Sample records for piloted simulation study

  1. Piloted simulation study of two tilt-wing control concepts

    NASA Technical Reports Server (NTRS)

    Birckelbaw, Lourdes G.; Corliss, Lloyd D.

    1994-01-01

    A two-phase piloted simulation study was conducted to investigate alternative wing and flap controls for tilt-wing aircraft. The initial phase of the study compared the flying qualities of both a conventional (programmed) flap and an innovative geared flap. The second phase of the study introduced an alternate method of pilot control for the geared flap and further studied the flying qualities of the programmed flap, and two geared flap configurations. In general, the pilot rating showed little variation between the programmed flap and the geared flap control concepts. Some differences between the two concepts were noticed and are discussed in this paper. The addition of pitch attitude stabilization in the second phase of the study greatly enhanced the aircraft flying qualities. This paper describes the simulated tilt-wing aircraft and the flap control concepts and presents the results of both phases of the simulation study.

  2. Piloted simulation study of two tilt-wing flap control concepts, phase 2

    NASA Technical Reports Server (NTRS)

    Birckelbaw, Lourdes G.; Corliss, Lloyd D.; Hindson, William S.; Churchill, Gary B.

    1994-01-01

    A two phase piloted simulation study has been conducted in the Ames Vertical Motion Simulator to investigate alternative wing and flap controls for tilt-wing aircraft. This report documents the flying qualities results and findings of the second phase of the piloted simulation study and describes the simulated tilt-wing aircraft, the flap control concepts, the experiment design and the evaluation tasks. The initial phase of the study compared the flying qualities of both a conventional programmed flap and an innovative geared flap. The second phase of the study introduced an alternate method of pilot control for the geared flap and further studied the flying qualities of the programmed flap and two geared flap configurations. In general, the pilot ratings showed little variation between the programmed flap and the geared flap control concepts. Some differences between the two control concepts were noticed and are discussed in this report. The geared flap configurations had very similar results. Although the geared flap concept has the potential to reduce or eliminate the pitch control power requirements from a tail rotor or a tail thruster at low speeds and in hover, the results did not show reduced tail thruster pitch control power usage with the geared flap configurations compared to the programmed flap configuration. The addition of pitch attitude stabilization in the second phase of simulation study greatly enhanced the aircraft flying qualities compared to the first phase.

  3. Piloted Simulation Study of Rudder Pedal Force/Feel Characteristics

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    2007-01-01

    A piloted, fixed-base simulation was conducted in 2006 to determine optimum rudder pedal force/feel characteristics for transport aircraft. As part of this research, an evaluation of four metrics for assessing rudder pedal characteristics previously presented in the literature was conducted. This evaluation was based upon the numerical handling qualities ratings assigned to a variety of pedal force/feel systems used in the simulation study. It is shown that, with the inclusion of a fifth metric, most of the rudder pedal force/feel system designs that were rated poorly by the evaluation pilots could be identified. It is suggested that these metrics form the basis of a certification requirement for transport aircraft.

  4. Piloted simulation study of an ILS approach of a twin-pusher business/commuter turboprop aircraft configuration

    NASA Technical Reports Server (NTRS)

    Riley, Donald R.; Brandon, Jay M.; Glaab, Louis J.

    1994-01-01

    A six-degree-of-freedom nonlinear simulation of a twin-pusher, turboprop business/commuter aircraft configuration representative of the Cessna ATPTB (Advanced turboprop test bed) was developed for use in piloted studies with the Langley General Aviation Simulator. The math models developed are provided, simulation predictions are compared with with Cessna flight-test data for validation purposes, and results of a handling quality study during simulated ILS (instrument landing system) approaches and missed approaches are presented. Simulated flight trajectories, task performance measures, and pilot evaluations are presented for the ILS approach and missed-approach tasks conducted with the vehicle in the presence of moderate turbulence, varying horizontal winds and engine-out conditions. Six test subjects consisting of two research pilots, a Cessna test pilot, and three general aviation pilots participated in the study. This effort was undertaken in cooperation with the Cessna Aircraft Company.

  5. Pilot In-Trail Procedure Validation Simulation Study

    NASA Technical Reports Server (NTRS)

    Bussink, Frank J. L.; Murdoch, Jennifer L.; Chamberlain, James P.; Chartrand, Ryan; Jones, Kenneth M.

    2008-01-01

    A Human-In-The-Loop experiment was conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) to investigate the viability of the In-Trail Procedure (ITP) concept from a flight crew perspective, by placing participating airline pilots in a simulated oceanic flight environment. The test subject pilots used new onboard avionics equipment that provided improved information about nearby traffic and enabled them, when specific criteria were met, to request an ITP flight level change referencing one or two nearby aircraft that might otherwise block the flight level change. The subject pilots subjective assessments of ITP validity and acceptability were measured via questionnaires and discussions, and their objective performance in appropriately selecting, requesting, and performing ITP flight level changes was evaluated for each simulated flight scenario. Objective performance and subjective workload assessment data from the experiment s test conditions were analyzed for statistical and operational significance and are reported in the paper. Based on these results, suggestions are made to further improve the ITP.

  6. A Study of the Characteristics of Human-Pilot Control Response to Simulated Aircraft Lateral Motions

    NASA Technical Reports Server (NTRS)

    Cheatham, Donald C

    1954-01-01

    Report presents the results of studies made in an attempt to provide information on the control operations of the human pilot. These studies included an investigation of the ability of pilots to control simulated unstable yawing oscillations, a study of the basic characteristics of human-pilot control response, and a study to determine whether and to what extent pilot control response can be represented in an analytical form.

  7. Pilot-model analysis and simulation study of effect of control task desired control response

    NASA Technical Reports Server (NTRS)

    Adams, J. J.; Gera, J.; Jaudon, J. B.

    1978-01-01

    A pilot model analysis was performed that relates pilot control compensation, pilot aircraft system response, and aircraft response characteristics for longitudinal control. The results show that a higher aircraft short period frequency is required to achieve superior pilot aircraft system response in an altitude control task than is required in an attitude control task. These results were confirmed by a simulation study of target tracking. It was concluded that the pilot model analysis provides a theoretical basis for determining the effect of control task on pilot opinions.

  8. Effects of alcohol on pilot performance in simulated flight

    NASA Technical Reports Server (NTRS)

    Billings, C. E.; Demosthenes, T.; White, T. R.; O'Hara, D. B.

    1991-01-01

    Ethyl alcohol's known ability to produce reliable decrements in pilot performance was used in a study designed to evaluate objective methods for assessing pilot performance. Four air carrier pilot volunteers were studied during eight simulated flights in a B727 simulator. Total errors increased linearly and significantly with increasing blood alcohol. Planning and performance errors, procedural errors and failures of vigilance each increased significantly in one or more pilots and in the group as a whole.

  9. Pilot Comments for High Speed Research Cycle 3 Simulations Study (LaRC.1)

    NASA Technical Reports Server (NTRS)

    Bailey, Melvin L. (Editor); Jackson, E. Bruce (Technical Monitor)

    2000-01-01

    This is a compilation of pilot comments from the Boeing High Speed Research Aircraft, Cycle 3 Simulation Study (LaRC.1) conducted from January to March 1997 at NASA Langley Research Center. This simulation study was conducted using the Visual Motion Simulator. The comments are direct tape transcriptions and have been edited for spelling only.

  10. Airflow Hazard Visualization for Helicopter Pilots: Flight Simulation Study Results

    NASA Technical Reports Server (NTRS)

    Aragon, Cecilia R.; Long, Kurtis R.

    2005-01-01

    Airflow hazards such as vortices or low level wind shear have been identified as a primary contributing factor in many helicopter accidents. US Navy ships generate airwakes over their decks, creating potentially hazardous conditions for shipboard rotorcraft launch and recovery. Recent sensor developments may enable the delivery of airwake data to the cockpit, where visualizing the hazard data may improve safety and possibly extend ship/helicopter operational envelopes. A prototype flight-deck airflow hazard visualization system was implemented on a high-fidelity rotorcraft flight dynamics simulator. Experienced helicopter pilots, including pilots from all five branches of the military, participated in a usability study of the system. Data was collected both objectively from the simulator and subjectively from post-test questionnaires. Results of the data analysis are presented, demonstrating a reduction in crash rate and other trends that illustrate the potential of airflow hazard visualization to improve flight safety.

  11. Modeling human pilot cue utilization with applications to simulator fidelity assessment.

    PubMed

    Zeyada, Y; Hess, R A

    2000-01-01

    An analytical investigation to model the manner in which pilots perceive and utilize visual, proprioceptive, and vestibular cues in a ground-based flight simulator was undertaken. Data from a NASA Ames Research Center vertical motion simulator study of a simple, single-degree-of-freedom rotorcraft bob-up/down maneuver were employed in the investigation. The study was part of a larger research effort that has the creation of a methodology for determining flight simulator fidelity requirements as its ultimate goal. The study utilized a closed-loop feedback structure of the pilot/simulator system that included the pilot, the cockpit inceptor, the dynamics of the simulated vehicle, and the motion system. With the exception of time delays that accrued in visual scene production in the simulator, visual scene effects were not included in this study. Pilot/vehicle analysis and fuzzy-inference identification were employed to study the changes in fidelity that occurred as the characteristics of the motion system were varied over five configurations. The data from three of the five pilots who participated in the experimental study were analyzed in the fuzzy-inference identification. Results indicate that both the analytical pilot/vehicle analysis and the fuzzy-inference identification can be used to identify changes in simulator fidelity for the task examined.

  12. Initial piloted simulation study of geared flap control for tilt-wing V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Guerrero, Lourdes M.; Corliss, Lloyd D.

    1991-01-01

    A simulation study of a representative tilt wing transport aircraft was conducted in 1990 on the Ames Vertical Motion Simulator. This simulation is in response to renewed interest in the tilt wing concept for use in future military and civil applications. For past tilt wing concepts, pitch control in hover and low-speed flight has required a tail rotor or reaction jets at the tail. Use of mono cyclic propellers or a geared flap have also been proposed as alternate methods for providing pitch control at low speed. The geared flap is a subject of this current study. This report describes the geared flap concept, the tilt wing aircraft, the simulation model, the simulation facility and experiment setup, the pilots' evaluation tasks and procedures, and the results obtained from the simulation experiment. The pilot evaluations and comments are also documented in the report appendix.

  13. Single pilot scanning behavior in simulated instrument flight

    NASA Technical Reports Server (NTRS)

    Pennington, J. E.

    1979-01-01

    A simulation of tasks associated with single pilot general aviation flight under instrument flight rules was conducted as a baseline for future research studies on advanced flight controls and avionics. The tasks, ranging from simple climbs and turns to an instrument landing systems approach, were flown on a fixed base simulator. During the simulation the control inputs, state variables, and the pilots visual scan pattern including point of regard were measured and recorded.

  14. Piloted aircraft simulation concepts and overview

    NASA Technical Reports Server (NTRS)

    Sinacori, J. B.

    1978-01-01

    An overview of piloted aircraft simulation is presented that reflects the viewpoint of an aeronautical technologist. The intent is to acquaint potential users with some of the basic concepts and issues that characterize piloted simulation. Application to the development of aircraft are highlighted, but some aspects of training simulators are covered. A historical review is given together with a description of some current simulators. Simulator usages, advantages, and limitations are discussed and human perception qualities important to simulation are related. An assessment of current simulation is presented that addresses validity, fidelity, and deficiencies. Future prospects are discussed and technology projections are made.

  15. Effect of motion cues during complex curved approach and landing tasks: A piloted simulation study

    NASA Technical Reports Server (NTRS)

    Scanlon, Charles H.

    1987-01-01

    A piloted simulation study was conducted to examine the effect of motion cues using a high fidelity simulation of commercial aircraft during the performance of complex approach and landing tasks in the Microwave Landing System (MLS) signal environment. The data from these tests indicate that in a high complexity MLS approach task with moderate turbulence and wind, the pilot uses motion cues to improve path tracking performance. No significant differences in tracking accuracy were noted for the low and medium complexity tasks, regardless of the presence of motion cues. Higher control input rates were measured for all tasks when motion was used. Pilot eye scan, as measured by instrument dwell time, was faster when motion cues were used regardless of the complexity of the approach tasks. Pilot comments indicated a preference for motion. With motion cues, pilots appeared to work harder in all levels of task complexity and to improve tracking performance in the most complex approach task.

  16. Flight Simulator Platform Motion and Air Transport Pilot Training

    NASA Technical Reports Server (NTRS)

    Lee, Alfred T.; Bussolari, Steven R.

    1989-01-01

    The influence of flight simulator platform motion on pilot training and performance was examined In two studies utilizing a B-727-200 aircraft simulator. The simulator, located at Ames Research Center, Is certified by the FAA for upgrade and transition training in air carrier operations. Subjective ratings and objective performance of experienced B-727 pilots did not reveal any reliable effects of wide variations In platform motion de- sign. Motion platform variations did, however, affect the acquisition of control skill by pilots with no prior heavy aircraft flying experience. The effect was limited to pitch attitude control inputs during the early phase of landing training. Implications for the definition of platform motion requirements in air transport pilot training are discussed.

  17. A piloted simulation study of data link ATC message exchange

    NASA Technical Reports Server (NTRS)

    Waller, Marvin C.; Lohr, Gary W.

    1989-01-01

    Data link Air Traffic Control (ATC) and Air Traffic Service (ATS) message and data exchange offers the potential benefits of increased flight safety and efficiency by reducing communication errors and allowing more information to be transferred between aircraft and ground facilities. Digital communication also presents an opportunity to relieve the overloading of ATC radio frequencies which hampers message exchange during peak traffic hours in many busy terminal areas. A piloted simulation study to develop pilot factor guidelines and assess potential flight crew benefits and liabilities from using data link ATC message exchange was completed. The data link ATC message exchange concept, implemented on an existing navigation computer Control Display Unit (CDU) required maintaining a voice radio telephone link with an appropriate ATC facility. Flight crew comments, scanning behavior, and measurements of time spent in ATC communication activities for data link ATC message exchange were compared to similar measures for simulated conventional voice radio operations. The results show crew preference for the quieter flight deck environment and a perception of lower communication workload.

  18. Re-use of pilot data and interim analysis of pivotal data in MRMC studies: a simulation study

    NASA Astrophysics Data System (ADS)

    Chen, Weijie; Samuelson, Frank; Sahiner, Berkman; Petrick, Nicholas

    2017-03-01

    Novel medical imaging devices are often evaluated with multi-reader multi-case (MRMC) studies in which radiologists read images of patient cases for a specified clinical task (e.g., cancer detection). A pilot study is often used to measure the effect size and variance parameters that are necessary for sizing a pivotal study (including sizing readers, non-diseased and diseased cases). Due to the practical difficulty of collecting patient cases or recruiting clinical readers, some investigators attempt to include the pilot data as part of their pivotal study. In other situations, some investigators attempt to perform an interim analysis of their pivotal study data based upon which the sample sizes may be re-estimated. Re-use of the pilot data or interim analyses of the pivotal data may inflate the type I error of the pivotal study. In this work, we use the Roe and Metz model to simulate MRMC data under the null hypothesis (i.e., two devices have equal diagnostic performance) and investigate the type I error rate for several practical designs involving re-use of pilot data or interim analysis of pivotal data. Our preliminary simulation results indicate that, under the simulation conditions we investigated, the inflation of type I error is none or only marginal for some design strategies (e.g., re-use of patient data without re-using readers, and size re-estimation without using the effect-size estimated in the interim analysis). Upon further verifications, these are potentially useful design methods in that they may help make a study less burdensome and have a better chance to succeed without substantial loss of the statistical rigor.

  19. The Effects of Longitudinal Control-System Dynamics on Pilot Opinion and Response Characteristics as Determined from Flight Tests and from Ground Simulator Studies

    NASA Technical Reports Server (NTRS)

    Sadoff, Melvin

    1958-01-01

    The results of a fixed-base simulator study of the effects of variable longitudinal control-system dynamics on pilot opinion are presented and compared with flight-test data. The control-system variables considered in this investigation included stick force per g, time constant, and dead-band, or stabilizer breakout force. In general, the fairly good correlation between flight and simulator results for two pilots demonstrates the validity of fixed-base simulator studies which are designed to complement and supplement flight studies and serve as a guide in control-system preliminary design. However, in the investigation of certain problem areas (e.g., sensitive control-system configurations associated with pilot- induced oscillations in flight), fixed-base simulator results did not predict the occurrence of an instability, although the pilots noted the system was extremely sensitive and unsatisfactory. If it is desired to predict pilot-induced-oscillation tendencies, tests in moving-base simulators may be required. It was found possible to represent the human pilot by a linear pilot analog for the tracking task assumed in the present study. The criterion used to adjust the pilot analog was the root-mean-square tracking error of one of the human pilots on the fixed-base simulator. Matching the tracking error of the pilot analog to that of the human pilot gave an approximation to the variation of human-pilot behavior over a range of control-system dynamics. Results of the pilot-analog study indicated that both for optimized control-system dynamics (for poor airplane dynamics) and for a region of good airplane dynamics, the pilot response characteristics are approximately the same.

  20. Simulation debriefing based on principles of transfer of learning: A pilot study.

    PubMed

    Johnston, Sandra; Coyer, Fiona; Nash, Robyn

    2017-09-01

    Upon completion of undergraduate nursing courses, new graduates are expected to transition seamlessly into practice. Education providers face challenges in the preparation of undergraduate nurses due to increasing student numbers and decreasing availability of clinical placement sites. High fidelity patient simulation is an integral component of nursing curricula as an adjunct to preparation for clinical placement. Debriefing after simulation is an area where the underlying structure of problems can consciously be explored. When central principles of problems are identified, they can then be used in situations that differ from the simulation experience. Third year undergraduate nursing students participated in a pilot study conducted to test a debriefing intervention where the intervention group (n=7) participated in a simulation, followed by a debriefing based on transfer of learning principles. The control group (n=5) participated in a simulation of the same scenario, followed by a standard debriefing. Students then attended focus group interviews. The results of this pilot test provided preliminary information that the debriefing approach based on transfer of learning principles may be a useful way for student nurses to learn from a simulated experience and consider the application of learning to future clinical encounters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Fidelity of Simulation for Pilot Training

    DTIC Science & Technology

    1980-12-01

    is worthwhile emphasizing at this point that the study is focused on fidelity of simulators for pilot training. It does not consider simulation for...significantly higher cost than low fidelity. Motivation for 0~is study is to obtain background information on the effect of simulator fidel- ity on ...bottom of the diagram is the recom- mended approach. In practice, however, it is often the case that emphasis is placed on work in the bottom segment of

  2. Pilot Comments From the Boeing High Speed Research Aircraft, Cycle 3, Simulation Study of the Effects of Aeroservoelasticity (LaRC.3)

    NASA Technical Reports Server (NTRS)

    Bailey, Melvin L. (Editor)

    2000-01-01

    This is a compilation of pilot comments from the Boeing High Speed Research Aircraft, Cycle 3, simulation study (LaRC.3) of the effects of aeroservoelasticity, conducted from October to December 1997 at NASA Langley Research Center. This simulation study was conducted using the Visual Motion Simulator. The comments are from direct tape transcriptions and have been edited for spelling only. These comments were made on tape following the completion of each flight card, immediately after the pilot was satisfied with his practice and data recording runs. Six pilots were used in the evaluation and they are identified as pilots A through F.

