on the outcome. In contrast, the various treatment schemes examined--shredding, disassembly, and briquetting--did not affect the formation and release of halogenated aromatics. Parallel experiments with injection of adsorbents showed that it is possible to reduce emissions without substantial investments, and this option is recommended as a low-cost solution. PMID:15212909

Oberg, Tomas

2004-08-01

404

Scale reliability and construct validity: a pilot study among primary school children in Northern Tanzania.  

PubMed

Based on the World Health Organization's standardized survey inventories assessing AIDS-related knowledge, attitudes, beliefs, and practices (KABP) for adolescents, a written questionnaire was developed and pilot tested among primary school children in Northern Tanzania. Subjects included 472 fifth and sixth graders at four schools in Arusha and Kilimanjaro regions. Results indicated that the large majority of the students understood the questions and were able and willing to complete the survey. Non-response patterns did not seem to be related to the sensitivity of included questions. AIDS-related knowledge and attitudes toward engaging in sexual behavior had acceptable reliability and construct validity when compared with similar surveys in Western countries, while perceived social norms and self-efficacy need further development. KABP questionnaires may serve as a useful method in AIDS-related surveys and evaluation studies among school children in Tanzania if survey instruments are adapted to reflect the local social and cultural context. PMID:7702963

Seha, A M; Klepp, K I; Ndeki, S S

1994-12-01

405

Effect of membrane bioreactor solids retention time on reverse osmosis membrane fouling for wastewater reuse.  

PubMed

The effect of the solids retention time (SRT) in a membrane bioreactor (MBR) on the fouling of the membranes in a subsequent reverse osmosis (RO) process used for wastewater reuse was studied experimentally using a pilot-scale treatment system. The MBR-RO pilot system was fed effluent from the primary clarifiers at a large municipal wastewater treatment plant. The SRT in the MBRs was adjusted to approximately 2, 10, and 20 days in three experiments. The normalized specific flux through the MBR and RO membranes was evaluated along with inorganic and organic constituents in the influent and effluent of each process. Increasing the SRT in the MBR led to an increase in the removal of bulk DOC, protein, and carbohydrates, as has been observed in previous studies. Increasing the SRT led to a decrease in the fouling of the MBR membranes, which is consistent with previous studies. However, the opposite trend was observed for fouling of the RO membranes; increasing the SRT of the MBR resulted in increased fouling of the RO membranes. These results indicate that the constituents that foul MBR membranes are not the same as those that foul RO membranes; to be an RO membrane foulant in a MBR-RO system, the constituents must first pass through the MBR membranes without being retained. Thus, an intermediate value of SRT may be best choice of operating conditions in an MBR when the MBR is followed by RO for wastewater reuse. PMID:24316181

Farias, Elizabeth L; Howe, Kerry J; Thomson, Bruce M

2014-02-01

406

Mercury and acid gas control in utility baghouses through sorbent injection -- Pilot-scale demonstration  

SciTech Connect

The mercury concentration in utility flue gas is in the range of 0.1 to 1.0 part per billion. EPA and state agencies are assessing whether such low concentrations of mercury emissions from coal-fired utilities pose a significant health risk and whether mercury regulations would be necessary or appropriate. In anticipation of regulations that would impose control on mercury emissions, Public Service Electric and Gas Company (PSE and G) has joined with the Electric Power Research Institute (EPRI) to evaluate carbon-based sorbents for mercury control at one of PSE and G's coal-fired power plants. While active carbon is currently injected into municipal solid-waste combustor (MWC) flue gas streams to reduce vapor phase mercury concentrations, this technique has not been rigorously tested on flue gas from coal-fired utility boilers. Due to the difference in flue gas composition and the low mercury concentrations present in utility flue gas, this technology is not directly transferable to utility applications. With new ambient standards for particulate matter and ozone in the future and inclusion of utilities in the Toxics Release Inventory, additional evaluations were conducted to determine the effectiveness of injecting calcium and sodium based sorbents upstream of a baghouse to control acid gas emissions (SO{sub 2}, SO{sub 3} and HCl). Testing of sorbent injection technology is currently underway on a slipstream of flue gas from Hudson Unit 2 located in Jersey City, New Jersey. The unit is a dry-bottom, supercritical once-through design firing a low sulfur bituminous coal. The test facility (pilot) is based on a 4,000-acfm COHPAC baghouse. This paper describes the results of pilot testing of activated carbon and calcium/sodium sorbents injection technology for mercury and acid gas control.

