Science.gov

Sample records for pilot scale bioreactor

  1. Pilot-scale experiment on anaerobic bioreactor landfills in China

    SciTech Connect

    Jiang, Jianguo Yang, Guodong; Deng, Zhou; Huang, Yunfeng; Huang, Zhonglin; Feng, Xiangming; Zhou, Shengyong; Zhang, Chaoping

    2007-07-01

    Developing countries have begun to investigate bioreactor landfills for municipal solid waste management. This paper describes the impacts of leachate recirculation and recirculation loadings on waste stabilization, landfill gas (LFG) generation and leachate characteristics. Four simulated anaerobic columns, R1-R4, were each filled with about 30 tons of waste and recirculated weekly with 1.6, 0.8 and 0.2 m{sup 3} leachate and 0.1 m{sup 3} tap water. The results indicated that the chemical oxygen demand (COD) half-time of leachate from R1 was about 180 days, which was 8-14 weeks shorter than that of R2-R4. A large amount of LFG was first produced in R1, and its generation rate was positively correlated to the COD or volatile fatty acid concentrations of influent leachates after the 30th week. By the 50th week of recirculation, the waste in R1 was more stabilized, with 931.2 kg COD or 175.6 kg total organic carbon released and with the highest landfill gas production. However, this contributed mainly to washout by leachate, which also resulted in the reduction of LFG generation potential and accumulation of ammonia and/or phosphorus in the early stage. Therefore, the regimes of leachate recirculation should be adjusted to the phases of waste stabilization to enhance efficiency of energy recovery. Integrated with the strategy of in situ leachate management, extra pre-treatment or post-treatment methods to remove the nutrients are recommended.

  2. Pilot-scale experiment on anaerobic bioreactor landfills in China.

    PubMed

    Jiang, Jianguo; Yang, Guodong; Deng, Zhou; Huang, Yunfeng; Huang, Zhonglin; Feng, Xiangming; Zhou, Shengyong; Zhang, Chaoping

    2007-01-01

    Developing countries have begun to investigate bioreactor landfills for municipal solid waste management. This paper describes the impacts of leachate recirculation and recirculation loadings on waste stabilization, landfill gas (LFG) generation and leachate characteristics. Four simulated anaerobic columns, R1-R4, were each filled with about 30 tons of waste and recirculated weekly with 1.6, 0.8 and 0.2m(3) leachate and 0.1m(3) tap water. The results indicated that the chemical oxygen demand (COD) half-time of leachate from R1 was about 180 days, which was 8-14 weeks shorter than that of R2-R4. A large amount of LFG was first produced in R1, and its generation rate was positively correlated to the COD or volatile fatty acid concentrations of influent leachates after the 30th week. By the 50th week of recirculation, the waste in R1 was more stabilized, with 931.2 kg COD or 175.6 kg total organic carbon released and with the highest landfill gas production. However, this contributed mainly to washout by leachate, which also resulted in the reduction of LFG generation potential and accumulation of ammonia and/or phosphorus in the early stage. Therefore, the regimes of leachate recirculation should be adjusted to the phases of waste stabilization to enhance efficiency of energy recovery. Integrated with the strategy of in situ leachate management, extra pre-treatment or post-treatment methods to remove the nutrients are recommended. PMID:17015005

  3. Evaluation of two pilot scale membrane bioreactors for the elimination of selected surfactants from municipal wastewaters

    NASA Astrophysics Data System (ADS)

    González, Susana; Petrovic, Mira; Barceló, Damiá

    2008-07-01

    SummaryThe removal of selected surfactants, linear alkylbenzene sulfonates (LAS), coconut diethanol amides (CDEA) and alkylphenol ethoxylates and their degradation products were investigated using a two membrane bioreactor (MBR) with hollow fiber and plate and frame membranes. The two pilot plants MBR run in parallel to a full-scale conventional activated sludge (CAS) treatment. A total of eight influent samples with the corresponding effluent samples were analysed by solid phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS-MS). The results indicate that both MBR have a better effluent quality in terms of chemical and biological oxygen demand (COD and BOD), NH4+ , concentration and total suspended solids (TSS). MBR showed a better similar performance in the overall elimination of the total nonylphenolic compounds, achieving a 75% of elimination or a 65% (the same elimination reached by CAS). LAS and CDEA showed similar elimination in the three systems investigated and no significant differences were observed.

  4. Comparison of mixed liquor filterability measured with bench and pilot-scale membrane bioreactors.

    PubMed

    Nywening, J P; Zhou, H; Husain, H

    2007-01-01

    Parallel experimental tests to measure mixed liquor filterability for submerged membrane bioreactors were conducted over a six month period using three ZW-500 pilot plants and a ZW-10 lab-scale filterability apparatus. Non-air sparged conditions during the tests yielded operation behaviour that was equivalent to dead-end filtration. The fouling resistance increased linearly with the intercepted mass until a critical point was reached at which point significant cake compression was induced and the resistance began to increase exponentially. Although the point of cake compression appears to be dependent on the membrane module design, similar resistance per unit solid mass intercepted per unit area (R(mass)) values were observed when the same mixed liquor was filtered. Coupled with the established correlation between the R(mass) and the critical flux, it is suggested that the filterability test results from a side-stream, lab-scale module may be used to predict fouling potential in a full scale MBR wastewater treatment system without interrupting the full-scale MBR operation. PMID:17898454

  5. Development of an extractive membrane bioreactor for degradation of 3 chloro-4-methylaniline: From lab bench to pilot scale

    SciTech Connect

    Splendiani, A.; Moreira de Sa, J.A.G.C.; Jorge, R.; Nicolella, C.; Livingston, A.G.; Hughes, K.; Cook, S.

    2000-03-31

    Extractive Membrane Bioreactor (EMB) technology has been applied to an industrial wastewater containing 3-chloro-4-methylaniline, para-toluidine and methanol produced at the Hickson and Welch Ltd. production site in Castleford, UK. Successful treatment was accomplished through a step-wise approach to process development, involving selection of a suitable microbial culture, extractive membrane bioreactor operation under well-controlled laboratory conditions, and finally pilot scale-application at the production site. Three experimental steps were undertaken: (1) a microbial culture capable of degrading 3-chloro-4-methylaniline was developed in a continuous enrichment reactor; (2) the selected culture was then inoculated to a lab-scale EMB unit and adapted to the conditions of the industrial waste; and (3) finally the process was scaled-up to assess feasibility and performance at pilot-scale. At the pilot scale, 100% extraction of the target molecules contained in the industrial wastewater was achieved in a 1 m{sup 3} extractive membrane bioreactor treating 60 gld 3-chloro-4-methylaniline and 30 gld para-toluidine. Stoichiometric amounts of chloride were generated, indicating complete mineralization of 3-chloro-4-methylaniline.

  6. Removal of phosphorus from wastewaters using ferrous salts - a pilot scale membrane bioreactor study.

    PubMed

    Wang, Yuan; Tng, K Han; Wu, Hao; Leslie, Greg; Waite, T David

    2014-06-15

    A pilot scale membrane bioreactor (3.7 m(3)/day capacity), configured for alternate point ferrous sulphate addition, was evaluated in a fourteen month trial to comply with an effluent discharge requirement of less than 0.15 mg-P/L at the 50(th) percentile and less than 0.30 mg-P/L at the 90th percentile. Ferrous sulphate was added at a molar ratio (Fe(II):PO4) of 2.99 in the filtration chamber for 85 days and 2.60 in the primary anoxic zone for 111 days. Addition of ferrous salts to the anoxic zone achieved a final effluent phosphorous concentration (mg-P/L) of <0.05 (29%), <0.15 (77%) and <0.30 (95%), while addition of ferrous salts in the filtration zone achieved <0.05 (18%), <0.15 (63%) and <0.30 (95%). Analysis of the concentration of iron(II) in the supernatant indicated that phosphorus was mainly removed via adsorption to amorphous iron oxyhydroxides particles in both dosing scenarios. However, analysis of residence time distribution (RTD) data of the reactor indicated that severe short-circuiting from the dosing point to the membrane outlet could occur when the ferrous salts were added to the membrane zone while the reactor behaved close to a completely mixed reactor when dosing to the primary anoxic zone, resulting in improved phosphorus removal. The addition of ferrous salt was also found to delay the onset of severe increase in trans-membrane pressure as a result of the removal of macro-molecules. However, detailed analysis of the form and concentration of iron species in the supernatant and permeate indicated that the presence of fine iron particles resulted in a higher fouling rate when Fe(II) was added to the membrane zone rather than the primary anoxic zone and could cause more severe irreversible fouling in long-term operation. PMID:24709534

  7. Removal properties of human enteric viruses in a pilot-scale membrane bioreactor (MBR) process.

    PubMed

    Miura, Takayuki; Okabe, Satoshi; Nakahara, Yoshihito; Sano, Daisuke

    2015-05-15

    In order to evaluate removal properties of human enteric viruses from wastewater by a membrane bioreactor (MBR), influent, anoxic and oxic mixed liquor, and membrane effluent samples were collected in a pilot-scale anoxic-oxic MBR process for 16 months, and concentrations of enteroviruses, norovirus GII, and sapoviruses were determined by real-time PCR using murine norovirus as a process control. Mixed liquor samples were separated into liquid and solid phases by centrifugation, and viruses in the bulk solution and those associated with mixed liquor suspended solids (MLSS) were quantified. Enteroviruses, norovirus GII, and sapoviruses were detected in the influent throughout the sampling period (geometrical mean, 4.0, 3.1, and 4.4 log copies/mL, respectively). Enterovirus concentrations in the solid phase of mixed liquor were generally lower than those in the liquid phase, and the mean log reduction value between influent and anoxic mixed liquor was 0.40 log units. In contrast, norovirus GII and sapovirus concentrations in the solid phase were equal to or higher than those in the liquid phase, and higher log reduction values (1.3 and 1.1 log units, respectively) were observed between influent and anoxic mixed liquor. This suggested that enteroviruses were less associated with MLSS than norovirus GII and sapoviruses, resulting in lower enterovirus removal in the activated sludge process. Enteroviruses and norovirus GII were detected in the MBR effluent but sapoviruses were not in any effluent samples. When MLSS concentration was reduced to 50-60% of a normal operation level, passages of enteroviruses and norovirus GII through a PVDF microfiltration membrane were observed. Since rejection of viruses by the membrane was not related to trans-membrane pressure which was monitored as a parameter of membrane fouling, the results indicated that adsorption to MLSS plays an important role in virus removal by an MBR, and removal properties vary by viruses reflecting different adsorptive behavior to MLSS. Our observations suggested that sapoviruses are more associated with MLSS and removed more efficiently than enteroviruses and norovirus GII. PMID:25770448

  8. Pilot-scale culture of Hypericum perforatum L. adventitious roots in airlift bioreactors for the production of bioactive compounds.

    PubMed

    Cui, Xi-Hua; Murthy, Hosakatte Niranjana; Paek, Kee-Yoeup

    2014-09-01

    Hypericum perforatum L. (St. John's Wort) is an important medicinal plant which is widely used in the treatment for depression and irritable bowel syndrome. It is also used as a dietary supplement. Major bioactive phytochemicals of H. perforatum are phenolics and flavonoids. Quality of these phytochemicals is dramatically influenced by environmental and biological factors in the field grown plants. As an alternative, we have developed adventitious root cultures in large-scale bioreactors for the production of useful phytochemicals. Adventitious roots of H. perforatum were cultured in 500 l pilot-scale airlift bioreactors using half-strength Murashige and Skoog medium with an ammonium and nitrate ratio of 5:25 mM and supplemented with 1.0 mg l(-1) indole butyric acid, 0.1 mg l(-1) kinetin, and 3 % sucrose for the production of bioactive phenolics and flavonoids. Then 4.6 and 6.3 kg dry biomass were realized in the 500 l each of drum-type and balloon-type bioreactors, respectively. Accumulation of 66.9 mg g(-1) DW of total phenolics, 48.6 mg g(-1) DW of total flavonoids, 1.3 mg g(-1) DW of chlorogenic acid, 0.01 mg g(-1) DW of hyperin, 0.04 mg g(-1) DW of hypericin, and 0.01 mg g(-1) DW of quercetin could be achieved with adventitious roots cultured in 500 l balloon-type airlift bioreactors. Our findings demonstrate the possibilities of using H. perforatum adventitious root cultures for the production of useful phytochemicals to meet the demand of pharmaceutical and food industry. PMID:25096393

  9. Solid-state fermentation of soybean residues for bioflocculant production in a pilot-scale bioreactor system.

    PubMed

    Zulkeflee, Zufarzaana; Sánchez, Antoni

    2014-01-01

    An innovative approach using soybean residues for the production of bioflocculants through solid-state fermentation was carried out in 4.5 L near-to-adiabatic bioreactors at pilot-scale level. An added inoculum of the strain Bacillus subtilis UPMB13 was tested in comparison with control reactors without any inoculation after the thermophilic phase of the fermentation. The flocculating performances of the extracted bioflocculants were tested on kaolin suspensions, and crude bioflocculants were obtained from 20 g of fermented substrate through ethanol precipitation. The production of bioflocculants was observed to be higher during the death phase of microbial growth. The bioflocculants were observed to be granular in nature and consisted of hydroxyl, carboxyl and methoxyl groups that aid in their flocculating performance. The results show the vast potential of the idea of using wastes to produce bioactive materials that can replace the current dependence on chemicals, for future prospect in water treatment applications. PMID:25259492

  10. Correlation between mass transfer coefficient kLa and relevant operating parameters in cylindrical disposable shaken bioreactors on a bench-to-pilot scale

    PubMed Central

    2013-01-01

    Background Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation. Results A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham’s ?-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures. Conclusion The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/? 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale. PMID:24289110

  11. Membrane biofouling in pilot-scale membrane bioreactors (MBRs) treating municipal wastewater: impact of biofilm formation.

    PubMed

    Miura, Yuki; Watanabe, Yoshimasa; Okabe, Satoshi

    2007-01-15

    For more efficient control and prediction of membrane biofouling in membrane bioreactors (MBRs), a fundamental understanding of mechanisms of membrane biofouling is essential. In this study, we operated full-scale submerged MBRs using real municipal wastewater delivered from the primary sedimentation basin of a municipal wastewater treatment facility over 3 months, and the adhesion and formation of biofilms on 0.4-microm pore size polyethylene hollow-fiber microfiltration (MF) membrane surfaces, separated from simple deposition of sludge cake, were monitored using scanning electron microscopy (SEM). In addition, the compositions of planktonic and biofilm microbial communities in the MBR were analyzed using culture independent molecular-based methods (i.e., fluorescent in situ hybridization (FISH) and 16S rRNA gene sequence analysis). The SEM and LIVE/DEAD staining analyses clearly showed that the biofilms gradually developed on the membrane surfaces with time, which had a strong positive correlation with the increase in trans-membrane pressure (TMP). This indicated that the biofilm formation induced the membrane fouling. The FISH results revealed that the microbial communities on membrane surfaces were quite different from those in the planktonic biomass in the mixed liquor. Moreover, FISH and 16S rRNA gene sequence analyses revealed that a specific phylogenetic group of bacteria, the Betaproteobacteria, probably played a major role in development of the mature biofilms, which led to the severe irreversible membrane biofouling. PMID:17310733

  12. Long-term pilot scale investigation of novel hybrid ultrafiltration-osmotic membrane bioreactors

    E-print Network

    was developed and tested. · Potable water and reclaimed water for beneficial reuse were continuously produced bioreactor Forward osmosis Osmotic MBR Nutrient recovery Salt rejection Direct potable reuse An osmotic time. In OMBR, water is drawn by osmosis from activated sludge through a forward osmosis (FO) membrane

  13. Removal of steroid estrogens from municipal wastewater in a pilot scale expanded granular sludge blanket reactor and anaerobic membrane bioreactor.

    PubMed

    Ito, Ayumi; Mensah, Lawson; Cartmell, Elise; Lester, John N

    2016-02-01

    Anaerobic treatment of municipal wastewater offers the prospect of a new paradigm by reducing aeration costs and minimizing sludge production. It has been successfully applied in warm climates, but does not always achieve the desired outcomes in temperate climates at the biochemical oxygen demand (BOD) values of municipal crude wastewater. Recently the concept of 'fortification' has been proposed to increase organic strength and has been demonstrated at the laboratory and pilot scale treating municipal wastewater at temperatures of 10-17°C. The process treats a proportion of the flow anaerobically by combining it with primary sludge from the residual flow and then polishing it to a high effluent standard aerobically. Energy consumption is reduced as is sludge production. However, no new treatment process is viable if it only addresses the problems of traditional pollutants (suspended solids - SS, BOD, nitrogen - N and phosphorus - P); it must also treat hazardous substances. This study compared three potential municipal anaerobic treatment regimes, crude wastewater in an expanded granular sludge blanket (EGSB) reactor, fortified crude wastewater in an EGSB and crude wastewater in an anaerobic membrane bioreactor. The benefits of fortification were demonstrated for the removal of SS, BOD, N and P. These three systems were further challenged with the removal of steroid estrogens at environmental concentrations from natural indigenous sources. All three systems removed these compounds to a significant degree, confirming that estrogen removal is not restricted to highly aerobic autotrophs, or aerobic heterotrophs, but is also a faculty of anaerobic bacteria. PMID:26212345

  14. Microbiological Analysis of an Active Pilot-Scale Mobile Bioreactor Treating Organic Contaminants

    SciTech Connect

    Brigmon, R.L.

    1997-11-26

    Samples were obtained for microbiological analysis from a granular activated carbon fluidized bed bioreactor (GAC-FBR). This GAC-FBR was in operation at a former manufactured gas plant (MGP) Site in Augusta Georgia for in situ groundwater bioremediation of organics. The samples included contaminated site groundwater, GAC-FBR effluent, and biofilm coated granular activated carbon at 5, 9, and 13 feet within the GAC-FBR column. The objective of this analysis was to correlate contaminant removal with microbiological activity within the GAC-FBR.

  15. Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale.

    PubMed

    Giménez, J B; Robles, A; Carretero, L; Durán, F; Ruano, M V; Gatti, M N; Ribes, J; Ferrer, J; Seco, A

    2011-10-01

    The aim of this study was to assess the effect of several operational variables on both biological and separation process performance in a submerged anaerobic membrane bioreactor pilot plant that treats urban wastewater. The pilot plant is equipped with two industrial hollow-fibre ultrafiltration membrane modules (PURON® Koch Membrane Systems, 30 m² of filtration surface each). It was operated under mesophilic conditions (at 33 °C), 70 days of SRT, and variable HRT ranging from 20 to 6h. The effects of the influent COD/SO?-S ratio (ranging from 2 to 12) and the MLTS concentration (ranging from 6 to 22 g L?¹) were also analysed. The main performance results were about 87% of COD removal, effluent VFA below 20 mg L?¹ and biogas methane concentrations over 55% v/v. Methane yield was strongly affected by the influent COD/SO?-S ratio. No irreversible fouling problems were detected, even for MLTS concentrations above 22 g L?¹. PMID:21820896

  16. Pilot study: Fixed-film bioreactor to enhance carbon adsorption

    SciTech Connect

    Gromicko, G.J.; Smock, M.; Wong, A.D.; Sheridan, B.

    1995-12-31

    A pilot study was performed to evaluate a novel bioreactor for treatment of groundwater at a former wood-preserving facility. Groundwater, impacted with wood-treating preservatives, is currently being recovered and treated using chemical/physical pretreatment followed by granular activated carbon (GAC) adsorption. The bioreactor was evaluated to reduce GAC usage. The study tested AlliedSignal`s Immobilized Cell Bioreactor (ICB) on a sidestream from the groundwater treatment system. The ICB technology is a fixed-film, fixed-bed bioreactor that utilizes a dual microbe support media system consisting of (1) a patented, carbon-coated, polyurethane foam packing; and (2) conventional, random, plastic packing. The ICB was tested at four discrete operating conditions representing hydraulic retention times of 16.6, 8.3, 4.2, and 2.1 h. Influent and effluent samples collected at each condition were analyzed for chemical oxygen demand (COD), phenolics, polycyclic aromatic hydrocarbons (PAHs), and benzene, toluene, ethylbenzene, and xylenes (BTEX). Results indicated that a maximum removal of 86.9% for COD, 96.3% for total phenols, 98.9% for total PAHs, and 97.2% for BTEX. Based on these data, a full-scale ICB as a pretreatment step would decrease GAC usage by a factor of 3.5.

  17. EMERGING TECHNOLOGY SUMMARY: PILOT-SCALE DEMONSTRATION OF A TWO-STAGE METHANOTROPHIC BIOREACTOR FOR BIODEGRADATION OF TRICHLOROETHENE IN GROUNDWATER

    EPA Science Inventory

    BioTrol, Inc., developed a two-stage, methanotrophic, bioreactor system for remediation of water contaminated with trichloroethylene (TCE) and other chlorinated, volatile, aliphatic hydrocarbons. The first stage was a suspended-growth culture vessel with a bubbleless methane tran...

  18. Long-term operation of a pilot scale anaerobic membrane bioreactor (AnMBR) for the treatment of municipal wastewater under psychrophilic conditions.

    PubMed

    Gouveia, J; Plaza, F; Garralon, G; Fdz-Polanco, F; Peña, M

    2015-06-01

    The performance of a pilot scale anaerobic membrane bioreactor (AnMBR), comprising an upflow anaerobic sludge blanket (UASB) reactor coupled to an external ultrafiltration membrane treating municipal wastewater at 18±2°C, was evaluated over three years of stable operation. The reactor was inoculated with a mesophilic inoculum without acclimation. The AnMBR supported a tCOD removal efficiency of 87±1% at hydraulic retention time (HRT) of 7h, operating at a volumetric loading rate (VLR) of between 2 and 2.5kgtCOD/m(3)d, reaching effluent tCOD concentrations of 100-120mg/L and BOD5 concentrations of 35-50mgO2/L. Specific methane yield varied from 0.18 to 0.23Nm(3)CH4/kgCODremoved depending on the recirculation between the membrane module and the UASB reactor. The permeate flow rate, using cycles of 15s backwash, 7.5min filtration, and continuous biogas sparging (40-60m/h), ranged from 10 to 14Lm(2)/h with trans-membrane pressure (TMP) values of 400-550mbar. PMID:25770470

  19. Effects of poly aluminum chloride dosing positions on the performance of a pilot scale anoxic/oxic-membrane bioreactor (A/O-MBR).

    PubMed

    Guo, Shaodong; Qu, Fangshu; Ding, An; Bai, Langming; Li, Guibai; Ngo, Huu Hao; Guo, Wenshan; Liang, Heng

    2015-01-01

    The effects of poly aluminum chloride (PACl) dosing positions on the performance of a pilot scale anoxic/oxic membrane bioreactor were investigated. PACl dosage was optimized at 19.5 mg Al2O3/L by jar test. Nutrients removal efficiencies and sludge properties were systematically investigated during periods with no PACl dosing (phase I), with PACl dosing in oxic tank (phase II) and then in anoxic tank (phase III). The results showed that total phosphorus removal efficiency increased from 18 to 88% in phase II and 85% in phase III with less than 0.5 mg P/L in effluent. Ammonia nitrogen removal efficiencies reached 99% in all phases and chemical oxygen demand removal efficiencies reached 92%, 91% and 90% in the three phases, respectively. Total nitrogen removal efficiency decreased from 59% in phase I to 49% in phases II and III. Dosing PACl in the oxic tank resulted in smaller sludge particle size, higher zeta potential, better sludge settleability and lower membrane fouling rate in comparison with dosing PACl in the anoxic tank. PMID:26287826

  20. Molecular Assessment of Inoculated and Indigenous Bacteria in Biofilms from a Pilot-Scale Perchlorate-Reducing Bioreactor

    E-print Network

    Molecular Assessment of Inoculated and Indigenous Bacteria in Biofilms from a Pilot of growing in biofilms in the reactor were expected to survive. After 26 days of oper- ation, perchlorate biofilm mate- rial for PCR-based community profiling by 16S-23S ribosomal intergenic spacer analysis (RISA

  1. Critical flux and chemical cleaning-in-place during the long-term operation of a pilot-scale submerged membrane bioreactor for municipal wastewater treatment.

    PubMed

    Wei, Chun-Hai; Huang, Xia; Ben Aim, Roger; Yamamoto, Kazuo; Amy, Gary

    2011-01-01

    The critical flux and chemical cleaning-in-place (CIP) in a long-term operation of a pilot-scale submerged membrane bioreactor for municipal wastewater treatment were investigated. Steady filtration under high flux (30 L/(m(2) h)) was successfully achieved due to effective membrane fouling control by sub-critical flux operation and chemical CIP with sodium hypochlorite (NaClO) in both trans-membrane pressure (TMP) controlling mode (cleaning with high concentration NaClO of 2000-3000 mg/L in terms of effective chorine was performed when TMP rose to 15 kPa) and time controlling mode (cleanings were performed weekly and monthly respectively with low concentration NaClO (500-1000 mg/L) and high concentration NaClO (3000 mg/L)). Microscopic analysis on membrane fibers before and after high concentration NaClO was also conducted. Images of scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that NaClO CIP could effectively remove gel layer, the dominant fouling under sub-critical flux operation. Porosity measurements indicated that NaClO CIP could partially remove pore blockage fouling. The analyses from fourier transform infrared spectrometry (FTIR) with attenuated total reflectance accessory (ATR) and energy dispersive spectrometer (EDS) demonstrated that protein-like macromolecular organics and inorganics were the important components of the fouling layer. The analysis of effluent quality before and after NaClO CIP showed no obvious effect on effluent quality. PMID:20947121

  2. Estimation of flow and transport parameters for woodchip based bioreactors: I. laboratory-scale bioreactor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In subsurface bioreactors used for tile drainage systems, carbon sources are used to facilitate denitrification. The objective of this study was to estimate hydraulic conductivity, effective porosity, dispersivity, and first-order decay coefficients for a laboratory-scale bioreactor with woodchips a...

  3. Microbial community analysis of a full-scale DEMON bioreactor.

    PubMed

    Gonzalez-Martinez, Alejandro; Rodriguez-Sanchez, Alejandro; Muñoz-Palazon, Barbara; Garcia-Ruiz, Maria-Jesus; Osorio, Francisco; van Loosdrecht, Mark C M; Gonzalez-Lopez, Jesus

    2015-03-01

    Full-scale applications of autotrophic nitrogen removal technologies for the treatment of digested sludge liquor have proliferated during the last decade. Among these technologies, the aerobic/anoxic deammonification process (DEMON) is one of the major applied processes. This technology achieves nitrogen removal from wastewater through anammox metabolism inside a single bioreactor due to alternating cycles of aeration. To date, microbial community composition of full-scale DEMON bioreactors have never been reported. In this study, bacterial community structure of a full-scale DEMON bioreactor located at the Apeldoorn wastewater treatment plant was analyzed using pyrosequencing. This technique provided a higher-resolution study of the bacterial assemblage of the system compared to other techniques used in lab-scale DEMON bioreactors. Results showed that the DEMON bioreactor was a complex ecosystem where ammonium oxidizing bacteria, anammox bacteria and many other bacterial phylotypes coexist. The potential ecological role of all phylotypes found was discussed. Thus, metagenomic analysis through pyrosequencing offered new perspectives over the functioning of the DEMON bioreactor by exhaustive identification of microorganisms, which play a key role in the performance of bioreactors. In this way, pyrosequencing has been proven as a helpful tool for the in-depth investigation of the functioning of bioreactors at microbiological scale. PMID:25245398

  4. Performance assessment of a pilot-size vacuum rotation membrane bioreactor treating urban wastewater

    NASA Astrophysics Data System (ADS)

    Alnaizy, Raafat; Aidan, Ahmad; Luo, Haonan

    2011-12-01

    This study investigated the suitability and performance of a pilot-scale membrane bioreactor (MBR). Huber vacuum rotation membrane (VRM 20/36) bioreactor was installed at the Sharjah sewage treatment plant (STP) in the United Arab Emirate for 12 months. The submerged membranes were flat sheets with a pore size of 0.038 ?m. The VRM bioreactor provided a final effluent of very high quality. The average reduction on parameters such as COD was from 620 to 3 mg/l, BOD from 239 to 3 mg/l, Ammonia from 37 to 2 mg/l, turbidity from 225NTU to less than 3NTU, and total suspended solids from 304 mg/l to virtually no suspended solids. The rotating mechanism of the membrane panels permitted the entire membrane surface to receive the same intensive degree of air scouring, which lead to a longer duration. The MBR process holds a promising future because of its smaller footprints in contrast to conventional systems, superior effluent quality, and high loading rate capacity.

  5. Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators

  6. Scale-down of microalgae cultivations in tubular photo-bioreactors--a conceptual approach.

    PubMed

    Rosello Sastre, Rosa; Csögör, Zsuzsa; Perner-Nochta, Iris; Fleck-Schneider, Pascale; Posten, Clemens

    2007-10-31

    Rational design of large-scale bioreactors is still suffering from inadequate scale-up of technical parameters from lab to large scale and from missing kinetic information concerning the physiological reactions of the specific strain under cultivation. Therefore, simulations of processes expected in large-scale have to be carried out as far as possible and experiments have to be performed in small-scale reactors mimicking the situation in large scale. This procedure is referred to as scale-down. In this paper a concept to accomplish this task is proposed. Firstly, interactions between light transfer, fluid dynamics, and microbial metabolism are described. Secondly, a procedure is given to decompose the interactions by simulation on the one hand and by finding physiological parameters in model reactors on the other. Light transfer can be calculated by Monte Carlo methods, while fluid dynamics is handled by CFD. Ideally illuminated model photo-bioreactors and pilot reactors with enforced flow field are proposed to measure physiological parameters especially induced by light/dark cycles generated by interaction of turbulences and light attenuation. PMID:17561299

  7. EVALUATION PLAN FOR TWO LARGE-SCALE LANDFILL BIOREACTOR TECHNOLOGIES

    EPA Science Inventory

    Abstract - Waste Management, Inc., is operating two long-term bioreactor studies at the Outer Loop Landfill in Louisville, KY, including facultative landfill bioreactor and staged aerobic-anaerobic landfill bioreactor demonstrations. A Quality Assurance Project Plan (QAPP) was p...

  8. Pilot study of a submerged membrane bioreactor for water reclamation.

    PubMed

    Qin, Jian-Jun; Oo, Maung Htun; Tao, Guihe; Kekre, Kiran A; Hashimoto, Tomotaka

    2009-01-01

    The objective of this pilot study was to investigate the operational conditions of newly developed MBR modules for water reclamation under tropical conditions. MUDC-620A MBR modules with hollow fibre PVDF membranes from Asahi-Kasei Chemicals were used in the study. The pilot plant with capacity of 50 m(3)/d was operated continuously (24-hour) over four months on site of Ulu Pandan Water Reclamation Plant (UPWRP) in Singapore. During the study, the MLSS in membrane tank was in the range of 6,840 approximately 9,540 mg/L. Filtration operation mode of the membrane unit was 9 minutes on production and 1 minute backwash. The air scouring for the membranes was 0.18-0.30 Nm(3)/h per m(2) membrane area all of the time. Trials on different membrane fluxes were conducted to obtain the sustainable flux. The analytical results showed that COD, TOC, T-N and NH4-N of the treated water were <30 mg/L, 5-7 mg/L, <13 mg/L and <0.1 mg/L, respectively, which met the requirement of Industrial Water for reuse. TMP was in the range of 12-40 kPa and could be recovered after cleaning with 2,000 mg/L sodium hypochlorite solution. Sludge clogging could be a challenge for long-term operation with the current module design. It was concluded that it was feasible for MUDC-620A MBR to operate at a net flux of 25-29 LMH (or 0.6-0.7 m/d) for treating the municipal wastewater at UPWRP. PMID:19955652

  9. Pilot Scale Advanced Fogging Demonstration

    SciTech Connect

    Demmer, Rick L.; Fox, Don T.; Archiblad, Kip E.

    2015-01-01

    Experiments in 2006 developed a useful fog solution using three different chemical constituents. Optimization of the fog recipe and use of commercially available equipment were identified as needs that had not been addressed. During 2012 development work it was noted that low concentrations of the components hampered coverage and drying in the United Kingdom’s National Nuclear Laboratory’s testing much more so than was evident in the 2006 tests. In fiscal year 2014 the Idaho National Laboratory undertook a systematic optimization of the fogging formulation and conducted a non-radioactive, pilot scale demonstration using commercially available fogging equipment. While not as sophisticated as the equipment used in earlier testing, the new approach is much less expensive and readily available for smaller scale operations. Pilot scale testing was important to validate new equipment of an appropriate scale, optimize the chemistry of the fogging solution, and to realize the conceptual approach.

  10. Acidophiles in bioreactor mineral processing.

    PubMed

    Norris, P R; Burton, N P; Foulis, N A

    2000-04-01

    Mineral processing in bioreactors has become established in several countries during the past decade with industrial application of iron- and sulfur-oxidizing bacteria to release occluded gold from mineral sulfides. Cobalt extraction in bioreactors has also been commercialized, and development of high-temperature biooxidation of copper sulfides has reached pilot-plant scale. A variety of potentially useful mineral sulfide-oxidizing thermophiles have been recognized, but the most active strains have not been fully characterized. PMID:10805560

  11. Pilot demonstration of energy-efficient membrane bioreactor (MBR) using reciprocating submerged membrane.

    PubMed

    Ho, Jaeho; Smith, Shaleena; Patamasank, Jaren; Tontcheva, Petia; Kim, Gyu Dong; Roh, Hyung Keun

    2015-03-01

    Membrane bioreactor (MBR) is becoming popular for advanced wastewater treatment and water reuse. Air scouring to "shake" the membrane fibers is most suitable and applicable to maintain filtration without severe and rapidfouling. However, membrane fouling mitigating technologies are energy intensive. The goal of this research is to develop an alternative energy-saving MBR system to reduce energy consumption; a revolutionary system that will directly compete with air scouring technologies currently in the membrane water reuse market. The innovative MBR system, called reciprocation MBR (rMBR), prevents membrane fouling without the use of air scouring blowers. The mechanism featured is a mechanical reciprocating membrane frame that uses inertia to prevent fouling. Direct strong agitation of the fiber is also beneficial for the constant removal of solids built up on the membrane surface. The rMBR pilot consumes less energy than conventional coarse air scouring MBR systems. Specific energy consumption for membrane reciprocation for the pilot rMBR system was 0.072 kWh/m3 permeate produced at 40 LMH, which is 75% less than the conventional air scouring in an MBR system (0.29 kWh/m3). Reciprocation of the hollow-fiber membrane can overcome the hydrodynamic limitations of air scouring or cross-flow membrane systems with less energy consumption and/or higher energy efficiency. PMID:25842538

  12. Oxygen-controlled Biosurfactant Production in a Bench Scale Bioreactor

    NASA Astrophysics Data System (ADS)

    de Kronemberger, Frederico Araujo; Anna, Lidia Maria Melo Santa; Fernandes, Ana Carolina Loureiro Brito; de Menezes, Reginaldo Ramos; Borges, Cristiano Piacsek; Freire, Denise Maria Guimarães

    Rhamnolipids have been pointed out as promising biosurfactants. The most studied microorganisms for the aerobic production of these molecules are the bacteria of the genus Pseudomonas. The aim of this work was to produce a rhamnolipid-type biosurfactant in a bench-scale bioreactor by one strain of Pseudomonas aeruginosa isolated from oil environments. To study the microorganism growth and production dependency on oxygen, a nondispersive oxygenation device was developed, and a programmable logic controller (PLC) was used to set the dissolved oxygen (DO) concentration. Using the data stored in a computer and the predetermined characteristics of the oxygenation device, it was possible to evaluate the oxygen uptake rate (OUR) and the specific OUR (SOUR) of this microorganism. These rates, obtained for some different DO concentrations, were then compared to the bacterial growth, to the carbon source consumption, and to the rhamnolipid and other virulence factors production. The SOUR presented an initial value of about 60.0 mg02/gdw h. Then, when the exponential growth phase begins, there is a rise in this rate. After that, the SOUR reduces to about 20.0 mg02/gdw h. The carbon source consumption is linear during the whole process.

  13. Pilot trial study of a compact macro-filtration membrane bioreactor process for saline wastewater treatment.

    PubMed

    Guan, Dao; Fung, W C; Lau, Frankie; Deng, Chao; Leung, Anthony; Dai, Ji; Chen, G H

    2014-01-01

    Conventional membrane bioreactor (MBR) systems have increasingly been studied in recent decades. However, their applications have been limited due to their drawbacks such as low flux, membrane fouling, and high operating cost. In this study, a compact macro-filtration MBR (MfMBR) process was developed by using a large pore size membrane to mitigate the membrane fouling problem. A pilot trial of MfMBR process was set up and operated to treat 10 m(3)/day of saline wastewater within 4 h. The system was operated under an average permeate flux of 13.1 m(3)/(m(2)·day) for 74 days. The average total suspended solids, total chemical oxygen demand, biological oxygen demand, total Kjeldahl nitrogen, and total nitrogen removal efficiencies achieved were 94.3, 83.1, 98.0, 93.1, and 63.3%, respectively, during steady-state operation. The confocal laser scanning microscopy image indicated that the backwash could effectively remove the bio-cake and dead bacteria. Thus, the results showed that the MfMBR process, which is essentially a primary wastewater treatment process, had the potential to yield the same high quality effluent standards as the secondary treatment process; thereby suggesting that it could be used as an option when the economic budget and/or land space is limited. PMID:25026589

  14. Pilot-scale LIDS demonstration

    SciTech Connect

    Amrhein, G.T. . Research and Development Div.)

    1991-08-09

    This paper describes the results of a pilot-scale demonstration of the LIDS process sponsored by the Ohio Coal Development office (OCDO) and Babcock Wilcox (B W)- LIDS (Limestone Injection with Dry Scrubbing) combines the technologies of furnace sorbent injection and dry scrubbing. The result is a reduction of reagent costs and an increase in sorbent utilization and S0[sub 2] removal beyond what is possible if the technologies are used separately. Furnace sorbent injection using limestone is only capable of about 30% S0[sub 2] reduction and so has limited application. Dry scrubbing is capable of achieving high levels Of S0[sub 2] removal using expensive pebble lime as the sorbent, but is limited by stoichiometry (Ca/S) to use on low sulfur coal. By combining dry scrubbing with furnace sorbent injection, limestone can be used as the reagent and the process is applicable to higher sulfur coals. This is possible because: (1) the reaction that occurs during furnace injection significantly reduces the S0[sub 2] concentration entering the dry scrubber, and (2) the unused limestone from furnace injection is calcined to lime and makes an excellent dry scrubbing reagent. The project successfully demonstrated that LIDS is a viable, low-cost option for controlling SO[sub 2] emissions from coal-fired utility boilers.

  15. Small-scale, hydrogen-oxidizing-denitrifying bioreactor for treatment of nitrate-contaminated drinking water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate removal by hydrogen-coupled denitrification was examined using flow-through, packed-bed bioreactors to develop a small-scale, cost effective system for treating nitrate-contaminated drinking-water supplies. Nitrate removal was accomplished using a Rhodocyclus sp., strain HOD 5, isolated fro...

  16. Screening of phenylpyruvic acid producers and optimization of culture conditions in bench scale bioreactors.

    PubMed

    Coban, Hasan B; Demirci, Ali; Patterson, Paul H; Elias, Ryan J

    2014-11-01

    Alpha keto acids are deaminated forms of amino acids that have received significant attention as feed and food additives in the agriculture and medical industries. To date, their production has been commonly performed at shake-flask scale with low product concentrations. In this study, production of phenylpyruvic acid (PPA), which is the alpha keto acid of phenylalanine was investigated. First, various microorganisms were screened to select the most efficient producer. Thereafter, growth parameters (temperature, pH, and aeration) were optimized in bench scale bioreactors to maximize both PPA and biomass concentration in bench scale bioreactors, using response surface methodology. Among the four different microorganisms evaluated, Proteus vulgaris was the most productive strain for PPA production. Optimum temperature, pH, and aeration conditions were determined as 34.5 °C, 5.12, and 0.5 vvm for PPA production, whereas 36.9 °C, pH 6.87, and 0.96 vvm for the biomass production. Under these optimum conditions, PPA concentration was enhanced to 1,054 mg/L, which was almost three times higher than shake-flask fermentation concentrations. Moreover, P. vulgaris biomass was produced at 3.25 g/L under optimum conditions. Overall, this study demonstrated that optimization of growth parameters improved PPA production in 1-L working volume bench-scale bioreactors compared to previous studies in the literature and was a first step to scale up the production to industrial production. PMID:24861313

  17. Large-scale growth of the Plasmodium falciparum malaria parasite in a wave bioreactor.

    PubMed

    Dalton, John P; Demanga, Corine G; Reiling, Sarah J; Wunderlich, Juliane; Eng, Jenny W L; Rohrbach, Petra

    2012-01-01

    We describe methods for the large-scale in vitro culturing of synchronous and asynchronous blood-stage Plasmodium falciparum parasites in sterile disposable plastic bioreactors controlled by wave-induced motion (wave bioreactor). These cultures perform better than static flask cultures in terms of preserving parasite cell cycle synchronicity and reducing the number of multiple-infected erythrocytes. The straight-forward methods described here will facilitate the large scale production of malaria parasites for antigen and organelle isolation and characterisation, for the high throughput screening of compound libraries with whole cells or extracts, and the development of live- or whole-cell malaria vaccines under good manufacturing practice compliant standards. PMID:22326740

  18. Biotreatment of chlorpyrifos in a bench scale bioreactor using Psychrobacter alimentarius T14.

    PubMed

    Khalid, Saira; Hashmi, Imran

    2016-02-01

    Bacteria tolerant to high pesticide concentration could be used for designing an efficient treatment technology. Bacterial strains T14 was isolated from pesticide-contaminated soil in mineral salt medium (MSM) and identified as Psychrobacter alimentarius T14 using 16S rRNA gene sequence analysis. Bench scale bioreactor was evaluated for biotreatment of high Chlorpyrifos (CP) concentration using P. alimentarius T14. Effect of various parameters on bioreactor performance was examined and optimum removal was observed at optical density (OD600?nm): 0.8; pH: 7.2; CP concentration: 300?mg?L(-1) and hydraulic retention time: 48?h. At optimum conditions, 70.3/79% of CP/chemical oxygen demand (COD) removal was achieved in batch bioreactors. In addition, P. alimentarius T14 achieved 95/91, 62.3/75, 69.8/64% CP/COD removal efficiency with addition of CS (co-substrates), CS1 (yeast extract?+?synthetic wastewater), CS2 (glucose?+?synthetic wastewater) and CS3 (yeast extract), respectively. Addition of CS1 to bioreactor could accelerate CP removal rate up to many cycles with considerable efficiency. However, accumulation of 3, 5, 6-trichloro-2-pyridinol affects reactor performance in cyclic mode. First-order rate constant k1 0.062?h(-1) and t1/2 11.1?h demonstrates fast degradation. Change in concentration of total chlorine and nitrogen could be the result of complete mineralization. Photodegradation of CP in commercial product was more than its pure form. Commercial formulation accelerated photodegradation process; however no effect on biodegradation process was observed. After bio-photodegradation, negligible toxicity for seeds of Triticum aestivum was observed. Study suggests an efficient treatment of wastewater containing CP and its metabolites in batch bioreactors could be achieved using P. alimentarius. PMID:26144866

  19. Development of an Intermediate-Scale Aerobic Bioreactor to Regenerate Nutrients from Inedible Crop Residues

    NASA Technical Reports Server (NTRS)

    Finger, Barry W.; Strayer, Richard F.

    1994-01-01

    Three Intermediate-Scale Aerobic Bioreactors were designed, fabricated, and operated. They utilized mixed microbial communities to bio-degrade plant residues. The continuously stirred tank reactors operated at a working volume of 8 L, and the average oxygen mass transfer coefficient, k(sub L)a, was 0.01 s(exp -1). Mixing time was 35 s. An experiment using inedible wheat residues, a replenishment rate of 0.125/day, and a solids loading rate of 20 gdw/day yielded a 48% reduction in biomass. Bioreactor effluent was successfully used to regenerate a wheat hydroponic nutrient solution. Over 80% of available potassium, calcium, and other minerals were recovered and recycled in the 76-day wheat growth experiment.

  20. COMMERCIAL-SCALE AEROBIC-ANAEROBIC BIOREACTOR LANDFILL OPERATIONS

    EPA Science Inventory

    A sequential aerobic-anaerobic treatment system has been applied at a commercial scale (3,000 ton per day) municipal solid waste landfill in Kentucky, USA since 2001. In this system, the uppermost layer of landfilled waste is aerated and liquid waste including leachate, surface w...

  1. Application of bioreactor design principles and multivariate analysis for development of cell culture scale down models.

    PubMed

    Tescione, Lia; Lambropoulos, James; Paranandi, Madhava Ram; Makagiansar, Helena; Ryll, Thomas

    2015-01-01

    A bench scale cell culture model representative of manufacturing scale (2,000 L) was developed based on oxygen mass transfer principles, for a CHO-based process producing a recombinant human protein. Cell culture performance differences across scales are characterized most often by sub-optimal performance in manufacturing scale bioreactors. By contrast in this study, reduced growth rates were observed at bench scale during the initial model development. Bioreactor models based on power per unit volume (P/V), volumetric mass transfer coefficient (kL a), and oxygen transfer rate (OTR) were evaluated to address this scale performance difference. Lower viable cell densities observed for the P/V model were attributed to higher sparge rates and reduced oxygen mass transfer efficiency (kL a) of the small scale hole spargers. Increasing the sparger kL a by decreasing the pore size resulted in a further decrease in growth at bench scale. Due to sensitivity of the cell line to gas sparge rate and bubble size that was revealed by the P/V and kL a models, an OTR model based on oxygen enrichment and increased P/V was selected that generated endpoint sparge rates representative of 2,000 L scale. This final bench scale model generated similar growth rates as manufacturing. In order to take into account other routinely monitored process parameters besides growth, a multivariate statistical approach was applied to demonstrate validity of the small scale model. After the model was selected based on univariate and multivariate analysis, product quality was generated and verified to fall within the 95% confidence limit of the multivariate model. PMID:25042258

  2. Application of a membrane bioreactor system for opto-electronic industrial wastewater treatment--a pilot study.

    PubMed

    Chen, T K; Chen, J N; Ni, C H; Lin, G T; Chang, C Y

    2003-01-01

    The membrane bioreactor (MBR) system has become more and more attractive in the field of wastewater treatment. It is particularly attractive in situations where long solids retention times are required, such as nitrifying bacteria, and physical retention is critical to achieving more efficiency for biological degradation of pollutants. Although it is a new technology, the MBR process has been applied to industrial wastewater treatment for only the past decade. The opto-electronic industry, developed very fast over the past decade in the world, is a high technological manufacturing industry. The treatment of the opto-electronic industrial wastewater containing a significant quantity of organic nitrogen compounds, with a ratio over 95% in organic nitrogen (Org-N) to total nitrogen (T-N), is very difficult to meet the discharge limits. The purpose of this research is mainly to discuss the treatment capacity of high-strength organic nitrogen wastewater, and to investigate the capabilities of the MBR process. A 2 m3/day capacity MBR pilot plant consisting of anoxic and aerobic tanks and a membrane bioreactor was installed for evaluation. The operation was continued for 130 days. Over the whole experimental period, a satisfactory organic removal performance was achieved. The COD could be removed with an average of over 94.5%. For TOC and BOD5, the average removal efficiencies were 96.3 and 97.6%, respectively. The nitrification and denitrification were also successfully achieved. The effluent did not contain any suspended solids. Only a small concentration of ammonia nitrogen was found in the effluent. The stable effluent quality and satisfactory removal performance mentioned above were ensured by the efficient interception performance of the membrane device incorporated within the biological reactor. The MBR system shows promise as a means of treating very high organic nitrogen wastewater without dilution. The effluent of TKN, NOx-N and COD can fall below 20 mg/L, 30 mg/L and 50 mg/L. PMID:14682587

  3. High-strength nitrogen removal of opto-electronic industrial wastewater in membrane bioreactor--a pilot study.

    PubMed

    Chen, T K; Ni, C H; Chen, J N; Lin, J

    2003-01-01

    The membrane bioreactor (MBR) system has become more and more attractive in the field of wastewater treatment. It is particularly attractive in situations where long solids retention times are required, such as nitrifying bacteria, and physical retention critical to achieving more efficiency for biological degradation of pollutant. Although it is a new technology, the MBR process has been applied for industrial wastewater treatment for only the past decade. The opto-electronic industry, developed very fast over the past decade in the world, is high technology manufacturing. The treatment of the opto-electronic industrial wastewater containing a significant quantity of organic nitrogen compounds with a ratio over 95% in organic nitrogen (Org-N) to total nitrogen (T-N) is very difficult to meet the discharge limits. This research is mainly to discuss the treatment capacity of high-strength organic nitrogen wastewater, and to investigate the capabilities of the MBR process. A 5 m3/day capacity of MBR pilot plant consisted of anoxic, aerobic and membrane bioreactor was installed for evaluation. The operation was continued for 150 days. Over the whole experimental period, a satisfactory organic removal performance was achieved. The COD could be removed with an average of over 94.5%. For TOC and BOD5 items, the average removal efficiencies were 96.3 and 97.6%, respectively. The nitrification and denitrification was also successfully achieved. Furthermore, the effluent did not contain any suspended solids. Only a small concentration of ammonia nitrogen was found in the effluent. The stable effluent quality and satisfactory removal performance mentioned above were ensured by the efficient interception performance of the membrane device incorporated within the biological reactor. The MBR system shows promise as a means of treating very high organic nitrogen wastewater without dilution. The effluent of TKN, NOx-N and COD can fall below 20 mg/L, 30 mg/L and 50 mg/L. PMID:12926637

  4. Characterization of a pilot plant airlift tower loop bioreactor. I: evaluation of the phase properties with model media.

    PubMed

    Fröhlich, S; Lotz, M; Korte, T; Lübbert, A; Schügerl, K; Seekamp, M

    1991-06-01

    Investigations were carried out in a 9 m high, 4 m(3) volume, pilot plant airlift tower loop bioreactor with a draft tube. The reactor was characterized by measuring residence time distributions of the gas phase using pseudostochastic tracer signals and a mass spectrometer and by evaluating the mixing in the liquid phase with single-pulse tracer inputs. The local gas holdup and the bubble size (piercing length) were measured with two-channel electrical conductivity probes. The mean residence times and the intensities of the axial mixing in the riser and downcomer and the circulation times of the phases as well as the fraction of the recirculated gas phase were evaluated. The gas holdup in the riser is nearly uniform along the reactor. In the downcomer, it diminishes from top to bottom. The liquid phase dispersion coefficients, D(L), are smaller than those measured in the corresponding bubble columns. In the pilot plant with tap water the following relationship was found: D(Lr) = cw(SG) (n); with c = 203.4; n = 0.5;D(Lr)(cm(2) s(-1);) and W(SG)(cm s(-1)) where D(Lr) is the longitudinal dispersion coefficient in the riser and W(SG) is the superficial gas velocity. The gas phase dispersion coefficients in the riser of the pilot plant, D(Gr), are also enlarged with increasing superficial gas velocity, W(SG), however, no simple relationship exists. Parameter D(Gr) is the highest in the presence of antifoam agents, intermediate in tap water, and the smallest in ethanol solution. PMID:18600697

  5. Performance of bench-scale membrane bioreactor under real work conditions using pure oxygen: viscosity and oxygen transfer analysis.

    PubMed

    Rodríguez, F A; Martínez-Toledo, M V; González-López, J; Hontoria, E; Poyatos, J M

    2010-09-01

    Pure oxygen to supply the aerobic condition was used in the performance of a bench-scale submerged membrane bioreactor (MBR). The pilot plant was located in the wastewater treatment plant of the city of Granada (Spain) and the experimental work was divided into two stages (Unsteady state and steady state conditions). Operation parameters (MLSS, MLVSS and dissolved oxygen concentration) and physical characteristics (temperature, conductivity, pH, COD and BOD(5)) were daily monitored. The results showed the capacity of the MBR systems to remove organic material under a hydraulic retention time of 18.46 h and sludge retention time of 18.6 days. Therefore, Viscosity of the sludge and alphakLa-factor of the aeration, were determinate in the steady stage condition to understand the behavior of the system when pure oxygen has been used to supply the aerobic conditions of the MBR system showed an alpha-factor of 0.238 when the viscosity of the system was 4.04 Cp. PMID:20148266

  6. A specific pilot-scale membrane hybrid treatment system for municipal wastewater treatment.

    PubMed

    Nguyen, Dinh Duc; Ngo, Huu Hao; Kim, Sa Dong; Yoon, Yong Soo

    2014-10-01

    A specifically designed pilot-scale hybrid wastewater treatment system integrating an innovative equalizing reactor (EQ), rotating hanging media bioreactor (RHMBR) and submerged flat sheet membrane bioreactor (SMBR) was evaluated for its effectiveness in practical, long-term, real-world applications. The pilot system was operated at a constant flux, but with different internal recycle flow rates (Q) over a long-term operating of 475 days. At 4 Q internal recycle flow rate, BOD5, CODCr, NH4(+)-N, T-N, T-P and TSS was highly removed with efficiencies up to 99.88 ± 0.05%, 95.01 ± 1.62%, 100%, 90.42 ± 2.43%, 73.44 ± 6.03%, and 99.93 ± 0.28%, respectively. Furthermore, the effluent quality was also superior in terms of turbidity (<1 NTU), color (<15 TCU) and taste (inoffensive). The results indicated that with providing only chemically cleaned-in-place (CIP) during the entire period of operation, the membrane could continuously maintain a constant permeate flux of 22.77 ± 2.19 L/m(2)h. In addition, the power consumption was also found to be reasonably low (0.92-1.62 k Wh/m(3)). PMID:25033324

  7. Process Development of Adenoviral Vector Production in Fixed Bed Bioreactor: From Bench to Commercial Scale.

    PubMed

    Lesch, Hanna P; Heikkilä, Kati M; Lipponen, Eevi M; Valonen, Piia; Müller, Achim; Räsänen, Eva; Tuunanen, Tarja; Hassinen, Minna M; Parker, Nigel; Karhinen, Minna; Shaw, Robert; Ylä-Herttuala, Seppo

    2015-08-01

    Large-scale vector manufacturing for phase III and beyond has proven to be challenging. Upscaling the process with suspension cells is increasingly feasible, but many viral production applications are still applicable only in adherent settings. Scaling up the adherent system has proven to be troublesome. The iCELLis(®) disposable fixed-bed bioreactors offer a possible option for viral vector manufacturing in large quantities in an adherent environment. In this study, we have optimized adenovirus serotype 5 manufacturing using iCELLis Nano with a cultivation area up to 4?m(2). HEK293 cell cultivation, infection, and harvest of the virus (by lysing the cells inside the bioreactor) proved possible, reaching total yield of up to 1.6×10(14) viral particles (vp)/batch. The iCELLis 500 is designed to satisfy demand for large-scale requirements. Inoculating a large quantity of cell mass into the iCELLis 500 was achieved by first expanding the cell mass in suspension. Upscaling the process into an iCELLis 500/100?m(2) cultivation area cassette was practical and produced up to 6.1×10(15) vp. Flask productivity per cm(2) in iCELLis Nano and iCELLis 500 was in the same range. As a conclusion, we showed for the first time that iCELLis 500 equipment has provided an effective way to manufacture large batches of adenoviral vectors. PMID:26176404

  8. Large-scale production of lentiviral vector in a closed system hollow fiber bioreactor

    PubMed Central

    Sheu, Jonathan; Beltzer, Jim; Fury, Brian; Wilczek, Katarzyna; Tobin, Steve; Falconer, Danny; Nolta, Jan; Bauer, Gerhard

    2015-01-01

    Lentiviral vectors are widely used in the field of gene therapy as an effective method for permanent gene delivery. While current methods of producing small scale vector batches for research purposes depend largely on culture flasks, the emergence and popularity of lentiviral vectors in translational, preclinical and clinical research has demanded their production on a much larger scale, a task that can be difficult to manage with the numbers of producer cell culture flasks required for large volumes of vector. To generate a large scale, partially closed system method for the manufacturing of clinical grade lentiviral vector suitable for the generation of induced pluripotent stem cells (iPSCs), we developed a method employing a hollow fiber bioreactor traditionally used for cell expansion. We have demonstrated the growth, transfection, and vector-producing capability of 293T producer cells in this system. Vector particle RNA titers after subsequent vector concentration yielded values comparable to lentiviral iPSC induction vector batches produced using traditional culture methods in 225?cm2 flasks (T225s) and in 10-layer cell factories (CF10s), while yielding a volume nearly 145 times larger than the yield from a T225 flask and nearly three times larger than the yield from a CF10. Employing a closed system hollow fiber bioreactor for vector production offers the possibility of manufacturing large quantities of gene therapy vector while minimizing reagent usage, equipment footprint, and open system manipulation. PMID:26151065

  9. A laboratory and pilot plant scaled continuous stirred reactor separator for the production of ethanol from sugars, corn grits/starch or biomass streams

    SciTech Connect

    Dale, M.C.; Lei, S.; Zhou, C.

    1995-11-01

    An improved bio-reactor has been developed to allow the high speed, continuous, low energy conversion of various substrates to ethanol. The Continuous Stirred Reactor Separator (CSRS) incorporates gas stripping of the ethanol using a recalculating gas stream between cascading stirred reactors in series. We have operated a 4 liter lab scale unit, and built and operated a 24,000 liter pilot scale version of the bioreactor. High rates of fermentation are maintained in the reactor stages using a highly flocculant yeast strain. Ethanol is recovered from the stripping gas using a hydrophobic solvent absorber (isothermal), after which the gas is returned to the bioreactor. Ethanol can then be removed from the solvent to recover a highly concentrate ethanol product. We have applied the lab scale CSRS to sugars (glucose/sucrose), molasses, and raw starch with simultaneous saccharification and fermentation of the starch granules (SSF). The pilot scale CCRS has been operated as a cascade reactor using dextrins as a feed. Operating data from both the lab and pilot scale CSRS are presented. Details of how the system might be applied to cellulosics, with some preliminary data are also given.

  10. A laboratory and pilot plant scaled continuous stirred reactor separator for the production of ethanol from sugars, corn grits/starch or biomass streams

    SciTech Connect

    Dale, M.C.; Lei, Shuiwang; Zhou, Chongde

    1995-10-01

    An improved bio-reactor has been developed to allow the high speed, continues, low energy conversion of various substrates to ethanol. The Continuous Stirred Reactor Separator (CSRS) incorporates gas stripping of the ethanol using a recalculating gas stream between cascading stirred reactors in series. We have operated a 4 liter lab scale unit, and built and operated a 24,000 liter pilot scale version of the bioreactor. High rates of fermentation are maintained in the reactor stages using a highly flocculent yeast strain. Ethanol is recovered from the stripping gas using a hydrophobic solvent absorber (isothermal), after which the gas is returned to the bioreactor. Ethanol can then be removed from the solvent to recover a highly concentrated ethanol product. We have applied the lab scale CSRS to sugars (glucose/sucrose), molasses, and raw starch with simultaneous saccharification and fermentation of the starch granules (SSF). The pilot scale CSRS has been operated as a cascade reactor using dextrins as a feed. Operating data from both the lab and pilot scale CSRS are presented. Details of how the system might be applied to cellulosics, with some preliminary data are also given.

  11. Mixing characterisation of full-scale membrane bioreactors: CFD modelling with experimental validation.

    PubMed

    Brannock, M; Wang, Y; Leslie, G

    2010-05-01

    Membrane Bioreactors (MBRs) have been successfully used in aerobic biological wastewater treatment to solve the perennial problem of effective solids-liquid separation. The optimisation of MBRs requires knowledge of the membrane fouling, biokinetics and mixing. However, research has mainly concentrated on the fouling and biokinetics (Ng and Kim, 2007). Current methods of design for a desired flow regime within MBRs are largely based on assumptions (e.g. complete mixing of tanks) and empirical techniques (e.g. specific mixing energy). However, it is difficult to predict how sludge rheology and vessel design in full-scale installations affects hydrodynamics, hence overall performance. Computational Fluid Dynamics (CFD) provides a method for prediction of how vessel features and mixing energy usage affect the hydrodynamics. In this study, a CFD model was developed which accounts for aeration, sludge rheology and geometry (i.e. bioreactor and membrane module). This MBR CFD model was then applied to two full-scale MBRs and was successfully validated against experimental results. The effect of sludge settling and rheology was found to have a minimal impact on the bulk mixing (i.e. the residence time distribution). PMID:20347471

  12. On the fluid dynamics of a laboratory scale single-use stirred bioreactor

    PubMed Central

    Odeleye, A.O.O.; Marsh, D.T.J.; Osborne, M.D.; Lye, G.J.; Micheletti, M.

    2014-01-01

    The commercial success of mammalian cell-derived recombinant proteins has fostered an increase in demand for novel single-use bioreactor (SUB) systems that facilitate greater productivity, increased flexibility and reduced costs (Zhang et al., 2010). These systems exhibit fluid flow regimes unlike those encountered in traditional glass/stainless steel bioreactors because of the way in which they are designed. With such disparate hydrodynamic environments between SUBs currently on the market, traditional scale-up approaches applied to stirred tanks should be revised. One such SUB is the Mobius® 3 L CellReady, which consists of an upward-pumping marine scoping impeller. This work represents the first experimental study of the flow within the CellReady using a Particle Image Velocimetry (PIV) approach, combined with a biological study into the impact of these fluid dynamic characteristics on cell culture performance. The PIV study was conducted within the actual vessel, rather than using a purpose-built mimic. PIV measurements conveyed a degree of fluid compartmentalisation resulting from the up-pumping impeller. Both impeller tip speed and fluid working volume had an impact upon the fluid velocities and spatial distribution of turbulence within the vessel. Cell cultures were conducted using the GS-CHO cell-line (Lonza) producing an IgG4 antibody. Disparity in cellular growth and viability throughout the range of operating conditions used (80–350 rpm and 1–2.4 L working volume) was not substantial, although a significant reduction in recombinant protein productivity was found at 350 rpm and 1 L working volume (corresponding to the highest Reynolds number tested in this work). The study shows promise in the use of PIV to improve understanding of the hydrodynamic environment within individual SUBs and allows identification of the critical hydrodynamic parameters under the different flow regimes for compatibility and scalability across the range of bioreactor platforms. PMID:24864128

  13. Disposable Bioreactors for Plant Micropropagation and Mass Plant Cell Culture

    NASA Astrophysics Data System (ADS)

    Ducos, Jean-Paul; Terrier, Bénédicte; Courtois, Didier

    Different types of bioreactors are used at Nestlé R&D Centre - Tours for mass propagation of selected plant varieties by somatic embryogenesis and for large scale culture of plants cells to produce metabolites or recombinant proteins. Recent studies have been directed to cut down the production costs of these two processes by developing disposable cell culture systems. Vegetative propagation of elite plant varieties is achieved through somatic embryogenesis in liquid medium. A pilot scale process has recently been set up for the industrial propagation of Coffea canephora (Robusta coffee). The current production capacity is 3.0 million embryos per year. The pre-germination of the embryos was previously conducted by temporary immersion in liquid medium in 10-L glass bioreactors. An improved process has been developed using a 10-L disposable bioreactor consisting of a bag containing a rigid plastic box ('Box-in-Bag' bioreactor), insuring, amongst other advantages, a higher light transmittance to the biomass due to its horizontal design. For large scale cell culture, two novel flexible plastic-based disposable bioreactors have been developed from 10 to 100 L working volumes, validated with several plant species ('Wave and Undertow' and 'Slug Bubble' bioreactors). The advantages and the limits of these new types of bioreactor are discussed, based mainly on our own experience on coffee somatic embryogenesis and mass cell culture of soya and tobacco.

  14. Disposable bioreactors for plant micropropagation and mass plant cell culture.

    PubMed

    Ducos, Jean-Paul; Terrier, Bénédicte; Courtois, Didier

    2009-01-01

    Different types of bioreactors are used at Nestlé R&D Centre - Tours for mass propagation of selected plant varieties by somatic embryogenesis and for large scale culture of plants cells to produce metabolites or recombinant proteins. Recent studies have been directed to cut down the production costs of these two processes by developing disposable cell culture systems. Vegetative propagation of elite plant varieties is achieved through somatic embryogenesis in liquid medium. A pilot scale process has recently been set up for the industrial propagation of Coffea canephora (Robusta coffee). The current production capacity is 3.0 million embryos per year. The pre-germination of the embryos was previously conducted by temporary immersion in liquid medium in 10-L glass bioreactors. An improved process has been developed using a 10-L disposable bioreactor consisting of a bag containing a rigid plastic box ('Box-in-Bag' bioreactor), insuring, amongst other advantages, a higher light transmittance to the biomass due to its horizontal design. For large scale cell culture, two novel flexible plastic-based disposable bioreactors have been developed from 10 to 100 L working volumes, validated with several plant species ('Wave and Undertow' and 'Slug Bubble' bioreactors). The advantages and the limits of these new types of bioreactor are discussed, based mainly on our own experience on coffee somatic embryogenesis and mass cell culture of soya and tobacco. PMID:19475375

  15. Large Scale Expansion of Human Umbilical Cord Cells in a Rotating Bed System Bioreactor for Cardiovascular Tissue Engineering Applications

    PubMed Central

    Reichardt, Anne; Polchow, Bianca; Shakibaei, Mehdi; Henrich, Wolfgang; Hetzer, Roland; Lueders, Cora

    2013-01-01

    Widespread use of human umbilical cord cells for cardiovascular tissue engineering requires production of large numbers of well-characterized cells under controlled conditions. In current research projects, the expansion of cells to be used to create a tissue construct is usually performed in static cell culture systems which are, however, often not satisfactory due to limitations in nutrient and oxygen supply. To overcome these limitations dynamic cell expansion in bioreactor systems under controllable conditions could be an important tool providing continuous perfusion for the generation of large numbers of viable pre-conditioned cells in a short time period. For this purpose cells derived from human umbilical cord arteries were expanded in a rotating bed system bioreactor for up to 9 days. For a comparative study, cells were cultivated under static conditions in standard culture devices. Our results demonstrated that the microenvironment in the perfusion bioreactor was more favorable than that of the standard cell culture flasks. Data suggested that cells in the bioreactor expanded 39 fold (38.7 ± 6.1 fold) in comparison to statically cultured cells (31.8 ± 3.0 fold). Large-scale production of cells in the bioreactor resulted in more than 3 x 108 cells from a single umbilical cord fragment within 9 days. Furthermore cell doubling time was lower in the bioreactor system and production of extracellular matrix components was higher. With this study, we present an appropriate method to expand human umbilical cord artery derived cells with high cellular proliferation rates in a well-defined bioreactor system under GMP conditions. PMID:23847691

  16. TREATMENT OF MUNICIPAL WASTEWATERS BY THE FLUIDIZED BED BIOREACTOR PROCESS

    EPA Science Inventory

    A 2-year, large-scale pilot investigation was conducted at the City of Newburgh Water Pollution Control Plant, Newburgh, NY, to demonstrate the application of the fluidized bed bioreactor process to the treatment of municipal wastewaters. The experimental effort investigated the ...

  17. Cell culture experiments planned for the space bioreactor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.; Cross, John H.

    1987-01-01

    Culturing of cells in a pilot-scale bioreactor remains to be done in microgravity. An approach is presented based on several studies of cell culture systems. Previous and current cell culture research in microgravity which is specifically directed towards development of a space bioprocess is described. Cell culture experiments planned for a microgravity sciences mission are described in abstract form.

  18. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    SciTech Connect

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-12-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The remaining task to be completed is to test the biofilter prior to operation, which is currently anticipated to begin in January 2004. The current project status and preliminary monitoring results are summarized in this report.

  19. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    SciTech Connect

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-08-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and is scheduled to be complete by the end of August 2003. The current project status and preliminary monitoring results are summarized in this report.

  20. Full Scale Bioreactor Landfill for Carbon Sequestration and Greenhouse Emission Control

    SciTech Connect

    Ramin Yazdani; Jeff Kieffer; Kathy Sananikone; Don Augenstein

    2005-03-30

    The Yolo County Department of Planning and Public Works constructed a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective was to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entailed the construction of a 12-acre module that contained a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells were highly instrumented to monitor bioreactor performance. Liquid addition commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The current project status and preliminary monitoring results are summarized in this report.