  3. Pilot age and expertise predict flight simulator performance: a 3-year longitudinal study.

    PubMed

    Taylor, Joy L; Kennedy, Quinn; Noda, Art; Yesavage, Jerome A

    2007-02-27

    Expert knowledge may compensate for age-related declines in basic cognitive and sensory-motor abilities in some skill domains. We investigated the influence of age and aviation expertise (indexed by Federal Aviation Administration pilot ratings) on longitudinal flight simulator performance. Over a 3-year period, 118 general aviation pilots aged 40 to 69 years were tested annually, in which their flight performance was scored in terms of 1) executing air-traffic controller communications; 2) traffic avoidance; 3) scanning cockpit instruments; 4) executing an approach to landing; and 5) a flight summary score. More expert pilots had better flight summary scores at baseline and showed less decline over time. Secondary analyses revealed that expertise effects were most evident in the accuracy of executing aviation communications, the measure on which performance declined most sharply over time. Regarding age, even though older pilots initially performed worse than younger pilots, over time older pilots showed less decline in flight summary scores than younger pilots. Secondary analyses revealed that the oldest pilots did well over time because their traffic avoidance performance improved more vs younger pilots. These longitudinal findings support previous cross-sectional studies in aviation as well as non-aviation domains, which demonstrated the advantageous effect of prior experience and specialized expertise on older adults' skilled cognitive performances.

  4. Costing Educational Wastage: A Pilot Simulation Study. Current Surveys and Research in Statistics.

    ERIC Educational Resources Information Center

    Berstecher, D.

    This pilot simulation study examines the important methodological problems involved in costing educational wastage, focusing specifically on the cost implications of educational wastage in primary education. Purpose of the study is to provide a clearer picture of the underlying rationale and interrelated consequences of reducing educational…

  5. Piloted simulator study of allowable time delays in large-airplane response

    NASA Technical Reports Server (NTRS)

    Grantham, William D.; Bert T.?aetingas, Stephen A.dings with ran; Bert T.?aetingas, Stephen A.dings with ran

    1987-01-01

    A piloted simulation was performed to determine the permissible time delay and phase shift in the flight control system of a specific large transport-type airplane. The study was conducted with a six degree of freedom ground-based simulator and a math model similar to an advanced wide-body jet transport. Time delays in discrete and lagged form were incorporated into the longitudinal, lateral, and directional control systems of the airplane. Three experienced pilots flew simulated approaches and landings with random localizer and glide slope offsets during instrument tracking as their principal evaluation task. Results of the present study suggest a level 1 (satisfactory) handling qualities limit for the effective time delay of 0.15 sec in both the pitch and roll axes, as opposed to a 0.10-sec limit of the present specification (MIL-F-8785C) for both axes. Also, the present results suggest a level 2 (acceptable but unsatisfactory) handling qualities limit for an effective time delay of 0.82 sec and 0.57 sec for the pitch and roll axes, respectively, as opposed to 0.20 sec of the present specifications for both axes. In the area of phase shift between cockpit input and control surface deflection,the results of this study, flown in turbulent air, suggest less severe phase shift limitations for the approach and landing task-approximately 50 deg. in pitch and 40 deg. in roll - as opposed to 15 deg. of the present specifications for both axes.

  6. 14 CFR 91.1089 - Qualifications: Check pilots (aircraft) and check pilots (simulator).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Qualifications: Check pilots (aircraft) and check pilots (simulator). 91.1089 Section 91.1089 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... RULES Fractional Ownership Operations Program Management § 91.1089 Qualifications: Check pilots...

  7. 14 CFR 91.1089 - Qualifications: Check pilots (aircraft) and check pilots (simulator).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Qualifications: Check pilots (aircraft) and check pilots (simulator). 91.1089 Section 91.1089 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... RULES Fractional Ownership Operations Program Management § 91.1089 Qualifications: Check pilots...

  8. Burnout among pilots: psychosocial factors related to happiness and performance at simulator training.

    PubMed

    Demerouti, Evangelia; Veldhuis, Wouter; Coombes, Claire; Hunter, Rob

    2018-06-18

    In this study among airline pilots, we aim to uncover the work characteristics (job demands and resources) and the outcomes (job crafting, happiness and simulator training performance) that are related to burnout for this occupational group. Using a large sample of airline pilots, we showed that 40% of the participating pilots experience high burnout. In line with Job Demands-Resources theory, job demands were detrimental for simulator training performance because they made pilots more exhausted and less able to craft their job, whereas job resources had a favourable effect because they reduced feelings of disengagement and increased job crafting. Moreover, burnout was negatively related to pilots' happiness with life. These findings highlight the importance of psychosocial factors and health for valuable outcomes for both pilots and airlines. Practitioner Summary: Using an online survey among the members of a European pilots' professional association, we examined the relationship between psychosocial factors (work characteristics, burnout) and outcomes (simulator training performance, happiness). Forty per cent of the participating pilots experience high burnout. Job demands were detrimental, whereas job resources were favourable for simulator training performance/happiness. Twitter text: 40% of airline pilots experience burnout and psychosocial work factors and burnout relate to performance at pilots' simulator training.

  9. Piloted simulation study of a balloon-assisted deployment of an aircraft at high altitude

    NASA Technical Reports Server (NTRS)

    Murray, James; Moes, Timothy; Norlin, Ken; Bauer, Jeffrey; Geenen, Robert; Moulton, Bryan; Hoang, Stephen

    1992-01-01

    A piloted simulation was used to study the feasibility of a balloon assisted deployment of a research aircraft at high altitude. In the simulation study, an unmanned, modified sailplane was carried to 110,000 ft with a high altitude balloon and released in a nose down attitude. A remote pilot controlled the aircraft through a pullout and then executed a zoom climb to a trimmed, 1 g flight condition. A small parachute was used to limit the Mach number during the pullout to avoid adverse transonic effects. The use of small rocket motor was studied for increasing the maximum attainable altitude. Aerodynamic modifications to the basic sailplane included applying supercritical airfoil gloves over the existing wing and tail surfaces. The aerodynamic model of the simulated aircraft was based on low Reynolds number wind tunnel tests and computational techniques, and included large Mach number and Reynolds number effects at high altitude. Parametric variations were performed to study the effects of launch altitude, gross weight, Mach number limit, and parachute size on the maximum attainable stabilized altitude. A test altitude of approx. 95,000 ft was attained, and altitudes in excess of 100,000 ft was attained.

  10. Measurement of human pilot dynamic characteristics in flight simulation

    NASA Technical Reports Server (NTRS)

    Reedy, James T.

    1987-01-01

    Fast Fourier Transform (FFT) and Least Square Error (LSE) estimation techniques were applied to the problem of identifying pilot-vehicle dynamic characteristics in flight simulation. A brief investigation of the effects of noise, input bandwidth and system delay upon the FFT and LSE techniques was undertaken using synthetic data. Data from a piloted simulation conducted at NASA Ames Research Center was then analyzed. The simulation was performed in the NASA Ames Research Center Variable Stability CH-47B helicopter operating in fixed-basis simulator mode. The piloting task consisted of maintaining the simulated vehicle over a moving hover pad whose motion was described by a random-appearing sum of sinusoids. The two test subjects used a head-down, color cathode ray tube (CRT) display for guidance and control information. Test configurations differed in the number of axes being controlled by the pilot (longitudinal only versus longitudinal and lateral), and in the presence or absence of an important display indicator called an 'acceleration ball'. A number of different pilot-vehicle transfer functions were measured, and where appropriate, qualitatively compared with theoretical pilot- vehicle models. Some indirect evidence suggesting pursuit behavior on the part of the test subjects is discussed.

  11. Pilot Interactions in an Over-Constrained Conflict Scenario as Studied in a Piloted Simulation of Autonomous Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Barhydt, Richard; Barmore, Bryan; Krishnamurthy, Karthik

    2003-01-01

    Feasibility and safety of autonomous aircraft operations were studied in a multi-piloted simulation of overconstrained traffic conflicts to determine the need for, and utility of, priority flight rules to maintain safety in this extraordinary and potentially hazardous situation. An overconstrained traffic conflict is one in which the separation assurance objective is incompatible with other objectives. In addition, a proposed scheme for implementing priority flight rules by staggering the alerting time between the two aircraft in conflict was tested for effectiveness. The feasibility study was conducted through a simulation in the Air Traffic Operations Laboratory at the NASA Langley Research Center. This research activity is a continuation of the Distributed Air-Ground Traffic Management feasibility analysis reported in the 4th USA/Europe Air Traffic Management R&D Seminar in December 2001 (paper #48). The over-constrained conflict scenario studied here consisted of two piloted aircraft that were assigned an identical en-route waypoint arrival time and altitude crossing restriction. The simulation results indicated that the pilots safely resolved the conflict without the need for a priority flight rule system. Occurrences of unnecessary maneuvering near the common waypoint were traced to false conflict alerts, generated as the result of including waypoint constraint information in the broadcast data link message issued from each aircraft. This result suggests that, in the conservative interests of safety, broadcast intent information should be based on the commanded trajectory and not on the Flight Management System flight plan, to which the aircraft may not actually adhere. The use of priority flight rules had no effect on the percentage of the aircraft population meeting completely predictable which aircraft in a given pair would meet the constraints and which aircraft would make the first maneuver to yield right-of-way. Therefore, the proposed scheme for

  12. Use of a Data-Linked Weather Information Display and Effects on Pilot Navigation Decision Making in a Piloted Simulation Study

    NASA Technical Reports Server (NTRS)

    Yuchnovicz, Daniel E.; Novacek, Paul F.; Burgess, Malcolm A.; Heck, Michael L.; Stokes, Alan F.

    2001-01-01

    This study provides recommendations to the FAA and to prospective manufacturers based on an exploration of the effects of data link weather displays upon pilot decision performance. An experiment was conducted with twenty-four current instrument rated pilots who were divided into two equal groups and presented with a challenging but realistic flight scenario involving weather containing significant embedded convective activity. All flights were flown in a full-mission simulation facility within instrument meteorological conditions. The inflight weather display depicted NexRad images, graphical METARs and textual METARs. The objective was to investigate the potential for misuse of a weather display, and incorporate recommendations for the design and use of these displays. The primary conclusion of the study found that the inflight weather display did not improve weather avoidance decision making. Some of the reasons to support this finding include: the pilot's inability to easily perceive their proximity to the storms, increased workload and difficulty in deciphering METAR textual data. The compelling nature of a graphical weather display caused many pilots to reduce their reliance on corroborating weather information from other sources. Minor changes to the weather display could improve the ability of a pilot to make better decisions on hazard avoidance.

  13. Assessment of simulation fidelity using measurements of piloting technique in flight

    NASA Technical Reports Server (NTRS)

    Clement, W. F.; Cleveland, W. B.; Key, D. L.

    1984-01-01

    The U.S. Army and NASA joined together on a project to conduct a systematic investigation and validation of a ground based piloted simulation of the Army/Sikorsky UH-60A helicopter. Flight testing was an integral part of the validation effort. Nap-of-the-Earth (NOE) piloting tasks which were investigated included the bob-up, the hover turn, the dash/quickstop, the sidestep, the dolphin, and the slalom. Results from the simulation indicate that the pilot's NOE task performance in the simulator is noticeably and quantifiably degraded when compared with the task performance results generated in flight test. The results of the flight test and ground based simulation experiments support a unique rationale for the assessment of simulation fidelity: flight simulation fidelity should be judged quantitatively by measuring pilot's control strategy and technique as induced by the simulator. A quantitative comparison is offered between the piloting technique observed in a flight simulator and that observed in flight test for the same tasks performed by the same pilots.

  14. Piloted evaluation of an integrated propulsion and flight control simulator

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.

    1992-01-01

    A piloted evaluation of the integrated flight and propulsion control simulator for advanced integrated propulsion and airframe control design is described. The evaluation will cover control effector gains and deadbands, control effectiveness and control authority, and heads up display functionality. For this evaluation the flight simulator is configured for transition flight using an advanced Short Take-Off and Vertical Landing fighter aircraft model, a simplified high-bypass turbofan engine model, fighter cockpit displays, and pilot effectors. The piloted tasks used for rating displays and control effector gains are described. Pilot comments and simulation results confirm that the display symbology and control gains are very adequate for the transition flight task. Additionally, it is demonstrated that this small-scale, fixed base flight simulator facility can adequately perform a real time, piloted control evaluation.

  15. Combining simulated patients and simulators: pilot study of hybrid simulation in teaching cardiac auscultation.

    PubMed

    Friederichs, Hendrik; Weissenstein, Anne; Ligges, Sandra; Möller, David; Becker, Jan C; Marschall, Bernhard

    2014-12-01

    Auscultation torsos are widely used to teach position-dependent heart sounds and murmurs. To provide a more realistic teaching experience, both whole body auscultation mannequins and torsos have been used in clinical examination skills training at the Medical Faculty of the University of Muenster since the winter term of 2008-2009. This training has since been extended by simulated patients, which are normal, healthy subjects who have undergone attachment of the electronic components of the auscultation mannequins to their chests to mimic pathophysiological conditions ("hybrid models"). The acceptance of this new learning method was examined in the present pilot study. In total, 143 students in their second preclinical year who were participating in auscultation training were randomized into an intervention group (hybrid models) and a control group (auscultation mannequins). One hundred forty-two (99.3%) of these students completed a self-assessment Likert-scale questionnaire regarding different teaching approaches (where 1 = "very poor" to 100 = "very good"). The questionnaire focused on the "value of learning" of different teaching approaches. Direct comparison showed that students evaluated the hybrid models to be significantly more effective than the auscultation mannequins (median: 83 vs. 64, P < 0.001). The cardiac auscultation training was generally assessed positively (median: 88). Additionally, verbal feedback was obtained from simulated patients and tutors (trained students who had successfully passed the course a few semesters earlier). Personal feedback showed high satisfaction from student tutors and simulated patients. Hybrid simulators for teaching cardiac auscultation elucidated positive responses from students, tutors, and simulated patients. Copyright © 2014 The American Physiological Society.

  16. Aircraft Simulators and Pilot Training.

    ERIC Educational Resources Information Center

    Caro, Paul W.

    Flight simulators are built as realistically as possible, presumably to enhance their training value. Yet, their training value is determined by the way they are used. Traditionally, simulators have been less important for training than have aircraft, but they are currently emerging as primary pilot training vehicles. This new emphasis is an…

  17. Air traffic control in airline pilot simulator training and evaluation

    DOT National Transportation Integrated Search

    2001-01-01

    Much airline pilot training and checking occurs entirely in the simulator, and the first time a pilot flies a particular airplane, it may carry passengers. Simulator qualification standards, however, focus on the simulation of the airplane without re...

  18. Piloted evaluation of an integrated propulsion and flight control simulator

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.

    1992-01-01

    This paper describes a piloted evaluation of the integrated flight and propulsion control simulator at NASA Lewis Research Center. The purpose of this evaluation is to demonstrate the suitability and effectiveness of this fixed based simulator for advanced integrated propulsion and airframe control design. The evaluation will cover control effector gains and deadbands, control effectiveness and control authority, and heads up display functionality. For this evaluation the flight simulator is configured for transition flight using an advanced Short Take-Off and vertical Landing fighter aircraft model, a simplified high-bypass turbofan engine model, fighter cockpit, displays, and pilot effectors. The paper describes the piloted tasks used for rating displays and control effector gains. Pilot comments and simulation results confirm that the display symbology and control gains are very adequate for the transition flight task. Additionally, it is demonstrated that this small-scale, fixed base flight simulator facility can adequately perform a real time, piloted control evaluation.

  19. Flight simulator platform motion and air transport pilot training

    NASA Technical Reports Server (NTRS)

    Lee, Alfred T.; Bussolari, Steven R.

    1987-01-01

    The effect of a flight simulator platform motion on the performance and training of a pilot was evaluated using subjective ratings and objective performance data obtained on experienced B-727 pilots and pilots with no prior heavy aircraft flying experience flying B-727-200 aircraft simulator used by the FAA in the upgrade and transition training for air carrier operations. The results on experienced pilots did not reveal any reliable effects of wide variations in platform motion design. On the other hand, motion variations significantly affected the behavior of pilots without heavy-aircraft experience. The effect was limited to pitch attitude control inputs during the early phase of landing training.

  20. Manual flying of curved precision approaches to landing with electromechanical instrumentation. A piloted simulation study

    NASA Technical Reports Server (NTRS)

    Knox, Charles E.

    1993-01-01

    A piloted simulation study was conducted to examine the requirements for using electromechanical flight instrumentation to provide situation information and flight guidance for manually controlled flight along curved precision approach paths to a landing. Six pilots were used as test subjects. The data from these tests indicated that flight director guidance is required for the manually controlled flight of a jet transport airplane on curved approach paths. Acceptable path tracking performance was attained with each of the three situation information algorithms tested. Approach paths with both multiple sequential turns and short final path segments were evaluated. Pilot comments indicated that all the approach paths tested could be used in normal airline operations.

  1. Piloted Evaluation of a UH-60 Mixer Equivalent Turbulence Simulation Model

    NASA Technical Reports Server (NTRS)

    Lusardi, Jeff A.; Blanken, Chris L.; Tischeler, Mark B.

    2002-01-01

    A simulation study of a recently developed hover/low speed Mixer Equivalent Turbulence Simulation (METS) model for the UH-60 Black Hawk helicopter was conducted in the NASA Ames Research Center Vertical Motion Simulator (VMS). The experiment was a continuation of previous work to develop a simple, but validated, turbulence model for hovering rotorcraft. To validate the METS model, two experienced test pilots replicated precision hover tasks that had been conducted in an instrumented UH-60 helicopter in turbulence. Objective simulation data were collected for comparison with flight test data, and subjective data were collected that included handling qualities ratings and pilot comments for increasing levels of turbulence. Analyses of the simulation results show good analytic agreement between the METS model and flight test data, with favorable pilot perception of the simulated turbulence. Precision hover tasks were also repeated using the more complex rotating-frame SORBET (Simulation Of Rotor Blade Element Turbulence) model to generate turbulence. Comparisons of the empirically derived METS model with the theoretical SORBET model show good agreement providing validation of the more complex blade element method of simulating turbulence.

  2. A Low Cost Simulation System to Demonstrate Pilot Induced Oscillation Phenomenon

    NASA Technical Reports Server (NTRS)

    Ali, Syed Firasat

    1997-01-01

    A flight simulation system with graphics and software on Silicon Graphics computer workstations has been installed in the Flight Vehicle Design Laboratory at Tuskegee University. The system has F-15E flight simulation software from NASA Dryden which uses the graphics of SGI flight simulation demos. On the system, thus installed, a study of pilot induced oscillations is planned for future work. Preliminary research is conducted by obtaining two sets of straight level flights with pilot in the loop. In one set of flights no additional delay is used between the stick input and the appearance of airplane response on the computer monitor. In another set of flights, a 500 ms additional delay is used. The flight data is analyzed to find cross correlations between deflections of control surfaces and response of the airplane. The pilot dynamics features depicted from cross correlations of straight level flights are discussed in this report. The correlations presented here will serve as reference material for the corresponding correlations in a future study of pitch attitude tracking tasks involving pilot induced oscillations.