Waugh, E.; Jensen, B.; Lapatnick, L.; Gibbons, F.; Sjostrom, S.J.; Chang, R.

1998-07-01

407

Bacterial Community Dynamics and Taxa-Time Relationships within Two Activated Sludge Bioreactors  

PubMed Central

Background Biological activated sludge process must be functionally stable to continuously remove contaminants while relying upon the activity of complex microbial communities. However the dynamics of these communities are as yet poorly understood. A macroecology metric used to quantify community dynamic is the taxa-time relationship (TTR). Although the TTR of animal and plant species has been well documented, knowledge is still lacking in regard to TTR of microbial communities in activated sludge bioreactors. Aims 1) To characterize the temporal dynamics of bacterial taxa in activated sludge from two bioreactors of different scale and investigate factors affecting such dynamics; 2) to evaluate the TTRs of activated sludge microbial communities in two bioreactors of different scale. Methods Temporal variation of bacterial taxa in activated sludge collected from a full- and lab-scale activated sludge bioreactor was monitored over a one-year period using pyrosequencing of 16S rRNA genes. TTR was employed to quantify the bacterial taxa shifts based on the power law equation S?=?cTw. Results The power law exponent w for the full-scale bioreactor was 0.43 (R2?=?0.970), which is lower than that of the lab-scale bioreactor (w?=?0.55, R2?=?0.971). The exponents for the dominant phyla were generally higher than that of the rare phyla. Canonical correspondence analysis (CCA) result showed that the bacterial community variance was significantly associated with water temperature, influent (biochemical oxygen demand) BOD, bioreactor scale and dissolved oxygen (DO). Variance partitioning analyses suggested that wastewater characteristics had the greatest contribution to the bacterial community variance, explaining 20.3% of the variance of bacterial communities independently, followed by operational parameters (19.9%) and bioreactor scale (3.6%). Conclusions Results of this study suggest bacterial community dynamics were likely driven partly by wastewater and operational parameters and provide evidence that the TTR may be a fundamental ecological pattern in macro- and microbial systems. PMID:24594695

Hai, Reti; Wang, Yulin; Wang, Xiaohui; Li, Yuan; Du, Zhize

2014-01-01

408

Partitioning behavior of trace elements during pilot-scale combustion of pulverized coal and coal-water slurry fuel  

PubMed

Release pathways for inorganic hazardous air pollutants (IHAPs) from a pilot-scale, down-fired combustor (DFC) when firing pulverized coal (PC) and coal-water slurry fuel (CWSF) were identified and quantified to demonstrate the effect of fuel form on IHAP partitioning, enrichment and emissions. The baghouse capturing efficiency for each element was calculated to determine the effectiveness of IHAP emission control. Most of the IHAPs were enriched in the fly ash and depleted in the bottom ash. Mercury was found to be enriched in the flue gas, and preferentially emitted in the vapor phase. When firing CWSF, more IHAPs were partitioned in the bottom ash than when firing PC. Significant reduction of Hg emissions during CWSF combustion was also observed. PMID:10781717

Nodelman; Pisupati; Miller; Scaroni

2000-05-29

409

Interactions between bromine and chlorine in a pilot-scale hazardous waste incinerator. Report for January 1995-April 1996  

SciTech Connect

The paper discusses experiments that were performed in a 73-kW pilot-scale rotary-kiln incinerator simulator equipped with a 73-kW secondary combustion chamber during which a complex organic mixture containing bromine (Br) and chlorine (Cl) was incinerated. Detailed measurements of products of incomplete combustion (PICs) were made, including volatile and semi-volatile organics, as well as polychlorinated and polybrominated dibenzo-p-dioxins and dibenzo furans (PCDDs/PCDFs and PBDD/PBDFs) and mixed bromo-chloro dioxins and furans (PBSDDs/PBCDFs). Results indicated that the ratios of some analogous brominated to chlorinated PICs were greater than the ratios of the amount of Br to Cl in the feed stream.