  1. Radiotracer investigations in pilot-scale soakers.

    PubMed

    Sharma, V K; Pant, H J; Tandon, D; Garg, M O

    2016-01-01

    This paper describes a radiotracer investigation carried out to measure residence time distribution (RTD) of petroleum residues in pilot-scale soakers. The main objectives of the investigation were to evaluate the feasibility of using bromine-82 as dibromobiphenyl (DBBP) for tracing the petroleum residues (organic phase) as a radiotracer at elevated temperature and pressure, and to investigate the flow dynamics of the phase in the soaker at different operating and process conditions. The measured RTD was treated and mean residence times (MRTs) were determined. Tanks-in-series with backmixing model (TISBM) was used to simulate the measured RTD data. The results of model simulation indicated a high degree of backmixing in the soaker without baffles i.e. without sectionalizing the soaker. However, the introduction of perforated plates at various axial locations inside the soaker i.e. sectionalizing the soaker, reduces the extent of backmixing thus tending the flow towards plug flow. PMID:26426158

  2. Membrane bioreactors for winery wastewater treatment: case-studies at full scale.

    PubMed

    Guglielmi, G; Andreottola, G; Foladori, P; Ziglio, G

    2009-01-01

    The membrane bioreactor technology (MBR) is nowadays a suitable alternative for winery wastewater treatment, thanks to low footprint, complete suspended solids removal, high efficiency in COD abatement and quick start-up. In this paper, data from two full-scale MBRs equipped with flat-sheet membranes (plant A and plant B) are presented and discussed. COD characterisation by respirometry pointed out the high biodegradability degree of both wastewater, with a strong prevalence of the readily biodegradable fraction. An extended version of Activated Sludge Model No. 3 was used to fit the experimental OUR profiles and to assess the maximum growth rate of heterotrophic biomass on sludge samples collected at both sites; the stoichiometric yield coefficients were also calculated. Sludge filterability and dewaterability were investigated with batch tests; laboratory results confirmed the field observations. Finally, some considerations are listed, aimed at defining possible key-issues for optimal process design and operation. PMID:19717906

  3. Full-scale validation of an air scour control system for energy savings in membrane bioreactors.

    PubMed

    Monclús, Hèctor; Dalmau, Montserrat; Gabarrón, Sara; Ferrero, Giuliana; Rodríguez-Roda, Ignasi; Comas, Joaquim

    2015-08-01

    Membrane aeration represents between 35 and 50% of the operational cost of membrane bioreactors (MBR). New automatic control systems and/or module configurations have been developed for aeration optimization. In this paper, we briefly describe an innovative MBR air scour control system based on permeability evolution and present the results of a full-scale validation that lasted over a 1-year period. An average reduction in the air scour flow rate of 13% was achieved, limiting the maximum reduction to 20%. This averaged reduction corresponded to a decrease in energy consumption for membrane aeration of 14% (0.025 kWh m(-3)) with maximum saving rates of 22% (0.04 kWh m(-3)). Permeability and fouling rate evolution were not affected by the air scour control system, as very similar behavior was observed for these variables for both filtration lines throughout the entire experimental evaluation period of 1 year. PMID:25965883

  4. Anaerobic digestibility of the waste activated sludge discharged from large-scale membrane bioreactors.

    PubMed

    Yu, Zhiyong; Wen, Xianghua; Xu, Meilan; Qi, Meng; Huang, Xia

    2012-12-01

    Anaerobic digestibility of the waste activated sludge (WAS) discharged from large-scale membrane bioreactors (MBRs) and conventional activated sludge processes (CASs) were compared using batch trials. Four wastewater treatment plants were sampled. Results showed that the sludge from MBRs had poor anaerobic digestibility as it had lower volatile solid (VS) reduction rate and lower maximum biogas production rate. The partial sludge stabilization during the long sludge retention time (SRT) typically applied in MBRs was the possible reason. On the other hand, the difference in wastewater composition had a great impact on the properties of activated sludge and the downstream sludge digestion. Inorganic matter accumulation in the WAS may hinder the access of microorganisms to substrate. The humic-like substances accumulating in the activated sludge was expected to contribute to the worse digestibility and these substances were observed to be released during anaerobic digestion through three-dimensional excitation-emission matrix (EEM) fluorescence spectra. PMID:23131311

  5. Fine-scale bacterial community dynamics and the taxa-time relationship within a full-scale activated sludge bioreactor.

    PubMed

    Wells, George F; Park, Hee-Deung; Eggleston, Brad; Francis, Christopher A; Criddle, Craig S

    2011-11-01

    In activated sludge bioreactors, aerobic heterotrophic communities efficiently remove organics, nutrients, toxic substances, and pathogens from wastewater, but the dynamics of these communities are as yet poorly understood. A macroecology metric used to quantify community shifts is the taxa-time relationship, a temporal analog of the species-area curve. To determine whether this metric can be applied to full-scale bioreactors, activated sludge samples were collected weekly over a one-year period at a local municipal wastewater treatment plant. Bacterial community dynamics were evaluated by monitoring 16S rRNA genes using Terminal Restriction Fragment Length Polymorphism (T-RFLP), corroborated by clone libraries. Observed taxa richness increased with time according to a power law model, as predicted by macroecological theory, with a power law exponent of w = 0.209. The results reveal strong long-term temporal dynamics during a period of stable performance (BOD removal and nitrification). Community dynamics followed a gradual succession away from initial conditions rather than periodicity around a mean "equilibrium", with greater within-month then among-month community similarities. Changes in community structure were significantly associated via multivariate statistical analyses with dissolved oxygen, temperature, influent silver, biomass (MLSS), flow rate, and influent nitrite, cadmium and chromium concentrations. Overall, our results suggest patterns of bacterial community dynamics likely regulated in part by operational parameters and provide evidence that the taxa-time relationship may be a fundamental ecological pattern in macro- and microbial systems. PMID:21875739

  6. Design and operating experiences of full-scale municipal membrane bioreactors in Japan.

    PubMed

    Itokawa, H; Tsuji, K; Yamashita, K; Hashimoto, T

    2014-01-01

    In Japan, membrane bioreactor (MBRs) have been installed in 17 small-scale municipal wastewater treatment plants (WWTPs) in the past 8 years, together with two recently installed MBRs for larger-scale WWTPs. In this study, design and operating data were collected from 17 of them as part of a follow-up survey, and aspects including system design, biological treatment, membrane operation, problems and costs were overviewed. Because most of the MBRs were designed according to standardized guidance, system configuration of the plants was similar; pre-denitrification using the Modified Ludzack-Ettinger (MLE) process with membrane units submerged in aerobic tanks, following a fine screen and flow equalization tank. This led to effluent quality with biochemical oxygen demand and T-N of less than 3.5 and 7.4 mg/L, respectively, for nine plants on an annual average basis. It was a common practice in extremely under-loaded plants to operate the membrane systems intermittently. Frequency of recovery cleaning events was plant-specific, mostly ranging from 1 to 5 times/year. Cost evaluation revealed that specific construction costs for the small-scale MBRs were no more than for oxidation ditch plants. Although specific energy consumption values tended to be high in the under-loaded plants, the demonstration MBR, where several energy reducing measures had been incorporated, attained specific energy consumption of 0.39 kWh/m(3) under full-capacity operation. PMID:24622560

  7. Yolo County's Accelerated Anaerobic and Aerobic Composting (Full-Scale Controlled Landfill Bioreactor) Project

    NASA Astrophysics Data System (ADS)

    Yazdani, R.; Kieffer, J.; Akau, H.; Augenstein, D.

    2002-12-01

    Sanitary landfilling is the dominant method of solid waste disposal in the United States, accounting for about 217 million tons of waste annually (U.S. EPA, 1997) and has more than doubled since 1960. In spite of increasing rates of reuse and recycling, population and economic growth will continue to render landfilling as an important and necessary component of solid waste management. Yolo County Department of Planning and Public Works, Division of Integrated Waste Management is demonstrating a new landfill technology called Bioreactor Landfill to better manage solid waste. In a Bioreactor Landfill, controlled quantities of liquid (leachate, groundwater, gray-water, etc.) are added and recirculated to increase the moisture content of the waste and improve waste decomposition. As demonstrated in a small-scale demonstration project at the Yolo County Central Landfill in 1995, this process significantly increases the biodegradation rate of waste and thus decreases the waste stabilization and composting time (5 to 10 years) relative to what would occur within a conventional landfill (30 to 50 years or more). When waste decomposes anaerobically (in absence of oxygen), it produces landfill gas (biogas). Biogas is primarily a mixture of methane, a potent greenhouse gas, carbon dioxide, and small amounts of Volatile Organic Compounds (VOC's) which can be recovered for electricity or other uses. Other benefits of a bioreactor landfill composting operation include increased landfill waste settlement which increases in landfill capacity and life, improved leachate chemistry, possible reduction of landfill post-closure management time, opportunity to explore decomposed waste for landfill mining, and abatement of greenhouse gases through highly efficient methane capture over a much shorter period of time than is typical of waste management through conventional landfilling. This project also investigates the aerobic decomposition of waste of 13,000 tons of waste (2.5 acre) for elimination of methane production and acceleration of waste decomposition. In the first phase of this project a 12-acre module that contains a 9.5-acre anaerobic cell and a 2.5-acre aerobic cell has been constructed and filled with over 220,000 tons of municipal solid waste. Water and leachate addition began in April 2002 and to date less than 200,000 gallons of liquid has been added to the 3.5-acre anaerobic cell. The waste filling phase of the aerobic cell was completed in June of 2002 and a 12-inches soil cover and 12-inches of greenwaste compost cover was placed on top of the cell. A vacuum will be applied to the piping within the waste to draw air through the landfill. Instrumentations have been installed to monitor the following parameters: waste temperature, moisture, leachate volumes, leachate hydraulic head over the primary liner, leachate composition, gas volumes and composition. A supervisory Control and Data Acquisition (SCADA) system has been installed to monitor and control the operation of the bioreactor cells. Waste samples were taken from each cell for laboratory testing in early June 2002.

  8. PILOT-SCALE EVALUATION OF INCINERATING LISTED WASTES FROM SPECIFICSOURCES

    EPA Science Inventory

    Pilot-Scale incineration testing was conducted at the United StatesEnvironmental Protection Agency's Incineration Research Facility(IRF) to support the development of best demonstrated availabletechnology (BDAT) standards for the treatment of several hazardouswastes from specific...

  9. ORGANIC EMISSIONS FROM PILOT-SCALE INCINERATION OF CFCS

    EPA Science Inventory

    The paper gives results of the characterization of organic emissions resulting from the pilot-scale incineration of trichlorofluoromethane (CFC-11) and dichlorodifluoromethane (CFC-12) under varied feed concentrations. (NOTE: As a result of the Montreal Protocol, an international...

  10. Considerations on the design and financial feasibility of full-scale membrane bioreactors for municipal applications.

    PubMed

    Brepols, Ch; Schäfer, H; Engelhardt, N

    2010-01-01

    Based on the practical experience in design and operation of three full-scale membrane bioreactors (MBR) for municipal wastewater treatment that were commissioned since 1999, an overview on the different design concepts that were applied to the three MBR plants is given. The investment costs and the energy consumption of the MBRs and conventional activated sludge (CAS) plants (with and without tertiary treatment) in the Erft river region are compared. It is found that the specific investment costs of the MBR plants are lower than those of comparable CAS with tertiary treatment. A comparison of the specific energy demand of MBRs and conventional WWTPs is given. The structure of the MBRs actual operational costs is analysed. It can be seen that energy consumption is only responsible for one quarter to one third of all operational expenses. Based on a rough design and empirical cost data, a cost comparison of a full-scale MBR and a CAS is carried out. In this example the CAS employs a sand filtration and a disinfection in order to achieve comparable effluent quality. The influence of membrane lifetime on life cycle cost is assessed. PMID:20453318

  11. Design and validation of a clinical-scale bioreactor for long-term isolated lung culture.

    PubMed

    Charest, Jonathan M; Okamoto, Tatsuya; Kitano, Kentaro; Yasuda, Atsushi; Gilpin, Sarah E; Mathisen, Douglas J; Ott, Harald C

    2015-06-01

    The primary treatment for end-stage lung disease is lung transplantation. However, donor organ shortage remains a major barrier for many patients. In recent years, techniques for maintaining lungs ex vivo for evaluation and short-term (<12 h) resuscitation have come into more widespread use in an attempt to expand the donor pool. In parallel, progress in whole organ engineering has provided the potential perspective of patient derived grafts grown on demand. As both of these strategies advance to more complex interventions for lung repair and regeneration, the need for a long-term organ culture system becomes apparent. Herein we describe a novel clinical scale bioreactor capable of maintaining functional porcine and human lungs for at least 72 h in isolated lung culture (ILC). The fully automated, computer controlled, sterile, closed circuit system enables physiologic pulsatile perfusion and negative pressure ventilation, while gas exchange function, and metabolism can be evaluated. Creation of this stable, biomimetic long-term culture environment will enable advanced interventions in both donor lungs and engineered grafts of human scale. PMID:25818415

  12. Discrete Event Model Development of Pilot Plant Scale Microalgae Facilities: An Analysis of Productivity and Costs 

    E-print Network

    Stepp, Justin Wayne

    2011-10-21

    greater than the productivity generated by the stepwise scaling scenario, suggesting that the implementation of flat plate bio-reactors in the intense culturing process may be non-advantageous given the increased operational costs of these devices...

  13. Biogeochemistry of a Field-Scale Sulfate Reducing Bioreactor Treating Mining Influenced Water

    NASA Astrophysics Data System (ADS)

    Drennan, D.; Lee, I.; Landkamer, L.; Figueroa, L. A.; Webb, S.; Sharp, J. O.

    2012-12-01

    Acidity, metal release, and toxicity may be environmental health concerns in areas influenced by mining. Mining influenced waters (MIW) can be remediated through the establishment of Sulfate Reducing Bioreactors (SRBRs) as part of engineered passive treatment systems. The objective of our research is an enhanced understanding of the biogeochemistry in SRBRs by combining molecular biological and geochemical techniques. Bioreactor reactive substrate, settling pond water, and effluent (from the SRBR) were collected from a field scale SRBR in Arizona, which has been in operation for approximately 3 years. Schematically, the water passes through the SRBR; combines with flow that bypasses the SRBR into the and goes into the mixing pond, and finally is released as effluent to aerobic polishing cells. High throughput sequencing of extracted DNA revealed that Proteobacteria dominated the reactive substrate (61%), settling pond (93%), and effluent (50%), with the next most abundant phylum in all samples (excluding uncultured organisms) being Bacteriodes (1-17%). However, at the superclass level, the three samples were more variable. Gammaproteobacteria dominated the reactive substrate (35%), Betaproteobacteria in the settling pond (63%) and finally the effluent was dominated by Epsilonproteobacteria (Helicobacteraceae) (43%). Diversity was most pronounced in association with the reactor matrix, and least diverse in the settling pond. Putative functional analysis revealed a modest presence of sulfate/sulfur reducing bacteria (SRB) (>5%) in both the matrix and settling pond but a much higher abundance (43%) of sulfur reducing bacteria in the effluent. Interestingly this effluent population was composed entirely of the family Helicobacteraceae (sulfur reduction II via polysulfide pathway). Other putative functions of interest include metal reduction in the matrix (3%) and effluent (3%), as well as polysaccharide degradation, which was largely abundant in all samples (21-38%). Acid digests and micro-focused X-ray fluorescent and absorption spectroscopy revealed precipitation heterogeneities exist between surface samples taken near the front of the influent pipe (west) and downstream (east). Zinc was disproportionately immobilized at the front of the reactor (~10-fold higher), while a higher portion (~3-fold) of iron precipitates was observed downstream. Microfocused XAS further revealed matrix heterogeneities consisting of clusters of stellar shaped sulfur / iron precipitates. An enhanced understanding of the biogeochemistry of SRBRs has applications in passive remediation of contaminated MIW and an interdisciplinary understanding of metal immobilization at the microbe-mineral interface.

  14. A preliminary and qualitative study of resource ratio theory to nitrifying lab-scale bioreactors

    PubMed Central

    Bellucci, Micol; Ofi?eru, Irina D; Beneduce, Luciano; Graham, David W; Head, Ian M; Curtis, Thomas P

    2015-01-01

    The incorporation of microbial diversity in design would ideally require predictive theory that would relate operational parameters to the numbers and distribution of taxa. Resource ratio-theory (RRT) might be one such theory. Based on Monod kinetics, it explains diversity in function of resource-ratio and richness. However, to be usable in biological engineered system, the growth parameters of all the bacteria under consideration and the resource supply and diffusion parameters for all the relevant nutrients should be determined. This is challenging, but plausible, at least for low diversity groups with simple resource requirements like the ammonia oxidizing bacteria (AOB). One of the major successes of RRT was its ability to explain the ‘paradox of enrichment’ which states that diversity first increases and then decreases with resource richness. Here, we demonstrate that this pattern can be seen in lab-scale-activated sludge reactors and parallel simulations that incorporate the principles of RRT in a floc-based system. High and low ammonia and oxygen were supplied to continuous flow bioreactors with resource conditions correlating with the composition and diversity of resident AOB communities based on AOB 16S rDNA clone libraries. Neither the experimental work nor the simulations are definitive proof for the application of RRT in this context. However, it is sufficient evidence that such approach might work and justify a more rigorous investigation. PMID:25874592

  15. Mechanisms of pathogenic virus removal in a full-scale membrane bioreactor.

    PubMed

    Chaudhry, Rabia M; Nelson, Kara L; Drewes, Jörg E

    2015-03-01

    Four pathogenic virus removal mechanisms were investigated in a full-scale membrane bioreactor (MBR; nominal pore size 0.04 ?m): (i) attachment of virus to mixed liquor solids; (ii) virus retention by a just backwashed membrane; (iii) virus retention by the membrane cake layer; and (iv) inactivation. We quantified adenovirus, norovirus genogroup II (GII), and F+ coliphage in the influent wastewater, the solid and liquid fractions of the mixed liquor, return flow, and permeate using quantitative PCR (adenovirus and norovirus GII) and infectivity assays (F+ coliphage). Permeate samples were collected 4-5 days, 1 day, 3 h, and immediately after chlorine enhanced backwashes. The MBR achieved high log removals for adenovirus (3.9 to 5.5), norovirus GII (4.6 to 5.7), and F+ coliphage (5.4 to 7.1). The greatest contribution to total removal was provided by the backwashed membrane, followed by inactivation, the cake layer, and attachment to solids. Increases in turbidity and particle counts after backwashes indicated potential breakthrough of particles, but virus removal following backwashes was still high. This study demonstrates the ability of the MBR process to provide over 4 logs of removal for adenovirus and norovirus GII, even after a partial loss of the cake layer, and provides evidence for assigning virus disinfection credit to similar MBRs used to reclaim wastewater for reuse. PMID:25642587

  16. Assessment of energy-saving strategies and operational costs in full-scale membrane bioreactors.

    PubMed

    Gabarrón, S; Ferrero, G; Dalmau, M; Comas, J; Rodriguez-Roda, I

    2014-02-15

    The energy-saving strategies and operational costs of stand-alone, hybrid, and dual stream full-scale membrane bioreactors (MBRs) with capacities ranging from 1100 to 35,000 m(3) day(-1) have been assessed for seven municipal facilities located in Northeast Spain. Although hydraulic load was found to be the main determinant factor for the energy consumption rates, several optimisation strategies have shown to be effective in terms of energy reduction as well as fouling phenomenon minimization or preservation. Specifically, modifications of the biological process (installation of control systems for biological aeration) and of the filtration process (reduction of the flux or mixed liquor suspended solids concentration and installation of control systems for membrane air scouring) were applied in two stand-alone MBRs. After implementing these strategies, the yearly specific energy demand (SED) in flat-sheet (FS) and hollow-fibre (HF) stand-alone MBRs was reduced from 1.12 to 0.71 and from 1.54 to 1.12 kW h(-1) m(-3), respectively, regardless of their similar yearly averaged hydraulic loads. The strategies applied in the hybrid MBR, namely, buffering the influent flow and optimisation of both biological aeration and membrane air-scouring, reduced the SED values by 14%. These results illustrate that it is possible to apply energy-saving strategies to significantly reduce MBR operational costs, highlighting the need to optimise MBR facilities to reconsider them as an energy-competitive option. PMID:24463730

  17. Characterization of biofouling in a lab-scale forward osmosis membrane bioreactor (FOMBR).

    PubMed

    Zhang, Qiaoyun; Jie, Yap Wei; Loong, Winson Lay Chee; Zhang, Jinsong; Fane, Anthony G; Kjelleberg, Staffan; Rice, Scott A; McDougald, Diane

    2014-07-01

    Forward osmosis membrane bioreactors (FOMBR) provide high quality permeate, however the propensity for membrane biofouling in FOMBRs is unknown. Here, FOMBRs were operated under high and low aeration and the membrane-associated biofilms were characterized by confocal laser scanning microscopy (CLSM) and rRNA gene-tagged pyrosequencing. CLSM images revealed that there was little biofilm formed under high aeration, while thick biofilms were observed on the membranes operated under low aeration. The diversity and richness of bacterial and archaeal communities as assessed by pyrosequencing varied under high and low aeration. The composition of the bacterial suspended sludge communities and the sessile biomass on the membrane surface, as assessed by non-metric multidimensional scaling, was significantly different under high aeration, but was more similar under low aeration. SIMPER analysis indicated that Pseudomonas, Aeromonas and Fluviicola preferentially attached to the membrane. The results presented here provide a comprehensive understanding of membrane biofouling in FOMBRs, which is essential for the development of effective control strategies. PMID:24751548

  18. Treatment of cosmetic wastewater by a full-scale membrane bioreactor (MBR).

    PubMed

    Monsalvo, Victor M; Lopez, Jesus; Mohedano, Angel F; Rodriguez, Juan J

    2014-11-01

    This work evaluates the treatment of wastewater from a personal care products factory by a full-scale side-stream membrane bioreactor (MBR) intermittently fed. The wastewater contained particulate and soluble chemical oxygen demand (COD) which is partially removed by physicochemical pretreatment. Steady removal efficiencies above 98 % were achieved for BOD5, COD and suspended solids. Fats, oils and grease present in the raw wastewater were also successfully removed. The MBR was operated at an average permeate flux of 12 L/m2 · h (LMH) working at a transmembrane pressure of 272 ± 97 mbar. The soluble microbial products concentration remained fairly stable at 175 ± 25 and 85 ± 15 mg/L for proteins and carbohydrates, respectively. This maintained the filtration characteristics of the mixed liquor unaltered over a long-term basis, which was evidenced by a constant permeability of 43 ± 19 LMH/bar. Most of the trace organics detected in the wastewater were completely removed and only some fragrances were detected in the permeate at trace concentrations. PMID:24958535

  19. Influence of bioreactor hydraulic characteristics on a Saccharomyces cerevisiae fed-batch culture: hydrodynamic modelling and scale-down investigations.

    PubMed

    Lejeune, Annick; Delvigne, F; Thonart, P

    2010-03-01

    Yeast is a widely used microorganism at the industrial level because of its biomass and metabolite production capabilities. However, due to its sensitivity to the glucose effect, problems occur during scale-up to the industrial scale. Hydrodynamic conditions are not ideal in large-scale bioreactors, and glucose concentration gradients can arise when these bioreactors are operating in fed-batch mode. We have studied the effects of such gradients in a scale-down reactor, which consists of a mixed part linked to a non-mixed part by a recirculation pump, in order to mimic the hydrodynamic conditions encountered at the large scale. During the fermentation tests in the scale-down reactor, there was a drop in both biomass yield (ratio between the biomass produced and the glucose added) and trehalose production and an increase in both fermentation time (time between inoculation and beginning of stationary phase) and ethanol production. We have developed a stochastic model which explains these effects as the result of an induction process determined mainly by the hydrodynamic conditions. The concentration profiles experienced by the microorganisms during the scale-down tests were expressed and linked to the biomass yields of the scale-down tests. PMID:19350298

  20. Bacteriophage removal in a full-scale membrane bioreactor (MBR) - Implications for wastewater reuse.

    PubMed

    Purnell, Sarah; Ebdon, James; Buck, Austen; Tupper, Martyn; Taylor, Huw

    2015-04-15

    The aim of this study was to assess the potential removal efficacy of viruses in a full-scale membrane bioreactor (MBR) wastewater reuse system, using a range of indigenous and 'spiked' bacteriophages (phages) of known size and morphology. Samples were taken each week for three months from nine locations at each treatment stage of the water recycling plant (WRP) and tested for a range of microbiological parameters (n = 135). Mean levels of faecal coliforms were reduced to 0.3 CFU/100 ml in the MBR product and were undetected in samples taken after the chlorination stage. A relatively large reduction (5.3 log) in somatic coliphages was also observed following MBR treatment. However, F-specific and human-specific (GB124) phages were less abundant at all stages, and demonstrated log reductions post-MBR of 3.5 and 3.8, respectively. In 'spiking' experiments, suspended 'spiked' phages (MS2 and B-14) displayed post-MBR log reductions of 2.25 and 2.30, respectively. The removal of these suspended phages, which are smaller than the membrane pore size (0.04 ?m), also highlights the possible role of the membrane biofilm as an effective additional barrier to virus transmission. The findings from this study of a full-scale MBR system demonstrate that the enumeration of several phage groups may offer a practical and conservative way of assessing the ability of MBR to remove enteric viruses of human health significance. They also suggest that phage removal in MBR systems may be highly variable and may be closely related on the one hand to both the size and morphology of the viruses and, on the other, to whether or not they are attached to solids. PMID:25655318

  1. Expansion of human neural precursor cells in large-scale bioreactors for the treatment of neurodegenerative disorders.

    PubMed

    Baghbaderani, Behnam A; Behie, Leo A; Sen, Arindom; Mukhida, Karim; Hong, Murray; Mendez, Ivar

    2008-01-01

    The transplantation of in vitro expanded human neural precursor cells (hNPCs) represents a potential new treatment alternative for individuals suffering from incurable neurodegenerative disorders such as Parkinson's disease (PD) and Huntington's disease (HD). However, in order for cell restorative therapy to have widespread therapeutic significance, it will be necessary to generate unlimited quantities of clinical grade hNPCs in a standardized method. We report here that we have developed a serum-free medium and scale-up protocols that allow for the generation of clinical quantities of human telencephalon-derived hNPCs in 500-mL computer-controlled suspension bioreactors. The average hNPC aggregate diameter in the bioreactors was maintained below a target value of 500 microm by controlling the liquid shear field. The human cells, which were inoculated at 10(5) cells/mL, exhibited a doubling time of 84 h, underwent a 36-fold expansion over the course of 18 days, and maintained an average viability of over 90%. The bioreactor-derived hNPCs retained their nestin expression following expansion and were able to differentiate into glial and neuronal phenotypes under defined conditions. It has also been demonstrated that these hNPCs differentiated to a GABAergic phenotype that has recently been shown to be able to restore functional behavior in rat models of HD and neuropathic pain (Mukhida, K. et al. Stem Cells 2007; DOI 10.1634/stemcells.2007-0326). This study demonstrates that clinical quantities of hNPCs can be successfully and reproducibly generated under standardized conditions in computer-controlled suspension bioreactors. PMID:18380486

  2. The Characterization of Grade PCEA Recycle Graphite Pilot Scale Billets

    SciTech Connect

    Burchell, Timothy D; Pappano, Peter J

    2010-10-01

    Here we report the physical properties of a series specimens machined from pilot scale (~ 152 mm diameter x ~305 mm length) grade PCEA recycle billets manufactured by GrafTech. The pilot scale billets were processed with increasing amounts of (unirradiated) graphite (from 20% to 100%) introduced to the formulation with the goal of determining if large fractions of recycle graphite have a deleterious effect on properties. The properties determined include Bulk Density, Electrical Resistivity, Elastic (Young s) Modulus, and Coefficient of Thermal Expansion. Although property variations were observed to be correlated with the recycle fraction, the magnitude of the variations was noted to be small.

  3. Mathematical modeling of ultrasound in tissue engineering: From bioreactors to the cellular scale

    NASA Astrophysics Data System (ADS)

    Louw, Tobias M.

    Tissue engineering seeks to provide a means to treat injuries that are beyond the body's natural ability to repair without the issues associated with allografts. Autologous cells are cultured in a bioreactor which controls the cellular environment (including mechanical stimulation) for optimal tissue growth. We investigate ultrasound as an effective means of mechanical stimulation by predicting the ultrasonic field in a bioreactor, as well as ultrasonic bioeffects at the cellular level. The Transfer Matrix Angular Spectrum Approach was found to be the most accurate and computationally efficient bioreactor model. Three critical factors influence experimental results: (1) the diameter of the tissue engineering scaffold greatly affects the ultrasonic field; (2) the position of the ultrasonic transducer and liquid level in the tissue culture well determines the maximum pressure amplitude in the bioreactor, but the pressure can be controlled by measuring the transducer input electrical impedance and manipulating the applied voltage; and (3) the position of pressure nodes are influenced by ultrasonic frequency and liquid level; this will affect the response of cells to applied ultrasound. On the cellular level, it was shown that chondrocytes respond to ultrasound with frequency dependence. A predicted resonance frequency near 5MHz matched experimental results showing maximum expression of load inducible genes at 5MHz. Mechanical stresses are concentrated near the nucleus at resonance, alluding to the possibility that the nucleus may directly sense ultrasonic stimulation. We postulate that ultrasound influences the transport of p-ERK to the nucleus or causes minor chromatin reorganization, leading to the observed frequency dependent gene expression. We linked in vitro ultrasonic stimulation to in vivo mechanical stimulation generated by natural movement. The chondrocyte's response to impact is under-damped, and the cell oscillates with a frequency close to the model predicted resonance. It appears that ultrasound applied close to the cell's resonant frequency effectively recreates the mechanical stimulation experienced by cells during natural movement. Ultrasonic bioreactors may therefore reproduce physiological conditions just as well as more complex bioreactors.

  4. STRATEGY USING BIOREACTORS AND SPECIALLY SELECTED MICROORGANISMS FOR BIOREMEDIATION OF GROUNDWATER CONTAMINATED WITH CREOSOTE AND PENTACHLOROPHENOL

    EPA Science Inventory

    A two-stage, continuous-flow, sequential inoculation bioreactor strategy for the bioremediation of ground water contaminated with creosote and pentachlorophenol (PCP) was evaluated at the bench- and pilot-scale levels. erformance of continually stirred tank reactors (CSTR) using ...

  5. MTBE BIODEGRADATION IN A GRAVITY FLOW, HIGH-BIOMASS RETAINING BIOREACTOR

    EPA Science Inventory

    The aerobic biodegradation of methyl tert-butyl ether (MtBE), a widely used fuel oxygenate, was investigated using a pilot-scale biomass-retaining bioreactor called a Biomass Concentrator Reactor (BCR). The reactor was operated for a year at a flow rate of 2500 L/d on Ci...

  6. COOLING COIL EFFECTS ON BLENDING IN A PILOT SCALE TANK

    SciTech Connect

    Leishear, R.; Poirier, M.; Fowley, M.; Steeper, T.

    2010-08-26

    Blending, or mixing, processes in 1.3 million gallon nuclear waste tanks are complicated by the fact that miles of serpentine, vertical, cooling coils are installed in the tanks. As a step toward investigating blending interference due to coils in this type of tank, a 1/10.85 scale tank and pump model were constructed for pilot scale testing. A series of tests were performed in this scaled tank by adding blue dye to visualize blending, and by adding acid or base tracers to solution to quantify the time required to effectively blend the tank contents. The acid and base tests were monitored with pH probes, which were located in the pilot scale tank to ensure that representative samples were obtained. Using the probes, the hydronium ion concentration [H{sup +}] was measured to ensure that a uniform concentration was obtained throughout the tank. As a result of pilot scale testing, a significantly improved understanding of mixing, or blending, in nuclear waste tanks has been achieved. Evaluation of test data showed that cooling coils in the waste tank model increased pilot scale blending times by 200% in the recommended operating range, compared to previous theoretical estimates of a 10-50% increase. Below the planned operating range, pilot scale blending times were increased by as much as 700% in a tank with coils installed. One pump, rather than two or more, was shown to effectively blend the tank contents, and dual pump nozzles installed parallel to the tank wall were shown to provide optimal blending. In short, experimental results varied significantly from expectations.

  7. Zero Nuisance Piggeries: long-term performance of MBR (membrane bioreactor) for dilute swine wastewater treatment using submerged membrane bioreactor in semi-industrial scale.

    PubMed

    Prado, Nolwenn; Ochoa, Juan; Amrane, Abdeltif

    2009-04-01

    Effective aerobic/anoxic treatment of piggery manure wastewater was achieved in a real farm scale using a small piggery (72 pigs) with reuse of the treated water. The experimental procedure was followed for 9 months. Fresh manure (FM) is formed by daily flush on piggeries and biologically treated after centrifuge pre-treatment. For upgrade liquid/solid separation and pathogen retention in biological treatment, a membrane system was used with the aim of effluent reuse in flush. Despite an evolution of FM through time, centrifuge pre-treatment and bioreactor performances stayed at high level. An elimination of 86% of the suspended solids occurred through pre-treatment, and nitrogen and COD biological degradation remains at 90% all time long. Moreover, interestingly about half of the soluble part of phosphorus (20% of the global phosphorus content) was biologically removed via the recirculation between the anoxic and the aerobic tank which acted as an intermittent aerobic/anoxic sequence. A part of COD was proved not biodegradable and was accumulated via the reuse of the treated water for flushing purpose. This accumulation justifies washing of the biomass between two runs in purpose to enhance the treated water quality and also to meet the membrane tolerance. The membrane was proved reliable as far as the maintenance procedure was respected. Maintenance cleaning had to be operated as soon as the TransMembrane Pressure (TMP) achieved 50 mbar and curative washing was necessary if the TMP increased over 90 mbar or between 2 runs. The temperature was proved to influence both the bioactivity and the membrane fouling kinetic. Finally, it was demonstrated that the process was sustainable for long-term management of swine wastewater at semi-industrial scale. PMID:19136138

  8. PILOT SCALE EVALUATION OF PHOTOLYTIC OZONATION FOR TRIHALOMETHANE PRECURSOR REMOVAL

    EPA Science Inventory

    The use of ozone combined with ultraviolet radiation has been studied at the pilot-scale for removing trihalomethane (THM) precursors from potable water. The effects of variations in ozone dose rate, UV intensity and other parameters were first studied using a synthetic feedwater...

  9. Production and Isolation of Azaspiracid-1 and -2 from Azadinium spinosum Culture in Pilot Scale Photobioreactors

    PubMed Central

    Jauffrais, Thierry; Kilcoyne, Jane; Séchet, Véronique; Herrenknecht, Christine; Truquet, Philippe; Hervé, Fabienne; Bérard, Jean Baptiste; Nulty, Cíara; Taylor, Sarah; Tillmann, Urban; Miles, Christopher O.; Hess, Philipp

    2012-01-01

    Azaspiracid (AZA) poisoning has been reported following consumption of contaminated shellfish, and is of human health concern. Hence, it is important to have sustainable amounts of the causative toxins available for toxicological studies and for instrument calibration in monitoring programs, without having to rely on natural toxin events. Continuous pilot scale culturing was carried out to evaluate the feasibility of AZA production using Azadinium spinosum cultures. Algae were harvested using tangential flow filtration or continuous centrifugation. AZAs were extracted using solid phase extraction (SPE) procedures, and subsequently purified. When coupling two stirred photobioreactors in series, cell concentrations reached 190,000 and 210,000 cell·mL?1 at steady state in bioreactors 1 and 2, respectively. The AZA cell quota decreased as the dilution rate increased from 0.15 to 0.3 day?1, with optimum toxin production at 0.25 day?1. After optimization, SPE procedures allowed for the recovery of 79 ± 9% of AZAs. The preparative isolation procedure previously developed for shellfish was optimized for algal extracts, such that only four steps were necessary to obtain purified AZA1 and -2. A purification efficiency of more than 70% was achieved, and isolation from 1200 L of culture yielded 9.3 mg of AZA1 and 2.2 mg of AZA2 of >95% purity. This work demonstrated the feasibility of sustainably producing AZA1 and -2 from A. spinosum cultures. PMID:22822378

  10. Partial Nitrification and Denitrifying Phosphorus Removal in a Pilot-Scale ABR/MBR Combined Process.

    PubMed

    Wu, Peng; Xu, Lezhong; Wang, Jianfang; Huang, Zhenxing; Zhang, Jiachao; Shen, Yaoliang

    2015-11-01

    A pilot-scale combined process consisting of an anaerobic baffled reactor (ABR) and an aerobic membrane bioreactor (MBR) for the purpose of achieving easy management, low energy demands, and high efficiencies on nutrient removal from municipal wastewater was investigated. The process operated at room temperature with hydraulic retention time (HRT) of 7.5 h, recycle ratio 1 of 200 %, recycle ratio 2 of 100 %, and dissolved oxygen (DO) of 1 mg/L and achieved good effluent quality with chemical oxygen demand (COD) of 25 mg/L, NH4 (+)-N of 4 mg/L, total nitrogen (TN) of 11 mg/L, and total phosphorus (TP) of 0.7 mg/L. The MBR achieved partial nitrification, and NO2 (-)-N has been accumulated (4 mg/L). Efficient short-cut denitrification was occurred in the ABR with a TN removal efficiency of 51 %, while the role of denitrification and phosphorus removal removed partial TN (14 %). Furthermore, nitrogen was further removed (11 %) by simultaneous nitrification and denitrification in the MBR. In addition, phosphorus accumulating organisms in the MBR sufficiently uptake phosphorus; thus, effluent TP further reduced with a TP removal efficiency of 84 %. Analysis of fluorescence in situ hybridization (FISH) showed that ammonia oxidizing bacteria (AOB) and phosphorus accumulating organisms (PAOs) were enriched in the process. In addition, the accumulation of NO2 (-)-N was contributed to the inhibition on the activities of the NOB rather than its elimination. PMID:26411352

  11. Pilot-scale tests of HEME and HEPA dissolution process

    SciTech Connect

    Qureshi, Z.H.; Strege, D.K.

    1994-06-01

    A series of pilot-scale demonstration tests for the dissolution of High Efficiency Mist Eliminators (HEME`s) and High Efficiency Particulate Airfilters (HEPA) were performed on a 1/5th linear scale. These fiberglass filters are to be used in the Defense Waste Processing Facility (DWPF) to decontaminate the effluents from the off-gases generated during the feed preparation process and vitrification. When removed, these filters will be dissolved in the Decontamination Waste Treatment Tank (DWTT) using 5 wt% NaOH solution. The contaminated fiberglass is converted to an aqueous stream which will be transferred to the waste tanks. The filter metal structure will be rinsed with process water before its disposal as low-level solid waste. The pilot-scale study reported here successfully demonstrated a simple one step process using 5 wt% NaOH solution. The proposed process requires the installation of a new water spray ring with 30 nozzles. In addition to the reduced waste generated, the total process time is reduced to 48 hours only (66% saving in time). The pilot-scale tests clearly demonstrated that the dissolution process of HEMEs has two stages - chemical digestion of the filter and mechanical erosion of the digested filter. The digestion is achieved by a boiling 5 wt% caustic solutions, whereas the mechanical break down of the digested filter is successfully achieved by spraying process water on the digested filter. An alternate method of breaking down the digested filter by increased air sparging of the solution was found to be marginally successful are best. The pilot-scale tests also demonstrated that the products of dissolution are easily pumpable by a centrifugal pump.

  12. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Laptop computer sits atop the Experiment Control Computer for a NASA Bioreactor. The flight crew can change operating conditions in the Bioreactor by using the graphical interface on the laptop. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  13. Modeling scaleup effects on a small pilot-scale fluidized-bed reactor for fuel ethanol production

    SciTech Connect

    Webb, O.F.; Davison, B.H.; Scott, T.C.

    1995-09-01

    Domestic ethanol use and production are presently undergoing significant increases along with planning and construction of new production facilities. Significant efforts are ongoing to reduce ethanol production costs by investigating new inexpensive feedstocks (woody biomass) and by reducing capital and energy costs through process improvements. A key element in the development of advanced bioreactor systems capable of very high conversion rates is the retention of high biocatalyst concentrations within the bioreactor and a reaction environment that ensures intimate contact between substrate and biocatalyst. One very effective method is to use an immobilized biocatalyst that can be placed into a reaction environment that provides effective mass transport, such as a fluidized bed. Mathematical descriptions are needed based on fundamental principles and accepted correlations that describe important physical phenomena. We describe refinements and semi-quantitatively extend the predictive model of Petersen and Davison to a multiphase fluidized-bed reactor (FBR) that was scaled-up for ethanol production. Axial concentration profiles were evaluated by solving coupled differential equations for glucose and carbon dioxide. The pilot-scale FBR (2 to 5 m tall, 10.2-cm ID, and 23,000 L month{sup -1} capacity) was scaled up from bench-scale reactors (91 to 224 cm long, 2.54 to 3.81 cm ID, and 400 to 2,300 L month{sup -1} capacity). Significant improvements in volumetric productivites (50 to 200 g EtOH h{sup -1} L{sup -1} compared with 40 to 110 for bench-scale experiments and 2 to 10 for reported industrial benchmarks) and good operability were demonstrated.

  14. Bioreactors and bioseparation.

    PubMed

    Zhang, Siliang; Cao, Xuejun; Chu, Ju; Qian, Jiangchao; Zhuang, Yingping

    2010-01-01

    Along with the rapid development of life science, great attention has been increasingly given to the biotechnological products of cell cultivation technology. In the course of industrialization, bioreactor and bioproduct separation techniques are the two essential technical platforms. In this chapter, the current situation and development prospects of bioreactor techniques in China are systematically discussed, starting with the elucidation of bioreactor processes and the principle of process optimization. Separation technology for biological products is also briefly introduced.At present, a series of bioreactors made by Chinese enterprises have been widely used for laboratory microbial cultivation, process optimization studies, and large-scale production. In the course of bioprocess optimization studies, the complicated bioprocesses in a bioreactor could be resolved into different reaction processes on three scales, namely genetic, cellular, and bioreactor scales. The structural varieties and nonlinear features of various scales of bioprocess systems was discussed through considering the mutual effects of different scale events, namely material flux, energy flux, and information flux, and the optimization approach for bioprocesses was proposed by taking the analysis of metabolic flux and multiscale consideration as a core strategy.In order to realize such an optimization approach, a bioreactor system based on association analysis of multiscale parameters was elaborated, and process optimization of many biological products were materialized, which resulted in great improvement in production efficiency. In designing and manufacturing large-scale bioreactors, the principle of scaling up a process incorporated with flow field study and physiological features in a bioreactor was suggested according to the criterion for the scale-up of cellular physiological and metabolic traits. The flow field features of a bioreactor were investigated through computational fluid dynamics (CFD), and the design of a bioreactor configuration was carried out depending on multiscale studies of parameters correlation in a bioprocess. With respect to the development trend of bioreactor studies in China, the significance of the development of microbioreactors for high throughput strain screening and large-scale bioreactors for animal cell cultivation were put forward. Finally, the importance of studies of systems biology for bioprocesses based on bioinformation processing was raised, and the necessity of establishing a bioprocess information database and local area network (LAN) were emphasized as well.Bioseparation engineering plays a key role in biotechnology production. At present, many difficulties need to be resolved in the area. Scientists of China have made considerable progress in bioseparation engineering. This progress includes chromatography media, recycling aqueous two-phase systems (ATPS), affinity precipitation, molecular imprinting, renaturation and modification of proteins, protein fractionation using ultrafiltration (UF), ion liquid separation of bioproducts, reverse micellar extraction, etc. The preparation of bioseparation materials, as well as part of bioseparation process research development in the past 5 years, are introduced here. PMID:20396995

  15. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Electronics control module for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  16. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Interior view of the gas supply for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  17. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at right center) to control fluid flow. The rotating wall vessel is at top center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  18. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Interior of a Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  19. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Exterior view of the NASA Bioreactor Engineering Development Unit flown on Mir. The rotating wall vessel is behind the window on the face of the large module. Control electronics are in the module at left; gas supply and cooling fans are in the module at back. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  20. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  1. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell and with thermal blankets partially removed. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  2. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at center) to control fluid flow. A fresh nutrient bag is installed at top; a flattened waste bag behind it will fill as the nutrients are consumed during the course of operation. The drive chain and gears for the rotating wall vessel are visible at bottom center center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  3. Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators.

  4. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Astronaut John Blaha replaces an exhausted media bag and filled waste bag with fresh bags to continue a bioreactor experiment aboard space station Mir in 1996. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. This image is from a video downlink. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  5. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The heart of the bioreactor is the rotating wall vessel, shown without its support equipment. Volume is about 125 mL. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  6. Macro-scale Topology Optimization for Controlling Internal Shear Stress in a Porous Scaffold Bioreactor

    E-print Network

    K. Youssef; J. J. Mack; M. L. Iruela-Arispe; L. -S. Bouchard

    2012-01-09

    Shear stress is an important physical factor that regulates proliferation, migration and morphogenesis. In particular, the homeostasis of blood vessels is dependent on shear stress. To mimic this process ex vivo, efforts have been made to seed scaffolds with vascular and other cell types in the presence of growth factors and under pulsatile flow conditions. However, the resulting bioreactors lack information on shear stress and flow distributions within the scaffold. Consequently, it is difficult to interpret the effects of shear stress on cell function. Such knowledge would enable researchers to improve upon cell culture protocols. Recent work has focused on optimizing the microstructural parameters of the scaffold to fine tune the shear stress. In this study, we have adopted a different approach whereby flows are redirected throughout the bioreactor along channels patterned in the porous scaffold to yield shear stress distributions that are optimized for uniformity centered on a target value. A topology optimization algorithm coupled to computational fluid dynamics simulations was devised to this end. The channel topology in the porous scaffold was varied using a combination of genetic algorithm and fuzzy logic. The method is validated by experiments using magnetic resonance imaging (MRI) readouts of the flow field.

  7. A greenhouse-scale photosynthetic microbial bioreactor for carbon sequestration in magnesium carbonate minerals.

    PubMed

    McCutcheon, Jenine; Power, Ian M; Harrison, Anna L; Dipple, Gregory M; Southam, Gordon

    2014-08-19

    A cyanobacteria dominated consortium collected from an alkaline wetland located near Atlin, British Columbia, Canada accelerated the precipitation of platy hydromagnesite [Mg5(CO3)4(OH)2·4H2O] in a linear flow-through experimental model wetland. The concentration of magnesium decreased rapidly within 2 m of the inflow point of the 10-m-long (?1.5 m(2)) bioreactor. The change in water chemistry was monitored over two months along the length of the channel. Carbonate mineralization was associated with extra-cellular polymeric substances in the nutrient-rich upstream portion of the bioreactor, while the lower part of the system, which lacked essential nutrients, did not exhibit any hydromagnesite precipitation. A mass balance calculation using the water chemistry data produced a carbon sequestration rate of 33.34 t of C/ha per year. Amendment of the nutrient deficiency would intuitively allow for increased carbonation activity. Optimization of this process will have application as a sustainable mining practice by mediating magnesium carbonate precipitation in ultramafic mine tailings storage facilities. PMID:25072950

  8. Bioreactor principles

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Cells cultured on Earth (left) typically settle quickly on the bottom of culture vessels due to gravity. In microgravity (right), cells remain suspended and aggregate to form three-dimensional tissue. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  9. Bioreactor landfill technology in municipal solid waste treatment: an overview.

    PubMed

    Kumar, Sunil; Chiemchaisri, Chart; Mudhoo, Ackmez

    2011-03-01

    In recent years, due to an advance in knowledge of landfill behaviour and decomposition processes of municipal solid waste, there has been a strong thrust to upgrade existing landfill technologies for optimizing these degradation processes and thereafter harness a maximum of the useful bioavailable matter in the form of higher landfill gas generation rates. Operating landfills as bioreactors for enhancing the stabilization of wastes is one such technology option that has been recently investigated and has already been in use in many countries. A few full-scale implementations of this novel technology are gaining momentum in landfill research and development activities. The publication of bioreactor landfill research has resulted in a wide pool of knowledge and useful engineering data. This review covers leachate recirculation and stabilization, nitrogen transformation and corresponding extensive laboratory- and pilot-scale research, the bioreactor landfill concept, the benefits to be derived from this bioreactor landfill technology, and the design and operational issues and research trends that form the basis of applied landfill research. PMID:20578971

  10. Pilot-scale bioreactor production and long term stability of feruloyl soy glycerides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil was transesterified with ethyl ferulate at 60 °C using the immobilized lipase Candida antartica lipase B (Novozym 435) to produce a mixture of feruloylated monoacylglycerols and feruloylated diacylglycerols homologues, collectively referred to as feruloylated soy glycerides (FSG). A 1-to...

  11. Bioreactors Modeling and Control

    E-print Network

    Grossmann, Ignacio E.

    of microorganisms (bacteria, yeasts, fungi) ex: ethanol, penicillin Recombinant m.o., mammalian (or insect) cells-bioreactor-downstream) #12;MODEL 1 ("classic") Scaling up penicillin production 1928, Fleming ­ inhibitory halo 1939, Florey Chain isolates active penicillin 1941-1943, surface cultivation (semi-solid reactors) does not1941

  12. Analysis of microbial community composition in a lab-scale membrane distillation bioreactor

    PubMed Central

    Zhang, Q; Shuwen, G; Zhang, J; Fane, AG; Kjelleberg, S; Rice, SA; McDougald, D

    2015-01-01

    Aims Membrane distillation bioreactors (MDBR) have potential for industrial applications where wastewater is hot or waste heat is available, but the role of micro-organisms in MDBRs has never been determined, and thus was the purpose of this study. Methods and Results Microbial communities were characterized by bacterial and archaeal 16S and eukaryotic 18S rRNA gene tag-encoded pyrosequencing of DNA obtained from sludge. Taxonomy-independent analysis revealed that bacterial communities had a relatively low richness and diversity, and community composition strongly correlated with conductivity, total nitrogen and bound extracellular polymeric substances (EPS). Taxonomy-dependent analysis revealed that Rubrobacter and Caldalkalibacillus were abundant members of the bacterial community, but no archaea were detected. Eukaryotic communities had a relatively high richness and diversity, and both changes in community composition and abundance of the dominant genus, Candida, correlated with bound EPS. Conclusions Thermophilic MDBR communities were comprised of a low diversity bacterial community and a highly diverse eukaryotic community with no archea detected. Communities exhibited low resilience to changes in operational parameters. Specifically, retenatate nutrient composition and concentration was strongly correlated with the dominant species. Significance and Impact of the Study This study provides an understanding of microbial community diversity in an MDBR, which is fundamental to the optimization of reactor performance. PMID:25604265

  13. Photosynthetic biomass and H2 production by green algae: from bioengineering to bioreactor scale-up.

    PubMed

    Hankamer, Ben; Lehr, Florian; Rupprecht, Jens; Mussgnug, Jan H; Posten, Clemens; Kruse, Olaf

    2007-09-01

    The development of clean borderless fuels is of vital importance to human and environmental health and global prosperity. Currently, fuels make up approximately 67% of the global energy market (total market = 15 TW year(-1)) (Hoffert et al. 1998). In contrast, global electricity demand accounts for only 33% (Hoffert et al. 1998). Yet, despite the importance of fuels, almost all CO(2) free energy production systems under development are designed to drive electricity generation (e.g. clean-coal technology, nuclear, photovoltaic, wind, geothermal, wave and hydroelectric). In contrast, and indeed almost uniquely, biofuels also target the much larger fuel market and so in the future will play an increasingly important role in maintaining energy security (Lal 2005). Currently, the main biofuels that are at varying stages of development include bio-ethanol, liquid carbohydrates [e.g. biodiesel or biomass to liquid (BTL) products], biomethane and bio-H(2). This review is focused on placing bio-H(2) production processes into the context of the current biofuels market and summarizing advances made both at the level of bioengineering and bioreactor design. PMID:18251920

  14. Modeling full-scale osmotic membrane bioreactor systems with high sludge retention and low salt concentration factor for wastewater reclamation.

    PubMed

    Park, Sung Hyuk; Park, Beomseok; Shon, Ho Kyong; Kim, Suhan

    2015-08-01

    A full-scale model was developed to find optimal design parameters for osmotic membrane bioreactor (OMBR) and reverse osmosis (RO) hybrid system for wastewater reclamation. The model simulates salt accumulation, draw solution dilution and water flux in OMBR with sludge concentrator for high retention and low salt concentration factor. The full-scale OMBR simulation results reveal that flat-sheet module with spacers exhibits slightly higher flux than hollow-fiber; forward osmosis (FO) membrane with high water permeability, low salt permeability, and low resistance to salt diffusion shows high water flux; an optimal water recovery around 50% ensures high flux and no adverse effect on microbial activity; and FO membrane cost decreases and RO energy consumption and product water concentration increases at higher DS flow rates and concentrations. The simulated FO water flux and RO energy consumption ranges from 3.03 to 13.76LMH and 0.35 to 1.39kWh/m(3), respectively. PMID:25840775

  15. Degradation of diethyl phthalate in treated effluents from an MBR via advanced oxidation processes: effects of nitrate on oxidation and a pilot-scale AOP operation.

    PubMed

    Park, J H; Park, C G; Lee, J W; Ko, K B

    2010-01-01

    The major objective of this study was to delineate the oxidation of diethyl phthalate (DEP) in water, using bench-scale UV/H2O2 and O3/H2O2 processes, and to determine the effects of nitrate (NO(3-)-N, 5 mg L(-1)) on this oxidation. The oxidation of DEP was also investigated through a pilot-scale advanced oxidation process (AOP), into which a portion of the effluent from a pilot-scale membrane bioreactor (MBR) plant was pumped. The bench-scale operation showed that DEP could be oxidized via solely UV oxidation or O3 oxidation. The adverse effect of nitrate on the DEP oxidation was remarkable in the UV/H2O2 process, and the nitrate clearly reduced its oxidation. The adverse effect of nitrate on O3 oxidation was also observed. It was noted, however, that the nitrate clearly enhanced the DEP oxidation in the O3/H2O2 process. A series of pilot-scale AOP operations indicated that the addition of H2O2 enhanced DEP oxidation in both the UV/H2O2 and O3/H2O2 processes. No noticeable adverse effect of nitrate was observed in the NO(3-)-N concentration of about 6.0 mg L(-1), which was naturally contained in the treatment stream. About 52% and 61% of the DEP were oxidized by each of these two oxidation processes in this pilot-scale operation. Both the UV/H2O2 and O3/H2O2 processes appeared to be desirable alternatives for DEP oxidation in treatment effluent streams. PMID:20232675

  16. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101824 for a version with labels, and No. 0103180 for an operational schematic.

  17. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101825 for a version with major elements labeled, and No. 0103180 for an operational schematic. 0101816

  18. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101823 for a version without labels, and No. 0103180 for an operational schematic.

  19. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101816 for a version without labels, and No. 0103180 for an operational schematic.

  20. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Biotechnology Specimen Temperature Controller (BSTC) will cultivate cells until their turn in the bioreactor; it can also be used in culturing experiments that do not require the bioreactor. The BSTC comprises four incubation/refrigeration chambers individually set at 4 to 50 degreesC (near-freezing to above body temperature). Each chamber holds three rugged tissue chamber modules (12 total), clear Teflon bags holding 30 ml of growth media, all positioned by a metal frame. Every 7 to 21 days (depending on growth rates), an astronaut uses a shrouded syringe and the bags' needleless injection ports to transfer a few cells to a fresh media bag, and to introduce a fixative so that the cells may be studied after flight. The design also lets the crew sample the media to measure glucose, gas, and pH levels, and to inspect cells with a microscope. The controller is monitored by the flight crew through a 23-cm (9-inch) color computer display on the face of the BSTC. This view shows the BTSC with the front panel open. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  1. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Biotechnology Specimen Temperature Controller (BSTC) will cultivate cells until their turn in the bioreactor; it can also be used in culturing experiments that do not require the bioreactor. The BSTC comprises four incubation/refrigeration chambers individually set at 4 to 50 deg. C (near-freezing to above body temperature). Each chamber holds three rugged tissue chamber modules (12 total), clear Teflon bags holding 30 ml of growth media, all positioned by a metal frame. Every 7 to 21 days (depending on growth rates), an astronaut uses a shrouded syringe and the bags' needleless injection ports to transfer a few cells to a fresh media bag, and to introduce a fixative so that the cells may be studied after flight. The design also lets the crew sample the media to measure glucose, gas, and pH levels, and to inspect cells with a microscope. The controller is monitored by the flight crew through a 23-cm (9-inch) color computer display on the face of the BSTC. This view shows the BTSC with the front panel open. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  2. Bacterial Community Dynamics in Full-Scale Activated Sludge Bioreactors: Operational and Ecological Factors Driving Community Assembly and Performance

    PubMed Central

    Valentín-Vargas, Alexis; Toro-Labrador, Gladys; Massol-Deyá, Arturo A.

    2012-01-01

    The assembling of bacterial communities in conventional activated sludge (CAS) bioreactors was thought, until recently, to be chaotic and mostly unpredictable. Studies done over the last decade have shown that specific, and often, predictable random and non-random factors could be responsible for that process. These studies have also motivated a “structure–function” paradigm that is yet to be resolved. Thus, elucidating the factors that affect community assembly in the bioreactors is necessary for predicting fluctuations in community structure and function. For this study activated sludge samples were collected during a one-year period from two geographically distant CAS bioreactors of different size. Combining community fingerprinting analysis and operational parameters data with a robust statistical analysis, we aimed to identify relevant links between system performance and bacterial community diversity and dynamics. In addition to revealing a significant ?-diversity between the bioreactors’ communities, results showed that the largest bioreactor had a less dynamic but more efficient and diverse bacterial community throughout the study. The statistical analysis also suggests that deterministic factors, as opposed to stochastic factors, may have a bigger impact on the community structure in the largest bioreactor. Furthermore, the community seems to rely mainly on mechanisms of resistance and functional redundancy to maintain functional stability. We suggest that the ecological theories behind the Island Biogeography model and the species-area relationship were appropriate to predict the assembly of bacterial communities in these CAS bioreactors. These results are of great importance for engineers and ecologists as they reveal critical aspects of CAS systems that could be applied towards improving bioreactor design and operation. PMID:22880016

  3. Pilot Scale Tests Alden/Concepts NREC Turbine

    SciTech Connect

    Thomas C. Cook; George E.Hecker; Stephen Amaral; Philip Stacy; Fangbiao Lin; Edward Taft

    2003-09-30

    Alden Research Laboratory, Inc. has completed pilot scale testing of the new Alden/Concepts NREC turbine that was designed to minimize fish injury at hydropower projects. The test program was part of the U.S. Department of Energy's Advanced Hydropower Turbine Systems Program. The prototype turbine operating point was 1,000 cfs at 80ft head and 100 rpm. The turbine was design to: (1) limit peripheral runner speed; (2) have a high minimum pressure; (3) limit pressure change rates; (4) limit the maximum flow shear; (5) minimize the number and total length of leading blade edges; (6) maximize the distance between the runner inlet and the wicket gates and minimize clearances (i.e., gaps) between other components; and (7) maximize the size of flow passages.

  4. Pilot scale evaluation of peroxone for treatment of contaminated groundwater

    SciTech Connect

    Zappi, M.; Swindle, R.; Harvey, S.; Morgan, R.; Strang, D.; Smith, J.

    1994-12-31

    Advance oxidation processes (AOPS) are treatment processes that rely on the hydroxyl radical to destroy contaminants in polluted waters. Peroxone is an advanced oxidation process that utilizes the reaction of ozone and hydrogen peroxide to produce hydroxyl radicals without the requirement of ultraviolet light. The USAE Waterways Experiment Station (WES) evaluated the use of peroxone at Rocky Mountain Arsenal (RMA) for treatment of groundwater contaminated with diisopropylmethylphosphonate (DIMP) and low levels of pesticides. This evaluation was performed at RMA using a pilot scale treatment system. Results indicate that DIMP was easily oxidized to below detection limit levels. Optimization of the process indicated that a 250 mg/l hydrogen peroxide dose in four columns plumbed in series that were all sparged with 2.2% ozonated air at a rate of 2.S scfm.

  5. SAES St 909 pilot scale methane cracking tests

    SciTech Connect

    Klein, J. E.; Sessions, H. T.

    2008-07-15

    Pilot scale (0.5 kg) SAES St 909 methane cracking tests were conducted for potential tritium process applications. Up to 1400 hours tests were done at 700 deg.C, 202.7 kPa (1520 torr) with a 0.03 sLPM feed of methane plus impurities, in a 20 vol% hydrogen, balance helium, stream. Carbon dioxide gettered by St 909 can be equated to an equivalent amount of methane gettered, but equating nitrogen to an equivalent amount of methane was nitrogen feed composition dependent. A decreased hydrogen feed increased methane getter rates while a 30 deg.C drop in one furnace zone increased methane emissions by over a factor of 30. The impact of gettered nitrogen can be somewhat minimized if nitrogen feed to the bed has been stopped and sufficient time given to recover the methane cracking rate. (authors)

  6. Gasification of pelletized biomass in a pilot scale downdraft gasifier.

    PubMed

    Simone, Marco; Barontini, Federica; Nicolella, Cristiano; Tognotti, Leonardo

    2012-07-01

    This work presents a pilot-scale investigation aimed at assessing the feasibility and reliability of biomass pellet gasification. Wood sawdust and sunflower seeds pellets were tested in a 200 kW downdraft gasifier operating with air as gasifying agent. The gasification of pelletized biomass led to rather high and unstable pressure drops, reducing the gasifier productivity and stability. Furthermore the generation of fine residues compromised the operation of wet ash removal systems. On the other hand, good syngas compositions (H(2) 17.2%, N(2) 46.0%, CH(4) 2.5%, CO 21.2%, CO(2) 12.6%, and C(2)H(4) 0.4%), specific gas production (2.2-2.4 N m(3) kg(-1)) and cold gas efficiency (67.7-70.0%) were achieved. For these reasons pelletized biomass should be considered only as complementary fuel in co-gasification with other feedstock. PMID:22537399

  7. Monitoring the variations of the oxygen transfer rate in a full scale membrane bioreactor using daily mass balances.

    PubMed

    Racault, Y; Stricker, A-E; Husson, A; Gillot, S

    2011-01-01

    Oxygen transfer in biological wastewater treatment processes with high sludge concentration, such as membrane bioreactor (MBR), is an important issue. The variation of alpha-factor versus mixed liquor suspended solids (MLSS) concentration was investigated in a full scale MBR plant under process conditions, using mass balances. Exhaustive data from the Supervisory Control And Data Acquisition (SCADA) and from additional online sensors (COD, DO, MLSS) were used to calculate the daily oxygen consumption (OC) using a non-steady state mass balance for COD and total N on a 24-h basis. To close the oxygen balance, OC has to match the total oxygen transfer rate (OTRtot) of the system, which is provided by fine bubble (FB) diffusers in the aeration tank and coarse bubbles (CB) in separate membrane tanks. First assessing OTR(CB) then closing the balance OC = OTRtot allowed to calculate OTR(FB) and to fit an exponential relationship between OTR(FB) and MLSS. A comparison of the alpha-factor obtained by this balance method and by direct measurements with the off-gas method on the same plant is presented and discussed. PMID:22049761

  8. Nitrification performance and microbial ecology of nitrifying bacteria in a full-scale membrane bioreactor treating TFT-LCD wastewater.

    PubMed

    Whang, Liang-Ming; Wu, Yi-Ju; Lee, Ya-Chin; Chen, Hong-Wei; Fukushima, Toshikazu; Chang, Ming-Yu; Cheng, Sheng-Shung; Hsu, Shu-Fu; Chang, Cheng-Huey; Shen, Wason; Huang, Chung Kai; Fu, Ryan; Chang, Barkley

    2012-10-01

    This study investigated nitrification performance and nitrifying community in one full-scale membrane bioreactor (MBR) treating TFT-LCD wastewater. For the A/O MBR system treating monoethanolamine (MEA) and dimethyl sulfoxide (DMSO), no nitrification was observed, due presumably to high organic loading, high colloidal COD, low DO, and low hydraulic retention time (HRT) conditions. By including additional A/O or O/A tanks, the A/O/A/O MBR and the O/A/O MBR were able to perform successful nitrification. The real-time PCR results for quantification of nitrifying populations showed a high correlation to nitrification performance, and can be a good indicator of stable nitrification. Terminal restriction fragment length polymorphism (T-RFLP) results of functional gene, amoA, suggest that Nitrosomonas oligotropha-like AOB seemed to be important to a good nitrification in the MBR system. In the MBR system, Nitrobacter- and Nitrospira-like NOB were both abundant, but the low nitrite environment is likely to promote the growth of Nitrospira-like NOB. PMID:22595093

  9. Molecular weight distribution of a full-scale landfill leachate treatment by membrane bioreactor and nanofiltration membrane.

    PubMed

    Campagna, Marco; Cakmakc?, Mehmet; Yaman, F Bü?ra; Ozkaya, Bestamin

    2013-04-01

    In this study, Molecular weight (MW) distributions of a full-scale landfill leachate treatment plant consisting of membrane bioreactor (MBR) and nanofiltration (NF) membrane were investigated. The leachate was sampled from the equalization tank, and effluents of MBR and NF membrane in the landfill leachate treatment plant. Parameters of COD, TOC, TKN, NH4(+)-N and UV(254, 280 and 320) absorbance were analyzed to evaluate both the removal performance of the plant and MW distributions. MW distribution of samples were determined by ultrafiltration (UF) (100 kDa, 10 kDa, 5 kDa, 1 kDa and 500 Da) membranes. The results indicated that organic matter of one third percent is particulate or colloidal form and almost half of the organic fraction has a lower MW than 500 Da. In addition, organic matter had hydrophilic character. Most part of TKN was>500 Da with the corresponding rate of 92%. Further, UV absorbance of raw leachate (RW) decreased 85% after 500 Da. PMID:23290269

  10. Pilot-scale verification test for Hanford grout

    SciTech Connect

    Bagaasen, L.M.; Powell, W.J.

    1993-02-01

    The Grout Treatment Facility (GTF) at Hanford, Washington will process the low-level fraction of selected double-shell tank (DST) wastes on the Hanford Site, to produce a cementitious waste form. This facility, which is operated by Westinghouse Hanford Company (Westinghouse Hanford), mixes liquid wastes with cementitious materials and pumps the resulting grout slurry into large [5,300 cubic meters (m{sup 3})] concrete vaults. Once in the vault, the grout cures to produce a waste form that immobilizes radioactive and hazardous constituents through chemical reactions and/or microencapsulation. Although this disposal scheme has several advantages, pouring grout into large vaults raises concerns about how to handle the heat generated from the exothermic hydration reactions that occur as the grout cures. WHC`s current strategy for addressing the problem of hydration heat is to fill the vault in stages and use forced ventilation in the airspace above the grout to speed heat removal. The varying composition of Hanford tank waste requires that each tank be processed in a separate campaign using a grout formulation specifically designed for that waste. The next tank scheduled for treatment is DST 241-AN-106. A four-phase process for developing the grout formulation development process is used to assure that the formulation will meet various processing and waste form requirements. These phases are: (1) laboratory formulation development studies and modeling with simulated wastes, (2) laboratory variability studies with simulated waste, (3) pilot-scale verification tests with simulated wastes, and (4) laboratory verification tests with actual waste. This paper presents an overview of the pilot-scale verification tests conducted as part of the grout formulation development for the 241-AN-106 tank waste. The paper specifically discusses results dealing with (1) the grout slurry critical flow rate and (2) the ability to handle grout hydration heat with forced ventilation.

  11. Odour in composting processes at pilot scale: monitoring and biofiltration.

    PubMed

    Gutiérrez, M C; Serrano, A; Martín, M A; Chica, A F

    2014-08-01

    Although odour emissions associated with the composting process, especially during the hydrolytic stage, are widely known, their impact on surrounding areas is not easily quantifiable, For this reason, odour emissions during the first stage ofcomposting were evaluated by dynamic olfactometry at pilot scale in order to obtain results which can be extrapolated to industrial facilities. The composting was carried out in a commercial dynamic respirometer equipped with two biofilters at pilot scale filled with prunings (Populus) and mature compost obtained from the organic fraction of municipal solid waste. Given that the highest odour emissions occur in the first stage of the composting process, this stage was carried out in a closed system to better control the odour emissions, whose maximum value was estimated to be 2.78 ouF S-1 during the experiments. Odour concentration, the dynamic respiration index and temperature showed the same evolution during composting, thus indicating that odour could be a key variable in the monitoring process. Other variables such as total organic carbon (CTOC) and pH were also found to be significant in this study due to their influence over odour emissions. The efficiency of the biofilters (empty bed residence time of 86 s) was determined by quantifying the odour emissions at the inlet and outlet of both biofilters. The moisture content in the biofilters was found to be an important variable for improving odour removal efficiency, while the minimum moisture percentage to obtain successful results was found to be 55% (odour removal efficiency of 95%). PMID:24956758

  12. RELATIONSHIPS BETWEEN LABORATORY AND PILOT-SCALE COMBUSTION OF SOME CHLORINATED HYDROCARBONS

    EPA Science Inventory

    Factors governing the occurence of trace amounts of residual organic substance emmissions (ROSEs) in full-scale incierators are not fully understood. Pilot-scale spray combustion expereiments involving some liquid chlorinated hydrocarbons (CHCs) and their dilute mixtures with hy...