  3. 14 CFR 91.1089 - Qualifications: Check pilots (aircraft) and check pilots (simulator).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... simulator, or in a flight training device for a particular type aircraft. (2) A check pilot (simulator) is a person who is qualified to conduct flight checks, but only in a flight simulator, in a flight training... (simulator) must accomplish the following— (1) Fly at least two flight segments as a required crewmember for...

  4. 14 CFR 91.1089 - Qualifications: Check pilots (aircraft) and check pilots (simulator).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... simulator, or in a flight training device for a particular type aircraft. (2) A check pilot (simulator) is a person who is qualified to conduct flight checks, but only in a flight simulator, in a flight training... (simulator) must accomplish the following— (1) Fly at least two flight segments as a required crewmember for...

  5. 14 CFR 91.1089 - Qualifications: Check pilots (aircraft) and check pilots (simulator).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... simulator, or in a flight training device for a particular type aircraft. (2) A check pilot (simulator) is a person who is qualified to conduct flight checks, but only in a flight simulator, in a flight training... (simulator) must accomplish the following— (1) Fly at least two flight segments as a required crewmember for...

  6. V/STOL tilt rotor aircraft study. Volume 9: Piloted simulator evaluation of the Boeing Vertol model 222 tilt rotor aircraft

    NASA Technical Reports Server (NTRS)

    Rosenstein, H.; Mcveigh, M. A.; Mollenkof, P. A.

    1973-01-01

    The results of a real time piloted simulation to investigate the handling qualities and performance of a tilting rotor aircraft design are presented. The aerodynamic configuration of the aircraft is described. The procedures for conducting the simulator evaluation are reported. Pilot comments of the aircraft handling qualities under various simulated flight conditions are included. The time histories of selected pilot maneuvers are shown.

  7. Motion-Based Piloted Simulation Evaluation of a Control Allocation Technique to Recover from Pilot Induced Oscillations

    NASA Technical Reports Server (NTRS)

    Craun, Robert W.; Acosta, Diana M.; Beard, Steven D.; Leonard, Michael W.; Hardy, Gordon H.; Weinstein, Michael; Yildiz, Yildiray

    2013-01-01

    This paper describes the maturation of a control allocation technique designed to assist pilots in the recovery from pilot induced oscillations (PIOs). The Control Allocation technique to recover from Pilot Induced Oscillations (CAPIO) is designed to enable next generation high efficiency aircraft designs. Energy efficient next generation aircraft require feedback control strategies that will enable lowering the actuator rate limit requirements for optimal airframe design. One of the common issues flying with actuator rate limits is PIOs caused by the phase lag between the pilot inputs and control surface response. CAPIO utilizes real-time optimization for control allocation to eliminate phase lag in the system caused by control surface rate limiting. System impacts of the control allocator were assessed through a piloted simulation evaluation of a non-linear aircraft simulation in the NASA Ames Vertical Motion Simulator. Results indicate that CAPIO helps reduce oscillatory behavior, including the severity and duration of PIOs, introduced by control surface rate limiting.

  8. Experiments in pilot decision-making during simulated low visibility approaches

    NASA Technical Reports Server (NTRS)

    Curry, R. E.; Lauber, J. K.; Billings, C. E.

    1975-01-01

    A simulation task is reported which incorporates both kinds of variables, informational and psychological, to successfully study pilot decision making behavior in the laboratory. Preliminary experiments in the measurement of decisions and the inducement of stress in simulated low visibility approaches are described.

  9. Prediction and measurement of human pilot dynamic characteristics in a manned rotorcraft simulation

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.; Reedy, James T.

    1988-01-01

    An analytical and experimental study of the human pilot control strategies in a manned rotorcraft simulation is described. The task simulated involves a low-speed, constant-altitude maneuvering task in which a head-down display is utilized to allow the pilot to track a moving hover point. The efficacy of the display law driving an acceleration symbol is determined and the manner in which the prediction and measurement of pilot/vehicle dynamics can be made part of man/machine system evaluations is demonstrated.

  10. Computer simulation of a single pilot flying a modern high-performance helicopter

    NASA Technical Reports Server (NTRS)

    Zipf, Mark E.; Vogt, William G.; Mickle, Marlin H.; Hoelzeman, Ronald G.; Kai, Fei; Mihaloew, James R.

    1988-01-01

    Presented is a computer simulation of a human response pilot model able to execute operational flight maneuvers and vehicle stabilization of a modern high-performance helicopter. Low-order, single-variable, human response mechanisms, integrated to form a multivariable pilot structure, provide a comprehensive operational control over the vehicle. Evaluations of the integrated pilot were performed by direct insertion into a nonlinear, total-force simulation environment provided by NASA Lewis. Comparisons between the integrated pilot structure and single-variable pilot mechanisms are presented. Static and dynamically alterable configurations of the pilot structure are introduced to simulate pilot activities during vehicle maneuvers. These configurations, in conjunction with higher level, decision-making processes, are considered for use where guidance and navigational procedures, operational mode transfers, and resource sharing are required.

  11. Pilot estimates of glidepath and aim point during simulated landing approaches

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.

    1981-01-01

    Pilot perceptions of glidepath angle and aim point were measured during simulated landings. A fixed-base cockpit simulator was used with video recordings of simulated landing approaches shown on a video projector. Pilots estimated the magnitudes of approach errors during observation without attempting to make corrections. Pilots estimated glidepath angular errors well, but had difficulty estimating aim-point errors. The data make plausible the hypothesis that pilots are little concerned with aim point during most of an approach, concentrating instead on keeping close to the nominal glidepath and trusting this technique to guide them to the proper touchdown point.

  12. Pilot age and expertise predict flight simulator performance

    PubMed Central

    Kennedy, Quinn; Noda, Art; Yesavage, Jerome A.

    2010-01-01

    Background Expert knowledge may compensate for age-related declines in basic cognitive and sensory-motor abilities in some skill domains. We investigated the influence of age and aviation expertise (indexed by Federal Aviation Administration pilot ratings) on longitudinal flight simulator performance. Methods Over a 3-year period, 118 general aviation pilots aged 40 to 69 years were tested annually, in which their flight performance was scored in terms of 1) executing air-traffic controller communications; 2) traffic avoidance; 3) scanning cockpit instruments; 4) executing an approach to landing; and 5) a flight summary score. Results More expert pilots had better flight summary scores at baseline and showed less decline over time. Secondary analyses revealed that expertise effects were most evident in the accuracy of executing aviation communications, the measure on which performance declined most sharply over time. Regarding age, even though older pilots initially performed worse than younger pilots, over time older pilots showed less decline in flight summary scores than younger pilots. Secondary analyses revealed that the oldest pilots did well over time because their traffic avoidance performance improved more vs younger pilots. Conclusions These longitudinal findings support previous cross-sectional studies in aviation as well as non-aviation domains, which demonstrated the advantageous effect of prior experience and specialized expertise on older adults’ skilled cognitive performances. PMID:17325270

  13. Nicotine deprivation and pilot performance during simulated flight.

    PubMed

    Mumenthaler, Martin S; Benowitz, Neal L; Taylor, Joy L; Friedman, Leah; Noda, Art; Yesavage, Jerome A

    2010-07-01

    Most airlines enforce no-smoking policies, potentially causing flight performance decrements in pilots who are smokers. We tested the hypotheses that nicotine withdrawal affects aircraft pilot performance within 12 h of smoking cessation and that chewing nicotine gum leads to significant relief of these withdrawal effects. There were 29 pilots, regular smokers, who were tested in a Frasca 141 flight simulator on two 13-h test days, each including three 75-min flights (0 hr, 6 hr, 12 hr) in a randomized, controlled trial. On the first day (baseline), all pilots smoked one cigarette per hour. On the second day, pilots were randomly assigned to one of four groups: (1) nicotine cigarettes; (2) nicotine gum; (3) placebo gum; (4) no cigarettes/no gum. Flight Summary Scores (FSS) were compared between groups with repeated measures ANOVAs. No statistically significant differences in overall simulator flight performance were revealed between pilots who smoked cigarettes and pilots who were not allowed to smoke cigarettes or chew nicotine gum, but there was a trend for pilots who were not allowed to smoke to perform worse. However, pilots who chewed placebo gum performed significantly worse during the 6-h (FSS = -0.03) as well as during the 12-h flight (FSS = -0.08) than pilots who chewed nicotine gum (FSS = 0.15 / 0.30, respectively). Results suggest that nicotine withdrawal effects can impair aircraft pilot performance within 12 h of smoking cessation and that during smoking abstinence chewing one stick of 4-mg nicotine gum per hour may lead to significantly better overall flight performance compared to chewing placebo gum.

  14. Psychophysiological Assessment in Pilots Performing Challenging Simulated and Real Flight Maneuvers.

    PubMed

    Johannes, Bernd; Rothe, Stefanie; Gens, André; Westphal, Soeren; Birkenfeld, Katja; Mulder, Edwin; Rittweger, Jörn; Ledderhos, Carla

    2017-09-01

    The objective assessment of psychophysiological arousal during challenging flight maneuvers is of great interest to aerospace medicine, but remains a challenging task. In the study presented here, a vector-methodological approach was used which integrates different psychophysiological variables, yielding an integral arousal index called the Psychophysiological Arousal Value (PAV). The arousal levels of 15 male pilots were assessed during predetermined, well-defined flight maneuvers performed under simulated and real flight conditions. The physiological data, as expected, revealed inter- and intra-individual differences for the various measurement conditions. As indicated by the PAV, air-to-air refueling (AAR) turned out to be the most challenging task. In general, arousal levels were comparable between simulator and real flight conditions. However, a distinct difference was observed when the pilots were divided by instructors into two groups based on their proficiency in AAR with AWACS (AAR-Novices vs. AAR-Professionals). AAR-Novices had on average more than 2000 flight hours on other aircrafts. They showed higher arousal reactions to AAR in real flight (contact: PAV score 8.4 ± 0.37) than under simulator conditions (7.1 ± 0.30), whereas AAR-Professionals did not (8.5 ± 0.46 vs. 8.8 ± 0.80). The psychophysiological arousal value assessment was tested in field measurements, yielding quantifiable arousal differences between proficiency groups of pilots during simulated and real flight conditions. The method used in this study allows an evaluation of the psychophysiological cost during a certain flying performance and thus is possibly a valuable tool for objectively evaluating the actual skill status of pilots.Johannes B, Rothe S, Gens A, Westphal S, Birkenfeld K, Mulder E, Rittweger J, Ledderhos C. Psychophysiological assessment in pilots performing challenging simulated and real flight maneuvers. Aerosp Med Hum Perform. 2017; 88(9):834-840.

  15. Realistic Radio Communications in Pilot Simulator Training

    NASA Technical Reports Server (NTRS)

    Burki-Cohen, Judith; Kendra, Andrew J.; Kanki, Barbara G.; Lee, Alfred T.

    2000-01-01

    Simulators used for total training and evaluation of airline pilots must satisfy stringent criteria in order to assure their adequacy for training and checking maneuvers. Air traffic control and company radio communications simulation, however, may still be left to role-play by the already taxed instructor/evaluators in spite of their central importance in every aspect of the flight environment. The underlying premise of this research is that providing a realistic radio communications environment would increase safety by enhancing pilot training and evaluation. This report summarizes the first-year efforts of assessing the requirement and feasibility of simulating radio communications automatically. A review of the training and crew resource/task management literature showed both practical and theoretical support for the need for realistic radio communications simulation. A survey of 29 instructor/evaluators from 14 airlines revealed that radio communications are mainly role-played by the instructor/evaluators. This increases instructor/evaluators' own workload while unrealistically lowering pilot communications load compared to actual operations, with a concomitant loss in training/evaluation effectiveness. A technology review searching for an automated means of providing radio communications to and from aircraft with minimal human effort showed that while promising, the technology is still immature. Further research and the need for establishing a proof-of-concept are also discussed.

  16. Stress and Simulation in Pilot Training. Final Report, May 1977 Through December 1977.

    ERIC Educational Resources Information Center

    Krahenbuhl, Gary S.; And Others

    Research was conducted on pilot stress during simulated emergency flight conditions. Catecholamine (adrenaline and non-adrenaline) secretion for twenty United States Air Force student pilots and thirteen instructor pilots was determined during daily activities, during simulated flights performed in high realism simulators, and during actual…

  17. A simulation evaluation of a pilot interface with an automatic terminal approach system

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1987-01-01

    The pilot-machine interface with cockpit automation is a critical factor in achieving the benefits of automation and reducing pilot blunders. To improve this interface, an automatic terminal approach system (ATAS) was conceived that can automatically fly a published instrument approach by using stored instrument approach data to automatically tune airplane radios and control an airplane autopilot and autothrottle. The emphasis in the ATAS concept is a reduction in pilot blunders and work load by improving the pilot-automation interface. A research prototype of an ATAS was developed and installed in the Langley General Aviation Simulator. A piloted simulation study of the ATAS concept showed fewer pilot blunders, but no significant change in work load, when compared with a baseline heading-select autopilot mode. With the baseline autopilot, pilot blunders tended to involve loss of navigational situational awareness or instrument misinterpretation. With the ATAS, pilot blunders tended to involve a lack of awareness of the current ATAS mode state or deficiencies in the pilots' mental model of how the system operated. The ATAS display provided adequate approach status data to maintain situational awareness.

  18. Leading teams during simulated pediatric emergencies: a pilot study

    PubMed Central

    Coolen, Ester H; Draaisma, Jos M; den Hamer, Sabien; Loeffen, Jan L

    2015-01-01

    Purpose Leadership has been identified as a key variable for the functioning of teams and as one of the main reasons for success or failure of team-based work systems. Pediatricians often function as team leaders in the resuscitation of a critically ill child. However, pediatric residents often report having little opportunity to perform in the role of team leader during residency. In order to gain more insight into leadership skills and behaviors, we classified leadership styles of pediatric residents during simulated emergencies. Methods We conducted a prospective quantitative study to investigate leadership styles used by pediatric residents during simulated emergencies with clinical deterioration of a child at a pediatric ward. Using videotaped scenarios of 48 simulated critical events among 12 residents, we were able to classify verbal and nonverbal communication into different leadership styles according to the situational leadership theory. Results The coaching style (mean 54.5%, SD 7.8) is the most frequently applied by residents, followed by the directing style (mean 35.6%, SD 4.1). This pattern conforms to the task- and role-related requirements in our scenarios and it also conforms to the concept of situational leadership. We did not find any significant differences in leadership style according to the postgraduate year or scenario content. Conclusion The model used in this pilot study helps us to gain a better understanding of the development of effective leadership behavior and supports the applicability of situational leadership theory in training leadership skills during residency. PMID:25610010

  19. Piloted simulation of a ground-based time-control concept for air traffic control

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Green, Steven M.

    1989-01-01

    A concept for aiding air traffic controllers in efficiently spacing traffic and meeting scheduled arrival times at a metering fix was developed and tested in a real time simulation. The automation aid, referred to as the ground based 4-D descent advisor (DA), is based on accurate models of aircraft performance and weather conditions. The DA generates suggested clearances, including both top-of-descent-point and speed-profile data, for one or more aircraft in order to achieve specific time or distance separation objectives. The DA algorithm is used by the air traffic controller to resolve conflicts and issue advisories to arrival aircraft. A joint simulation was conducted using a piloted simulator and an advanced concept air traffic control simulation to study the acceptability and accuracy of the DA automation aid from both the pilot's and the air traffic controller's perspectives. The results of the piloted simulation are examined. In the piloted simulation, airline crews executed controller issued descent advisories along standard curved path arrival routes, and were able to achieve an arrival time precision of + or - 20 sec at the metering fix. An analysis of errors generated in turns resulted in further enhancements of the algorithm to improve the predictive accuracy. Evaluations by pilots indicate general support for the concept and provide specific recommendations for improvement.

  20. A Pilot Study of Computer-Based Simulation Training for Enhancing Family Medicine Residents' Competence in Computerized Settings.

    PubMed

    Shachak, Aviv; Domb, Sharon; Borycki, Elizabeth; Fong, Nancy; Skyrme, Alison; Kushniruk, Andre; Reis, Shmuel; Ziv, Amitai

    2015-01-01

    We previously developed a prototype computer-based simulation to teach residents how to integrate better EMR use in the patient-physician interaction. To evaluate the prototype, we conducted usability tests with three non-clinician students, followed by a pilot study with 16 family medicine residents. The pilot study included pre- and post-test surveys of competencies and attitudes related to using the EMR in the consultation and the acceptability of the simulation, as well as 'think aloud' observations. After using the simulation prototypes, the mean scores for competencies and attitudes improved from 14.88/20 to 15.63/20 and from 22.25/30 to 23.13/30, respectively; however, only the difference for competencies was significant (paired t-test; t=-2.535, p=0.023). Mean scores for perceived usefulness and ease of use of the simulation were good (3.81 and 4.10 on a 5-point scale, respectively). Issues identified in usability testing include confusing interaction with some features, preferences for a more interactive representation of the EMR, and more options for shared decision making. In conclusion, computer-based simulation may be an effective and acceptable tool for teaching residents how to better use EMRs in clinical encounters.

  1. Computer simulation of a pilot in V/STOL aircraft control loops

    NASA Technical Reports Server (NTRS)

    Vogt, William G.; Mickle, Marlin H.; Zipf, Mark E.; Kucuk, Senol

    1989-01-01

    The objective was to develop a computerized adaptive pilot model for the computer model of the research aircraft, the Harrier II AV-8B V/STOL with special emphasis on propulsion control. In fact, two versions of the adaptive pilot are given. The first, simply called the Adaptive Control Model (ACM) of a pilot includes a parameter estimation algorithm for the parameters of the aircraft and an adaption scheme based on the root locus of the poles of the pilot controlled aircraft. The second, called the Optimal Control Model of the pilot (OCM), includes an adaption algorithm and an optimal control algorithm. These computer simulations were developed as a part of the ongoing research program in pilot model simulation supported by NASA Lewis from April 1, 1985 to August 30, 1986 under NASA Grant NAG 3-606 and from September 1, 1986 through November 30, 1988 under NASA Grant NAG 3-729. Once installed, these pilot models permitted the computer simulation of the pilot model to close all of the control loops normally closed by a pilot actually manipulating the control variables. The current version of this has permitted a baseline comparison of various qualitative and quantitative performance indices for propulsion control, the control loops and the work load on the pilot. Actual data for an aircraft flown by a human pilot furnished by NASA was compared to the outputs furnished by the computerized pilot and found to be favorable.

  2. Pilot/vehicle model analysis of visual and motion cue requirements in flight simulation. [helicopter hovering

    NASA Technical Reports Server (NTRS)

    Baron, S.; Lancraft, R.; Zacharias, G.

    1980-01-01

    The optimal control model (OCM) of the human operator is used to predict the effect of simulator characteristics on pilot performance and workload. The piloting task studied is helicopter hover. Among the simulator characteristics considered were (computer generated) visual display resolution, field of view and time delay.

  3. Assessment of simulation fidelity using measurements of piloting technique in flight

    NASA Technical Reports Server (NTRS)

    Ferguson, S. W.; Clement, W. F.; Cleveland, W. B.; Key, D. L.