Lemieux, P.; Ryan, J.; Lutes, C.; Bruce, K.

1996-07-01

410

Vitrification of high-level radioactive waste in a pilot-scale liquid-fed ceramic melter  

SciTech Connect

Under the sponsorship of the Nuclear Waste Treatment Program (NWTP), a high-level radioactive waste vitrification system has been installed in a Radiochemical Engineering Facility at Hanford, Washington. The facility is designed for remote operation of equipment using master-slave manipulators and overhead cranes. The pilot-scale radioactive system consists of a melter, canister handling turntable, glass-level detection system and supporting waste preparation, offgas treatment and condensate treatment systems. The vitrification system will be operated with radioactive wastes to test remote equipment features and process performance. Destructive and nondestructive methods will be used in the characterization of the waste glass product after canisters are filled with specific waste compositions. 4 refs., 9 figs.

Bjorklund, W.J.; Holton, L.K.; Knowlton, D.E.

1985-03-01

411

Pilot-scale study on the acid-catalyzed steam explosion of rice straw using a continuous pretreatment system.  

PubMed

A continuous acid-catalyzed steam explosion pretreatment process and system to produce cellulosic ethanol was developed at the pilot-scale. The effects of the following parameters on the pretreatment efficiency of rice straw feedstocks were investigated: the acid concentration, the reaction temperature, the residence time, the feedstock size, the explosion pressure and the screw speed. The optimal presteaming horizontal reactor conditions for the pretreatment process are as follows: 1.7 rpm and 100-110 °C with an acid concentration of 1.3% (w/w). An acid-catalyzed steam explosion is then performed in the vertical reactor at 185 °C for 2 min. Approximately 73% of the total saccharification yield was obtained after the rice straw was pretreated under optimal conditions and subsequent enzymatic hydrolysis at a combined severity factor of 0.4-0.7. Moreover, good long-term stability and durability of the pretreatment system under continuous operation was observed. PMID:23201511

Chen, Wen-Hua; Tsai, Chia-Chin; Lin, Chih-Feng; Tsai, Pei-Yuan; Hwang, Wen-Song

2013-01-01

412

Heavy metal fate in pilot-scale sludge drying reed beds under various design and operation conditions.  

PubMed

Thirteen pilot-scale sludge drying reed bed (SDRB) units have been constructed and operated under various settings. The beds included a cobbles lower layer, where perforated PVC aeration tubes were placed, and two gravel layers on top. The setup included planted beds with common reeds and control units. Three sludge loading rates (SLR) were examined: 30, 60 and 75 kg dm/m(2)/yr. Heavy metal (HM) accumulation in the residual sludge layer was negligible or low, and was found to increase with sludge layer depth. Plant uptake was low; the belowground biomass accumulated significantly more HMs compared to the aboveground biomass. Less than 16% of the influent HM left the bed through drainage. HM accumulation in the gravel layer was the major metal sink in the mass balance. On the whole, the HM content of the residual sludge was below the legal limits proposed by the EU for land application. PMID:22405610

Stefanakis, Alexandros I; Tsihrintzis, Vassilios A

2012-04-30

413

Thermal composting of faecal matter as treatment and possible disinfection method––laboratory-scale and pilot-scale studies  

Microsoft Academic Search

When using toilets where the urine and faeces are collected separately for reuse as nutrients in agriculture, the collected matter should be disinfected. One way to do this is by thermal composting. Composting of different material mixes was investigated in a laboratory-scale experiment. This showed that the best mixture for dry thermal composting was a mix of faeces, food waste

Björn Vinnerås; Anders Björklund; Håkan Jönsson

2003-01-01

414

Evaluation of hydraulic characteristics in a pilot-scale constructed wetland using a multi-tracer experiment  

NASA Astrophysics Data System (ADS)