  13. Pilot scale test of a produced water-treatment system for initial removal of organic compounds

    SciTech Connect

    Sullivan, Enid J; Kwon, Soondong; Katz, Lynn; Kinney, Kerry

    2008-01-01

    A pilot-scale test to remove polar and non-polar organics from produced water was performed at a disposal facility in Farmington NM. We used surfactant-modified zeolite (SMZ) adsorbent beds and a membrane bioreactor (MBR) in combination to reduce the organic carbon content of produced water prior to reverse osmosis (RO). Reduction of total influent organic carbon (TOC) to 5 mg/L or less is desirable for efficient RO system operation. Most water disposed at the facility is from coal-bed gas production, with oil production waters intermixed. Up to 20 gal/d of produced water was cycled through two SMZ adsorbent units to remove volatile organic compounds (BTEX, acetone) and semivolatile organic compounds (e.g., napthalene). Output water from the SMZ units was sent to the MBR for removal of the organic acid component of TOC. Removal of inorganic (Mn and Fe oxide) particulates by the SMZ system was observed. The SMZ columns removed up to 40% of the influent TOC (600 mg/L). BTEX concentrations were reduced from the initial input of 70 mg/L to 5 mg/L by the SMZ and to an average of 2 mg/L after the MBR. Removal rates of acetate (input 120-170 mg/L) and TOC (input up to 45 mg/L) were up to 100% and 92%, respectively. The water pH rose from 8.5 to 8.8 following organic acid removal in the MBR; this relatively high pH was likely responsible for observed scaling of the MBR internal membrane. Additional laboratory studies showed the scaling can be reduced by metered addition of acid to reduce the pH. Significantly, organic removal in the MBR was accomplished with a very low biomass concentration of 1 g/L throughout the field trial. An earlier engineering evaluation shows produced water treatment by the SMZ/MBR/RO system would cost from $0.13 to $0.20 per bbl at up to 40 gpm. Current estimated disposal costs for produced water are $1.75 to $4.91 per bbl when transportation costs are included, with even higher rates in some regions. Our results suggest that treatment by an SMZ/MBR/RO system may be a feasible alternative to current methods for produced water treatment and disposal.

  14. Multimembrane Bioreactor

    NASA Technical Reports Server (NTRS)

    Cho, Toohyon; Shuler, Michael L.

    1989-01-01

    Set of hydrophilic and hydrophobic membranes in bioreactor allows product of reaction to be separated, while nutrients fed to reacting cells and byproducts removed from them. Separation process requires no externally supplied energy; free energy of reaction sufficient. Membranes greatly increase productivity of metabolizing cells by continuously removing product and byproducts, which might otherwise inhibit reaction, and by continuously adding oxygen and organic nutrients.

  15. Pilot scale production of cellulolytic enzymes by Trichoderma reesei

    SciTech Connect

    Warzywoda, M.; Chevron, F.; Ferre, V.; Pourquie, J.

    1983-01-01

    The French substitute fuels program aims at the substitution of part of gasoline by methanol. In order to avoid phase separation of the gasoline-methanol blend, a cosolvant has to be added; one of the most efficient cosolvants is the mixture of acetone and butanol produced by anaerobic acetone-butanol fermentation. The Institut Francais du Petrole is thus implementing a research and development program on the production of acetone butanol from biomass, either sugar crops (fodder beets and Jerusalem artichoke) or lignocellulosic (corn stover and wheat straw). Production of sugars from lignocellulosics is a major part of this program. The enzymatic hydrolysis route, based on Trichoderma reesei cellulolytic enzymes, has been chosen since it does not cause any degradation of C/sub 5/ sugars which are good substrates of the acetone butanol fermentation. Efficient and cheap large-scale production of cellulolytic enzymes is thus a key step in this process. This paper reports on production of cellulases by Trichoderma reesei in a 3-m/sup 3/ pilot fermentor under conditions which should facilitate the scaling-up of the process. 7 references, 2 figures, 2 tables.

  16. Effect of PAC dosage in a pilot-scale PAC-MBR treating micro-polluted surface water.

    PubMed

    Hu, Jingyi; Shang, Ran; Deng, Huiping; Heijman, Sebastiaan G J; Rietveld, Luuk C

    2014-02-01

    To address the water scarcity issue and advance the traditional drinking water treatment technique, a powdered activated carbon-amended membrane bioreactor (PAC-MBR) is proposed for micro-polluted surface water treatment. A pilot-scale study was carried out by initially dosing different amounts of PAC into the MBR. Comparative results showed that 2g/L performed the best among 0, 1, 2 and 3g/L PAC-MBR regarding organic matter and ammonia removal as well as membrane flux sustainability. 1g/L PAC-MBR exhibited a marginal improvement in pollutant removal compared to the non-PAC system. The accumulation of organic matter in the bulk mixture of 3g/L PAC-MBR led to poorer organic removal and severer membrane fouling. Molecular weight distribution of the bulk liquid in 2g/L PAC-MBR revealed the synergistic effects of PAC adsorption/biodegradation and membrane rejection on organic matter removal. Additionally, a lower amount of soluble extracellular polymer substances in the bulk can be secured in 21 days operation. PMID:24412856

  17. Bag Bioreactor Based on Wave-Induced Motion: Characteristics and Applications

    NASA Astrophysics Data System (ADS)

    Eibl, Regine; Werner, Sören; Eibl, Dieter

    Today wave-mixed bag bioreactors are common devices in modern biotechnological processes where simple, safe and flexible production has top priority. Numerous studies that have been published on ex vivo generation of cells, viruses and therapeutic agents during the last 10 years have confirmed their suitability and even superiority to stirred bioreactors made from glass or stainless steel for animal as well as plant cell cultivations. In these studies the wave-mixed bag bioreactors enabled middle to high cell density and adequate productivity in laboratory and pilot scale. This mainly results from low-shear conditions and highly efficient oxygen transfer for cell cultures, as demonstrated for the widely used BioWave®.Starting with an overview of wave-mixed bag bioreactors and their common operation strategies, this chapter delineates engineering aspects of BioWave®, which like Wave Reactor™ and BIOSTAT®CultiBag RM originates from the prototype of a wave-mixed bag bioreactor introduced in 1998. Subsequently, the second part of the chapter focuses on reported BioWave® applications. Conditions and results from cultivations with animal cells, plant cells, microbial cells and nematodes are presented and discussed.

  18. EVALUATION OF SOLIDS DEWATERING FOR A PILOT-SCALE THIOSORBIC LIME SO2 SCRUBBER

    EPA Science Inventory

    The paper gives results of an evaluation of solids dewatering for a pilot-scale thiosorbic lime SO2 scrubber. Pilot plant data showed that the dissolved magnesium in thiosorbic lime caused deterioration of solids dewatering properties. The slurry settling rate increased when the ...

  19. APPLYING FABRIC FILTRATION TO REFUSE-FIRED BOILERS: A PILOT-SCALE INVESTIGATION

    EPA Science Inventory

    The report gives results of a pilot-scale investigation to determine the techno-economic feasibility of applying fabric filter dust collectors to solid refuse fired boilers. The pilot facility, installed on a slipstream of a 135,000 lb/hr boiler, was sized to handle 9000 acfm at ...

  20. Scale-up of osmotic membrane bioreactors by modeling salt accumulation and draw solution dilution using hollow-fiber membrane characteristics and operation conditions.

    PubMed

    Kim, Suhan

    2014-08-01

    A full-scale osmotic membrane bioreactor (OMBR) model was developed to simulate salt accumulation, draw solution (DS) dilution, and water flux over the hollow-fiber membrane length. The model uses the OMBR design parameters, DS properties, and forward osmosis (FO) membrane characteristics obtained from lab-scale tests. The modeling results revealed a tremendous water flux decline (10?0.82LMH) and short solids retention time (SRT: 5days) due to salt accumulation and DS dilution when OMBR is scaled up using commercially available DS and FO membrane. Simulated water flux is a result of interplay among reverse salt flux, internal and external concentration polarization (ICP and ECP). ECP adversely impacts water flux considerably in full-scale OMBR although it is often ignored in previous works. The OMBR model makes it possible to select better DS properties (higher flow rate and salt concentration) and FO membranes with higher water flux propensity in full-scale operation. PMID:24746768

  1. Glycerol production by anaerobic fermentation of molasses on pilot scale

    SciTech Connect

    Virkar, P.D.; Panesar, M.S.

    1987-04-20

    The use of sodium sulphite as a steering agent for enhancing the yield of glycerol during anaerobic ethanol fermentation is well established. Several studies have been reported in the literature using free as well as immobilized cells of Saccharomyces cerevisiae. In these studies it was observed that a relatively high concentration of sulphite in the fermentation broth, typically 40-100 g/l, was required to obtain a commercially significant yield of glycerol on sugar fermented. However, the dosing of large quantities of sulphite generally resulted in reduced viability of the microorganisms and slow fermentations. The glycerol concentration in the fermented broth was generally observed to be in the range 20-40 g/l. The low productivity coupled with the high cost of sulfite rendered the process commercially unattractive. In order to reduce the sulphite requirement, whilst at the same time increasing the productivity, a modified vacuum fermentation was developed in the laboratories. The process was successfully estabilished on a pilot scale and typical data obtained on scaleup are reported below. 8 references.

  2. Riverbank filtration: comparison of pilot scale transport with theory.

    PubMed

    Gupta, Vishal; Johnson, W P; Shafieian, P; Ryu, H; Alum, A; Abbaszadegan, M; Hubbs, S A; Rauch-Williams, T

    2009-02-01

    Pilot-scale column experiments were conducted in this study using natural soil and river water from Ohio river to assess the removal of microbes of size ranging over 2 orders of magnitude, i.e., viruses (0.025-0.065 microm), bacteria (1-2 microm), and Cryptosporidium parvum oocysts (4-7 microm) under conditions representing normal operation and flood scour events. Among these different organisms, the bacterial indicators were transported over the longest distances and highest concentrations; whereas much greater retention was observed for smaller (i.e., viral indicators) and larger (i.e., Cryptosporidium parvum oocysts) microbes. These results are in qualitative agreement with colloid filtration theory (CFT) which predicts the least removal for micrometer size colloids, suggesting that the respective sizes of the organisms was a dominant control on their transport despite expected differences in their surface characteristics. Increased fluid velocity coupled with decreased ionic strength (representative of major flood events) decreased colloid retention, also in qualitative agreement with CFT. The retention of organisms occurred disproportionately near the source relative to the log-linear expectations of CFT, and this was true both in the presence and absence of a colmation zone, suggesting that microbial removal by the RBF system is not necessarily vulnerable to flood scour of the colmation zone. PMID:19245000

  3. Supervisory control of a pilot-scale cooling loop

    SciTech Connect

    Kris Villez; Venkat Venkatasubramanian; Humberto Garcia

    2011-08-01

    We combine a previously developed strategy for Fault Detection and Identification (FDI) with a supervisory controller in closed loop. The combined method is applied to a model of a pilot-scale cooling loop of a nuclear plant, which includes Kalman filters and a model-based predictive controller as part of normal operation. The system has two valves available for flow control meaning that some redundancy is available. The FDI method is based on likelihood ratios for different fault scenarios which in turn are derived from the application of the Kalman filter. A previously introduced extension of the FDI method is used here to enable detection and identification of non-linear faults like stuck valve problems and proper accounting of the time of fault introduction. The supervisory control system is designed so to take different kinds of actions depending on the status of the fault diagnosis task and on the type of identified fault once diagnosis is complete. Some faults, like sensor bias and drift, are parametric in nature and can be adjusted without need for reconfiguration of the regulatory control system. Other faults, like a stuck valve problem, require reconfiguration of the regulatory control system. The whole strategy is demonstrated for several scenarios.

  4. Pilot-scale LIDS demonstration. Final report No. 3

    SciTech Connect

    Amrhein, G.T.

    1991-08-09

    This paper describes the results of a pilot-scale demonstration of the LIDS process sponsored by the Ohio Coal Development office (OCDO) and Babcock & Wilcox (B&W)- LIDS (Limestone Injection with Dry Scrubbing) combines the technologies of furnace sorbent injection and dry scrubbing. The result is a reduction of reagent costs and an increase in sorbent utilization and S0{sub 2} removal beyond what is possible if the technologies are used separately. Furnace sorbent injection using limestone is only capable of about 30% S0{sub 2} reduction and so has limited application. Dry scrubbing is capable of achieving high levels Of S0{sub 2} removal using expensive pebble lime as the sorbent, but is limited by stoichiometry (Ca/S) to use on low sulfur coal. By combining dry scrubbing with furnace sorbent injection, limestone can be used as the reagent and the process is applicable to higher sulfur coals. This is possible because: (1) the reaction that occurs during furnace injection significantly reduces the S0{sub 2} concentration entering the dry scrubber, and (2) the unused limestone from furnace injection is calcined to lime and makes an excellent dry scrubbing reagent. The project successfully demonstrated that LIDS is a viable, low-cost option for controlling SO{sub 2} emissions from coal-fired utility boilers.

  5. Lightweight alumina refractory aggregate. Phase 2, Pilot scale development

    SciTech Connect

    Swansiger, T.G.; Pearson, A.

    1994-11-01

    Kilogram quantities of refractory aggregate were prepared from both a paste and a pelletized form of extruder feed material in both bench and pilot-scale equipment. The 99{sup +} % alumina aggregate exhibited a bulk density approaching 2.5 g/cm{sup 3} and a fired strength slightly lower than fused alumina. Based on initial evaluation by two refractory manufacturers in brick or castable applications, the new aggregate offered adequate strength with thermal conductivity reductions up to 34%, depending on the temperature and application of the new aggregate in these initial trials. The new aggregate was simply substituted for Tabular{trademark} in the refractory formulation. Thus, there is room for improvement through formulation optimization with the lightweight aggregate. The new aggregate offers a unique combination of density, strength, and thermal properties not available in current aggregate. To this point in time, technical development has led to a pelletized formulation with borderline physical form leaving the Eirich mixer. The formulation requires further development to provide more latitude for the production of pelletized material without forming paste, while still reducing the bulk density slightly to reach the 2.5 g/cm{sup 3} target. The preferred, pelletized process flowsheet was outlined and a preliminary economic feasibility study performed based on a process retrofit into Alcoa`s Arkansas tabular production facilities. Based on an assumed market demand of 20,000 mt/year and an assumed selling price of $0.65/lb (25% more than the current selling price of Tabular{trademark}, on a volume basis), economics were favorable. Decision on whether to proceed into Phase 3 (full- scale demonstration) will be based on a formal market survey in 1994 October.

  6. PILOT-SCALE STUDIES ON THE INCINERATION OF ELECTRONICS INDUSTRY WASTE

    EPA Science Inventory

    The paper describes experiments performed on a pilot-scale rotary kiln incinerator to investigate the emissions and operational behavior during the incineration of consumer electronics waste. These experiments were targeted at destroying the organic components of printed circuit ...

  7. CHLORINE DECAY AND BIOFILM STUDIES IN A PILOT SCALE DRINKING WATER DISTRIBUTION DEAD END PIPE SYSTEM

    EPA Science Inventory

    Chlorine decay experiments using a pilot-scale water distribution dead end pipe system were conducted to define relationships between chlorine decay and environmental factors. These included flow rate, biomass concentration and biofilm density, and initial chlorine concentrations...

  8. NOX REMOVAL WITH COMBINED SELECTIVE CATALYTIC REDUCTION AND SELECTIVE NONCATALYTIC REDUCTION: PILOT- SCALE TEST RESULTS

    EPA Science Inventory

    Pilot-scale tests were conducted to develop a combined nitrogen oxide (NOx) reduction technology using both selective catalytic reduction (SCR) and selective noncatalytic reduction (SNCR). A commercially available vanadium-and titatnium-based composite honeycomb catalyst and enh...

  9. Separation of Corn Fiber and Conversion to Fuels and Chemicals: Pilot-Scale Operation

    SciTech Connect

    2006-04-01

    This project focuses on the development and pilot-scale testing of technologies that will enable the development of a biorefinery capable of economically deriving high-value chemicals and oils from lower value corn fiber.

  10. Pilot scale experiment with MBR operated in intermittent aeration condition: analysis of biological performance.

    PubMed

    Capodici, M; Di Bella, G; Di Trapani, D; Torregrossa, M

    2015-02-01

    The effect of intermittent aeration (IA) on a MBR system was investigated. The study was aimed at analyzing different working conditions and the influence of different IA cycles on the biological performance of the MBR pilot plant, in terms of organic carbon and ammonium removal as well as extracellular polymeric substances (EPSs) production. The membrane modules were placed in a separate compartment, continuously aerated. This configuration allowed to disconnect from the filtration stage the biological phenomena occurring into the IA bioreactor. The observed results highlighted good efficiencies, in terms of organic carbon and ammonium removal. It was noticed a significant soluble microbial products (SMPs) release, likely related to the higher metabolic stress that anoxic conditions exerted on the biomass. However, the proposed configuration, with the membranes in a separate compartment, allowed to reduce the EPSs in the membrane tank even during the non-aerated phase, thus lowering fouling development. PMID:25483989

  11. Pilot-Scale Fermentation and Laboratory Nutrient Studies on Mixed-Acid Fermentation 

    E-print Network

    Smith, Aaron Douglas

    2011-08-08

    -1 PILOT-SCALE FERMENTATION AND LABORATORY NUTRIENT STUDIES ON MIXED-ACID FERMENTATION A Dissertation by AARON DOUGLAS SMITH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of DOCTOR OF PHILOSOPHY May 2011 Major Subject: Chemical Engineering PILOT-SCALE FERMENTATION AND LABORATORY NUTRIENT STUDIES ON MIXED-ACID FERMENTATION A Dissertation by AARON DOUGLAS SMITH Submitted...

  12. Rotary kiln incineration. Comparison and scaling of field-scale and pilot scale contaminant evolution rates from sorbent beds

    SciTech Connect

    Lester, T.W.; Cundy, V.A; Sterling, A.M.; Montestruc, A.N.; Jakway, A.L.; Chao Lu; Leger, C.B. ); Pershing, D.W.; Lighty, J.S.; Silcox, G.D.; Owens, W.D. )

    1991-06-01

    A comparison is made, for the first time, between the evolution of hydrocarbons from clay sorbent beds in a field-scale rotary kiln incinerator and in a pilot-scale rotary kiln simulator. To relate the data from the different sized units, due allowance is made for bed dynamical similitude, bed geometrical factors, and bed heat-up. To minimize the effects of disturbances caused by foreign matter in the field-scale bed and differences in loading techniques, the rate of evolution is characterized by an evolution interval defined as the time required for the middle 80% of the ultimate contaminant evolution to occur. A comparison of evolution intervals with reciprocal bed temperature reveals that the data are consistent with an analysis that assumes a uniform bed temperature (at any instant of time) and a desorption-controlled evolution rate. Furthermore, the evolution intervals scale inversely with a modified Froude number, which characterizes bed dynamics. The success in comparing field and simulator results indicates that pilot-scale rotary kilns may be used to simulate certain features of industrial-scale units if dynamical, geometrical, and thermal parameters are matched appropriately.

  13. Summary of Pilot-Scale Activities with Mercury Contaminated Sludges (U)

    SciTech Connect

    Cicero, C.A.; Hutson, N.D.; Zamecnik, J.R.; Smith, M.E.; Miller, D. H.; Ritter, J.A.; Hardy, B.J.; Jantzen, C.M.

    1995-10-02

    Technologies for treatment of low level mixed wastes (LLMW) are currently being investigated by the Mixed Waste Focus Area (MWFA) of the Department of Energy (DOE). The Savannah River Technology Center (SRTC) has been chartered by the MWFA to study vitrification treatment of the wastes through an Office of Technology Development (OTD) Technical Task Plan (TTP). SRTC`s efforts have included crucible-scale studies and pilot-scale testing on simulated LLMW sludges, resins, soils, and other solid wastes. Results from the crucible-scale studies have been used as the basis for the pilot-scale demonstrations. One of the streams to be investigated in fiscal year (FY) 1995 by SRTC was a mercury waste. In FY 1995, SRTC performed crucible-scale studies with mercury contaminated soil. This waste stream was selected because of the large number of DOE sites that have an inventory of contaminated or hazardous soil. More importantly, it was readily available for treatment. Pilot-scale studies were to be completed in FY 1995, but could not be completed due to a reduction in funding. Since the main driver for focusing on a mercury waste stream was to determine how the mercury could be treated, a compilation of pilot-scale tests with mercury sludges performed under the guidance of SRTC is provided in this report. The studies summarized in this report include several pilot-scale vitrification demonstrations with simulated radioactive sludges that contained mercury. The pilot-scale studies were performed at the SRTC in the Integrated Defense Waste Processing Facility (DWPF) Melter System (IDMS). The studies involved complete glass and offgas product characterization. Future pilot-scale studies with mercury streams will likely be performed with mercury contaminated soils, sediments, or sludges because of the need to dispose of this technically challenging waste stream. (Abstract Truncated)

  14. A pilot-scale radioactive test using in situ vitrification

    SciTech Connect

    Timmerman, C.L.; Oma, K.M.

    1985-11-01

    Pacific Northwest Laboratory is developing in situ vitrification (ISV) as a potential remedial action technique for previously disposed radioactive liquid drain sites. The process melts the contaminated soil to produce a durable glass and crystalline waste form and encapsulates the radionuclides. The development of this alternative technology is being performed for the US Department of Energy. The results of an ISV pilot-scale test conducted in June 1983 are discussed in which soils contaminated with actual radioactive transuranic and mixed fission product elements were vitrified. The test successfully demonstrated the containment of radionuclides during processing, both within the vitrified mass and in the off-gas system. No environmental release of radioactive material was detectable during testing operations. The vitrified soil retained >99% of all radionuclides. Losses to the offgas system varied from less than or equal to 0.03% for particulate materials (plutonium and strontium) to 0.8% for cesium, which is a more volatile element. The off-gas system effectively contained both volatile and entrained radioactive materials. Analysis of the vitrified soil revealed that all radionuclides were distributed throughout the vitrified zone, some more uniformly than others. Analysis of soil samples taken adjacent to the block indicated that no migration of radionuclides outside the vitrification zone occurred. Leaching studies have shown that the ISV process generates a highly durable waste form, comparable to Pyrex and granite. Based on geologic data from the hydration of obsidian, which is chemically similar to the ISV glass, the hydration or weathering rate is predicted to be much less than 1 mm in 10,000 yr.

  15. Anammox: an option for ammonium removal in bioreactor landfills.

    PubMed

    Valencia, Roberto; Zon, Willem van der; Woelders, Hans; Lubberding, Henk J; Gijzen, Huub J

    2011-11-01

    Experiments carried out in bioreactor landfill simulators demonstrated that more than 40% of the total N was transferred into the liquid and gas phases during the incubation period of 380 days. Ammonium, an end product of protein degradation and important parameter to consider during landfill closure, tends to accumulate up to inhibitory levels in the leachate of landfills especially in landfills with leachate recirculation. Most efforts to remove ammonium from leachate have been focused on ex situ and partial in situ methods such as nitrification, denitrification and chemical precipitation. Besides minimal contributions from other N-removal processes, Anammox (Anaerobic Ammonium Oxidation) bacteria were found to be active within the simulators. Anammox is considered to be an important contributor to remove N from the solid matrix. However, it was unclear how the necessary nitrite for Anammox metabolism was produced. Moreover, little is known about the nature of residual nitrogen in the waste mass and possible mechanisms to remove it. Intrusion of small quantities of O2 is not only beneficial for the degradation process of municipal solid waste (MSW) in bioreactor landfills but also significant for the development of the Anammox bacteria that contributed to the removal of ammonium. Volatilisation and Anammox activity were the main N removal mechanisms in these pilot-scale simulators. The results of these experiments bring new insights on the behaviour, evolution and fate of nitrogen from solid waste and present the first evidence of the existence of Anammox activity in bioreactor landfill simulators. PMID:21795036

  16. Cr(VI) and COD removal from landfill leachate by polyculture constructed wetland at a pilot scale.

    PubMed

    Madera-Parra, C A; Peña, M R; Peña, E J; Lens, P N L

    2015-09-01

    Four subsurface horizontal-flow constructed wetlands (CWs) at a pilot scale planted with a polyculture of the tropical plants Gynerium sagittatum (Gs), Colocasia esculenta (Ce) and Heliconia psittacorum (He) were evaluated for 7 months. The CW cells with an area of 17.94 m(2) and 0.60 m (h) each and 0.5 m of gravel were operated at continuous gravity flow (Q?=?0.5 m(3) day(-1)) and a theoretical HRT of 7 days each and treating landfill leachate for the removal of filtered chemical oxygen demand (CODf), BOD5, TKN, NH4 (+), NO3 (-), PO4 (3-)-P and Cr(VI). Three CWs were divided into three sections, and each section (5.98 m(2)) was seeded with 36 cuttings of each species (plant density of six cuttings per square metre). The other unit was planted randomly. The final distributions of plants in the bioreactors were as follows: CW I (He-Ce-Gs), CW II (randomly), CW III (Ce-Gs-He) and CW IV (Gs-He-Ce). The units received effluent from a high-rate anaerobic pond (BLAAT®). The results show a slightly alkaline and anoxic environment in the solid-liquid matrix (pH?=?8.0; 0.5-2 mg L(-1) dissolved oxygen (DO)). CODf removal was 67 %, BOD5 80 %, and TKN and NH4 (+) 50-57 %; NO3 (-) effluents were slightly higher than the influent, PO4 (3-)-P (38 %) and Cr(VI) between 50 and 58 %. CW IV gave the best performance, indicating that plant distribution may affect the removal capacity of the bioreactors. He and Gs were the plants exhibiting a translocation factor (TF) of Cr(VI) >1. The evaluated plants demonstrated their suitability for phytoremediation of landfill leachate, and all of them can be categorized as Cr(VI) accumulators. The CWs also showed that they could be a low-cost operation as a secondary system for treatment of intermediated landfill leachate (LL). PMID:25253061

  17. Optimization of process parameters for pilot-scale liquid-state bioconversion of sewage sludge by mixed fungal inoculation.

    PubMed

    Rahman, Roshanida A; Molla, Abul Hossain; Barghash, Hind F A; Fakhru'l-Razi, Ahmadun

    2016-01-01

    Liquid-state bioconversion (LSB) technique has great potential for application in bioremediation of sewage sludge. The purpose of this study is to determine the optimum level of LSB process of sewage sludge treatment by mixed fungal (Aspergillus niger and Penicillium corylophilum) inoculation in a pilot-scale bioreactor. The optimization of process factors was investigated using response surface methodology based on Box-Behnken design considering hydraulic retention time (HRT) and substrate influent concentration (S0) on nine responses for optimizing and fitted to the regression model. The optimum region was successfully depicted by optimized conditions, which was identified as the best fit for convenient multiple responses. The results from process verification were in close agreement with those obtained through predictions. Considering five runs of different conditions of HRT (low, medium and high 3.62, 6.13 and 8.27 days, respectively) with the range of S0 value (the highest 12.56 and the lowest 7.85?g?L(-1)), it was monitored as the lower HRT was considered as the best option because it required minimum days of treatment than the others with influent concentration around 10?g?L(-1). Therefore, optimum process factors of 3.62 days for HRT and 10.12?g?L(-1) for S0 were identified as the best fit for LSB process and its performance was deviated by less than 5% in most of the cases compared to the predicted values. The recorded optimized results address a dynamic development in commercial-scale biological treatment of wastewater for safe and environment-friendly disposal in near future. PMID:26111620

  18. Fermentation Bench-scale to pilot-scale capabilities for the conversion of biomass to sugars, fuels, and chemicals

    E-print Network

    Fermentation Bench-scale to pilot-scale capabilities for the conversion of biomass to sugars, fuels 40 30 20 10 0 Concentration(g/L) 0 2 4 6 Time (days) Fermentation applications · Enzymatic hydrolysis and fermentation testing - Different enzyme mixtures - Pretreated lignocellulosic feedstocks at low and high solids

  19. Modeling of Pilot-Scale Salt-cake Dissolution

    SciTech Connect

    Toghiani, R.K.; Smith, L.T.; Lindner, J.S.; Tachiev, G.I.; Yaari, G.

    2006-07-01

    Large portions of the high-level waste present at the Hanford Site and Savannah River Site are comprised of porous salts with associated interstitial liquors. Various processes have been proposed wherein the aqueous phase is removed followed by dissolution of the salt with further mixing or blending of the resulting stream in a receiver tank. This leads to a large reduction in the radioactivity for the dissolved salt-cake; however, the interstitial retrieval process is hindered by capillary forces within the salt-cake pores and large aqueous phase fractions may remain. Thus, the interim stabilized or low-curie salt processes may have less separation effectiveness than desired. In addition, based on the initial extent of pretreatment of the waste, the salt-cake may be either unsaturated or hydraulically saturated. Different interactions are expected based on the contact of the diluent with the salt and/or on mixing the diluent with the salt and some fraction of interstitial liquid. The initial approximation is that the dissolution is governed by the associated thermodynamics of the system. This may be correct assuming sufficient time for contact between the salt and diluent has occurred. Pilot-scale simulant salt-cake dissolution experiments have been conducted by the Applied Research Center (ARC) at Florida International University. As part of a companion program, these experiments have been modeled at the Diagnostic Instrumentation and Analysis Laboratory (DIAL, Mississippi State University) using the Environmental Simulation Program (ESP, OLI Systems, Inc.). Hanford simulant compositions were examined under unsaturated and saturated conditions. To account for channeling that occurred during the unsaturated experiment, additional operations were required for the process flowsheet. Direct modeling of the saturated bed was possible without this consideration. The results have impacts on the salt-cake retrieval process. First, depending on the extent of interstitial liquid contained in the waste, recycling may be necessary; removal of the resulting aqueous stream at the largest specific gravity consistent with the operating safety basis ensures productive use of water. Secondly, direct modeling of a given waste dissolution must consider variations in the extent of channeling such that limits can be established on anticipated concentrations expected during the course of the retrieval. Finally, the ability to account for heterogeneous dissolution has been accounted for. Details regarding the development of the modeling strategy as well as knowledge gained regarding flowsheet development are provided. (authors)

  20. FOAM FLOTATION TREATMENT OF INDUSTRIAL WASTEWATERS: LABORATORY AND PILOT SCALE

    EPA Science Inventory

    A floc foam flotation pilot plant reduced lead and zinc in dilute solution to very low concentrations. The results suggest a number of design improvements. A simple diffusion model does not adequately describe axial dispersion at high column leadings. The floc foam flotation of z...

  1. Oscillating Cell Culture Bioreactor

    NASA Technical Reports Server (NTRS)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid dynamic shear (i.e., as required for viability of shear-sensitive cells) to the developing engineered tissue construct. This bioreactor was recently utilized to show independent and interactive effects of a growth factor (IGF-I) and slow bidirectional perfusion on the survival, differentiation, and contractile performance of 3D tissue engineering cardiac constructs. The main application of this system is within the tissue engineering industry. The ideal final application is within the automated mass production of tissue- engineered constructs. Target industries could be both life sciences companies as well as bioreactor device producing companies.

  2. Swine manure-based pilot-scale algal biomass production system for fuel production and wastewater treatment--a case study.

    PubMed

    Min, Min; Hu, Bing; Mohr, Michael J; Shi, Aimin; Ding, Jinfeng; Sun, Yong; Jiang, Yongcheng; Fu, Zongqiang; Griffith, Richard; Hussain, Fida; Mu, Dongyan; Nie, Yong; Chen, Paul; Zhou, Wenguang; Ruan, Roger

    2014-02-01

    Integration of wastewater treatment with algae cultivation is one of the promising ways to achieve an economically viable and environmentally sustainable algal biofuel production on a commercial scale. This study focused on pilot-scale algal biomass production system development, cultivation process optimization, and integration with swine manure wastewater treatment. The areal algal biomass productivity for the cultivation system that we developed ranged from 8.08 to 14.59 and 19.15-23.19 g/m(2) × day, based on ash-free dry weight and total suspended solid (TSS), respectively, which were higher than or comparable with those in literature. The harvested algal biomass had lipid content about 1.77-3.55%, which was relatively low, but could be converted to bio-oil via fast microwave-assisted pyrolysis system developed in our lab. The lipids in the harvested algal biomass had a significantly higher percentage of total unsaturated fatty acids than those grown in lab conditions, which may be attributed to the observed temperature and light fluctuations. The nutrient removal rate was highly correlated to the biomass productivity. The NH?-N, TN, COD, and PO?-P reduction rates for the north-located photo-bioreactor (PBR-N) in July were 2.65, 3.19, 7.21, and 0.067 g/m(2) × day, respectively, which were higher than those in other studies. The cultivation system had advantages of high mixotrophic growth rate, low operating cost, as well as reduced land footprint due to the stacked-tray bioreactor design used in the study. PMID:24203276

  3. PILOT SCALE PROCESS EVALUATION OF REBURNING FOR IN-FURNACE NOX REDUCTION

    EPA Science Inventory

    The report gives results of coal and natural gas reburning application tests to a pilot scale 3.0 MWt furnace to provide the scaling information required for commercial application of reburning to pulverized-coal-fired boilers. Initial parametric studies had been conducted in a 2...

  4. PILOT-SCALE INVESTIGATION OF CLOSED-LOOP FLY ASH SLUICING. VOLUME 1. FINAL REPORT

    EPA Science Inventory

    The report gives results of a pilot-scale demonstration of the technical feasibility of closed-loop operation of fly ash sluicing systems. Chemical species leached from the ash increase the dissolved solids concentration of recycled sluice water to a point where equipment scaling...

  5. PILOT-SCALE INVESTIGATION OF CLOSED-LOOP FLY ASH SLUICING. VOLUME 2. APPENDICES

    EPA Science Inventory

    The report gives results of a pilot-scale demonstration of the technical feasibility of closed-loop operation of fly ash sluicing systems. Chemical species leached from the ash increase the dissolved solids concentration of recycled sluice water to a point where equipment scaling...

  6. SUPERFUND TREATABILITY CLEARINGHOUSE: BENGART AND MEMEL (BENCH-SCALE), GULFPORT (BENCH AND PILOT-SCALE), MONTANA POLE (BENCH-SCALE), AND WESTERN PROCESSING (BENCH-SCALE) TREATABILITY STUDIES

    EPA Science Inventory

    This document presents summary data on the results of various treatability studies (bench and pilot scale), conducted at three different sites where soils were contaminated with dioxins or PCBs. The synopsis is meant to show rough performance levels under a variety of differen...

  7. Virus removal retention challenge tests performed at lab scale and pilot scale during operation of membrane units.

    PubMed

    Humbert, H; Machinal, C; Labaye, Ivan; Schrotter, J C

    2011-01-01

    The determination of the virus retention capabilities of UF units during operation is essential for the operators of drinking water treatment facilities in order to guarantee an efficient and stable removal of viruses through time. In previous studies, an effective method (MS2-phage challenge tests) was developed by the Water Research Center of Veolia Environnement for the measurement of the virus retention rates (Log Removal Rate, LRV) of commercially available hollow fiber membranes at lab scale. In the present work, the protocol for monitoring membrane performance was transferred from lab scale to pilot scale. Membrane performances were evaluated during pilot trial and compared to the results obtained at lab scale with fibers taken from the pilot plant modules. PFU culture method was compared to RT-PCR method for the calculation of LRV in both cases. Preliminary tests at lab scale showed that both methods can be used interchangeably. For tests conducted on virgin membrane, a good consistency was observed between lab and pilot scale results with the two analytical methods used. This work intends to show that a reliable determination of the membranes performances based on RT-PCR analytical method can be achieved during the operation of the UF units. PMID:21252428

  8. Summary of pilot-scale activities with resorcinol ion exchange resin

    SciTech Connect

    Cicero, C.A.; Bickford, D.F.; Sargent, T.N.; Andrews, M.K.; Bibler, J.P.; Bibler, N.E.; Jantzen, C.M.

    1995-10-02

    The Mixed Waste Focus Area (MWFA) of the Department of Energy (DOE) is currently investigating vitrification technology for treatment of low level mixed wastes (LLMW). They have chartered the Savannah River Technology Center (SRTC) to study vitrification of the wastes through an Office of Technology Development (OTD) Technical Task Plan (TTP). SRTC`s efforts have included crucible-scale studies and pilot scale testing on simulated LLMW sludges, resins, soils, and other solid wastes. Results from the crucible-scale studies have been used as the basis for the pilot-scale demonstrations. As part of the fiscal year (FY) 1995 activities, SRTC performed crucible-scale studies with organic resins. This waste stream was selected because of the large number of DOE sites, as well as commercial industries, that use resins for treatment of liquid wastes. Pilot-scale studies were to be completed in FY 1995, but could not be due to a reduction in funding. Instead, a compilation of pilot-scale tests with organic resins performed under the guidance of SRTC was provided in this report. The studies which will be discussed used a resorcinol- formaldehyde resin loaded with non-radioactive cesium, which was fed with simulated wastewater treatment sludge feed. The first study was performed at the SRTC in the mini-melter, 1/100th scale of the Defense Waste Processing Facility (DWPF) melter, and also involved limited crucible-scale studies to determine the resin loading obtainable. The other study was performed at the DOE/Industrial Center for Vitrification Research (Center) and involved both crucible and pilot-scale testing in the Stir-Melter stirred-melter. Both studies were successful in vitrifying the resin in simulated radioactive sludge and glass additive feeds.

  9. High-solids anaerobic digestion: comparison of three pilot scales.

    PubMed

    Guendouz, J; Buffière, P; Cacho, J; Carrère, M; Delgenes, J-P

    2008-01-01

    Two experiments were undertaken in three different experimental set-ups in order to compare them: an industrial 21-m3 pilot reactor, a new 40-l laboratory pilot reactor and bmp type plasma bottles. Three consecutive batch dry digestion tests of municipal solid waste were performed under mesophilic conditions with the same feedstock in all vessels. Biogas and methane production at the end of the tests were similar (around 200 m3 CH4STP/tVS) for both pilot reactors and were different from the bottle tests. The dynamics of methane production and VFA accumulation concurred. However, the maximal levels of VFA transitory accumulation varied between reactors and between runs in a same reactor. Ammonia levels were similar in both reactors. These results show that the new reactor accurately imitates the conditions found in the larger one. Adaptation of microorganisms to the waste and operating conditions was also pointed out along the consecutive batches. Thermophilic semi-continuous tests were performed in both reactors with similar conditions. The methane production efficiencies were similar. PMID:19029716

  10. Influence of alterations in culture condition and changes in perfusion parameters on the retention performance of a 20 mum spinfilter during a perfusion cultivation of a recombinant CHO cell line in pilot scale.

    PubMed

    Iding, K; Lütkemeyer, D; Fraune, E; Gerlach, K; Lehmann, J

    2000-10-01

    Since 1969 much attention has been devoted to the useof spinfilter systems for retention of mammalian cellsin continuous perfusion cultivations. Previousinvestigations dealt with hydrodynamic conditions,fouling processes and upscaling. But hydrodynamicconditions and fouling processes seem to have asecondary importance in spinfilter performance duringauthentic perfusion cultivations. Obviously,alterations in culture condition are more relevantespecially during long-term processes. Therefore, ourpratical approach focussed on the performance qualityof a commercially available 20 mum spinfilterduring a perfusion cultivation of a recombinant CHOcell line in pilot scale regarding the followingissues: 1) retention of viable cells in thebioreactor; 2) removal of dead cells and cell debrisfrom the bioreactor; 3) alterations in culturecondition; and 4) changes in perfusion mode.Furthermore, we tested the performance of 20 mumspinfilters in 2 and 100 l pilot scale using solidmodel particles instead of cells. Our investigationsshowed that retention of viable cells in pilot scalewas independent of spinfilter rotation velocity andperfusion rate; the retention increased from 75 to 95%corresponding to operation time, enlarging celldiameter and enhanced formation of aggregates in theculture during the perfusion cultivation. By means ofthe Cell Counter and Analyzer System (CASY) anoperation cut off of 13 mum was determined forthis spinfilter. Using solid model particles in 2 lscale, optimal retention was achieved at a tip speedof 0.43 m s(-1) (141 rpm) - furtherenhancement of spinfilter rotation velocity up to0.56 m s(-1) (185 rpm) decreased the retentionrapidly. In pilot scale best retention performance wasobtained with tip speeds of 0.37 m s(-1)(35 rpm) and 1.26 m s(-1) (120 rpm). Hence,significant retention in pilot scale could already beachieved with low agitation. Therefore, the additionof shear force protectives could be avoided so thatthe purification of the target protein from thesupernatant would be facilitated. PMID:19003388

  11. Bio-reactor chamber

    NASA Technical Reports Server (NTRS)

    Chandler, Joseph A. (inventor)

    1989-01-01

    A bioreactor for cell culture is disclosed which provides for the introduction of fresh medium without excessive turbulent action. The fresh medium enters the bioreactor through a filter with a backwash action which prevents the cells from settling on the filter. The bioreactor is sealed and depleted medium is forced out of the container as fresh medium is added.

  12. Conceptual Design for the Pilot-Scale Plutonium Oxide Processing Unit in the Radiochemical Processing Laboratory

    SciTech Connect

    Lumetta, Gregg J.; Meier, David E.; Tingey, Joel M.; Casella, Amanda J.; Delegard, Calvin H.; Edwards, Matthew K.; Jones, Susan A.; Rapko, Brian M.

    2014-08-05

    This report describes a conceptual design for a pilot-scale capability to produce plutonium oxide for use as exercise and reference materials, and for use in identifying and validating nuclear forensics signatures associated with plutonium production. This capability is referred to as the Pilot-scale Plutonium oxide Processing Unit (P3U), and it will be located in the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory. The key unit operations are described, including plutonium dioxide (PuO2) dissolution, purification of the Pu by ion exchange, precipitation, and conversion to oxide by calcination.

  13. Nitrosamines in pilot-scale and full-scale wastewater treatment plants with ozonation.

    PubMed

    Gerrity, Daniel; Pisarenko, Aleksey N; Marti, Erica; Trenholm, Rebecca A; Gerringer, Fred; Reungoat, Julien; Dickenson, Eric

    2015-04-01

    Ozone-based treatment trains offer a sustainable option for potable reuse applications, but nitrosamine formation during ozonation poses a challenge for municipalities seeking to avoid reverse osmosis and high-dose ultraviolet (UV) irradiation. Six nitrosamines were monitored in full-scale and pilot-scale wastewater treatment trains. The primary focus was on eight treatment trains employing ozonation of secondary or tertiary wastewater effluents, but two treatment trains with chlorination or UV disinfection of tertiary wastewater effluent and another with full advanced treatment (i.e., reverse osmosis and advanced oxidation) were also included for comparison. N-nitrosodimethylamine (NDMA) and N-nitrosomorpholine (NMOR) were the most prevalent nitrosamines in untreated (up to 89 ng/L and 67 ng/L, respectively) and treated wastewater. N-nitrosomethylethylamine (NMEA) and N-nitrosodiethylamine (NDEA) were detected at one facility each, while N-nitrosodipropylamine (NDPrA) and N-nitrosodibutylamine (NDBA) were less than their method reporting limits (MRLs) in all samples. Ozone-induced NDMA formation ranging from <10 to 143 ng/L was observed at all but one site, but the reasons for the variation in formation remain unclear. Activated sludge, biological activated carbon (BAC), and UV photolysis were effective for NDMA mitigation. NMOR was also removed with activated sludge but did not form during ozonation. PMID:25037928

  14. REMOVAL OF METHYL T-BUTYL ETHER (MTBE) FROM WATER BY PERVAPORATION: BENCH-SCALE AND PILOT SCALE EVALUATIONS

    EPA Science Inventory

    The ability of pervaporation to remove methyl t-butyl ether (MTBE) from water was evaluated at bench- and pilot-scales. Process parameters studied included flow rate, temperature, MTBE concentration, membrane module type, and permeate pressure. Pervaporation performance was ass...

  15. Mercury Emissions Control in Coal Combustion Systems Using Potassium Iodide: Bench-Scale and Pilot-Scale Studies

    E-print Network

    Li, Ying

    Mercury Emissions Control in Coal Combustion Systems Using Potassium Iodide: Bench-Scale and Pilot Addition of halogens or halides has been reported to promote mercury removal in coal-fired power plants mercury in the gas phase upon introduction of KI, indicating that the oxidation product HgI2 was captured

  16. ON-SITE ENGINEERING REPORT OF THE SLURRY-PHASE BIOLOGICAL REACTOR FOR PILOT-SCALE TESTING ON CONTAMINATED SOIL

    EPA Science Inventory

    The performance of pilot-scale bioslurry treatment on creosote-contaminated soil was evaluated. ive reactors containing 66 L of slurry (30% soil by weight), were operated in parallel. he soil was a sandy soil with minor gravel content. he pilot-scale phase utilized an inoculum of...

  17. ON-SITE ENGINEERING REPORT OF THE SLURRY-PHASE BIOLOGICAL REACTOR FOR PILOT-SCALE TESTING ON CONTAMINATED SOIL

    EPA Science Inventory

    The performance of pilot-scale bioslurry treatment on creosote-contaminated soil was evaluated. Five reactors containing 66 L of slurry (30% soil by weight), were operated in parallel. The soil was a sandy soil with minor gravel content. The pilot-scale phase utilized an inoculum...

  18. PILOT-SCALE STUDIES ON THE EFFECT OF BROMINE ADDITION ON THE EMISSIONS OF CHLORINATED ORGANIC COMBUSTION BY-PRODUCTS

    EPA Science Inventory

    The paper reports on a study to evaluate organic combustion by-product emissions while feeding varying amounts of bromine (Br) and chlorine (Cl) into a pilot-scale incinerator burning surrogate waste materials. (NOTE: Adding brominated organic compounds to a pilot-scale incinerat...

  19. Measurement and Capture of Fine and Ultrafine Particles from a Pilot-Scale Pulverized Coal Combustor with an

    E-print Network

    Li, Ying

    Measurement and Capture of Fine and Ultrafine Particles from a Pilot-Scale Pulverized Coal out in a pilot-scale pulverized coal combustor at the Energy and Environmental Re- search Center (EERC) burning a Powder River Basin (PRB) subbituminous coal. A scanning mobility particle sizer (SMPS

  20. Complexity and Pilot Workload Metrics for the Evaluation of Adaptive Flight Controls on a Full Scale Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Hanson, Curt; Schaefer, Jacob; Burken, John J.; Larson, David; Johnson, Marcus

    2014-01-01

    Flight research has shown the effectiveness of adaptive flight controls for improving aircraft safety and performance in the presence of uncertainties. The National Aeronautics and Space Administration's (NASA)'s Integrated Resilient Aircraft Control (IRAC) project designed and conducted a series of flight experiments to study the impact of variations in adaptive controller design complexity on performance and handling qualities. A novel complexity metric was devised to compare the degrees of simplicity achieved in three variations of a model reference adaptive controller (MRAC) for NASA's F-18 (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) Full-Scale Advanced Systems Testbed (Gen-2A) aircraft. The complexity measures of these controllers are also compared to that of an earlier MRAC design for NASA's Intelligent Flight Control System (IFCS) project and flown on a highly modified F-15 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois). Pilot comments during the IRAC research flights pointed to the importance of workload on handling qualities ratings for failure and damage scenarios. Modifications to existing pilot aggressiveness and duty cycle metrics are presented and applied to the IRAC controllers. Finally, while adaptive controllers may alleviate the effects of failures or damage on an aircraft's handling qualities, they also have the potential to introduce annoying changes to the flight dynamics or to the operation of aircraft systems. A nuisance rating scale is presented for the categorization of nuisance side-effects of adaptive controllers.

  1. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Pilot-Scale Test Results

    SciTech Connect

    Gary M. Blythe

    2006-03-01

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, ''Field Testing of a Wet FGD Additive.'' The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemissions of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate that the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project will conduct pilot and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosage requirements to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB co-fired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot and full-scale jet bubbling reactor (JBR) FGD systems to be tested. A third utility, to be named later, will provide the high-sulfur Eastern bituminous coal full-scale FGD test site. Degussa Corporation is providing the TMT-15 additive and technical support to the test program. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High Sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. This topical report presents the results from the Task 2 and Task 4 pilot-scale additive tests. The Task 3 and Task 5 full-scale additive tests will be conducted later in calendar year 2006.

  2. A new computational control strategy for leachate management in bioreactor landfills.

    PubMed

    Abdallah, Mohamed; Kennedy, Kevin; Narbaitz, Roberto; Warith, Mostafa

    2014-01-01

    A novel computational measurement-based control strategy (CMCS) was developed to manage leachate recirculation based on monitoring ofkey system parameters. The proposed framework identifies the operational phase ofthe controlled bioreactor, and accordingly determines quantities ofleachate, buffer, supplemental water, and nutritional amendments required to provide the temporally changing landfill microbial consortia with their growth requirements. The CMCS was tested in a pilot-scale bioreactor cell (0.5 m3) for a period of nine months, and compared to a conventional open-loop leachate control scheme (fixed recirculation rate of produced leachate) in an identical cell. Overall, positive results confirmed the applicability and benefits of the control strategy to optimize the leachate recirculation and manipulation processes. Throughout the 21 operational cycles of the controlled bioreactor cell, the maximum specific daily recirculation volume (24 L/t/d) was sixfold the minimum volume determined. The amounts of inoculum/nutrient, buffer, and supplemental water were also computed cyclically, and ranged between 2% and 11%, 1% and 9%, and 3% and 16% of the total volume recycled, respectively. The recirculated volumes of leachate and other amendments were highly variable, and did not follow any predictable trends. In general, CMCS achieved proper control with a minimal use of resources, e.g. it utilized about 55% less buffer compared with the leachate neutralization practice commonly used in lab- and pilot-scale studies. The greater degradation rates of organic matter combined with relative increases in biogas production (1.7-fold greater) demonstrate that calculation-based recirculation stimulated the methanogenic activity and accelerated the bioreactor evolution. PMID:24600869

  3. Effect of high levels of the rotifer Lecane inermis on the ciliate community in laboratory-scale sequencing batch bioreactors (SBRs).

    PubMed

    Fyda, Janusz; Babko, Roman; Fia?kowska, Edyta; Pajdak-Stós, Agnieszka; Kocerba-Soroka, Wioleta; Sobczyk, Mateusz; Sobczyk, ?ukasz

    2015-10-01

    Due to its ability to feed on filamentous bacteria, the rotifer Lecane inermis has already been recognized as a potential control agent of activated sludge bulking, which is usually caused by the excessive growth of filamentous microorganisms. However, their effectiveness depends, in part, on their abundance. We studied the influence of high densities of L. inermis on the protozoan community in activated sludge from a wastewater treatment plant (WWTP) in 4 laboratory-scale sequencing batch bioreactors (SBRs). Two treatments and two controls were subjected to nutrient removal system in process similar to that used in a WWTP. The experiment lasted 9 days and was repeated in 24-h cycles, including phases of agitation with feeding, aeration and agitation and sedimentation with decantation at the end of the cycle. In total, 32 taxa were identified, among which 25 were ciliated protozoa, 4 were amoebae, 2 were flagellates, and one was a nematode. Rotifers were then introduced to 2 bioreactors at a final concentration of 500ind.mL(-1), and the taxonomic composition and abundance of the activated sludge microfauna were assessed 2, 5 and 8 days thereafter. The mean density of ciliates on the first day of experiment was 12,610ind.mL(-1) and diminished to 4868±432ind.mL-±432ind.mL(-1) in the control and 5496±638ind.mL(-1) in the rotifer-treated group on the last day. Thus, even extremely high densities of artificially introduced rotifers did not negatively affect the protozoan community. On the contrary, the protozoan community was more diverse in the treatment group than in the control. PMID:26465372

  4. Inactivated Enterovirus 71 Vaccine Produced by 200-L Scale Serum-Free Microcarrier Bioreactor System Provides Cross-Protective Efficacy in Human SCARB2 Transgenic Mouse

    PubMed Central

    Wu, Chia-Ying; Lin, Yi-Wen; Kuo, Chia-Ho; Liu, Wan-Hsin; Tai, Hsiu-Fen; Pan, Chien-Hung; Chen, Yung-Tsung; Hsiao, Pei-Wen; Chan, Chi-Hsien; Chang, Ching-Chuan; Liu, Chung-Cheng; Chow, Yen-Hung; Chen, Juine-Ruey

    2015-01-01

    Epidemics and outbreaks caused by infections of several subgenotypes of EV71 and other serotypes of coxsackie A viruses have raised serious public health concerns in the Asia-Pacific region. These concerns highlight the urgent need to develop a scalable manufacturing platform for producing an effective and sufficient quantity of vaccines against deadly enteroviruses. In this report, we present a platform for the large-scale production of a vaccine based on the inactivated EV71(E59-B4) virus. The viruses were produced in Vero cells in a 200 L bioreactor with serum-free medium, and the viral titer reached 107 TCID50/mL 10 days after infection when using an MOI of 10?4. The EV71 virus particles were harvested and purified by sucrose density gradient centrifugation. Fractions containing viral particles were pooled based on ELISA and SDS-PAGE. TEM was used to characterize the morphologies of the viral particles. To evaluate the cross-protective efficacy of the EV71 vaccine, the pooled antigens were combined with squalene-based adjuvant (AddaVAX) or aluminum phosphate (AlPO4) and tested in human SCARB2 transgenic (Tg) mice. The Tg mice immunized with either the AddaVAX- or AlPO4-adjuvanted EV71 vaccine were fully protected from challenges by the subgenotype C2 and C4 viruses, and surviving animals did not show any degree of neurological paralysis symptoms or muscle damage. Vaccine treatments significantly reduced virus antigen presented in the central nervous system of Tg mice and alleviated the virus-associated inflammatory response. These results strongly suggest that this preparation results in an efficacious vaccine and that the microcarrier/bioreactor platform offers a superior alternative to the previously described roller-bottle system. PMID:26287531

  5. PILOT-SCALE INCINERATION OF CONTAMINATED SOILS FROM THE DRAKE CHEMICAL SUPERFUND SITE

    EPA Science Inventory

    A series of pilot-scale incineration tests were performed at the U.S. Environmental Protection Agency's (EPA's) Incineration Research Facility to evaluate the potential of incineration as an option to treat contaminated soils from the Drake Chemical Superfund site in Lock Haven, ...

  6. REBURNING THERMAL AND CHEMICAL PROCESSES IN A TWO-DIMENSIONAL PILOT-SCALE SYSTEM

    EPA Science Inventory

    The paper describes an experimental investigation of the thermal and chemical processes influencing NOx reduction by natural gas reburning in a two-dimensional pilot-scale combustion system. Reburning effectiveness for initial NOx levels of 50-500 ppm and reburn stoichiometric ra...

  7. SHIRCO PILOT-SCALE INFRARED INCINERATION SYSTEM AT THE ROSE TOWNSHIP DEMODE ROAD SUPERFUND SITE

    EPA Science Inventory

    Under the Superfund Innovative Technology Evaluation or SITE Program, an evaluation was made of the Shirco Pilot-Scale Infrared Incineration System during 17 separate test runs under varying operating conditions. The tests were conducted at the Demode Road Superfund site in Ros...

  8. CHARACTERISTICS OF PILOT- AND FULL-SCALE HAZARDOUS WASTE INCINERATOR ASH

    EPA Science Inventory

    This review encompasses ash characterization data from 16 different hazardous waste incinerators, both pilot- and full-scale, treating a variety of waste streams. Its focus is on 14 volatile organic compounds, 18 semivolatile organics, and 13 metals for which analyses were most f...

  9. Characterization of simulated low-level waste grout produced in a pilot-scale test

    SciTech Connect

    Lokken, R.O.; Reimus, M.A.; Martin, P.F.C.; Geldart, S.E.

    1988-02-01

    The objectives of a pilot-scale grout test were to determine the homogeneity of the grout produced under conditions similar to those planned for the TGF, to evaluate performance of candidate grout processing equipment for the TGF, and to evaluate properties of grout that was produced during continuous operation over an extended time period and cured in a large monolith. This report addresses the first and third objectives. Tests were conducted on pilot-scale grout slurry, simulated waste solution, dry solids blend samples, and cured grout samples. Grout slurry collected at two points during the pilot-scale test and slurry produced in the laboratory were characterized by measuring rheology, drainable liquid, and penetration resistance. Cured grout samples included samples collected during the pilot-scale test and cured in the laboratory, samples produced in the laboratory, samples obtained from tubes inserted into the monolith, and samples from cored sections of the monolith. Tests conducted on the cured samples included compressive strength, density, ultrasonic pulse velocity, leachability, and microstructural characterization. 10 refs., 12 figs., 16 tabs.

  10. Transformation of Bisphenol A in Water Distribution Systems, A Pilot-scale Study

    EPA Science Inventory

    Halogenations of bisphenol A (BPA) in a pilot-scale water distribution system (WDS) of cement-lined ductile cast iron pipe were investigated under the condition: pH 7.3±0.3, water flow velocity of 1.0 m/s, and 25 °C ± 1 °C in water temperature. The testing water was chlorinated f...

  11. A Flexible Pilot-Scale Setup for Real-Time Studies in Process Systems Engineering

    ERIC Educational Resources Information Center

    Panjapornpon, Chanin; Fletcher, Nathan; Soroush, Masoud

    2006-01-01

    This manuscript describes a flexible, pilot-scale setup that can be used for training students and carrying out research in process systems engineering. The setup allows one to study a variety of process systems engineering concepts such as design feasibility, design flexibility, control configuration selection, parameter estimation, process and…

  12. FATE OF SEX HORMONES IN TWO PILOT-SCALE MUNICIPAL WASTEWATER TREATMENT PLANTS: CONVENTIONAL TREATMENT

    EPA Science Inventory

    The fate of seven sex hormones (estrone (E1), estradiol (E2), estriol (E3), ethinylestradiol (EE2), testosterone, androstenedione, and progesterone) was determined in two pilot-scale wastewater treatment plants operated under conventional loading conditions. The levels of hormon...

  13. MATERIAL BALANCES OF ESTROGENIC EDCS IN PILOT-SCALE MUNICIPAL WASTEWATER TREATMENT PLANTS.

    EPA Science Inventory

    A pair of pilot scale conventional wastewater treatment plants have been constructed and are online. These plants differ only in the sludge digestion step. One uses aerobic and the other uses anaerobic sludge digestion. Estrogenic EDCs are being measured in the liquid stream at e...

  14. STUDY OF RAPPING REENTRAINMENT EMISSIONS FROM A PILOT-SCALE ELECTROSTATIC PRECIPITATOR

    EPA Science Inventory

    The article gives results of a test program to determine the quantity and size distribution of rapping reentrainment emissions from a large pilot-scale electrostatic precipitator (ESP) at TVA's Bull Run steam plant. The ESP current density and specific collection area were varied...

  15. Removal of Salmonella Enteritidis from commercial† unpasteurized liquid egg white using pilot scale crossflow tangential microfiltration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effectiveness of a pilot-scale cross-flow microfiltration (MF) process for removal of Salmonella enteritidis from liquid egg white (LEW) was evaluated. To facilitate MF, 110 L of unpasteurized LEW from a local egg breaking plant was first wedge screened, homogenized and then diluted (1:2 w/w) w...

  16. EVALUATION OF PILOT-SCALE AIR POLLUTION CONTROL DEVICES ON A MUNICIPAL WATERFALL INCINERATOR

    EPA Science Inventory

    The project report describes the results of a program for the testing of two pilot-scale pollution control devices, a fabric filter, and a venturi scrubber at the Braintree, Massachusetts Municipal Solid Waste Incinerator. It includes operation, sampling, and analytical efforts a...

  17. Pilot-scale fractionation of whey proteins with supercritical CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new pilot-scale process is being developed and optimized for the separation of whey proteins into two enriched, highly functional fractions that are free of contaminants. The fractionation of whey protein isolate (WPI), which contains approximately 32% alpha-lactalbumin (alpha-LA) and 61% beta-lac...

  18. REVIEW OF BENCH-, PILOT-, AND FULL-SCALE ORIMULSION (R) COMBUSTION TESTS

    EPA Science Inventory

    The paper gives results of a review of bench-, pilot-, and full-scale Orimulsion combustion tests. A fossil fuel marketed by its producer, Petroleos de Venezuela, S.A. (PdVSA), since the late 1980s as an alternative to coal and heavy fuel oil, Orimulsion is a bitumen-in-water em...

  19. PILOT SCALE FIELD STUDIES OF IN-SITU BIOREMEDIATION OF CHLORINATED SOLVENTS. (R825689C066)

    EPA Science Inventory

    Abstract

    This paper discusses results from pilot scale field studies that evaluated enhanced in situ bioremediation of chlorinated solvents. A stimulus-response methodology for performing controlled field experiments is exemplified. The cometabolic transformatio...

  20. PILOT-SCALE PRETREATMENT OF CORN FIBER USING SNAKE COIL REACTOR SYSTEM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A process was designed, based on experimental knowledge and industrial experience, to incorporate a corn fiber pretreatment/enzyme hydrolysis/ethanol fermentation system into an existing corn starch-fermenting ethanol plant. A pilot-scale test of the design consists of several steps. The corn fibe...

  1. PILOT-SCALE EVALUATION OF NEW RESIN APPLICATION EQUIPMENT FOR FIBER- REINFORCED PLASTICS

    EPA Science Inventory

    The article gives results of a pilot-scale evaluation of new resin application equipment for fiber- reinforced plastics. The study, an evaluation and comparison of styrene emissions, utilized Magnum's FIT(TM) nozzle with conventional spray guns and flow coaters (operated at both ...

  2. SYSTEMS RELIABILITY AND PERFORMANCE: PILOT-SCALE INCINERATION OF CHLORINATED BENZENES AT THE COMBUSTION RESEARCH FACILITY

    EPA Science Inventory

    A series of 34 test burns was conducted between August 1983 and January 1984 in the pilot-scale rotary kiln incineration system at the USEPA Combustion Research Facility (CRF), using chlorinated benzenes as surrogate Principal Organic Hazardous Components (POHCs), over a range of...

  3. Physical-chemical treatment of rainwater runoff in recovery and recycling companies: Pilot-scale optimization.

    PubMed

    Blondeel, Evelyne; Depuydt, Veerle; Cornelis, Jasper; Chys, Michael; Verliefde, Arne; Van Hulle, Stijin Wim Henk

    2015-01-01

    Pilot-scale optimisation of different possible physical-chemical water treatment techniques was performed on the wastewater originating from three different recovery and recycling companies in order to select a (combination of) technique(s) for further full-scale implementation. This implementation is necessary to reduce the concentration of both common pollutants (such as COD, nutrients and suspended solids) and potentially toxic metals, polyaromatic hydrocarbons and poly-chlorinated biphenyls frequently below the discharge limits. The pilot-scale tests (at 250 L h(-1) scale) demonstrate that sand anthracite filtration or coagulation/flocculation are interesting as first treatment techniques with removal efficiencies of about 19% to 66% (sand anthracite filtration), respectively 18% to 60% (coagulation/flocculation) for the above mentioned pollutants (metals, polyaromatic hydrocarbons and poly chlorinated biphenyls). If a second treatment step is required, the implementation of an activated carbon filter is recommended (about 46% to 86% additional removal is obtained). PMID:26191983

  4. Anaerobic digestion of gelatinous water at laboratory and pilot scale and nitrogen inhibition.

    PubMed

    Martinez-Sosa, D; Rafrafi, Y; Torrijos, M; Bernet, N; Buitron, G; Bosque, F; Delgenès, J P

    2008-01-01

    The anaerobic digestion of the liquid residue (gelatinous water) coming from the production of fat from animal residue, was studied at laboratory and pilot scale. Biodegradability (>98%) and biogas potential (675 mL of biogas/g of COD(applied)) of this wastewater are very high. However, due to the high content on nitrogen, an inhibition of the anaerobic activity was observed for quite low concentrations of N-NH(3). Dilution of the wastewater and pH regulation in the reactor around 7.3 are the 2 solutions which were investigated to overcome the nitrogen inhibition at industrial scale. These two solutions were validated at laboratory scale in an anaerobic SBR and then onsite at pilot scale in a continuous reactor. A stable anaerobic digestion was observed in both reactors showing that no nitrogen inhibition was obtained when N-NH(3) concentration in the reactor was kept low. PMID:18547924

  5. Final report from VFL technologies for the pilot-scale thermal treatment of Lower East Fork Poplar Creek floodplain soils: LEFPC appendices, volume 1, appendix I-IV

    SciTech Connect

    1994-09-01

    This document contains Appendix I-IV for the pilot-scale thermal treatment of lower East Fork Poplar Creek floodplain soils. Included are calibration records; quality assurance; soils characterization; pilot scale trial runs.

  6. Comprehensive clone screening and evaluation of fed-batch strategies in a microbioreactor and lab scale stirred tank bioreactor system: application on Pichia pastoris producing Rhizopus oryzae lipase

    PubMed Central

    2014-01-01

    Background In Pichia pastoris bioprocess engineering, classic approaches for clone selection and bioprocess optimization at small/micro scale using the promoter of the alcohol oxidase 1 gene (PAOX1), induced by methanol, present low reproducibility leading to high time and resource consumption. Results An automated microfermentation platform (RoboLector) was successfully tested to overcome the chronic problems of clone selection and optimization of fed-batch strategies. Different clones from Mut+P.?pastoris phenotype strains expressing heterologous Rhizopus oryzae lipase (ROL), including a subset also overexpressing the transcription factor HAC1, were tested to select the most promising clones. The RoboLector showed high performance for the selection and optimization of cultivation media with minimal cost and time. Syn6 medium was better than conventional YNB medium in terms of production of heterologous protein. The RoboLector microbioreactor was also tested for different fed-batch strategies with three clones producing different lipase levels. Two mixed substrates fed-batch strategies were evaluated. The first strategy was the enzymatic release of glucose from a soluble glucose polymer by a glucosidase, and methanol addition every 24 hours. The second strategy used glycerol as co-substrate jointly with methanol at two different feeding rates. The implementation of these simple fed-batch strategies increased the levels of lipolytic activity 80-fold compared to classical batch strategies used in clone selection. Thus, these strategies minimize the risk of errors in the clone selection and increase the detection level of the desired product. Finally, the performance of two fed-batch strategies was compared for lipase production between the RoboLector microbioreactor and 5 liter stirred tank bioreactor for three selected clones. In both scales, the same clone ranking was achieved. Conclusion The RoboLector showed excellent performance in clone selection of P. pastoris Mut+ phenotype. The use of fed-batch strategies using mixed substrate feeds resulted in increased biomass and lipolytic activity. The automated processing of fed-batch strategies by the RoboLector considerably facilitates the operation of fermentation processes, while reducing error-prone clone selection by increasing product titers. The scale-up from microbioreactor to lab scale stirred tank bioreactor showed an excellent correlation, validating the use of microbioreactor as a powerful tool for evaluating fed-batch operational strategies. PMID:24606982

  7. Release and conversion of ammonia in bioreactor landfill simulators.

    PubMed

    Lubberding, Henk J; Valencia, Roberto; Salazar, Rosemarie S; Lens, Piet N L

    2012-03-01

    Bioreactor landfills are an improvement to normal sanitary landfills, because the waste is stabilised faster and the landfill gas is produced in a shorter period of time in a controlled way, thus enabling CH(4) based energy generation. However, it is still difficult to reach, within 30 years, a safe status of the landfill due to high NH(4)(+) levels (up to 3 g/L) in the leachate and NH(4)(+) is extremely important when defining the closure of landfill sites, due to its potential to pollute aquatic environments and the atmosphere. The effect of environmental conditions (temperature, fresh versus old waste) on the release of NH(4)(+) was assessed in experiments with bench (1 L) and pilot scale (800 L) reactors. The NH(4)(+) release was compared to the release of Cl(-) and BOD in the liquid phase. The different release mechanisms (physical, chemical, biological) of NH(4)(+) and Cl(-) release from the solid into the liquid phase are discussed. The NH(4)(+) level in the liquid phase of the pilot scale reactors starts decreasing after 100 days, which contrasts real-scale observations, where the NH(4)(+) level increases or remains constant. Based on the absence of oxygen in the simulators, the detectable levels of hydrazin and the presence of Anammox bacteria, it is likely that Anammox is involved in the conversion of NH(4)(+) into N(2). Nitrogen release was shown to be governed by physical and biological mechanisms and Anammox bacteria are serious candidates for the nitrogen removal process in bioreactor landfills. These results, combined with carbon removal and improved hydraulics, will accelerate the achievement of environmental sustainability in the landfilling of municipal solid waste. PMID:20884112

  8. PILOT SCALE REACTOR FOR ELECTROCHEMICAL DECHLORINATION OF MODEL CHLORINATED CONTAMINANTS

    EPA Science Inventory

    Electrochemical degradation (ECD) is a promising technology for in-situ remediation of diversely contaminated submarine matrices, by the application of low level DC electric fields. This study, prompted by successful bench-scale electrochemical dechlorination of Trichloroe...

  9. PILOT-SCALE HYDRAULIC TESTING OF RESORCINOL FORMALDEHYDE ION EXCHANGE RESIN

    SciTech Connect

    Adamson, D.