    1984-01-01

    The U.S. Army and NASA have undertaken the systematic validation of a ground-based piloted simulator for the UH-60A helicopter. The results of previous handling quality and task performance flight tests for this helicopter have been used as a data base for evaluating the fidelity of the present simulation, which is being conducted at the NASA Ames Research Center's Vertical Motion Simulator. Such nap-of-the-earth piloting tasks as pop-up, hover turn, dash/quick stop, sidestep, dolphin, and slalom, have been investigated. It is noted that pilot simulator performance is significantly and quantifiable degraded by comparison with flight test results for the same tasks.

  4. Flight Hour Reductions in Fleet Replacement Pilot Training through Simulation.

    ERIC Educational Resources Information Center

    Smode, Alfred F.

    A project was undertaken to integrate the 2F87F operational flight trainer into the program for training replacement patrol plane pilots. The objectives were to determine the potential of the simulator as a substitute environment for learning aircraft tasks and to effectively utilize the simulator in pilot training. The students involved in the…

  5. A simulation study of control and display requirements for zero-experience general aviation pilots

    NASA Technical Reports Server (NTRS)

    Stewart, Eric C.

    1993-01-01

    The purpose of this simulation study was to define the basic human factor requirements for operating an airplane in all weather conditions. The basic human factors requirements are defined as those for an operator who is a complete novice for airplane operations but who is assumed to have automobile driving experience. These operators thus have had no piloting experience or training of any kind. The human factor requirements are developed for a practical task which includes all of the basic maneuvers required to go from one airport to another airport in limited visibility conditions. The task was quite demanding including following a precise path with climbing and descending turns while simultaneously changing airspeed. The ultimate goal of this research is to increase the utility of general aviation airplanes - that is, to make them a practical mode of transportation for a much larger segment of the general population. This can be accomplished by reducing the training and proficiency requirements of pilots while improving the level of safety. It is believed that advanced technologies such as fly-by-wire (or light), and head-up pictorial displays can be of much greater benefit to the general aviation pilot than to the full-time, professional pilot.

  6. Discrete-time pilot model. [human dynamics and digital simulation

    NASA Technical Reports Server (NTRS)

    Cavalli, D.

    1978-01-01

    Pilot behavior is considered as a discrete-time process where the decision making has a sequential nature. This model differs from both the quasilinear model which follows from classical control theory and from the optimal control model which considers the human operator as a Kalman estimator-predictor. An additional factor considered is that the pilot's objective may not be adequately formulated as a quadratic cost functional to be minimized, but rather as a more fuzzy measure of the closeness with which the aircraft follows a reference trajectory. All model parameters, in the digital program simulating the pilot's behavior, were successfully compared in terms of standard-deviation and performance with those of professional pilots in IFR configuration. The first practical application of the model was in the study of its performance degradation when the aircraft model static margin decreases.

  7. Flight simulation using a Brain-Computer Interface: A pilot, pilot study.

    PubMed

    Kryger, Michael; Wester, Brock; Pohlmeyer, Eric A; Rich, Matthew; John, Brendan; Beaty, James; McLoughlin, Michael; Boninger, Michael; Tyler-Kabara, Elizabeth C

    2017-01-01

    As Brain-Computer Interface (BCI) systems advance for uses such as robotic arm control it is postulated that the control paradigms could apply to other scenarios, such as control of video games, wheelchair movement or even flight. The purpose of this pilot study was to determine whether our BCI system, which involves decoding the signals of two 96-microelectrode arrays implanted into the motor cortex of a subject, could also be used to control an aircraft in a flight simulator environment. The study involved six sessions in which various parameters were modified in order to achieve the best flight control, including plane type, view, control paradigm, gains, and limits. Successful flight was determined qualitatively by evaluating the subject's ability to perform requested maneuvers, maintain flight paths, and avoid control losses such as dives, spins and crashes. By the end of the study, it was found that the subject could successfully control an aircraft. The subject could use both the jet and propeller plane with different views, adopting an intuitive control paradigm. From the subject's perspective, this was one of the most exciting and entertaining experiments she had performed in two years of research. In conclusion, this study provides a proof-of-concept that traditional motor cortex signals combined with a decoding paradigm can be used to control systems besides a robotic arm for which the decoder was developed. Aside from possible functional benefits, it also shows the potential for a new recreational activity for individuals with disabilities who are able to master BCI control. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Piloted simulator study of allowable time delay in pitch flight control system of a transport airplane with negative static stability

    NASA Technical Reports Server (NTRS)

    Grantham, William D.; Smith, Paul M.; Person, Lee H., Jr.; Meyer, Robert T.; Tingas, Stephen A.

    1987-01-01

    A piloted simulation study was conducted to determine the permissible time delay in the flight control system of a 10-percent statically unstable transport airplane during cruise flight conditions. The math model used for the simulation was a derivative Lockheed L-1011 wide-body jet transport. Data were collected and analyzed from a total of 137 cruising flights in both calm- and turbulent-air conditions. Results of this piloted simulation study verify previous findings that show present military specifications for allowable control-system time delay may be too stringent when applied to transport-size airplanes. Also, the degree of handling-qualities degradation due to time delay is shown to be strongly dependent on the source of the time delay in an advanced flight control system. Maximum allowable time delay for each source of time delay in the control system, in addition to a less stringent overall maximum level of time delay, should be considered for large aircraft. Preliminary results also suggest that adverse effects of control-system time delay may be at least partially offset by variations in control gearing. It is recommended that the data base include different airplane baselines, control systems, and piloting tasks with many pilots participating, so that a reasonable set of limits for control-system time delay can be established to replace the military specification limits currently being used.

  9. Generic Airplane Model Concept and Four Specific Models Developed for Use in Piloted Simulation Studies

    NASA Technical Reports Server (NTRS)

    Hoffler, Keith D.; Fears, Scott P.; Carzoo, Susan W.

    1997-01-01

    A generic airplane model concept was developed to allow configurations with various agility, performance, handling qualities, and pilot vehicle interface to be generated rapidly for piloted simulation studies. The simple concept allows stick shaping and various stick command types or modes to drive an airplane with both linear and nonlinear components. Output from the stick shaping goes to linear models or a series of linear models that can represent an entire flight envelope. The generic model also has provisions for control power limitations, a nonlinear feature. Therefore, departures from controlled flight are possible. Note that only loss of control is modeled, the generic airplane does not accurately model post departure phenomenon. The model concept is presented herein, along with four example airplanes. Agility was varied across the four example airplanes without altering specific excess energy or significantly altering handling qualities. A new feedback scheme to provide angle-of-attack cueing to the pilot, while using a pitch rate command system, was implemented and tested.

  10. The effect of simulator motion cues on initial training of airline pilots

    DOT National Transportation Integrated Search

    2005-08-15

    Two earlier studies conducted in the framework of the Federal Aviation Administration/Volpe Flight Simulator Human Factors Program examining the effect of simulator motion on recurrent training and evaluation of airline pilots have found that in the ...

  11. Pilot-Induced Oscillation Prediction With Three Levels of Simulation Motion Displacement

    NASA Technical Reports Server (NTRS)

    Schroeder, Jeffery A.; Chung, William W. Y.; Tran, Duc T.; Laforce, Soren; Bengford, Norman J.

    2001-01-01

    Simulator motion platform characteristics were examined to determine if the amount of motion affects pilot-induced oscillation (PIO) prediction. Five test pilots evaluated how susceptible 18 different sets of pitch dynamics were to PIOs with three different levels of simulation motion platform displacement: large, small, and none. The pitch dynamics were those of a previous in-flight experiment, some of which elicited PIOs These in-flight results served as truth data for the simulation. As such, the in-flight experiment was replicated as much as possible. Objective and subjective data were collected and analyzed With large motion, PIO and handling qualities ratings matched the flight data more closely than did small motion or no motion. Also, regardless of the aircraft dynamics, large motion increased pilot confidence in assigning handling qualifies ratings, reduced safety pilot trips, and lowered touchdown velocities. While both large and small motion provided a pitch rate cue of high fidelity, only large motion presented the pilot with a high fidelity vertical acceleration cue.

  12. Simulation-based education with deliberate practice may improve intraoperative handoff skills: a pilot study.

    PubMed

    Pukenas, Erin W; Dodson, Gregory; Deal, Edward R; Gratz, Irwin; Allen, Elaine; Burden, Amanda R

    2014-11-01

    To examine the results of simulation-based education with deliberate practice on the acquisition of handoff skills by studying resident intraoperative handoff communication performances. Preinvention and postintervention pilot study. Simulated operating room of a university-affiliated hospital. Resident handoff performances during 27 encounters simulating elective surgery were studied. Ten residents (CA-1, CA-2, and CA-3) participated in a one-day simulation-based handoff course. Each resident repeated simulated handoffs to deliberately practice with an intraoperative handoff checklist. One year later, 7 of the 10 residents participated in simulated intraoperative handoffs. All handoffs were videotaped and later scored for accuracy by trained raters. A handoff assessment tool was used to characterize the type and frequency of communication failures. The percentage of handoff errors and omissions were compared before simulation and postsimulation-based education with deliberate practice and at one year following the course. Initially, the overall communication failure rate, defined as the percentage of handoff omissions plus errors, was 29.7%. After deliberate practice with the intraoperative handoff checklist, the communication failure rate decreased to 16.8%, and decreased further to 13.2% one year after the course. Simulation-based education using deliberate practice may result in improved intraoperative handoff communication and retention of skills at one year. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Validation of computer simulation training for esophagogastroduodenoscopy: Pilot study.

    PubMed

    Sedlack, Robert E

    2007-08-01

    Little is known regarding the value of esophagogastroduodenoscopy (EGD) simulators in education. The purpose of the present paper was to validate the use of computer simulation in novice EGD training. In phase 1, expert endoscopists evaluated various aspects of simulation fidelity as compared to live endoscopy. Additionally, computer-recorded performance metrics were assessed by comparing the recorded scores from users of three different experience levels. In phase 2, the transfer of simulation-acquired skills to the clinical setting was assessed in a two-group, randomized pilot study. The setting was a large gastroenterology (GI) Fellowship training program; in phase 1, 21 subjects (seven expert, intermediate and novice endoscopist), made up the three experience groups. In phase 2, eight novice GI fellows were involved in the two-group, randomized portion of the study examining the transfer of simulation skills to the clinical setting. During the initial validation phase, each of the 21 subjects completed two standardized EDG scenarios on a computer simulator and their performance scores were recorded for seven parameters. Following this, staff participants completed a questionnaire evaluating various aspects of the simulator's fidelity. Finally, four novice GI fellows were randomly assigned to receive 6 h of simulator-augmented training (SAT group) in EGD prior to beginning 1 month of patient-based EGD training. The remaining fellows experienced 1 month of patient-based training alone (PBT group). Results of the seven measured performance parameters were compared between three groups of varying experience using a Wilcoxon ranked sum test. The staffs' simulator fidelity survey used a 7-point Likert scale (1, very unrealistic; 4, neutral; 7, very realistic) for each of the parameters examined. During the second phase of this study, supervising staff rated both SAT and PBT fellows' patient-based performance daily. Scoring in each skill was completed using a 7-point

  14. Assessment of simulation fidelity using measurements of piloting technique in flight. II

    NASA Technical Reports Server (NTRS)

    Ferguson, S. W.; Clement, W. F.; Hoh, R. H.; Cleveland, W. B.

    1985-01-01

    Two components of the Vertical Motion Simulator (presently being used to assess the fidelity of UH-60A simulation) are evaluated: (1) the dash/quickstop Nap-of-the-earth (NOE) piloting task, and (2) the bop-up task. Data from these two flight test experiments are presented which provide information on the effect of reduced visual field of view, variation in scene content and texture, and the affect of pure time delay in the closed-loop pilot response. In comparison with task performance results obtained in flight tests, the results from the simulation indicate that the pilot's NOE task performance in the simulator is significantly degraded.

  15. The effect of simulator motion on pilot training and evaluation

    DOT National Transportation Integrated Search

    2000-08-14

    This study empirically examined the effect of simulator platform motion on airline pilot recurrent training and evaluation. It is driven by the need for sound scientific data on the relationship between certain key modern device features and their ef...

  16. Airline pilot scan patterns during simulated ILS approaches

    NASA Technical Reports Server (NTRS)

    Spady, A. A., Jr.

    1978-01-01

    A series of instrument landing system approaches were conducted using seven airline-rated Boeing 737 pilots in a Federal Aviation Administration qualified simulator. The test matrix included both manual and coupled approaches with and without atmospheric turbulence in Category II visibility conditions. A nonintrusive oculometer system was used to track the pilot eye-point-of-regard throughout the approach. The results indicate that, in general, the pilots use different scan techniques for the manual and coupled conditions and that the introduction of atmospheric turbulence does not greatly affect the scan behavior in either case. The pilots consistently ranked the instruments in terms of most used to least used. The ranking obtained from the oculometer data agrees with the pilot ranking for the flight director and airspeed, the most important instruments. However, the pilots apparently ranked the other instruments in terms of their concern for information rather than according to their actual scanning behavior.

  17. Creation and Validation of a Simulator for Neonatal Brain Ultrasonography: A Pilot Study.

    PubMed

    Tsai, Andy; Barnewolt, Carol E; Prahbu, Sanjay P; Yonekura, Reimi; Hosmer, Andrew; Schulz, Noah E; Weinstock, Peter H

    2017-01-01

    Historically, skills training in performing brain ultrasonography has been limited to hours of scanning infants for lack of adequate synthetic models or alternatives. The aim of this study was to create a simulator and determine its utility as an educational tool in teaching the skills that can be used in performing brain ultrasonography on infants. A brain ultrasonography simulator was created using a combination of multi-modality imaging, three-dimensional printing, material and acoustic engineering, and sculpting and molding. Radiology residents participated prior to their pediatric rotation. The study included (1) an initial questionnaire and resident creation of three coronal images using the simulator; (2) brain ultrasonography lecture; (3) hands-on simulator practice; and (4) a follow-up questionnaire and re-creation of the same three coronal images on the simulator. A blinded radiologist scored the quality of the pre- and post-training images using metrics including symmetry of the images and inclusion of predetermined landmarks. Wilcoxon rank-sum test was used to compare pre- and post-training questionnaire rankings and image quality scores. Ten residents participated in the study. Analysis of pre- and post-training rankings showed improvements in technical knowledge and confidence, and reduction in anxiety in performing brain ultrasonography. Objective measures of image quality likewise improved. Mean reported value score for simulator training was high across participants who reported perceived improvements in scanning skills and enjoyment from simulator use, with interest in additional practice on the simulator and recommendations for its use. This pilot study supports the use of a simulator in teaching radiology residents the skills that can be used to perform brain ultrasonography. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  18. A Piloted Simulator Evaluation of Transport Aircraft Rudder Pedal Force/Feel Characteristics

    NASA Technical Reports Server (NTRS)

    Stewart, Eric C.

    2008-01-01

    A piloted simulation study has been conducted in a fixed-base research simulator to assess the directional handling qualities for various rudder pedal feel characteristics for commercial transport airplanes. That is, the effects of static pedal force at maximum pedal travel, breakout force, and maximum pedal travel on handling qualities were studied. An artificial maneuver with a severe lateral wind shear and requiring runway tracking at an altitude of 50 feet in a crosswind was used to fully exercise the rudder pedals. Twelve active airline pilots voluntarily participated in the study and flew approximately 500 maneuvers. The pilots rated the maneuver performance with various rudder pedal feel characteristics using the Cooper- Harper rating scale. The test matrix had 15 unique combinations of the 3 static pedal feel characteristics. A 10-term, second-order equation for the Cooper-Harper pilot rating as a function of the 3 independent pedal feel parameters was fit to the data. The test matrix utilized a Central Composite Design that is very efficient for fitting an equation of this form. The equation was used to produce contour plots of constant pilot ratings as a function of two of the parameters with the third parameter held constant. These contour plots showed regions of good handling qualities as well as regions of degraded handling qualities. In addition, a numerical equation solver was used to predict the optimum parameter values (those with the lowest pilot rating). Quantitative pilot performance data were also analyzed. This analysis found that the peak values of the cross power spectra of the pedal force and heading angle could be used to quantify the tendency toward directional pilot induced oscillations (PIO). Larger peak values of the cross power spectra were correlated with larger (degraded) Cooper-Harper pilot ratings. Thus, the subjective data (Cooper-Harper pilot ratings) were consistent with the objective data (peak values of the cross power

  19. Measuring Pilot Workload in a Moving-base Simulator. Part 2: Building Levels of Workload

    NASA Technical Reports Server (NTRS)

    Kantowitz, B. H.; Hart, S. G.; Bortolussi, M. R.; Shively, R. J.; Kantowitz, S. C.

    1984-01-01

    Pilot behavior in flight simulators often use a secondary task as an index of workload. His routine to regard flying as the primary task and some less complex task as the secondary task. While this assumption is quite reasonable for most secondary tasks used to study mental workload in aircraft, the treatment of flying a simulator through some carefully crafted flight scenario as a unitary task is less justified. The present research acknowledges that total mental workload depends upon the specific nature of the sub-tasks that a pilot must complete as a first approximation, flight tasks were divided into three levels of complexity. The simplest level (called the Base Level) requires elementary maneuvers that do not utilize all the degrees of freedom of which an aircraft, or a moving-base simulator; is capable. The second level (called the Paired Level) requires the pilot to simultaneously execute two Base Level tasks. The third level (called the Complex Level) imposes three simultaneous constraints upon the pilot.

  20. A Fixed-Base-Simulator Study of the Ability of a Pilot to Establish Close Orbits Around the Moon

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Riley, Donald R.

    1961-01-01

    A study was made on a six-degree-of-freedom fixed-base simulator of the ability of human pilots to modify ballistic trajectories of a 5 space vehicle approaching the moon to establish a circular orbit about 50 miles above the lunar surface. The unmodified ballistic trajectories had miss distances from the lunar surface of from 40 to 80 miles, and a velocity range of from 8,200 to 8,700 feet per second at closest approach. The pilot was given control of the thrust (along the vehicle longitudinal axis) and torques about all three body axes. The information display given to the pilot was a hodograph of the vehicle rate of descent and circumferential velocity, an altimeter, and vehicle attitude and rate meters.

  1. Study of the functional hyperconnectivity between couples of pilots during flight simulation: an EEG hyperscanning study.

    PubMed

    Astolfi, L; Toppi, J; Borghini, G; Vecchiato, G; Isabella, R; De Vico Fallani, F; Cincotti, F; Salinari, S; Mattia, D; He, B; Caltagirone, C; Babiloni, F

    2011-01-01

    Brain Hyperscanning, i.e. the simultaneous recording of the cerebral activity of different human subjects involved in interaction tasks, is a very recent field of Neuroscience aiming at understanding the cerebral processes generating and generated by social interactions. This approach allows the observation and modeling of the neural signature specifically dependent on the interaction between subjects, and, even more interestingly, of the functional links existing between the activities in the brains of the subjects interacting together. In this EEG hyperscanning study we explored the functional hyperconnectivity between the activity in different scalp sites of couples of Civil Aviation Pilots during different phases of a flight reproduced in a flight simulator. Results shown a dense network of connections between the two brains in the takeoff and landing phases, when the cooperation between them is maximal, in contrast with phases during which the activity of the two pilots was independent, when no or quite few links were shown. These results confirms that the study of the brain connectivity between the activity simultaneously acquired in human brains during interaction tasks can provide important information about the neural basis of the "spirit of the group".