In recent years, constructed wetland systems have become into focus as means for organic contaminant removal. The use of constructed wetlands as part of water treatment offers great opportunities to realize significant savings in future wastewater treatment costs for small communities and the adaptation of large wastewater treatment plants. Wetland systems provide a highly reactive environment in which several elimination pathways of organic chemicals may be present at the same time; however, these elimination processes and hydraulic conditions are usually poorly understood. Previously, in our study site monochlorobenzene removal was observed in a pilot-scale wetland system which treats contaminated groundwater from the regional aquifer in Bitterfeld. The degradation was linked to either aerobic or anaerobic, iron- or sulfate- reduction or multiple processes, in parallel. However, it was unclear how the groundwater flows through this system, precluding a more founded understanding of the flow and transport processes. Therefore, we investigated the flow system in this three dimensional pilot-scale constructed wetland applying a multi tracer test combined with a mathematical model to evaluate the hydraulic characteristics. The pilot system consisted of a 6 m length x 1 m wide x 0.5 m depth gravel filter with a triple inflow distributed evenly approx. 5 cm from the bottom at the inflow. Three conservative tracers (uranine, bromide and deuterium) were injected as a pulse at the inflow and analyzed at 4 meters distance from the inflow at three different depths to obtain residence time distributions of groundwater flow in the gravel bed of the wetland. A mathematical multi-flow dispersion model was used to model the tracer breakthrough curves of the different sampling levels, which assumes parallel combinations of the one-dimensional advection-dispersion equation. The model was successfully applied to fit the experimental tracer breakthrough curves by assuming three flow paths. For each flow path, the groundwater volume, water-saturated porosity, mean groundwater retention time, longitudinal dispersivity and flow velocity in the wetland were derived from the model parameters. The results indicate the existence of a multiple flow system with two distinct flow paths through the gravel bed and a preferential flow at the bottom resulting from the inflow design of the model wetland system. The used model was calibrated with high accuracy for the bottom level. Differences between simulated and measured concentrations in the upper levels indicate possible influence of diffusion processes with stagnant water zones. The tracer study demonstrated the complexity of flow and transport processes in the constructed wetlands which need to be taken into account during interpretation of the determining attenuation processes.

Birkigt, Jan; Stumpp, Christine; Ma?oszewski, Piotr; Richnow, Hans H.; Nijenhuis, Ivonne

2013-04-01

415

A new hybrid treatment system of bioreactors and electrocoagulation for superior removal of organic and nutrient pollutants from municipal wastewater.  

PubMed

This paper evaluated a novel pilot scale hybrid treatment system which combines rotating hanging media bioreactor (RHMBR), submerged membrane bioreactor (SMBR) along with electrocoagulation (EC) as post treatment to treat organic and nutrient pollutants from municipal wastewater. The results indicated that the highest removal efficiency was achieved at the internal recycling ratio as 400% of the influent flow rate which produced a superior effluent quality with 0.26mgBOD5L(-1), 11.46mgCODCrL(-1), 0.00mgNH4(+)-NL(-1), and 3.81mgT-NL(-1), 0.03mgT-PL(-1). During 16months of operation, NH4(+)-N was completely eliminated and T-P removal efficiency was also up to 100%. It was found that increasing in internal recycling ratio could improve the nitrate and nitrogen removal efficiencies. Moreover, the TSS and coliform bacteria concentration after treatment was less than 5mgL(-1) and 30MPNmL(-1), respectively, regardless of internal recycling ratios and its influent concentration. PMID:24355502

Nguyen, Dinh Duc; Ngo, Huu Hao; Yoon, Yong Soo

2014-02-01

416

Simultaneous removal of carbonaceous and nitrogenous pollutants by a plunging liquid jet bioreactor with crossflow filtration operated under intermittent aeration  

Microsoft Academic Search

Simultaneous removal of total organic carbon (TOC) and nitrogen (T-N) by a plunging liquid jet bioreactor was investigated for small-scale treatment of domestic wastewater. The bioreactor was operated under suspended growth and attached growth conditions and intermittent aeration to carry out both nitrification and denitrification processes in one vessel. In the suspended growth system, TOC removal efficiency was about 90%

Kazuaki Yamagiwa; Yuichi Oohira; Akira Ohkawa

1995-01-01

417

The Fabi-Bolton chest wrinkle scale: a pilot validation study.  