    2009-05-28

    Savannah River National Laboratory (SRNL) performed pilot-scale hydraulic/chemical testing of spherical resorcinol formaldehyde (RF) ion exchange (IX) resin for the River Protection Project-Hanford Tank Waste Treatment & Immobilization Plant (WTP) Project. The RF resin hydraulic cycle testing was conducted in two pilot-scale IX columns, 1/4 and 1/2 scale. A total of twenty-three hydraulic/chemical cycles were successfully completed on the spherical RF resin. Sixteen of these cycles were completed in the 24-inch IX Column (1/2 scale column). Hydraulic testing showed that the permeability of the RF resin remained essentially constant, with no observed trend in the reduction of the permeability as the number of cycles increased. The permeability during the pilot-scale testing was 3 times better than the design requirements of the WTP full-scale IX system. The RF resin bed showed no tendency to form fissures or pack more densely as the number of cycles increased. Particle size measurements of the RF resin showed no indication of particle size change (for a given chemical) with cycles and essentially no fines formation. The permeability of the resin bed was uniform with respect to changes in bed depth. Upflow Regeneration and Simulant Introduction in the IX columns revealed another RF resin benefit; negligible radial pressures to the column walls from the swelling of resin beads. The hydraulic and chemical performance of the spherical RF resin during cycle testing was found to be superior to all other tested IX resins. The pilot-scale testing indicates that the RF resin is durable and should hold up to many hydraulic cycles in actual radioactive Cesium (Cs) separation.

  10. Optimization of limestone sizing for CFB combustors: Results of pilot plant and bench-scale testing

    SciTech Connect

    Alliston, M.; Edvardsson, C.; Wu, S.; Probst, S.

    1994-12-31

    A grant to study the performance of limestones in a Circulating Fluidized Bed Combustor was obtained in 1991 from the Pennsylvania Energy Development Authority (PEDA) by Tampella Power Corporation (TPC). The overall objective of this PEDA project was to carry out a systematic pilot plant tests at TPC`s pilot plant in Williamsport, Pennsylvania, in systematic order to identify ways of improving sulfur capture and limestone utilization through better control of the size distribution and residence time of the limestone particles in the furnace. It was also an objective to determine if bench scale testing could be of value in predicting CFB sorbent behavior. The pilot plant and bench test results were incorporated into an empirical Correlation which accounts for the size distribution and residence time of solids in CFB boiler.

  11. Changes in the Structure and Function of Microbial Communities in Drinking Water Treatment Bioreactors upon Addition of Phosphorus? †

    PubMed Central

    Li, Xu; Upadhyaya, Giridhar; Yuen, Wangki; Brown, Jess; Morgenroth, Eberhard; Raskin, Lutgarde

    2010-01-01

    Phosphorus was added as a nutrient to bench-scale and pilot-scale biologically active carbon (BAC) reactors operated for perchlorate and nitrate removal from contaminated groundwater. The two bioreactors responded similarly to phosphorus addition in terms of microbial community function (i.e., reactor performance), while drastically different responses in microbial community structure were detected. Improvement in reactor performance with respect to perchlorate and nitrate removal started within a few days after phosphorus addition for both reactors. Microbial community structures were evaluated using molecular techniques targeting 16S rRNA genes. Clone library results showed that the relative abundance of perchlorate-reducing bacteria (PRB) Dechloromonas and Azospira in the bench-scale reactor increased from 15.2% and 0.6% to 54.2% and 11.7% after phosphorus addition, respectively. Real-time quantitative PCR (qPCR) experiments revealed that these increases started within a few days after phosphorus addition. In contrast, after phosphorus addition, the relative abundance of Dechloromonas in the pilot-scale reactor decreased from 7.1 to 0.6%, while Zoogloea increased from 17.9 to 52.0%. The results of this study demonstrated that similar operating conditions for bench-scale and pilot-scale reactors resulted in similar contaminant removal performances, despite dramatically different responses from microbial communities. These findings suggest that it is important to evaluate the microbial community compositions inside bioreactors used for drinking water treatment, as they determine the microbial composition in the effluent and impact downstream treatment requirements for drinking water production. This information could be particularly relevant to drinking water safety, if pathogens or disinfectant-resistant bacteria are detected in the bioreactors. PMID:20889793

  12. WRDA SEDIMENT DECONTAMINATION PILOT-SCALE DATA REPORT

    EPA Science Inventory

    Thermal and non-thermal decontamination technologies have been undergoing demonstrations at the bench through full/commercial-scale levels. The decontamination program is being conducted under the auspices of the Water Resources Development Acts (92, 96) working in conjunction wi...

  13. Pilot-scale submersed cultivation of R. microsporus var. oligosporus in thin stillage, a dry-grind corn-to-ethanol co-product

    NASA Astrophysics Data System (ADS)

    Erickson, Daniel Thomas

    An innovative process to add value to a corn-to-ethanol co-product, Thin stillage, was studied for pilot-scale viability. A 1500L bioreactor was designed, operated, and optimized to cultivate Rhizopus microsporus var. oligosporus via submersed fermentation in Thin Stillage. The biomass was harvested and processed into a feed suitable for storage and ultimately for animal feeding trials. Characterization of the biomass and feed trials revealed that there is substantial potential as a nutrient dense feed supplement with 41.1% protein, 26.3% fat, and metabolizable energy on s dried basis. The amino acid profile is superior to that of DDGS, with most notably 1.7% Lys on dried basis. This process produces a significantly more nutrient dense product than DDGS, and could increase water-reclaimation in a dry-grind corn to ethanol plant. Industrially it would replace the energy intensive process of converting thin stillage into syrup that adds only $10-25/ton to DDG, while maintaining production of DDG. Using thin stillage as used a growth media for R. microsporus var. oligosporus, should not only lead to saving in energy costs, but also generate a high-value co-product which could lead to economic gains. Also there is still unexplored potential of enzymes, chitin, and co-culturing to further add value.

  14. Pilot-scale study on nitrogen and aromatic compounds removal in printing and dyeing wastewater by reinforced hydrolysis-denitrification coupling process and its microbial community analysis.

    PubMed

    Li, Chao; Ren, Hongqiang; Yin, Erqin; Tang, Siyuan; Li, Yi; Cao, Jiashun

    2015-06-01

    Aiming to efficiently dispose printing and dyeing wastewater with "high organic nitrogen and aromatic compounds, but low carbon source quality", the reinforced anaerobic hydrolysis-denitrification coupling process, based on improved UASB reactors and segregated collection-disposition strategy, was designed and applied at the pilot scale. Results showed that the coupling process displayed efficient removal for these two kinds of pollutants (nitrogen and aromatics), since the concentration of NH3-N (shortened as ? (NH3-N))?bioreactors and some kinds of VFAs-producing, denitrifying and aromatic ring opening microorganisms were discovered. Further, the nirK and bcrA genes quantification also indicated the coupling process owned outstanding denitrification and aromatic compound-degrading potential, which demonstrates that the coupling process owns admirable applicability for this kind of wastewater treatment. PMID:25613804

  15. Performance of a pilot-scale nitrifying trickling filter treating municipal aerated lagoon effluent.

    PubMed

    Coats, Erik R; Watson, Ben; Lee, Kiersten; Hammer, Matt

    2015-01-01

    Colfax, WA, operates an aerated lagoon to achieve compliance with its National Pollutant Discharge Elimination System (NPDES) permit, which currently requires biochemical oxygen demand (BOD) and total suspended solids (TSS) removal. However, ammonia removal may soon be required, and Colfax is considering a nitrifying trickling filter (NTF) that would allow them to also maintain the lagoons. To obtain data from which to ultimately design a full-scale system, a four-year NTF pilot study was performed. Results demonstrated that an NTF would be an effective, reliable NH3 removal method and could produce effluent NH3 concentrations < 1.0 mg/L. NTF performance was characterized by zero- and first-order kinetics; zero-order rates correlated with influent NH3 concentrations and mass load. Utilizing data from these investigations it was determined that the pilot NTF could be reduced by 19%, which demonstrates the value of pilot testing. Finally, pilot data was evaluated to provide a data set that will be useful to engineers designing full-scale NTFs. PMID:25630125

  16. Large-scale data mining pilot project in human genome

    SciTech Connect

    Musick, R.; Fidelis, R.; Slezak, T.

    1997-05-01

    This whitepaper briefly describes a new, aggressive effort in large- scale data Livermore National Labs. The implications of `large- scale` will be clarified Section. In the short term, this effort will focus on several @ssion-critical questions of Genome project. We will adapt current data mining techniques to the Genome domain, to quantify the accuracy of inference results, and lay the groundwork for a more extensive effort in large-scale data mining. A major aspect of the approach is that we will be fully-staffed data warehousing effort in the human Genome area. The long term goal is strong applications- oriented research program in large-@e data mining. The tools, skill set gained will be directly applicable to a wide spectrum of tasks involving a for large spatial and multidimensional data. This includes applications in ensuring non-proliferation, stockpile stewardship, enabling Global Ecology (Materials Database Industrial Ecology), advancing the Biosciences (Human Genome Project), and supporting data for others (Battlefield Management, Health Care).

  17. Characterization of double-shell slurry feed grout produced in a pilot-scale test

    SciTech Connect

    Lokken, R.O.; Martin, P.F.C.; Shade, J.W.

    1992-12-01

    Current plans for disposal of the low-level fraction of selected double-shell tank (DST) wastes at Hanford, Washington include grouting. Grout disposal in this context is the process of mixing low-level liquid waste with cementitious powders. and pumping the resultant slurry to near-surface, underground concrete vaults. Once the slurry is in the vaults. the hydration reactions that occur result in the formation of a highly impermeable solid product that binds and encapsulates the radioactive and hazardous constituents. Westinghouse Hanford Company (WHC) operates the Grout Treatment Facility (GTF) for the US Department of Energy (DOE). Pacific Northwest Laboratory(a) (PNL) provides support to the Grout Disposal Program through laboratory support activities, radioactive grout leach testing. performance assessments, and pilot-scale tests. A pilot-scale test was conducted in November 1988 using a simulated Double-Shell Slurry Feed (DSSF) waste. The main objective of the pilot-scale test was to demonstrate the processability of a DSSF grout formulation that was developed using laboratory equipment and to provide information on scale-up. The dry blend used in this test included 47 wt% class F fly ash, 47 wt% blast furnace slag, and 6 wt% type I/II portland cement. The dry blend was mixed with the simulated waste at a ratio of 9 lb/gal and pumped to a 2800-gal, insulated tank at about 10.4 gpm. Samples of simulated DSSF waste. dry blend, grout slurry, and cured grout were obtained during and after the pilot-scale test for testing and product characterization. Major conclusions of these activities are included.

  18. INVESTIGATING SUSPENSION OF MST SLURRIES IN A PILOT-SCALE WASTE TANK

    SciTech Connect

    Poirier, M.; Restivo, M.; Steeper, T.; Williams, M.; Qureshi, Z.

    2011-01-24

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for suspending monosodium titanate (MST), crystalline silicotitanate (CST), and simulated sludge. The purpose of this pilot scale testing is for the pumps to suspend the MST particles so that MST can be removed from the tank. The pilot-scale tank is a 1/10.85 linear scaled model of Tank 41H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 41H. The pump locations correspond to the proposed locations in Tank 41H by the SCIX program (Risers B5 and B2 for two pump configurations and Risers B5, B3, and B1 for three pump configurations).

  19. Enhanced sludge conditioning by enzyme pre-treatment: comparison of laboratory and pilot scale dewatering results.

    PubMed

    Dursun, D; Turkmen, M; Abu-Orf, M; Dentel, S K

    2006-01-01

    The effect of enzyme pre-treatment on dewaterability of anaerobically digested sludge was investigated at both laboratory and pilot scale. Our results revealed a significant increase in cake solid content (27% cake solids compared to 18% without enzyme pre-treatment), using an enzyme dose of only 20 mg/L. In order to assess practical application, enzyme pre-treatment was applied at the Wilmington, Delaware (U.S.) wastewater treatment plant, using a pilot-scale centrifuge. However, the efficiency reached in laboratory scale could not be obtained in pilot scale, where the final cake solids content did not exceed 20%. Centrifuge and belt filter press (simulated by Crown Press) dewatering were compared in terms of the process efficiencies in the absence and presence of enzyme pre-treatment. Possible factors that might cause the differences were tested by experimental and statistical comparisons. Results indicated that the higher shear applied in centrifugation is responsible for the lack of improved cake solids. The network strength of sludge determined by rheological measurements revealed that enzymatic treatment weakens the gel structure of the sludge floc through the hydrolysis of extracellular polymeric substances; this allows improved dewatering by filtration processes, but leads to floc deterioration when subjected to high shear during centrifugation. PMID:17087367

  20. Response of Corynebacterium glutamicum exposed to oscillating cultivation conditions in a two- and a novel three-compartment scale-down bioreactor.

    PubMed

    Lemoine, Anja; Maya Mart?nez-Iturralde, Nina; Spann, Robert; Neubauer, Peter; Junne, Stefan

    2015-06-01

    The oscillatory conditions in substrate and oxygen supply that typically occur on a large (industrial) scale are usually simulated in two-compartment scale-down reactors. In this study, the performance of nutrient-limited fed-batch cultivations of Corynebacterium glutamicum in a standard two-compartment reactor (two-CR) is compared to the performance in a novel three-compartment reactor (three-CR). The three-CR is designed to mimic three distinct zones of an industrial scale bioreactor that occur if the feed addition is installed at the bottom of the fluid phase. Our findings show that lactate and succinate appear in concentrations two-fold higher in the three-CR cultivation than in the two-CR cultivation. Similar results are revealed for the amino acids glycine, threonine, glutamate, and glutamine. In contrast to the two-CR cultivation, no intracellular accumulation of pyruvate is observed in the three-CR cultivation, since the carbon fluxes are directed toward lactate. As previously reported, the expression of lactate dehydrogenase (LDH) is increased in the context of oxygen deprivation. Thus, C. glutamicum adapts to the oscillating environment in the three-CR. This successful adaptation is revealed by a flow cytometric analysis of BOX-stained cells and a series of electrooptical at line measurements of cell polarisability. Both methods indicate a higher polarisability of cells in the three-CR cultivation. PI-staining does not indicate any membrane damage or accelerated cell death in either system. However, although the strain shows robustness, the product yield of lysine is reduced in scale-down cultivations as compared to cultivations at homogeneous conditions, which underlines the relevance of process optimization. PMID:25728062

  1. OUTER LOOP BIOREACTOR PROJECT STATUS AND PRELIMINARY DATA SUMMARY

    EPA Science Inventory

    Evaluate the Performance of As-Built (Aerobic-Anaerobic) and Retrofit (Anaerobic) Landfill Bioreactors cells to that of conventional "dry tomb" landfills. Evaluate the performance of full scale bioreactor landfill on an operational level. Collect statistically sound data that wi...

  2. Pilot-scale development of a low-NOx coal-fired tangential system

    NASA Astrophysics Data System (ADS)

    Kelly, J. T.; Brown, R. A.; Chu, E. K.; Wightman, J. B.; Pam, R. L.; Swenson, E. L.; Merrick, E. B.; Busch, C. F.

    1981-08-01

    A 293 kWt (1 million Btu/hr) pilot scale facility is used to develop a low NOx pulverized coal fired tangential system. A burner concept is developed which achieves low NOx by directing the fuel and a fraction of the secondary combustion air into the center of the furnace, with the remaining secondary combustion air directed horizontally and parallel to the furnance walls. Such separation of secondary combustion air creates a fuel rich zone in the center of the furnace where NOx production is minimized. This combustion modification technique lowers NOx 64%, relative to conventional tangential firing, by injecting 85% of the secondary air along the furnace walls. Under these conditions, NO emissions are 180 ppm corrected to 0% 02. Also at these conditions, CO, UHC, and unburned carbon emissions are less than 40 ppm, 3 ppm, and 2.4%, respectively, comparable to conventional tangentially fired pilot scale results.

  3. Pilot-scale base hydrolysis processing of HMX-based plastic-bonded explosives

    SciTech Connect

    Flesner, R.L.; Dell`orco, P.C.; Spontarelli, T.; Bishop, R.L.; Skidmore, C.; Uher, K.J.; Kramer, J.F.

    1996-07-01

    Los Alamos National Laboratory has demonstrated that many energetic materials can be rendered non-energetic via reaction with sodium hydroxide or ammonia. This process is known as base hydrolysis. A pilot scale reactor has been developed to process up to 20 kg of plastic bonded explosive in a single batch operation. In this report, we discuss the design and operation of the pilot scale reactor for the processing of PBX 9404, a standard Department of Energy plastic bonded explosive containing HMX and nitrocellulose. Products from base hydrolysis, although non-energetic, still require additional processing before release to the environment Decomposition products, destruction efficiencies, and rates of reaction for base hydrolysis will be presented. Hydrothermal processing, previously known as supercritical water oxidation, has been proposed for converting organic products from hydrolysis to carbon dioxide, nitrogen, and nitrous oxide. Base hydrolysis in combination with hydrothermal processing may yield a viable alternative to open burning/open detonation for destruction of many energetic materials.

  4. Pilot-scale base hydrolysis processing of HMX-based plastic-bonded explosives

    SciTech Connect

    Flesner, R.L.; Dell`Orco, P.C.; Spontarelli, T.; Bishop, R.L.; Skidmore, C.B.; Uher, K.; Kramer, J.F.

    1997-10-01

    Los Alamos National Laboratory has demonstrated that many energetic materials can be rendered non-energetic via reaction with sodium hydroxide or ammonia. This process is known as base hydrolysis. A pilot scale reactor has been developed to process up to 20 kg of plastic bonded explosive in a single batch operation. In this report, we discuss the design and operation of the pilot scale reactor for the processing of PBX 9404, a standard Department of Energy plastic bonded explosive containing HMX and nitrocellulose. Products from base hydrolysis, although non-energetic, still require additional processing before release to the environment. Decomposition products, destruction efficiencies, and rates of reaction for base hydrolysis will be presented. Hydrothermal processing, previously known as supercritical water oxidation, has been proposed for converting organic products from hydrolysis to carbon dioxide, nitrogen, and nitrous oxide. Base hydrolysis in combination with hydrothermal processing may yield a viable alternative to open burning/open detonation for destruction of many energetic materials.

  5. Natural and Man-Made Chemicals in North American Soils--Continental-Scale Pilot Study Completed

    USGS Publications Warehouse

    U.S. Geological Survey

    2006-01-01

    The U.S. Geological Survey and the Geological Survey of Canada recently completed a continental-scale pilot study for a proposed geochemical survey of North American soils. This survey will provide baseline soil chemistry data against which future changes in soil composition can be measured and that can be used by Federal, State/Provincial, and local agencies when making risk-assessment and land-use decisions.

  6. Removal of indicator bacteriophages from municipal wastewater by a full-scale membrane bioreactor and a conventional activated sludge process: implications to water reuse.

    PubMed

    De Luca, Giovanna; Sacchetti, Rossella; Leoni, Erica; Zanetti, Franca

    2013-02-01

    The effectiveness of a full scale membrane bioreactor (MBR) in the removal of bacteriophages and bacterial fecal indicators from municipal wastewater was compared with that obtained by conventional activated sludge process (CASP). Somatic coliphages (SOMCPH) and F-RNA specific bacteriophages (FRNAPH) were always detected in the pre-treated effluent (mean: 6Log10), while phages infecting Bacteroides fragilis were not always present (mean: 3.9Log10). The MBR process was able to achieve respectively 2.7 and 1.7Log10 higher reductions of SOMCPH and FRNAPH compared to CASP (significant differences: P<0.05). SOMCPH were found to be the most suitable indicators for assessing MBR performance, since they showed greater resistance to biofiltration than FRNAPH and a more regular distribution in pre-treated effluent than BFRAGPH. Moreover, since the traditional bacterial indicators were almost totally removed by biofiltration, SOMCPH proved to be the best indicators to evaluate the microbiological risk when MBR effluent is discharged into natural waters or reused. PMID:23266855

  7. 106-AN grout pilot-scale test HGTP-93-0501-02

    SciTech Connect

    Bagaasen, L.M.

    1993-05-01

    The Grout Treatment Facility (GTF) at Hanford, Washington will process the low-level fraction of selected double-shell tank (DST) wastes into a cementitious waste form. This facility, which is operated by Westinghouse Hanford Company (WHC), mixes liquid waste with cementitious materials to produce a waste form that immobilizes hazardous constituents through chemical reactions and/or microencapsulation. Over 1,000,000 gal of Phosphate/Sulfate Waste were solidified in the first production campaign with this facility. The next tank scheduled for treatment is 106-AN. After conducting laboratory studies to select the grout formulation, part of the normal formulation verification process is to conduct tests using the 1/4-scale pilot facilities at the Pacific Northwest Laboratory (PNL). The major objectives of these pilot-scale tests were to determine if the proposed grout formulation could be processed in the pilot-scale equipment and to collect thermal information to help determine the best way to manage the grout hydration heat.

  8. Trace element emissions when firing pulverized coal in a pilot-scale combustion facility

    SciTech Connect

    Miller, S.F.; Wincek, R.T.; Miller, B.G.; Scaroni, A.W.

    1998-07-01

    Strategies are being developed at Penn State to produce ultralow emissions when firing coal-based fuels, i.e., micronized coal and coal-water slurry fuel (CWSF), in industrial boilers. The work is being conducted on the bench, pilot, and demonstration scale, and the emissions being addressed are SO{sub 2}, NO{sub x}, fine particulate matter (PM{sub 10} and PM{sub 2.5}), and air toxics (trace elements and volatile organic compounds). Technical issues related to trace element emissions that are to be addressed include: (1) the effectiveness of coal cleaning; (2) the effect of fuel form (CWSF and pulverized coal); (3) partitioning between the solid and vapor phases; (4) the effect of boiler size; (5) penetration through particulate control devices; (6) the effect of sootblowing; and (7) mercury speciation. This paper discusses the results of preliminary work to determine trace element emissions when firing a raw and cleaned pulverized coal in a pilot-scale combustor. A companion paper, which follows in the proceedings, gives the results of polynuclear aromatic hydrocarbon (PAH) emissions testing in the pilot-scale combustor and in a small industrial boiler. Results from fine particulate testing is found elsewhere in the proceedings.

  9. NASA Bioreactor Demonstration System

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Leland W. K. Chung (left), Director, Molecular Urology Therapeutics Program at the Winship Cancer Institute at Emory University, is principal investigator for the NASA bioreactor demonstration system (BDS-05). With him is Dr. Jun Shu, an assistant professor of Orthopedics Surgery from Kuming Medical University China. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: Emory University.

  10. Characterization of a pilot plant airlift tower loop bioreactor: II. Evaluation of global mixing properties of the gas phase during yeast cultivation.

    PubMed

    Fröhlich, S; Lotz, M; Korte, T; Lübbert, A; Schügerl, K; Seekamp, M

    1991-04-25

    Saccharomyces cerevisiae was cultivated in a 4-m(3) pilot plant airlift tower loop reactor with a draft tube in batch and continuous operations and for comparison in a laboratory airlift tower loop reactor of 0.08 m(3) volume. The reactors were characterized during and after the cultivation by measuring the distributions of the residence times of the gas phase with pseudostochastic tracer signals and mass spectrometer and by evaluating the mixing in the liquid phase with a pulse-shaped volatile tracer signal and mass spectrometer as a detector. The mean residence times and the intensities of the axial mixing in the riser and downcomer, the circulation times of the gas phase, and the fraction of the recirculated gas phase were evaluated and compared. PMID:18597314

  11. DESIGN OPTIMIZATION OF THE CHLORINATION PROCESS. VOLUME I: COMPARISON OF OPTIMIZED PILOT SYSTEM WITH EXISTING FULL-SCALE SYSTEMS

    EPA Science Inventory

    Parallel wastewater effluent chlorination studies were done on a mobile optimized chlorination pilot system and the full-scale system at eight different treatment plants. Disinfection efficiency was measured by total coliform enumeration and chlorine residual tests. Parallel flow...

  12. Multiple pollutant removal using the condensing heat exchanger. Task 2, Pilot scale IFGT testing

    SciTech Connect

    Jankura, B.J.

    1996-01-01

    The purpose of Task 2 (IFGT Pilot-Scale Tests at the B&W Alliance Research Center) is to evaluate the emission reduction performance of the Integrated flue Gas Treatment (IFGT) process for coal-fired applications. The IFGT system is a two-stage condensing heat exchanger that captures multiple pollutants - while recovering waste heat. The IFGT technology offers the potential of a addressing the emission of SO{sub 2} and particulate from electric utilities currently regulated under the Phase I and Phase II requirements defined in Title IV, and many of the air pollutants that will soon be regulated under Title III of the Clean Air Act. The performance data will be obtained at pilot-scale conditions similar to full-scale operating systems. The task 2 IFGT tests have been designed to investigate several aspects of IFGT process conditions at a broader range of variable than would be feasible at a larger scale facility. The performance parameters that will be investigated are as follows: SO{sub 2} removal; particulate removal; removal of mercury and other heavy metals; NO{sub x} removal; HF and HCl removal; NH{sub 3} removal; ammonia-sulfur compounds generation; and steam injection for particle removal. For all of the pollutant removal tests, removal efficiency will be based on measurements at the inlet and outlet of the IFGT facility. Heat recovery measurements will also be made during these tests to demonstrate the heat recovery provided by the IFGT technology. This report provides the Final Test Plan for the first coal tested in the Task 2 pilot-scale IFGT tests.

  13. Performance of an anaerobic, static bed, fixed film bioreactor for chlorinated solvent treatment.

    PubMed

    Lorah, Michelle M; Walker, Charles; Graves, Duane

    2015-09-01

    Anaerobic, fixed film, bioreactors bioaugmented with a dechlorinating microbial consortium were evaluated as a potential technology for cost effective, sustainable, and reliable treatment of mixed chlorinated ethanes and ethenes in groundwater from a large groundwater recovery system. Bench- and pilot-scale testing at about 3 and 13,500 L, respectively, demonstrated that total chlorinated solvent removal to less than the permitted discharge limit of 100 ?g/L. Various planned and unexpected upsets, interruptions, and changes demonstrated the robustness and reliability of the bioreactor system, which handled the operational variations with no observable change in performance. Key operating parameters included an adequately long hydraulic retention time for the surface area, a constant supply of electron donor, pH control with a buffer to minimize pH variance, an oxidation reduction potential of approximately -200 millivolts or lower, and a well-adapted biomass capable of degrading the full suite of chlorinated solvents in the groundwater. Results indicated that the current discharge criteria can be met using a bioreactor technology that is less complex and has less downtime than the sorption based technology currently being used to treat the groundwater. PMID:26154697

  14. Poliovirus-1 Inactivation and Interaction with Biofilm: a Pilot-Scale Study

    PubMed Central

    Quignon, F.; Sardin, M.; Kiene, L.; Schwartzbrod, L.

    1997-01-01

    A pilot-scale study was initiated to examine the behavior of viruses pulse injected into a distribution system. The influence of a free-chlorine residual and that of virus preadsorption to clay particles was evaluated by tracing the viruses both in the water flow and after elution from the biofilm. These experiments demonstrated, first, that virus preadsorption on 40 mg of Na-montmorillonite per liter increased the residence time of the viruses within the pilot plant by roughly three times and, second, that preadsorption to clay did not prevent viruses from being inactivated by chlorine. Moreover, with no clay added, a greater amount of viruses was recovered from the biofilm than from the water flow (by a factor of 2 or 10 in the absence or presence of chlorine, respectively), indicating a tendency for virus accumulation within biofilms. PMID:14692421

  15. Compare pilot-scale and industry-scale models of pulverized coal combustion in an ironmaking blast furnace

    NASA Astrophysics Data System (ADS)

    Shen, Yansong; Yu, Aibing; Zulli, Paul

    2013-07-01

    In order to understand the complex phenomena of pulverized coal injection (PCI) process in blast furnace (BF), mathematical models have been developed at different scales: pilot-scale model of coal combustion and industry-scale model (in-furnace model) of coal/coke combustion in a real BF respectively. This paper compares these PCI models in aspects of model developments and model capability. The model development is discussed in terms of model formulation, their new features and geometry/regions considered. The model capability is then discussed in terms of main findings followed by the model evaluation on their advantages and limitations. It is indicated that these PCI models are all able to describe PCI operation qualitatively. The in-furnace model is more reliable for simulating in-furnace phenomena of PCI operation qualitatively and quantitatively. These models are useful for understanding the flow-thermo-chemical behaviors and then optimizing the PCI operation in practice.

  16. Bioreactor rotating wall vessel

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells.

  17. PILOT-SCALE HYDRAULIC TESTING OF RESORCINOL FORMALDEHYDE ION EXCHANGE RESIN

    SciTech Connect

    Adamson, D

    2006-11-08

    Savannah River National Laboratory (SRNL) performed pilot-scale hydraulic/chemical testing of spherical resorcinol formaldehyde (RF) ion exchange (IX) resin for the River Protection Project-Hanford Tank Waste Treatment & Immobilization Plant (WTP) Project. The RF resin cycle testing was conducted in two pilot-scale IX columns, 1/4 and 1/2 scale. A total of twenty-three hydraulic/chemical cycles were successfully completed on the spherical RF resin. Seven of the cycles were completed in the 12 inch IX Column and sixteen cycles were completed in the 24 inch IX Column. Hydraulic testing showed that the permeability of the RF resin remained essentially constant, with no observed trend in the reduction of the permeability as the number of cycles increased. The permeability during the pilot-scale testing was 2 1/2 times better than the design requirements of the WTP full-scale system. The permeability of the resin bed was uniform with respect to changes in bed depth. Upflow Regeneration and Simulant Introduction in the IX columns revealed another RF resin benefit; negligible radial pressures to the column walls from the swelling of resin beads. In downflow of the Regeneration and Simulant Introduction steps, the resin bed particles pack tightly together and produce higher hydraulic pressures than that found in upflow. Also, upflow Simulant Introduction produced an ideal level bed for the twenty cycles completed using upflow Simulant Introduction. Conversely, the three cycles conducted using downflow Simulant Introduction produced an uneven bed surface with erosion around the thermowells. The RF resin bed in both columns showed no tendency to form fissures or pack more densely as the number of cycles increased. Particle size measurements of the RF resin showed no indication of particle size change (for a given chemical) with cycles and essentially no fines formation. Micrographs comparing representative bead samples before and after testing indicated no change in bead morphology. The skeletal density of the RF resin in the 24 inch IX Column increased slightly with cycling (in both hydrogen and sodium form). The chemical solutions used in the pilot-scale testing remained clear throughout testing, indicating very little chemical breakdown of the RF resin beads. The RF resin particles did not break down and produce fines, which would have resulted in higher pressure drops across the resin bed. Three cesium (Cs) loading tests were conducted on the RF resin in pilot-scale IX columns. Laboratory analyses concluded the Cs in the effluent never exceeded the detection limit. Therefore, there was no measurable degradation in cesium removal performance. Using the pilot-scale systems to add the RF resin to the columns and removing the resin from the columns was found to work well. The resin was added and removed from the columns three times with no operational concerns. Whether the resin was in sodium or hydrogen form, the resin flowed well and resulted in an ideal resin bed formation during each Resin Addition. During Resin Removal, 99+ % of the resin was easily sluiced out of the IX column. The hydraulic performance of the spherical RF resin during cycle testing was found to be superior to all other tested IX resins, and SRNL testing indicates that the resin should hold up to many cycles in actual radioactive Cs separation. The RF resin was found to be durable in the long term cycle testing and should result in a cost saving in actual operations when compared to other IX resins.

  18. PILOT-SCALE HYDRAULIC TESTING OF RESORCINOL FORMALDEHYDE ION EXCHANGE RESIN

    SciTech Connect

    Adamson, D

    2007-01-09

    Savannah River National Laboratory (SRNL) performed pilot-scale hydraulic/chemical testing of spherical resorcinol formaldehyde (RF) ion exchange (IX) resin for the River Protection Project Hanford Tank Waste Treatment & Immobilization Plant (WTP) Project. The RF resin cycle testing was conducted in two pilot-scale IX columns, 1/4 and 1/2 scale. A total of twenty-three hydraulic/chemical cycles were successfully completed on the spherical RF resin. Seven of the cycles were completed in the 12-inch IX Column and sixteen cycles were completed in the 24-inch IX Column. Hydraulic testing showed that the permeability of the RF resin remained essentially constant, with no observed trend in the reduction of the permeability as the number of cycles increased. The permeability during the pilot-scale testing was 2 1/2 times better than the design requirements of the WTP full-scale system. The permeability of the resin bed was uniform with respect to changes in bed depth. Upflow Regeneration and Simulant Introduction in the IX columns revealed another RF resin benefit; negligible radial pressures to the column walls from the swelling of resin beads. In downflow of the Regeneration and Simulant Introduction steps, the resin bed particles pack tightly together and produce higher hydraulic pressures than that found in upflow. Also, upflow Simulant Introduction produced an ideal level bed for the twenty cycles completed using upflow Simulant Introduction. Conversely, the three cycles conducted using downflow Simulant Introduction produced an uneven bed surface with erosion around the thermowells. The RF resin bed in both columns showed no tendency to form fissures or pack more densely as the number of cycles increased. Particle size measurements of the RF resin showed no indication of particle size change (for a given chemical) with cycles and essentially no fines formation. Micrographs comparing representative bead samples before and after testing indicated no change in bead morphology. The skeletal density of the RF resin in the 24-inch IX Column increased slightly with cycling (in both hydrogen and sodium form). The chemical solutions used in the pilot-scale testing remained clear throughout testing, indicating very little chemical breakdown of the RF resin beads. The RF resin particles did not break down and produce fines, which would have resulted in higher pressure drops across the resin bed. Three cesium (Cs) loading tests were conducted on the RF resin in pilot-scale IX columns. Laboratory analyses concluded the Cs in the effluent never exceeded the detection limit. Therefore, there was no measurable degradation in cesium removal performance. Using the pilot-scale systems to add the RF resin to the columns and removing the resin from the columns was found to work well. The resin was added and removed from the columns three times with no operational concerns. Whether the resin was in sodium or hydrogen form, the resin flowed well and resulted in an ideal resin bed formation during each Resin Addition. During Resin Removal, 99+ % of the resin was easily sluiced out of the IX column. The hydraulic performance of the spherical RF resin during cycle testing was found to be superior to all other tested IX resins, and SRNL testing indicates that the resin should hold up to many cycles in actual radioactive Cs separation. The RF resin was found to be durable in the long term cycle testing and should result in a cost saving in actual operations when compared to other IX resins.

  19. Ultrasonic pilot-scale reactor for enzymatic bleaching of cotton fabrics.

    PubMed

    Gonçalves, Idalina; Herrero-Yniesta, Victor; Perales Arce, Iratxe; Escrigas Castañeda, Monica; Cavaco-Paulo, Artur; Silva, Carla

    2014-07-01

    The potential of ultrasound-assisted technology has been demonstrated by several laboratory scale studies. However, their successful industrial scaling-up is still a challenge due to the limited pilot and commercial sonochemical reactors. In this work, a pilot reactor for laccase-hydrogen peroxide cotton bleaching assisted by ultrasound was scaled-up. For this purpose, an existing dyeing machine was transformed and adapted by including piezoelectric ultrasonic devices. Laboratory experiments demonstrated that both low frequency, high power (22 kHz, 2100 W) and high frequency, low power ultrasounds (850 kHz, 400 W) were required to achieve satisfactory results. Standard half (4 g/L H2O2 at 90 °C for 60 min) and optical (8 g/L H2O2 at 103 °C for 40 min) cotton bleaching processes were used as references. Two sequential stages were established for cotton bleaching: (1) laccase pretreatment assisted by high frequency ultrasound (850 kHz, 400 W) and (2) bleaching using high power ultrasound (22 kHz, 2100 W). When compared with conventional methods, combined laccase-hydrogen peroxide cotton bleaching with ultrasound energy improved the whitening effectiveness. Subsequently, less energy (temperature) and chemicals (hydrogen peroxide) were needed for cotton bleaching thus resulting in costs reduction. This technology allowed the combination of enzyme and hydrogen peroxide treatment in a continuous process. The developed pilot-scale reactor offers an enhancement of the cotton bleaching process with lower environmental impact as well as a better performance of further finishing operations. PMID:24618529

  20. Bioreactors: design and operation

    SciTech Connect

    Cooney, C.L.

    1983-02-11

    The bioreactor provides a central link between the starting feedstock and the product. The reaction yield and selectivity are determined by the biocatalyst, but productivity is often determined by the process technology; as a consequence, biochemical reaction engineering becomes the interface for the biologist and engineer. Developments in bioreactor design, including whole cell immobilization, immobilized enzymes, continuous reaction, and process control, will increasingly reflect the need for cross-disciplinary interaction in the biochemical process industry. This paper examines the strategy for selection and design of bioreactors and identifies the limits and constraints in their use. 25 references, 3 figures, 3 tables.

  1. Hydrometallurgical recovery of germanium from coal gasification fly ash: pilot plant scale evaluation

    SciTech Connect

    Arroyo, F.; Fernandez-Pereira, C.; Olivares, J.; Coca, P.

    2009-04-15

    In this article, a hydrometallurgical method for the selective recovery of germanium from fly ash (FA) has been tested at pilot plant scale. The pilot plant flowsheet comprised a first stage of water leaching of FA, and a subsequent selective recovery of the germanium from the leachate by solvent extraction method. The solvent extraction method was based on Ge complexation with catechol in an aqueous solution followed by the extraction of the Ge-catechol complex (Ge(C{sub 6}H{sub 4}O{sub 2}){sub 3}{sup 2-}) with an extracting organic reagent (trioctylamine) diluted in an organic solvent (kerosene), followed by the subsequent stripping of the organic extract. The process has been tested on a FA generated in an integrated gasification with combined cycle (IGCC) process. The paper describes the designed 5 kg/h pilot plant and the tests performed on it. Under the operational conditions tested, approximately 50% of germanium could be recovered from FA after a water extraction at room temperature. Regarding the solvent extraction method, the best operational conditions for obtaining a concentrated germanium-bearing solution practically free of impurities were as follows: extraction time equal to 20 min; aqueous phase/organic phase volumetric ratio equal to 5; stripping with 1 M NaOH, stripping time equal to 30 min, and stripping phase/organic phase volumetric ratio equal to 5. 95% of germanium were recovered from water leachates using those conditions.

  2. Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale.

    PubMed

    Oller, I; Gernjak, W; Maldonado, M I; Pérez-Estrada, L A; Sánchez-Pérez, J A; Malato, S

    2006-12-01

    The technical feasibility and performance of photocatalytic degradation of six water-soluble pesticides (cymoxanil, methomyl, oxamyl, dimethoate, pyrimethanil and telone) have been studied at pilot-plant scale in two well-defined systems which are of special interest because natural solar UV light can be used: heterogeneous photocatalysis with titanium dioxide and homogeneous photocatalysis by photo-Fenton. TiO(2) photocatalysis tests were performed in a 35L solar pilot plant with three Compound Parabolic Collectors (CPCs) under natural illumination and a 75L solar pilot plant with four CPC units was used for homogeneous photocatalysis tests. The initial pesticide concentration studied was 50 mg L(-1) and the catalyst concentrations employed were 200 mg L(-1) of TiO(2) and 20 mg L(-1) of iron. Both toxicity (Vibrio fischeri, Biofix) and biodegradability (Zahn-Wellens test) of the initial pesticide solutions were also measured. Total disappearance of the parent compounds and nearly complete mineralization were attained with all pesticides tested. Treatment time, hydrogen peroxide consumption and release of heteroatoms are discussed. PMID:16839679

  3. Pilot-Scale Production and Characterization of Paramyosin, a Vaccine Candidate for Schistosomiasis Japonica? †

    PubMed Central

    Jiz, Mario; Wu, Hai-Wei; Meng, Rui; Pond-Tor, Sunthorn; Reynolds, Mindy; Friedman, Jennifer F.; Olveda, Remigio; Acosta, Luz; Kurtis, Jonathan D.

    2008-01-01

    Despite effective chemotherapy, schistosomiasis remains a major public health problem in the developing world, with at least 200 million active infections resulting in significant morbidity. Rapid reinfection after treatment, accompanied by extensive residual morbidity, mandates alternative control strategies, including vaccine development. Paramyosin, a myofibrillar protein found only in invertebrates, has been widely studied as a vaccine candidate for both Schistosoma mansoni and Schistosoma japonicum. Recently, we demonstrated that Th2-biased immune responses to paramyosin are associated with resistance to reinfection with S. japonicum in humans; however, challenges in the pilot-scale production of schistosome paramyosin have hampered further studies of this promising vaccine candidate. Here we report a method for the pilot-scale expression and purification of recombinant S. japonicum paramyosin (rSj97). rSj97 was extracted from Escherichia coli inclusion bodies and purified with sequential anion-exchange, hydroxyapatite, and size exclusion chromatography. The purified rSj97 was >95% pure as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis and was free of significant endotoxin contamination. We demonstrate that, like native paramyosin, rSj97 adopts an alpha-helical coiled-coil tertiary structure and binds immunoglobulin and collagen. Naïve mice infected with S. japonicum produce anti-rSj97 immunoglobulin G (IgG) antibodies as early as 4 weeks postinfection, while sera collected from S. japonicum-infected individuals contain anti-rSj97 IgE antibodies. Our method for pilot-scale production of recombinant full-length paramyosin will facilitate preclinical evaluation of paramyosin as a vaccine for schistosomiasis. PMID:18426875

  4. Pilot-scale treatability test plan for the 200-UP-1 groundwater Operable Unit

    SciTech Connect

    Wittreich, C.D.

    1994-05-01

    This document presents the treatability test plan for pilot-scale pump and treat testing at the 200-UP-1 Operable Unit. This treatability test plan has been prepared in response to an agreement between the US Department of Energy, the US Environmental Protection Agency, and the Washington State Department of Ecology, as documented in Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1989a) Change Control Form M-13-93-03 (Ecology et al. 1994). The agreement also requires that, following completion of the activities described in this test plan, a 200-UP-1 Operable Unit interim remedial measure (IRM) proposed plan be developed for use in preparing an interim action record of decision (ROD). The IRM Proposed Plan will be supported by the results of the testing described in this treatability test plan, as well as by other 200-UP-1 Operable Unit activities (e.g., limited field investigation, development of a qualitative risk assessment). Once issued, the interim action ROD will specify the interim action for groundwater contamination at the 200-UP-1 Operable Unit. The approach discussed in this treatability test plan is to conduct a pilot-scale pump and treat test for the contaminant plume associated with the 200-UP-1 Operable Unit. Primary contaminants of concern are uranium and technetium-99; the secondary contaminant of concern is nitrate. The pilot-scale treatability testing presented in this test plan has as its primary purpose to assess the performance of aboveground treatment systems with respect to the ability to remove the primary contaminants in groundwater withdrawn from the contaminant plume.

  5. BIOREACTOR LANDFILL DESIGN

    EPA Science Inventory

    Modern landfill design entails many elements including foundations, liner systems, leachate collection systems, stormwater control systems, slope stability considerations, leachate management systems, gas extraction systems, and capping and closure. The use of bioreactor technolo...

  6. Space Bioreactor Science Workshop

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (editor)

    1987-01-01

    The first space bioreactor has been designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and a slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small (500 ml) bioreactor is being constructed for flight experiments in the Shuttle middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption, and control of low shear stress on cells. Applications of microcarrier cultures, development of the first space bioreactor flight system, shear and mixing effects on cells, process control, and methods to monitor cell metabolism and nutrient requirements are among the topics covered.

  7. Pilot-scale subcritical solvent extraction of curcuminoids from Curcuma long L.

    PubMed

    Kwon, Hye-Lim; Chung, Myong-Soo

    2015-10-15

    Curcuminoids consisted curcumin, demethoxycurcumin and bisdemethoxycurcumin, were extracted from turmeric using subcritical solvent by varying conditions of temperature (110-150 °C), time (1-10 min), pressure (5-100 atm), solid-to-solvent ratio, and mixing ratio of solvent. Preliminary lab-scale experiments were conducted to determine the optimum extraction temperature and mixing ratio of water and ethanol for the pilot-scale extraction. The maximum yield of curcuminoids in the pilot-scale system was 13.58% (curcumin 4.94%, demethoxycurcumin 4.73%, and bisdemethoxycurcumin 3.91% in dried extracts) at 135 °C/5 min with water/ethanol mixture (50:50, v/v) as a solvent. On the other hand, the extraction yields of curcuminoids were obtained as 10.49%, 13.71% and 13.96% using the 50%, 95% and 100% ethanol, respectively, at the atmospheric condition (60 °C/120 min). Overall results showed that the subcritical solvent extraction is much faster and efficient extraction method considering extracted curcuminoids contents and has a potential to develop a commercial process for the extraction of curcuminoids. PMID:25952841

  8. Laboratory and pilot-scale bioremediation of pentaerythritol tetranitrate (PETN) contaminated soil.

    PubMed

    Zhuang, Li; Gui, Lai; Gillham, Robert W; Landis, Richard C

    2014-01-15

    PETN (pentaerythritol tetranitrate), a munitions constituent, is commonly encountered in munitions-contaminated soils, and pose a serious threat to aquatic organisms. This study investigated anaerobic remediation of PETN-contaminated soil at a site near Denver Colorado. Both granular iron and organic carbon amendments were used in both laboratory and pilot-scale tests. The laboratory results showed that, with various organic carbon amendments, PETN at initial concentrations of between 4500 and 5000mg/kg was effectively removed within 84 days. In the field trial, after a test period of 446 days, PETN mass removal of up to 53,071mg/kg of PETN (80%) was achieved with an organic carbon amendment (DARAMEND) of 4% by weight. In previous laboratory studies, granular iron has shown to be highly effective in degrading PETN. However, for both the laboratory and pilot-scale tests, granular iron was proven to be ineffective. This was a consequence of passivation of the iron surfaces caused by the very high concentrations of nitrate in the contaminated soil. This study indicated that low concentration of organic carbon was a key factor limiting bioremediation of PETN in the contaminated soil. Furthermore, the addition of organic carbon amendments such as the DARAMEND materials or brewers grain, proved to be highly effective in stimulating the biodegradation of PETN and could provide the basis for full-scale remediation of PETN-contaminated sites. PMID:24316800

  9. Development of pressurized coal partial combustor -- Pilot scale (25t/d-coal) test results

    SciTech Connect

    Suda, Masamitsu; Harada, Eiichi; Setoguchi, Kazuhide; Hara, Masahiro

    1999-07-01

    The integrated gasification combined cycle (IGCC), an environment-friendly power generation system of high thermal efficiency, is being developed via various approaches around the world. Kawasaki Heavy Industries Ltd. has conducted R and D on a Coal Partial Combustor (hereinafter referred to as CPC) as a gasifier since 1984, jointly with the Center for Coal Utilization, Japan. Since 1994, Chubu Electric Power Co., Inc. and Electric Power Development Co, Ltd have been cooperating. Through this activity, a structure of the CPC has been established, and these influences of operating parameters on performance have been clarified. The purpose of the present study is to apply this developed CPC techniques to a Pressurized CPC (hereinafter referred to as PCPC) as a gasifier for the IGCC system. For the present study, the authors conducted systematic experiments on the air-blown process with a two stage dry feed system, using a 7 t/d-coal bench scale test facility and a 25 t/d-coal pilot scale plant, clarified the influence of coal feed ratio, of oxygen enrichment, and of coal types on coal gasification performance. This paper describes conceptual structure of the PCPC, the test results of a 7 t/d-coal bench scale test facility, and 25 t/d-coal pilot plant.

  10. Recovery of cellulase activity after ethanol stripping in a novel pilot-scale unit.

    PubMed

    Skovgaard, Pernille Anastasia; Christensen, Børge Holm; Felby, Claus; Jørgensen, Henning

    2014-04-01

    Recycling of enzymes has a potential interest during cellulosic bioethanol production as purchasing enzymes is one of the largest expenses in the process. By recycling enzymes after distillation, loss of sugars and ethanol are avoided, but depending on the distillation temperature, there is a potential risk of enzyme degradation. Studies of the rate of enzyme denaturation based on estimation of the denaturation constant K D was performed using a novel distillation setup allowing stripping of ethanol at 50-65 °C. Experiments were performed in a pilot-scale stripper, where the effect of temperature (55-65 °C) and exposure to gas-liquid and liquid-heat transmission interfaces were tested on a mesophilic and thermostable enzyme mixture in fiber beer and buffer. Lab-scale tests were included in addition to the pilot-scale experiments to study the effect of shear, ethanol concentration, and PEG on enzyme stability. When increasing the temperature (up to 65 °C) or ethanol content (up to 7.5 % w/v), the denaturation rate of the enzymes increased. Enzyme denaturation occurred slower when the experiments were performed in fiber beer compared to buffer only, which could be due to PEG or other stabilizing substances in fiber beer. However, at extreme conditions with high temperature (65 °C) and ethanol content (7.5 % w/v), PEG had no enzyme stabilizing effect. The novel distillation setup proved to be useful for maintaining enzyme activity during ethanol extraction. PMID:24549412

  11. Removal of ammonia nitrogen in wastewater by microwave radiation: a pilot-scale study.

    PubMed

    Lin, Li; Chen, Jing; Xu, Zuqun; Yuan, Songhu; Cao, Menghua; Liu, Huangcheng; Lu, Xiaohua

    2009-09-15

    A large removal of ammonia nitrogen in wastewater has been achieved by microwave (MW) radiation in our previous bench-scale study. This study developed a continuous pilot-scale MW system to remove ammonia nitrogen in real wastewater. A typical high concentration of ammonia nitrogen contaminated wastewater, the coke-plant wastewater from a Coke company, was treated. The output power of the microwave reactor was 4.8 kW and the handling capacity of the reactor was about 5m(3) per day. The ammonia removal efficiencies under four operating conditions, including ambient temperature, wastewater flow rate, aeration conditions and initial concentration were evaluated in the pilot-scale experiments. The ammonia removal could reach about 80% for the real coke-plant wastewater with ammonia nitrogen concentrations of 2400-11000 mg/L. The running cost of the MW technique was a little lower than the conventional steam-stripping method. The continuous microwave system showed the potential as an effective method for ammonia nitrogen removal in coke-plant water treatment. It is proposed that this process is suitable for the treatment of toxic wastewater containing high concentrations of ammonia nitrogen. PMID:19304377

  12. Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: Effect of organic loading rate

    SciTech Connect

    Liu Xiao; Wang Wei; Shi Yunchun; Zheng Lei; Gao Xingbao; Qiao Wei; Zhou Yingjun

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) was examined on a pilot-scale reactor. Black-Right-Pointing-Pointer System performance and stability under OLR of 1.2, 2.4, 3.6, 4.8, 6.0 and 8.0 kg VS (m{sup 3} d){sup -1} were analyzed. Black-Right-Pointing-Pointer A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and HRT of 15d. Black-Right-Pointing-Pointer With the increasing OLRs, pH values, VS removal rate and methane concentration decreased and VFA increased. Black-Right-Pointing-Pointer The changing of biogas production rate can be a practical approach to monitor and control anaerobic digestion system. - Abstract: The effects of organic loading rate on the performance and stability of anaerobic co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) were investigated on a pilot-scale reactor. The results showed that stable operation was achieved with organic loading rates (OLR) of 1.2-8.0 kg volatile solid (VS) (m{sup 3} d){sup -1}, with VS reduction rates of 61.7-69.9%, and volumetric biogas production of 0.89-5.28 m{sup 3} (m{sup 3} d){sup -1}. A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and hydraulic retention time of 15 days. With increasing OLRs, the anaerobic reactor showed a decrease in VS removal rate, average pH value and methane concentration, and a increase of volatile fatty acid concentration. By monitoring the biogas production rate (BPR), the anaerobic digestion system has a higher acidification risk under an OLR of 8.0 kg VS (m{sup 3} d){sup -1}. This result remarks the possibility of relating bioreactor performance with BPR in order to better understand and monitor anaerobic digestion process.

  13. Performance of a pilot-scale, three-stage constructed wetland system for domestic wastewater treatment.

    PubMed

    Tunçsiper, Bilal; Ayaz, Selma; Akça, Lütfi; Gunes, Kemal

    2009-10-01

    This study investigates the effects of season, organic matter loadings, hydraulic conditions, recycling, and rapid drainage on water quality in a pilot-scale, three-stage subsurface flow constructed wetland (SSF CW) system. The pilot CW system consisted of a vertical flow-gravel filtration (v-GF) wetland in the first stage, a horizontal-subsurface flow (h-SSF) bed planted with Iris in the second stage, and a vertical-subsurface flow (v-SSF) bed vegetated with Phragmites in the third stage. The objective of this study was to evaluate the potential of these CW systems to remove organic matter from domestic wastewater on a pilot-scale three-stage SSF CW system. Comparisons of average influent and effluent concentrations showed that the multistage system could effectively reduce total suspended solids (TSS), biological oxygen demand (BOD) and chemical oxygen demand (COD) levels in effluent by as much as 98% and total organic carbon (TOC) by as much as 79%. Contributions of the first, second and third stages to the overall treatment were approximately 10%, 45% and 45%, respectively. The average TSS, COD, and TOC concentrations were reduced in the entire CW system by 70%, 80% and 90%, respectively. The BOD and TOC removal efficiencies displayed seasonal variations with average removals generally increasing in warmer seasons. Our results also demonstrate that there were strong correlations between removal efficiencies and loading rates. Average removals decreased with an increase in the hydraulic retention time (HRT). The rapid drainage and recycling operation increased the efficiency of BOD removal only. PMID:19947149

  14. Creative use of pilot points to address site and regional scale heterogeneity in a variable-density model

    USGS Publications Warehouse

    Dausman, Alyssa M.; Doherty, John; Langevin, Christian D.

    2010-01-01

    Pilot points for parameter estimation were creatively used to address heterogeneity at both the well field and regional scales in a variable-density groundwater flow and solute transport model designed to test multiple hypotheses for upward migration of fresh effluent injected into a highly transmissive saline carbonate aquifer. Two sets of pilot points were used within in multiple model layers, with one set of inner pilot points (totaling 158) having high spatial density to represent hydraulic conductivity at the site, while a second set of outer points (totaling 36) of lower spatial density was used to represent hydraulic conductivity further from the site. Use of a lower spatial density outside the site allowed (1) the total number of pilot points to be reduced while maintaining flexibility to accommodate heterogeneity at different scales, and (2) development of a model with greater areal extent in order to simulate proper boundary conditions that have a limited effect on the area of interest. The parameters associated with the inner pilot points were log transformed hydraulic conductivity multipliers of the conductivity field obtained by interpolation from outer pilot points. The use of this dual inner-outer scale parameterization (with inner parameters constituting multipliers for outer parameters) allowed smooth transition of hydraulic conductivity from the site scale, where greater spatial variability of hydraulic properties exists, to the regional scale where less spatial variability was necessary for model calibration. While the model is highly parameterized to accommodate potential aquifer heterogeneity, the total number of pilot points is kept at a minimum to enable reasonable calibration run times.

  15. Aerosol characteristics in the offgas from a pilot-scale sluicing operation

    SciTech Connect

    Ligotke, M.W.; Whyatt, G.A.; Beckette, M.R.

    1995-01-01

    A pilot-scale study was performed to simulate conditions anticipated during sluicing operations to retrieve waste in single-shell Tank 241-C-106 at the US Department of Energy`s Hanford Site in southeastern Washington. The objective of the study was to identify and characterize the potential aerosol source term at the inlet of the headspace exhaust ventilation system during sluicing operations. The information is needed to support decisions for components to be used in the full-scale operation. A secondary objective was to qualitatively evaluate the visibility during sluicing. Three simulated sluicing tests were performed in the 336 Building`s quarter-scale waste tank facility located at Hanford. Scaling relationships were used to guide modifications to the quarter-scale tank to accommodate tests that simulated tank geometry, sluicing, and ventilation conditions in the full-scale tank. Simulated sluicing fluids were targeted on solid and liquid surfaces during the tests. Test conditions were monitored, and aerosol measurements were made in the offgas ventilation duct. Also during the tests, an in-tank camera was used to monitor visibility.

  16. Microbial bio-based plastics from olive-mill wastewater: Generation and properties of polyhydroxyalkanoates from mixed cultures in a two-stage pilot scale system.

    PubMed

    Ntaikou, I; Valencia Peroni, C; Kourmentza, C; Ilieva, V I; Morelli, A; Chiellini, E; Lyberatos, G

    2014-10-20

    The operational efficiency of a two stage pilot scale system for polyhydroxyalkanoates (PHAs) production from three phase olive oil mill wastewater (OMW) was investigated in this study. A mixed anaerobic, acidogenic culture derived from a municipal wastewater treatment plant, was used in the first stage, aiming to the acidification of OMW. The effluent of the first bioreactor that was operated in continuous mode, was collected in a sedimentation tank in which partial removal of the suspended solids was taking place, and was then forwarded to an aerobic reactor, operated in sequential batch mode under nutrient limitation. In the second stage an enriched culture of Pseudomonas sp. was used as initial inoculum for the production of PHAs from the acidified waste. Clarification of the acidified waste, using aluminium sulphate which causes flocculation and precipitation of solids, was also performed, and its effect on the composition of the acidified waste as well as on the yields and properties of PHAs was investigated. It was shown that clarification had no significant qualitative or quantitative effect on the primary carbon sources, i.e. short chain fatty acids and residual sugars, but only on the values of total suspended solids and total chemical oxygen demand of the acidified waste. The type and thermal characteristics of the produced PHAs were also similar for both types of feed. However the clarification of the waste seemed to have a positive impact on final PHAs yield, measured as gPHAs/100g of VSS, which reached up to 25%. Analysis of the final products via nuclear magnetic resonance spectroscopy revealed the existence of 3-hydroxybutyrate (3HB) and 3-hydroxyoctanoate (HO) units, leading to the conclusion that the polymer could be either a blend of P3HB and P3HO homopolymers or/and the 3HB-co-3HO co-polymer, an unusual polymer occurring in nature with advanced properties. PMID:25157746

  17. Evaluation of the thermal stability POHC incinerability ranking in a pilot-scale rotary kiln incinerator

    SciTech Connect

    Lee, J.W.; Waterland, L.R.; Whitworth, W.E.; Carroll, G.J.

    1991-01-01

    A series of pilot-scale incineration tests was performed at EPA's Incineration Research Facility to evaluate the thermal stability-based POHC incinerability ranking. In the tests, mixtures of 12 POHCs with predicted incinerability spanning the range of most to least difficult to incinerate class were combined with a clay-based sorbent and batch-fed to the facility's pilot-scale rotary kiln incinerator via a fiberpack drum ram feeder. Kiln operating conditions were varied to include a baseline operating condition, three modes of attempted incineration failure, and a worst case combination of the three failure modes. Kiln exit POHC DREs were in the 99.99 percent range for the volatile POHCs for the baseline, mixing failure (increased charge mass), and matrix failure (decreased feed H/C) tests. Semivolatile POHCs were not detected in the kiln exit for these tests; corresponding DREs were generally greater than 99.999 percent. The thermal failure (low kiln temperature) and worst case (combination of thermal, mixing, and matrix failure) tests resulted in substantially decreased kiln exit POHC DREs. These ranged from 99 percent or less for Freon 113 to greater than 99.999 percent for the less stable-ranked semivolatile POHCs. General agreement between relative kiln exit POHC DRE and predicted incinerability class was observed.

  18. Characterization results for 106-AN grout produced in a pilot-scale test

    SciTech Connect

    Lokken, R.O.; Bagaasen, L.M.; Martin, P.F.C.; Palmer, S.E.; Anderson, C.M.

    1993-06-01

    The Grout Treatment Facility (GTF) at Hanford. Washington, will process the low-level fraction of selected double-shell tank (DST) wastes into a cementitious waste form. This facility, which is operated by Westinghouse Hanford Company (WHC), mixes liquid waste with cementitious materials to produce a waste form that immobilizes hazardous constituents through chemical reactions and/or microencapsulation. Over one million gallons of phosphate/sulfate waste were solidified in the first production campaign with this facility. The next tank waste scheduled for treatment is 106-AN (the waste from Tank 241-AN-106). After laboratory studies were conducted to select the grout formulation, tests using the 1/4-scale pilot facilities at the Pacific Northwest Laboratory (PNL) were conducted as part of the formulation verification process. The major objectives of these pilot-scale tests were to determine if the proposed grout formulation could be processed in the pilotscale equipment. to collect thermal information to help determine the best way to manage the grout hydration heat, and to characterize the solidified grout.

  19. Pilot-scale bioelectrochemical system for efficient conversion of 4-chloronitrobenzene.

    PubMed

    Yuan, Yuan; You, Shi-Jie; Zhang, Jin-Na; Gong, Xiao-Bo; Wang, Xiu-Heng; Ren, Nan-Qi

    2015-01-01

    4-Chloronitrobenzene (4-CNB) is one of the highly toxic contaminants that may lead to acute, chronic or persistent physiological toxicity to ecology and environment. Conventional methods for removing 4-CNB from aquatic environment may be problematic due to inefficiency, high cost and low sustainability. This study develops a pilot-scale bioelectrochemical system (BES, effective volume of 18?L) and examines its performance of bioelectrochemical transformation of 4-CNB to 4-chloroaniline (4-CAN) under continuous operation. The results demonstrate that the initial 4-CNB concentration in the influent and hydraulic retention time (HRT) has a significant impact on 4-CNB reduction and 4-CAN formation. Compared with the conventional anaerobic process in the absence of external power supplied, the 4-CNB conversion efficiency can be enhanced with power supplied due to microbial-mediated electron transfer at the negative cathode potential. At a voltage of 0.4?V and HRT of 48?h, the 4-CNB reduction and 4-CAN formation efficiency reached 99% and 94.1%, respectively. Based on a small external voltage applied, the pilot-scale BES is effective in the conversion of 4-CNB to 4-CAN, an intermediate that is of less toxicity and higher bioavailability for subsequent treatment. This study provides a new strategy and methods for eliminating 4-CNB, making wastewater treatment more economical and more sustainable. PMID:25650667

  20. Anaerobic Digestion of Laminaria japonica Waste from Industrial Production Residues in Laboratory- and Pilot-Scale

    PubMed Central

    Barbot, Yann Nicolas; Thomsen, Claudia; Thomsen, Laurenz; Benz, Roland

    2015-01-01

    The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP) and biomethane recovery of industrial Laminaria japonica waste (LJW) in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC), as well as a co-digestion approach with maize silage (MS) did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g?1 volatile solids (VS) were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g?1 VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH4 recovery of 189 L kg?1 VS was achieved and a biogas composition of 55% CH4 and 38% CO2 was recorded. PMID:26393620

  1. Anaerobic Digestion of Laminaria japonica Waste from Industrial Production Residues in Laboratory- and Pilot-Scale.

    PubMed

    Barbot, Yann Nicolas; Thomsen, Claudia; Thomsen, Laurenz; Benz, Roland

    2015-09-01

    The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP) and biomethane recovery of industrial Laminaria japonica waste (LJW) in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC), as well as a co-digestion approach with maize silage (MS) did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g(-1) volatile solids (VS) were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g(-1) VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH? recovery of 189 L kg(-1) VS was achieved and a biogas composition of 55% CH? and 38% CO? was recorded. PMID:26393620

  2. INVESTIGATING SUSPENSION OF MST, CST, AND SIMULATED SLUDGE SLURRIES IN A PILOT-SCALE WASTE TANK

    SciTech Connect

    Poirier, M.; Qureshi, Z.; Restivo, M.; Steeper, T.; Williams, M.

    2011-05-24

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for suspending and resuspending monosodium titanate (MST), crystalline silicotitanate (CST), and simulated sludge. The purpose of this pilot scale testing is for the pumps to resuspend the MST, CST, and simulated sludge particles so that they can be removed from the tank, and to suspend the MST so it can contact strontium and actinides. The pilot-scale tank is a 1/10.85 linear scaled model of Tank 41H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 41H. The pump locations correspond to the proposed locations in Tank 41H by the SCIX program (Risers B5, B3, and B1). Previous testing showed that three Submersible Mixer Pumps (SMPs) will provide sufficient power to initially suspend MST in an SRS waste tank, and to resuspend MST that has settled in a waste tank at nominal 45 C for four weeks. The conclusions from this analysis are: (1) Three SMPs will be able to resuspend more than 99.9% of the MST and CST that has settled for four weeks at nominal 45 C. The testing shows the required pump discharge velocity is 84% of the maximum discharge velocity of the pump. (2) Three SMPs will be able to resuspend more than 99.9% of the MST, CST, and simulated sludge that has settled for four weeks at nominal 45 C. The testing shows the required pump discharge velocity is 82% of the maximum discharge velocity of the pump. (3) A contact time of 6-12 hours is needed for strontium sorption by MST in a jet mixed tank with cooling coils, which is consistent with bench-scale testing and actinide removal process (ARP) operation.

  3. Pilot-scale equipment development for lithium-based reduction of spent oxide fuel.

    SciTech Connect

    Herrmann, S. D.

    1998-04-24

    An integral function of the electrometallurgical conditioning of DOE spent nuclear fuel is the standardization of waste forms. Argonne National Laboratory (ANL) has developed and is presently demonstrating the electrometallurgical conditioning of sodium-bonded metal fuel from Experimental Breeder Reactor II, resulting in uranium, ceramic waste, and metal waste forms. Engineering studies are underway at ANL in support of pilot-scale equipment development, which would precondition irradiated oxide fuel and likewise demonstrate the application of electrometallurgical conditioning to such non-metallic fuels. This paper highlights the integration of proposed spent oxide fuel conditioning with existing electrometallurgical processes. Additionally, technical bases for engineering activities to support a scale up of an oxide reduction process are described.

  4. UV/chlorine control of drinking water taste and odour at pilot and full-scale.

    PubMed

    Wang, Ding; Bolton, James R; Andrews, Susan A; Hofmann, Ron

    2015-10-01

    Advanced oxidation processes (AOPs) can be used to destroy taste and odour-causing compounds in drinking water. This work investigated both pilot- and full-scale performance of the novel ultraviolet (UV)/chlorine AOP for the destruction of geosmin, 2-methylisoborneol (MIB) and caffeine (as a surrogate) in two different surface waters. The efficiency of the UV/chlorine process at pH 7.5 and 8.5 was comparable to that of the UV/hydrogen peroxide (UV/H2O2) process under parallel conditions, and was superior at pH 6.5. Caffeine was found to be a suitable surrogate for geosmin and MIB, and could be used as a more economical alternative to geosmin or MIB spiking for site-specific full-scale testing. PMID:26025188

  5. Manufacturing Cost Analysis for YSZ-Based FlexCells at Pilot and Full Scale Production Scales

    SciTech Connect

    Scott Swartz; Lora Thrun; Robin Kimbrell; Kellie Chenault

    2011-05-01

    Significant reductions in cell costs must be achieved in order to realize the full commercial potential of megawatt-scale SOFC power systems. The FlexCell designed by NexTech Materials is a scalable SOFC technology that offers particular advantages over competitive technologies. In this updated topical report, NexTech analyzes its FlexCell design and fabrication process to establish manufacturing costs at both pilot scale (10 MW/year) and full-scale (250 MW/year) production levels and benchmarks this against estimated anode supported cell costs at the 250 MW scale. This analysis will show that even with conservative assumptions for yield, materials usage, and cell power density, a cost of $35 per kilowatt can be achieved at high volume. Through advancements in cell size and membrane thickness, NexTech has identified paths for achieving cell manufacturing costs as low as $27 per kilowatt for its FlexCell technology. Also in this report, NexTech analyzes the impact of raw material costs on cell cost, showing the significant increases that result if target raw material costs cannot be achieved at this volume.

  6. Scaling Down to Scale Up: A Health Economic Analysis of Integrating Point-of-Care Syphilis Testing into Antenatal Care in Zambia during Pilot and National Rollout Implementation

    PubMed Central

    Ncube, Alexander Tshaka; Sweeney, Sedona; Fleischer, Colette; Mumba, Grace Tembo; Gill, Michelle M.; Strasser, Susan; Peeling, Rosanna W.; Terris-Prestholt, Fern

    2015-01-01

    Maternal syphilis results in an estimated 500,000 stillbirths and neonatal deaths annually in Sub-Saharan Africa. Despite the existence of national guidelines for antenatal syphilis screening, syphilis testing is often limited by inadequate laboratory and staff services. Recent availability of inexpensive rapid point-of-care syphilis tests (RST) can improve access to antenatal syphilis screening. A 2010 pilot in Zambia explored the feasibility of integrating RST within prevention of mother-to-child-transmission of HIV services. Following successful demonstration, the Zambian Ministry of Health adopted RSTs into national policy in 2011. Cost data from the pilot and 2012 preliminary national rollout were extracted from project records, antenatal registers, clinic staff interviews, and facility observations, with the aim of assessing the cost and quality implications of scaling up a successful pilot into a national rollout. Start-up, capital, and recurrent cost inputs were collected, including costs of extensive supervision and quality monitoring during the pilot. Costs were analysed from a provider’s perspective, incremental to existing antenatal services. Total and unit costs were calculated and a multivariate sensitivity analysis was performed. Our accompanying qualitative study by Ansbro et al. (2015) elucidated quality assurance and supervisory system challenges experienced during rollout, which helped explain key cost drivers. The average unit cost per woman screened during rollout ($11.16) was more than triple the pilot unit cost ($3.19). While quality assurance costs were much lower during rollout, the increased unit costs can be attributed to several factors, including higher RST prices and lower RST coverage during rollout, which reduced economies of scale. Pilot and rollout cost drivers differed due to implementation decisions related to training, supervision, and quality assurance. This study explored the cost of integrating RST into antenatal care in pilot and national rollout settings, and highlighted important differences in costs that may be observed when moving from pilot to scale-up. PMID:25970443

  7. Scaling Down to Scale Up: A Health Economic Analysis of Integrating Point-of-Care Syphilis Testing into Antenatal Care in Zambia during Pilot and National Rollout Implementation.