  2. The use of total simulator training in transitioning air-carrier pilots: A field evaluation

    NASA Technical Reports Server (NTRS)

    Randle, R. J., Jr.; Tanner, T. A.; Hamerman, J. A.; Showalter, T. H.

    1981-01-01

    A field study was conducted in which the performance of air carrier transitioning pilots who had landing training in a landing maneuver approved simulator was compared with the performance of pilots who had landing training in the aircraft. Forty-eight trainees transitioning to the B-727 aircraft and eighty-seven trainees transitioning to the DC-10 were included in the study. The study results in terms of both objectively measured performance indicants and observer and check-pilot ratings did not demonstrate a clear distinction between the two training groups. The results suggest that, for these highly skilled transitioning pilots, a separate training module in the aircraft may be of dubious value.

  3. Computer simulation of multiple pilots flying a modern high performance helicopter

    NASA Technical Reports Server (NTRS)

    Zipf, Mark E.; Vogt, William G.; Mickle, Marlin H.; Hoelzeman, Ronald G.; Kai, Fei; Mihaloew, James R.

    1988-01-01

    A computer simulation of a human response pilot mechanism within the flight control loop of a high-performance modern helicopter is presented. A human response mechanism, implemented by a low order, linear transfer function, is used in a decoupled single variable configuration that exploits the dominant vehicle characteristics by associating cockpit controls and instrumentation with specific vehicle dynamics. Low order helicopter models obtained from evaluations of the time and frequency domain responses of a nonlinear simulation model, provided by NASA Lewis Research Center, are presented and considered in the discussion of the pilot development. Pilot responses and reactions to test maneuvers are presented and discussed. Higher level implementation, using the pilot mechanisms, are discussed and considered for their use in a comprehensive control structure.

  4. Pilot points method for conditioning multiple-point statistical facies simulation on flow data

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Jafarpour, Behnam

    2018-05-01

    We propose a new pilot points method for conditioning discrete multiple-point statistical (MPS) facies simulation on dynamic flow data. While conditioning MPS simulation on static hard data is straightforward, their calibration against nonlinear flow data is nontrivial. The proposed method generates conditional models from a conceptual model of geologic connectivity, known as a training image (TI), by strategically placing and estimating pilot points. To place pilot points, a score map is generated based on three sources of information: (i) the uncertainty in facies distribution, (ii) the model response sensitivity information, and (iii) the observed flow data. Once the pilot points are placed, the facies values at these points are inferred from production data and then are used, along with available hard data at well locations, to simulate a new set of conditional facies realizations. While facies estimation at the pilot points can be performed using different inversion algorithms, in this study the ensemble smoother (ES) is adopted to update permeability maps from production data, which are then used to statistically infer facies types at the pilot point locations. The developed method combines the information in the flow data and the TI by using the former to infer facies values at selected locations away from the wells and the latter to ensure consistent facies structure and connectivity where away from measurement locations. Several numerical experiments are used to evaluate the performance of the developed method and to discuss its important properties.

  5. Piloting Augmented Reality Technology to Enhance Realism in Clinical Simulation.

    PubMed

    Vaughn, Jacqueline; Lister, Michael; Shaw, Ryan J

    2016-09-01

    We describe a pilot study that incorporated an innovative hybrid simulation designed to increase the perception of realism in a high-fidelity simulation. Prelicensure students (N = 12) cared for a manikin in a simulation lab scenario wearing Google Glass, a wearable head device that projected video into the students' field of vision. Students reported that the simulation gave them confidence that they were developing skills and knowledge to perform necessary tasks in a clinical setting and that they met the learning objectives of the simulation. The video combined visual images and cues seen in a real patient and created a sense of realism the manikin alone could not provide.

  6. Cognitive load, emotion, and performance in high-fidelity simulation among beginning nursing students: a pilot study.

    PubMed

    Schlairet, Maura C; Schlairet, Timothy James; Sauls, Denise H; Bellflowers, Lois

    2015-03-01

    Establishing the impact of the high-fidelity simulation environment on student performance, as well as identifying factors that could predict learning, would refine simulation outcome expectations among educators. The purpose of this quasi-experimental pilot study was to explore the impact of simulation on emotion and cognitive load among beginning nursing students. Forty baccalaureate nursing students participated in teaching simulations, rated their emotional state and cognitive load, and completed evaluation simulations. Two principal components of emotion were identified representing the pleasant activation and pleasant deactivation components of affect. Mean rating of cognitive load following simulation was high. Linear regression identiffed slight but statistically nonsignificant positive associations between principal components of emotion and cognitive load. Logistic regression identified a negative but statistically nonsignificant effect of cognitive load on assessment performance. Among lower ability students, a more pronounced effect of cognitive load on assessment performance was observed; this also was statistically non-significant. Copyright 2015, SLACK Incorporated.

  7. COLLISION AVOIDANCE TRAINING USING A DRIVING SIMULATOR IN DRIVERS WITH PARKINSON’S DISEASE: A PILOT STUDY

    PubMed Central

    Dawson, Jeffrey D.; Rizzo, Matthew; Anderson, Steven W.; Dastrup, Elizabeth; Uc, Ergun Y.

    2011-01-01

    Summary Parkinson’s disease (PD) impairs driving performance, and simulator studies have shown increased crashes compared to controls. In this pilot study, eight drivers with PD participated in three drive sessions with multiple simulator intersections of varying visibility and traffic load, where an incurring vehicle posed a crash risk. Over the course of the three sessions (once every 1–2 weeks), we observed reduction in crashes (p=0.059) and reaction times (p=0.006) to the vehicle incursion. These findings suggest that our simulator training program is feasible and potentially useful in drivers with PD. Future research questions include transfer of training to different driving tasks, duration of benefit, and the effect on long term real life outcomes in comparison to a standard intervention (e.g., driver education class) in a randomized trial. PMID:24273752

  8. A simulator investigation of the use of digital data link for pilot/ATC communications in a single pilot operation

    NASA Technical Reports Server (NTRS)

    Hinton, David A.; Lohr, Gary W.

    1988-01-01

    Studies have shown that radio communications between pilots and air traffic control contribute to high pilot workload and are subject to various errors. These errors result from congestion on the voice radio channel, and missed and misunderstood messages. The use of digital data link has been proposed as a means of reducing this workload and error rate. A critical factor, however, in determining the potential benefit of data link will be the interface between future data link systems and the operator of those systems, both in the air and on the ground. The purpose of this effort was to evaluate the pilot interface with various levels of data link capability, in simulated general aviation, single-pilot instrument flight rule operations. Results show that the data link reduced demands on pilots' short-term memory, reduced the number of communication transmissions, and permitted the pilots to more easily allocate time to critical cockpit tasks while receiving air traffic control messages. The pilots who participated unanimously indicated a preference for data link communications over voice-only communications. There were, however, situations in which the pilot preferred the use of voice communications, and the ability for pilots to delay processing the data link messages, during high workload events, caused delays in the acknowledgement of messages to air traffic control.

  9. Application of digital human modeling and simulation for vision analysis of pilots in a jet aircraft: a case study.

    PubMed

    Karmakar, Sougata; Pal, Madhu Sudan; Majumdar, Deepti; Majumdar, Dhurjati

    2012-01-01

    Ergonomic evaluation of visual demands becomes crucial for the operators/users when rapid decision making is needed under extreme time constraint like navigation task of jet aircraft. Research reported here comprises ergonomic evaluation of pilot's vision in a jet aircraft in virtual environment to demonstrate how vision analysis tools of digital human modeling software can be used effectively for such study. Three (03) dynamic digital pilot models, representative of smallest, average and largest Indian pilot population were generated from anthropometric database and interfaced with digital prototype of the cockpit in Jack software for analysis of vision within and outside the cockpit. Vision analysis tools like view cones, eye view windows, blind spot area, obscuration zone, reflection zone etc. were employed during evaluation of visual fields. Vision analysis tool was also used for studying kinematic changes of pilot's body joints during simulated gazing activity. From present study, it can be concluded that vision analysis tool of digital human modeling software was found very effective in evaluation of position and alignment of different displays and controls in the workstation based upon their priorities within the visual fields and anthropometry of the targeted users, long before the development of its physical prototype.

  10. Simulator study of conventional general aviation instrument displays in path-following tasks with emphasis on pilot-induced oscillations

    NASA Technical Reports Server (NTRS)

    Adams, J. J.

    1980-01-01

    A study of the use of conventional general aviation instruments by general aviation pilots in a six degree of freedom, fixed base simulator was conducted. The tasks performed were tracking a VOR radial and making an ILS approach to landing. A special feature of the tests was that the sensitivity of the displacement indicating instruments (the RMI, CDI, and HSI) was kept constant at values corresponding to 5 n. mi. and 1.25 n. mi. from the station. Both statistical and pilot model analyses of the data were made. The results show that performance in path following improved with increases in display sensitivity up to the highest sensitivity tested. At this maximum test sensitivity, which corresponds to the sensitivity existing at 1.25 n. mi. for the ILS glide slope transmitter, tracking accuracy was no better than it was at 5 n. mi. from the station and the pilot aircraft system exhibited a marked reduction in damping. In some cases, a pilot induced, long period unstable oscillation occurred.

  11. Status of NASA/Army rotorcraft research and development piloted flight simulation

    NASA Technical Reports Server (NTRS)

    Condon, Gregory W.; Gossett, Terrence D.

    1988-01-01

    The status of the major NASA/Army capabilities in piloted rotorcraft flight simulation is reviewed. The requirements for research and development piloted simulation are addressed as well as the capabilities and technologies that are currently available or are being developed by NASA and the Army at Ames. The application of revolutionary advances (in visual scene, electronic cockpits, motion, and modelling of interactive mission environments and/or vehicle systems) to the NASA/Army facilities are also addressed. Particular attention is devoted to the major advances made in integrating these individual capabilities into fully integrated simulation environment that were or are being applied to new rotorcraft mission requirements. The specific simulators discussed are the Vertical Motion Simulator and the Crew Station Research and Development Facility.

  12. Flight management research utilizing an oculometer. [pilot scanning behavior during simulated approach and landing

    NASA Technical Reports Server (NTRS)

    Spady, A. A., Jr.; Kurbjun, M. C.

    1978-01-01

    This paper presents an overview of the flight management work being conducted using NASA Langley's oculometer system. Tests have been conducted in a Boeing 737 simulator to investigate pilot scan behavior during approach and landing for simulated IFR, VFR, motion versus no motion, standard versus advanced displays, and as a function of various runway patterns and symbology. Results of each of these studies are discussed. For example, results indicate that for the IFR approaches a difference in pilot scan strategy was noted for the manual versus coupled (autopilot) conditions. Also, during the final part of the approach when the pilot looks out-of-the-window he fixates on his aim or impact point on the runway and holds this point until flare initiation.

  13. Advanced Simulation in Undergraduate Pilot Training: Systems Integration. Final Report (February 1972-March 1975).

    ERIC Educational Resources Information Center

    Larson, D. F.; Terry, C.

    The Advanced Simulator for Undergraduate Pilot Training (ASUPT) was designed to investigate the role of simulation in the future Undergraduate Pilot Training (UPT) program. The problem addressed in this report was one of integrating two unlike components into one synchronized system. These two components were the Basic T-37 Simulators and their…

  14. 14 CFR 91.1093 - Initial and transition training and checking: Check pilots (aircraft), check pilots (simulator).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... observation check may be accomplished in part or in full in an aircraft, in a flight simulator, or in a flight... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for a check pilot (simulator) must include the...

  15. 14 CFR 91.1093 - Initial and transition training and checking: Check pilots (aircraft), check pilots (simulator).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... observation check may be accomplished in part or in full in an aircraft, in a flight simulator, or in a flight... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for a check pilot (simulator) must include the...

  16. 14 CFR 91.1093 - Initial and transition training and checking: Check pilots (aircraft), check pilots (simulator).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... observation check may be accomplished in part or in full in an aircraft, in a flight simulator, or in a flight... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for a check pilot (simulator) must include the...

  17. 14 CFR 91.1093 - Initial and transition training and checking: Check pilots (aircraft), check pilots (simulator).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... observation check may be accomplished in part or in full in an aircraft, in a flight simulator, or in a flight... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for a check pilot (simulator) must include the...

  18. 14 CFR 91.1093 - Initial and transition training and checking: Check pilots (aircraft), check pilots (simulator).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... observation check may be accomplished in part or in full in an aircraft, in a flight simulator, or in a flight... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for a check pilot (simulator) must include the...

  19. Users guide: The LaRC human-operator-simulator-based pilot model

    NASA Technical Reports Server (NTRS)

    Bogart, E. H.; Waller, M. C.

    1985-01-01

    A Human Operator Simulator (HOS) based pilot model has been developed for use at NASA LaRC for analysis of flight management problems. The model is currently configured to simulate piloted flight of an advanced transport airplane. The generic HOS operator and machine model was originally developed under U.S. Navy sponsorship by Analytics, Inc. and through a contract with LaRC was configured to represent a pilot flying a transport airplane. A version of the HOS program runs in batch mode on LaRC's (60-bit-word) central computer system. This document provides a guide for using the program and describes in some detail the assortment of files used during its operation.

  20. Simulation study of the carbon dioxide enhanced oil recovery pilot test in the Griffithsville Field, Lincoln County, West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brummert, A.C.

    1990-09-01

    A carbon dioxide pilot test was conducted in the Griffithsville Field, Lincoln County, West Virginia, on a 90-acre tract containing nine 10-acre, normal, five-spot patterns arranged in a 3 {times} 3 matrix. This post-flood simulation study evaluates the initial pressure buildup phase of water injection, the carbon dioxide injection phase, and the chase water injection phase. Core data, geophysical well logs, fluid property data, well test data, and injection/production histories were used in setting up the data input record for the reservoir simulator. The reservoir simulator was IMEX, a four-component, black-oil reservoir simulator. 23 refs., 15 figs., 3 tabs.

  1. An Investigation of the Impact of Aerodynamic Model Fidelity on Close-In Combat Effectiveness Prediction in Piloted Simulation

    NASA Technical Reports Server (NTRS)

    Persing, T. Ray; Bellish, Christine A.; Brandon, Jay; Kenney, P. Sean; Carzoo, Susan; Buttrill, Catherine; Guenther, Arlene

    2005-01-01

    Several aircraft airframe modeling approaches are currently being used in the DoD community for acquisition, threat evaluation, training, and other purposes. To date there has been no clear empirical study of the impact of airframe simulation fidelity on piloted real-time aircraft simulation study results, or when use of a particular level of fidelity is indicated. This paper documents a series of piloted simulation studies using three different levels of airframe model fidelity. This study was conducted using the NASA Langley Differential Maneuvering Simulator. Evaluations were conducted with three pilots for scenarios requiring extensive maneuvering of the airplanes during air combat. In many cases, a low-fidelity modified point-mass model may be sufficient to evaluate the combat effectiveness of the aircraft. However, in cases where high angle-of-attack flying qualities and aerodynamic performance are a factor or when precision tracking ability of the aircraft must be represented, use of high-fidelity models is indicated.

  2. Fixed-Base Simulator Studies of the Ability of the Human Pilot to Provide Energy Management Along Abort and Deep-Space Entry Trajectories

    NASA Technical Reports Server (NTRS)

    Young, J. W.; Goode, M. W.

    1962-01-01

    A simulation study has been made to determine a pilot's ability to control a low L/D vehicle to a desired point on the earth with initial conditions ranging from parabolic orbits to abort conditions along the boost phase of a deep-space mission. The program was conducted to develop procedures which would allow the pilot to perform the energy management functions required while avoiding the high deceleration or skipout region and to determine the information display required to aid the pilot in flying these procedures. The abort conditions studied extend from a region of relatively high flight-path angles at suborbital velocities while leaving the atmosphere to a region between orbital and near-escape velocity outside the atmosphere. The conditions studied included guidance from suborbital and superorbital aborts as well as guidance following return from a deepspace mission. In this paper, the role of the human pilot?s ability to combine safe return abort procedures with guidance procedures has been investigated. The range capability from various abort and entry conditions is also presented.

  3. Development and Utility of a Piloted Flight Simulator for Icing Effects Training

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Ranaudo, Richard J.; Barnhart, Billy P.; Dickes, Edward G.; Gingras, David R.

    2003-01-01

    A piloted flight simulator called the Ice Contamination Effects Flight Training Device (ICEFTD), which uses low cost desktop components and a generic cockpit replication is being developed. The purpose of this device is to demonstrate the effectiveness of its use for training pilots to recognize and recover from aircraft handling anomalies that result from airframe ice formations. High-fidelity flight simulation models for various baseline (non-iced) and iced configurations were developed from wind tunnel tests of a subscale DeHavilland DHC-6 Twin Otter aircraft model. These simulation models were validated with flight test data from the NASA Twin Otter Icing Research Aircraft, which included the effects of ice on wing and tail stall characteristics. These simulation models are being implemented into an ICEFTD that will provide representative aircraft characteristics due to airframe icing. Scenario-based exercises are being constructed to give an operational-flavor to the simulation. Training pilots will learn to recognize iced aircraft characteristics from the baseline, and will practice and apply appropriate recovery procedures to a handling event.

  4. Creating a Realistic Weather Environment for Motion-Based Piloted Flight Simulation

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.; Schaffner, Philip R.; Evans, Emory T.; Neece, Robert T.; Young, Steve D.

    2012-01-01

    A flight simulation environment is being enhanced to facilitate experiments that evaluate research prototypes of advanced onboard weather radar, hazard/integrity monitoring (HIM), and integrated alerting and notification (IAN) concepts in adverse weather conditions. The simulation environment uses weather data based on real weather events to support operational scenarios in a terminal area. A simulated atmospheric environment was realized by using numerical weather data sets. These were produced from the High-Resolution Rapid Refresh (HRRR) model hosted and run by the National Oceanic and Atmospheric Administration (NOAA). To align with the planned flight simulation experiment requirements, several HRRR data sets were acquired courtesy of NOAA. These data sets coincided with severe weather events at the Memphis International Airport (MEM) in Memphis, TN. In addition, representative flight tracks for approaches and departures at MEM were generated and used to develop and test simulations of (1) what onboard sensors such as the weather radar would observe; (2) what datalinks of weather information would provide; and (3) what atmospheric conditions the aircraft would experience (e.g. turbulence, winds, and icing). The simulation includes a weather radar display that provides weather and turbulence modes, derived from the modeled weather along the flight track. The radar capabilities and the pilots controls simulate current-generation commercial weather radar systems. Appropriate data-linked weather advisories (e.g., SIGMET) were derived from the HRRR weather models and provided to the pilot consistent with NextGen concepts of use for Aeronautical Information Service (AIS) and Meteorological (MET) data link products. The net result of this simulation development was the creation of an environment that supports investigations of new flight deck information systems, methods for incorporation of better weather information, and pilot interface and operational improvements

  5. Expertise and responsibility effects on pilots' reactions to flight deck alerts in a simulator.

    PubMed

    Zheng, Yiyuan; Lu, Yanyu; Yang, Zheng; Fu, Shan

    2014-11-01

    Flight deck alerts provide system malfunction information designed to lead corresponding pilot reactions aimed at guaranteeing flight safety. This study examined the roles of expertise and flight responsibility and their relationship to pilots' reactions to flight deck alerts. There were 17 pilots composing 12 flight crews that were assigned into pairs according to flight hours and responsibilities. The experiment included 9 flight scenarios and was carried out in a CRJ-200 flight simulator. Pilot performance was recorded by a wide angle video camera, and four kinds of reactions to alerts were defined for analysis. Pilots tended to have immediate reactions to uninterrupted cautions, with a turning off rate as high as 75%. However, this rate decreased sharply when pilots encountered interrupted cautions and warnings; they also exhibited many wrong reactions to warnings. Pilots with more expertise had more reactions to uninterrupted cautions than those with less expertise, both as pilot flying and pilot monitoring. Meanwhile, the pilot monitoring, regardless of level of expertise, exhibited more reactions than the pilot flying. In addition, more experienced pilots were more likely to have wrong reactions to warnings while acting as the monitoring pilot. These results suggest that both expertise and flight responsibility influence pilots' reactions to alerts. Considering crew pairing strategy, when a pilot flying is a less experienced pilot, a more experience pilot is suggested to be the monitoring pilot. The results of this study have implications for understanding pilots' behaviors to flight deck alerts, calling for specialized training and design of approach alarms on the flight deck.