PubMed

Up until now, no objective scale has existed to evaluate chest wrinkles and assess the efficacy of treatment. This study was designed to validate a new photonumeric wrinkle assessment scale using standardized photographic methodology to obtain reference photographs. Multiple photographs from 28 volunteer subjects with varying degrees of chest wrinkles were evaluated by a study team of two independent physicians. Photographs of 16 subjects representing the full spectrum of chest wrinkle severity were selected and classified using the Fabi-Bolton (F-B) 5-point wrinkle scale (1 = wrinkles absent; 2 = shallow but visible wrinkles; 3 = moderately deep wrinkles; 4 = deep wrinkles, with well-defined edges; 5 = wrinkles very deep with redundant folds). One representative photograph was chosen by study team consensus for each of the five scale points. A second, independent group of evaluators rated the randomly arranged photographs using the F-B wrinkle scale. The numeric results were then tabulated and compared. The F-B wrinkle scale provided a reproducible and effective method for assessing chest wrinkles with very little interrater variability. The F-B wrinkle scale is a reliable tool for the classification of chest wrinkles and evaluation of therapeutic and cosmetic interventions. PMID:22938008

Fabi, Sabrina; Bolton, Joanna; Goldman, Mitchel P; Guiha, Isabella

2012-09-01

418

Optimisation of biogas production from manure through serial digestion: Lab-scale and pilot-scale studies  

Microsoft Academic Search

In the present study, the possibility of optimizing biogas production from manure by serial digestion was investigated. In the lab-scale experiments, process performance and biogas production of serial digestion, two methanogenic continuously stirred tank reactors (CSTR) connected in series, was compared to a conventional one-step CSTR process. The one-step process was operated at 55°C with 15d HRT and 5l working

Prasad Kaparaju; Lars Ellegaard; Irini Angelidaki

2009-01-01

419

A high containment polymodal pilot-plant fermenter--design concepts.  

PubMed

A 225 dm3 pilot-plant bioreactor system has been designed and constructed that is suitable for biohazardous fermentations. The design enables operation at containment levels above the requirements of good industrial large-scale practice (GILSP) without secondary containment of the whole plant. The main biosafety features of the systems include the use of steam barriers on O-ring seals, supply lines and stirrer seals, multiple O-ring seals, piping of condensate lines and pressure relief systems to a 'kill tank', double filtration of inlet and off gases and a mobile isolation unit that allows localised containment of sample valve and probe entry ports. The fermenter can, with minor modifications, be operated as a bottom-or top-stirred reactor for the culture of microbial or animal cells, or as an airlift reactor. The design offers considerable flexibility that could prove cost-effective for process development and production. The relevance of the various design features to enable bioreactor operations at pilot-plant scale to be carried out in compliance with current guidelines for large-scale culture of recombinant microorganisms and microbial pathogens is discussed. PMID:1367227

Hambleton, P; Griffiths, J B; Cameron, D R; Melling, J

1991-01-01

420

Development of thin-film photo-bioreactor and its application to outdoor culture of microalgae.  

PubMed

Photosynthetic microalgae have received much attention as a microbial source of diverse useful biomaterials through CO(2) fixation and various types of photo-bioreactors have been developed for efficient microalgal cultivation. Herein, we developed a novel thin-film photo-bioreactor, which was made of cast polypropylene film, considering outdoor mass cultivation. To develop optimal design of photo-bioreactor, we tested performance of three shapes of thin-film photo-bioreactors (flat, horizontal and vertical tubular shapes) and various parts in the bioreactor. Collectively, vertical tubular bioreactor with H/D ratio 6:1 and cylindrical stainless steel spargers showed the most outstanding performance. Furthermore, the photo-bioreactor was successfully applied to the cultivation of other microalgae such as Chlamydomonas reinhardtii and Chlorella vulgaris. The scalability of photo-bioreactor was confirmed by gradually increasing culture volume from 4 to 25 L and the biomass productivity of each reactor was quite consistent (0.05-0.07 g/L/day) during the cultivation of H. pluvialis under indoor and outdoor conditions. Especially, we also achieved dry cell weight of 4.64 g/L and astaxanthin yield of 218.16 mg/L through long-term cultivation (100 days) under outdoor condition in 15 L photo-bioreactor using Haematococcus pluvialis, which means that the astaxanthin yield from outdoor cultivation is equal or superior to that obtained from controlled indoor condition. Therefore, these results indicate that we can apply this approach to development of optimal photo-bioreactor for the large-scale culture of microalgae and production of useful biomaterials under outdoor condition. PMID:23361185