    PubMed

    Shelley, Katharine D; Ansbro, Éimhín M; Ncube, Alexander Tshaka; Sweeney, Sedona; Fleischer, Colette; Tembo Mumba, Grace; Gill, Michelle M; Strasser, Susan; Peeling, Rosanna W; Terris-Prestholt, Fern

    2015-01-01

    Maternal syphilis results in an estimated 500,000 stillbirths and neonatal deaths annually in Sub-Saharan Africa. Despite the existence of national guidelines for antenatal syphilis screening, syphilis testing is often limited by inadequate laboratory and staff services. Recent availability of inexpensive rapid point-of-care syphilis tests (RST) can improve access to antenatal syphilis screening. A 2010 pilot in Zambia explored the feasibility of integrating RST within prevention of mother-to-child-transmission of HIV services. Following successful demonstration, the Zambian Ministry of Health adopted RSTs into national policy in 2011. Cost data from the pilot and 2012 preliminary national rollout were extracted from project records, antenatal registers, clinic staff interviews, and facility observations, with the aim of assessing the cost and quality implications of scaling up a successful pilot into a national rollout. Start-up, capital, and recurrent cost inputs were collected, including costs of extensive supervision and quality monitoring during the pilot. Costs were analysed from a provider's perspective, incremental to existing antenatal services. Total and unit costs were calculated and a multivariate sensitivity analysis was performed. Our accompanying qualitative study by Ansbro et al. (2015) elucidated quality assurance and supervisory system challenges experienced during rollout, which helped explain key cost drivers. The average unit cost per woman screened during rollout ($11.16) was more than triple the pilot unit cost ($3.19). While quality assurance costs were much lower during rollout, the increased unit costs can be attributed to several factors, including higher RST prices and lower RST coverage during rollout, which reduced economies of scale. Pilot and rollout cost drivers differed due to implementation decisions related to training, supervision, and quality assurance. This study explored the cost of integrating RST into antenatal care in pilot and national rollout settings, and highlighted important differences in costs that may be observed when moving from pilot to scale-up. PMID:25970443

  8. PILOT SCALE TESTING OF MONOSODIUM TITANATE MIXING FOR THE SRS SMALL COLUMN ION EXCHANGE PROCESS - 11224

    SciTech Connect

    Poirier, M.; Restivo, M.; Williams, M.; Herman, D.; Steeper, T.

    2011-01-25

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and select actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for suspending monosodium titanate (MST), crystalline silicotitanate (CST), and simulated sludge. The purpose of this pilot scale testing is to determine the requirements for the pumps to suspend the MST particles so that they can contact the strontium and actinides in the liquid and be removed from the tank. The pilot-scale tank is a 1/10.85 linear scaled model of SRS Tank 41H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 41H. The pump locations correspond to the proposed locations in Tank 41H by the SCIX program (Risers B5 and B2 for two pump configurations and Risers B5, B3, and B1 for three pump configurations). The conclusions from this work follow: (i) Neither two standard slurry pumps nor two quad volute slurry pumps will provide sufficient power to initially suspend MST in an SRS waste tank. (ii) Two Submersible Mixer Pumps (SMPs) will provide sufficient power to initially suspend MST in an SRS waste tank. However, the testing shows the required pump discharge velocity is close to the maximum discharge velocity of the pump (within 12%). (iii) Three SMPs will provide sufficient power to initially suspend MST in an SRS waste tank. The testing shows the required pump discharge velocity is 66% of the maximum discharge velocity of the pump. (iv) Three SMPs are needed to resuspend MST that has settled in a waste tank at nominal 45 C for four weeks. The testing shows the required pump discharge velocity is 77% of the maximum discharge velocity of the pump. Two SMPs are not sufficient to resuspend MST that settled under these conditions.

  9. NASA Bioreactor Schematic

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The schematic depicts the major elements and flow patterns inside the NASA Bioreactor system. Waste and fresh medium are contained in plastic bags placed side-by-side so the waste bag fills as the fresh medium bag is depleted. The compliance vessel contains a bladder to accommodate pressure transients that might damage the system. A peristolic pump moves fluid by squeezing the plastic tubing, thus avoiding potential contamination. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  10. NASA Classroom Bioreactor

    NASA Technical Reports Server (NTRS)

    Scully, Robert

    2004-01-01

    Exploration of space provides a compelling need for cell-based research into the basic mechanisms that underlie the profound changes that occur in terrestrial life that is transitioned to low gravity environments. Toward that end, NASA developed a rotating bioreactor in which cells are cultured while continuously suspended in a cylinder in which the culture medium rotates with the cylinder. The randomization of the gravity vector accomplished by the continuous rotation, in a low shear environment, provides an analog of microgravity. Because cultures grown in bioreactors develop structures and functions that are much closer to those exhibited by native tissue than can be achieved with traditional culture methods, bioreactors have contributed substantially to advancing research in the fields of cancer, diabetes, infectious disease modeling for vaccine production, drug efficacy, and tissue engineering. NASA has developed a Classroom Bioreactor (CB) that is built from parts that are easily obtained and assembled, user-friendly and versatile. It can be easily used in simple school settings to examine the effect cultures of seeds or cells. An educational brief provides assembly instructions and lesson plans that describes activities in science, math and technology that explore free fall, microgravity, orbits, bioreactors, structure-function relationships and the scientific method.

  11. Pilot Comparison of Radiance Temperature Scale Realization Between NIMT and NMIJ

    NASA Astrophysics Data System (ADS)

    Keawprasert, T.; Yamada, Y.; Ishii, J.

    2015-03-01

    A pilot comparison of radiance temperature scale realizations between the National Institute of Metrology Thailand (NIMT) and the National Metrology Institute of Japan (NMIJ) was conducted. At the two national metrology institutes (NMIs), a 900 nm radiation thermometer, used as the transfer artifact, was calibrated by a means of a multiple fixed-point method using the fixed-point blackbody of Zn, Al, Ag, and Cu points, and by means of relative spectral responsivity measurements according to the International Temperature Scale of 1990 (ITS-90) definition. The Sakuma-Hattori equation is used for interpolating the radiance temperature scale between the four fixed points and also for extrapolating the ITS-90 temperature scale to 2000 C. This paper compares the calibration results in terms of fixed-point measurements, relative spectral responsivity, and finally the radiance temperature scale. Good agreement for the fixed-point measurements was found in case a correction for the change of the internal temperature of the artifact was applied using the temperature coefficient measured at the NMIJ. For the realized radiance temperature range from 400 C to 1100 C, the resulting scale differences between the two NMIs are well within the combined scale comparison uncertainty of 0.12 C (). The resulting spectral responsivity measured at the NIMT has a comparable curve to that measured at the NMIJ especially in the out-of-band region, yielding a ITS-90 scale difference within 1.0 C from the Cu point to 2000 C, whereas the realization comparison uncertainty of NIMT and NMIJ combined is 1.2 C () at 2000 C.

  12. Pilot-Scale Laboratory Instruction for Chemical Engineering: The Specific Case of the Pilot-Unit Leading Group

    ERIC Educational Resources Information Center

    Billet, Anne-Marie; Camy, Severine; Coufort-Saudejaud, Carole

    2010-01-01

    This paper presents an original approach for Chemical Engineering laboratory teaching that is currently applied at INP-ENSIACET (France). This approach, referred to as "pilot-unit leading group" is based on a partial management of the laboratories by the students themselves who become temporarily in charge of one specific laboratory. In addition…

  13. Pilot-Scale Demonstration of ALTA for NOx Control in Pulverized Coal-Fired Boilers

    SciTech Connect

    Andrew Fry; Devin Davis; Marc Cremer; Bradley Adams

    2008-04-30

    This report describes computational fluid dynamics (CFD) modeling and pilot-scale testing conducted to demonstrate the ability of the Advanced Layered Technology Approach (ALTA) to reduce NO{sub x} emissions in a pulverized coal (PC) boiler. Testing specifically focused on characterizing NO{sub x} behavior with deep burner staging combined with Rich Reagent Injection (RRI). Tests were performed in a 4 MBtu/hr pilot-scale furnace at the University of Utah. Reaction Engineering International (REI) led the project team which included the University of Utah and Combustion Components Associates (CCA). Deep burner staging and RRI, combined with selective non-catalytic reduction (SNCR), make up the Advanced Layered Technology Approach (ALTA) for NO{sub x} reduction. The application of ALTA in a PC environment requires homogenization and rapid reaction of post-burner combustion gases and has not been successfully demonstrated in the past. Operation of the existing low-NO{sub x} burner and design and operation of an application specific ALTA burner was guided by CFD modeling conducted by REI. Parametric pilot-scale testing proved the chemistry of RRI in a PC environment with a NOx reduction of 79% at long residence times and high baseline NOx rate. At representative particle residence times, typical operation of the dual-register low-NO{sub x} burner provided an environment that was unsuitable for NO{sub x} reduction by RRI, showing no NOx reduction. With RRI, the ALTA burner was able to produce NO{sub x} emissions 20% lower than the low-NO{sub x} burner, 76 ppmv vs. 94 ppmv, at a burner stoichiometric ratio (BSR) of 0.7 and a normalized stoichiometric ratio (NSR) of 2.0. CFD modeling was used to investigate the application of RRI for NO{sub x} control on a 180 MW{sub e} wall-fired, PC boiler. A NO{sub x} reduction of 37% from baseline (normal operation) was predicted using ALTA burners with RRI to produce a NO{sub x} emission rate of 0.185 lb/MBtu at the horizontal nose of the boiler. When combined with SNCR, a NO{sub x} emission rate of 0.12-0.14 lb/MBtu can be expected when implementing a full ALTA system on this unit. Cost effectiveness of the full ALTA system was estimated at $2,152/ton NO{sub x} removed; this was less than 75% of the cost estimated for an SCR system on a unit of this size.

  14. Pilot-scale treatability test plan for the 200-BP-5 operable unit

    SciTech Connect

    Not Available

    1994-08-01

    This document presents the treatability test plan for pilot-scale pump and treat testing at the 200-BP-5 Operable Unit. This treatability test plan has been prepared in response to an agreement between the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA), and the State of Washington Department of Ecology (Ecology), as documented in Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement, Ecology et al. 1989a) Change Control Form M-13-93-03 (Ecology et al. 1994) and a recent 200 NPL Agreement Change Control Form (Appendix A). The agreement also requires that, following completion of the activities described in this test plan, a 200-BP-5 Operable Unit Interim Remedial Measure (IRM) Proposed Plan be developed for use in preparing an Interim Action Record of Decision (ROD). The IRM Proposed Plan will be supported by the results of this treatability test plan, as well as by other 200-BP-5 Operable Unit activities (e.g., development of a qualitative risk assessment). Once issued, the Interim Action ROD will specify the interim action(s) for groundwater contamination at the 200-BP-5 Operable Unit. The treatability test approach is to conduct a pilot-scale pump and treat test for each of the two contaminant plumes associated with the 200-BP-5 Operable Unit. Primary contaminants of concern are {sup 99}Tc and {sup 60}Co for underwater affected by past discharges to the 216-BY Cribs, and {sup 90}Sr, {sup 239/240}Pu, and Cs for groundwater affected by past discharges to the 216-B-5 Reverse Well. The purpose of the pilot-scale treatability testing presented in this testplan is to provide the data basis for preparing an IRM Proposed Plan. To achieve this objective, treatability testing must: Assess the performance of groundwater pumping with respect to the ability to extract a significant amount of the primary contaminant mass present in the two contaminant plumes.

  15. Pilot scale study and design of a granular activated carbon regeneration process using supercritical fluids

    SciTech Connect

    Tomasko, D.L.; Hay, K.J. ); Leman, G.W. ); Eckert, C.A. )

    1993-08-01

    A technology which has great potential for environmental control and waste remediation is contaminant removal and separation with supercritical fluids (SCF's) or supercritical fluid extraction (SFE). Pressure tuning of solvent power allows SCF processes to adapt to a wide variety of small batch oriented separations typified by environmental cleanup operations. The ability of supercritical CO[sub 2] to extract model contaminant compounds from GAC and subsequently drop out most of the contaminant in a liquid phase has been investigated in a pilot scale apparatus. Typical desorption profiles indicate an 85% removal of the compound from the carbon which allows for reuse. The desorption results have been interpreted with a generalized desorption-mass transfer model. The results of the pilot plant studies have been applied to the design of a fixed-site GAC regeneration unit consisting of a three-element desorber with two-stage flash separation. Optimization of the process centers around minimizing the cost of recycling the SCF through an efficient recompression scheme and cycle configuration in the desorber unit. An economic evaluation shows a processing cost of 10.6 cents/lb (23 cents/kg) GAC which compares favorably with thermal regeneration and incineration. This non-destructive process allows re-use of the GAC while maintaining a high adsorbate capacity, which reduces carbon replacement costs and significantly decreases the need for carbon disposal by landfill or incineration. 25 refs., 13 figs., 3 tabs.

  16. Process improvement for semipurified oleosomes on a pilot-plant scale.

    PubMed

    Kapchie, Virginie N; Hauck, Catherine C; Wang, Hui; Murphy, Patricia A

    2011-08-01

    Semipurified oleosomes were isolated on a pilot-plant scale using improved-process extraction conditions. The improved process consisted of continuous centrifugation in a three-phase decanter with recirculation of slurry until most of the oleosomes were recovered. Oleosome fractionation, oleosin identification, and isoflavone and saponin mass distributions and recoveries were investigated. The improved pilot-plant oleosome extraction process was achieved in 8 h. A total of 91%± 1% of soybean oil was recovered as intact oleosomes. The oil content of the aqueous supernatant and the residue fractions were low at 2% and 3%, respectively. The aqueous supernatant fraction contained 40% total soybean protein. About 76% of the proteins present in the oleosome fraction were soybean storage proteins. Washing the semipurified oleosomes with a 0.1 M Tris-HCl, pH 8.6 containing 0.4 M sucrose, and 0.5 M NaCl resulted in the recovery of the associated storage proteins. The recovery of these proteins in addition to the protein in aqueous supernatant accounted for 79% of the total soybean storage proteins fractionated by this process. Oleosins were detected at 17 and 18 kDa. Isoflavones and saponins partitioned into the oleosome, aqueous supernatant, and residue fractions at different ratios with the majority, about 82 and 63 mole%, respectively, in oleosome and aqueous supernatant fractions, making these fractions an attractive source for phytochemicals. PMID:22417483

  17. Enrichment of Plasticicumulans acidivorans at pilot-scale for PHA production on industrial wastewater.

    PubMed

    Tamisa, Jelmer; Lužkov, Kätlin; Jiang, Yang; van Loosdrecht, Mark C M; Kleerebezem, Robbert

    2014-12-20

    A PHA producing microbial culture dominated by Plasticicumulans acidivorans was enriched in a pilot plant using fermented wastewater from the Mars candy bar factory. The pilot plant comprised (1) anaerobic fermentation, (2) enrichment of a PHA-producing microbial community and (3) accumulation for maximization of the cellular PHA content. After anaerobic fermentation, the wastewater contained mainly VFAs (0.64 ± 0.15 gCOD/gCOD) and ethanol (0.22 ± 0.13 gCOD/gCOD). In the enrichment reactor (cycle 12 h, SRT 24 h) a feast-famine pattern was established with a feast phase of around 35 ± 5 min. The culture was able to accumulate 0.70 ± 0.05 gPHA/gVSS. The difference with previous lab-scale results from P. acidivorans, in which a PHA content of 0.90 gPHA/gVSS was achieved, could be attributed to the presence of solids in the influent, the growth of a side population and the accumulation of non-PHA storage compounds that appeared to be related to ethanol consumption. PMID:25456060

  18. Pilot-scale equipment development for pyrochemical reduction of spent oxide fuel

    SciTech Connect

    Herrmann, S.D.; King, R.W.; Durstine, K.R.; Eberl, C.S.

    1998-07-01

    Argonne National Laboratory (ANL) has developed and is presently demonstrating the electrometallurgical conditioning of sodium-bonded spent metal fuel from Experimental Breeder Reactor II, resulting in uranium, ceramic, and metal waste forms. Equipment is being developed at ANL which will precondition irradiated oxide fuel and demonstrate the application of electrometallurgical conditioning to such non-metallic fuels as well. The oxide reduction process preconditions irradiated oxide fuel such that uranium and transuranic (TRU) constituents are chemically reduced into metallic form via a molten Li/LiCl-based reduction system. In this form the spent fuel is further conditioned in an electrorefiner and waste handling equipment, thereby placing the uranium, TRU elements, and fissions products into stable forms suitable for placement in a long-term repository. Development of the Li/LiCl-based oxide reduction process has proceeded at lab- (nominally 50 grams of heavy metal (HM)) and engineering-scale (nominally 10-kg of HM) for unirradiated oxide fuel. The presentation described the process and equipment design for scale-up from lab- and engineering-scale reduction of unirradiated oxide fuel in gloveboxes to pilot-scale (up to 100-kg of HM) reduction of irradiated oxide fuel in a hot cell. [Abstract only.

  19. Measuring Water in Bioreactor Landfills

    NASA Astrophysics Data System (ADS)

    Han, B.; Gallagher, V. N.; Imhoff, P. T.; Yazdani, R.; Chiu, P.

    2004-12-01

    Methane is an important greenhouse gas, and landfills are the largest anthropogenic source in many developed countries. Bioreactor landfills have been proposed as one means of abating greenhouse gas emissions from landfills. Here, the decomposition of organic wastes is enhanced by the controlled addition of water or leachate to maintain optimal conditions for waste decomposition. Greenhouse gas abatement is accomplished by sequestration of photosynthetically derived carbon in wastes, CO2 offsets from energy use of waste derived gas, and mitigation of methane emission from the wastes. Maintaining optimal moisture conditions for waste degradation is perhaps the most important operational parameter in bioreactor landfills. To determine how much water is needed and where to add it, methods are required to measure water within solid waste. However, there is no reliable method that can measure moisture content simply and accurately in the heterogeneous environment typical of landfills. While well drilling and analysis of solid waste samples is sometimes used to determine moisture content, this is an expensive, time-consuming, and destructive procedure. To overcome these problems, a new technology recently developed by hydrologists for measuring water in the vadose zone --- the partitioning tracer test (PTT) --- was evaluated for measuring water in solid waste in a full-scale bioreactor landfill in Yolo County, CA. Two field tests were conducted in different regions of an aerobic bioreactor landfill, with each test measuring water in ? 250 ft3 of solid waste. Tracers were injected through existing tubes inserted in the landfill, and tracer breakthrough curves were measured through time from the landfill's gas collection system. Gas samples were analyzed on site using a field-portable gas chromatograph and shipped offsite for more accurate laboratory analysis. In the center of the landfill, PTT measurements indicated that the fraction of the pore space filled with water was 29%, while the moisture content, the mass of water divided by total wet mass of solid waste, was 28%. Near the sloped sides of the landfill, PTT results indicated that only 7.1% of the pore space was filled with water, while the moisture content was estimated to be 6.9%. These measurements are in close agreement with gravimetric measurements made on solid waste samples collected after each PTT: moisture content of 27% in the center of the landfill and only 6% near the edge of the landfill. We discuss these measurements in detail, the limitations of the PTT method for landfills, and operational guidelines for achieving unbiased measurements of moisture content in landfills using the PTT method.

  20. Anaerobic Treatment of Palm Oil Mill Effluent in Pilot-Scale Anaerobic EGSB Reactor

    PubMed Central

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Li, Xu-Dong

    2015-01-01

    Large volumes of untreated palm oil mill effluent (POME) pose threat to aquatic environment due to the presence of very high organic content. The present investigation involved two pilot-scale anaerobic expanded granular sludge bed (EGSB) reactors, continuously operated for 1 year to treat POME. Setting HRT at 9.8?d, the anaerobic EGSB reactors reduced COD from 71179?mg/L to 12341?mg/L and recycled half of sludge by a dissolved air flotation (DAF). The average effluent COD was 3587?mg/L with the consistent COD removal efficiency of 94.89%. Adding cationic polymer (PAM) dose of 30?mg/L to DAF unit and recycling its half of sludge caused granulation of anaerobic sludge. Bacilli and small coccid bacteria were the dominant microbial species of the reactor. The reactor produced 27.65?m3 of biogas per m3 of POME which was utilized for electricity generation. PMID:26167485

  1. Slag Characterization: A Necessary Tool for Modeling and Simulating Refractory Corrosion on a Pilot Scale

    NASA Astrophysics Data System (ADS)

    Gregurek, D.; Wenzl, C.; Reiter, V.; Studnicka, H. L.; Spanring, A.

    2014-09-01

    The slag in pyrometallurgical operations plays a major role affecting the life of furnace refractory. As such, comprehensive mineralogical and chemical slag examination, physical property determination including the slag melting point or liquidus, and viscosity are necessary for precise understanding of a slag. At the RHI Technology Center Leoben, Austria, the main objective of slag characterization work is to reach a better understanding of refractory corrosion. This corrosion testwork is performed at the laboratory and pilot scale. Typically, corrosion tests are performed in an induction furnace or rotary kiln, with the main purpose being the improved selection of the most suitable refractory products to improve refractory performance in operating metallurgical furnaces. This article focuses on characterization of samples of six non-ferrous, customer-provided slags. This includes slag from a copper Peirce-Smith converter, a short rotary furnace for lead smelting, a titania-processing furnace, and a Ni-Cu top blowing rotary converter (TBRC) plant.

  2. Pilot scale evaluation of peroxone for treatment of contaminated groundwater. Technical report

    SciTech Connect

    Zappi, M.; Swindle, R.; Harvey, S.; Morgan, R.; Strang, D.

    1994-12-31

    Advance oxidation processes (AOPs) are treatment processes that rely on the hydroxyl radical to destroy contaminants in polluted waters. Peroxone is an advanced oxidation process that utilizes the reaction of ozone and hydrogen peroxide to produce hydroxyl radicals without the requirement of ultraviolet light. The USAE Waterways Experiment Station (WES) evaluated the use of peroxone at Rocky Mountain Arsenal (RMA) for treatment of groundwater contaminated with diisopropylmethylphosphonate (DIMP) and low levels of pesticides. This evaluation was performed at RMA using a pilot scale treatment system. Results indicate that DIMP was easily oxidized to below detection limit levels. Optimization of the process indicated that a 250 m1/1 hydrogen peroxide dose in four columns plumbed in series that were all sparged with 2.2% ozonated air at a rate of 2.5 scfm.

  3. Low frequency ultrasonic device Sonitube: A possible gate to pilot and industrial scale applications

    NASA Astrophysics Data System (ADS)

    Leveque, J. M.; Duclaux, Laurent; Fontvieille, Dominique; Gondrexon, Nicolas; Vibert, Raphael; Perrier, Arnaud

    2014-10-01

    One of the first commercially available low frequency ultrasonic devices working on continuous mode, Sonitube®, is presented and described here below. This apparatus, unique in its design, is not only of an easy handling but also does require neither heavy maintenance nor high energy input. In addition the great advantage to work on continuous mode allows to foreseen potential pilot and even small scale industrial applications with flow-rates from 50 to 800L/h. Its potential has been so far explored in protein disaggregation, dispersion of aggregates and particles and transesterification processes. Here, some preliminary results done on biogas processing will be presented and discussed, highlighting the high potential of this device.

  4. HWVP pilot-scale vitrification system campaign: LFCM-8 summary report

    SciTech Connect

    Perez, J.M.; Whitney, L.D.; Buchmiller, W.C.; Daume, J.T.; Whyatt, G.A.

    1996-04-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed to treat the high-level radiative waste (HLW) stored in underground storage tanks as an alkaline sludge. Tank waste will first be retrieved and pretreated to minimize solids requiring vitrification as HLW. The glass product resulting from HWVP operations will be stored onsite in stainless steel canisters until the HLW repository is available for final disposal. The first waste stream scheduled to be processed by the HWVP is the neutralized current acid waste (NCAW) stored in double-shell storage tanks. The Pacific Northwest Laboratory (PNL) is supporting Westinghouse Hanford Company (WHC) by providing research, development, and engineering expertise in defined areas. As a part of this support, pilot-scale testing is being conducted to support closure of HWVP design and development issues. Testing results will verify equipment design performance, establish acceptable and optimum process parameters, and support product qualification activities.

  5. Pilot-scale evaluation of incinerating listed wastes from specific sources. Report for 1986-1988

    SciTech Connect

    Dempsey, C.R.; Thurnau, R.C.

    1990-01-01

    Pilot-Scale incineration testing was conducted at the United States Environmental Protection Agency's Incineration Research Facility (IRF) to support the development of best demonstrated available technology (BDAT) standards for the treatment of several hazardous wastes from specific sources (K-Wastes). All testing was conducted in the IRF's rotary kiln system. The paper summarizes the results of this testing for four of these wastes. The objective was to determine if these wastes could be incinerated by a well designed, well operated incinerator based on compliance with the hazardous waste incinerator regulations and to characterize the incineration residuals for hazardous constituents. It was found that these wastes could generally be incinerated in compliance with these regulations. However, the mist carryover from the air pollution control device would have to be more effectively controlled to meet the particulate standard in some cases. No detectable amounts of principle organic hazardous constituents (POHC's) were found in either the kiln ash or scrubber blowdown.

  6. Gaseous emissions during the solid state fermentation of different wastes for enzyme production at pilot scale.

    PubMed

    Maulini-Duran, Caterina; Abraham, Juliana; Rodríguez-Pérez, Sheila; Cerda, Alejandra; Jiménez-Peñalver, Pedro; Gea, Teresa; Barrena, Raquel; Artola, Adriana; Font, Xavier; Sánchez, Antoni

    2015-03-01

    The emissions of volatile organic compounds (VOC), CH4, N2O and NH3 during the solid state fermentation process of some selected wastes to obtain different enzymes have been determined at pilot scale. Orange peel+compost (OP), hair wastes+raw sludge (HW) and winterization residue+raw sludge (WR) have been processed in duplicate in 50 L reactors to provide emission factors and to identify the different VOC families present in exhaust gaseous emissions. Ammonia emission from HW fermentation (3.2±0.5 kg Mg(-1) dry matter) and VOC emission during OP processes (18±6 kg Mg(-1) dry matter) should be considered in an industrial application of these processes. Terpenes have been the most emitted VOC family during all the processes although the emission of sulphide molecules during HW SSF is notable. The most emitted compound was dimethyl disulfide in HW and WR processes, and limonene in the SSF of OP. PMID:25545090

  7. Torrefaction of cedarwood in a pilot scale rotary kiln and the influence of industrial flue gas.

    PubMed

    Mei, Yanyang; Liu, Rujie; Yang, Qing; Yang, Haiping; Shao, Jingai; Draper, Christopher; Zhang, Shihong; Chen, Hanping

    2015-02-01

    Torrefaction of cedarwood was performed in a pilot-scale rotary kiln at various temperatures (200, 230, 260 and 290°C). The torrefaction properties, the influence on the grindability and hydroscopicity of the torrefied biomass were investigated in detail as well as the combustion performance. It turned out that, compared with raw biomass, the grindability and the hydrophobicity of the torrefied biomass were significantly improved, and the increasing torrefaction temperature resulted in a decrease in grinding energy consumption and an increase in the proportion of smaller-sized particles. The use of industrial flue gas had a significant influence on the behavior of cedarwood during torrefaction and the properties of the resultant solid products. To optimize the energy density and energy yield, the temperature of torrefaction using flue gas should be controlled within 260°C. Additionally, the combustion of torrefied samples was mainly the combustion of chars, with similar combustion characteristics to lignite. PMID:25497055

  8. Combustion characteristics of paper and sewage sludge in a pilot-scale fluidized bed.

    PubMed

    Yu, Yong-Ho; Chung, Jinwook

    2015-01-01

    This study characterizes the combustion of paper and sewage sludge in a pilot-scale fluidized bed. The highest temperature during combustion within the system was found at the surface of the fluidized bed. Paper sludge containing roughly 59.8% water was burned without auxiliary fuel, but auxiliary fuel was required to incinerate the sewage sludge, which contained about 79.3% water. The stability of operation was monitored based on the average pressure and the standard deviation of pressure fluctuations. The average pressure at the surface of the fluidized bed decreased as the sludge feed rate increased. However, the standard deviation of pressure fluctuations increased as the sludge feed rate increased. Finally, carbon monoxide (CO) emissions decreased as oxygen content increased in the flue gas, and nitrogen oxide (NOx) emissions were also tied with oxygen content. PMID:26061904

  9. Recovery of phosphorus from dairy manure: a pilot-scale study.

    PubMed

    Zhang, Hui; Lo, Victor K; Thompson, James R; Koch, Frederic A; Liao, Ping H; Lobanov, Sergey; Mavinic, Donald S; Atwater, James W

    2015-01-01

    Phosphorus was recovered from dairy manure via a microwave-enhanced advanced oxidation process (MW/H2O2-AOP) followed by struvite crystallization in a pilot-scale continuous flow operation. Soluble phosphorus in dairy manure increased by over 50% after the MW/H2O2-AOP, and the settleability of suspended solids was greatly improved. More than 50% of clear supernatant was obtained after microwave treatment, and the maximum volume of supernatant was obtained at a hydrogen peroxide dosage of 0.3% and pH 3.5. By adding oxalic acid into the supernatant, about 90% of calcium was removed, while more than 90% of magnesium was retained. As a result, the resulting solution was well suited for struvite crystallization. Nearly 95% of phosphorus in the treated supernatant was removed and recovered as struvite. PMID:25420588

  10. Anaerobic Treatment of Palm Oil Mill Effluent in Pilot-Scale Anaerobic EGSB Reactor.

    PubMed

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Li, Xu-Dong

    2015-01-01

    Large volumes of untreated palm oil mill effluent (POME) pose threat to aquatic environment due to the presence of very high organic content. The present investigation involved two pilot-scale anaerobic expanded granular sludge bed (EGSB) reactors, continuously operated for 1 year to treat POME. Setting HRT at 9.8 d, the anaerobic EGSB reactors reduced COD from 71179 mg/L to 12341 mg/L and recycled half of sludge by a dissolved air flotation (DAF). The average effluent COD was 3587 mg/L with the consistent COD removal efficiency of 94.89%. Adding cationic polymer (PAM) dose of 30 mg/L to DAF unit and recycling its half of sludge caused granulation of anaerobic sludge. Bacilli and small coccid bacteria were the dominant microbial species of the reactor. The reactor produced 27.65 m(3) of biogas per m(3) of POME which was utilized for electricity generation. PMID:26167485

  11. Microliter-bioreactor array with buoyancy-driven stirring for human hematopoietic stem cell culture

    E-print Network

    Meinhart, Carl

    Microliter-bioreactor array with buoyancy-driven stirring for human hematopoietic stem cell culture of hematopoietic stem cell HSC cultures. Exploring a wide range of experimental conditions at the microliter scale-scale bioreactors for stem cell production at the clinical level. The controlled stirring inside the wells

  12. Closure for milliliter scale bioreactor

    DOEpatents

    Klein, David L. (Palo Alto, CA); Laidlaw, Robert D. (Albany, CA); Andronaco, Gregory (Palo Alto, CA); Boyer, Stephen G. (Moss Beach, CA)

    2010-12-14

    A closure for a microreactor includes a cap that is configured to be inserted into a well of the microreactor. The cap, or at least a portion of the cap, is compliant so as to form a seal with the well when the cap is inserted. The cap includes an aperture that provides an airway between the inside of the well to the external environment when the cap is inserted into the well. A porous plug is inserted in the aperture, e.g., either directly or in tube that extends through the aperture. The porous plug permits gas within the well to pass through the aperture while preventing liquids from passing through to reduce evaporation and preventing microbes from passing through to provide a sterile environment. A one-way valve may also be used to help control the environment in the well.

  13. Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation

    SciTech Connect

    Abbas, Charles; Beery, Kyle; Orth, Rick; Zacher, Alan

    2007-09-28

    The purpose of the Department of Energy (DOE)-supported corn fiber conversion project, “Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation” is to develop and demonstrate an integrated, economical process for the separation of corn fiber into its principal components to produce higher value-added fuel (ethanol and biodiesel), nutraceuticals (phytosterols), chemicals (polyols), and animal feed (corn fiber molasses). This project has successfully demonstrated the corn fiber conversion process on the pilot scale, and ensured that the process will integrate well into existing ADM corn wet-mills. This process involves hydrolyzing the corn fiber to solubilize 50% of the corn fiber as oligosaccharides and soluble protein. The solubilized fiber is removed and the remaining fiber residue is solvent extracted to remove the corn fiber oil, which contains valuable phytosterols. The extracted oil is refined to separate the phytosterols and the remaining oil is converted to biodiesel. The de-oiled fiber is enzymatically hydrolyzed and remixed with the soluble oligosaccharides in a fermentation vessel where it is fermented by a recombinant yeast, which is capable of fermenting the glucose and xylose to produce ethanol. The fermentation broth is distilled to remove the ethanol. The stillage is centrifuged to separate the yeast cell mass from the soluble components. The yeast cell mass is sold as a high-protein yeast cream and the remaining sugars in the stillage can be purified to produce a feedstock for catalytic conversion of the sugars to polyols (mainly ethylene glycol and propylene glycol) if desirable. The remaining materials from the purification step and any materials remaining after catalytic conversion are concentrated and sold as a corn fiber molasses. Additional high-value products are being investigated for the use of the corn fiber as a dietary fiber sources.

  14. Pilot-scale of MecTool{trademark}: A novel approach to in-situ remediation

    SciTech Connect

    Hemmings, R.; Hoeffner, S.; Schafer, J.; Kappler, R.

    1994-12-31

    The MecTool{trademark} is an in situ mixing and fluid delivery system consisting of a 4 to 14 feet in diameter boring/mixing tool, a hollow stem kelly bar with an integral fluid delivery system, high torque earth-drilling equipment, an off-gas collection system, and computerized control and monitoring. The MecTool{trademark} has been used in several field treatments. demonstrations and studies. To further the technology and to provide a technical basis for the MecTool{trademark} treatment system, a mini-MecTool{trademark} was used to evaluate pilot-scale performance. The mini-MecTool{trademark} is a miniature version of the field unit and consists of a hollow Kelly bar and a 10 inch diameter auger with injection ports. A sandy clay soil representing a typical unsaturated zone soil was spiked with contaminants of interest (organics, metals and radionuclides). The spiked soil was treated with the mini-MecTool{trademark} unit using hot air stripping for removal of volatile organics, stabilization to reduce the volatilization of organics and to fix metals and radionuclides, peroxide injection for wet oxidation of the organics and bioremediation to degrade the volatile organics. For comparison, laboratory controls representing ideal treatment conditions were also performed for these same four technologies. In each case, the mini-MecTool{trademark} pilot-scale test was compared to the laboratory control sample treated under optimum conditions. The MecTool{trademark} in-situ methodology showed good promise for the range of contaminants considered.

  15. Pilot-scale grout production test with a simulated low-level waste

    SciTech Connect

    Fow, C.L.; Mitchell, D.H.; Treat, R.L.; Hymas, C.R.

    1987-05-01

    Plans are underway at the Hanford Site near Richland, Washington, to convert the low-level fraction of radioactive liquid wastes to a grout form for permanent disposal. Grout is a mixture of liquid waste and grout formers, including portland cement, fly ash, and clays. In the plan, the grout slurry is pumped to subsurface concrete vaults on the Hanford Site, where the grout will solidify into large monoliths, thereby immobilizing the waste. A similar disposal concept is being planned at the Savannah River Laboratory site. The underground disposal of grout was conducted at Oak Ridge National Laboratory between 1966 and 1984. Design and construction of grout processing and disposal facilities are underway. The Transportable Grout Facility (TGF), operated by Rockwell Hanford Operations (Rockwell) for the Department of Energy (DOE), is scheduled to grout Phosphate/Sulfate N Reactor Operations Waste (PSW) in FY 1988. Phosphate/Sulfate Waste is a blend of two low-level waste streams generated at Hanford's N Reactor. Other wastes are scheduled to be grouted in subsequent years. Pacific Northwest Laboratory (PNL) is verifying that Hanford grouts can be safely and efficiently processed. To meet this objective, pilot-scale grout process equipment was installed. On July 29 and 30, 1986, PNL conducted a pilot-scale grout production test for Rockwell. During the test, 16,000 gallons of simulated nonradioactive PSW were mixed with grout formers to produce 22,000 gallons of PSW grout. The grout was pumped at a nominal rate of 15 gpm (about 25% of the nominal production rate planned for the TGF) to a lined and covered trench with a capacity of 30,000 gallons. Emplacement of grout in the trench will permit subsequent evaluation of homogeneity of grout in a large monolith. 12 refs., 34 figs., 5 tabs.

  16. Transformation of bisphenol A in water distribution systems: a pilot-scale study.

    PubMed

    Li, Cong; Wang, Zilong; Yang, Y Jeffrey; Liu, Jingqing; Mao, Xinwei; Zhang, Yan

    2015-04-01

    Halogenations of bisphenol A (BPA) in a pilot-scale water distribution system (WDS) of a cement-lined ductile cast iron pipe were investigated. The water in the pilot-scale WDS was chlorinated with a free chlorine concentration of 0.7 mg L(-1) using sodium hypochlorite, and with an initial BPA concentration of 100 ?g L(-1) was spiked in the WDS. Halogenated compounds in the BPA experiments were identified using EI/GC/MS and GC. Several BPA congeners, including 2-chlorobisphenol A (MCBPA), dichlorobisphenol A (D2-CBPA), 2,2',6-trichlorobisphenol A (T3CBPA), 2,2',6,6'-tetrachlorobisphenol A (T4CBPA), 2-bromobisphenol A (MBBPA), and bromochlorobisphenol A (MBMCBPA) were found. Moreover, further halogenation yielded other reaction intermediates, including 2,4,6-trichlorophenol (T3CP), dichlorobisphenol A, bromodichlorophenol, and dibromochlorophenol. After halogenation for 120min, most of the abovementioned reaction intermediates disappeared and were replaced by trihalomethanes (THMs). Based on these experimental findings, the halogenation process of BPA oxidation in a WDS includes three stages: (1) halogenation on the aromatic ring; (2) chlorine or bromine substitution followed by cleavage of the ?-C bond on the isopropyl moiety with a positive partial charge and a ?'-C bond on the benzene moiety with a negative partial charge; and (3) THMs and a minor HAA formation from phenolic intermediates through the benzene ring opening with a chlorine and bromine substitution of the hydrogen on the carbon atoms. The oxidation mechanisms of the entire transformation from BPA to THM/HAA in the WDS were proposed. PMID:25550112

  17. Bench- and pilot-scale thermal desorption treatability studies on pesticide-contaminated soils from Rocky Mountain Arsenal

    SciTech Connect

    Swanstrom, C.P.; Besmer, M.

    1995-03-09

    Thermal desorption is being considered as a potential remediation technology for pesticide-contaminated soils at the Rocky Mountain Arsenal (RMA) in Denver, Colorado. From 1988 through 1992, numerous laboratory- and bench-scale indirect-heated thermal desorption (IHTD) treatability studies have been performed on various soil medium groups from the arsenal. RMA has contracted Argonne National Laboratory to conduct a pilot-scale direct-fired thermal desorption (DFTD) treatability study on pesticide-contaminated RMA soil. The purpose of this treatability study is to evaluate the overall effectiveness of the DFTD technology on contaminated RMA soils and to provide data upon which future conceptual design assumptions and cost estimates for a full-scale system can be made. The equipment used in the DFTD treatability study is of large enough scale to provide good full-scale design parameters and operating conditions. The study will also provide valuable-emissions and materials-handling data. Specifically this program will determine if DFTD can achieve reductions in soil contamination below the RMA preliminary remediation goals (PRGs), define system operating conditions for achieving the PRGs, and determine the fate of arsenic and other hazardous metals at these operating conditions. This paper intends to compare existing data from a bench-scale IHTD treatability study using equipment operated in the batch mode to new data from a pilot-scale DFTD operated in a parallel-flow continuous mode. Delays due to materials-handling problems and permit issues have delayed the start of the pilot-scale DFTD testing. The first pilot-scale test is scheduled for the flat week in January 1995. The available data will be presented March 9, 1995, at the Seventh Annual Gulf Coast Environmental Conference in Houston, Texas.

  18. Mathematical and experimental pilot-scale study of coal reburning for NO sub x control in cyclone boilers

    SciTech Connect

    Farzan, H.; Wessel, R.A.

    1991-06-01

    The purpose of this pilot-scale study was to examine the effectiveness of reburning for NO{sub x} reduction and to assess the potential side effects. In addition, the potential of a high-sulfur Illinois coal for cyclone reburning application was evaluated. (VC)

  19. TECHNOLOGY EVALUATION REPORT: PILOT-SCALE DEMONSTRATION OF A SLURRY-PHASE BIOLOGICAL REACTOR FOR CREOSOTE-CONTAMINATED SOIL

    EPA Science Inventory

    This report documents a pilot-scale test of a slurry-phase biological reactor for treatment of creosote-contaminated soil. he technology used was a reactor system in which an aqueous slurry of soil was mixed with appropriate nutrients and seeded with microorganisms to enhance the...

  20. Pilot-scale On-farm Pretreatment of Perennial Grasses with Dilute Acid and Alkali for Fuel Ethanol Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass (Panicum virgatum L.) and reed canarygrass (Phalaris arundinacea L.) were pretreated with sulfuric acid or calcium hydroxide 50 g/kg DM at both the laboratory (250 g DM) and pilot-scale (250 kg DM) and anaerobically stored for two durations, 60 and 180 days. Pretreated and untreated samp...

  1. Towards direct potable reuse with forward osmosis: Technical assessment of long-term process performance at the pilot scale

    E-print Network

    Towards direct potable reuse with forward osmosis: Technical assessment of long-term process 26 April 2013 Available online 23 May 2013 Keywords: Forward osmosis Osmotic dilution Reverse osmosis the performance of forward osmosis (FO) at the pilot scale to achieve simultaneous seawater desalination

  2. DETERMINATION OF SEX HORMONES AND NONYLPHENOL ETHOXYLATES IN THE AQUEOUS MATRIXES OF TWO PILOT-SCALE MUNICIPAL WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    Two analytical methods were developed and refined for the detection and quantitation of two groups of endocrine-disrupting chemicals (EDCs) in the liquid matrixes of two pilot-scale municipal wastewater treatment plants. The targeted compounds are seven sex hormones (estradiol, ...

  3. RECYCLING A NONIONIC AQUEOUS-BASED METAL-CLEANING SOLUTION WITH A CERAMIC MEMBRANE: PILOT SCALE EVALUATION

    EPA Science Inventory

    The effectiveness of a zirconium dioxide (ZrO2) membrane filter was evaluated for recycling a nonionic aqueous metal cleaning bath under real-world conditions. The pilot-scale study consisted of four 7- to 16-day filtration runs, each processed a portion of the cleaning bath duri...

  4. RECYCLING A NONIONIC AQUEOUS-BASED METAL-CLEANING SOLUTION WITH A CERAMIC MEMBRANE: PILOT SCALE EVALUATION: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-CIN-1189 Ferguson*, T.D., Chen, A.S.C., and Stencel, N. Recycling a Nonionic Aqueous-Based Metal-Cleaning Solution with a Ceramic Membrane: Pilot Scale Evaluation. Published in: Environmental Progress 20 (2):123-132 (2001). The effectiveness of a zirconium dioxide (ZrO2) ...

  5. PILOT-SCALE STUDIES ON THE EFFECT OF BROMINE ADDITION ON THE EMISSIONS OF CHLORINATED ORGANIC COMBUSTION BY-PRODUCTS

    EPA Science Inventory

    The addition of brominated organic compounds to the feed of a pilot-scale incinerator burning chlorinated waste has been found previously, under some circumstances, to enhance emissions of volatile and semivolatile organic chlorinated products of incomplete combustion (PiCs) incl...

  6. INACTIVATION OF CRYPTOSPORIDIUM OOCYSTS IN A PILOT-SCALE OZONE BUBBLE-DIFFUSER CONTACTOR - II: MODEL VALIDATION AND APPLICATION

    EPA Science Inventory

    The ADR model developed in Part I of this study was successfully validated with experimenta data obtained for the inactivation of C. parvum and C. muris oocysts with a pilot-scale ozone-bubble diffuser contactor operated with treated Ohio River water. Kinetic parameters, required...

  7. PILOT-SCALE DEMONSTRATION OF A SLURRY-PHASE BIOLOGICAL REACTOR FOR CREOSOTE-CONTAMINATED SOIL - APPLICATION ANALYSIS REPORT

    EPA Science Inventory

    In support of the U.S. Environmental Protection Agency’s (EPA) Superfund Innovative Technology Evaluation (SITE) Program, a pilot-scale demonstration of a slurry-phase bioremediation process was performed May 1991 at the EPA’s Test & Evaluation Facility in Cincinnati, OH. In this...

  8. TECHNOLOGY EVALUATION REPORT, SITE PROGRAM DEMONSTRATION TEST: SHIRCO PILOT-SCALE INFRARED INCINERATION SYSTEM ROSE TOWNSHIP DEMODE ROAD SUPERFUND

    EPA Science Inventory

    The performance of the Shirco pilot-scale infrared thermal destruction system has been evaluated at the Rose Township, Demode Road Superfund Site and is presented in the report. he waste tested consisted of solvents, organics and heavy metals in an illegal dump site. olume I give...

  9. INTERACTIONS BETWEEN BROMINE AND CHLORINE IN A PILOT-SCALE HAZARDOUS WASTE INCINERATOR (EPA/600/A-96/066)

    EPA Science Inventory

    The paper discusses experiments that were performed in a 73-kW pilot-scale rotary-kiln incinerator simulator equipped with a 73-kW secondary combustion chamber during which a complex organic mixture containing bromine (Br) and chlorine (Cl) was incinerated. Detailed measurements ...

  10. CONTROL OF AIR POLLUTION EMISSIONS FROM MOLYBDENUM ROASTING. VOLUME 3. PILOT SCALE TEST RESULTS FOR MAGNESIUM OXIDE SCRUBBING

    EPA Science Inventory

    A research project was conducted to determine the feasibility of applying the magnesium oxide (MgO) scrubbing system to smelter off-gas streams containing approximately one percent SO2. Pilot scale (4000 cu Nm/hr) tests of the MgO system using a packed tower absorber with no rege...

  11. Development of a Pilot Scale Process to Sequester Aflatoxin and Release Bioactive Peptides from Highly Contaminated Peanut Meal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut meal (PM) is the high protein by-product remaining after commercial extraction of peanut oil. PM applications are limited because of typical high concentrations of aflatoxin. For the first time, pilot-scale extraction of protein and sequestration of aflatoxin from PM were evaluated. Aqueous...

  12. Underground tank vitrification: A pilot-scale in situ vitrification test of a tank containing a simulated mixed waste sludge

    SciTech Connect

    Thompson, L.E.; Powell, T.D.; Tixier, J.S.; Miller, M.C.; Owczarski, P.C.

    1993-09-01

    This report documents research on sludge vitrification. The first pilot scale in-situ vitrification test of a simulated underground tank was successfully completed by researchers at Pacific Northwest Laboratory. The vitrification process effectively immobilized the vast majority of radionuclides simulants and toxic metals were retained in the melt and uniformly distributed throughout the monolith.

  13. SIZE DISTRIBUTIONS OF TRACE METALS IN FLUE GAS PARTICULATE FROM A PILOT-SCALE ROTARY KILN INCINERATOR

    EPA Science Inventory

    The distributions of nine trace metals in flue gas particulate by particle size range were determined as part of a pilot-scale hazardous waste incineration test program. hese tests were conducted in the rotary kiln incinerator system at the U.S. EPA's Incineration Research Facili...

  14. A PILOT-SCALE STUDY OF THE PRECURSORS LEADING TO THE FORMATION OF MIXED BROMO-CHLORO DIOXINS AND FURANS

    EPA Science Inventory

    The paper gives results of experiments in a pilot-scale rotary kiln incinerator simulator where a mixture of chlorinated and brominated surrogate waste was burned in the presence of injected fly-ash from a coal-fired utility boiler. Measurements were made of semivolatile products...

  15. Monitoring Tribolium castaneum (Herbst) in Pilot-Scale Warehouses Treated with B-Cyfluthrin: Are Residual Insecticides and Trapping Compatible?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integrated pest management strategies for cereal processing facilities often include both pheromone-baited pitfall traps and crack and crevice applications of a residual insecticide like cyfluthrin. In replicated pilot-scale warehouses, a 15-week long experiment was conducted to compare population ...

  16. PILOT-SCALE REMOVAL OF FLUORIDE FROM LEGACY PLUTONIUM MATERIALS USING VACUUM SALT DISTILLATION

    SciTech Connect

    Pierce, R. A.; Pak, D. J.

    2012-09-11

    Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. In 2011, SRNL adapted the technology for the removal of fluoride from fluoride-bearing salts. The method involved an in situ reaction between potassium hydroxide (KOH) and the fluoride salt to yield potassium fluoride (KF) and the corresponding oxide. The KF and excess KOH can be distilled below 1000{deg}C using vacuum salt distillation (VSD). The apparatus for vacuum distillation contains a zone heated by a furnace and a zone actively cooled using either recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attaned, heating begins. Volatile salts distill from the heated zone to the cooled zone where they condense, leaving behind the non-volatile material in the feed boat. Studies discussed in this report were performed involving the use of non-radioactive simulants in small-scale and pilot-scale systems as well as radioactive testing of a small-scale system with plutonium-bearing materials. Aspects of interest include removable liner design considerations, boat materials, in-line moisture absorption, and salt deposition.

  17. Thermal composting of faecal matter as treatment and possible disinfection method--laboratory-scale and pilot-scale studies.

    PubMed

    Vinnerås, Björn; Björklund, Anders; Jönsson, Håkan

    2003-05-01

    When using toilets where the urine and faeces are collected separately for reuse as nutrients in agriculture, the collected matter should be disinfected. One way to do this is by thermal composting. Composting of different material mixes was investigated in a laboratory-scale experiment. This showed that the best mixture for dry thermal composting was a mix of faeces, food waste and amendment. The urine was collected separately by use of urine-diverting toilets. A new method was developed to mathematically evaluate and estimate the safety margins of pathogen inactivation during thermal composting. The method is based upon a mathematical calculation of the number of times total inactivation (at least 12log(10) reduction) of the organisms is achieved. In a pilot-scale experiment, the disinfection of a faeces/food waste mix was performed with a calculated safety margin of more than 37 times the total die-off of Enteroviruses and some 550 times that of Ascaris. Thus, well functioning composting seems to be effective for disinfection of faecal matter. To get a high temperature in all of the material, the reactor has to have sufficient insulation. A major disadvantage is the initial need for handling the raw un-disinfected material. The degradation of the organic matter in the compost was almost 75%, resulting in a small final volume that could safely be recycled. PMID:12573563

  18. Fixed-bed bioreactor system for the microbial solubilization of coal

    DOEpatents

    Scott, C.D.; Strandberg, G.W.

    1987-09-14

    A fixed-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fixed-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the large scale production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fixed-bed bioreactor. 1 fig., 1 tab.

  19. NASA Bioreactor tissue culture

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  20. Performance of a pilot-scale, steam-blown, pressurized fluidized bed biomass gasifier

    NASA Astrophysics Data System (ADS)

    Sweeney, Daniel Joseph

    With the discovery of vast fossil resources, and the subsequent development of the fossil fuel and petrochemical industry, the role of biomass-based products has declined. However, concerns about the finite and decreasing amount of fossil and mineral resources, in addition to health and climate impacts of fossil resource use, have elevated interest in innovative methods for converting renewable biomass resources into products that fit our modern lifestyle. Thermal conversion through gasification is an appealing method for utilizing biomass due to its operability using a wide variety of feedstocks at a wide range of scales, the product has a variety of uses (e.g., transportation fuel production, electricity production, chemicals synthesis), and in many cases, results in significantly lower greenhouse gas emissions. In spite of the advantages of gasification, several technical hurdles have hindered its commercial development. A number of studies have focused on laboratory-scale and atmospheric biomass gasification. However, few studies have reported on pilot-scale, woody biomass gasification under pressurized conditions. The purpose of this research is an assessment of the performance of a pilot-scale, steam-blown, pressurized fluidized bed biomass gasifier. The 200 kWth fluidized bed gasifier is capable of operation using solid feedstocks at feedrates up to 65 lb/hr, bed temperatures up to 1600°F, and pressures up to 8 atm. Gasifier performance was assessed under various temperatures, pressure, and feedstock (untreated woody biomass, dark and medium torrefied biomass) conditions by measuring product gas yield and composition, residue (e.g., tar and char) production, and mass and energy conversion efficiencies. Elevated temperature and pressure, and feedstock pretreatment were shown to have a significant influence on gasifier operability, tar production, carbon conversion, and process efficiency. High-pressure and temperature gasification of dark torrefied biomass yielded the lowest tar concentration (1.6 g/Nm 3). High-temperature and low-pressure conditions achieved the highest carbon conversion and cold gas efficiencies of 91 and 94%, respectively. In addition, a relatively new method for monitoring hydrodynamic conditions in fluidized bed reactors using high-frequency bed pressure fluctuation measurement was demonstrated. This method proved capable of being used as a fluidized bed diagnostic method under reactive conditions.

  1. Final report for the pilot-scale thermal treatment of Lower East Fork Poplar Creek floodplain soils

    SciTech Connect

    1994-09-01

    IT Corporation (IT) was contracted by Martin Marietta Energy Systems, Inc. (Energy Systems) to perform a pilot-scale demonstration of the effectiveness of thermal desorption as a remedial technology for removing mercury from the Lower East Fork Poplar Creek (LEFPC) floodplain soil. Previous laboratory studies by Energy Systems suggested that this technology could reduce mercury to very low levels. This pilot-scale demonstration study was initiated to verify on an engineering scale the performance of thermal desorption. This report includes the details of the demonstration study, including descriptions of experimental equipment and procedures, test conditions, sampling and analysis, quality assurance (QA), detailed test results, and an engineering assessment of a conceptual full-scale treatment facility. The specific project tasks addressed in this report were performed between October 1993 and June 1994. These tasks include soil receipt, preparation, and characterization; prepilot (bench-scale) desorption tests; front-end materials handling tests; pilot tests; back-end materials handling tests; residuals treatment; and engineering scale-up assessment.

  2. Residence time distribution measurements in a pilot-scale poison tank using radiotracer technique.

    PubMed

    Pant, H J; Goswami, Sunil; Samantray, J S; Sharma, V K; Maheshwari, N K

    2015-09-01

    Various types of systems are used to control the reactivity and shutting down of a nuclear reactor during emergency and routine shutdown operations. Injection of boron solution (borated water) into the core of a reactor is one of the commonly used methods during emergency operation. A pilot-scale poison tank was designed and fabricated to simulate injection of boron poison into the core of a reactor along with coolant water. In order to design a full-scale poison tank, it was desired to characterize flow of liquid from the tank. Residence time distribution (RTD) measurement and analysis was adopted to characterize the flow dynamics. Radiotracer technique was applied to measure RTD of aqueous phase in the tank using Bromine-82 as a radiotracer. RTD measurements were carried out with two different modes of operation of the tank and at different flow rates. In Mode-1, the radiotracer was instantaneously injected at the inlet and monitored at the outlet, whereas in Mode-2, the tank was filled with radiotracer and its concentration was measured at the outlet. From the measured RTD curves, mean residence times (MRTs), dead volume and fraction of liquid pumped in with time were determined. The treated RTD curves were modeled using suitable mathematical models. An axial dispersion model with high degree of backmixing was found suitable to describe flow when operated in Mode-1, whereas a tanks-in-series model with backmixing was found suitable to describe flow of the poison in the tank when operated in Mode-2. The results were utilized to scale-up and design a full-scale poison tank for a nuclear reactor. PMID:26057343

  3. Integrated production of polyhydroxyalkanoates (PHAs) with municipal wastewater and sludge treatment at pilot scale.

    PubMed

    Morgan-Sagastume, F; Hjort, M; Cirne, D; Gérardin, F; Lacroix, S; Gaval, G; Karabegovic, L; Alexandersson, T; Johansson, P; Karlsson, A; Bengtsson, S; Arcos-Hernández, M V; Magnusson, P; Werker, A

    2015-04-01

    A pilot-scale process was operated over 22 months at the Brussels North Wastewater Treatment Plant (WWTP) in order to evaluate polyhydroxyalkanoate (PHA) production integration with services of municipal wastewater and sludge management. Activated sludge was produced with PHA accumulation potential (PAP) by applying feast-famine selection while treating the readily biodegradable COD from influent wastewater (average removals of 70% COD, 60% CODsol, 24% nitrogen, and 46% phosphorus). The biomass PAP was evaluated to be in excess of 0.4gPHA/gVSS. Batch fermentation of full-scale WWTP sludge at selected temperatures (35, 42 and 55 °C) produced centrate (6-9.4 gCODVFA/L) of consistent VFA composition, with optimal fermentation performance at 42 °C. Centrate was used to accumulate PHA up to 0.39 gPHA/gVSS. The centrate nutrients are a challenge to the accumulation process but producing a biomass with 0.5 gPHA/gVSS is considered to be realistically achievable within the typically available carbon flows at municipal waste management facilities. PMID:25638407

  4. Developing eThread Pipeline Using SAGA-Pilot Abstraction for Large-Scale Structural Bioinformatics

    PubMed Central

    Ragothaman, Anjani; Feinstein, Wei; Jha, Shantenu; Kim, Joohyun

    2014-01-01

    While most of computational annotation approaches are sequence-based, threading methods are becoming increasingly attractive because of predicted structural information that could uncover the underlying function. However, threading tools are generally compute-intensive and the number of protein sequences from even small genomes such as prokaryotes is large typically containing many thousands, prohibiting their application as a genome-wide structural systems biology tool. To leverage its utility, we have developed a pipeline for eThread—a meta-threading protein structure modeling tool, that can use computational resources efficiently and effectively. We employ a pilot-based approach that supports seamless data and task-level parallelism and manages large variation in workload and computational requirements. Our scalable pipeline is deployed on Amazon EC2 and can efficiently select resources based upon task requirements. We present runtime analysis to characterize computational complexity of eThread and EC2 infrastructure. Based on results, we suggest a pathway to an optimized solution with respect to metrics such as time-to-solution or cost-to-solution. Our eThread pipeline can scale to support a large number of sequences and is expected to be a viable solution for genome-scale structural bioinformatics and structure-based annotation, particularly, amenable for small genomes such as prokaryotes. The developed pipeline is easily extensible to other types of distributed cyberinfrastructure. PMID:24995285

  5. Cultivation of Chlorella sp. using raw dairy wastewater for nutrient removal and biodiesel production: Characteristics comparison of indoor bench-scale and outdoor pilot-scale cultures.

    PubMed

    Lu, Weidong; Wang, Zhongming; Wang, Xuewei; Yuan, Zhenhong

    2015-09-01

    The biomass productivity and nutrient removal capacity of simultaneous Chlorella sp. cultivation for biodiesel production and nutrient removal in raw dairy wastewater (RDW) in indoor bench-scale and outdoor pilot-scale photobioreactors were compared. Results from the current work show that maximum biomass productivity in indoor bench-scale cultures can reach 260 mg L(-1) day(-1), compared to that of 110 mg L(-1) day(-1) in outdoor pilot-scale cultures. Maximum chemical oxygen demand (COD), total nitrogen (TN), and total phosphorous (TP) removal rate obtained in indoor conditions was 88.38, 38.34, and 2.03 mg L(-1) day(-1), respectively, this compared to 41.31, 6.58, and 2.74 mg L(-1) day(-1), respectively, for outdoor conditions. Finally, dominant fatty acids determined to be C16/C18 in outdoor pilot-scale cultures indicated great potential for scale up of Chlorella sp. cultivation in RDW for high quality biodiesel production coupling with RDW treatment. PMID:26056780

  6. Energy efficiency in membrane bioreactors.

    PubMed

    Barillon, B; Martin Ruel, S; Langlais, C; Lazarova, V

    2013-01-01

    Energy consumption remains the key factor for the optimisation of the performance of membrane bioreactors (MBRs). This paper presents the results of the detailed energy audits of six full-scale MBRs operated by Suez Environnement in France, Spain and the USA based on on-site energy measurement and analysis of plant operation parameters and treatment performance. Specific energy consumption is compared for two different MBR configurations (flat sheet and hollow fibre membranes) and for plants with different design, loads and operation parameters. The aim of this project was to understand how the energy is consumed in MBR facilities and under which operating conditions, in order to finally provide guidelines and recommended practices for optimisation of MBR operation and design to reduce energy consumption and environmental impacts. PMID:23787304

  7. Denitrification of high strength nitrate waste from a nuclear industry using acclimatized biomass in a pilot scale reactor.

    PubMed

    Dhamole, Pradip B; Nair, Rashmi R; D'Souza, Stanislaus F; Pandit, Aniruddha B; Lele, S S

    2015-01-01

    This work investigates the performance of acclimatized biomass for denitrification of high strength nitrate waste (10,000 mg/L NO3) from a nuclear industry in a continuous laboratory scale (32 L) and pilot scale reactor (330 L) operated over a period of 4 and 5 months, respectively. Effect of substrate fluctuations (mainly C/NO3-N) on denitrification was studied in a laboratory scale reactor. Incomplete denitrification (95-96 %) was observed at low C/NO3-N (?2), whereas at high C/NO3-N (?2.25) led to ammonia formation. Ammonia production increased from 1 to 9 % with an increase in C/NO3-N from 2.25 to 6. Complete denitrification and no ammonia formation were observed at an optimum C/NO3-N of 2.0. Microbiological studies showed decrease in denitrifiers and increase in nitrite-oxidizing bacteria and ammonia-oxidizing bacteria at high C/NO3-N (?2.25). Pilot scale studies were carried out with optimum C/NO3-N, and sustainability of the process was checked on the pilot scale for 5 months. PMID:25342265

  8. Microbial adaptation to biodegrade toxic organic micro-pollutants in membrane bioreactor using different sludge sources.

    PubMed

    Boonnorat, Jarungwit; Chiemchaisri, Chart; Chiemchaisri, Wilai; Yamamoto, Kazuo

    2014-08-01

    Biodegradation of toxic organic micro-pollutants in municipal solid waste (MSW) leachate by membrane bioreactor (MBR) was investigated. The MBR systems were seeded with different sludge sources, one was from a pilot-scale MBR system treating MSW leachate and the other was from an activated sludge sewage treatment plant. The biodegradation of BPA, 2,6-DTBP, BHT, DEP, DBP and DEHP, DCP and BBzP, by sludge from both reactors were found improved with time. However, enhanced biodegradation of micro-pollutants was observed in MBR operated under long sludge age condition. Bacterial population analyses determined by PCR-DGGE revealed the development of phenol and phthalate degrading bacteria consortium in MBR sludge during its operation. PMID:24791712

  9. PERSPECTIVE: REDD pilot project scenarios: are costs and benefits altered by spatial scale?

    NASA Astrophysics Data System (ADS)

    Carlson, Kimberly M.; Curran, Lisa M.

    2009-09-01

    Kimberly M Carlson Payments for reducing carbon emissions due to deforestation and degradation (REDD) have garnered considerable global interest and investments. These financial incentives aim to alter the drivers of land use change by reducing opportunity costs of retaining forest cover, and are often promoted as multipartite solutions that not only generate profits and reduce carbon emissions but provide benefits for human development and biodiversity. Currently, the United Nations Framework Convention on Climate Change (UNFCCC) is debating a post-Kyoto protocol with national or sub-national emission reduction targets. Anticipating the inclusion of REDD in this agreement, >80% of pilot REDD projects are being established in tropical regions (table 1). While the capacity of REDD projects to meet their stated objectives must be assessed post- implementation, land use change models are powerful tools for generating potential outcomes from these pilot initiatives. Table 1. Extent and emissions reductions for all REDD projects as reported by Ecosystem Marketplace, which maintains a comprehensive and up-to-date inventory of REDD projects that are selling credits and/or are verified by a third-party verifier. Adapted from Forest Carbon Portal (2009). Geographical zoneContinentProjects (#) Area (km2) Emissions reductions (Mt C) Tropical and Subtropical Africa2775019.50 Asia28100109.60 South America 9183 880278.24 TemperateAustralia1140.18 North America115N/A Totals15199 759407.52 In this issue of ERL, Gaveau et al (2009) use a spatially-explicit model to explore the potential of a REDD pilot project in northern Sumatra, Indonesia, to reduce deforestation and conserve orangutan biodiversity. This project is conceived by the Provincial Government of Aceh, financed by Merrill Lynch, and co-managed by carbon trading firm Carbon Conservation and NGO Flora and Fauna International. Project managers estimate CO2 emissions reductions at 3.4 Mt y-1 over 30 years across a 7500 km2 area (Forest Carbon Portal 2009). From a time-series of Landsat satellite images, Gaveau et al calculate deforestation rates from 1990-2000 and 2000-2006. They apply these annual rates to deforestation probability maps, generated from forest condition in 2006 and six static spatial variables, to predict potential locations of future deforestation through 2030 under three different scenarios: (i) a business-as- usual with no REDD project; (ii) the current 7500 km2 project; and (iii) an extensive 65 000 km2 REDD scheme extending across the Aceh and Sumatra Utara provinces. Gaveau et al's chief contribution is identifying locations where forest carbon projects potentially have the greatest benefits for forest and orangutan conservation. By processing Landsat satellite imagery - now freely available - with relatively few spatial model inputs, this approach also has great potential for widespread application in tropical countries developing historical deforestation baselines. Yet Landsat satellite data also impose limitations for REDD. For example, Gaveau et al are unable to calculate forest degradation, which is highly problematic both to define and detect with Landsat imagery, yet critical especially in Indonesia with extensive logged forests (Curran et al 2004, Ramankutty et al 2007, Asner et al 2006). Nevertheless, Landsat remains one of the most appropriate satellite data products available for countries calculating previous rates of forest change. Assuming that technical roadblocks to REDD are overcome, another challenge surrounds assessing the feasibility of emission reduction scenarios, including those presented by Gaveau et al. Their estimates show that carbon and biodiversity gains would be 6- to 7-fold greater if the pilot project encompassed the 65 000 km2 northern Sumatra region. Yet, developers chose to implement this REDD project across 7500 km2, ~ 10% of Gaveau et al's expanded scenario region. If REDD programs are to be realized across large spatial scales (e.g., provinces/states), what factors constrain effective implementation? First, high tra

  10. Dust exposure during small-scale mining in Tanzania: a pilot study.

    PubMed

    Bratveit, Magne; Moen, Bente E; Mashalla, Yohana J S; Maalim, Hatua

    2003-04-01

    Small-scale mining in developing countries is generally labour-intensive and carried out with low levels of mechanization. In the Mererani area in the northern part of Tanzania, there are about 15000 underground miners who are constantly subjected to a poor working environment. Gemstones are found at depths down to 500 m. The objectives of this pilot study were to monitor the exposure to dust during work processes, which are typical of small-scale mining in developing countries, and to make a rough estimation of whether there is a risk of chronic pulmonary diseases for the workers. Personal sampling of respirable dust (n = 15) and 'total' dust (n = 5) was carried out during three consecutive days in one mine, which had a total of 50 workers in two shifts. Sampling started immediately before the miners entered the shaft, and lasted until they reappeared at the mine entrance after 5-8 h. The median crystalline silica content and the combustible content of the respirable dust samples were 14.2 and 5.5%, respectively. When drilling, blasting and shovelling were carried out, the exposure measurements showed high median levels of respirable dust (15.5 mg/m(3)), respirable crystalline silica (2.4 mg/m(3)), respirable combustible dust (1.5 mg/m(3)) and 'total' dust (28.4 mg/m(3)). When only shovelling and loading of sacks took place, the median exposures to respirable dust and respirable crystalline silica were 4.3 and 1.1 mg/m(3). This study shows that the exposure to respirable crystalline silica was high during underground small-scale mining. In the absence of personal protective equipment, the miners in the Mererani area are presumably at a high risk of developing chronic silicosis. PMID:12639837

  11. SUPERCRITICAL WATER PARTIAL OXIDATION PHASE I - PILOT-SCALE TESTING / FEASIBILITY STUDIES FINAL REPORT

    SciTech Connect

    SPRITZER,M; HONG,G

    2005-01-01

    Under Cooperative Agreement No. DE-FC36-00GO10529 for the Department of Energy, General Atomics (GA) is developing Supercritical Water Partial Oxidation (SWPO) as a means of producing hydrogen from low-grade biomass and other waste feeds. The Phase I Pilot-scale Testing/Feasibility Studies have been successfully completed and the results of that effort are described in this report. The Key potential advantages of the SWPO process is the use of partial oxidation in-situ to rapidly heat the gasification medium, resulting in less char formation and improved hydrogen yield. Another major advantage is that the high-pressure, high-density aqueous environment is ideal for reaching and gasifying organics of all types. The high water content of the medium encourages formation of hydrogen and hydrogen-rich products and is especially compatible with high water content feeds such as biomass materials. The high water content of the medium is also effective for gasification of hydrogen-poor materials such as coal. A versatile pilot plant for exploring gasification in supercritical water has been established at GA's facilities in San Diego. The Phase I testing of the SWPO process with wood and ethanol mixtures demonstrated gasification efficiencies of about 90%, comparable to those found in prior laboratory-scale SCW gasification work carreid out at the University of Hawaii at Manoa (UHM) as well as other biomass gasification experience with conventional gasifiers. As in the prior work at UHM, a significant amount of the hydrogen found in the gas phase products is derived from the water/steam matrix. The studies at UHM utilized an indirectly heated gasifier with an acitvated carbon catalyst. In contrast, the GA studies utilized a directly heated gasifier without catalyst, plus a surrogate waste fuel. Attainment of comparable gasification efficiencies without catalysis is an important advancement for the GA process, and opens the way for efficient hydrogen production from low-value, dirty feed materials. The Phase I results indicate that a practical means to overcome limitations on biomass slurry feed concentration and preheat temperatuare is to coprocess an auxiliary high heating value material. SWPO coprocessing of tow hgih-water content wastes, partially dewatered sewage sludge and trap grease, yields a scenario for the production of hydrogen at highly competitive prices. It is estimated that there are hundreds if not thousands of potential sites for this technology across the US and worldwide.