  6. A piloted simulator evaluation of a ground-based 4-D descent advisor algorithm

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Green, Steven M.; Erzberger, Heinz

    1990-01-01

    A ground-based, four dimensional (4D) descent-advisor algorithm is under development at NASA-Ames. The algorithm combines detailed aerodynamic, propulsive, and atmospheric models with an efficient numerical integration scheme to generate 4D descent advisories. The ability is investigated of the 4D descent advisor algorithm to provide adequate control of arrival time for aircraft not equipped with on-board 4D guidance systems. A piloted simulation was conducted to determine the precision with which the descent advisor could predict the 4D trajectories of typical straight-in descents flown by airline pilots under different wind conditions. The effects of errors in the estimation of wind and initial aircraft weight were also studied. A description of the descent advisor as well as the result of the simulation studies are presented.

  7. Piloted Simulation Study of the Effects of High-Lift Aerodynamics on the Takeoff Noise of a Representative High-Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Glaab, Louis J.; Riley, Donald R.; Brandon, Jay M.; Person, Lee H., Jr.; Glaab, Patricia C.

    1999-01-01

    As part of an effort between NASA and private industry to reduce airport-community noise for high-speed civil transport (HSCT) concepts, a piloted simulation study was initiated for the purpose of predicting the noise reduction benefits that could result from improved low-speed high-lift aerodynamic performance for a typical HSCT configuration during takeoff and initial climb. Flight profile and engine information from the piloted simulation were coupled with the NASA Langley Aircraft Noise Prediction Program (ANOPP) to estimate jet engine noise and to propagate the resulting source noise to ground observer stations. A baseline aircraft configuration, which also incorporated different levels of projected improvements in low-speed high-lift aerodynamic performance, was simulated to investigate effects of increased lift and lift-to-drag ratio on takeoff noise levels. Simulated takeoff flights were performed with the pilots following a specified procedure in which either a single thrust cutback was performed at selected altitudes ranging from 400 to 2000 ft, or a multiple-cutback procedure was performed where thrust was reduced by a two-step process. Results show that improved low-speed high-lift aerodynamic performance provides at least a 4 to 6 dB reduction in effective perceived noise level at the FAA downrange flyover measurement station for either cutback procedure. However, improved low-speed high-lift aerodynamic performance reduced maximum sideline noise levels only when using the multiple-cutback procedures.

  8. Identifying Issues and Concerns with the Use of Interval-Based Systems in Single Case Research Using a Pilot Simulation Study

    ERIC Educational Resources Information Center

    Ledford, Jennifer R.; Ayres, Kevin M.; Lane, Justin D.; Lam, Man Fung

    2015-01-01

    Momentary time sampling (MTS), whole interval recording (WIR), and partial interval recording (PIR) are commonly used in applied research. We discuss potential difficulties with analyzing data when these systems are used and present results from a pilot simulation study designed to determine the extent to which these issues are likely to be…

  9. Comparison of flying qualities derived from in-flight and ground-based simulators for a jet-transport airplane for the approach and landing pilot tasks

    NASA Technical Reports Server (NTRS)

    Grantham, William D.

    1989-01-01

    The primary objective was to provide information to the flight controls/flying qualities engineer that will assist him in determining the incremental flying qualities and/or pilot-performance differences that may be expected between results obtained via ground-based simulation (and, in particular, the six-degree-of-freedom Langley Visual/Motion Simulator (VMS)) and flight tests. Pilot opinion and performance parameters derived from a ground-based simulator and an in-flight simulator are compared for a jet-transport airplane having 32 different longitudinal dynamic response characteristics. The primary pilot tasks were the approach and landing tasks with emphasis on the landing-flare task. The results indicate that, in general, flying qualities results obtained from the ground-based simulator may be considered conservative-especially when the pilot task requires tight pilot control as during the landing flare. The one exception to this, according to the present study, was that the pilots were more tolerant of large time delays in the airplane response on the ground-based simulator. The results also indicated that the ground-based simulator (particularly the Langley VMS) is not adequate for assessing pilot/vehicle performance capabilities (i.e., the sink rate performance for the landing-flare task when the pilot has little depth/height perception from the outside scene presentation).

  10. Results of a simulator test comparing two display concepts for piloted flight-path-angle control

    NASA Technical Reports Server (NTRS)

    Kelley, W. W.

    1978-01-01

    Results of a simulator experiment which was conducted in order to compare pilot gamma-control performance using two display formats are reported. Pilots flew a variable flight path angle tracking task in the landing configuration. Pilot and airplane performance parameters were recorded and pilot comments noted for each case.

  11. Effects of helicopter noise and vibration on pilot performance (as measured in a fixed-base flight simulator)

    NASA Technical Reports Server (NTRS)

    Stave, A. M.

    1973-01-01

    The effects of noise and vibration on pilot performance are described. Pilot subjects were required to fly VTOL commercial IFR schedules using the computer simulation facilities. The routes flown simulated closely metropolitan routes flown currently by a helicopter airline. The duration of simulator flights ranged from 3 to 8 hours. Subjects were exposed to noise sound pressure levels ranging from 74dB (ambient) to 100dB and 17 Hz vibration stimuli ranging from .1 g to .3 g measured at the floor directly beneath the pilot's seat. Despite subject reports of extreme fatigue in these long flights, performance did not degrade. A curve of performance shows a slow improvement for the first three hours of exposure and a slight loss in performance during the remainder of the flight. As environmental stress conditions (noise, vibration, and time in the simulator) increased, subject performance improved. Within the limits of this study, the higher the stress the better the performance.

  12. Flight deck disturbance management: a simulator study of diagnosis and recovery from breakdowns in pilot-automation coordination.

    PubMed

    Nikolic, Mark I; Sarter, Nadine B

    2007-08-01

    To examine operator strategies for diagnosing and recovering from errors and disturbances as well as the impact of automation design and time pressure on these processes. Considerable efforts have been directed at error prevention through training and design. However, because errors cannot be eliminated completely, their detection, diagnosis, and recovery must also be supported. Research has focused almost exclusively on error detection. Little is known about error diagnosis and recovery, especially in the context of event-driven tasks and domains. With a confederate pilot, 12 airline pilots flew a 1-hr simulator scenario that involved three challenging automation-related tasks and events that were likely to produce erroneous actions or assessments. Behavioral data were compared with a canonical path to examine pilots' error and disturbance management strategies. Debriefings were conducted to probe pilots' system knowledge. Pilots seldom followed the canonical path to cope with the scenario events. Detection of a disturbance was often delayed. Diagnostic episodes were rare because of pilots' knowledge gaps and time criticality. In many cases, generic inefficient recovery strategies were observed, and pilots relied on high levels of automation to manage the consequences of an error. Our findings describe and explain the nature and shortcomings of pilots' error management activities. They highlight the need for improved automation training and design to achieve more timely detection, accurate explanation, and effective recovery from errors and disturbances. Our findings can inform the design of tools and techniques that support disturbance management in various complex, event-driven environments.

  13. The effects of motion and g-seat cues on pilot simulator performance of three piloting tasks

    NASA Technical Reports Server (NTRS)

    Showalter, T. W.; Parris, B. L.

    1980-01-01

    Data are presented that show the effects of motion system cues, g-seat cues, and pilot experience on pilot performance during takeoffs with engine failures, during in-flight precision turns, and during landings with wind shear. Eight groups of USAF pilots flew a simulated KC-135 using four different cueing systems. The basic cueing system was a fixed-base type (no-motion cueing) with visual cueing. The other three systems were produced by the presence of either a motion system or a g-seat, or both. Extensive statistical analysis of the data was performed and representative performance means were examined. These data show that the addition of motion system cueing results in significant improvement in pilot performance for all three tasks; however, the use of g-seat cueing, either alone or in conjunction with the motion system, provides little if any performance improvement for these tasks and for this aircraft type.

  14. Disaster response team FAST skills training with a portable ultrasound simulator compared to traditional training: pilot study.

    PubMed

    Paddock, Michael T; Bailitz, John; Horowitz, Russ; Khishfe, Basem; Cosby, Karen; Sergel, Michelle J

    2015-03-01

    Pre-hospital focused assessment with sonography in trauma (FAST) has been effectively used to improve patient care in multiple mass casualty events throughout the world. Although requisite FAST knowledge may now be learned remotely by disaster response team members, traditional live instructor and model hands-on FAST skills training remains logistically challenging. The objective of this pilot study was to compare the effectiveness of a novel portable ultrasound (US) simulator with traditional FAST skills training for a deployed mixed provider disaster response team. We randomized participants into one of three training groups stratified by provider role: Group A. Traditional Skills Training, Group B. US Simulator Skills Training, and Group C. Traditional Skills Training Plus US Simulator Skills Training. After skills training, we measured participants' FAST image acquisition and interpretation skills using a standardized direct observation tool (SDOT) with healthy models and review of FAST patient images. Pre- and post-course US and FAST knowledge were also assessed using a previously validated multiple-choice evaluation. We used the ANOVA procedure to determine the statistical significance of differences between the means of each group's skills scores. Paired sample t-tests were used to determine the statistical significance of pre- and post-course mean knowledge scores within groups. We enrolled 36 participants, 12 randomized to each training group. Randomization resulted in similar distribution of participants between training groups with respect to provider role, age, sex, and prior US training. For the FAST SDOT image acquisition and interpretation mean skills scores, there was no statistically significant difference between training groups. For US and FAST mean knowledge scores, there was a statistically significant improvement between pre- and post-course scores within each group, but again there was not a statistically significant difference between

  15. Comparison of in-flight and ground-based simulator derived flying qualities and pilot performance for approach and landing tasks

    NASA Technical Reports Server (NTRS)

    Grantham, William D.; Williams, Robert H.

    1987-01-01

    For the case of an approach-and-landing piloting task emphasizing response to the landing flare, pilot opinion and performance parameters derived from jet transport aircraft six-degree-of-freedom ground-based and in-flight simulators were compared in order to derive data for the flight-controls/flying-qualities engineers. The data thus obtained indicate that ground simulation results tend to be conservative, and that the effect of control sensitivity is more pronounced for ground simulation. The pilot also has a greater tendency to generate pilot-induced oscillation in ground-based simulation than in flight.

  16. A piloted simulation investigation of yaw dynamics requirements for turreted gun use in low-level helicopter air combat

    NASA Technical Reports Server (NTRS)

    Decker, William A.; Morris, Patrick M.; Williams, Jeffrey N.

    1988-01-01

    A piloted, fixed-base simulation study was conducted to investigate the handling qualities requirements for helicopter air-to-air combat using turreted guns in the near-terrain environment. The study used a version of the helicopter air combat system developed at NASA Ames Research Center for one-on-one air combat. The study focused on the potential trade-off between gun angular movement capability and required yaw axis response. Experimental variables included yaw axis response frequency and damping and the size of the gun-movement envelope. A helmet position and sighting system was used for pilot control of gun aim. Approximately 340 simulated air combat engagements were evaluated by pilots from the Army and industry. Results from the experiment indicate that a highly-damped, high frequency yaw response was desired for Level I handling qualities. Pilot preference for those characteristics became more pronounced as gun turret movement was restricted; however, a stable, slow-reacting platform could be used with a large turret envelope. Most pilots preferred to engage with the opponent near the own-ship centerline. Turret elevation restriction affected the engagement more than azimuth restrictions.

  17. Piloted Flight Simulator Developed for Icing Effects Training

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.

    2005-01-01

    In an effort to expand pilot training methods to avoid icing-related accidents, the NASA Glenn Research Center and Bihrle Applied Research Inc. have developed the Ice Contamination Effects Flight Training Device (ICEFTD). ICEFTD simulates the flight characteristics of the NASA Twin Otter Icing Research Aircraft in a no-ice baseline and in two ice configurations simulating ice-protection-system failures. Key features of the training device are the force feedback in the yoke, the instrument panel and out-the-window graphics, the instructor s workstation, and the portability of the unit.

  18. Effects of visual and motion simulation cueing systems on pilot performance during takeoffs with engine failures

    NASA Technical Reports Server (NTRS)

    Parris, B. L.; Cook, A. M.

    1978-01-01

    Data are presented that show the effects of visual and motion during cueing on pilot performance during takeoffs with engine failures. Four groups of USAF pilots flew a simulated KC-135 using four different cueing systems. The most basic of these systems was of the instrument-only type. Visual scene simulation and/or motion simulation was added to produce the other systems. Learning curves, mean performance, and subjective data are examined. The results show that the addition of visual cueing results in significant improvement in pilot performance, but the combined use of visual and motion cueing results in far better performance.

  19. Pilot expertise and hippocampal size: associations with longitudinal flight simulator performance.

    PubMed

    Adamson, Maheen M; Bayley, Peter J; Scanlon, Blake K; Farrell, Michelle E; Hernandez, Beatriz; Weiner, Michael W; Yesavage, Jerome A; Taylor, Joy L

    2012-09-01

    Previous research suggests that the size of the hippocampus can vary in response to intensive training (e.g., during the acquisition of expert knowledge). However, the role of the hippocampus in maintenance of skilled performance is not well understood. The Stanford/Veterans Affairs Aviation MRI Study offers a unique opportunity to observe the interaction of brain structure and multiple levels of expertise on longitudinal flight simulator performance. The current study examined the relationship between hippocampal volume and three levels of aviation expertise, defined by pilot proficiency ratings issued by the U.S. Federal Aviation Administration (11). At 3 annual time points, 60 pilots who varied in their level of aviation expertise (ages ranging from 45 to 69 yr) were tested. At baseline, higher expertise was associated with better flight simulator performance, but not with hippocampal volume. Longitudinally, there was an Expertise x Hippocampal volume interaction, in the direction that a larger hippocampus was associated with better performance at higher levels of expertise. These results are consistent with the notion that expertise in a cognitively demanding domain involves the interplay of acquired knowledge ('mental schemas') and basic hippocampal-dependent processes.

  20. Development and validation of a piloted simulation of a helicopter and external sling load

    NASA Technical Reports Server (NTRS)

    Shaughnessy, J. D.; Deaux, T. N.; Yenni, K. R.

    1979-01-01

    A generalized, real time, piloted, visual simulation of a single rotor helicopter, suspension system, and external load is described and validated for the full flight envelope of the U.S. Army CH-54 helicopter and cargo container as an example. The mathematical model described uses modified nonlinear classical rotor theory for both the main rotor and tail rotor, nonlinear fuselage aerodynamics, an elastic suspension system, nonlinear load aerodynamics, and a loadground contact model. The implementation of the mathematical model on a large digital computing system is described, and validation of the simulation is discussed. The mathematical model is validated by comparing measured flight data with simulated data, by comparing linearized system matrices, eigenvalues, and eigenvectors with manufacturers' data, and by the subjective comparison of handling characteristics by experienced pilots. A visual landing display system for use in simulation which generates the pilot's forward looking real world display was examined and a special head up, down looking load/landing zone display is described.

  1. The effect of aircraft control forces on pilot performance during instrument landings in a flight simulator.

    PubMed

    Hewson, D J; McNair, P J; Marshall, R N

    2001-07-01

    Pilots may have difficulty controlling aircraft at both high and low force levels due to larger variability in force production at these force levels. The aim of this study was to measure the force variability and landing performance of pilots during an instrument landing in a flight simulator. There were 12 pilots who were tested while performing 5 instrument landings in a flight simulator, each of which required different control force inputs. Pilots can produce the least force when pushing the control column to the right, therefore the force levels for the landings were set relative to each pilot's maximum aileron-right force. The force levels for the landings were 90%, 60%, and 30% of maximal aileron-right force, normal force, and 25% of normal force. Variables recorded included electromyographic activity (EMG), aircraft control forces, aircraft attitude, perceived exertion and deviation from glide slope and heading. Multivariate analysis of variance was used to test for differences between landings. Pilots were least accurate in landing performance during the landing at 90% of maximal force (p < 0.05). There was also a trend toward decreased landing performance during the landing at 25% of normal force. Pilots were more variable in force production during the landings at 60% and 90% of maximal force (p < 0.05). Pilots are less accurate at performing instrument landings when control forces are high due to the increased variability of force production. The increase in variability at high force levels is most likely associated with motor unit recruitment, rather than rate coding. Aircraft designers need to consider the reduction in pilot performance at high force levels, as well as pilot strength limits when specifying new standards.

  2. Flight Simulator Motion Literature Pertinent to Airline-Pilot Recurrent Training and Evaluation.

    DOT National Transportation Integrated Search

    2011-08-08

    There has been much debate over the years regarding the need for flight simulator motion for airline-pilot training and evaluation. From the intuitive perspective there is the dictum, The airplane moves, so the simulator must move but intui...

  3. Hypoxia and flight performance of military instructor pilots in a flight simulator.

    PubMed

    Temme, Leonard A; Still, David L; Acromite, Michael T

    2010-07-01

    Military aircrew and other operational personnel frequently perform their duties at altitudes posing a significant hypoxia risk, often with limited access to supplemental oxygen. Despite the significant risk hypoxia poses, there are few studies relating it to primary flight performance, which is the purpose of the present study. Objective, quantitative measures of aircraft control were collected from 14 experienced, active duty instructor pilot volunteers as they breathed an air/nitrogen mix that provided an oxygen partial pressure equivalent to the atmosphere at 18,000 ft (5486.4 m) above mean sea level. The flight task required holding a constant airspeed, altitude, and heading at an airspeed significantly slower than the aircraft's minimum drag speed. The simulated aircraft's inherent instability at the target speed challenged the pilot to maintain constant control of the aircraft in order to minimize deviations from the assigned flight parameters. Each pilot's flight performance was evaluated by measuring all deviations from assigned target values. Hypoxia degraded the pilot's precision of altitude and airspeed control by 53%, a statistically significant decrease in flight performance. The effect on heading control effects was not statistically significant. There was no evidence of performance differences when breathing room air pre- and post-hypoxia. Moderate levels of hypoxia degraded the ability of military instructor pilots to perform a precision slow flight task. This is one of a small number of studies to quantify an effect of hypoxia on primary flight performance.

  4. The Effects of Stress on Pilot Judgment in a MIDIS Simulator

    DTIC Science & Technology

    1989-02-01

    stress were relatively independent of problem demands for working memory and knowledge. Keywords: Decision making; Stress psychology; Pilot judgment; Divided attention; Cognitive task analysis ; Flight simulators.