Yoo, Jae Jun; Choi, Seung Phill; Kim, Jaoon Y H; Chang, Won Seok; Sim, Sang Jun

2013-06-01

421

Superfund Technology Evaluation Report: SITE Program Demonstration Test Shirco Pilot-Scale Infrared Incineration System at the Rose Township Demode Road Superfund Site Volume I  

EPA Science Inventory

The Shirco Pilot-Scale Infrared Incineration System was evaluated during a series of seventeen test runs under varied operating conditions at the Demode Road Superfund Site located in Rose Township, Michigan. The tests sought to demonstrate the effectiveness of the unit and the t...

422

Pilot-scale distillation and characterization of diesel-fuel fractions of Strategic Petroleum Reserve crude oils. Interim report, December 1985February 1987  

Microsoft Academic Search

Little, beyond crude assay data, has been known about the properties of various fuel fractions, including diesel fuel, that might ensue in the event crude oils available at the Strategic Petroleum Reserve were actually to be refined. Accordingly, eight distinct crude-oil streams were collected from the Reserve and subjected to distillation in a pilot-scale unit. Middle distillate fractions were prepared

D. L. Morris; B. K. Bailey; L. L. Stavinoha; H. N. Giles

1987-01-01

423

Final report from VFL Technologies for the pilot-scale thermal treatment of Lower East Fork Poplar Creek floodplain soils. LEFPC appendices. Volume 5. Appendix V-D  

SciTech Connect

This final report from VFL Technologies for the pilot-scale thermal treatment of lower East Fork Poplar Creek floodplain soils dated September 1994 contains LEFPC Appendices, Volume 5, Appendix V - D. This appendix includes the final verification run data package (PAH, TCLP herbicides, TCLP pesticides).

NONE

1994-09-01

424

11th WWW YES, Arcueil -6 10 June 2011 Urban waters: resource or risks? Developing a Pilot Scale Horizontal Sub Surface  

E-print Network

discharge is a threat to nature, causing eutrophication and water borne diseases. The situation is getting11th WWW YES, Arcueil - 6 ­ 10 June 2011 Urban waters: resource or risks? Developing a Pilot Scale will increase along with population growth. The increasing scarcity of water in the world along with rapid

Paris-Sud XI, Université de

425

DEMONSTRATION OF PILOT-SCALE PREVAPORATION SYSTEMS FOR VOLATILE ORGANIC COMPOUND REMOVAL FROM A SURFACTANT ENHANCED AQUIFER REMEDIATION FLUID. I. SPIRAL WOUND MEMBRANE MODULES  

EPA Science Inventory

During the summer of 1996, a pilot-scale demonstration of a surfactant enhanced aquifer remediation (SEAR) process for removal of dense non-aqueous phase liquids (DNAPLs) from soils was conducted at Hill Air Force Base in Layton, Utah. Five thousand gallons of the extracted DNAP...

426

Anaerobic treatment of fibreboard manufacturing wastewaters in a pilot scale hybrid usbf reactor.  

PubMed

The treatment of fibreboard manufacturing (FBM) wastewaters was carried out in an industrial pilot plant, which consisted of a hybrid upflow sludge bed filter (USBF) anaerobic reactor and a coagulation-flocculation unit as a pre-treatment. COD removal efficiencies of 90-93% were attained in the anaerobic reactor operating at 37degrees C at organic loading rates (OLR) of 6.5-8.5 kg COD/m3 d. Flocculant sludges were used as inoculum, and granulation was observed in the USBF reactor after 120 days of operation. The overall linear upward velocity (result of liquid and gas flow) was the key factor controlling biomass retention and, therefore, a stable operation at high OLR. According to ecotoxicity values (measured by means of bioluminescence assays), the wastewaters were partially detoxified, being EC50 values for the liquid effluent 25 times lower than those corresponding to the influent. Besides, phenolic compounds removal efficiencies of 90% were attained. The hybrid reactor configuration is an interesting alternative to treat these wastewaters since it is less sensitive to biomass clogging or floatation. PMID:11791844

Fernández, J M; Omil, F; Méndez, R; Lema, J M

2001-12-01

427

Pilot-scale evaluation of UV reactors' efficacy against in vitro infectivity of Cryptosporidium parvum oocysts.  