  12. Cultivation of Mammalian Cells Using a Single-use Pneumatic Bioreactor System

    PubMed Central

    Obom, Kristina M.; Cummings, Patrick J.; Ciafardoni, Janelle A.; Hashimura, Yasunori; Giroux, Daniel

    2014-01-01

    Recent advances in mammalian, insect, and stem cell cultivation and scale-up have created tremendous opportunities for new therapeutics and personalized medicine innovations. However, translating these advances into therapeutic applications will require in vitro systems that allow for robust, flexible, and cost effective bioreactor systems. There are several bioreactor systems currently utilized in research and commercial settings; however, many of these systems are not optimal for establishing, expanding, and monitoring the growth of different cell types. The culture parameters most challenging to control in these systems include, minimizing hydrodynamic shear, preventing nutrient gradient formation, establishing uniform culture medium aeration, preventing microbial contamination, and monitoring and adjusting culture conditions in real-time. Using a pneumatic single-use bioreactor system, we demonstrate the assembly and operation of this novel bioreactor for mammalian cells grown on micro-carriers. This bioreactor system eliminates many of the challenges associated with currently available systems by minimizing hydrodynamic shear and nutrient gradient formation, and allowing for uniform culture medium aeration. Moreover, the bioreactor’s software allows for remote real-time monitoring and adjusting of the bioreactor run parameters. This bioreactor system also has tremendous potential for scale-up of adherent and suspension mammalian cells for production of a variety therapeutic proteins, monoclonal antibodies, stem cells, biosimilars, and vaccines. PMID:25349946

  13. The challenges of designing, permitting and building a 1,200 gpm passive bioreactor for metal mine drainage, West Fork Mine, Missouri

    SciTech Connect

    Gusek, J.; Wildeman, T.; Miller, A.; Fricke, J.

    1998-12-31

    An active underground lead mine produces water having a pH of 8.0 with 0.4 to 0.6 mg/L of Pb and 0.18 mg/L of Zn. A full-scale 1,200 gpm capacity bioreactor system was designed and permitted based on a phased program of laboratory, bench and pilot scale bioreactor testing; it was constructed in mid-1996. The gravity flow system, covering a total surface area of about five acres (2 ha), is composed of a settling basin followed by two anaerobic bioreactors arranged in parallel which discharge into a rock filter polishing cell that is followed by a final aeration polishing pond. The primary lead removal mechanism is sulfate reduction/sulfide precipitation. The discharge has met stringent in-stream water quality requirements since its commissioning. The system was designed to last about 12 years, but estimates suggest a much longer life based on anticipated carbon consumption in the anaerobic cells.

  14. PILOT-SCALE TESTING OF THE SUSPENSION OF MST, CST, AND SIMULATED SLUDGE SLURRIES IN A SLUDGE TANK

    SciTech Connect

    Poirier, M.; Qureshi, Z.; Restivo, M.; Steeper, T.; Williams, M.; Herman, D.

    2011-08-02

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Following strontium, actinide, and cesium removal, the concentrated solids will be transported to a sludge tank (i.e., monosodium titanate (MST)/sludge solids to Tank 42H or Tank 51H and crystalline silicotitanate (CST) to Tank 40H) for eventual transfer to the Defense Waste Processing Facility (DWPF). Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for mixing MST, CST, and simulated sludge. The purpose of this pilot scale testing is to determine the pump requirements for mixing MST and CST with sludge in a sludge tank and to determine whether segregation of particles occurs during settling. Tank 40H and Tank 51H have four Quad Volute pumps; Tank 42H has four standard pumps. The pilot-scale tank is a 1/10.85 linear scaled model of Tank 40H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 40H. The pump locations correspond to the current locations in Tank 40H (Risers B2, H, B6, and G). The pumps are pilot-scale Quad Volute pumps. Additional settling tests were conducted in a 30 foot tall, 4 inch inner diameter clear column to investigate segregation of MST, CST, and simulated sludge particles during settling.

  15. Characterization of double-shell slurry feed grout produced in a pilot-scale test. Hanford Grout Technology Program

    SciTech Connect

    Lokken, R.O.; Martin, P.F.C.; Shade, J.W.

    1992-12-01

    Current plans for disposal of the low-level fraction of selected double-shell tank (DST) wastes at Hanford, Washington include grouting. Grout disposal in this context is the process of mixing low-level liquid waste with cementitious powders. and pumping the resultant slurry to near-surface, underground concrete vaults. Once the slurry is in the vaults. the hydration reactions that occur result in the formation of a highly impermeable solid product that binds and encapsulates the radioactive and hazardous constituents. Westinghouse Hanford Company (WHC) operates the Grout Treatment Facility (GTF) for the US Department of Energy (DOE). Pacific Northwest Laboratory(a) (PNL) provides support to the Grout Disposal Program through laboratory support activities, radioactive grout leach testing. performance assessments, and pilot-scale tests. A pilot-scale test was conducted in November 1988 using a simulated Double-Shell Slurry Feed (DSSF) waste. The main objective of the pilot-scale test was to demonstrate the processability of a DSSF grout formulation that was developed using laboratory equipment and to provide information on scale-up. The dry blend used in this test included 47 wt% class F fly ash, 47 wt% blast furnace slag, and 6 wt% type I/II portland cement. The dry blend was mixed with the simulated waste at a ratio of 9 lb/gal and pumped to a 2800-gal, insulated tank at about 10.4 gpm. Samples of simulated DSSF waste. dry blend, grout slurry, and cured grout were obtained during and after the pilot-scale test for testing and product characterization. Major conclusions of these activities are included.

  16. SUPERCRITICAL WATER PARTIAL OXIDATION PHASE I - PILOT-SCALE TESTING/FEASIBILTY SUDIES FINAL REPORT

    SciTech Connect

    SPRITZER.M; HONG,G

    2005-01-01

    General Atomics (GA) is developing Supercritical Water Partial Oxidation (SWPO) as a means of producing hydrogen from low-grade biomass and other waste feeds. The Phase I Pilot-scale Testing/Feasibility Studies have been successfully completed and the results of that effort are described in this report. The key potential advantage of the SWPO process is the use of partial oxidation in-situ to rapidly heat the gasification medium, resulting in less char formation and improved hydrogen yield. Another major advantage is that the high-pressure, high-density aqueous environment is ideal for reacting and gasifying organics of all types. The high water content of the medium encourages formation of hydrogen and hydrogen-rich products and is especially compatible with high water content feeds such as biomass materials. The high water content of the medium is also effective for gasification of hydrogen-poor materials such as coal. A versatile pilot plant for exploring gasification in supercritical water has been established at GA's facilities in San Diego. The Phase I testing of the SWPO process with wood and ethanol mixtures demonstrated gasification efficiencies of about 90%, comparable to those found in prior laboratory-scale SCW gasification work carried out at the University of Hawaii at Manoa (UHM), as well as other biomass gasification experience with conventional gasifiers. As in the prior work at UHM, a significant amount of the hydrogen found in the gas phase products is derived from the water/steam matrix. The studies at UHM utilized an indirectly heated gasifier with an activated carbon catalyst. In contrast, the GA studies utilized a directly heated gasifier without catalyst, plus a surrogate waste fuel. Attainment of comparable gasification efficiencies without catalysis is an important advancement for the GA process, and opens the way for efficient hydrogen production from low-value, dirty feed materials. The Phase I results indicate that a practical means to overcome limitations on biomass slurry feed concentration and preheat temperature is to coprocess an auxiliary high heating value material. SWPO coprocessing of two high-water content wastes, partially dewatered sewage sludge and trap grease, yields a scenario for the production of hydrogen at highly competitive prices. It is estimated that there are hundreds if not thousands of potential sites for this technology across the US and worldwide. The economics for plants processing 40 tpd sewage sludge solids augmented with grease trap waste are favorable over a significant range of cost parameters such as sludge disposal credit and capital financing. Hydrogen production costs for SWPO plants of this size are projected to be about $3/GJ or less. Economics may be further improved by future developments such as pumping of higher solids content sludges and improved gasifier nozzle designs to reduce char and improve hydrogen yields. The easiest market entry for SWPO is expected to be direct sales to municipal wastewater treatment plants for use with sewage sludge in conjunction with trap grease, as both of these wastes are ubiquitous and have reasonably well-defined negative value (i.e., the process can take credit for reduction of well-defined disposal costs for these streams). Additionally, waste grease is frequently recovered at municipal wastewater treatment plants where it is already contaminated with sewage. SWPO should also be favorable to other market applications in which low or negative value, high water content biomass is available in conjunction with a low or negative value fuel material. For biomass slurries primary candidates are sewage sludge, manure sludge, and shredded and/or composted organic municipal solid waste (MSW) slurries. For the high heating value stream primary candidates are trap grease, waste plastic or rubber slurries, and coal or coke slurries. Phase II of the SWPO program will be focused on verifying process improvements identified during Phase I, and then performing extended duration testing with the GA pilot plant. Tests of at least 1

  17. Coaching as Part of a Pilot Quality Rating Scale Initiative: Challenges to--and Supports for--the Change-Making Process

    ERIC Educational Resources Information Center

    Ackerman, Debra J.

    2008-01-01

    Several nonprofit agencies in a large Midwestern city provide assistance to early care and education programs participating in a pilot Quality Rating Scale (QRS) initiative by pairing them with itinerant consultants, who are known as coaches. Despite this assistance, not all programs improve their QRS score. Furthermore, while pilot stakeholders…

  18. HANFORD MEDIUM-LOW CURIE WASTE PRETREATMENT ALTERNATIVES PROJECT FRACTIONAL CRYSTALLIZATION PILOT SCALE TESTING FINAL REPORT

    SciTech Connect

    HERTING DL

    2008-09-16

    The Fractional Crystallization Pilot Plant was designed and constructed to demonstrate that fractional crystallization is a viable way to separate the high-level and low-activity radioactive waste streams from retrieved Hanford single-shell tank saltcake. The focus of this report is to review the design, construction, and testing details of the fractional crystallization pilot plant not previously disseminated.

  19. Insect cell entrapment, growth and recovering using a single-use fixed-bed bioreactor. Scaling up and recombinant protein production.

    PubMed

    Ventini-Monteiro, D; Dubois, S; Astray, R M; Castillo, J; Pereira, C A

    2015-12-20

    Insect cells are largely used for industrial production of vaccines, viral vectors and recombinant proteins as well as in research and development as an important tool for biology and bioprocess studies. They grow in suspension and are semi-adherent cells. Among the cell culture systems enabling scalable bioprocess the single-use fixed-bed iCELLis(®) bioreactors offer great advantages. We have established the conditions for Drosophila melanogaster Schneider 2 (S2) and Spodoptera frugiperda (Sf9) cells entrapment into the fixed-bed, cell growth and recover from the fixed-bed once high cell densities were attained. Our established protocol allowed these cells, at a cell seeding of 2×1E5 cells/microfiber carriers (MC) (3.5×1E6cells/mL; 1.7×1E4cells/cm(2)), to grow inside a 4m(2)/200mL fixed-bed attaining a concentration of 5.3×1E6 cells/MC (9.5×1E7cells/mL; 4.7×1E5 cells/cm(2)) for S2 cells or 4.6×1E6 cells/MC (8×1E7cells/mL; 4.1×1E5cells/cm(2)) for Sf9 cells. By washing the fixed-bed, entrapped cells could then be recovered from the fixed-bed at a high rate (>85%) with high viability (>95%) by increasing the agitation to 1200/1500rpm. Although the cell yields in the fixed-bed bioreactor were comparable to those obtained in a stirred tank (respectively, 1.3×1E10 and 2.5×1E10 total cells), S2 cells stably transfected with a cDNA coding for the rabies virus glycoprotein (RVGP) showed a 30% higher preserved rRVGP production (2.5±0.1 and 1.9±0.1?g/1E7 cells), as evidenced by a conformational ELISA evaluation. These findings demonstrate not only the possibility to entrap, cultivate to high densities and recover insect cells using a single-use fixed-bed bioreactor, but also that this system provides suitable physiological conditions for the entrapped cells to produce a cell membrane associated recombinant protein with higher specific biological activity as compared to classical suspension cell cultures. PMID:26481831

  20. Pilot-scale evaluation of the thermal-stability POHC incinerability anking

    SciTech Connect

    Lee, J.W.; Whitworth, W.E.; Waterland, L.R.

    1992-04-01

    A test series were performed at the U.S. EPA Incineration Research Facility (IRF) to evaluate the thermal-stability-based principal organic hazardous constituent (POHC) incinerability ranking. Mixtures of twelve POHCs with predicted incinerabilities spanning the range of most- to least-difficult-to-incinerate classes were combined with a clay-based sorbent matrix and fed to the facility's pilot-scale rotary kiln incinerator. Kiln operating conditions were varied to include a baseline operating condition, three modes of attempted incineration failure, and a worst-case combination of the three failure modes. Kiln-exit POHC destruction and removal efficiencies (DREs) were in the 99.99% range for the volatile POHCs during the baseline, mixing failure and matrix failure tests. Semivolatile POHCs were not detected at the kiln exit for these tests; corresponding DREs were generally greater than 99.999%. The thermal failure and worst-case tests resulted in substantially decreased kiln-exit POHC DREs, ranging from less than 99% to greater than 99.999%. General agreement between measured and predicted relative kiln-exit POHC DREs was observed for those two tests.

  1. Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent

    PubMed Central

    Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587?mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3?h or/and treated in MBR which could remove BOD3 (30°C) to less than 20?mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer. PMID:25685798

  2. Pilot-scale production of grout with simulated double-shell slurry feed. Final report

    SciTech Connect

    Whyatt, G.A.

    1994-08-01

    This report describes the pilot-scale production of grout with simulated double-shell slurry feed (DSSF) waste performed in November 1988, and the subsequent thermal behavior of the grout as it cured in a large, insulated vessel. The report was issued in draft form in April 1989 and comments were subsequently received; however, the report was not finalized until 1994. In finalizing this report, references or information gained after the report was drafted in April 1989 have not been incorporated to preserve the report`s historical perspective. This report makes use of criteria from Ridelle (1987) to establish formulation criteria. This document has since been superseded by a document prepared by Reibling and Fadeef (1991). However, the reference to Riddelle (1987) and any analysis based on its content have been maintained within this report. In addition, grout is no longer being considered as the waste form for disposal of Hanford`s low-level waste. However, grout disposal is being maintained as an option in case there is an emergency need to provide additional tank space. Current plans are to vitrify low-level wastes into a glass matrix.

  3. Benzalkonium runoff from roofs treated with biocide products - In situ pilot-scale study.

    PubMed

    Gromaire, M C; Van de Voorde, A; Lorgeoux, C; Chebbo, G

    2015-09-15

    Roof maintenance practices often involve the application of biocide products to fight against moss, lichens and algae. The main component of these products is benzalkonium chloride, a mixture of alkyl benzyl dimethyl ammonium chlorides with mainly C12 and C14 alkyl chain lengths, which is toxic for the aquatic environment. This paper describes, on the basis of an in-situ pilot scale study, the evolution of roof runoff contamination over a one year period following the biocide treatment of roof frames. Results show a major contamination of roof runoff immediately after treatment (from 5 to 30 mg/L), followed by an exponential decrease. 175-375 mm of cumulated rainfall is needed before the runoff concentrations become less than EC50 values for fish (280 ?g/l). The residual concentration in the runoff water remains above 4 ?g/L even after 640 mm of rainfall. The level of benzalkonium ions leaching depends on the roofing material, with lower concentrations and total mass leached from ceramic tiles than from concrete tiles, and on the state of the tile (new or worn out). Mass balance calculations indicate that a large part of the mass of benzalkonium compounds applied to the tiles is lost, probably due to biodegradation processes. PMID:26081434

  4. Ammonia Oxidizers in a Pilot-Scale Multilayer Rapid Infiltration System for Domestic Wastewater Treatment

    PubMed Central

    Lian, Yingli; Xu, Meiying; Zhong, Yuming; Yang, Yongqiang; Chen, Fanrong; Guo, Jun

    2014-01-01

    A pilot-scale multilayer rapid infiltration system (MRIS) for domestic wastewater treatment was established and efficient removal of ammonia and chemical oxygen demand (COD) was achieved in this study. The microbial community composition and abundance of ammonia oxidizers were investigated. Efficient biofilms of ammonia oxidizers in the stationary phase (packing material) was formed successfully in the MRIS without special inoculation. DGGE and phylogenetic analyses revealed that proteobacteria dominated in the MRIS. Relative abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) showed contrary tendency. In the flowing phase (water effluent), AOA diversity was significantly correlated with the concentration of dissolve oxygen (DO), NO3-N and NH3-N. AOB abundance was significantly correlated with the concentration of DO and chemical oxygen demand (COD). NH3-N and COD were identified as the key factors to shape AOB community structure, while no variable significantly correlated with that of AOA. AOA might play an important role in the MRIS. This study could reveal key environmental factors affecting the community composition and abundance of ammonia oxidizers in the MRIS. PMID:25479611

  5. Soluble microbial products in pilot-scale drinking water biofilters with acetate as sole carbon source.

    PubMed

    Zhang, Ying; Ye, Chengsong; Gong, Song; Wei, Gu; Yu, Xin; Feng, Lin

    2013-04-01

    A comprehensive study on formation and characteristics of soluble microbial products (SMP) during drinking water biofiltration was made in four parallel pilot-scale ceramic biofilters with acetate as the substrate. Excellent treatment performance was achieved while microbial biomass and acetate carbon both declined with the depth of filter. The SMP concentration was determined by calculating the difference between the concentration of dissolved organic carbon (DOC), biodegradable dissolved organic carbon (BDOC) and acetate carbon. The results revealed that SMP showed an obvious increase from 0 to 100 cm depth of the filter. A rising specific ultraviolet absorbance (SUVA) was also found, indicating that benzene or carbonyl might exist in these compounds. SMP produced during this drinking water biological process were proved to have weak mutagenicity and were not precursors of by-products of chlorination disinfection. The volatile parts of SMP were half-quantity analyzed and most of them were dicarboxyl acids, others were hydrocarbons or benzene with 16-17 carbon atoms. PMID:24620619

  6. Disinfection of bacterial biofilms in pilot-scale cooling tower systems

    PubMed Central

    Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P.; Packman, Aaron I.

    2015-01-01

    The impact of continuous chlorination and periodic glutaraldehyde treatment on planktonic and biofilm microbial communities was evaluated in pilot-scale cooling towers operated continuously for 3 months. The system was operated at a flow rate of 10,080 l day?1. Experiments were performed with a well-defined microbial consortium containing three heterotrophic bacteria: Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. The persistence of each species was monitored in the recirculating cooling water loop and in biofilms on steel and PVC coupons in the cooling tower basin. The observed bacterial colonization in cooling towers did not follow trends in growth rates observed under batch conditions and, instead, reflected differences in the ability of each organism to remain attached and form biofilms under the high-through flow conditions in cooling towers. Flavobacterium was the dominant organism in the community, while P. aeruginosa and K. pneumoniae did not attach well to either PVC or steel coupons in cooling towers and were not able to persist in biofilms. As a result, the much greater ability of Flavobacterium to adhere to surfaces protected it from disinfection, whereas P. aeruginosa and K. pneumoniae were subject to rapid disinfection in the planktonic state. PMID:21547755

  7. Analysis of operating costs for producing biodiesel from palm oil at pilot-scale in Colombia.

    PubMed

    Acevedo, Juan C; Hernández, Jorge A; Valdés, Carlos F; Khanal, Samir Kumar

    2015-01-01

    The present study aims to evaluate the operating costs of biodiesel production using palm oil in a pilot-scale plant with a capacity of 20,000 L/day (850 L/batch). The production plant uses crude palm oil as a feedstock, and methanol in a molar ratio of 1:10. The process incorporated acid esterification, basic transesterification, and dry washing with absorbent powder. Production costs considered in the analysis were feedstock, supplies, labor, electricity, quality and maintenance; amounting to $3.75/gal ($0.99/L) for 2013. Feedstocks required for biodiesel production were among the highest costs, namely 72.6% of total production cost. Process efficiency to convert fatty acids to biodiesel was over 99% and generated a profit of $1.08/gal (i.e., >22% of the total income). According to sensitivity analyses, it is more economically viable for biodiesel production processes to use crude palm oil as a feedstock and take advantage of the byproducts such as glycerine and fertilizers. PMID:25660089

  8. Zero discharge performance of an industrial pilot-scale plant treating palm oil mill effluent.

    PubMed

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated "zero discharge" pilot-scale industrial plant comprising "pretreatment-anaerobic and aerobic process-membrane separation" was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587?mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer. PMID:25685798

  9. Impurity evaluation of fused lithium chloride salt for a pilot-scale oxide reduction.

    SciTech Connect

    Eberle, C. S.; Herrmann, S. D.; King, R. W.; Engineering Division

    1999-12-01

    The inorganic and physical chemistry of reactants (e.g., impurities) produced during the reduction of spent light water reactor fuel in a hot cell has been analyzed. Two source terms were identified that influence the composition and quantity of these impurities in the salt matrix. One source comes from the reduction process, which occurs between the fuel and the Li/LiCl salt matrix, and the other from chemical reactions that occur between the hot cell atmosphere and the salt matrix. The spent-fuel-oxide chemistry and energy of formation for the reactants were evaluated. Most of the rare-earth-oxide reactions were not thermodynamically feasible with molten lithium, except when nitrogen was present during the reduction process. A model of the reaction at a vapor-liquid interface was developed and applied to the pilot-scale oxide reduction device design. A predominance diagram for the Li-O-N reactions was constructed to determine the possible reactions during operation of the device, and from these results, the mass accumulation was determined from hot cell conditions.

  10. Completing Pre-Pilot Tasks To Scale Up Biomass Fractionation Pretreatment Apparatus From Batch To Continuous

    SciTech Connect

    Dick Wingerson

    2004-12-15

    PureVision Technology, Inc. (PureVision) was the recipient of a $200,000 Invention and Innovations (I&I) grant from the U. S. Department of Energy (DOE) to complete prepilot tasks in order to scale up its patented biomass fractionation pretreatment apparatus from batch to continuous processing. The initial goal of the I&I program, as detailed in PureVision's original application to the DOE, was to develop the design criteria to build a small continuous biomass fractionation pilot apparatus utilizing a retrofitted extruder with a novel screw configuration to create multiple reaction zones, separated by dynamic plugs within the reaction chamber that support the continuous counter-flow of liquids and solids at elevated temperature and pressure. Although the ultimate results of this 27-month I&I program exceeded the initial expectations, some of the originally planned tasks were not completed due to a modification of direction in the program. PureVision achieved its primary milestone by establishing the design criteria for a continuous process development unit (PDU). In addition, PureVision was able to complete the procurement, assembly, and initiate shake down of the PDU at Western Research Institute (WRI) in Laramie, WY during August 2003 to February 2004. During the month of March 2004, PureVision and WRI performed initial testing of the continuous PDU at WRI.

  11. [Influence of Air Flux on Municipal Sludge Biodrying in a Pilot Scale Test].

    PubMed

    Zhang, Yu; Han, Rong; Lu, Wen-jing; Wang, Hong-tao; Ming, Zhong-yuan; Wang, Qiang; Xia, Wei

    2015-05-01

    A drum-type biodrying pilot scale test system was made to treat the municipal sludge. Sludge was mixed with barks according to certain proportion, and was used to study the influence of air flux on municipal sludge biodrying through parameter detection, such as temperature, moisture content, pH and volatile solid (VS). Results showed that air flux had a great influence on the effect of biodrying. When the air flux was 120 L · (h · kg)(-1), the best result was obtained, the highest sludge temperature was 66°C and the temperature could remain upon 55°C for more than 40 h. After 111 h, the moisture content reduced to 56% . The pH remained at 6.5-8.5 through the whole biodrying process. As a result, the microorganism activities would not be affected. The sludge inside the drum-type biodrying system was homogeneous. This research provides a reference about sludge treatment using a continues flow process by drum-type biodrying system. PMID:26314123

  12. Pilot scale-SO{sub 2} control by dry sodium bicarbonate injection and an electrostatic precipitator

    SciTech Connect

    Pliat, M.J.; Wilder, J.M.

    2007-10-15

    A 500 actual cubic feet gas per minute (acfm) pilot-scale SO{sub 2} control study was undertaken to investigate flue gas desulfurization (FGD) by dry sodium sorbents in 400{sup o}F (204.5{sup o}C) flue gases emitted from a coal fired boiler with flue gas concentrations between 350 and 2500 ppm SO{sub 2}. Powdered sodium alkaline reagents were injected into the hot flue gas downstream of the air preheater and the spent reagents were collected using an electrostatic precipitator. Three different sorbents were used: processed sodium bicarbonate of two particle sizes; solution mined sodium bicarbonate, and processed sodium sesquicarbonate. SO{sub 2} concentrations were measured upstream of the reagent injection, 25-ft (7.62 m) downstream of the injection point, and downstream of the electrostatic precipitator. SO{sub 2} collection efficiencies ranged from 40 to 80% using sodium bicarbonate stoichiometric ratios from 0.5 to 3.0. Much of the in-duct SO{sub 2} removal occurred during the first second of reagent reaction time, indicating that the sulfur dioxide-sodium reaction rates may be faster than have been measured for fixed bed measurements reported in the literature.

  13. Characterization of intermediate products of solar photocatalytic degradation of ranitidine at pilot-scale.

    PubMed

    Radjenovi?, Jelena; Sirtori, Carla; Petrovi?, Mira; Barceló, Damià; Malato, Sixto

    2010-04-01

    In the present study the mechanisms of solar photodegradation of H(2)-receptor antagonist ranitidine (RNTD) were studied in a well-defined system of a pilot plant scale Compound Parabolic Collector (CPC) reactor. Two types of heterogeneous photocatalytic experiments were performed: catalysed by titanium-dioxide (TiO(2)) semiconductor and by Fenton reagent (Fe(2+)/H(2)O(2)), each one with distilled water and synthetic wastewater effluent matrix. Complete disappearance of the parent compounds and discreet mineralization were attained in all experiments. Furthermore, kinetic parameters, main intermediate products, release of heteroatoms and formation of carboxylic acids are discussed. The main intermediate products of photocatalytic degradation of RNTD have been structurally elucidated by tandem mass spectrometry (MS(2)) experiments performed at quadrupole-time of flight (QqToF) mass analyzer coupled to ultra-performance liquid chromatograph (UPLC). RNTD displayed high reactivity towards OH radicals, although a product of conduction band electrons reduction was also present in the experiment with TiO(2). In the absence of standards, quantification of intermediates was not possible and only qualitative profiles of their evolution could be determined. The proposed TiO(2) and photo-Fenton degradation routes of RNTD are reported for the first time. PMID:20207392

  14. Leachate/domestic wastewater aerobic co-treatment: A pilot-scale study using multivariate analysis.

    PubMed

    Ferraz, F M; Bruni, A T; Povinelli, J; Vieira, E M

    2016-01-15

    Multivariate analysis was used to identify the variables affecting the performance of pilot-scale activated sludge (AS) reactors treating old leachate from a landfill and from domestic wastewater. Raw leachate was pre-treated using air stripping to partially remove the total ammoniacal nitrogen (TAN). The control AS reactor (AS-0%) was loaded only with domestic wastewater, whereas the other reactor was loaded with mixtures containing leachate at volumetric ratios of 2 and 5%. The best removal efficiencies were obtained for a ratio of 2%, as follows: 70 ± 4% for total suspended solids (TSS), 70 ± 3% for soluble chemical oxygen demand (SCOD), 70 ± 4% for dissolved organic carbon (DOC), and 51 ± 9% for the leachate slowly biodegradable organic matter (SBOM). Fourier transform infrared (FTIR) spectroscopic analysis confirmed that most of the SBOM was removed by partial biodegradation rather than dilution or adsorption of organics in the sludge. Nitrification was approximately 80% in the AS-0% and AS-2% reactors. No significant accumulation of heavy metals was observed for any of the tested volumetric ratios. Principal component analysis (PCA) and partial least squares (PLS) indicated that the data dimension could be reduced and that TAN, SCOD, DOC and nitrification efficiency were the main variables that affected the performance of the AS reactors. PMID:26551262

  15. Pilot-scale pressurized base hydrolysis of HMX plastic-bonded explosives

    SciTech Connect

    Larson, S.A.; Brewer, G.R.; Harradine, D.M.; Polston, C.E.; Le, L.A.; Bishop, R.L.; Dell`Orco, P.C.; Flesner, R.L.

    1998-12-31

    A pilot-scale, pressurized, base hydrolysis reactor has been designed and its construction is nearly completed. Up to 120 L of 1--6 M NaOH aqueous solutions will convert as much as 25 kg of consolidated, explosive pieces to non-energetic compounds. Temperatures approaching 155 C in the pressurized unit will reduce reaction times significantly for the destruction of plastic-bonded explosives compared to previous atmospheric-pressure reactors. The hydrolysis effluent is then pumped into a holding tank where it is fed into a hydrothermal oxidation reactor for complete destruction to non-hazardous products. The hydrothermal unit operates at 480 C and 100 MPa and hydrogen peroxide fed into the reactor at two points will ensure complete destruction of all organic species and nitrogen-containing salts. The entire system is comprised of eight major components and is assembled on five separate and transportable skids. Following construction and preliminary testing at Los Alamos National Laboratory, the unit will be shipped to the Pantex Plant where it will be used for continuous demilitarization activities.

  16. A semi-pilot-scale procedure for isolating and purifying soybean (Glycine max) lectin.

    PubMed

    Fasina, Yewande O; Swaisgood, Harold E; Garlich, Jim D; Classen, Henry L

    2003-07-30

    Availability of gram quantities of purified soybean lectin (SBL) to scientists will foster discovery of novel biomedical applications of the lectin and provide the opportunity to investigate the antinutritional effects of SBL in soybean-consuming food animals and poultry. Therefore, a semi-pilot-scale procedure for isolating and purifying SBL was designed. Defatted soyflour was extracted overnight with 0.9% NaCl at 4 degrees C. The extract obtained was filtered (0.45 microm membrane) and subjected to affinity chromatography using a column containing N-acetyl-D-galactosamine resin that is specific for SBL. Bound SBL was eluted off the column with 0.14 M galactose solution. The eluent was ultrafiltered (30 kDa), and the resulting solution (SBL and water) was freeze-dried. Electrophoretic analysis and hemagglutination assay revealed that the freeze-dried SBL was similar to Sigma-grade SBL in purity and activity (35 and 33 HU/mg protein, respectively). The procedure yielded 141 mg of SBL/100 g of soyflour. PMID:14705873

  17. Evaluation of flow hydrodynamics in a pilot-scale dissolved air flotation tank: a comparison between CFD and experimental measurements.

    PubMed

    Lakghomi, B; Lawryshyn, Y; Hofmann, R

    2015-01-01

    Computational fluid dynamics (CFD) models of dissolved air flotation (DAF) have shown formation of stratified flow (back and forth horizontal flow layers at the top of the separation zone) and its impact on improved DAF efficiency. However, there has been a lack of experimental validation of CFD predictions, especially in the presence of solid particles. In this work, for the first time, both two-phase (air-water) and three-phase (air-water-solid particles) CFD models were evaluated at pilot scale using measurements of residence time distribution, bubble layer position and bubble-particle contact efficiency. The pilot-scale results confirmed the accuracy of the CFD model for both two-phase and three-phase flows, but showed that the accuracy of the three-phase CFD model would partly depend on the estimation of bubble-particle attachment efficiency. PMID:26398026

  18. Design and Construction of Equipment to Make Adsorption at Pilot Plant Scale of Heavy Metals

    NASA Astrophysics Data System (ADS)

    Moreno-Piraján, Juan C.; Rangel, David; Amaya, Bibiana; Vargas, Edgar M.; Giraldo, Liliana

    2008-08-01

    The purpose of this paper was to illustrate the procedure to obtain activated carbon from lignocellulosic residues through chemical and physical paths. A general surface characterization was made and aqueous solution isotherms were obtained in order to evaluate the behaviour of each carbon atom in solutions contaminated with selective ions. The other purpose was to show a simple way to perform a scale-up process of an absorber from the laboratory level to an industrial level, using the breaking curves in fixed beds developed through the continuous pursuit of the Pb(II) and Cr(VI) ions concentration in the effluent of the bed. Activated carbon was used to study the adsorption of Pb(II) and Cr(VI). Isotherms of aqueous adsorption were determined. This model was developed in order to examine its efficiency and to compare it with an experimental model made in the laboratory, which rendered very similar results. The main characteristic of the feasibility of the application of this design is the fact that neither tedious calculations nor mass transfer coefficients are required in order to construct the above-mentioned curves. The model was developed by applying concepts such as mass transfer zone (MTZ) and length of unused bed (LUB), which are the dynamical basis understanding for the adsorption process in fixed beds. As a complementary item of the experiment, within a pilot plant scale, a filter was developed in order to achieve flexibility when manipulating the most important adsorption parameters and to enable the control of the variables involved in the process that change the operating conditions.

  19. Formulation and pilot scale production of low-trans vanaspati with modified polyunsaturated fatty acids content.

    PubMed

    Nejatian, Mohammad; Nikoopour, Houshang; Mohammadi, Teimour

    2015-08-01

    Pilot scale production of low-trans vanaspati through a combination of techniques including non-selective hydrogenation of palmolein and physical blending of 3 vegetable oils, namely Canola, soybean and sunflower oils was investigated. Six formulations (A-F) of trans-free vanaspati were prepared. The fatty acid composition, peroxide value, acid value, iodine value, slip melting point (SMP), solid fat content (SFC) at 10-40 °C and oil/oxidative stability of the formulations were evaluated. The percentage of trans-fatty acids obtained for vanaspati formulations were within the value recommended by WHO (<4), except for B and D formulations (5.81 and 5.28, respectively). A and E formulations had the lowest trans-fatty acids content. The total saturated fatty acids (SFA) in the vanaspati formulations ranged from 22.96 to 30.11 %. Among the six formulations, A showed the significant percentage of SFA. The highest and the Lowest of linolenic acid contents were obtained for samples E (4.36 %) and F (0.28 %). Percentage of the monounsaturated fatty acids (MUFA) of the vanaspati formulations suggested an order from the highest to lowest as: A > C > E > F > D > B formulations. B formulation had the highest significant percentage of PUFA, followed by D, E, F, C, and A formulations. Only A vanaspati had the induction periods (IP) of higher than commercial low-trans vanaspati, while the lowest stability time belonged to sample B (10.20 h). SMP of all the vanaspati formulations was higher than the commercial low-trans vanaspati, but less than 40 °C. Although A and E formulations contained lower SFA than the commercial low-trans vanaspati, they indicated higher SFC at 20-40 °C. According to the above information, E and A formulations could be recommended as suitable formulations for further research in a larger scale. PMID:26243952

  20. Scale-up of anaerobic 1,3-propanediol production by Clostridium butyricum DSP1 from crude glycerol

    PubMed Central

    2014-01-01

    Background As the production of biofuels from raw materials continuously increases, optimization of production processes is necessary. A very important issue is the development of wasteless methods of biodiesel production. One way of utilization of glycerol generated in biodiesel production is its microbial conversion to 1,3-PD (1,3-propanediol). Results The study investigated the scale-up of 1,3-PD synthesis from crude glycerol by Clostridium butyricum. Batch fermentations were carried out in 6.6 L, 42 L and 150 L bioreactors. It was observed that cultivation of C. butyricum on a pilot scale did not decrease the efficiency of 1,3-PD production. The highest concentrations of 1,3-PD, 37 g/L for batch fermentation and 71 g/L for fed-batch fermentation, were obtained in the 6.6 L bioreactor. The kinetic parameters of 1,3-PD synthesis from crude glycerol established for batch fermentation were similar regarding all three bioreactor capacities. During fed-batch fermentation, the concentration of 1,3-PD in the 150 L bioreactor was lower and the substrate was not completely utilized. That suggested the presence of multifunctional environmental stresses in the 150 L bioreactor, which was confirmed by protein analysis. Conclusion The values of effectivity parameters for 1,3-PD synthesis in batch fermentations carried out in 6.6 L, 42 L and 150 L bioreactors were similar. The parameters obtained during fed-batch fermentations in the 150 L bioreactor differed in the rate and percentage of substrate utilization. The analysis of cell proteins demonstrated that a number of multifunctional stresses occurred during fed-batch fermentations in the 150 L bioreactor, which suggests the possibility of identifying the key stages in the biochemical process where inhibition of 1,3-PD synthesis pathways can be observed. PMID:24555775

  1. Coupled solar photo-Fenton and biological treatment for the degradation of diuron and linuron herbicides at pilot scale.

    PubMed

    Farré, Maria José; Maldonado, Manuel Ignacio; Gernjak, Wolfgang; Oller, Isabel; Malato, Sixto; Domènech, Xavier; Peral, José

    2008-06-01

    A coupled solar photo-Fenton (chemical) and biological treatment has been used to remove biorecalcitrant diuron (42 mg l(-1)) and linuron (75 mg l(-1)) herbicides from water at pilot plant scale. The chemical process has been carried out in a 82 l solar pilot plant made up by four compound parabolic collector units, and it was followed by a biological treatment performed in a 40 l sequencing batch reactor. Two Fe(II) doses (2 and 5 mg l(-1)) and sequential additions of H2O2 (20 mg l(-1)) have been used to chemically degrade the initially polluted effluent. Next, biodegradability at different oxidation states has been assessed by means of BOD/COD ratio. A reagent dose of Fe=5 mg l(-1) and H2O2=100 mg l(-1) has been required to obtain a biodegradable effluent after 100 min of irradiation time. Finally, the organic content of the photo-treated solution has been completely assimilated by a biomass consortium in the sequencing batch reactor using a total suspended solids concentration of 0.2 g l(-1) and a hydraulic retention time of 24h. Comparison between the data obtained at pilot plant scale (specially the one corresponding to the chemical step) and previously published data from a similar system performing at laboratory scale, has been carried out. PMID:18405941

  2. Design challenges for space bioreactors

    NASA Technical Reports Server (NTRS)

    Seshan, P. K.; Petersen, G. R.

    1989-01-01

    The design of bioreactors for operation under conditions of microgravity presents problems and challenges. Absence of a significant body force such as gravity can have profound consequences for interfacial phenomena. Marangoni convection can no longer be overlooked. Many speculations on the advantages and benefits of microgravity can be found in the literature. Initial bioreactor research considerations for space applications had little regard for the suitability of the designs for conditions of microgravity. Bioreactors can be classified in terms of their function and type of operation. The complex interaction of parameters leading to optimal design and operation of a bioreactor is illustrated by the JSC mammalian cell culture system. The design of a bioreactor is strongly dependent upon its intended use as a production unit for cell mass and/or biologicals or as a research reactor for the study of cell growth and function. Therefore a variety of bioreactor configurations are presented in rapid summary. Following this, a rationale is presented for not attempting to derive key design parameters such as the oxygen transfer coefficient from ground-based data. A set of themes/objectives for flight experiments to develop the expertise for design of space bioreactors is then proposed for discussion. These experiments, carried out systematically, will provide a database from which engineering tools for space bioreactor design will be derived.

  3. DEMONSTRATION OF PILOT-SCALE PERVAPORATION SYSTEMS FOR VOLATILE ORGANIC COMPOUND REMOVAL FROM A SURFACTANT ENHANCED AQUIFER REMEDIATION FLUID. II. HOLLOW FIBER MEMBRANE MODULES

    EPA Science Inventory

    Pilot-scale demonstration of pervaporation-based removal of volatile organic compounds from a surfactant enhanced aquifer remediation (SEAR) fluid has been conducted at USEPA's Test & Evaluation Facility using hollow fiber membrane modules. The membranes consisted of microporous...

  4. In-Flight Validation of a Pilot Rating Scale for Evaluating Failure Transients in Electronic Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Kalinowski, Kevin F.; Tucker, George E.; Moralez, Ernesto, III

    2006-01-01

    Engineering development and qualification of a Research Flight Control System (RFCS) for the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A has motivated the development of a pilot rating scale for evaluating failure transients in fly-by-wire flight control systems. The RASCAL RFCS includes a highly-reliable, dual-channel Servo Control Unit (SCU) to command and monitor the performance of the fly-by-wire actuators and protect against the effects of erroneous commands from the flexible, but single-thread Flight Control Computer. During the design phase of the RFCS, two piloted simulations were conducted on the Ames Research Center Vertical Motion Simulator (VMS) to help define the required performance characteristics of the safety monitoring algorithms in the SCU. Simulated failures, including hard-over and slow-over commands, were injected into the command path, and the aircraft response and safety monitor performance were evaluated. A subjective Failure/Recovery Rating (F/RR) scale was developed as a means of quantifying the effects of the injected failures on the aircraft state and the degree of pilot effort required to safely recover the aircraft. A brief evaluation of the rating scale was also conducted on the Army/NASA CH-47B variable stability helicopter to confirm that the rating scale was likely to be equally applicable to in-flight evaluations. Following the initial research flight qualification of the RFCS in 2002, a flight test effort was begun to validate the performance of the safety monitors and to validate their design for the safe conduct of research flight testing. Simulated failures were injected into the SCU, and the F/RR scale was applied to assess the results. The results validate the performance of the monitors, and indicate that the Failure/Recovery Rating scale is a very useful tool for evaluating failure transients in fly-by-wire flight control systems.

  5. Detailed project plan: Design, construction and operation of pilot scale Charfuel{reg_sign} process. Topical report, Task 2

    SciTech Connect

    Not Available

    1993-09-01

    In this project, a pilot-scale facility for the flash hydropyrolysis of coal will be designed, built and operated to demonstrate the integrated operation of critical components of the CHARFUEL process and to obtain scale-up data for subsequent demonstration facility for the production of a clean coal slurry fuel. This report presents project plans which includes detailed construction plan; procurement of materials and equipment; construction, test and start-up; potential problems and solutions during operations; data collection and analysis; and feasibility analysis.

  6. Minimization of carbon losses in pilot-scale outdoor photobioreactors by model-based predictive control.

    PubMed

    García Sánchez, J L; Berenguel, M; Rodríguez, F; Fernández Sevilla, J M; Brindley Alias, C; Acién Fernández, F G

    2003-12-01

    The optimization of carbon use in pilot-scale outdoor tubular photobioreactors is investigated in this study. The behavior of a 0.20-m(3) tubular photobioreactor was studied, with and without algae, by steady-state and pulse dynamic-response analysis experiments. A model of the system was obtained and implemented in a programmable control unit and was used to control the reactor under normal production conditions. Results showed that, using and on-off control, the mean daily CO(2) flow in the reactor was 0.86 g min(-1), 19.7% of this being lost. By using a predictive control algorithm the mean daily CO(2) flow was reduced to 0.74 g min(-1), with losses being reduced to 15.6%. In this case, pH tracking was not adequate, especially at the beginning and end of the daylight period, because the variation in solar irradiance was not considered. Taking solar irradiance into account resulted in better performance, with mean daily CO(2) flow reduced to 0.70 g min(-1), and carbon losses reduced to 5.5%. pH tracking was improved and valve actuation was reduced. Improvement of pH control reduced pH gradients in the culture, which increased the photosynthesis rate and biomass productivity of the system. Biomass productivity increased from 1.28 to 1.48 g L(-1) day-(1) when on-off control was replaced by model-based predictive control plus solar irradiance effect mode. Implementation of this methodology in outdoor photobioreactors can increase productivity by 15% and reduce the cost of producing biomass by >6%. Clearly, application of effective control techniques, such as model-based predictive control (MPC), must be considered when developing these processes. PMID:14574687

  7. Salmonella transfer during pilot plant scale washing and roller conveying of tomatoes.

    PubMed

    Wang, Haiqiang; Ryser, Elliot T

    2014-03-01

    Salmonella transfer during washing and roller conveying of inoculated tomatoes was quantified using a pilot scale tomato packing line equipped with plastic, foam, or brush rollers. Red round tomatoes (2.3 kg) were dip inoculated with Salmonella enterica serovar Typhimurium LT2 (avirulent) (4 log CFU/g), air dried for 2 h, and then washed in sanitizer-free water for 2 min. Inoculated tomatoes were then passed single file over a 1.5-m conveyor equipped with plastic, foam, or brush rollers followed by 25 previously washed uninoculated tomatoes. Tomato samples were collected after 2 min of both washing and roller conveying, with all 25 uninoculated tomatoes collected individually after conveying. Roller surface samples were collected before and after conveying the uninoculated tomatoes. Both tomato and surface samples were quantitatively examined for Salmonella by direct plating or membrane filtration using xylose lysine Tergitol 4 agar. Regardless of the roller type, Salmonella populations on inoculated tomatoes did not significantly (P < 0.05) decrease during contact with the roller conveyors. After conveying uninoculated tomatoes over contaminated foam rollers, 96% of the 25 tomatoes were cross-contaminated with Salmonella at >100 CFU per tomato. With plastic rollers, 24 and 76% of tomatoes were cross-contaminated with Salmonella at 10 to 100 and 1 to 10 CFU per tomato, respectively. In contrast, only 8% of 25 tomatoes were cross-contaminated with brush rollers with Salmonella populations of 1 to 10 CFU per tomato. Overall, cross-contamination was greatest with foam, followed by plastic and brush rollers (P < 0.05). Adding peroxyacetic acid or chlorine to the wash water significantly decreased cross-contamination during tomato conveying, with chlorine less effective in controlling Salmonella on foam compared with plastic and brush rollers. PMID:24674428

  8. Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation

    SciTech Connect

    Xu, M.; Wu, W.-M.; Wu, L.; He, Z.; Van Nostrand, J.D.; Deng, Y.; Luo, J.; Carley, J.; Ginder-Vogel, M.; Gentry, T.J.; Gu, B.; Watson, D.; Jardine, P.M.; Marsh, T.L.; Tiedje, J.M.; Hazen, T.C.; Criddle, C.S.; Zhou, J.

    2010-02-15

    A pilot-scale field test system with an inner loop nested within an outer loop was constructed for in situ U(VI) bioremediation at a US Department of Energy site, Oak Ridge, TN. The outer loop was used for hydrological protection of the inner loop where ethanol was injected for biostimulation of microorganisms for U(VI) reduction/immobilization. After 2 years of biostimulation with ethanol, U(VI) levels were reduced to below drinking water standard (<30 {micro}gl{sup -1}) in the inner loop monitoring wells. To elucidate the microbial community structure and functions under in situ uranium bioremediation conditions, we used a comprehensive functional gene array (GeoChip) to examine the microbial functional gene composition of the sediment samples collected from both inner and outer loop wells. Our study results showed that distinct microbial communities were established in the inner loop wells. Also, higher microbial functional gene number, diversity and abundance were observed in the inner loop wells than the outer loop wells. In addition, metal-reducing bacteria, such as Desulfovibrio, Geobacter, Anaeromyxobacter and Shewanella, and other bacteria, for example, Rhodopseudomonas and Pseudomonas, are highly abundant in the inner loop wells. Finally, the richness and abundance of microbial functional genes were highly correlated with the mean travel time of groundwater from the inner loop injection well, pH and sulfate concentration in groundwater. These results suggest that the indigenous microbial communities can be successfully stimulated for U bioremediation in the groundwater ecosystem, and their structure and performance can be manipulated or optimized by adjusting geochemical and hydrological conditions.

  9. A pilot scale ultrasonic system to enhance extraction processes with dense gases

    NASA Astrophysics Data System (ADS)

    Riera, E.; Blasco, M.; Tornero, A.; Casas, E.; Roselló, C.; Simal, S.; Acosta, V. M.; Gallego-Juárez, J. A.

    2012-05-01

    The use of dense gases (supercritical fluids) as extracting agents has been attracting wide interest for years. In particular, supercritical carbon dioxide is considered nowadays as a green and very useful solvent. Nevertheless, the extraction process has a slow dynamics. Power ultrasound represents an efficient way for accelerating and enhancing the kinetics of the process by producing strong agitation and turbulence, compressions and decompressions, and heating in the media. For this purpose, a device prototype for using ultrasound in supercritical media was developed, tested and validated in extraction processes of oil from grounded almonds (55% oil content, wet basis and 3-4 mm particle size) in a 5 L extraction unit. An amount of 1500 g of grounded almonds was placed in a cylindrical basket during the trials inside the dense gas extractor (DGE) where solvent was introduced at different flow rates, pressures and temperatures. In all cases the ultrasonic energy confirmed the enhancement and acceleration of the almond oil extraction kinetics using supercritical CO2. Presently the power ultrasound effect in such a process is being deeply analyzed in a 5 L extraction unit before scaling-up a new ultrasonic system. This technology, still under development, has been designed for a bigger dense gas pilot-plant consisting of two extractors (20 L capacity), two separation units and has the possibility of operating at a pressure up to 50 MPa. The goal of this work is to study the effect of high-power ultrasound coupled to dense gas extraction inside the basket with the product, and to present a prototype for the use of power ultrasound in extraction processes with dense gases inside a new 20 L extractor unit.

  10. Pilot Scale Water Gas Shift - Membrane Device for Hydrogen from Coal

    SciTech Connect

    Barton, Tom

    2013-06-30

    The objectives of the project were to build pilot scale hydrogen separation systems for use in a gasification product stream. This device would demonstrate fabrication and manufacturing techniques for producing commercially ready facilities. The design was a 2 lb/day hydrogen device which included composite hydrogen separation membranes, a water gas shift monolith catalyst, and stainless steel structural components. Synkera Technologies was to prepare hydrogen separation membranes with metallic rims, and to adjust the alloy composition in their membranes to a palladium-gold composition which is sulfur resistant. Chart was to confirm their brazing technology for bonding the metallic rims of the composite membranes to their structural components and design and build the 2 lbs/day device incorporating membranes and catalysts. WRI prepared the catalysts and completed the testing of the membranes and devices on coal derived syngas. The reactor incorporated eighteen 2'' by 7'' composite palladium alloy membranes. These membranes were assembled with three stacks of three paired membranes. Initial vacuum testing and visual inspection indicated that some membranes were cracked, either in transportation or in testing. During replacement of the failed membranes, while pulling a vacuum on the back side of the membranes, folds were formed in the flexible composite membranes. In some instances these folds led to cracks, primarily at the interface between the alumina and the aluminum rim. The design of the 2 lb/day device was compromised by the lack of any membrane isolation. A leak in any membrane failed the entire device. A large number of tests were undertaken to bring the full 2 lb per day hydrogen capacity on line, but no single test lasted more than 48 hours. Subsequent tests to replace the mechanical seals with brazing have been promising, but the technology remains promising but not proven.

  11. Pilot-Scale Silicone Process for Low-Cost Carbon Dioxide Capture

    SciTech Connect

    Farnum, Rachel; Perry, Robert; Wood, Benjamin

    2014-12-31

    GE Global Research is developing technology to remove carbon dioxide (CO 2) from the flue gas of coal-fired powerplants. A mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) and triethylene glycol (TEG) is the preferred CO2-capture solvent. GE Global Research was contracted by the Department of Energy to test a pilot-scale continuous CO2 absorption/desorption system using a GAP-1m/TEG mixture as the solvent. As part of that effort, an Environmental, Health, and Safety (EH&S) assessment for a CO2-capture system for a 550 MW coal-fired powerplant was conducted. Five components of the solvent, CAS#2469-55-8 (GAP-0), CAS#106214-84-0 (GAP-1-4), TEG, and methanol and xylene (minor contaminants from the aminosilicone) are included in this assessment. One by-product, GAP- 1m/SOX salt, and dodecylbenzenesulfonicacid (DDBSA) were also identified foranalysis. An EH&S assessment was also completed for the manufacturing process for the GAP-1m solvent. The chemicals associated with the manufacturing process include methanol, xylene, allyl chloride, potassium cyanate, sodium hydroxide (NaOH), tetramethyldisiloxane (TMDSO), tetramethyl ammonium hydroxide, Karstedt catalyst, octamethylcyclotetrasiloxane (D4), Aliquat 336, methyl carbamate, potassium chloride, trimethylamine, and (3-aminopropyl) dimethyl silanol. The toxicological effects of each component of both the CO2 capture system and the manufacturing process were defined, and control mechanisms necessary to comply with U.S. EH&S regulations are summarized. Engineering and control systems, including environmental abatement, are described for minimizing exposure and release of the chemical components. Proper handling and storage recommendations are made for each chemical to minimize risk to workers and the surrounding community.

  12. Performance of a pilot-scale compost biofilter treating gasoline vapor

    SciTech Connect

    Wright, W.F.; Schroeder, E.D.; Chang, D.P.Y.; Romstad, K.

    1997-06-01

    A pilot-scale compost biofiltration system was operated as gasoline soil vapor extraction site in Hayward, California for one year. The media was composed of equal volumes of compost and perlite, a bulking agent. Supplements added included nitrogen (as KNO{sub 3}), a gasoline degrading microbial inoculum, buffer (crushed oyster shell), and water. The biofiltration system was composed of four identical units with outside dimensions of 1.2 x 1.2 x 1.2 m (4 x 4 x 4 ft) operated in an up-flow mode. The units were configured in parallel during the first eight months and then reconfigured to two parallel systems of two units in series. Air flux values ranged from 0.29 to 1.0 m{sup 3}/m{sup 2} per min. Inlet total petroleum hydrogen hydrocarbon (TPH{sub gas}) concentrations ranged from 310 to 2,700 mg/m{sup 3}. The average empty bed contact time was 2.2 min. Following start-up, performance of the individual biofilters varied considerably for a seven-month period. The principal factor affecting performance appeared to be bed moisture content. Overall TPH{sub gas} removals reached 90% for short periods in one unit, and BTEX removals were typically above 90%. Drying resulted in channeling and loss of bed activity. Management of bed moisture content improved over the study period, and recovery of system performance was achieved without replacement of bed media. Overall TPH{sub gas} removals exceeded 90% during the final 50 days of the study.

  13. Comparison of model-based and conventional controllers on a pilot-scale heat exchanger.

    PubMed

    Raul, Pramod R; Srinivasan, Haritha; Kulkarni, Sanket; Shokrian, Mazdak; Shrivastava, Glory; Russell Rhinehart, R

    2013-05-01

    This pilot-scale heat exchanger demonstration compares two relatively simple nonlinear model-based control strategies to conventional proportional-integral (PI) control. The two nonlinear controllers, generic model control (GMC) and process-model based control (PMBC), use a first-principles model thereby providing characterization of the nonlinear process throughout the operating range. There are two approaches to GMC, one uses a dynamic model, the other a steady-state model. This work uses the steady-state model; accordingly, will use the term GMC-SS, which can be classified as output characterization for a PI controller, making it relatively simple to implement. PMBC uses a dynamic model and adapts to represent the process. These two nonlinear controllers were selected for this application evaluation because of their simplicity (they can be implemented in-house within many commercial control systems), diversity (steady-state and dynamic models), and demonstrated utility for control of nonlinear single-input-single-output processes. The application and results are presented and discussed. Summarizing the results: Within a small temperature operating range PI provides good control, but over the full operating range, the nonlinear and variable delay of the process lead to poor control with PI. GMC can handle the nonlinear issues, but using the convenient steady-state model; it also, provides poor control because of the variable delay associated with flow rate. PMBC was able to provide good control throughout the entire operating range. PMBC has a further advantage of only having one tuning coefficient, while PI and GMC-SS have two. PMID:23453195

  14. Multiple pollutant removal using the condensing heat exchanger: Preliminary test plan for Task 2, Pilot scale IFGT testing

    SciTech Connect

    Jankura, B.J.

    1995-11-01

    The purpose of Task 2 (IFGT Pilot-Scale Tests at the B&W Alliance Research Center) is to evaluate the emission reduction performance of the Integrated Flue Gas Treatment (IFGT) process for coal-fired applications. The IFGT system is a two-stage condensing heat exchanger that captures multiple pollutants -- while recovering waste heat. The IFGT technology offers the potential of addressing the emission of S0{sub 2} and particulate from electric utilities currently regulated under the Phase 1 and Phase 2 requirements defined in Title IV, and many of the air pollutants that will soon be regulated under Title III of the Clean Air Act. The performance data will be obtained at pilot-scale conditions similar to full-scale operating systems. The Task 2 IFGT tests have been designed to investigate several aspects of IFGT process conditions at a broader range of variables than would be feasible at a larger scale facility. The data from these tests greatly expands the IFGT performance database for coals and is needed for the technology to progress from the component engineering phase to system integration and commercialization. The performance parameters that will be investigated are as follows: SO{sub 2} removal; particulate removal; removal of mercury and other heavy metals; NO{sub x} removal; HF and HCl removal; NH{sub 3} removal; ammonia-sulfur compounds generation; and steam injection for particle removal. For all of the pollutant removal tests, removal efficiency will be based on measurements at the inlet and outlet of the IFGT facility. Heat recovery measurements will also be made during these tests to demonstrate the heat recovery provided by the IFGT technology. This report provides a preliminary test plan for all of the Task 2 pilot-scale IFGT tests.

  15. Letter report: Pre-conceptual design study for a pilot-scale Non-Radioactive Low-Level Waste Vitrification Facility

    SciTech Connect

    Thompson, R.A.; Morrissey, M.F.

    1996-03-01

    This report presents a pre-conceptual design study for a Non-Radioactive Low-Level Waste, Pilot-Scale Vitrification System. This pilot plant would support the development of a full-scale LLW Vitrification Facility and would ensure that the full-scale facility can meet its programmatic objectives. Use of the pilot facility will allow verification of process flowsheets, provide data for ensuring product quality, assist in scaling to full scale, and support full-scale start-up. The facility will vitrify simulated non-radioactive LLW in a manner functionally prototypic to the full-scale facility. This pre-conceptual design study does not fully define the LLW Pilot-Scale Vitrification System; rather, it estimates the funding required to build such a facility. This study includes identifying all equipment necessary. to prepare feed, deliver it into the melter, convert the feed to glass, prepare emissions for atmospheric release, and discharge and handle the glass. The conceived pilot facility includes support services and a structure to contain process equipment.

  16. Cells growing in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    For 5 days on the STS-70 mission, a bioreactor cultivated human colon cancer cells, which grew to 30 times the volume of control specimens grown on Earth. This significant result was reproduced on STS-85 which grew mature structures that more closely match what are found in tumors in humans. Shown here, clusters of cells slowly spin inside a bioreactor. On Earth, the cells continually fall through the buffer medium and never hit bottom. In space, they are naturally suspended. Rotation ensures gentle stirring so waste is removed and fresh nutrient and oxygen are supplied. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  17. Development of serum-free bioreactor production of recombinant human thyroid stimulating hormone receptor.

    PubMed

    Stiens, L R; Büntemeyer, H; Lütkemeyer, D; Lehmann, J; Bergmann, A; Weglöhner, W

    2000-01-01

    For the detection of autoantibodies to thyroid stimulating hormone receptors (TSH-R) in Graves' disease based on a novel coated tube assay system, human TSH-R is needed in large amounts. Whereas expression of TSH-R in bacteria, yeast, or insect cells results in nonfunctional, denaturated receptor, mammalian cells such as COS, CHO, and HeLa are able to express functional TSH-R, but only in very low amounts. Furthermore, for all of these cultivations expensive standard media containing 10% fetal calf serum are needed to obtain functional receptor. Here we report on the development of a serum-free production-scale process based on a stable transformed and highly productive human leukemia cell line K562 (1). Starting with K562-TSH-R cells growing in medium containing 10% fetal calf serum the cell line was adapted to serum-free medium. The adaptation medium was optimized in regards to amino acid and protein concentrations, since the use of unadjusted medium caused cell death after 2 days. The adapted cells were stable and could be cultivated without antibiotics for more than 50 cell doublings without losing their productivity. The obtained receptor showed improved TSH binding. The process development was based on cultivations in a 2-L bench-scale bioreactor. Cultivations in batch mode and chemostat mode and perfusion cultivation with the usage of an internal microfiltration device and a spin-filter device were compared. After process optimization a continuous process using spin-filter was set up and run in a 20 L-pilot-scale bioreactor. The presented results were the prerequisite for the production of the novel assay for the diagnosis of autoantibodies to TSH-R in Graves' disease. PMID:11027160

  18. Upscaling of an electronic nose for completely stirred tank reactor stability monitoring from pilot-scale to real-scale agricultural co-digestion biogas plant.

    PubMed

    Adam, Gilles; Lemaigre, Sébastien; Goux, Xavier; Delfosse, Philippe; Romain, Anne-Claude

    2015-02-01

    This study investigated the use of an electronic nose for on-line anaerobic reactor state monitoring at the pilot-scale level and then upscaling to the full-scale level. E-nose indicator was compared to classical state indicators such as pH, alkalinity, volatile fatty acids concentration and to other gas phase compounds. Multivariate statistical process control method, based on principal component analysis and the Hotelling's T(2) statistics was used to derive an indicator representative of the reactor state. At the pilot-scale level, the e-nose indicator was relevant and could distinguish 3 process states: steady-state, transient and collapsing process. At the full-scale level, the e-nose indicator could provide the warning of the major disturbance whereas two slight disturbances were not detected and it gave one major false alarm. This work showed that gas phase relation with anaerobic process should be deeper investigated, as an e-nose could indicate the reactor state, focusing on the gas phase. PMID:25446784

  19. Removal of MS2, Q? and GA bacteriophages during drinking water treatment at pilot scale.

    PubMed

    Boudaud, Nicolas; Machinal, Claire; David, Fabienne; Fréval-Le Bourdonnec, Armelle; Jossent, Jérôme; Bakanga, Fanny; Arnal, Charlotte; Jaffrezic, Marie Pierre; Oberti, Sandrine; Gantzer, Christophe

    2012-05-15

    The removal of MS2, Q? and GA, F-specific RNA bacteriophages, potential surrogates for pathogenic waterborne viruses, was investigated during a conventional drinking water treatment at pilot scale by using river water, artificially and independently spiked with these bacteriophages. The objective of this work is to develop a standard system for assessing the effectiveness of drinking water plants with respect to the removal of MS2, Q? and GA bacteriophages by a conventional pre-treatment process (coagulation-flocculation-settling-sand filtration) followed or not by an ultrafiltration (UF) membrane (complete treatment process). The specific performances of three UF membranes alone were assessed by using (i) pre-treated water and (ii) 0.1 mM sterile phosphate buffer solution (PBS), spiked with bacteriophages. These UF membranes tested in this work were designed for drinking water treatment market and were also selected for research purpose. The hypothesis serving as base for this study was that the interfacial properties for these three bacteriophages, in terms of electrostatic charge and the degree of hydrophobicity, could induce variations in the removal performances achieved by drinking water treatments. The comparison of the results showed a similar behaviour for both MS2 and Q? surrogates whereas it was particularly atypical for the GA surrogate. The infectious character of MS2 and Q? bacteriophages was mostly removed after clarification followed by sand filtration processes (more than a 4.8-log reduction) while genomic copies were removed at more than a 4.0-log after the complete treatment process. On the contrary, GA bacteriophage was only slightly removed by clarification followed by sand filtration, with less than 1.7-log and 1.2-log reduction, respectively. After the complete treatment process achieved, GA bacteriophage was removed with less than 2.2-log and 1.6-log reduction, respectively. The effectiveness of the three UF membranes tested in terms of bacteriophages removal showed significant differences, especially for GA bacteriophage. These results could provide recommendations for drinking water suppliers in terms of selection criteria for membranes. MS2 bacteriophage is widely used as a surrogate for pathogenic waterborne viruses in Europe and the United States. In this study, the choice of MS2 bacteriophage as the best surrogate to be used for assessment of the effectiveness of drinking water treatment in removal of pathogenic waterborne viruses in worst conditions is clearly challenged. It was shown that GA bacteriophage is potentially a better surrogate as a worst case than MS2. Considering GA bacteriophage as the best surrogate in this study, a chlorine disinfection step could guaranteed a complete removal of this model and ensure the safety character of drinking water plants. PMID:22421032

  20. Pilot Scale Production of Highly Efficacious and Stable Enterovirus 71 Vaccine Candidates

    PubMed Central

    Chang, Cheng-Peng; Guo, Meng-Shin; Hsieh, Shih-Yang; Yang, Wen-Hsueh; Chao, Hsin-Ju; Wu, Chien-Long; Huang, Ju-Lan; Lee, Min-Shi; Hu, Alan Yung-Chi; Lin, Sue-Chen; Huang, Yu-Yun; Hu, Mei-Hua; Chow, Yen-Hung; Chiang, Jen-Ron; Chang, Jui-Yuan; Chong, Pele

    2012-01-01

    Background Enterovirus 71 (EV71) has caused several epidemics of hand, foot and mouth diseases (HFMD) in Asia and now is being recognized as an important neurotropic virus. Effective medications and prophylactic vaccine against EV71 infection are urgently needed. Based on the success of inactivated poliovirus vaccine, a prototype chemically inactivated EV71 vaccine candidate has been developed and currently in human phase 1 clinical trial. Principal Finding In this report, we present the development of a serum-free cell-based EV71 vaccine. The optimization at each step of the manufacturing process was investigated, characterized and quantified. In the up-stream process development, different commercially available cell culture media either containing serum or serum-free was screened for cell growth and virus yield using the roller-bottle technology. VP-SFM serum-free medium was selected based on the Vero cell growth profile and EV71 virus production. After the up-stream processes (virus harvest, diafiltration and concentration), a combination of gel-filtration liquid chromatography and/or sucrose-gradient ultracentrifugation down-stream purification processes were investigated at a pilot scale of 40 liters each. Although the combination of chromatography and sucrose-gradient ultracentrifugation produced extremely pure EV71 infectious virus particles, the overall yield of vaccine was 7–10% as determined by a VP2-based quantitative ELISA. Using chromatography as the downstream purification, the virus yield was 30–43%. To retain the integrity of virus neutralization epitopes and the stability of the vaccine product, the best virus inactivation was found to be 0.025% formalin-treatment at 37°C for 3 to 6 days. Furthermore, the formalin-inactivated virion vaccine candidate was found to be stable for >18 months at 4°C and a microgram of viral proteins formulated with alum adjuvant could induce strong virus-neutralizing antibody responses in mice, rats, rabbits, and non-human primates. Conclusion These results provide valuable information supporting the current cell-based serum-free EV71 vaccine candidate going into human Phase I clinical trials. PMID:22529942

  1. Laboratory and Pilot Scale Evaluation of a Permeable Reactive Barrier Technology for Use at Rocky Flats Environmental Technology Site (RFETS)

    SciTech Connect

    Dwyer, B.P.; Hankins, M.G.

    1999-02-01

    Three reactive materials were evaluated to identify the optimum treatment reagent for use in a Permeable Reactive Barrier Treatment System at Rocky Flats Environmental Technology Site (RFETS). The three reactive media evaluated included high carbon steel iron filings, an iron-silica alloy in the form of a foam aggregate, and a pellicular humic acid based sorbent (Humasorb from Arctech) mixed with sand. Each material was tested in the laboratory at column scale using simulated site water. All three materials showed promise for the 903 Mound Site; however, the iron filings were determined to be the most cost effective media. In order to validate the laboratory results, the iron filings were further tested at a pilot scale (field columns) using actual site water. Pilot test results were similar to laboratory results; consequently, the iron filings were chosen for the full scale demonstration of this reactive barrier technology. Design parameters including saturated hydraulic conductivity, treatment residence time, and head loss across the media were provided to the design team in support of the final design.

  2. Membrane Bioreactor With Pressure Cycle

    NASA Technical Reports Server (NTRS)

    Efthymiou, George S.; Shuler, Michael L.

    1991-01-01

    Improved class of multilayer membrane bioreactors uses convention forced by differences in pressure to overcome some of diffusional limitations of prior bioreactors. In reactor of new class, flow of nutrient solution reduces adverse gradients of concentration, keeps cells supplied with fresh nutrient, and sweeps away products faster than diffusion alone. As result, overall yield and rate of reaction increased. Pressures in sweeping gas and nutrient alternated to force nutrient liquid into and out of biocatalyst layer through hyrophilic membrane.