  5. Simulator Investigation of Pilot Aids for Helicopter Terminal Area Operations with One Engine Inoperative

    NASA Technical Reports Server (NTRS)

    Iseler, Laura; Chen, Robert; Dearing, Munro; Decker, William; Aiken, Edwin W. (Technical Monitor)

    1995-01-01

    Two recent piloted simulation experiments have investigated advanced display concepts applied to civil transport helicopter terminal area operations. Civil Category A helicopter operations apply to multi-engine helicopters wherein a safe recovery (land or fly out) is required in the event of a single engine failure. The investigation used the NASA Ames Research Center Vertical Motion Simulator, which has a full six degrees of freedom, to simulate the flight task as closely as possible. The goal of these experiments was to use advanced cockpit displays to improve flight safety and enhance the mission performance of Category A terminal area operations in confined areas. The first experiment investigated the use of military display formats to assist civil rotorcraft in performing a Category A takeoff in confined terminal areas. Specifically, it addressed how well a difficult hovering backup path could be followed using conventional instruments in comparison to panel mounted integrated displays. The hovering backup takeoff, which enables pilots to land back to the confined area pad in the event of an engine failure, was chosen since it is a difficult task to perform. Seven NASA and Army test pilots participated in the experiment. Evaluations, based on task performance and pilot workload, showed that an integrated display enabled the pilot to consistently achieve adequate or desired performance with reasonable pilot workload. Use of conventional instruments, however, frequently resulted in unacceptable performance (poor flight path tracking), higher pilot workload, and poor situational awareness. Although OEI landbacks were considered a visual task, the improved performance on the backup portion, in conjunction with increased situational awareness resulting from use of integrated displays, enabled the pilots to handle an engine failure and land back safely. In contrast, use of conventional instruments frequently led to excessive rates of sink at touchdown. A second

  6. Piloted simulation study of the effects of an automated trim system on flight characteristics of a light twin-engine airplane with one engine inoperative

    NASA Technical Reports Server (NTRS)

    Stewart, E. C.; Brown, P. W.; Yenni, K. R.

    1986-01-01

    A simulation study was conducted to investigate the piloting problems associated with failure of an engine on a generic light twin-engine airplane. A primary piloting problem for a light twin-engine airplane after an engine failure is maintaining precise control of the airplane in the presence of large steady control forces. To address this problem, a simulated automatic trim system which drives the trim tabs as an open-loop function of propeller slipstream measurements was developed. The simulated automatic trim system was found to greatly increase the controllability in asymmetric powered flight without having to resort to complex control laws or an irreversible control system. However, the trim-tab control rates needed to produce the dramatic increase in controllability may require special design consideration for automatic trim system failures. Limited measurements obtained in full-scale flight tests confirmed the fundamental validity of the proposed control law.

  7. T-4G Simulator and T-4 Ground Training Devices in USAF Undergraduate Pilot Training.

    ERIC Educational Resources Information Center

    Woodruff, Robert R.; Smith, James F.

    The objective of the project was to investigate the utility of using an A/F37A-T4G T-37 flight simulator within the context of Air Force undergraduate pilot training. Twenty-one subjects, selected from three undergraduate pilot training classes, were given contact flight training in a TP4G/EPT simulator before going to T-37 aircraft for further…

  8. Differential activation of brain regions involved with error-feedback and imitation based motor simulation when observing self and an expert's actions in pilots and non-pilots on a complex glider landing task.

    PubMed

    Callan, Daniel E; Terzibas, Cengiz; Cassel, Daniel B; Callan, Akiko; Kawato, Mitsuo; Sato, Masa-Aki

    2013-05-15

    In this fMRI study we investigate neural processes related to the action observation network using a complex perceptual-motor task in pilots and non-pilots. The task involved landing a glider (using aileron, elevator, rudder, and dive brake) as close to a target as possible, passively observing a replay of one's own previous trial, passively observing a replay of an expert's trial, and a baseline do nothing condition. The objective of this study is to investigate two types of motor simulation processes used during observation of action: imitation based motor simulation and error-feedback based motor simulation. It has been proposed that the computational neurocircuitry of the cortex is well suited for unsupervised imitation based learning, whereas, the cerebellum is well suited for error-feedback based learning. Consistent with predictions, pilots (to a greater extent than non-pilots) showed significant differential activity when observing an expert landing the glider in brain regions involved with imitation based motor simulation (including premotor cortex PMC, inferior frontal gyrus IFG, anterior insula, parietal cortex, superior temporal gyrus, and middle temporal MT area) than when observing one's own previous trial which showed significant differential activity in the cerebellum (only for pilots) thought to be concerned with error-feedback based motor simulation. While there was some differential brain activity for pilots in regions involved with both Execution and Observation of the flying task (potential Mirror System sites including IFG, PMC, superior parietal lobule) the majority was adjacent to these areas (Observation Only Sites) (predominantly in PMC, IFG, and inferior parietal loblule). These regions showing greater activity for observation than for action may be involved with processes related to motor-based representational transforms that are not necessary when actually carrying out the task. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Pilot tracking performance during successive in-flight simulated instrument approaches.

    DOT National Transportation Integrated Search

    1972-02-01

    Eight instrument rated pilots with flying experience ranging from 600 to 12,271 hours each flew 10 simulated ILS instrument approaches in a single engine, general aviation aircraft equipped with a primary flight display arranged in a conventional 'T'...

  10. Human in the Loop Simulation Measures of Pilot Response Delay in a Self-Separation Concept of Operations

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Wilson, Sara R.; Sturdy, James; Murdoch, Jennifer L.; Wing, David J.

    2010-01-01

    A human-in-the-loop (HITL) simulation experiment was conducted by the National Aeronautics and Space Administration (NASA) to assess airline transport pilots performance and reported acceptance of the use of procedures relying on airborne separation assistance and trajectory management tools. This study was part of a larger effort involving two NASA centers that includes multiple HITL experiments planned over the next few years to evaluate the use of automated separation assurance (SA) tools by both air traffic controllers and pilots. This paper presents results of measured pilot response delay that subject pilots incurred when interacting with cockpit tools for SA and discusses possible implications for future concept and procedures design.

  11. Data-linked pilot reply time on controller workload and communication in a simulated terminal option

    DOT National Transportation Integrated Search

    2001-05-01

    This report describes an analysis of air traffic control communication and workload in a simulated terminal radar approach : control environment. The objective of this study was to investigate how pilot-to-controller data-link acknowledgment time : m...

  12. Advanced Simulation in Undergraduate Pilot Training: Automatic Instructional System. Final Report for the Period March 1971-January 1975.

    ERIC Educational Resources Information Center

    Faconti, Victor; Epps, Robert

    The Advanced Simulator for Undergraduate Pilot Training (ASUPT) was designed to investigate the role of simulation in the future Undergraduate Pilot Training (UPT) program. The Automated Instructional System designed for the ASUPT simulator was described in this report. The development of the Automated Instructional System for ASUPT was based upon…

  13. The effect of visual-motion time-delays on pilot performance in a simulated pursuit tracking task

    NASA Technical Reports Server (NTRS)

    Miller, G. K., Jr.; Riley, D. R.

    1977-01-01

    An experimental study was made to determine the effect on pilot performance of time delays in the visual and motion feedback loops of a simulated pursuit tracking task. Three major interrelated factors were identified: task difficulty either in the form of airplane handling qualities or target frequency, the amount and type of motion cues, and time delay itself. In general, the greater the task difficulty, the smaller the time delay that could exist without degrading pilot performance. Conversely, the greater the motion fidelity, the greater the time delay that could be tolerated. The effect of motion was, however, pilot dependent.

  14. Pilot Evaluation of Adaptive Control in Motion-Based Flight Simulator

    NASA Technical Reports Server (NTRS)

    Kaneshige, John T.; Campbell, Stefan Forrest

    2009-01-01

    The objective of this work is to assess the strengths, weaknesses, and robustness characteristics of several MRAC (Model-Reference Adaptive Control) based adaptive control technologies garnering interest from the community as a whole. To facilitate this, a control study using piloted and unpiloted simulations to evaluate sensitivities and handling qualities was conducted. The adaptive control technologies under consideration were ALR (Adaptive Loop Recovery), BLS (Bounded Linear Stability), Hybrid Adaptive Control, L1, OCM (Optimal Control Modification), PMRAC (Predictor-based MRAC), and traditional MRAC

  15. A Pilot Opinion Study of Lateral Control Requirements for Fighter-Type Aircraft

    NASA Technical Reports Server (NTRS)

    Creer, Brent Y.; Stewart, John D.; Merrick, Robert B.; Drinkwater, Fred J., III

    1959-01-01

    As part of a continuing NASA program of research on airplane handling qualities, a pilot opinion investigation has been made on the lateral control requirements of fighter aircraft flying in their combat speed range. The investigation was carried out using a stationary flight simulator and a moving flight simulator, and the flight simulator results were supplemented by research tests in actual flight. The flight simulator study was based on the presumption that the pilot rates the roll control of an airplane primarily on a single-degree-of-freedom basis; that is, control of angle of roll about the aircraft body axis being of first importance. From the assumption of a single degree of freedom system it follows that there are two fundamental parameters which govern the airplane roll response, namely the roll damping expressed as a time constant and roll control power in terms of roll acceleration. The simulator study resulted in a criterion in terms of these two parameters which defines satisfactory, unsatisfactory, and unacceptable roll performance from a pilot opinion standpoint. The moving simulator results were substantiated by the in-flight investigation. The derived criterion was compared with the roll performance criterion based upon wing tip helix angle and also with other roll performance concepts which currently influence the roll performance design of military fighter aircraft flying in their combat speed range.

  16. A piloted simulator study on augmentation systems to improve helicopter flying qualities in terrain flight

    NASA Technical Reports Server (NTRS)

    Chen, R. T. N.; Talbot, P. D.; Gerdes, R. M.; Dugan, D. C.

    1979-01-01

    Four basic single-rotor helicopters, one teetering, on articulated, and two hingeless, which were found to have a variety of major deficiencies in a previous fixed-based simulator study, were selected as baseline configurations. The stability and control augmentation systems (SCAS) include simple control augmentation systems to decouple pitch and yaw responses due to collective input and to quicken the pitch and roll control responses; SCAS of rate-command type designed to optimize the sensitivity and damping and to decouple the pitch-roll due to aircraft angular tate; and attitude-command type SCAS. Pilot ratings and commentary are presented as well as performance data related to the task. SCAS control usages and their gain levels associated with specific rotor types are also discussed.

  17. Piloted simulation of one-on-one helicopter air combat at NOE flight levels

    NASA Technical Reports Server (NTRS)

    Lewis, M. S.; Aiken, E. W.

    1985-01-01

    A piloted simulation designed to examine the effects of terrain proximity and control system design on helicopter performance during one-on-one air combat maneuvering (ACM) is discussed. The NASA Ames vertical motion simulator (VMS) and the computer generated imagery (CGI) systems were modified to allow two aircraft to be independently piloted on a single CGI data base. Engagements were begun with the blue aircraft already in a tail-chase position behind the red, and also with the two aircraft originating from positions unknown to each other. Maneuvering was very aggressive and safety requirements for minimum altitude, separation, and maximum bank angles typical of flight test were not used. Results indicate that the presence of terrain features adds an order of complexiaty to the task performed over clear air ACM and that mix of attitude and rate command-type stability and control augmentation system (SCAS) design may be desirable. The simulation system design, the flight paths flown, and the tactics used were compared favorably by the evaluation pilots to actual flight test experiments.

  18. A flight investigation of simulated data link communications during single-pilot IFR flight

    NASA Technical Reports Server (NTRS)

    Parker, J. F.; Duffy, J. W.; Christensen, D. G.

    1983-01-01

    A Flight Data Console (FDC) was developed to allow simulation of a digital communications link to replace the current voice communication system used in air traffic control (ATC). The voice system requires manipulation of radio equipment, read-back of clearances, and mental storage of critical information items, all contributing to high workload, particularly during single-pilot operations. This was an inflight study to determine how a digital communications system might reduce cockpit workload, improve flight proficiency, and be accepted by general aviation pilots. Results show that instrument flight, including approach and landing, can be accomplished quite effectively using a digital data link system for ATC communications. All pilots expressed a need for a back-up voice channel. When included, this channel was used sparingly and principally to confirm any item of information about which there might be uncertainty.

  19. Aircraft control forces and EMG activity: comparison of novice and experienced pilots during simulated rolls, loops and turns.

    PubMed

    Hewson, D J; McNair, P J; Marshall, R N

    2000-08-01

    Flying an aircraft requires a considerable degree of coordination, particularly during aerobatic activities such as rolls, loops and turns. Only one previous study has examined the magnitude of muscle activity required to fly an aircraft, and that was restricted to takeoff and landing maneuvers. The aim of this study was to examine the phasing of muscle activation and control forces of novice and experienced pilots during more complex simulated flight maneuvers. There were 12 experienced and 9 novice pilots who were tested on an Aermacchi flight simulator while performing a randomized set of rolling, looping, and turning maneuvers. Four different runaway trim settings were used to increase the difficulty of the turns (elevator-up, elevator-down, aileron-left, and aileron-right). Variables recorded included aircraft attitude, pilot applied forces, and electromyographic (EMG) activity. Discriminant function analysis was used to distinguish between novice and experienced pilots. Over all maneuvers, 70% of pilots were correctly classified as novice or experienced. Better levels of classification were achieved when maneuvers were analyzed individually (67-91%), although the maneuvers that required the greatest force application, elevator-up turns, were unable to discriminate between novice and experienced pilots. There were no differences in the phasing of muscle activity between experienced and novice pilots. The only consistent difference in EMG activity between novice and experienced pilots was the reduced EMG activity in the wrist extensors of experienced pilots (p < 0.05). The increased wrist extensor activity of the novice pilots is indicative of a distal control strategy, whereby distal muscles with smaller motor units are used to perform a task that requires precise control. Muscle activity sensors could be used to detect the onset of high G maneuvers prior to any change in aircraft attitude and control G-suit inflation accordingly.

  20. Design of pilot studies to inform the construction of composite outcome measures.

    PubMed

    Edland, Steven D; Ard, M Colin; Li, Weiwei; Jiang, Lingjing

    2017-06-01

    Composite scales have recently been proposed as outcome measures for clinical trials. For example, the Prodromal Alzheimer's Cognitive Composite (PACC) is the sum of z-score normed component measures assessing episodic memory, timed executive function, and global cognition. Alternative methods of calculating composite total scores using the weighted sum of the component measures that maximize signal-to-noise of the resulting composite score have been proposed. Optimal weights can be estimated from pilot data, but it is an open question how large a pilot trial is required to calculate reliably optimal weights. In this manuscript, we describe the calculation of optimal weights, and use large-scale computer simulations to investigate the question of how large a pilot study sample is required to inform the calculation of optimal weights. The simulations are informed by the pattern of decline observed in cognitively normal subjects enrolled in the Alzheimer's Disease Cooperative Study (ADCS) Prevention Instrument cohort study, restricting to n=75 subjects age 75 and over with an ApoE E4 risk allele and therefore likely to have an underlying Alzheimer neurodegenerative process. In the context of secondary prevention trials in Alzheimer's disease, and using the components of the PACC, we found that pilot studies as small as 100 are sufficient to meaningfully inform weighting parameters. Regardless of the pilot study sample size used to inform weights, the optimally weighted PACC consistently outperformed the standard PACC in terms of statistical power to detect treatment effects in a clinical trial. Pilot studies of size 300 produced weights that achieved near-optimal statistical power, and reduced required sample size relative to the standard PACC by more than half. These simulations suggest that modestly sized pilot studies, comparable to that of a phase 2 clinical trial, are sufficient to inform the construction of composite outcome measures. Although these findings

  1. Interprofessional, simulation-based training in end of life care communication: a pilot study.

    PubMed

    Efstathiou, Nikolaos; Walker, Wendy Marina

    2014-01-01

    This paper reports on the process and outcomes of a study, designed to pilot the use of interprofessional, simulation-based training in end of life care communication. Participants comprised 50 final year medicine, nursing, physiotherapy and pharmacy students. Learning methods included observation of role play and facilitated, interactive group discussion. A Likert scale rating questionnaire was used to evaluate the impact of the learning experience. Evaluation data revealed that students were supportive of interprofessional learning and could recognise its benefits. The results indicated self-perceived improvements in knowledge, skills, confidence and competence when dealing with challenging end of life care communication situations. Comparison of pre- and post-intervention scores revealed a statistically significant positive change in the students' perceptions about their level of knowledge (Z = -5.887, p = 0.000). The reported benefits need to be balanced against design and delivery issues that proved labour and resource intensive. Economic evaluation is worthy of further consideration.

  2. Development and evaluation of a clinical simulation for new graduate nurses: A multi-site pilot study.

    PubMed

    Jung, Dukyoo; Lee, Soon Hee; Kang, Sook Jung; Kim, Jung-Hee

    2017-02-01

    New nursing graduates have revealed that they perceive a gap between theory and practice with reference to their education and the real workplace setting. Additionally, many nurses experience a reality shock when they participate in clinical practice. The purpose of this study was to develop and test the effects of a scenario-based simulation training program on new graduate nurses' competency, critical thinking dispositions, and interpersonal communication skills. This pilot multi-site study used a pretest-posttest control group design. It was conducted at four sites of a university-affiliated simulation center in Korea. Participants were recruited utilizing a convenience sample from four tertiary hospitals in Korea. Twenty-four new graduate nurses participated in this study. At the three-month follow-up, the levels of communication skills used in practice among the intervention group were statistically significantly higher than those of the control group participants (U=151.50, p=.005). However, there were no significant differences between the groups in changes in nursing competency (U=287.50, p=.992) or critical thinking disposition scores (U=269.50, p=.702). The participants' mean rating scores concerning the objectives, intentions, and recommendations for other nurses were positive and high. The involvement of current practicing of nursing in certain scenarios and the implementation of simulation learning could enhance the readiness of new graduate nurses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Using clinical simulation centers to test design interventions: a pilot study of lighting and color modifications.

    PubMed

    Gray, Whitney Austin; Kesten, Karen S; Hurst, Stephen; Day, Tama Duffy; Anderko, Laura

    2012-01-01

    The aim of this pilot study was to test design interventions such as lighting, color, and spatial color patterning on nurses' stress, alertness, and satisfaction, and to provide an example of how clinical simulation centers can be used to conduct research. The application of evidence-based design research in healthcare settings requires a transdisciplinary approach. Integrating approaches from multiple fields in real-life settings often proves time consuming and experimentally difficult. However, forums for collaboration such as clinical simulation centers may offer a solution. In these settings, identical operating and patient rooms are used to deliver simulated patient care scenarios using automated mannequins. Two identical rooms were modified in the clinical simulation center. Nurses spent 30 minutes in each room performing simulated cardiac resuscitation. Subjective measures of nurses' stress, alertness, and satisfaction were collected and compared between settings and across time using matched-pair t-test analysis. Nurses reported feeling less stressed after exposure to the experimental room than nurses who were exposed to the control room (2.22, p = .03). Scores post-session indicated a significant reduction in stress and an increase in alertness after exposure to the experimental room as compared to the control room, with significance levels below .10. (Change in stress scores: 3.44, p = .069); (change in alertness scores: 3.6, p = .071). This study reinforces the use of validated survey tools to measure stress, alertness, and satisfaction. Results support human-centered design approaches by evaluating the effect on nurses in an experimental setting.