PubMed

An experimental protocol was developed to assess the efficacy of two UV reactors (medium-pressure UVaster), and a low-pressure reactor) on the infectivity of Cryptosporidium parvum oocysts under conditions mimicking small- or medium-size water distribution units. The protocol included purification of large amounts of viable oocysts from experimentally infected calf feces, pilot spiking, sample concentration and purification after UV radiation, oocyst quantification and in vitro evaluation of oocyst infectivity on HCT-8 cells. Water samples were collected at intervals upstream and downstream from the UV reactor after spiking. Oocysts were concentrated by centrifugation, purified by immunomagnetic capture and quantified using laser-scanning cytometry. An enhanced in vitro infectivity test on HCT-8 cells was developed, where oocysts were pretreated in order to obtain maximized in vitro infectivity, and infectious foci were enumerated after immunofluorescence staining after 3 days of culture. This method was superior to viability measured by excystation for assessing oocyst infectivity. The infectivity rate of untreated oocysts ranged between 9% and 30% in replicate experiments. The method allowed us to determine inactivation rates >4.92 (log) with UVaster and >4.82 with the LP reactor after exposition of oocysts to an effective dose of 400 J m(-2) at flow rates of 15 and 42 m(3) h(-1), respectively. PMID:17941833

Entrala, Emilio; Garin, Yves J F; Meneceur, Pascale; Hayat, Maud; Scherpereel, Guillaume; Savin, Cyril; Féliers, Cédric; Derouin, Francis

2007-12-01

428

Pilot scale cooling tower fouled fill treatment: AFCATT (Anti-Fouling Chemical Additive Test Tower)  

SciTech Connect

Polyvinylchloride (PVC) film-type cellular fill is the fill of choice in replacing cement asbestor board fill in existing cooling towers and in new cooling towers because of its high thermal performance, ease of installation, and low initial cost. However, PVC fill has been found to foul quickly with biological and sediment material, significant reducing tower performance and the fill`s useful life. The Anti-Fouling Chemical Additives Test Tower (AFCATT) has been built to study accumulation rates of fouling deposits in corrugated PVC film fill and to study methods of cleaning and preventing the fouling deposits. This small mechanical draft cooling tower is located next to the Unit 4 natural draft cooling tower at Georgia Power Company`s Plant Bowen. The once-through mechanical draft tower receives hot water from the condenser and returns the cold water to the basin of the host tower. The pilot tower is divided into four chambers allowing for three different treatment programs and one control to be run simultaneously. PVC fill packs are suspended from load cells to allow the weight of the fill packs to be measured continuously. Six vendors participated in the summer 1993 test program. Each proposed different methods of cleaning the fouled fill and were given the opportunity to try their proposed method of fill cleaning. The success of each treatment program was determined by its ability to reduce fill pack weight (i.e., reduce fouling).

Newton, M.T.; Noble, R.T.; Philpot, E.F.; Eastis, J.H. [Southern Company Services, Birmingham, AL (United States)

1995-02-01

429

Design and installation of a next generation pilot scale fermentation system.  

PubMed

Four new fermenters were designed and constructed for use in secondary metabolite cultivations, bioconversions, and enzyme production. A new PC/PLC-based control system also was implemented using GE Fanuc PLCs, Genius I/O blocks, and Fix Dynamics SCADA software. These systems were incorporated into an industrial research fermentation pilot plant, designed and constructed in the early 1980s. Details of the design of these new fermenters and the new control system are described and compared with the existing installation for expected effectiveness. In addition, the reasoning behind selection of some of these features has been i