  3. Final Report: Pilot-Scale X-Flow Filtration Test - Env C Plus Entrained Solids Plus Sr/TRU

    SciTech Connect

    Duignan, M.R.

    2000-07-27

    This report discusses the results of the operation of a cross-flow filter in a pilot-scale experimental facility that was designed, built, and run by the Experimental Thermal Fluids Laboratory of the Savannah River Technology Center of the Westinghouse Savannah River Company. This filtration technology was evaluated for its inclusion in the pretreatment section of the nuclear waste stabilization plant being designed by BNFL, Inc. The plant will be built at the U.S. Department of Energy's Hanford Site as part of the River Protection Project.

  4. Hanford Waste Vitrification Program process development: Melt testing subtask, pilot-scale ceramic melter experiment, run summary

    SciTech Connect

    Nakaoka, R.K.; Bates, S.O.; Elmore, M.R.; Goles, R.W.; Perez, J.M.; Scott, P.A.; Westsik, J.H.

    1996-03-01

    Hanford Waste Vitrification Program (HWVP) activities for FY 1985 have included engineering and pilot-scale melter experiments HWVP-11/HBCM-85-1 and HWVP-12/PSCM-22. Major objectives designated by HWVP fo these tests were to evaluate the processing characteristics of the current HWVP melter feed during actual melter operation and establish the product quality of HW-39 borosilicate glass. The current melter feed, defined during FY 85, consists of reference feed (HWVP-RF) and glass-forming chemicals added as frit.

  5. A comparison of impulse drying to double felted pressing on pilot- scale shoe presses and roll presses

    SciTech Connect

    Orloff, D.I.

    1992-08-01

    Pilot-scale shoe press and roll press experiments have been conducted to compare impulse drying and double felted pressing. Both ceramic coated and Beloit Type C press rolls have been evaluated. The experiments show that impulse drying can provide significantly higher outgoing solids than double felled pressing at the same impulse. For example, at an impulse of 0.234 MPa seconds (34 psi seconds), sheets at an ingoing solids of 52% were impulse dried (using the Beloit Type C press roll) to 68% solids while optimized double felled pressing could only yield press dryness of, at most, 60%.

  6. Spiral vane bioreactor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (inventor)

    1991-01-01

    A spiral vane bioreactor of a perfusion type is described in which a vertical chamber, intended for use in a microgravity condition, has a central rotating filter assembly and has flexible membranes disposed to rotate annularly about the filter assembly. The flexible members have end portions disposed angularly with respect to one another. A fluid replenishment medium is input from a closed loop liquid system to a completely liquid filled chamber containing microcarrier beads, cells and a fluid medium. Output of spent medium is to the closed loop. In the closed loop, the output and input parameters are sensed by sensors. A manifold permits recharging of the nutrients and pH adjustment. Oxygen is supplied and carbon dioxide and bubbles are removed and the system is monitored and controlled by a microprocessor.

  7. A 12-MW-scale pilot study of in-duct scrubbing (IDS) using a rotary atomizer

    SciTech Connect

    Samuel, E.A.; Murphy, K.R.; Demian, A.

    1989-11-01

    A low-cost, moderate-removal efficiency, flue gas desulfurization (FGD) technology was selected by the US Department of Energy for pilot demonstration in its Acid Rain Precursor Control Technology Initiative. The process, identified as In-Duct Scrubbing (IDS), applies rotary atomizer techniques developed for lime-based spray dryer FGD while utilizing existing flue gas ductwork and particulate collectors. IDS technology is anticipated to result in a dry desulfurization process with a moderate removal efficiency (50% or greater) for high-sulfur coal-fired boilers. The critical elements for successful application are: (1) adequate mixing of sorbent droplets with flue gas for efficient reaction contact, (2) sufficient residence time to produce a non-wetting product, and (3) appropriate ductwork cross-sectional area to prevent deposition of wet reaction products before particle drying is comple. The ductwork in many older plants, previously modified to meet 1970 Clean Air Act requirements for particulate control, usually meet these criteria. A 12 MW-scale IDS pilot plant was constructed at the Muskingum River Plant of the American Electric Power System. The pilot plant, which operates from a slipstrem attached to the air-preheater outlet duct from the Unit 5 boiler at the Muskingum River Plant (which burns about 4% sulfur coal), is equipped with three atomizer stations to test the IDS concept in vertical and horizontal configurations. In addition, the pilot plant is equipped to test the effect of injecting IDS off- product upstream of the atomizer, on SO{sub 2}and NO{sub x} removals.

  8. Pilot-Scale Treatment of Virginia Canyon Mine Drainage in Idaho Springs, Colorado, USA Using Octolig®

    EPA Science Inventory

    Water quality data from the pilot study are compared to the specific project objectives to evaluate performance of the treatment technology relative to the needs of EPA Region 8. Project objectives included meeting site-specific water quality criteria for Al, Cd, Cu, Pb, and Zn;...

  9. PILOT-SCALE ASSESSMENT OF CONVENTIONAL PARTICULATE CONTROL TECHNOLOGY FOR PRESSURIZED FLUIDIZED-BED COMBUSTION EMISSIONS

    EPA Science Inventory

    The report gives results of an evaluation of electrostatic precipitator (ESP) and fabric filter particulate control technology for the EPA/Exxon pressurized fluidized-bed combustion (PFBC) Miniplant in Linden, NJ. EPA's mobile ESP and fabric filter pilot facilities were slipstrea...

  10. PILOT-SCALE FIELD TESTS OF HIGH-GRADIENT MAGNETIC FILTRATION

    EPA Science Inventory

    The report gives results of using a 5100 cu m/hr mobile pilot plant to evaluate the effectiveness and economics of applying high-gradient magnetic filtration (HGMF) to particulate emission control. A 4-1/2 month test program was conducted at a Pennsylvania sintering plant to char...

  11. Steps and Missteps: Redesigning, Piloting, and Scaling a Developmental Writing Program

    ERIC Educational Resources Information Center

    Adams, Peter; McKusick, Donna

    2014-01-01

    This chapter tells a story of course reform, describing in a fresh and candid way the steps taken toward change and the results achieved. The authors emphasize that instructors need considerable support in order to teach differently, as well as underscore the need to consider scalability of reform even at the pilot stage.

  12. Pilot scale production of the vaccine adjuvant Proteoliposome derived Cochleates (AFCo1) from Neisseria meningitidis serogroup B

    PubMed Central

    2013-01-01

    The use of new adjuvants in vaccine formulations is a subject of current research. Only few parenteral adjuvants have been licensed. We have developed a mucosal and parenteral adjuvant known as AFCo1 (Adjuvant Finlay Cochleate 1, derived from proteoliposomes of N. meningitidis B) using a dialysis procedure to produce them on lab scale. The immunogenicity of the AFCo1 produced by dialysis has been already evaluated, but it was necessary to demonstrate the feasibility of a larger-scale manufacturing process. Therefore, we used a crossflow diafiltration system (CFS) that allows easy scale up to obtain large batches in an aseptic environment. The aim of this work was to produce AFCo1 on pilot scale, while conserving the adjuvant properties. The proteoliposomes (raw material) were resuspended in a buffer containing sodium deoxycholate and were transformed into AFCo1 under the action of a calcium forming buffer. The detergent was removed from the protein solution by diafiltration to a constant volume. In this CFS, we used a hollow fiber cartridge from Amicon (polysulfona cartridge of 10 kDa porosity, 1mm channel diameter of fiber and 0.45 m2 area of filtration), allowing production of a batch of up to 20 L. AFCo1 were successfully produced by tangential filtration to pilot scale. The batch passed preliminary stability tests. Nasal immunization of BALB/c mice, induced specific saliva IgA and serum IgG. The induction of Th1 responses were demonstrated by the induction of IgG2a, IFN? and not IL-5. The adjuvant action over Neisseria (self) antigens and with co-administered (heterologous) antigens such as ovalbumin and a synthetic peptide from haemolytic Streptococcus B was also demonstrated. PMID:23458578

  13. Bacterial Community Dynamics and Taxa-Time Relationships within Two Activated Sludge Bioreactors

    PubMed Central

    Hai, Reti; Wang, Yulin; Wang, Xiaohui; Li, Yuan; Du, Zhize

    2014-01-01

    Background Biological activated sludge process must be functionally stable to continuously remove contaminants while relying upon the activity of complex microbial communities. However the dynamics of these communities are as yet poorly understood. A macroecology metric used to quantify community dynamic is the taxa-time relationship (TTR). Although the TTR of animal and plant species has been well documented, knowledge is still lacking in regard to TTR of microbial communities in activated sludge bioreactors. Aims 1) To characterize the temporal dynamics of bacterial taxa in activated sludge from two bioreactors of different scale and investigate factors affecting such dynamics; 2) to evaluate the TTRs of activated sludge microbial communities in two bioreactors of different scale. Methods Temporal variation of bacterial taxa in activated sludge collected from a full- and lab-scale activated sludge bioreactor was monitored over a one-year period using pyrosequencing of 16S rRNA genes. TTR was employed to quantify the bacterial taxa shifts based on the power law equation S?=?cTw. Results The power law exponent w for the full-scale bioreactor was 0.43 (R2?=?0.970), which is lower than that of the lab-scale bioreactor (w?=?0.55, R2?=?0.971). The exponents for the dominant phyla were generally higher than that of the rare phyla. Canonical correspondence analysis (CCA) result showed that the bacterial community variance was significantly associated with water temperature, influent (biochemical oxygen demand) BOD, bioreactor scale and dissolved oxygen (DO). Variance partitioning analyses suggested that wastewater characteristics had the greatest contribution to the bacterial community variance, explaining 20.3% of the variance of bacterial communities independently, followed by operational parameters (19.9%) and bioreactor scale (3.6%). Conclusions Results of this study suggest bacterial community dynamics were likely driven partly by wastewater and operational parameters and provide evidence that the TTR may be a fundamental ecological pattern in macro- and microbial systems. PMID:24594695

  14. A online NIR sensor for the pilot-scale extraction process in Fructus aurantii coupled with single and ensemble methods.

    PubMed

    Pan, Xiaoning; Li, Yang; Wu, Zhisheng; Zhang, Qiao; Zheng, Zhou; Shi, Xinyuan; Qiao, Yanjiang

    2015-01-01

    Model performance of the partial least squares method (PLS) alone and bagging-PLS was investigated in online near-infrared (NIR) sensor monitoring of pilot-scale extraction process in Fructus aurantii. High-performance liquid chromatography (HPLC) was used as a reference method to identify the active pharmaceutical ingredients: naringin, hesperidin and neohesperidin. Several preprocessing methods and synergy interval partial least squares (SiPLS) and moving window partial least squares (MWPLS) variable selection methods were compared. Single quantification models (PLS) and ensemble methods combined with partial least squares (bagging-PLS) were developed for quantitative analysis of naringin, hesperidin and neohesperidin. SiPLS was compared to SiPLS combined with bagging-PLS. Final results showed the root mean square error of prediction (RMSEP) of bagging-PLS to be lower than that of PLS regression alone. For this reason, an ensemble method of online NIR sensor is here proposed as a means of monitoring the pilot-scale extraction process in Fructus aurantii, which may also constitute a suitable strategy for online NIR monitoring of CHM. PMID:25875194

  15. A Online NIR Sensor for the Pilot-Scale Extraction Process in Fructus Aurantii Coupled with Single and Ensemble Methods

    PubMed Central

    Pan, Xiaoning; Li, Yang; Wu, Zhisheng; Zhang, Qiao; Zheng, Zhou; Shi, Xinyuan; Qiao, Yanjiang

    2015-01-01

    Model performance of the partial least squares method (PLS) alone and bagging-PLS was investigated in online near-infrared (NIR) sensor monitoring of pilot-scale extraction process in Fructus aurantii. High-performance liquid chromatography (HPLC) was used as a reference method to identify the active pharmaceutical ingredients: naringin, hesperidin and neohesperidin. Several preprocessing methods and synergy interval partial least squares (SiPLS) and moving window partial least squares (MWPLS) variable selection methods were compared. Single quantification models (PLS) and ensemble methods combined with partial least squares (bagging-PLS) were developed for quantitative analysis of naringin, hesperidin and neohesperidin. SiPLS was compared to SiPLS combined with bagging-PLS. Final results showed the root mean square error of prediction (RMSEP) of bagging-PLS to be lower than that of PLS regression alone. For this reason, an ensemble method of online NIR sensor is here proposed as a means of monitoring the pilot-scale extraction process in Fructus aurantii, which may also constitute a suitable strategy for online NIR monitoring of CHM. PMID:25875194

  16. Electrochemical pilot-scale plant for oil field produced wastewater by M/C/Fe electrodes for injection.

    PubMed

    Ma, Hongzhu; Wang, Bo

    2006-05-20

    Oil field produced water by separated with crude oil were treated by an electrochemical process in laboratory pilot-scale plant, using double anodes with active metal (M) and graphite (C) and iron as cathode and a noble metal content catalyst with big surface. Due to the strong oxidizing potential of the chemicals produced (Cl(2), O(2), OCl(-), HO and so on), when the wastewater pass through the laboratory pilot-scale plant the organic pollutants including bacteria were oxidized and coagulated by produced M(n+) ion. It can be concluded that the catalytic electrochemical treatment of oil field produced wastewater is effective. Both chemical oxygen demand (COD) and biochemical oxygen demand (BOD) were reduced by over 90% in 6 min, suspense solids (SS) by 99%, Ca(2+) content by 22%, corrosion rate by 98% and bacteria (sulphate reducing bacteria (SRB), saprophytic bacteria (TGB) and iron bacteria) by 99% in 3 min under 15V/120A. These results indicate that this catalytic electrochemical method could be used for effective oil field wastewater treatment for injection purpose. PMID:16300884

  17. Solar photocatalytic treatment of trimethoprim in four environmental matrices at a pilot scale: transformation products and ecotoxicity evaluation.

    PubMed

    Michael, I; Hapeshi, E; Osorio, V; Perez, S; Petrovic, M; Zapata, A; Malato, S; Barceló, D; Fatta-Kassinos, D

    2012-07-15

    The pilot-scale solar degradation of trimethoprim (TMP) in different water matrices (demineralized water: DW, simulated natural freshwater: SW; simulated wastewater: SWW; and real effluent: RE) was investigated in this study. DOC removal was lower in the case of SW compared to DW, which can be attributed to the presence of inorganic anions which may act as scavengers of the HO·. Furthermore, the presence of organic carbon and higher salt content in SWW and RE led to lower mineralization per dose of hydrogen peroxide compared to DW and SW. Toxicity assays in SWW and RE were also performed indicating that toxicity is attributed to the compounds present in RE and their by-products formed during solar Fenton treatment and not to the intermediates formed by the oxidation of TMP. A large number of compounds generated by the photocatalytic transformation of TMP were identified by UPLC-QToF/MS. The degradation pathway revealed differences among the four matrices; however hydroxylation, demethylation and cleavage reactions were observed in all matrices. To the best of our knowledge this is the first time that TMP degradation products have been identified by adopting a solar Fenton process at a pilot-scale set-up, using four different aqueous matrices. PMID:22647240

  18. Design of experiments reveals critical parameters for pilot-scale freeze-and-thaw processing of L-lactic dehydrogenase.

    PubMed

    Roessl, Ulrich; Humi, Sebastian; Leitgeb, Stefan; Nidetzky, Bernd

    2015-09-01

    Freezing constitutes an important unit operation of biotechnological protein production. Effects of freeze-and-thaw (F/T) process parameters on stability and other quality attributes of the protein product are usually not well understood. Here a design of experiments (DoE) approach was used to characterize the F/T behavior of L-lactic dehydrogenase (LDH) in a 700-mL pilot-scale freeze container equipped with internal temperature and pH probes. In 24-hour experiments, target temperature between -10 and -38°C most strongly affected LDH stability whereby enzyme activity was retained best at the highest temperature of -10°C. Cooling profile and liquid fill volume also had significant effects on LDH stability and affected the protein aggregation significantly. Parameters of the thawing phase had a comparably small effect on LDH stability. Experiments in which the standard sodium phosphate buffer was exchanged by Tris-HCl and the non-ionic surfactant Tween 80 was added to the protein solution showed that pH shift during freezing and protein surface exposure were the main factors responsible for LDH instability at the lower freeze temperatures. Collectively, evidence is presented that supports the use of DoE-based systematic analysis at pilot scale in the identification of F/T process parameters critical for protein stability and in the development of suitable process control strategies. PMID:25820483

  19. Xylanase and laccase based enzymatic kraft pulp bleaching reduces adsorbable organic halogen (AOX) in bleach effluents: a pilot scale study.

    PubMed

    Sharma, Abha; Thakur, Vasanta Vadde; Shrivastava, Anita; Jain, Rakesh Kumar; Mathur, Rajeev Mohan; Gupta, Rishi; Kuhad, Ramesh Chander

    2014-10-01

    In present study, xylanase and laccase were produced in a cost-effective manner up to 10 kg substrate level and evaluated in elemental chlorine free bleaching of Eucalyptus kraft pulp. Compared to the pulp pre-bleached with xylanase (15%) or laccase (25%) individually, the ClO2 savings were higher with sequential treatment of xylanase followed by laccase (35%) at laboratory scale. The sequential enzyme treatment when applied at pilot scale (50 kg pulp), resulted in improved pulp properties (50% reduced post color number, 15.71% increased tear index) and reduced AOX levels (34%) in bleach effluents. The decreased AOX level in effluents will help to meet AOX discharge limits, while improved pulp properties will be value addition to the paper. PMID:25036336

  20. Space bioreactor: Design/process flow

    NASA Technical Reports Server (NTRS)

    Cross, John H.

    1987-01-01

    The design of the space bioreactor stems from three considerations. First, and foremost, it must sustain cells in microgravity. Closely related is the ability to take advantage of the weightlessness and microgravity. Lastly, it should fit into a bioprocess. The design of the space bioreactor is described in view of these considerations. A flow chart of the bioreactor is presented and discussed.

  1. HIGH-TEMPERATURE HEAT EXCHANGER TESTING IN A PILOT-SCALE SLAGGING FURNACE SYSTEM

    SciTech Connect

    Michael E. Collings; Bruce A. Dockter; Douglas R. Hajicek; Ann K. Henderson; John P. Hurley; Patty L. Kleven; Greg F. Weber

    1999-12-01

    The University of North Dakota Energy & Environmental Research Center (EERC), in partnership with United Technologies Research Center (UTRC) under a U.S. Department of Energy (DOE) contract, has designed, constructed, and operated a 3.0-million Btu/hr (3.2 x 10{sup 6} kJ/hr) slagging furnace system (SFS). Successful operation has demonstrated that the SFS meets design objectives and is well suited for testing very high-temperature heat exchanger concepts. Test results have shown that a high-temperature radiant air heater (RAH) panel designed and constructed by UTRC and used in the SFS can produce a 2000 F (1094 C) process air stream. To support the pilot-scale work, the EERC has also constructed laboratory- and bench-scale equipment which was used to determine the corrosion resistance of refractory and structural materials and develop methods to improve corrosion resistance. DOE projects that from 1995 to 2015, worldwide use of electricity will double to approach 20 trillion kilowatt hours. This growth comes during a time of concern over global warming, thought by many policy makers to be caused primarily by increases from coal-fired boilers in carbon dioxide (CO{sub 2}) emissions through the use of fossil fuels. Assuming limits on CO{sub 2} emissions from coal-fired boilers are imposed in the future, the most economical CO{sub 2} mitigation option may be efficiency improvements. Unless efficiency improvements are made in coal-fired power plants, utilities may be forced to turn to more expensive fuels or buy CO{sub 2} credits. One way to improve the efficiency of a coal-fired power plant is to use a combined cycle involving a typical steam cycle along with an indirectly fired turbine cycle using very high-temperature but low-pressure air as the working fluid. At the heart of an indirectly fired turbine combined-cycle power system are very high-temperature heat exchangers that can produce clean air at up to 2600 F (1427 C) and 250 psi (17 bar) to turn an aeroderivative turbine. The overall system design can be very similar to that of a typical pulverized coal-fired boiler system, except that ceramics and alloys are used to carry the very high-temperature air rather than steam. This design makes the combined-cycle system especially suitable as a boiler-repowering technology. With the use of a gas-fired duct heater, efficiencies of 55% can be achieved, leading to reductions in CO{sub 2} emissions of 40% as compared to today's coal-fired systems. On the basis of work completed to date, the high-temperature advanced furnace (HITAF) concept appears to offer a higher-efficiency technology option for coal-fired power generation systems than conventional pulverized coal firing. Concept analyses have demonstrated the ability to achieve program objectives for emissions (10% of New Source Performance Standards, i.e., 0.003 lb/MMBtu of particulate), efficiency (47%-55%), and cost of electricity (10%-25% below today's cost). Higher-efficiency technology options for new plants as well as repowering are important to the power generation industry in order to conserve valuable fossil fuel resources, reduce the quantity of pollutants (air and water) and solid wastes generated per MW, and reduce the cost of power production in a deregulated industry. Possibly more important than their potential application in a new high-temperature power system, the RAH panel and convective air heater tube bank are potential retrofit technology options for existing coal-fired boilers to improve plant efficiencies. Therefore, further development of these process air-based high-temperature heat exchangers and their potential for commercial application is directly applicable to the development of enabling technologies in support of the Vision 21 program objectives. The objective of the work documented in this report was to improve the performance of the UTRC high-temperature heat exchanger, demonstrate the fuel flexibility of the slagging combustor, and test methods for reducing corrosion of brick and castable refractory in such combustion environments. Specif

  2. Photocatalytic degradation of oil industry hydrocarbons models at laboratory and at pilot-plant scale

    SciTech Connect

    Vargas, Ronald; Nunez, Oswaldo

    2010-02-15

    Photodegradation/mineralization (TiO{sub 2}/UV Light) of the hydrocarbons: p-nitrophenol (PNP), naphthalene (NP) and dibenzothiophene (DBT) at three different reactors: batch bench reactor (BBR), tubular bench reactor (TBR) and tubular pilot-plant (TPP) were kinetically monitored at pH = 3, 6 and 10, and the results compared using normalized UV light exposition times. The results fit the Langmuir-Hinshelwood (LH) model; therefore, LH adsorption equilibrium constants (K) and apparent rate constants (k) are reported as well as the apparent pseudo-first-order rate constants, k{sub obs}{sup '} = kK/(1 + Kc{sub r}). The batch bench reactor is the most selective reactor toward compound and pH changes in which the reactivity order is: NP > DBT > PNP, however, the catalyst adsorption (K) order is: DBT > NP > PNP at the three pH used but NP has the highest k values. The tubular pilot-plant (TPP) is the most efficient of the three reactors tested. Compound and pH photodegradation/mineralization selectivity is partially lost at the pilot plant where DBT and NP reaches ca. 90% mineralization at the pH used, meanwhile, PNP reaches only 40%. The real time, in which these mineralization occur are: 180 min for PNP and 60 min for NP and DBT. The mineralization results at the TPP indicate that for the three compounds, the rate limiting step is the same as the degradation one. So that, there is not any stable intermediate that may accumulate during the photocatalytic treatment. (author)

  3. Instrumentation and operational requirements for pilot-scale CO/sub 2/ enhanced oil recovery projects

    SciTech Connect

    Lyle, Jr., W. D.; Eisenhawer, S. W.

    1980-06-01

    This report describes an instrumentation system to monitor a miscible displacement pilot flood under carefully controlled conditions. The primary focus is on CO/sub 2/ flooding but the results apply equally well to other types of miscible floods. Included are discussions of the physical processes in a CO/sub 2/ flood, a review of existing CO/sub 2/ floods, instrumentation available, site selection and characterization, operation of the flood, simulator evaluation, and cost estimates for this type of project. Throughout the report it is emphasized that determination of residual oil saturation before and after the flood is crucial to evaluation of the results.

  4. Ecotoxicity assessment of artificial groundwater recharge with reclaimed water: a pilot-scale study.

    PubMed

    Zhang, Xue; Zhao, Xuan

    2013-11-01

    A demonstration of artificial groundwater recharge with tertiary effluent was evaluated using a set of bioassays (acute toxicity to Daphnia, genotoxicity, estrogenic and antiestrogenic toxicity). Around 95 % genotoxicity and 53 % antiestrogenicity were removed from the feed water by ozonation, whereas significant reduction of acute toxicity to Daphnia magna was achieved during a 3 days vadose soil treatment. The toxicity was further removed to the same level as the local groundwater during a 20 days aquifer soil treatment. The pilot study has shown that ozonation and soil treatments can improve the quality of municipal wastewater treatment plant effluents for possible groundwater recharge purposes. PMID:24072260

  5. An integrated approach to assess broad-scale condition of coastal wetlands - The Gulf of Mexico Coastal Wetlands pilot survey

    USGS Publications Warehouse

    Nestlerode, J.A.; Engle, V.D.; Bourgeois, P.; Heitmuller, P.T.; Macauley, J.M.; Allen, Y.C.

    2009-01-01

    The Environmental Protection Agency (EPA) and U.S. Geological Survey (USGS) initiated a two-year regional pilot survey in 2007 to develop, test, and validate tools and approaches to assess the condition of northern Gulf of Mexico (GOM) coastal wetlands. Sampling sites were selected from estuarine and palustrine wetland areas with herbaceous, forested, and shrub/scrub habitats delineated by the US Fish and Wildlife Service National Wetlands Inventory Status and Trends (NWI S&T) program and contained within northern GOM coastal watersheds. A multi-level, stepwise, iterative survey approach is being applied to multiple wetland classes at 100 probabilistically-selected coastal wetlands sites. Tier 1 provides information at the landscape scale about habitat inventory, land use, and environmental stressors associated with the watershed in which each wetland site is located. Tier 2, a rapid assessment conducted through a combination of office and field work, is based on best professional judgment and on-site evidence. Tier 3, an intensive site assessment, involves on-site collection of vegetation, water, and sediment samples to establish an integrated understanding of current wetland condition and validate methods and findings from Tiers 1 and 2. The results from this survey, along with other similar regional pilots from the Mid-Atlantic, West Coast, and Great Lakes Regions will contribute to a design and implementation approach for the National Wetlands Condition Assessment to be conducted by EPA's Office of Water in 2011. ?? Springer Science+Business Media B.V. 2008.

  6. Measurements of liquid phase residence time distributions in a pilot-scale continuous leaching reactor using radiotracer technique.

    PubMed

    Pant, H J; Sharma, V K; Shenoy, K T; Sreenivas, T

    2015-03-01

    An alkaline based continuous leaching process is commonly used for extraction of uranium from uranium ore. The reactor in which the leaching process is carried out is called a continuous leaching reactor (CLR) and is expected to behave as a continuously stirred tank reactor (CSTR) for the liquid phase. A pilot-scale CLR used in a Technology Demonstration Pilot Plant (TDPP) was designed, installed and operated; and thus needed to be tested for its hydrodynamic behavior. A radiotracer investigation was carried out in the CLR for measurement of residence time distribution (RTD) of liquid phase with specific objectives to characterize the flow behavior of the reactor and validate its design. Bromine-82 as ammonium bromide was used as a radiotracer and about 40-60MBq activity was used in each run. The measured RTD curves were treated and mean residence times were determined and simulated using a tanks-in-series model. The result of simulation indicated no flow abnormality and the reactor behaved as an ideal CSTR for the range of the operating conditions used in the investigation. PMID:25528019

  7. Pilot scale performance of the electro-oxidation of landfill leachate at boron-doped diamond anodes.

    PubMed

    Anglada, Angela; Urtiaga, Ane; Ortiz, Inmaculada

    2009-03-15

    During the electrochemical oxidation of real wastewaters, the different species present in the effluent may interact creating complex scenarios making the prediction of the behavior of the whole system difficult. In this paper the different phenomena that occur during the electro-oxidation process of landfill leachate at a pilot plant scale with boron-doped diamond (BDD) anodes are elucidated. The total BDD anode area of the pilot plant was 1.05 m2. The evolution of the concentration of chloride ions, chlorate, and inorganic carbon and the value of pH and redox potential were found to be inter-related. In turn, the concentration of chloride affected the oxidation of ammonia, which took place through indirect oxidation by active chlorine. Moreover, chloride ions competed with organic matter to be oxidized at the anode. The effect of current density was also investigated. Organic matter and ammonia oxidation were highly influenced by the applied current density value. A change in the mechanism of organic matter oxidation was observed when high current densities were applied. Two mathematical models, previously applied to the oxidation of synthetic wastewaters in the literature, were able to predict the evolution of chemical oxygen demand and ammonia for low current density values. PMID:19368210

  8. Interactions between bromine and chlorine in a pilot-scale hazardous waste incinerator. Report for January 1995-April 1996

    SciTech Connect

    Lemieux, P.; Ryan, J.; Lutes, C.; Bruce, K.

    1996-07-01

    The paper discusses experiments that were performed in a 73-kW pilot-scale rotary-kiln incinerator simulator equipped with a 73-kW secondary combustion chamber during which a complex organic mixture containing bromine (Br) and chlorine (Cl) was incinerated. Detailed measurements of products of incomplete combustion (PICs) were made, including volatile and semi-volatile organics, as well as polychlorinated and polybrominated dibenzo-p-dioxins and dibenzo furans (PCDDs/PCDFs and PBDD/PBDFs) and mixed bromo-chloro dioxins and furans (PBSDDs/PBCDFs). Results indicated that the ratios of some analogous brominated to chlorinated PICs were greater than the ratios of the amount of Br to Cl in the feed stream.

  9. The influences of the recycle process on the bacterial community in a pilot scale microalgae raceway pond.

    PubMed

    Erkelens, Mason; Ball, Andrew S; Lewis, David M

    2014-04-01

    The use of recycled media has been shown to be a necessary step within the lifecycle of microalgal biofuels for economic sustainability and reducing the water footprint. However the impact of the harvesting of microalgae on the bacterial load of the recycled water has yet to be investigated. Within this study PCR-DGGE and real-time PCR was used to evaluate the bacterial community dynamics within the recycled water following harvest and concentration steps for a pilot scale open pond system (120,000L), which was developed for the production of green crude oil from Tetraselmis sp. in hyper saline water. Two stages were used in the harvesting; Stage 1 electroflocculation, and Stage 2 centrifugation. Electroflocculation was shown to have little effect on the bacterial cell concentration. In contrast bacterial diversity and cell concentration within the centrifugation step was greatly reduced. PMID:24631152

  10. Partitioning behavior of trace elements during pilot-scale combustion of pulverized coal and coal-water slurry fuel

    PubMed

    Nodelman; Pisupati; Miller; Scaroni

    2000-05-29

    Release pathways for inorganic hazardous air pollutants (IHAPs) from a pilot-scale, down-fired combustor (DFC) when firing pulverized coal (PC) and coal-water slurry fuel (CWSF) were identified and quantified to demonstrate the effect of fuel form on IHAP partitioning, enrichment and emissions. The baghouse capturing efficiency for each element was calculated to determine the effectiveness of IHAP emission control. Most of the IHAPs were enriched in the fly ash and depleted in the bottom ash. Mercury was found to be enriched in the flue gas, and preferentially emitted in the vapor phase. When firing CWSF, more IHAPs were partitioned in the bottom ash than when firing PC. Significant reduction of Hg emissions during CWSF combustion was also observed. PMID:10781717

  11. Solvent-free microwave extraction of essential oil from aromatic herbs: from laboratory to pilot and industrial scale.

    PubMed

    Filly, Aurore; Fernandez, Xavier; Minuti, Matteo; Visinoni, Francesco; Cravotto, Giancarlo; Chemat, Farid

    2014-05-01

    Solvent-free microwave extraction (SFME) has been proposed as a green method for the extraction of essential oil from aromatic herbs that are extensively used in the food industry. This technique is a combination of microwave heating and dry distillation performed at atmospheric pressure without any added solvent or water. The isolation and concentration of volatile compounds is performed in a single stage. In this work, SFME and a conventional technique, hydro-distillation HD (Clevenger apparatus), are used for the extraction of essential oil from rosemary (Rosmarinus officinalis L.) and are compared. This preliminary laboratory study shows that essential oils extracted by SFME in 30min were quantitatively (yield and kinetics profile) and qualitatively (aromatic profile) similar to those obtained using conventional hydro-distillation in 2h. Experiments performed in a 75L pilot microwave reactor prove the feasibility of SFME up scaling and potential industrial applications. PMID:24360439

  12. Pilot-scale treatability testing -- Recycle, reuse, and disposal of materials from decontamination and decommissioning activities: Soda blasting demonstration

    SciTech Connect

    1995-08-01

    The US Department of Energy (DOE) is in the process of defining the nature and magnitude of decontamination and decommissioning (D and D) obligations at its sites. With disposal costs rising and available storage facilities decreasing, DOE is exploring and implementing new waste minimizing D and D techniques. Technology demonstrations are being conducted by LMES at a DOE gaseous diffusion processing plant, the K-25 Site, in Oak Ridge, Tennessee. The gaseous diffusion process employed at Oak Ridge separated uranium-235 from uranium ore for use in atomic weapons and commercial reactors. These activities contaminated concrete and other surfaces within the plant with uranium, technetium, and other constituents. The objective of current K-25 D and D research is to make available cost-effective and energy-efficient techniques to advance remediation and waste management methods at the K-25 Site and other DOE sites. To support this objective, O`Brien and Gere tested a decontamination system on K-25 Site concrete and steel surfaces contaminated with radioactive and hazardous waste. A scouring system has been developed that removes fixed hazardous and radioactive surface contamination and minimizes residual waste. This system utilizes an abrasive sodium bicarbonate medium that is projected at contaminated surfaces. It mechanically removes surface contamination while leaving the surface intact. Blasting residuals are captured and dissolved in water and treated using physical/chemical processes. Pilot-scale testing of this soda blasting system and bench and pilot-scale treatment of the generated residuals were conducted from December 1993 to September 1994.

  13. Pilot and full-scale treatment of PAHs in waters from MGP sites, using the GAC-FBR process

    SciTech Connect

    Rajan, R.V.; Seybold, A.L.; Groshko, V.L.; Wagner, D.J.

    1995-12-31

    Successful pilot-scale studies were conducted to test the applicability of an innovative biological treatment process to treating groundwaters, contaminated with polynuclear aromatic hydrocarbons (PAHs) at former manufactured gas plant (MGP) sites. Subsequently, the Granular Activated Carbon - Fluidized Bed Reactor (GAC-FBR) system has been used in treatment trains at three former MGP sites, to test the effectiveness of the biological process at the field scale. Pilot studies were conducted using a synthetic feed of contaminated MGP Groundwater, a fingerprint containing eight PAHs and major phenolic compounds. hive steady-state periods were tested over a three month period, at organic loading rates ranging from 1.6 to 4.6 Kg-COD/M{sup 3}-day. Removal of PAHs ranged from >99.9% for Naphthalene and 97.8 % for 3-4 ring PAHs to 62-80% for 5-6 ring PAHs, adding up to total PAH removals ranging from 97.9 to 99.7 percent. Batch kinetic tests conducted with biomass from the pilot reactor yielded naphthalene degradation rates of 0.9-3.3 g-COD/ g TSS-day. Vertical profiles of PAHs and dissolved oxygen in the GAC-FBR indicated that most of this removal was accomplished in the bottom half of the reactor. The first field application was initiated at a superfund site, treating excess groundwater produced from a subsurface DNAPL extraction (CROW{trademark}) process. The GAC-FBR was used to treat a 10- 15 GPM aqueous stream from the oil-water separator and the effluent discharged to surface waters. The second field trial at another MGP site was on groundwaters pumped from subsurface exposed to acid purifier wastes, containing elevated concentrations of Fe[II] ({approximately}100 mg/L). The GAC-FBR was used to treat PAHs after chemical oxidation of the Fe[II]. The third field trial was to test PAH removal from MGP waters containing varying amounts of LNAPL and DNAPL, under dynamic loading conditions.

  14. Pilot scale mineralization of organic acids by electro-Fenton process plus sunlight exposure.

    PubMed

    Casado, Juan; Fornaguera, Jordi; Galán, Maria Isabel

    2006-07-01

    The viability of the electro-Fenton degradation of aqueous solutions of benzoic acid, 2,4-dichlorophenoxyacetic acid and oxalic acid has been studied at 20 A using a pilot flow reactor containing an anode and an oxygen diffusion cathode, both of 100 cm(2) section. Pollutants were preferentially oxidized by hydroxyl radicals formed in solution from reaction of Fe(2+) with electrogenerated H(2)O(2), allowing mineralization of benzoic acid and 2,4-D. For oxalic acid no electrochemical mineralization was observed. After electrolysis, samples of the different effluents were exposed to sunlight (Helielectro-Fenton process) and almost complete mineralization was reached after ca. 30-50 min without additional cost. Effects of parameters such as electrolysis time, pH and solar irradiation time on the process efficiencies were studied. PMID:16828141

  15. Scale reliability and construct validity: a pilot study among primary school children in Northern Tanzania.

    PubMed

    Seha, A M; Klepp, K I; Ndeki, S S

    1994-12-01

    Based on the World Health Organization's standardized survey inventories assessing AIDS-related knowledge, attitudes, beliefs, and practices (KABP) for adolescents, a written questionnaire was developed and pilot tested among primary school children in Northern Tanzania. Subjects included 472 fifth and sixth graders at four schools in Arusha and Kilimanjaro regions. Results indicated that the large majority of the students understood the questions and were able and willing to complete the survey. Non-response patterns did not seem to be related to the sensitivity of included questions. AIDS-related knowledge and attitudes toward engaging in sexual behavior had acceptable reliability and construct validity when compared with similar surveys in Western countries, while perceived social norms and self-efficacy need further development. KABP questionnaires may serve as a useful method in AIDS-related surveys and evaluation studies among school children in Tanzania if survey instruments are adapted to reflect the local social and cultural context. PMID:7702963

  16. Predicting Pilot Behavior in Medium Scale Scenarios Using Game Theory and Reinforcement Learning

    NASA Technical Reports Server (NTRS)

    Yildiz, Yildiray; Agogino, Adrian; Brat, Guillaume

    2013-01-01

    Effective automation is critical in achieving the capacity and safety goals of the Next Generation Air Traffic System. Unfortunately creating integration and validation tools for such automation is difficult as the interactions between automation and their human counterparts is complex and unpredictable. This validation becomes even more difficult as we integrate wide-reaching technologies that affect the behavior of different decision makers in the system such as pilots, controllers and airlines. While overt short-term behavior changes can be explicitly modeled with traditional agent modeling systems, subtle behavior changes caused by the integration of new technologies may snowball into larger problems and be very hard to detect. To overcome these obstacles, we show how integration of new technologies can be validated by learning behavior models based on goals. In this framework, human participants are not modeled explicitly. Instead, their goals are modeled and through reinforcement learning their actions are predicted. The main advantage to this approach is that modeling is done within the context of the entire system allowing for accurate modeling of all participants as they interact as a whole. In addition such an approach allows for efficient trade studies and feasibility testing on a wide range of automation scenarios. The goal of this paper is to test that such an approach is feasible. To do this we implement this approach using a simple discrete-state learning system on a scenario where 50 aircraft need to self-navigate using Automatic Dependent Surveillance-Broadcast (ADS-B) information. In this scenario, we show how the approach can be used to predict the ability of pilots to adequately balance aircraft separation and fly efficient paths. We present results with several levels of complexity and airspace congestion.

  17. Membrane bioreactor for control of volatile organic compound emissions

    SciTech Connect

    Ergas, S.J.; McGrath, M.S.

    1997-06-01

    A membrane bioreactor system that overcomes many of the limitations of conventional compost biofilters is described. The system utilizes microporous hydrophobic hollow fiber membranes for mass transfer of volatile organic compounds (VOCs) from the gas phase to a microbially active liquid phase. The reactor design provides a high biomass concentration, a method for wasting biomass, and a method for addition of pH buffers, nutrients, cometabolites, and/or other amendments. A theoretical model is developed, describing mass transfer and biodegradation in the membrane bioreactor. Reactor performance was determined in a laboratory scale membrane bioreactor over a range of gas loading rates using toluene as a model VOC. Toluene removal efficiency was greater than 98% at an inlet concentration of 100 ppm, and a gas residence time of less than 2 s. Factors controlling bioreactor performance were determined through both experiments and theoretical modeling to include: compound Henry`s law constant, membrane specific surface area, gas and VOC loading rates, liquid phase turbulence, and biomass substrate utilization rate.

  18. Ultrasound assisted production of a fibrinolytic enzyme in a bioreactor.

    PubMed

    Avhad, Devchand N; Rathod, Virendra K

    2015-01-01

    The present work illustrates ultrasound assisted production of a fibrinolytic enzyme at 1L bioreactor scale from Bacillus sphaericus MTCC 3672. To alleviate the shortcomings of one factor at a time method of optimization, central composite rotatable design of response surface methodology was employed for optimization of ultrasound assisted production. Different process parameters such as irradiation time, duty cycle and power of ultrasound were varied in 3 different levels in 11 experimental runs. For evaluating mass transfer enhancement effect of ultrasonication on production, control non sonicated fermentation was optimized by varying different agitation speed (300-500rpm) and aeration rate (8.33-33.33cc/s). Optimized ultrasonication protocol resulted in 1.48-fold increase in fibrinolytic enzyme yield as compared to non sonicated fermentation, which comprised of ultrasound irradiation at 25kHz for 10min with 40% duty cycle and 160W power on 12h of growth phase in 1L bioreactor operated at 400rpm agitation speed and 16.66cc/s aeration rate. Declined glucose concentration from 0.1% w/v (non sonicated control run) to 0.05% w/v and breakage of cells cluster emphasized on increased substrate utilization potential and enhanced convection of ultrasound assisted fermentation in a bioreactor. Deliverables of current studies will provide significant insights for enhancement of productivity of various enzymes at a bioreactor level. PMID:24889547

  19. Nonthermal processing of orange juice using a pilot-plant scale supercritical carbon dioxide system with a gas-liquid metal contactor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To evaluate the effect of pilot-plant scale, non-thermal supercritical carbon dioxide (SCCO2) processing on the safety and the quality of orange juice (OJ), SCCO2 processed juice was compared with untreated fresh juice and equivalently thermal processed juice in terms of lethality. SCCO2 processing ...

  20. Final report from VFL technologies for the pilot-scale thermal treatment of Lower East Fork Poplar Creek floodplain soils. LEFPC Appendices, Volume 2, Appendix V-A

    SciTech Connect

    1994-09-01

    This document contains information concerning validation of analytical data for the pilot-scale thermal treatment of Lower East Fork Poplar Creek Floodplain soils located at the Y-12 Plant site. This volume is an appendix of compiled data from this validation process.

  1. Comparison of aluminum thermal-death-time disks with a pilot-scale pasteurizer on the thermal inactivation of Escherichia coli K12 in apple cider

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to compare thermal inactivation kinetics of Escherichia coli K12 in apple cider using conventional glass tubes, aluminum thermal-death-time (TDT) disks, and a pilot-scale pasteurizer. D-values of E. coli K12 in glass tubes and TDT disks were determined at 56, 58, and 60C. D-...

  2. TECHNOLOGY EVALUATION REPORT, SITE PROGRAM DEMONSTRATION TEST: SHIRCO PILOT-SCALE INFRARED INCINERATION SYSTEM ROSE TOWNSHIP DEMODE ROAD SUPERFUND SITE - VOLUME II

    EPA Science Inventory

    The performance of the Shirco pilot-scale infrared thermal destruction system has been evaluated at the Rose Township, Demode Road Superfund Site and is presented in the report. The waste tested consisted of solvents, organics and heavy metals in an illegal dump site. Volume I gi...

  3. Superfund Technology Evaluation Report: SITE Program Demonstration Test Shirco Pilot-Scale Infrared Incineration System at the Rose Township Demode Road Superfund Site Volume I

    EPA Science Inventory

    The Shirco Pilot-Scale Infrared Incineration System was evaluated during a series of seventeen test runs under varied operating conditions at the Demode Road Superfund Site located in Rose Township, Michigan. The tests sought to demonstrate the effectiveness of the unit and the t...

  4. Evaluation of the Impact of Chlorine on Mercury Oxidation in a Pilot-Scale Coal Combustor--The Effect of Coal Blending

    EPA Science Inventory

    A study has been undertaken to investigate the effect of blending PRB coal with an Eastern bituminous coal on the speciation of Hg across an SCR catalyst. In this project, a pilot-scale (1.2 MWt) coal combustor equipped with an SCR reactor for NOx control was used for evaluating ...

  5. Final report from VFL Technologies for the pilot-scale thermal treatment of Lower East Fork Poplar Creek floodplain soils. LEFPC appendices. Volume 5. Appendix V-D

    SciTech Connect

    1994-09-01

    This final report from VFL Technologies for the pilot-scale thermal treatment of lower East Fork Poplar Creek floodplain soils dated September 1994 contains LEFPC Appendices, Volume 5, Appendix V - D. This appendix includes the final verification run data package (PAH, TCLP herbicides, TCLP pesticides).

  6. DEMONSTRATION OF PILOT-SCALE PREVAPORATION SYSTEMS FOR VOLATILE ORGANIC COMPOUND REMOVAL FROM A SURFACTANT ENHANCED AQUIFER REMEDIATION FLUID. I. SPIRAL WOUND MEMBRANE MODULES

    EPA Science Inventory

    During the summer of 1996, a pilot-scale demonstration of a surfactant enhanced aquifer remediation (SEAR) process for removal of dense non-aqueous phase liquids (DNAPLs) from soils was conducted at Hill Air Force Base in Layton, Utah. Five thousand gallons of the extracted DNAP...

  7. Energy conservation and production in a packed-bed anaerobic bioreactor

    SciTech Connect

    Pit, W.W. Jr.; Genung, R.K.

    1980-01-01

    Oak Ridge National Laboratory (ORNL) is developing an energy-conserving/ producing wastewater treatment system based on a fixed-film anaerobic bioreactor. The treatment process is based on passing wastewaters upward through the bioreactor for continuous treatment by gravitational settling, biophysical filtration and biological decomposition. A two-year pilot-plant project using a bioreactor designed to treat 5000 gpd has been conducted using raw wastewater on a municipal site in Oak Ridge, Tennessee. Data obtained for the performance of the bioreactor during this project have been analyzed by ORNL and Associated Water and Air Resources Engineers (AWARE), Inc. of Nashville, Tennessee. From these analyses it was estimated that hydraulic loading rates of 0.25 gpm/ft/sup 2/ and hydraulic residence times of 10 hours could be used in designing such bioreactors for the secondary treatment of municipal wastewaters. Conceptual designs for total treatment systems processing up to one million gallons of wastewater per day were developed based on the performance of the pilot plant bioreactor. These systems were compared to activated sludge treatment systems also operating under secondary treatment requirements and were found to consume as little as 30% of the energy required by the activated sludge systems. Economic advantages of the process result from the elimination of operating energy requirements associated with the aeration of aerobic-based processes and with the significant decrease of sludge-handling costs required with conventional activated sludge treatment systems.Furthermore, methane produced by anaerobic fermentation processes occurring during the biological decomposition of carbonaceous wastes also represented a significant and recoverable energy production. For dilute municipal wastewaters this would completely offset the remaining energy required for treatment, while for concentrated industrial wastewater would result in a net production of energy.

  8. Perchlorate remediation using packed-bed bioreactors and electricity generation in microbial fuel cells (MFCs)

    NASA Astrophysics Data System (ADS)

    Min, Booki

    Two pilot-scale fixed bed bioreactors were operated in continuous mode in order to treat groundwater contaminated by perchlorate. The bioreactors were constructed and operated side-by-side at the Texas Street Well Facility in Redlands, California. Each reactor was packed with either sand or plastic media. A perchlorate-reducing bacterium, Dechlorosoma sp. KJ, was used to inoculate the bioreactors. Perchlorate was successfully removed down to a non-detectable level (<4mug/L) in both bioreactors with acetate as a carbon source and nutrients at loading rates less than 0.063 L/s (1 gpm; 0.34 L/m2s). The sand medium bioreactor could achieve complete-perchlorate removal up to flow rate of 0.126 L/s. A regular backwashing cycle (once a week) was an important factor for completely removing perchlorate in groundwater. Power generation directly from pure or mixed organic matter was examined using microbial fuel cells (MFCs), which were run either in batch or continuous mode. In batch experiments, both a pure culture (Geobactor metallireducens) and a mixed culture (wastewater inoculum) were used as the biocatalyst, and acetate was added as substrate in the anode chamber of the MFC. Power output in a membrane MFC with either inoculum was essentially the same, with 40 +/- 1 mW/m2 for G. metallireducens and 38 +/- 1 mW/m2 for mixed culture. A different type of the MFC containing a salt bridge instead of a membrane system was examined to generate power using the same substrate and pure culture as used in the membrane MFC. Power output in the salt bridge MFC was 2.2 mW/m 2. It was found that the lower power output was directly attributed to the higher internal resistance of the salt bridge system (19920 +/- 50 O) in comparison with that of the membrane system (1286 +/- 1 O). Continuous electricity generation was examined in a flat plate microbial fuel cell (FPMFC) using domestic wastewater and specific organic substrates. The FPMFC, containing a combined electrode/proton exchange membrane (PEM), was initially acclimated for one month to domestic wastewater, and then was operated as a plug flow reactor system. Power density using domestic wastewater as a substrate was 72 +/- 1 mW/m2 at a liquid flow rate of 0.39 mL/min (1.1 hr hydraulic retention time, HRT), and COD removal was 42%. At a longer HRT of 4.0 hr, the COD removal increased to 79%, and power density was 43 mW/m2. Several organic compounds (about 1000 mg-COD/L) also generated high power densities including: glucose (212 +/- 2 mW/m2), acetate (286 +/- 3 mW/m2), butyrate (220 +/- 1 mW/m2), dextran (150 +/- 1 mW/m 2), and starch (242 +/- 3 mW/m2). Therefore, it was shown that power could be successfully generated in a continuous-mode MFC with a variety of organic substrates. Animal wastewater was also tested as substrate to generate power in an air-cathode single chamber MFC operated in batch mode. This preliminary experiment demonstrated that power generation could be sustained with animal wastewater and that wastewater strength and odors were substantially reduced in the reactor after only one day of operation.

  9. Clinical Assessment of the Effect of Tetrabenazine on Functional Scales in Huntington Disease: A Pilot Open Label Study

    PubMed Central

    Fekete, Robert; Davidson, Anthony; Jankovic, Joseph

    2012-01-01

    Background Tetrabenazine is a monoamine depleter with a well-documented effect against chorea associated with Huntington disease (HD). There is a paucity of data about how reduction in chorea relates to better performance on motor, gait, cognitive, and psychiatric assessments. Methods We designed an open label tetrabenazine withdrawal study to test performance using validated scales. The following instruments were used to assess cognitive, behavioral, and motor function in 10 patients with documented HD: The Montreal Cognitive Assessment, Beck Depression Inventory II, Dynamic Gait Index (DGI), Jebsen Hand Test, Timed 25-foot walk, Berg Balance Test (BBT), QuickDASH, and the Unified Huntington Disease Rating Scale (UHDRS) Motor, Stroop Color Word, Behavioral Assessment, Functional Checklist, and Independence Scale. Results Subjects performed significantly better while on tetrabenazine as measured by the DGI (p?=?0.041), BBT (p?=?0.007), and the UHDRS Total Motor (p?=?0.009), Maximum Chorea (p?=?0.005), and Stroop Color-Word tests (p?=?0.028). Discussion This pilot study demonstrates tetrabenazine's potential effects beyond improvement in chorea. PMID:23439575

  10. Pilot studies on scale-up biocatalysis of 7-?-xylosyl-10-deacetyltaxol and its analogues by an engineered yeast.

    PubMed

    Liu, Wan-Cang; Zhu, Ping

    2015-06-01

    Paclitaxel content in yew tree is extremely low, causing a worldwide shortage of this important anticancer drug. Yew tree can also produce abundant 7-?-xylosyl-10-deacetyltaxol that can be bio-converted into 10-deacetyltaxol for semi-synthesis of paclitaxel. However, the bio-conversion by the screened natural microorganisms was inefficient. We have constructed the recombinant yeast with a glycoside hydrolase gene from Lentinula edodes and explored the bioconversion. Based on previously established reaction conditions, the bioconversion of 7-?-xylosyl-10-deacetyltaxol or its extract was further optimized and scaled up with the engineered yeast harvested from 200-L scale high-cell-density fermentation. The optimization included the freeze-dried cell amount, dimethyl sulfoxide concentration, addition of 0.5% antifoam supplement, and substrate concentration. A 93-95% bioconversion and 83% bioconversion of 10 and 15 g/L 7-?-xylosyltaxanes in 10 L reaction volume were achieved, respectively. The yield of 10-deacetyltaxol reached 10.58 g/L in 1 L volume with 15 g/L 7-?-xylosyl-10-deacetyltaxol. The conversion efficiencies were not only much higher than those of other reports and our previous work, but also realized in 10 L reaction volume. A pilot-scale product purification was also established. Our study bridges the gap between the basic research and commercial utilization of 7-?-xylosyl-10-deacetyltaxol for the industrial production of semi-synthetic paclitaxel. PMID:25860125

  11. Leaching behaviour of different scrap materials at recovery and recycling companies: full-, pilot- and lab-scale investigation.

    PubMed

    Blondeel, E; Chys, M; Depuydt, V; Folens, K; Du Laing, G; Verliefde, A; Van Hulle, S W H

    2014-12-01

    Scrap material recovery and recycling companies are confronted with waste water that has a highly fluctuating flow rate and composition. Common pollutants, such as COD, nutrients and suspended solids, potentially toxic metals, polyaromatic hydrocarbons and poly chlorinated biphenyls can exceed the discharge limits. An analysis of the leaching behaviour of different scrap materials and scrap yard sweepings was performed at full-scale, pilot-scale and lab-scale in order to find possible preventive solutions for this waste water problem. The results of these leaching tests (with concentrations that frequently exceeded the Flemish discharge limits) showed the importance of regular sweeping campaigns at the company, leak proof or covered storage of specific scrap materials and oil/water separation on particular leachates. The particulate versus dissolved fraction was also studied for the pollutants. For example, up to 98% of the polyaromatic hydrocarbons, poly chlorinated biphenyls and some metals were in the particulate form. This confirms the (potential) applicability of sedimentation and filtration techniques for the treatment of the majority of the leachates, and as such the rainwater run-off as a whole. PMID:25241019

  12. MONITORING APPROACHES FOR BIOREACTOR LANDFILLS

    EPA Science Inventory

    Experimental bioreactor landfill operations at operating Municipal Solid Waste (MSW) landfills can be approved under the research development and demonstration (RD&D) provisions of 40 CFR 258.4. To provide a basis for consistent data collection for future decision-making in suppo...

  13. Desensitizing Agent Reduces Dentin Hypersensitivity During Ultrasonic Scaling: A Pilot Study

    PubMed Central

    Suda, Tomonari; Akiyama, Toshiharu; Takano, Takuya; Gokyu, Misa; Sudo, Takeaki; Khemwong, Thatawee; Izumi, Yuichi

    2015-01-01

    Background Dentin hypersensitivity can interfere with optimal periodontal care by dentists and patients. The pain associated with dentin hypersensitivity during ultrasonic scaling is intolerable for patient and interferes with the procedure, particularly during supportive periodontal therapy (SPT) for patients with gingival recession. Aim This study proposed to evaluate the desensitizing effect of the oxalic acid agent on pain caused by dentin hypersensitivity during ultrasonic scaling. Materials and Methods This study involved 12 patients who were incorporated in SPT program and complained of dentin hypersensitivity during ultrasonic scaling. We examined the availability of the oxalic acid agent to compare the degree of pain during ultrasonic scaling with or without the application of the dentin hypersensitivity agent. Evaluation of effects on dentin hypersensitivity was determined by a questionnaire and visual analog scale (VAS) pain scores after ultrasonic scaling. The statistical analysis was performed using the paired Student t-test and Spearman rank correlation coefficient. Results The desensitizing agent reduced the mean VAS pain score from 69.33 ± 16.02 at baseline to 26.08 ± 27.99 after application. The questionnaire revealed that >80% patients were satisfied and requested the application of the desensitizing agent for future ultrasonic scaling sessions. Conclusion This study shows that the application of the oxalic acid agent considerably reduces pain associated with dentin hypersensitivity experienced during ultrasonic scaling. This pain control treatment may improve patient participation and treatment efficiency. PMID:26501012

  14. Pilot-scale fermentation of office paper and chicken manure to carboxylic acids 

    E-print Network

    Moody, Andrew Garret

    2006-08-16

    This project focused on scaling up the laboratory fermentation of biomass to carboxylic acids. Four 1050-gallon tanks were used to simulate four-stage countercurrent fermentation. Most laboratory fermentations have been performed with 1-L fermentors...

  15. Development of a draft-tube airlift bioreactor for Botryococcus braunii with an optimized inner structure using computational fluid dynamics.

    PubMed

    Xu, Ling; Liu, Rui; Wang, Feng; Liu, Chun-Zhao

    2012-09-01

    The key parameters of the inner structure of a cylindrical airlift bioreactor, including the ratio of the cross-section area of the downcomer to the cross-section area of the riser, clearance from the upper edge of the draft tube to the water level, and clearance from the low edge of the draft tube to the bottom of the reactor, significantly affected the biomass production of Botryococcus braunii. In order to achieve high algal cultivation performance, the optimal structural parameters of the bioreactor were determined using computational fluid dynamics (CFD) simulation. The simulated results were validated by experimental data collected from the microalgal cultures in both 2 and 40-L airlift bioreactors. The CFD model developed in this study provides a powerful means for optimizing bioreactor design and scale-up without the need to perform numerous time-consuming bioreactor experiments. PMID:22750496

  16. Pilot-scale evaluation of UV reactors' efficacy against in vitro infectivity of Cryptosporidium parvum oocysts.

    PubMed

    Entrala, Emilio; Garin, Yves J F; Meneceur, Pascale; Hayat, Maud; Scherpereel, Guillaume; Savin, Cyril; Féliers, Cédric; Derouin, Francis

    2007-12-01

    An experimental protocol was developed to assess the efficacy of two UV reactors (medium-pressure UVaster), and a low-pressure reactor) on the infectivity of Cryptosporidium parvum oocysts under conditions mimicking small- or medium-size water distribution units. The protocol included purification of large amounts of viable oocysts from experimentally infected calf feces, pilot spiking, sample concentration and purification after UV radiation, oocyst quantification and in vitro evaluation of oocyst infectivity on HCT-8 cells. Water samples were collected at intervals upstream and downstream from the UV reactor after spiking. Oocysts were concentrated by centrifugation, purified by immunomagnetic capture and quantified using laser-scanning cytometry. An enhanced in vitro infectivity test on HCT-8 cells was developed, where oocysts were pretreated in order to obtain maximized in vitro infectivity, and infectious foci were enumerated after immunofluorescence staining after 3 days of culture. This method was superior to viability measured by excystation for assessing oocyst infectivity. The infectivity rate of untreated oocysts ranged between 9% and 30% in replicate experiments. The method allowed us to determine inactivation rates >4.92 (log) with UVaster and >4.82 with the LP reactor after exposition of oocysts to an effective dose of 400 J m(-2) at flow rates of 15 and 42 m(3) h(-1), respectively. PMID:17941833

  17. A next generation, pilot-scale continuous sterilization system for fermentation media

    PubMed Central

    Lester, M.; Brix, T.; Wong, D.; Nuechterlein, J.

    2006-01-01

    A new continuous sterilization system was designed, constructed, started up, and qualified for media sterilization for secondary metabolite cultivations, bioconversions, and enzyme production. An existing Honeywell Total Distributed Control 3000-based control system was extended using redundant High performance Process Manager controllers for 98 I/O (input/output) points. This new equipment was retrofitted into an industrial research fermentation pilot plant, designed and constructed in the early 1980s. Design strategies of this new continuous sterilizer system and the expanded control system are described and compared with the literature (including dairy and bio-waste inactivation applications) and the weaknesses of the prior installation for expected effectiveness. In addition, the reasoning behind selection of some of these improved features has been incorporated. Examples of enhancements adopted include sanitary heat exchanger (HEX) design, incorporation of a “flash” cooling HEX, on-line calculation of Fo and Ro, and use of field I/O modules located near the vessel to permit low-cost addition of new instrumentation. Sterilizer performance also was characterized over the expected range of operating conditions. Differences between design and observed temperature, pressure, and other profiles were quantified and investigated. PMID:16496186

  18. A next generation, pilot-scale continuous sterilization system for fermentation media.

    PubMed

    Junker, B; Lester, M; Brix, T; Wong, D; Nuechterlein, J

    2006-05-01

    A new continuous sterilization system was designed, constructed, started up, and qualified for media sterilization for secondary metabolite cultivations, bioconversions, and enzyme production. An existing Honeywell Total Distributed Control 3000-based control system was extended using redundant High performance Process Manager controllers for 98 I/O (input/output) points. This new equipment was retrofitted into an industrial research fermentation pilot plant, designed and constructed in the early 1980s. Design strategies of this new continuous sterilizer system and the expanded control system are described and compared with the literature (including dairy and bio-waste inactivation applications) and the weaknesses of the prior installation for expected effectiveness. In addition, the reasoning behind selection of some of these improved features has been incorporated. Examples of enhancements adopted include sanitary heat exchanger (HEX) design, incorporation of a "flash" cooling HEX, on-line calculation of F(o) and R(o), and use of field I/O modules located near the vessel to permit low-cost addition of new instrumentation. Sterilizer performance also was characterized over the expected range of operating conditions. Differences between design and observed temperature, pressure, and other profiles were quantified and investigated. PMID:16496186

  19. Design and installation of a next generation pilot scale fermentation system.

    PubMed

    Junker, B; Brix, T; Lester, M; Kardos, P; Adamca, J; Lynch, J; Schmitt, J; Salmon, P

    2003-01-01

    Four new fermenters were designed and constructed for use in secondary metabolite cultivations, bioconversions, and enzyme production. A new PC/PLC-based control system also was implemented using GE Fanuc PLCs, Genius I/O blocks, and Fix Dynamics SCADA software. These systems were incorporated into an industrial research fermentation pilot plant, designed and constructed in the early 1980s. Details of the design of these new fermenters and the new control system are described and compared with the existing installation for expected effectiveness. In addition, the reasoning behind selection of some of these features has been included. Key to the design was the goal of preserving similarity between the new and previously existing and successfully utilized fermenter hardware and software installations where feasible but implementing improvements where warranted and beneficial. Examples of enhancements include strategic use of Inconel as a material of construction to reduce corrosion, piping layout design for simplified hazardous energy isolation, on-line calculation and control of nutrient feed rates, and the use of field I/O modules located near the vessel to permit low-cost addition of new instrumentation. PMID:12790627

  20. Pilot scale application of anaerobic baffled reactor for biologically enhanced primary treatment of raw municipal wastewater.

    PubMed

    Hahn, Martha J; Figueroa, Linda A

    2015-12-15

    A four-cell anaerobic baffled reactor (ABR) was operated for two years treating raw municipal wastewater at ambient water and air temperatures of 12-23 °C and -10 to 35 °C, respectively. The 1000-L pilot reactor operated at a 12-h hydraulic residence time and was located in the Headworks building of the Plum Creek Water Reclamation Authority. The average influent was TSS = 510 ± 400 mg/L, BOD5 = 320 ± 80 mg/L and the average removal of TSS and BOD5 was 83 ± 10% and 47 ± 15%, respectively. The TSS and BOD removal exceeded that of conventional primary clarification, with no wasting of the settled solids over the two-years and stoichiometric production of methane. The estimated energy content of the biogas produced per unit volume of wastewater treated averaged 0.45 kWh/m(3). The TSS and total COD removal in the first cell averaged 75 ± 15% and 43 ± 14%, respectively, but methane production was only 20% of the total observed for the full ABR. The performance of the ABR relative to the extent of solids hydrolysis and methane production can be varied by the number of cells and hydraulic residence time. The anaerobic baffled reactor is an energy-positive technology that can be used for biologically enhanced primary treatment of raw municipal wastewater in cold climates. PMID:26414605

  1. PRACTICE REVIEW OF FIVE BIOREACTOR/RECIRCULATION LANDFILLS

    EPA Science Inventory

    Six bioreactor landfills were analyzed to provide a perspective of current practice and technical issues that differentiate bioreactor landfills from conventional landfills. Five of the bioreactor landfills were anaerobic and one was aerated. In one case, nearly identical cells e...

  2. Application of wireless sensor network based on ZigBee technology in photo-bioreactors system

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Chen, Ming; Chi, Tao

    2013-03-01

    A photo-bioreactor is a bioreactor that incorporates some types of light source to provide photonic energy input into the reactor[1][2]. In the situation of Large-scale industrialization production of micro-algae, hundreds of photo-bioreactors will be deployed in a factory, thus the design of entire system is based on the distribution theory and the remote monitoring must be deployed. So the communication in the entire photo-bioreactors system is very important. However, the recent solution of communication is based on RS-485 data bus, and the twisted-pair cable is used as the communication medium, so the flexibility and scalability of entire system reduce. In this paper, the wireless sensor network (WSN) based on ZigBee technology is applied to this photo-bioreactors system, and the related key problems include the architecture of entire system and the design of wireless sensor network nodes[3]~[6]. The application of this technology will also reduce the cost and effectively raise the intelligence level of the large-scale industrialization photo-bioreactors system.

  3. Nitrification and denitrification using biofilters packed with sulfur and limestone at a pilot-scale municipal wastewater treatment plant.

    PubMed

    Ahmed, Zubair; Kim, Sung-Min; Kim, In S; Bum, Min-Soo; Chae, Kyu-Jung; Joo, Jin-Ho; Ok, Yong Sik; Oh, Sang-Eun

    2012-06-01

    A pilot-scale municipal wastewater treatment plant composed of a fixed film activated sludge (IFAS) system with sulfur-limestone autotrophic denitrification (SLAD) was operated for a year and the influence of different operational factors was investigated. Nitrification efficiency was found to be above 91% at temperatures above 25 degrees C even at short hydraulic residence times (HRTs), but declined to 51 +/- 2% when the temperature dropped to 22 +/- 3 degrees C. The minimum HRT (HRT(min)) to achieve nitrification efficiency > 90% was found to be 12 h at temperatures above 25 degrees C. Denitrification efficiencies were found to be 89% and 79% at a nitrate loading of 0.36 kg NO3(-)-N m(-3) d(-1) and at 0.18 kg NO3(-)-N m(-3) d(-1), respectively. The minimum empty bed residence time (EBRT) to achieve denitrification efficiency above 80% without methanol addition was 3 h at a nitrate loading rate of 0.27-0.38 kg NO3(-)-N m(-3) d(-1). The amount of nitrate removed as a function of the sulfate formed was found to be 0.188 g NO3(-)-N/g SO4(2-). The nitrate load removed by the biofilter as a function of the alkalinity consumed was found to be very close to the theoretical stoichiometric value. The application of the pilot plant was proven to be feasible and the performance of the SLAD system, especially with respect to the minimum EBRT to achieve denitrification efficiency above 80%, the maximum denitrification rate and performance at temperatures below 10 degrees C. To achieve a nitrification efficiency above 90% in the IFAS system, temperature changes and the minimum HRT were found to be the most influential operational parameters. PMID:22856299

  4. Pilot scale treatment of chromite ore processing residue using sodium sulfide in single reduction and coupled reduction/stabilization processes.

    PubMed

    Velasco, Antonio; Ramírez, Martha; Hernández, Sergio; Schmidt, Winfried; Revah, Sergio

    2012-03-15

    Single Cr(VI) reduction and coupled reduction/stabilization (R/S) processes were evaluated at pilot scale to determine their effectiveness to treat chromite ore processing residue (COPR). Sodium sulfide was used as the reducing agent and cement, gypsum and lime were tested as the stabilizing agents. The pilot experiments were performed in a helical ribbon blender mixer with batches of 250 kg of COPR and mixing time up to 30 min. Na2S/Cr(VI) mass ratios of 4.6, 5.7 and 6.8 were evaluated in the single reduction process to treat COPR with Cr(VI) concentration of ?4.2 g/kg. The R/S process was tested with a Na2S/Cr(VI) mass ratio of 5.7 and including stabilizing agents not exceeding 5% (w/w(COPR)), to treat COPR with a Cr(VI) content of ?5.1g/kg. The single reduction process with a ratio of 6.8, reached Cr(VI) reduction efficiencies up to 97.6% in the first days, however these values decreased to around 93% after 380 days of storage. At this point the total Cr level was around 12.5 mg/L. Cr(VI) removal efficiencies exceeding 96.5% were reached and maintained during 380 days when the coupled R/S process was evaluated. Total Cr levels lower than 5 mg/l were attained at the initials days in all R/S batch tested, however after 380 days, concentrations below the regulatory limit were only found with gypsum (2%) as single agent and with a blend of cement (4%) and lime (1%). These results indicated that the coupled R/S process is an excellent alternative to stabilize COPR. PMID:21543156

  5. In-Situ Uranium Stabilization Through Polyphosphate Injection: Pilot-Scale Treatability Test at the 300 Area, Hanford Site

    SciTech Connect

    Vermeul, V.R.; Fruchter, J.S.; Fritz, B.G.; Mackley, R.D.; Wellman, D.M.; Williams, M.D.

    2008-07-01

    This paper describes the pilot-scale treatability test that was conducted to evaluate the efficacy of using a polyphosphate injection approach to treat uranium-contaminated groundwater in situ within the 300 Area aquifer at the Hanford Site in Richland, Washington. Primary test objectives were to assess 1) direct treatment of available uranium contributing to the groundwater plume through precipitation of the uranyl-phosphate mineral autunite, and 2) emplacement of secondary-treatment capacity via precipitation of the calcium-phosphate mineral apatite, which acts as a long-term sorbent for uranium. Based on an injection design analysis that incorporated results from both bench-scale testing and site-specific characterization activities, a three-phase injection approach was selected for field-scale testing. This approach consisted of 1) an initial polyphosphate injection to facilitate direct treatment of aqueous uranium in the pore space, 2) a second phase consisting of a calcium chloride injection to provide an available calcium source for the creation of apatite, and 3) a subsequent polyphosphate injection to supply a phosphate source for the formation of apatite. The total-solution volume injected during this field test was approximately 3.8 million L (1 million gal). Results from this investigation will be used to identify implementation challenges and investigate the technology's ability to meet remedial objectives. In addition, data from this test will provide valuable information for designing a full-scale remedial action for uranium in groundwater beneath the 300 Area of the Hanford Site, and a detailed understanding of the fundamental underpinnings necessary to evaluate the efficacy and potential for utilization of the polyphosphate technology at other sites with varying geochemical and hydrodynamic conditions. (authors)

  6. Preparation of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60 kW

    SciTech Connect

    Li Wei; Peng Jinhui Zhang Libo; Yang Kunbin; Xia Hongying; Zhang Shimin; Guo Shenghui

    2009-02-15

    Experiments to prepare activated carbon by microwave heating indicated that microwave energy can decrease reaction temperature, save the energy and shorten processing time remarkably compared to conventional heating, owing to its internal and volumetric heating effects. The above results were based on the laboratory-scale experiments. It is desirable to develop a pilot-scale microwave heating equipment and investigate the parameters with the aim of technological industrialization. In the present study, the components and features of the self-invented equipment were introduced. The temperature rise curves of the chars were obtained. Iodine numbers of the activated carbons all exceed the state standard of China under the following conditions: 25 kg/h charging rate, 0.42 rev/min turning rate of ceramic tube, flow rate of steam at pressure of 0.01 MPa and 40 kW microwave heating power after 60 kW pre-activation for 30 min. Pore structure of the sample obtained at a time point of 46 h, which contained BET surface area, and pore size distributions of micropores and total pores, was tested by nitrogen adsorption at 77 K.

  7. Effects of simulated oilfield produced water on early seedling growth after treatment in a pilot-scale constructed wetland system.

    PubMed

    Pardue, Michael J; Castle, James W; Rodgers, John H; Huddleston, George M

    2015-01-01

    Seed germination and early seedling growth bioassays were used to evaluate phytotoxicity of simulated oilfield produced water (OPW) before and after treatment in a subsurface-flow, pilot-scale constructed wetland treatment system (CWTS). Responses to untreated and treated OPW were compared among seven plant species, including three monocotyledons: corn (Zea mays), millet (Panicum miliaceum), and sorghum (Sorghum bicolor); and four dicotyledons: lettuce (Lactuca sativa), okra (Abelmoschus esculents), watermelon (Citrullus lanatus), and soybean (Glycine max). Phytotoxicity was greater in untreated OPW than in treated OPW. Exposures to untreated and treated OPW enhanced growth in some plant species (sorghum, millet, okra, and corn) relative to a negative control and reduced growth in other plant species (lettuce, soybean, and watermelon). Early seedling growth parameters indicated that dicotyledons were more sensitive to test waters compared to monocotyledons, suggesting that morphological differences between plant species affected phytotoxicity. Results indicated the following sensitivity scale for plant species: lettuce>soybean>watermelon>corn>okra?millet>sorghum. Phytotoxicity of the treated OPW to lettuce and soybean, although concentrations of COCs were less than irrigation guideline concentrations, suggests that chemical characterization and comparison to guideline concentrations alone may not be sufficient to evaluate water for use in growing crops. PMID:25409245

  8. Preparation of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60 kW.

    PubMed

    Li, Wei; Peng, Jinhui; Zhang, Libo; Yang, Kunbin; Xia, Hongying; Zhang, Shimin; Guo, Sheng-hui

    2009-02-01

    Experiments to prepare activated carbon by microwave heating indicated that microwave energy can decrease reaction temperature, save the energy and shorten processing time remarkably compared to conventional heating, owing to its internal and volumetric heating effects. The above results were based on the laboratory-scale experiments. It is desirable to develop a pilot-scale microwave heating equipment and investigate the parameters with the aim of technological industrialization. In the present study, the components and features of the self-invented equipment were introduced. The temperature rise curves of the chars were obtained. Iodine numbers of the activated carbons all exceed the state standard of China under the following conditions: 25 kg/h charging rate, 0.42 rev/min turning rate of ceramic tube, flow rate of steam at pressure of 0.01 MPa and 40 kW microwave heating power after 60 kW pre-activation for 30 min. Pore structure of the sample obtained at a time point of 46 h, which contained BET surface area, and pore size distributions of micropores and total pores, was tested by nitrogen adsorption at 77K. PMID:18455385

  9. The development of the MELiSSA Pilot Plant Facility

    NASA Astrophysics Data System (ADS)

    Godia, Francesc; Dussap, Claude-Gilles; Dixon, Mike; Peiro, Enrique; Fossen, Arnaud; Lamaze, Brigitte; Brunet, Jean; Demey, Dries; Mas-Albaigès, Joan L.

    MELiSSA (Micro-Ecological Life Support System Alternative) is a closed artificial ecosystem intended as a tool for the development of a bio-regenerative life support system for longterm manned missions. The MELiSSA loop is formed by five interconnected compartments, organized in three different loops (solid, liquid and gas). This compartments are microbial bioreactors and higher plant chambers. The MELiSSA Pilot Plant facility has been designed to achieve the preliminary terrestrial demonstration of the MELiSSA concept at pilot scale, using animals as a model for the crew compartent. The experience gained in the operation of such a facility will be highly relevant for planning future life support systems in Space. In this communication, the latests developments in the MELiSSA Pilot Plant will be reported. Particularly, the completion of the design phase and instalation of all the different compartments will be discussed in detail. Each of the compartments had to be designed and constructed according to very specific characteristics, associated to the biological systems to be cultured, as part of the complete MELiSSA loop (anerobic, oxygenic, thermophilic, heterotrophic, autotrophic, axenic, photosynthetic, etc.). Additionally, the sizing of each reactor (ranging from 8 to 100 Liters, depending of each particular compartment) should compile with the global integration scenario proposed, and with the final goal of connection of all compartments to provide a demonstration of the MELiSSA concept, and generate data for the design and operation of future biological life support systems.

  10. Pilot testing and development of a full-scale Carrousel{reg_sign} activated sludge system for treating potato processing wastewaters

    SciTech Connect

    Menon, R.; Grames, L.M.

    1996-11-01

    Pilot Carrousel testing was conducted for about three months on wastewaters generated at a major potato processing facility in 1993. The testing focused toward removal of BOD, NH{sub 3} and NO{sub 3}, and Total-P. After five-six weeks that it took for the system to reach steady state operation, the pilot plant was able to treat the wastewaters quite well. Effluent BOD{sub 5} and TKN values were less than 8 and 4 mg/L, respectively, during the second half of testing. Total-P in the effluent was less than 10 mg/L, although this step was not optimized. Based on the pilot testing, a full-scale Carrousel activated sludge plant was designed and commissioned in 1994. This plant is currently treating all the wastewaters from the facility and performing contaminant removals at a very high level.

  11. Packed Bed Bioreactor for the Isolation and Expansion of Placental-Derived Mesenchymal Stromal Cells

    PubMed Central

    Osiecki, Michael J.; Michl, Thomas D.; Kul Babur, Betul; Kabiri, Mahboubeh; Atkinson, Kerry; Lott, William B.; Griesser, Hans J.; Doran, Michael R.

    2015-01-01

    Large numbers of Mesenchymal stem/stromal cells (MSCs) are required for clinical relevant doses to treat a number of diseases. To economically manufacture these MSCs, an automated bioreactor system will be required. Herein we describe the development of a scalable closed-system, packed bed bioreactor suitable for large-scale MSCs expansion. The packed bed was formed from fused polystyrene pellets that were air plasma treated to endow them with a surface chemistry similar to traditional tissue culture plastic. The packed bed was encased within a gas permeable shell to decouple the medium nutrient supply and gas exchange. This enabled a significant reduction in medium flow rates, thus reducing shear and even facilitating single pass medium exchange. The system was optimised in a small-scale bioreactor format (160 cm2) with murine-derived green fluorescent protein-expressing MSCs, and then scaled-up to a 2800 cm2 format. We demonstrated that placental derived MSCs could be isolated directly within the bioreactor and subsequently expanded. Our results demonstrate that the closed system large-scale packed bed bioreactor is an effective and scalable tool for large-scale isolation and expansion of MSCs. PMID:26660475

  12. Pilot-scale field study for ammonia removal from lagoon biogas using an acid wet scrubber.

    PubMed

    Lin, Hongjian; Wu, Xiao; Miller, Curtis; Zhu, Jun; Hadlocon, Lara Jane; Manuzon, Roderick; Zhao, Lingying

    2014-01-01

    The anaerobic activities in swine slurry storage and treatment generate biogas containing gaseous ammonia component which is a chemical agent that can cause adverse environmental impacts when released to the atmosphere. The aim of this pilot plant study was to remove ammonia from biogas generated in a covered lagoon, using a sulfuric acid wet scrubber. The data showed that, on average, the biogas contained 43.7 ppm of ammonia and its concentration was found to be exponentially related to the air temperature inside the lagoon. When the air temperature rose to 35°C and the biogas ammonia concentration reached 90 ppm, the mass transfer of ammonia/ammonium from the deeper liquid body to the interface between the air and liquid became a limiting factor. The biogas velocity was critical in affecting ammonia removal efficiency of the wet scrubber. A biogas flow velocity of 8 to 12 mm s(-1) was recommended to achieve a removal efficiency of greater than 60%. Stepwise regression revealed that the biogas velocity and air temperature, not the inlet ammonia concentration in biogas, affected the ammonia removal efficiency. Overall, when 73 g L(-1) (or 0.75 M) sulfuric acid solution was used as the scrubber solution, removal efficiencies varied from 0% to 100% with an average of 55% over a 40-d measurement period. Mass balance calculation based on ammonium-nitrogen concentration in final scrubber liquid showed that about 21.3 g of ammonia was collected from a total volume of 1169 m(3) of biogas, while the scrubber solution should still maintain its ammonia absorbing ability until its concentration reaches up to 1 M. These results showed promising use of sulfuric acid wet scrubber for ammonia removal in the digester biogas. PMID:24762182

  13. Pilot-scale treatment of gasification wastewater and reuse in a cooling tower

    SciTech Connect

    Willson, W.G.; Mayer, G.G.; Hendrikson, J.G.; Winton, S.L.

    1985-04-01

    The University of North Dakota Energy Research Center has operated a 910 kg/hr, oxygen-blown fixed-bed gasifier to produce lignite-derived effluents for characterization, treatment, and reuse studies. Reuse of waste water in a cooling tower was investigated to define environmental and process effects as a function of pretreatment. The gasification wastewater was pretreated in pilot wastewater treatement units which simulate available technology. During the first phase of the program, wastewater was pretreated by solvent extraction and steam stripping to produce phenol and ammonia concentrations comparable to those expected at the Great Plains Gasification Associates plant. This pretreated wastewater was concentrated in a cooling tower to 10 cycles of concentration. No biocides or corrosion inhibitors were added. Severe fouling of heat exchange surfaces and high corrosion rates of carbon steel were encountered. Over 90% of the phenol entering the cooling tower was found to be stripped into the cooling tower exhaust air stream. The high levels of organics remaining in this minimally treated wastewater suggested that further biological treatment and possibly polishing by carbon adsorption would be necessary to prepare a satisfactory feed. In the second phase of the program, the SGL was further treated in an activated sludge process followed by granular activated carbon adsorption. Biotreatment removed 96% of the BOD with a three-day retention time while obtaining satisfactory sludge settling rates in spite of varied influent concentrations. Biorefractory materials were adsorbed on GAC to reach an effuent COD level of 150 mg/l. This upgrading was sufficient to reduce organic emissions from the cooling tower, but corrosion rates were higher than in the previous test, again showing the necessity for corrosion inhibitors. 8 figs., 3 tabs.

  14. Behavior of selected pharmaceuticals in subsurface flow constructed wetlands: a pilot-scale study.

    PubMed

    Matamoros, Victor; García, Joan; Bayona, Josep M

    2005-07-15

    Subsurface flow constructed wetlands (SSFs) constitute a wastewater treatment alternative to small communities due to the low operational cost, reduced energy consumption, and no sewage sludge production. Although much information is available about conventional water quality parameters in SSF constructed wetlands, few data are available regarding specific contaminants. In this paper, we focus on the behavior of three widely used pharmaceuticals (clofibric acid, ibuprofen, and carbamazepine) in two pilot SSF constructed wetlands planted with Phragmites australis and characterized by different water depths (i.e., 0.3 and 0.5 m). These SSFs partially treat the urban wastewater from a housing development (ca. 200 inhabitants). The three pharmaceuticals and bromide were continuously injected into the two SSFs during a period of 150-200 h, and the effluent concentration was simultaneously measured as 6 h composite samples. Their removal efficiency was calculated from the injected concentration, and the hydraulic parameters were evaluated and compared to bromide as tracer. In this regard, the behavior of clofibric acid was similar to that of bromide, and no sorption into the gravel bed occurred. On the other hand, carbamazepine showed a higher sorption than bromide and clofibric acid, which is attributable to its interaction on the gravel bed. Accordingly, the use of clofibric acid as a hydraulic tracer is proposed, taking into account its low residence time. Ibuprofen removal was 81% in the shallow SSF and 48% in the deep one. Differences in removal efficiency could be explained by the less anaerobic environment of the shallow wetland. PMID:16082979

  15. Comparative study on membrane fouling between membrane-coupled moving bed biofilm reactor and conventional membrane bioreactor for municipal wastewater treatment.

    PubMed

    Yang, W; Syed, W; Zhou, H

    2014-01-01

    This study compared the performance between membrane-coupled moving bed biofilm reactor (M-MBBR) and a conventional membrane bioreactor (MBR) in parallel. Extensive tests were conducted in three pilot-scale experimental units over 6 months. Emphasis was placed on the factors that would affect the performance of membrane filtration. The results showed that the concentrations of soluble microbial product (SMP), colloidal total organic carbon and transparent exopolymer particles in the M-MBBR systems were not significantly different from those in the control MBR system. However, the fouling rates were much higher in the M-MBBR systems as compared to the conventional MBR systems. This indicates membrane fouling potential was related not only to the concentration of SMP, but also to their sources and characteristics. The addition of polyaluminum chloride could reduce the fouling rate of the moving bed biofilm reactor unit by 56.4-84.5% at various membrane fluxes. PMID:24622551

  16. Co-existence of physiologically similar sulfate-reducing bacteria in a full-scale sulfidogenic bioreactor fed with a single organic electron donor

    PubMed Central

    Dar, Shabir A.; Stams, Alfons J. M.; Kuenen, J. Gijs

    2007-01-01

    A combination of culture-dependent and independent methods was used to study the co-existence of different sulfate-reducing bacteria (SRB) in an upflow anaerobic sludge bed reactor treating sulfate-rich wastewater. The wastewater was fed with ethanol as an external electron donor. Twenty six strains of SRB were randomly picked and isolated from the highest serial dilution that showed growth (i.e. 108). Repetitive enterobacterial palindromic polymerase chain reaction and whole cell protein profiling revealed a low genetic diversity, with only two genotypes among the 26 strains obtained in the pure culture. The low genetic diversity suggests the absence of micro-niches within the reactor, which might be due to a low spatial and temporal micro-heterogeneity. The total 16S rDNA sequencing of two representative strains L3 and L7 indicated a close relatedness to the genus Desulfovibrio. The two strains differed in as many as five physiological traits, which might allow them to occupy distinct niches and thus co-exist within the same habitat. Whole cell hybridisation with fluorescently labeled oligonucleotide probes was performed to characterise the SRB community in the reactor. The isolated strains Desulfovibrio L3 and Desulfovibrio L7 were the most dominant SRB, representing 30–35% and 25–35%, respectively, of the total SRB community. Desulfobulbus-like bacteria contributed for 20–25%, and the Desulfobacca acetoxidans-specific probe targeted approximately 15–20% of the total SRB. The whole cell hybridisation results thus revealed a consortium of four different species of SRB that can be enriched and maintained on a single energy source in a full-scale sulfidogenic reactor. PMID:17440719

  17. Chemical additive to maximize antimicrobial effect of chlorine during pilot scale immersion chilling of broiler carcasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A prior laboratory scale study demonstrated the potential for T-128, a proprietary blend including propylene glycol and phosphoric acid, to enhance the antimicrobial efficacy of chlorine during immersion chilling of broiler parts. The objective of the current study was to test the addition of T-128...

  18. Development and Validation of Information Technology Mentor Teacher Attitude Scale: A Pilot Study

    ERIC Educational Resources Information Center

    Saltan, Fatih

    2015-01-01

    The aim of this study development and validation of a teacher attitude scale toward Information Technology Mentor Teachers (ITMT). ITMTs give technological support to other teachers for integration of technology in their lessons. In the literature, many instruments have been developed to measure teachers' attitudes towards the technological tools…

  19. Prostate tumor grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This prostate cancer construct was grown during NASA-sponsored bioreactor studies on Earth. Cells are attached to a biodegradable plastic lattice that gives them a head start in growth. Prostate tumor cells are to be grown in a NASA-sponsored Bioreactor experiment aboard the STS-107 Research-1 mission in 2002. Dr. Leland Chung of the University of Virginia is the principal investigator. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: NASA and the University of Virginia.

  20. Assessing the role of feed water constituents in irreversible membrane fouling of pilot-scale ultrafiltration drinking water treatment systems.

    PubMed

    Peiris, R H; Jaklewicz, M; Budman, H; Legge, R L; Moresoli, C

    2013-06-15

    Fluorescence excitation-emission matrix (EEM) approach together with principal component analysis (PCA) was used for assessing hydraulically irreversible fouling of three pilot-scale ultrafiltration (UF) systems containing full-scale and bench-scale hollow fiber membrane modules in drinking water treatment. These systems were operated for at least three months with extensive cycles of permeation, combination of back-pulsing and scouring and chemical cleaning. The principal component (PC) scores generated from the PCA of the fluorescence EEMs were found to be related to humic substances (HS), protein-like and colloidal/particulate matter content. PC scores of HS- and protein-like matter of the UF feed water, when considered separately, showed reasonably good correlations with the rate of hydraulically irreversible fouling for long-term UF operations. In contrast, comparatively weaker correlations for PC scores of colloidal/particulate matter and the rate of hydraulically irreversible fouling were obtained for all UF systems. Since, individual correlations could not fully explain the evolution of the rate of irreversible fouling, multi-linear regression models were developed to relate the combined effect of HS-like, protein-like and colloidal/particulate matter PC scores to the rate of hydraulically irreversible fouling for each specific UF system. These multi-linear regression models revealed significant individual and combined contribution of HS- and protein-like matter to the rate of hydraulically irreversible fouling, with protein-like matter generally showing the greatest contribution. The contribution of colloidal/particulate matter to the rate of hydraulically irreversible fouling was not as significant. The addition of polyaluminum chloride, as coagulant, to UF feed appeared to have a positive impact in reducing hydraulically irreversible fouling by these constituents. The proposed approach has applications in quantifying the individual and synergistic contribution of major natural water constituents to the rate of hydraulically irreversible membrane fouling and shows potential for controlling UF irreversible fouling in the production of drinking water. PMID:23615336

  1. Review of nonconventional bioreactor technology

    SciTech Connect

    Turick, C.E.; Mcllwain, M.E.

    1993-09-01

    Biotechnology will significantly affect many industrial sectors in the future. Industrial sectors that will be affected include pharmaceutical, chemical, fuel, agricultural, and environmental remediation. Future research is needed to improve bioprocessing efficiency and cost-effectiveness in order to compete with traditional technologies. This report describes recent advances in bioprocess technologies and bioreactor designs and relates them to problems encountered in many industrial bioprocessing operations. The primary focus is directed towards increasing gas and vapor transfer for enhanced bioprocess kinetics as well as unproved by-product separation and removal. The advantages and disadvantages of various conceptual designs such as hollow-fiber, gas-phase, hyperbaric/hypobaric, and electrochemical bioreactors are also discussed. Specific applications that are intended for improved bioprocesses include coal desulfurization, coal liquefaction, soil bioremediation, biomass conversion to marketable chemicals, biomining, and biohydrometallurgy as well as bioprocessing of gases and vapors.

  2. Monolithic Continuous-Flow Bioreactors

    NASA Technical Reports Server (NTRS)

    Stephanopoulos, Gregory; Kornfield, Julia A.; Voecks, Gerald A.

    1993-01-01

    Monolithic ceramic matrices containing many small flow passages useful as continuous-flow bioreactors. Ceramic matrix containing passages made by extruding and firing suitable ceramic. Pores in matrix provide attachment medium for film of cells and allow free movement of solution. Material one not toxic to micro-organisms grown in reactor. In reactor, liquid nutrients flow over, and liquid reaction products flow from, cell culture immobilized in one set of channels while oxygen flows to, and gaseous reaction products flow from, culture in adjacent set of passages. Cells live on inner surfaces containing flowing nutrient and in pores of walls of passages. Ready access to nutrients and oxygen in channels. They generate continuous high yield characteristic of immobilized cells, without large expenditure of energy otherwise incurred if necessary to pump nutrient solution through dense biomass as in bioreactors of other types.

  3. METC`s pilot-scale hot-gas desulfurization Process Development Unit

    SciTech Connect

    McMillian, M.H.; Bissett, L.A.

    1996-12-31

    801The Morgantown Energy Technology Center (METC) has designed and is currently constructing an on-site, hot gas desulfurization (HGD) Process Development Unit (PDU). The PDU is designed to use regenerable solid metal oxide sorbents that absorb hydrogen sulfide from high-temperature, high-pressure simulated coal-gasification fuel gas that is generated by a METC-designed syngas generator. The simulated coal gas is a mixture of partially combusted natural gas, water, carbon dioxide and hydrogen sulfide. PDU process conditions will be representative of anticipated commercial applications in terms of temperatures, pressures, compositions, velocities, and sorbent cycling. The PDU supports the Integrated Gasification Combined Cycle (IGCC) mission at METC by providing a test bed for development of IGCC cleanup systems that offer low capital cost, operating costs, and costs of electricity. METC intends to develop additional industrial involvement opportunities as the project progresses towards operations. Objectives The primary objectives of the PDU are to: (1) fill the gap between small-scale testing and large-scale demonstration projects by providing a cost effective test site for transport and fluid-bed desulfurization reactor and sorbent development, (2) demonstrate sorbent suitability over a wide range of parameters and (3) generate significant information on process control for transport and fluidized bed based desulfurization. PDU data is expected to be used to optimize process performance by expanding the experience for larger-scale demonstration projects, such as Sierra Pacific Power Company`s Clean Coal Technology project.

  4. Hanford Sr/TRU Decontamination Program: Research from Beaker to Pilot Scale

    SciTech Connect

    Wilmarth, W.R.

    2003-02-18

    Plutonium and americium are present in the Hanford High Level Liquid Waste complexant concentrate (CC) waste due to the presence of complexing agents including di-(2-ethylhexyl) phosphoric acid (D2EHPA), tributylphosphate (TBP), hydroxyethylene diamine triacetic acid (HEDTA), ethylene diamine tetraacetic acid (EDTA), citric acid, glycolic acid, and sodium gluconate. The transuranic (TRU) concentrations approach 600 nCi/g and require processing prior to encapsulation into low activity glass. The Savannah River Technology Center (SRTC) has been actively participating in the development of a strontium/TRU decontamination process for the CC waste stored at Hanford in Tanks AN-107 and AN-102. The current baseline flowsheet involves the addition of strontium nitrate to effectively remove radio-strontium through an isotopic dilution, followed by a sodium permanganate strike to co-precipitate the actinides in the in-situ produced manganese solid phases. Demonstration efforts to validate the Sr/TRU flowsheet have included beaker scale reagent optimization and reaction kinetics testing and engineering scale-up experiments at the multi-liter and 1/100th plant scale (200-gallon) using both simulated and actual waste samples. Several key process engineering and process chemistry needs were identified during a recent Hanford Waste Treatment Plant project risk review.

  5. A comparative study of leachate quality and biogas generation in simulated anaerobic and hybrid bioreactors.

    PubMed

    Xu, Qiyong; Tian, Ying; Wang, Shen; Ko, Jae Hac

    2015-07-01

    Research has been conducted to compare leachate characterization and biogas generation in simulated anaerobic and hybrid bioreactor landfills with typical Chinese municipal solid waste (MSW). Three laboratory-scale reactors, an anaerobic (A1) and two hybrid bioreactors (C1 and C2), were constructed and operated for about 10months. The hybrid bioreactors were operated in an aerobic-anaerobic mode with different aeration frequencies by providing air into the upper layer of waste. Results showed that the temporary aeration into the upper layer aided methane generation by shortening the initial acidogenic phase because of volatile fatty acids (VFAs) reduction and pH increase. Chemical oxygen demand (COD) decreased faster in the hybrid bioreactors, but the concentrations of ammonia-nitrogen in the hybrid bioreactors were greater than those in the anaerobic control. Methanogenic conditions were established within 75d and 60d in C1 and C2, respectively. However, high aeration frequency led to the consumption of organic matters by aerobic degradation and resulted in reducing accumulative methane volume. The temporary aeration enhanced waste settlement and the settlement increased with increasing the frequency of aeration. Methane production was inhibited in the anaerobic control; however, the total methane generations from hybrid bioreactors were 133.4L/kgvs and 113.2L/kgvs. As for MSW with high content of food waste, leachate recirculation right after aeration stopped was not recommended due to VFA inhibition for methanogens. PMID:25857421

  6. Biomass properties and permeability in an immersed hollow fibre membrane bioreactor at high sludge concentrations.

    PubMed

    Wang, Z Z; Zsirai, T; Connery, K; Fabiyi, M; Larrea, A; Li, J; Judd, S J

    2014-01-01

    This study aimed to investigate the influence of biomass properties and high mixed liquor suspended solids (MLSS) concentrations on membrane permeability in a pilot-scale hollow fibre membrane bioreactor treating domestic wastewater. Auxiliary molasses solution was added to maintain system operation at constant food-to-microorganisms ratio (F/M = 0.13). Various physicochemical and biological biomass parameters were measured throughout the trial, comprising pre-thickening, thickening and post-thickening periods with reference to the sludge concentration and with aerobic biotreatment continuing throughout. Correlations between dynamic changes in biomass characteristics and membrane permeability decline as well as permeability recovery were further assessed by statistical analyses. Results showed the MLSS concentration to exert the greatest influence on sustainable membrane permeability, with a weaker correlation with particle size distribution. The strong dependence of absolute recovered permeability on wet accumulated solids (WACS) concentration, or clogging propensity, revealed clogging to deleteriously affect membrane permeability decline and recovery (from mechanical declogging and chemical cleaning), with WACS levels increasing with increasing MLSS. Evidence from the study indicated clogging may permanently reduce membrane permeability post declogging and chemical cleaning, corroborating previously reported findings. PMID:24901628

  7. Pilot-scale synthesis and rheological assessment of poly(methyl methacrylate) polymers: perspectives for medical application.

    PubMed

    Linan, Lamia Zuniga; Nascimento Lima, Nádson M; Filho, Rubens Maciel; Sabino, Marcos A; Kozlowski, Mark T; Manenti, Flavio

    2015-06-01

    This work presents the rheological assessment of poly(methyl methacrylate) (PMMA) polymers synthesized in a dedicated pilot-scale plant. This material is to be used for the construction of scaffolds via Rapid Prototyping (RP). The polymers were prepared to match the physical and biological properties required for medical applications. Differential Scanning Calorimetry (DSC) and Size Exclusion Chromatography (SEC) measurements verified that the synthesized polymers were atactic, amorphous and linear in chains. Rheological properties such as viscosity, storage and loss modulus, beyond the loss factor, and creep and recovery were measured in a plate-plate sensor within the viscoelastic linear region. The results showed the relevant influence of the molecular weight on the viscosity and elasticity of the material, and how, as the molecular weight increases, the viscoelastic properties are getting closer to those of human bone. This article demonstrates that by using the implemented methodology it is possible to synthesize a polymer, with properties comparable to commercially-available PMMA. PMID:25842114

  8. Results of HWVP transuranic process waste treatment laboratory and pilot-scale filtration tests using specially ground zeolite

    SciTech Connect

    Eakin, D.E.

    1996-03-01

    Process waste streams from the Hanford Waste Vitrification Plant (HWVP) may require treatment for cesium, strontium, and transuranic (TRU) element removal in order to meet criteria for incorporation in grout. The approach planned for cesium and strontium removal is ion exchange using a zeolite exchanger followed by filtration. Filtration using a pneumatic hydropulse filter is planned to remove TRU elements which are associated with process solids and to also remove zeolite bearing the cesium and strontium. The solids removed during filtration are recycled to the melter feed system to be incorporated into the HWVP glass product. Fluor Daniel, Inc., the architect-engineering firm for HWVP, recommended a Pneumatic Hydropulse (PHP) filter manufactured by Mott Metallurgical Corporation for use in the HWVP. The primary waste streams considered for application of zeolite contact and filtration are melter off-gas condensate from the submerged bed scrubber (SBS), and equipment decontamination solutions from the Decontamination Waste Treatment Tank (DWTT). Other waste streams could be treated depending on TRU element and radionuclide content. Laboratory and pilot-scale filtration tests were conducted to provide a preliminary assessment of the adequacy of the recommended filter for application to HWVP waste treatment.

  9. Co-gasification of biosolids with biomass: Thermogravimetric analysis and pilot scale study in a bubbling fluidized bed reactor.

    PubMed

    Yu, Ming Ming; Masnadi, Mohammad S; Grace, John R; Bi, Xiaotao T; Lim, C Jim; Li, Yonghua

    2014-10-17

    This work studied the feasibility of co-gasification of biosolids with biomass as a means of disposal with energy recovery. The kinetics study at 800°C showed that biomass, such as switchgrass, could catalyze the reactions because switchgrass ash contained a high proportion of potassium, an excellent catalyst for gasification. However, biosolids could also inhibit gasification due to interaction between biomass alkali/alkaline earth metals and biosolids clay minerals. In the pilot scale experiments, increasing the proportion of biosolids in the feedstock affected gasification performance negatively. Syngas yield and char conversion decreased from 1.38 to 0.47m(3)/kg and 82-36% respectively as the biosolids proportion in the fuel increased from 0% to 100%. Over the same range, the tar content increased from 10.3 to 200g/m(3), while the ammonia concentration increased from 1660 to 19,200ppmv. No more than 25% biosolids in the fuel feed is recommended to maintain a reasonable gasification. PMID:25459803

  10. Influence of microwave pre-treatment on sludge solubilization and pilot scale semi-continuous anaerobic digestion.

    PubMed

    Appels, Lise; Houtmeyers, Sofie; Degrève, Jan; Van Impe, Jan; Dewil, Raf

    2013-01-01

    Anaerobic digestion is widely applied for the recovery of energy from waste activated sludge. Pre-treatment methods are of high interest to increase the biodegradability of the sludge and to enhance the digestion efficiency. This paper studies the application of a microwave pre-treatment. An experimental set-up of two pilot scale semi-continuous digesters was used. During a long term experiment, one of the reactors was fed with untreated sludge, while microwave pre-treated sludge (336 kJ/kg sludge) was introduced in the second one. A solid retention time of 20 days was kept during the experiments. (Organic) dry solids, carbohydrates, proteins and volatile fatty acids were monitored during digestion. It was seen that the microwave pre-treatment resulted in an effective solubilization of the organic matter in the sludge. The changes to the sludge composition resulted in an increase in biogas production by 50%, while the methane concentration in both reactors remained stable. PMID:23211486

  11. Performance and microbial community analysis of a pilot-scale UASB for corn-ethanol wastewater treatment.

    PubMed

    Huang, Jianping; Xiao, Ling; Xi, Chunhui

    2015-04-01

    The performance and microbial community structure of a pilot-scale upflow anaerobic sludge blanket (UASB) reactor inoculated with flocculent sludge were investigated over 52 days. The characteristics of corn-ethanol wastewater were as follows: CODCr, 1,050-4,970 mg l(-1); ammonia, 14-298 mg l(-1); and alkalinity, 332-2,867 mg l(-1). The UASB could start up smoothly with a hydraulic loading rate lower than 180 l h(-1) and a ratio of volatile fatty acid versus alkalinity between 0.04 and 0.48. The maximum gas production rate was 432 l h(-1) and the highest volumetric loading rate of 7.2 kg m(-3) day(-1) was obtained after 48 days. The 1 mm granules could form a complex network and were composed of many Methanosaeta. Aceticlastic methanogens served as a dominant methanogenic group, which accounted for the relatively high resistance to shock loading. PMID:25537339

  12. Sunlight photo-assisted TiO?-based pilot plant scale remediation of (simulated) contaminated aquatic sites.

    PubMed

    Oyama, Toshiyuki; Takeuchi, Masashi; Yanagisawa, Ippei; Koike, Takayoshi; Serpone, Nick; Hidaka, Hisao

    2010-01-01

    A tubular-type solar photoreactor system powered by commercial solar panels and consisting of six 20-tube modules (Pyrex glass) to mimic a pilot plant scale configuration was designed and constructed to examine the remediation of simulated wastewaters contaminated with various classes of organic pollutants such as endocrine disruptors (e.g. bisphenol A), anionic surfactants (sodium butylnaphthalenesulfonate and sodium dodecyl- benzenesulfonate), herbicides (e.g. 2,4-dichlorophenoxyacetic acid) and a commercial dishwasher detergent. Photo-oxidative processes followed first-order kinetics expressed in terms of the total light energy (in kJ) that impinged on the photoreactor. The influence of TiO? loading and circulation flow rate of the wastewaters on the dynamics of the photo-oxidation to mineralization (loss of total organic carbon, TOC, or formation of sulfate ions) was investigated. The optimal operational parameters were: TiO? loading, 2 g L?¹; circulation flow rate, 7.5 L min?¹. On a sunny day, near- quantitative mineralization of the contaminants was achieved after only 4 h of irradiation that corresponded to an accumulated energy of ca 1380 kJ. PMID:21099146

  13. Impact of Microscale and Pilot-Scale Freeze-Drying on Protein Secondary Structures: Sucrose Formulations of Lysozyme and Catalase.

    PubMed

    Peters, Björn-Hendrik; Leskinen, Jari T T; Molnár, Ferdinand; Ketolainen, Jarkko

    2015-11-01

    Microscale (MS) freeze-drying offers rapid process cycles for early-stage formulation development. The effects of the MS approach on the secondary structures of two model proteins, lysozyme and catalase, were compared with pilot-scale (PS) vial freeze-drying. The secondary structures were assessed by attenuated total reflection Fourier transformed infrared spectroscopy. Formulations were made with increasing sucrose-protein ratios. Freeze-drying protocols involved regular cooling without thermal treatment and annealing with MS and PS equipment, and cooling rate variations with the MS. Principal component analysis of smoothed second-derivative amide I spectra revealed sucrose-protein ratio-dependent shifts toward ?-helical structures. Transferability of sucrose-protein formulations from MS to PS vial freeze-drying was evidenced at regular cooling rates. Local differences in protein secondary structures between the bottom and top of sucrose-catalase samples could be detected at the sucrose-catalase ratios of 1 and 2, this being related to the initial filling height and ice crystal morphology. Annealing revealed temperature, protein, formulation, and sample location-dependent effects influencing surface morphology at the top, or causing protein secondary structure perturbation at the bottom. With the MS approach, protein secondary structure differences at different cooling rates could be detected for sucrose-lysozyme samples at the sucrose-lysozyme ratio of 1. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3710-3721, 2015. PMID:26305147

  14. Corrosivities in a pilot-scale combustor of a British and two Illinois coals with varying chlorine contents

    USGS Publications Warehouse

    Chou, I.-Ming; Lytle, J.M.; Kung, S.C.; Ho, K.K.

    2000-01-01

    Many US boiler manufacturers have recommended limits on the chlorine (Cl) content (< 0.25% or < 0.3%) of coals to be used in their boilers. These limits were based primarily on extrapolation of British coal data to predict the probable corrosion behavior of US coals. Even though Cl-related boiler corrosion has not been reported by US utilities burning high-Cl Illinois coals, the manufacturer's limits affect the marketability of high-Cl Illinois coals. This study measured the relative rates of corrosion caused by two high-Cl coals (British and Illinois) and one low-Cl Illinois baseline coal under identical pilot-scale combustion conditions for about 1000 h which gave reliable comparisons. Temperatures used reflected conditions in boiler superheaters. The corrosion probes were fabricated from commercial alloy 304SS frequently used at the hottest superheater section of utility boilers. The results showed no evidence of direct correlation between the coal chlorine content and rate of corrosion. A correlation between the rate of corrosion and the metal temperature was obvious. The results suggested that the different field histories of corrosivity from burning high-Cl Illinois coal and high-Cl British coal occurred because of different metal temperatures operated in US and UK utility boilers. The results of this study can be combined into a database, which could be used for lifting the limits on chlorine contents of coals burned in utility boilers in the US.

  15. Impurity evaluation of fused lithium chloride salt for a pilot-scale spent-oxide-fuel reduction process

    SciTech Connect

    Eberle, C.S.

    1999-12-01

    The inorganic and physical chemistry of reactants (e.g., impurities) produced during the reduction of spent light water reactor fuel in a hot cell has been analyzed. Two source terms were identified that influence the composition and quantity of these impurities in the salt matrix. One source comes from the reduction process, which occurs between the fuel and the Li/LiCl salt matrix, and the other from chemical reactions that occur between the hot cell atmosphere and the salt matrix. The spent-fuel-oxide chemistry and energy of formation for the reactants were not thermodynamically feasible with molten lithium, except when nitrogen was present during the reduction process. A model of the reaction at a vapor-liquid interface was developed and applied to the pilot-scale oxide reduction device design. A predominance diagram for the Li-O-N reactions was constructed to determine the possible reactions during operation of the device, and from these results, the mass accumulation was determined from hot cell conditions.

  16. An integrated approach to optimize the conditioning chemicals for enhanced sludge conditioning in a pilot-scale sludge dewatering process.

    PubMed

    Zhai, Lin-Feng; Sun, Min; Song, Wei; Wang, Gan

    2012-10-01

    An integrated approach incorporating response surface methodology (RSM), grey relational analysis, and fuzzy logic analysis was developed to quantitatively evaluate the conditioning chemicals in sludge dewatering process. The polyacrylamide (PAM), ferric chloride (FeCl(3)) and calcium-based mineral powders were combined to be used as the sludge conditioners in a pilot-scale sludge dewatering process. The performance of conditioners at varied dosages was comprehensively evaluated by taking into consideration the sludge dewatering efficiency and chemical cost of conditioner. In the evaluation procedure, RSM was employed to design the experiment and to optimize the dosage of each conditioner. The grey-fuzzy logic was established to quantify the conditioning performance on the basis of grey relational coefficient generation, membership function construction, and fuzzy rule description. Based on the evaluation results, the optimal chemical composition for conditioning was determined as PAM at 4.62 g/kg DS, FeCl(3) at 55.4 g/kg DS, and mineral powders at 30.0 g/kg DS. PMID:22858481

  17. Permeability and hydraulic diffusivity of Waste Isolation Pilot Plant repository salt inferred from small-scale brine inflow experiments

    SciTech Connect

    McTigue, D.F.

    1993-06-01

    Brine seepage to 17 boreholes in salt at the Waste Isolation Pilot Plant (WIPP) facility horizon has been monitored for several years. A simple model for one-dimensional, radial, darcy flow due to relaxation of ambient pore-water pressure is applied to analyze the field data. Fits of the model response to the data yield estimates of two parameters that characterize the magnitude of the flow and the time scale over which it evolves. With further assumptions, these parameters are related to the permeability and the hydraulic diffusivity of the salt. For those data that are consistent with the model prediction, estimated permeabilities are typically 10{sup {minus}22} to 10{sup {minus}21} m{sup 2}. The relatively small range of inferred permeabilities reflects the observation that the measured seepage fluxes are fairly consistent from hole to hole, of the order of 10{sup {minus}10} m/s. Estimated diffusivities are typically 10{sup {minus}10} to 10{sup {minus}8} m{sup 2}/s. The greater scatter in inferred hydraulic diffusivities is due to the difficulty of matching the idealized model history to the observed evolution of the flows. The data obtained from several of the monitored holes are not consistent with the simple model adopted here; material properties could not be inferred in these cases.

  18. The treatment of solvent recovery raffinate by aerobic granular sludge in a pilot-scale sequencing batch reactor.

    PubMed

    Long, Bei; Yang, Chang-zhu; Pu, Wen-hong; Yang, Jia-kuan; Jiang, Guo-sheng; Dan, Jing-feng; Zhang, Jing; Zhang, Li

    2015-09-01

    Mature aerobic granular sludge (AGS) was inoculated for the start-up of a pilot-scale sequencing batch reactor for the treatment of high concentration solvent recovery raffinate (SRR). The proportion of simulated wastewater (SW) (w/w) in the influent gradually decreased to zero during the operation, while volume of SRR gradually increased from zero to 10.84 L. AGS was successfully domesticated after 48 days, which maintained its structure during the operation. The domesticated AGS was orange, irregular, smooth and compact. Sludge volume index (SVI), SV30/SV5, mixed liquor volatile suspended solids/mixed liquor suspended solids (MLVSS/MLSS), extracellular polymeric substances, proteins/polysaccharides, average particle size, granulation rate, specific oxygen utilization rates (SOUR)H and (SOUR)N of AGS were about 38 mL/g, 0.97, 0.52, 39.73 mg/g MLVSS, 1.17, 1.51 mm, 96.66%, 47.40 mg O2/h g volatile suspended solids (VSS) and 8.96 mg O2/h g VSS, respectively. Good removal effect was achieved by the reactor. Finally, the removal rates of chemical oxygen demand (COD), total inorganic nitrogen (TIN), NH4+-N and total phosphorus (TP) were more than 98%, 96%, 97% and 97%, respectively. The result indicated gradually increasing the proportion of real wastewater in influent was a useful domestication method, and the feasibility of AGS for treatment of high C/N ratio industrial wastewater. PMID:26322760

  19. Pilot- and bench-scale testing of faecal indicator bacteria survival in marine beach sand near point sources

    USGS Publications Warehouse

    Mika, K.B.; Imamura, G.; Chang, C.; Conway, V.; Fernandez, G.; Griffith, J.F.; Kampalath, R.A.; Lee, C.M.; Lin, C.-C.; Moreno, R.; Thompson, S.; Whitman, R.L.; Jay, J.A.

    2009-01-01

    Aim: Factors affecting faecal indicator bacteria (FIB) and pathogen survival/persistence in sand remain largely unstudied. This work elucidates how biological and physical factors affect die-off in beach sand following sewage spills. Methods and Results: Solar disinfection with mechanical mixing was pilot-tested as a disinfection procedure after a large sewage spill in Los Angeles. Effects of solar exposure, mechanical mixing, predation and/or competition, season, and moisture were tested at bench scale. First-order decay constants for Escherichia coli ranged between -0??23 and -1??02 per day, and for enterococci between -0??5 and -1??0 per day. Desiccation was a dominant factor for E. coli but not enterococci inactivation. Effects of season were investigated through a comparison of experimental results from winter, spring, and fall. Conclusions: Moisture was the dominant factor controlling E. coli inactivation kinetics. Initial microbial community and sand temperature were also important factors. Mechanical mixing, common in beach grooming, did not consistently reduce bacterial levels. Significance and Impact of the Study: Inactivation rates are mainly dependent on moisture and high sand temperature. Chlorination was an effective disinfection treatment in sand microcosms inoculated with raw influent. ?? 2009 The Society for Applied Microbiology.

  20. Partial degradation of five pesticides and an industrial pollutant by ozonation in a pilot-plant scale reactor.

    PubMed

    Maldonado, M I; Malato, S; Pérez-Estrada, L A; Gernjak, W; Oller, I; Doménech, Xavier; Peral, José

    2006-11-16

    Aqueous solutions of a mixture of several pesticides (alachlor, atrazine, chlorfenvinphos, diuron and isoproturon), considered PS (priority substances) by the European Commission, and an intermediate product of the pharmaceutical industry (alpha-methylphenylglycine, MPG) chosen as a model industrial pollutant, have been degraded at pilot-plant scale using ozonation. This study is part of a large research project [CADOX Project, A Coupled Advanced Oxidation-Biological Process for Recycling of Industrial Wastewater Containing Persistent Organic Contaminants, Contract No.: EVK1-CT-2002-00122, European Commission, http://www.psa.es/webeng/projects/cadox/index.html] founded by the European Union that inquires into the potential coupling between chemical and biological oxidations for the removal of toxic or non-biodegradable contaminants from water. The evolution of pollutant concentration, TOC mineralization, generation of inorganic species and consumption of O3 have been followed in order to visualize the chemical treatment effectiveness. Although complete mineralization is hard to accomplish, and large amounts of the oxidant are required to lower the organic content of the solutions, the possibility of ozonation cannot be ruled out if partial degradation is the final goal wanted. In this sense, Zahn-Wellens biodegradability tests of the ozonated MPG solutions have been performed, and the possibility of a further coupling with a secondary biological treatment for complete organic removal is envisaged. PMID:16822610

  1. FY-97 operations of the pilot-scale glass melter to vitrify simulated ICPP high activity sodium-bearing waste

    SciTech Connect

    Musick, C.A.

    1997-11-01

    A 3.5 liter refractory-lined joule-heated glass melter was built to test the applicability of electric melting to vitrify simulated high activity waste (HAW). The HAW streams result from dissolution and separation of Idaho Chemical Processing Plant (ICPP) calcines and/or radioactive liquid waste. Pilot scale melter operations will establish selection criteria needed to evaluate the application of joule heating to immobilize ICPP high activity waste streams. The melter was fabricated with K-3 refractory walls and Inconel 690 electrodes. It is designed to be continuously operated at 1,150 C with a maximum glass output rate of 10 lbs/hr. The first set of tests were completed using surrogate HAW-sodium bearing waste (SBW). The melter operated for 57 hours and was shut down due to excessive melt temperatures resulting in low glass viscosity (< 30 Poise). Due to the high melt temperature and low viscosity the molten glass breached the melt chamber. The melter has been dismantled and examined to identify required process improvement areas and successes of the first melter run. The melter has been redesigned and is currently being fabricated for the second run, which is scheduled to begin in December 1997.

  2. The stress response system of proteins: Implications for bioreactor scaleup

    NASA Technical Reports Server (NTRS)

    Goochee, Charles F.

    1988-01-01

    Animal cells face a variety of environmental stresses in large scale bioreactors, including periodic variations in shear stress and dissolved oxygen concentration. Diagnostic techniques were developed for identifying the particular sources of environmental stresses for animal cells in a given bioreactor configuration. The mechanisms by which cells cope with such stresses was examined. The individual concentrations and synthesis rates of hundreds of intracellular proteins are affected by the extracellular environment (medium composition, dissolved oxygen concentration, ph, and level of surface shear stress). Techniques are currently being developed for quantifying the synthesis rates and concentrations of the intracellular proteins which are most sensitive to environmental stress. Previous research has demonstrated that a particular set of stress response proteins are synthesized by mammalian cells in response to temperature fluctuations, dissolved oxygen deprivation, and glucose deprivation. Recently, it was demonstrated that exposure of human kidney cells to high shear stress results in expression of a completely distinct set of intracellular proteins.

  3. A Self-Efficacy Scale for Clinical Nurse Leaders: Results of a Pilot Study.

    PubMed

    Gilmartin, Mattia J; Nokes, Kathleen

    2015-01-01

    Introduced in 2003, the Clinical Nurse Leader (CNL) role is the first new nursing role introduced in more than 30 years. The hallmark of CNL practice is the management of client-centered care and clinical excellence at the point of care. As part of multifaceted efforts to implement the CNL role, understanding how an individual's self-efficacy with the identified role competencies changes over time has important implications for individuals, educational programs preparing CNLs, and health care organizations employing CNLs. In this study, preliminary psychometric analyses assessing the construct validity, reliability, and discriminant validity for a new state-specific scale (CNL Self-Efficacy Scale) that assesses nurses' perceptions of their ability to function effectively as a CNL are reported. Because self-confidence is a key predictor of successful role transition, job satisfaction, and job performance, measuring individuals' self-confidence with the core competencies associated with the CNL role over time will be important to gain the full benefit of this innovative, unit-based advanced generalist role. PMID:26259337

  4. Kefir yeast technology: scale-up in SCP production using milk whey.

    PubMed

    Koutinas, A A; Athanasiadis, I; Bekatorou, A; Iconomopoulou, M; Blekas, G

    2005-03-30

    A three-step process to scale-up kefir biomass production at a semi-industrial scale employing whey is reported. Aerobic fermentations were initially performed at laboratory scales, in 1.5- and 4-L bioreactors, yielding 79 g/L final kefir biomass (0.89 g/g of lactose utilized), in 7 h of fermentation time. The use of whey as carbon source even in solid cultures led to the formation of a granular biomass. These results encouraged scale-up at a semi-industrial-scale pilot plant employing 100- and 3,000-L bioreactors, leading to the development of a process for granular kefir biomass production. The results validated the laboratory-scale experiments and the avoidance of centrifugal separators due to granular biomass formation. Pilot-plant operations showed kefir to be highly resistant to contamination under actual industrial conditions and no serious problems in handling of raw materials and equipment were observed. Economic analysis showed a 20% higher cost of the market price of products, with added value of up to 15.9 x 10(9) within the European Union. PMID:15688361

  5. Reduction of phosphorus, nitrogen and microorganisms in pilot scale sand filter beds containing biotite, treating primary wastewater.

    PubMed

    Matikka, Ville; Heinonen-Tanski, Helvi

    2016-01-01

    In sparsely populated areas, sand filter beds play an important role in wastewater treatment. As the need to improve the removal of nutrients increases, reactive filter materials represent one potential way to improve the reliability of current systems. We tested a pilot-scale multi-layer biotite filter for its ability to remove phosphorus, nitrogen, organic matter and enteric microorganisms with the importance of each layer in a multi-layer biotite filter being examined. In the experimental setup, the filters were fed with a raw wastewater influent mimicking the usual daily rhythm of water consumption and the reduction effects of the variable loads were examined during the experiment time of 54 weeks. It was observed that the reduction efficiency of the phosphorus was good (87%) during normal and under loading sequences but the reduction achieved for nitrogen was poor (27%). During and after overloading sequences, the phosphorus reduction was poor (46.5%) whereas the nitrogen reduction improved (to 66.7%). The reduction of organic matter was good during all sequences. The reductions of enteric microorganisms were at a level of 2-3 log10 units already after a single sand layer. For Escherichia coli, reductions of more than 5 log10 units were found after the wastewater had passed through a multilayer biotite filter during all sequences. It is concluded that the inclusion of a biotite layer improves the reliability of the filter bed. However, the proper scaling of the unit is essential in order to guarantee that the filter remains in aerobic conditions. PMID:26118389

  6. Risk management in a large-scale CO2 geosequestration pilot project, Illinois, USA

    USGS Publications Warehouse

    Hnottavange-Telleen, K.; Chabora, E.; Finley, R.J.; Greenberg, S.E.; Marsteller, S.

    2011-01-01

    Like most large-scale infrastructure projects, carbon dioxide (CO 2) geological sequestration (GS) projects have multiple success criteria and multiple stakeholders. In this context "risk evaluation" encompasses multiple scales. Yet a risk management program aims to maximize the chance of project success by assessing, monitoring, minimizing all risks in a consistent framework. The 150,000-km2 Illinois Basin underlies much of the state of Illinois, USA, and parts of adjacent Kentucky and Indiana. Its potential for CO2 storage is first-rate among basins in North America, an impression that has been strengthened by early testing of the injection well of the Midwest Geological Sequestration Consortium's (MGSC's) Phase III large scale demonstration project, the Illinois Basin - Decatur Project (IBDP). The IBDP, funded by the U.S. Department of Energy's National Energy Technology Laboratory (NETL), represents a key trial of GS technologies and project-management techniques. Though risks are specific to each site and project, IBDP risk management methodologies provide valuable experience for future GS projects. IBDP views risk as the potential for negative impact to any of these five values: health and safety, environment, financial, advancing the viability and public acceptability of a GS industry, and research. Research goals include monitoring one million metric tonnes of injected CO2 in the subsurface. Risk management responds to the ways in which any values are at risk: for example, monitoring is designed to reduce uncertainties in parameter values that are important for research and system control, and is also designed to provide public assurance. Identified risks are the primary basis for risk-reduction measures: risks linked to uncertainty in geologic parameters guide further characterization work and guide simulations applied to performance evaluation. Formally, industry defines risk (more precisely risk criticality) as the product L*S, the Likelihood multiplied by the Severity of negative impact. L and S are each evaluated on five-point scales, yielding a theoretical spread in risk values of 1 through 25. So defined, these judgment-based values are categorical and ordinal - they do not represent physically measurable quantities, but are nonetheless useful for comparison and therefore decision support. The "risk entities" first evaluated are FEPs - conceptual Features, Events, and Processes based on the list published by Quintessa Ltd. After concrete scenarios are generated based on selected FEPs, scenarios become the critical entities whose associated risks are evaluated and tracked. In IBDP workshops, L and S values for 123 FEPs were generated through expert elicitation. About 30 experts in the project or in GS in general were assigned among six facilitated working groups, and each group was charged to envision risks within a sphere of project operations. Working groups covered FEPs with strong spatial characteristics - such as those related to the injection wellbore and simulated plume footprint - and "nonspatial" FEPs related to finance, regulations, legal, and stakeholder issues. Within these working groups, experts shared information, examined assumptions, refined and extended the FEP list, calibrated responses, and provided initial L and S values by consensus. Individual rankings were collected in a follow-up process via emailed spreadsheets. For each of L and S, three values were collected: Lower Bound, Best Guess, and Upper Bound. The Lower-Upper Bound ranges and the spreads among experts can be interpreted to yield rough confidence measures. Based on experts' responses, FEPs were ranked in terms of their L*S risk levels. FEP rankings were determined from individual (not consensus or averaged) results, thus no high-risk responses were damped out. The higher-risk FEPs were used to generate one or more concrete, well defined risk-bearing scenarios for each FEP. Any FEP scored by any expert as having associated risk of

  7. BIOREACTOR LANDFILLS, THEORETICAL ADVANTAGES AND RESEARCH CHALLENGES

    EPA Science Inventory

    Bioreactor landfills are municipal solid waste landfills that utilize bulk liquids in an effort to accelerate solid waste degradation. There are few potential benefits for operating a MSW landfill as a bioreactor. These include leachate treatment and management, increase in the s...

  8. Bioreactors for Plant Embryogenesis and Beyond.

    PubMed

    Fei, Liwen; Weathers, Pamela

    2016-01-01

    A variety of different bioreactors have been developed for use in initiating and cultivating somatic embryos. The various designs for embryogenesis and culture are critically evaluated here. Bioreactor optimization and operation methods are also described along with recommendations for use based on desired outcome. PMID:26619865

  9. BIOREACTOR DESIGN - OUTER LOOP LANDFILL, LOUISVILLE, KY

    EPA Science Inventory

    Bioreactor field demonstration projects are underway at the Outer Loop Landfill in Louisville, KY, USA. The research effort is a cooperative research effort between US EPA and Waste Management Inc. Two primary kinds of municipal waste bioreactors are under study at this site. ...

  10. Bioreactor landfills: experimental and field results.

    PubMed

    Warith, Mostafa

    2002-01-01

    Bioreactor landfills allow a more active landfill management that recognizes the biological, chemical and physical processes involved in a landfill environment. This paper presents the results of an experimental study carried out to determine the effect of solid waste size, leachate recirculation and nutrient balance on the rate of municipal solid waste (MSW) biodegradation. Higher rates of MSW biodegradation eventually cause a reduction of the contaminant life span of the landfill and decrease in the cost of long term monitoring. The study indicated that the smaller the size of the MSW the faster the biodegradation rate of the waste. In addition, the paper presents the results of leachate recirculation on solid waste biodegradation in a full-scale landfill site, which is located in Nepean, Ontario, Canada. The leachate was recirculated into the landfilled solid waste for 8 years through infiltration lagoons. Similar results to those obtained in the laboratory scale experiments were noted. The average pH of the leachate in the early stages of recirculation was on the acidic range of the pH scale, however, the pH value was in the range of 7-8 after 2 years of leachate recirculation. The concentration of chloride remained fairly constant at about 1000 mg/l during the leachate recirculation period. A decreasing trend of the organic load, measured as biological oxygen demand and chemical oxygen demand, was observed. Recovery of landfill air space was also noted because of the enhanced subsidence and decomposition of the solid waste. PMID:11942706

  11. Corrosion of metals and alloys - Corrosion and fouling in industrial cooling water systems - Part 1: Guidelines for conducting pilot-scale evaluation of corrosion and fouling control additives for open recirculating cooling water systems

    E-print Network

    International Organization for Standardization. Geneva

    2006-01-01

    Corrosion of metals and alloys - Corrosion and fouling in industrial cooling water systems - Part 1: Guidelines for conducting pilot-scale evaluation of corrosion and fouling control additives for open recirculating cooling water systems

  12. Pilot and Full Scale Measurements of VOC Emissions from Lumber Drying of Inland Northwest Species

    SciTech Connect

    Fritz, Brad G.; Lamb, Brian K.; Westberg, Halvor; Folk, Richard; Knighton, B; Grimsrud, E

    2004-07-01

    Volatile organic compounds (VOCs) are precursors to ground level ozone. Ground level ozone is the major component of photochemical smog, and has been linked to a variety of adverse health effects. These health effects include cancer, heart disease, pneumonia and death. In order to reduce ground level ozone, VOC emissions are being more stringently regulated. One VOC source that may come under regulation is lumber drying. Drying lumber is known to emit VOC into the atmosphere. This research evaluates the validity of VOC emission measurements from a small-scale kiln to approximate VOC emissions from kilns at commercial mills. We also report emission factors for three lumber species commonly harvested in the northwest United States (Douglas-fir, ponderosa pine, & grand fir). This work was done with a novel tracer ratio technique at a small laboratory kiln and a large commercial lumber drying facility. The measured emission factors were 0.51 g/kgOD for Douglas-fir, 0.7 g/kgOD for ponderosa pine, and 0.15 g/kgOD for grand fir. Aldehyde emission rates from lumber drying were also measured in some experiments. Results indicate that aldehyde emissions can constitute a significant percentage of the total VOC emissions.

  13. Using qualitative and quantitative methods to evaluate small-scale disease management pilot programs.

    PubMed

    Esposito, Dominick; Taylor, Erin Fries; Gold, Marsha

    2009-02-01

    Interest in disease management programs continues to grow as managed care plans, the federal and state governments, and other organizations consider such efforts as a means to improve health care quality and reduce costs. These efforts vary in size, scope, and target population. While large-scale programs provide the means to measure impacts, evaluation of smaller interventions remains valuable as they often represent the early planning stages of larger initiatives. This paper describes a multi-method approach for evaluating small interventions that sought to improve the quality of care for Medicaid beneficiaries with multiple chronic conditions. Our approach relied on quantitative and qualitative methods to develop a complete understanding of each intervention. Quantitative data in the form of both process measures, such as case manager contacts, and outcome measures, such as hospital use, were reported and analyzed. Qualitative information was collected through interviews and the development of logic models to document the flow of intervention activities and how they were intended to affect outcomes. The logic models helped us to understand the underlying reasons for the success or lack thereof of each intervention. The analysis provides useful information on several fronts. First, qualitative data provided valuable information about implementation. Second, process measures helped determine whether implementation occurred as anticipated. Third, outcome measures indicated the potential for favorable results later, possibly suggesting further study. Finally, the evaluation of qualitative and quantitative data in combination helped us assess the potential promise of each intervention and identify common themes and challenges across all interventions. PMID:19216674

  14. Trace element emissions when firing pulverized coal in a pilot-scale combustion facility

    SciTech Connect

    Miller, S.F.; Wincek, R.T.; Miller, B.G.; Scaroni, A.W.

    1998-04-01

    Title Ed of the Clean Air Act Amendments of 1990 designates 189 hazardous air pollutants (HAPs). Fourteen of the 189 substances identified are: antimony (Sb), beryllium (Be), chlorine (0), cobalt (Co), manganese (Mn), nickel (Ni), selenium (Se), fluorine (F), arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and phosphorous (P). Eleven of these elements have been detected in the flue gas of pulverized coal-fired utility boilers. Currently there are no regulations that limit the emissions of these elements during coal combustion in utility- or industrial-scale boilers. Given the growing body of risk assessment data on these elements and their impact on the environment and human health, it is possible that regulations on emission levels for certain elements will be imposed. A knowledge of the occurrence of trace elements in coal and their behavior during combustion is essential to predict emissions and to develop control technologies for remediation. The partitioning of trace elements during combustion can be traced to their volatility within the system. For purposes of this paper, the classification of trace elements summarized by Clarke and Sloss will be used: Group I elements, i.e., elements that are not easily volatilized and form larger bottom ash and fly ash particles; Group H elements, i.e., elements that are partially or completely volatilization followed by condensation as small particles or on the surface of small particles; and Group III elements, i.e., elements that are readily volatilized and usually remain in the gas phase system.

  15. Dynamic modelling for cork boiling wastewater treatment at pilot plant scale.

    PubMed

    De Torres-Socías, E; Cabrera-Reina, A; Trinidad, M J; Yuste, F J; Oller, I; Malato, S

    2014-11-01

    Solar photo-Fenton process has been extensively reported to be highly efficient in the remediation of complex industrial wastewater containing several families of pollutants such as pharmaceuticals, dyes, pesticides, derivatives of wine, etc. Moreover, solar photo-Fenton mathematical modelling regarded as a powerful tool for scaling-up and process control purposes is hindered by the complexity and variability of its reaction mechanism which depends on the particular wastewater under study. In this work, non-biodegradable cork boiling wastewater has been selected as a case study for solar photo-Fenton dynamic modelling by using MATLAB® software. First of all physic-chemical pretreatment was applied attaining chemical oxygen demand (COD) reductions between 43 and 70 % and total suspended solid (TSS) reductions between 23 % and 59 %. After solar photo-Fenton treatment, COD decreased between 45 and 90 % after consumptions of H2O2 varying around 1.9 and 2.4 g/L. Individual calibration of the semi-empirical model by using experimental results made it possible to perfectly predict hydrogen peroxide variations throughout the treatment. It must be highlighted that slight deviations between predictions and experimental data must be attributed to important changes in wastewater characteristics. PMID:24809495

  16. Continuous Operation of Foamed Emulsion Bioreactors Treating Toluene Vapors

    E-print Network

    Continuous Operation of Foamed Emulsion Bioreactors Treating Toluene Vapors Eunsung Kan, Marc A called the foamed emulsion bioreactor (FEBR) has been investigated. The effect of several liquid feeding have developed a new vapor phase bioreactor named the foamed emulsion bioreactor (FEBR) that over

  17. Modeling of a Foamed Emulsion Bioreactor: II. Model Parametric Sensitivity

    E-print Network

    ARTICLE Modeling of a Foamed Emulsion Bioreactor: II. Model Parametric Sensitivity Eunsung Kan: The sensitivity of a conceptual model of a foam emulsion bioreactor (FEBR) used for the control of toluene vapors high perfor- mance bioreactor system called the foamed emulsion bioreactor (FEBR). The FEBR consists

  18. PILOT-SCALE FIELD VALIDATION OF THE LONG ELECTRODE ELECTRICAL RESISTIVITY TOMOGRAPHY METHOD

    SciTech Connect

    GLASER DR; RUCKER DF; CROOK N; LOKE MH

    2011-07-14

    Field validation for the long electrode electrical resistivity tomography (LE-ERT) method was attempted in order to demonstrate the performance of the technique in imaging a simple buried target. The experiment was an approximately 1/17 scale mock-up of a region encompassing a buried nuclear waste tank on the Hanford site. The target of focus was constructed by manually forming a simulated plume within the vadose zone using a tank waste simulant. The LE-ERT results were compared to ERT using conventional point electrodes on the surface and buried within the survey domain. Using a pole-pole array, both point and long electrode imaging techniques identified the lateral extents of the pre-formed plume with reasonable fidelity, but the LE-ERT was handicapped in reconstructing the vertical boundaries. The pole-dipole and dipole-dipole arrays were also tested with the LE-ERT method and were shown to have the least favorable target properties, including the position of the reconstructed plume relative to the known plume and the intensity of false positive targets. The poor performance of the pole-dipole and dipole-dipole arrays was attributed to an inexhaustive and non-optimal coverage of data at key electrodes, as well as an increased noise for electrode combinations with high geometric factors. However, when comparing the model resolution matrix among the different acquisition strategies, the pole-dipole and dipole-dipole arrays using long electrodes were shown to have significantly higher average and maximum values than any pole-pole array. The model resolution describes how well the inversion model resolves the subsurface. Given the model resolution performance of the pole-dipole and dipole-dipole arrays, it may be worth investing in tools to understand the optimum subset of randomly distributed electrode pairs to produce maximum performance from the inversion model.

  19. DEVELOPMENT AND DEMONSTRATION OF A PILOT SCALE FACILITY FOR FABRICATION AND MARKETING OF LIGHTWEIGHT-COAL COMBUSTION BYPRODUCTS-BASED SUPPORTS AND MINE VENTILATION BLOCKS FOR UNDERGROUND MINES

    SciTech Connect

    Yoginder P. Chugh

    2002-10-01

    The overall goal of this program was to develop a pilot scale facility, and design, fabricate, and market CCBs-based lightweight blocks for mine ventilation control devices, and engineered crib elements and posts for use as artificial supports in underground mines to replace similar wooden elements. This specific project was undertaken to (1) design a pilot scale facility to develop and demonstrate commercial production techniques, and (2) provide technical and marketing support to Fly Lite, Inc to operate the pilot scale facility. Fly Lite, Inc is a joint venture company of the three industrial cooperators who were involved in research into the development of CCBs-based structural materials. The Fly-Lite pilot scale facility is located in McLeansboro, Illinois. Lightweight blocks for use in ventilation stoppings in underground mines have been successfully produced and marketed by the pilot-scale facility. To date, over 16,000 lightweight blocks (30-40 pcf) have been sold to the mining industry. Additionally, a smaller width (6-inch) full-density block was developed in August-September 2002 at the request of a mining company. An application has been submitted to Mine Safety and Health Administration for the developed block approval for use in mines. Commercialization of cribs and posts has also been accomplished. Two generations of cribs have been developed and demonstrated in the field. MSHA designated them suitable for use in mines. To date, over 2,000 crib elements have been sold to mines in Illinois. Two generations of posts were also demonstrated in the field and designated as suitable for use in mines by MSHA. Negotiations are currently underway with a mine in Illinois to market about 1,000 posts per year based on a field demonstration in their mine. It is estimated that 4-5 million tons CCBs (F-fly ash or FBC fly ash) may be utilized if the developed products can be commercially implemented in U.S. coal and non-coal mines.

  20. Simulation of three-phase fluidized bioreactors for denitrification

    SciTech Connect

    Hamza, A.V.; Dolan, J.F.; Wong, E.W.

    1981-03-01

    Fluidized-bed bioreactors were developed and operated at three scales (diameters of 0.1, 0.2, and 0.5 m) by the Chemical Technology Division. The performance of these reactors in denitrification was simulated using the following modified form of Monod kinetics to describe the reaction kinetics: rate = V/sub max/ (NO/sub 3//sup -//K/sub s/ + NO/sub 3//sup -/) (% biomass). In the fluids-movement portion of the simulation the tanks-in-series approximation to backmixing was used. This approach yielded a V/sub max/ of 3.5 g/m/sup 3/-min (% biomass) and a K/sub s/ of 163 g/m/sup 3/ for the 0.5-m bioreactor. Values of V/sub max/ and K/sub s/ were also determined for data derived from the 0.1-m bioreactor, but inadequate RTD data reduced the confidence level in these results. A complication in denitrification is the multi-step nature of the reduction from nitrate to nitrite to hyponitrite and finally to nitrogen. An experimental study of the effect of biomass loading upon denitrification was begun. It is recommended that the experimental work be continued.