  4. [EEG-correlates of pilots' functional condition in simulated flight dynamics].

    PubMed

    Kiroy, V N; Aslanyan, E V; Bakhtin, O M; Minyaeva, N R; Lazurenko, D M

    2015-01-01

    The spectral characteristics of the EEG recorded on two professional pilots in the simulator TU-154 aircraft in flight dynamics, including takeoff, landing and horizontal flight (in particular during difficult conditions) were analyzed. EEG recording was made with frequency band 0.1-70 Hz continuously from 15 electrodes. The EEG recordings were evaluated using analysis of variance and discriminant analysis. Statistical significant of the identified differences and the influence of the main factors and their interactions were evaluated using Greenhouse - Gaiser corrections. It was shown that the spectral characteristics of the EEG are highly informative features of the state of the pilots, reflecting the different flight phases. High validity ofthe differences including individual characteristic, indicates their non-random nature and the possibility of constructing a system of pilots' state control during all phases of flight, based on EEG features.

  5. Trapezius muscle metabolism measured with NIRS in helicopter pilots flying a simulator.

    PubMed

    Harrison, Michael F; Neary, J Patrick; Albert, Wayne J; Veillette, Dan W; McKenzie, Neil P; Croll, James C

    2007-02-01

    This study examined metabolic and hemodynamic responses during night vision goggle (NVG) induced neck strain among military helicopter pilots. We hypothesized that near infrared spectroscopy (NIRS) would be capable of identifying metabolic differences in the trapezius muscles of pilots between simulated flights with and without NVG. There were 33 pilots who were monitored on consecutive days during Day and NVG flight simulator missions. NIRS probes were attached bilaterally to the trapezius muscles at the C7 level to record total oxygenation index (TOI, %), total hemoglobin (tHb), oxyhemoglobin (HbO2), and deoxyhemoglobin (HHb). Significant differences in tHb were found between Day (0.51+/-2.31 micromol x cm (-1)) and NVG (4.14 +/- 2.74 micromol x cm(-1)) missions, and for HbO2 (Dayend 2.63+/-1.64 micromol x cm(-1); NVGend 5.77+/-1.98 micromol x cm(-1)). Significant left and right side differences between Day and NVG were found for tHb (NVGleit -1.83+/-2.55; NVGright 10.45+/-2.86 micromol x cm(-1)), HbO2 (NVGleft 1.77+/-1.90; NVGright 9.95+/-2.07 micromol x cm(-1)), and HHb (Dayleft -1.84+/-0.95; Dayright -2.32+/-0.87 micromol x cm (-1); NVGleft -3.60+/-1.05 micromol x cm(-1); NVGright 0.49+/-1.16 micromol x cm(-1). These results support NIRS's utility in assessing the significant metabolic and hemodynamic effects of NVG on neck musculature during real-time missions for 1) left and right side differences; and 2) Day vs. NVG missions. The additional mass of the NVG equipment does increase the metabolic stress of these muscles during simulated missions.

  6. Pilot Biofeedback Training in the Cognitive Awareness Training Study (CATS)

    NASA Technical Reports Server (NTRS)

    Uenking, M.

    2000-01-01

    One of the ongoing problems that pilots face today is a diminished state of awareness such as boredom, sleepiness, or fatigue during cruise conditions that could result in various pilot errors. This study utilized a cognitive training exercise to sharpen the pilot's awareness during simulated flight thereby providing them with a means to overcome these diminished states of awareness. This study utilizes psychophysiological methods in an attempt to assess a pilot's state of awareness more directly. In turn, the pilots will be able to train themselves to recognize these states of awareness and be more mentally sharp during mundane tasks such as those experienced in cruise conditions. The use of these measurement tools may be beneficial for researchers working within the NASA Aviation Safety Program. This paper will provide the reader with some background information concerning the motivation for the study, a brief description of the experimental setup and design matrix, the dependent and independent variables that were employed, and some preliminary findings based on some of the subjective and objective data that was collected. These preliminary findings are of part of an ongoing study being conducted at the NASA Langley Research Center in Hampton, Virginia.

  7. Simulation of Controller Pilot Data Link Communications over VHF Digital Link Mode 3

    NASA Technical Reports Server (NTRS)

    Bretmersky, Steven C.; Murawski, Robert; Nguyen, Thanh C.; Raghavan, Rajesh S.

    2004-01-01

    The Federal Aviation Administration (FAA) has established an operational plan for the future Air Traffic Management (ATM) system, in which the Controller Pilot Data Link Communications (CPDLC) is envisioned to evolve into digital messaging that will take on an ever increasing role in controller to pilot communications, significantly changing the way the National Airspace System (NAS) is operating. According to FAA, CPDLC represents the first phase of the transition from the current analog voice system to an International Civil Aviation Organization (ICAO) compliant system in which digital communication becomes the alternate and perhaps primary method of routine communication. The CPDLC application is an Air Traffic Service (ATS) application in which pilots and controllers exchange messages via an addressed data link. CPDLC includes a set of clearance, information, and request message elements that correspond to existing phraseology employed by current Air Traffic Control (ATC) procedures. These message elements encompass altitude assignments, crossing constraints, lateral deviations, route changes and clearances, speed assignments, radio frequency assignments, and various requests for information. The pilot is provided with the capability to respond to messages, to request clearances and information, to report information, and to declare/rescind an emergency. A 'free text' capability is also provided to exchange information not conforming to defined formats. This paper presents simulated results of the aeronautical telecommunication application Controller Pilot Data Link Communications over VHF Digital Link Mode 3 (VDL Mode 3). The objective of this simulation study was to determine the impact of CPDLC traffic loads, in terms of timely message delivery and capacity of the VDL Mode 3 subnetwork. The traffic model is based on and is used for generating air/ground messages with different priorities. Communication is modeled for the en route domain of the Cleveland

  8. NASA X-57 Simulator Prepares Pilots, Engineers for Flight of Electric X-Plane

    NASA Image and Video Library

    2016-11-29

    NASA Administrator Charlie Bolden, a former pilot and astronaut who flew on four shuttle missions, appeared natural at the controls of the X-57 simulator cockpit, and flew a pair of simulations where he landed on the Edwards Air Force Base runway.

  9. Seat cushion to provide realistic acceleration cues to aircraft simulator pilot

    NASA Technical Reports Server (NTRS)

    Ashworth, B. R. (Inventor)

    1979-01-01

    Seat cushions, each including an air cell with a non-compressible surface, are disclosed. The apparatus are provided for initially controlling the air pressure in the air cells to allow the two main support areas of the simulator pilot to touch the non-compressible surface and thus begin to compress the flesh near these areas. During a simulated flight the apparatus control the air pressure in the cells to simulate the events that occur in a seat cushion during actual flight.

  10. A pilot study examining experiential learning vs didactic education of abdominal compartment syndrome.

    PubMed

    Saraswat, Anju; Bach, John; Watson, William D; Elliott, John O; Dominguez, Edward P

    2017-08-01

    Current surgical education relies on simulated educational experiences or didactic sessions to teach low-frequency clinical events such as abdominal compartment syndrome (ACS). The purpose of this pilot study was to evaluate if simulation would improve performance and knowledge retention of ACS better than a didactic lecture. Nineteen general surgery residents were block randomized by postgraduate year level to a didactic or a simulation session. After 3 months, all residents completed a knowledge assessment before participating in an additional simulation. Two independent reviewers assessed resident performance via audio-video recordings. No baseline differences in ACS experience were noted between groups. The observational evaluation demonstrated a significant difference in performance between the didactic and simulation groups: 9.9 vs 12.5, P = .037 (effect size = 1.15). Knowledge retention was equivalent between groups. This pilot study suggests that simulation-based education may be more effective for teaching the basic concepts of ACS. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Simulator fidelity considerations for training and evaluation of today's airline pilots

    DOT National Transportation Integrated Search

    2001-03-05

    Regulatory changes in response to today's airline pilot training and evaluation needs push the twin issues of effectiveness and affordability of flight simulators for use by U.S. airlines to the forefront. The Federal Aviation Administration (FAA) is...

  12. Effect of different runway size on pilot performance during simulated night landing approaches.

    DOT National Transportation Integrated Search

    1981-02-01

    In Experiment I, three pilots flew simulated approaches and landings in a fixed-base simulator with a computer-generated-image visual display. Practice approaches were flown with an 8,000-ft-long runway that was either 75, 150, or 300 ft wide; test a...

  13. Simulation of prenatal maternal sounds in NICU incubators: a pilot safety and feasibility study.

    PubMed

    Panagiotidis, John; Lahav, Amir

    2010-10-01

    This pilot study evaluated the safety and feasibility of an innovative audio system for transmitting maternal sounds to NICU incubators. A sample of biological sounds, consisting of voice and heartbeat, were recorded from a mother of a premature infant admitted to our unit. The maternal sounds were then played back inside an unoccupied incubator via a specialized audio system originated and compiled in our lab. We performed a series of evaluations to determine the safety and feasibility of using this system in NICU incubators. The proposed audio system was found to be safe and feasible, meeting criteria for humidity and temperature resistance, as well as for safe noise levels. Simulation of maternal sounds using this system seems achievable and applicable and received local support from medical staff. Further research and technology developments are needed to optimize the design of the NICU incubators to preserve the acoustic environment of the womb.

  14. An experimental study of human pilot's scanning behavior

    NASA Technical Reports Server (NTRS)

    Washizu, K.; Tanaka, K.; Osawa, T.

    1982-01-01

    The scanning behavior and the control behavior of the pilot who manually controls the two-variable system, which is the most basic one of multi-variable systems are investigated. Two control tasks which simulate the actual airplane attitude and airspeed control were set up. In order to simulate the change of the situation where the pilot is placed, such as changes of flight phase, mission and others, the subject was requested to vary the weightings, as his control strategy, upon each task. Changes of human control dynamics and his canning properties caused by the modification of the situation were investigated. By making use of the experimental results, the optimal model of the control behavior and the scanning behavior of the pilot in the two-variable system is proposed from the standpoint of making the performance index minimal.

  15. Pilot study on verification of effectiveness on operability of assistance system for robotic tele-surgery using simulation.

    PubMed

    Kawamura, Kazuya; Kobayashi, Yo; Fujie, Masakatsu G

    2010-01-01

    Tele-surgery enables medical care even in remote regions, and has been accomplished in clinical cases by means of dedicated communication lines. To make tele-surgery a more widespread method of providing medical care, a surgical environment needs to be made available using public lines of communication, such as the Internet. Moreover, a support system during surgery is required, as the use of surgical tools is performed in an environment subject to delay. In our research, we focus on the operability of specific tasks conducted by surgeons during a medical procedure, with the aim of clarifying, by means of a simulation, the optimum environment for robotic tele-surgery. In the study, we set up experimental systems using our proposed simulation system. In addition, we investigate the mental workloads on subjects and verify the effect of visual-assistance information as a pilot study. The operability of the task of gripping soft tissue was evaluated using a subjective workload assessment tool, the NASA Task Load Index. Results show that the tasks were completed, but the workload did not improve to less than 300ms and 400ms in the simulated environment. Verifying the effect of the support system was an important task under a more-than 200ms delay using this experiment, and future studies will evaluate the operability of the system under varying conditions of comfort. In addition, an intra-operative assistance system will be constructed using a simulation.

  16. Piloted Simulator Evaluation Results of Flight Physics Based Stall Recovery Guidance

    NASA Technical Reports Server (NTRS)

    Lombaerts, Thomas; Schuet, Stefan; Stepanyan, Vahram; Kaneshige, John; Hardy, Gordon; Shish, Kimberlee; Robinson, Peter

    2018-01-01

    In recent studies, it has been observed that loss of control in flight is the most frequent primary cause of accidents. A significant share of accidents in this category can be remedied by upset prevention if possible, and by upset recovery if necessary, in this order of priorities. One of the most important upsets to be recovered from is stall. Recent accidents have shown that a correct stall recovery maneuver remains a big challenge in civil aviation, partly due to a lack of pilot training. A possible strategy to support the flight crew in this demanding context is calculating a recovery guidance signal, and showing this signal in an intuitive way on one of the cockpit displays, for example by means of the flight director. Different methods for calculating the recovery signal, one based on fast model predictive control and another using an energy based approach, have been evaluated in four relevant operational scenarios by experienced commercial as well as test pilots in the Vertical Motion Simulator at NASA Ames Research Center. Evaluation results show that this approach could be able to assist the pilots in executing a correct stall recovery maneuver.

  17. Piloted Simulation Assessment of the Impact of Flexible Structures on Handling Qualities of Generic Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Stringer, Mary T.; Cowen, Brandon; Hoffler, Keith D.; Couch, Jesse C.; Ogburn, Marilyn E.; Diebler, Corey G.

    2013-01-01

    The NASA Langley Research Center Cockpit Motion Facility (CMF) was used to conduct a piloted simulation assessment of the impact of flexible structures on flying qualities. The CMF was used because of its relatively high bandwidth, six degree-of-freedom motion capability. Previous studies assessed and attempted to mitigate the effects of multiple dynamic aeroservoelastic modes (DASE). Those results indicated problems existed, but the specific cause and effect was difficult to ascertain. The goal of this study was to identify specific DASE frequencies, damping ratios, and gains that cause degradation in handling qualities. A generic aircraft simulation was developed and designed to have Cooper-Harper Level 1 handling qualities when flown without DASE models. A test matrix of thirty-six DASE modes was implemented. The modes had frequencies ranging from 1 to 3.5 Hz and were applied to each axis independently. Each mode consisted of a single axis, frequency, damping, and gain, and was evaluated individually by six subject pilots with test pilot backgrounds. Analysis completed to date suggests that a number of the DASE models evaluated degrade the handling qualities of this class of aircraft to an uncontrollable condition.

  18. Simulator fidelity requirements for airline pilot training and evaluation continued : an update on motion requirements research

    DOT National Transportation Integrated Search

    2003-04-01

    Preliminary results are presented on the effect of enhanced hexapod motion on airline pilot recurrent evaluation, training, and transfer of training to the simulator with motion as a stand-in for the airplane (quasi-transfer). A first study, which te...

  19. Piloted Simulation Study of a Dual Thrust-Cutback Procedure for Reducing High-Speed Civil Transport Takeoff Noise Levels

    NASA Technical Reports Server (NTRS)

    Riley, Donald R.; Glaab, Louis J.; Brandon, Jay M.; Person, Lee H., Jr.; Glaab, Patricia C.

    1999-01-01

    A piloted simulation study was performed for the purpose of indicating the noise reduction benefits and piloting performance that could occur for a typical 4-engine high-Speed Civil Transport (HSCT) configuration during takeoff when a dual thrust-cutback procedure was employed with throttle operation under direct computer control. Two thrust cutbacks were employed with the first cutback performed while the vehicle was accelerating on the run-way and the second cutback performed at a distance farther downrange. Added vehicle performance improvements included the incorporation of high-lift increments into the aerodynamic database of the vehicle and the use of limited engine oversizing. Four single-stream turbine bypass engines that had no noise suppression of any kind were used with this configuration. This approach permitted establishing the additional noise suppression level that was needed to meet Federal Air Regulation Part 36 Stage 3 noise levels for subsonic commercial jet aircraft. Noise level results were calculated with the jet mixing and shock noise modules of the Aircraft Noise Prediction Program (ANOPP).

  20. Simulating extreme environments: Ergonomic evaluation of Chinese pilot performance and heat stress tolerance.

    PubMed

    Li, Jing; Tian, Yinsheng; Ding, Li; Zou, Huijuan; Ren, Zhaosheng; Shi, Liyong; Feathers, David; Wang, Ning

    2015-06-05

    High-temperatures in the cockpit environment can adversely influence pilot behavior and performance. To investigate the impact of high thermal environments on Chinese pilot performance in a simulated cockpit environment. Ten subjects volunteered to participate in the tests under 40°C and 45°C high-temperature simulations in an environmentally controlled chamber. Measures such as grip strength, perception, dexterity, somatic sense reaction, and analytical reasoning were taken. The results were compared to the Combined Index of Heat Stress (CIHS). CIHS exceeded the heat stress safety limit after 45 min under 40°C, grip strength decreased by 12% and somatic perception became 2.89 times larger than the initial value. In the case of 45°C, CIHS exceeded the safety limit after only 20 min, while the grip strength decreased just by 3.2% and somatic perception increased to 4.36 times larger than the initial value. Reaction and finger dexterity were not statistically different from baseline measurements, but the error rate of analytical reasoning test rose remarkably. Somatic perception was the most sensitive index to high-temperature, followed by grip strength. Results of this paper may help to improve environmental control design of new fighter cockpit and for pilot physiology and cockpit environment ergonomics research for Chinese pilots.

  1. Pilot Subjective Assessments During an Investigation of Separation Function Allocation Using a Human-In-The-Loop Simulation

    NASA Technical Reports Server (NTRS)

    Burke, Kelly A.; Wing, David J.; Lewis, Timothy

    2013-01-01

    Two human-in-the-loop simulation experiments were conducted to investigate allocation of separation assurance functions between ground and air and between humans and automation. The experiments modeled a mixed-operations concept in which aircraft receiving ground-based separation services shared the airspace with aircraft providing their own separation service (i.e., self-separation). The two experiments, one pilot-focused and the other controller-focused, addressed selected key issues of mixed operations and modeling an emergence of NextGen technologies and procedures. This paper focuses on the results of the subjective assessments of pilots collected during the pilot-focused human-in-the-loop simulation, specifically workload and situation awareness. Generally the results revealed that across all conditions, pilots' perceived workload was low to medium, with the highest reported levels of workload occurring when the pilots experienced a loss of separation during the scenario. Furthermore, the results from the workload data and situation awareness data were complimentary such that when pilots reported lower levels of workload they also experienced higher levels of situation awareness.

  2. Astronauts Young and Duke study rock formations on simulated lunar traverse

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronauts John W. Young, right, prime crew commander for Apollo 16, and Charles M. Duke Jr., lunar module pilot, study rock formations along their simulated lunar traverse route. The prime and backup commanders and lunar module pilots for Apollo 16 took part in the two-day geology field trip and simulations in the Coso Range, near Ridgecrest, California. The training was conducted at the U.S. Naval Ordnance Test Station.

  3. Quantifying the Physiological Stress Response to Simulated Maritime Pilotage Tasks: The Influence of Task Complexity and Pilot Experience.

    PubMed

    Main, Luana C; Wolkow, Alexander; Chambers, Timothy P

    2017-11-01

    The aim of this study was to quantify the stress associated with performing maritime pilotage tasks in a high-fidelity simulator. Eight trainee and 13 maritime pilots completed two simulated pilotage tasks of varying complexity. Salivary cortisol samples were collected pre- and post-simulation for both trials. Heart rate was measured continuously throughout the study. Significant changes in salivary cortisol (P = 0.000, η = 0.139), average (P = 0.006, η = 0.087), and peak heart rate (P = 0.013, η = 0.077) from pre- to postsimulation were found. Varying task complexity did partially influence stress response; average (P = 0.016, η = 0.026) and peak heart rate (P = 0.034, η = 0.020) were higher in the experimental condition. Trainees also recorded higher average (P = 0.000, η = 0.054) and peak heart rates (P = 0.027, η = 0.022). Performing simulated pilotage tasks evoked a measurable stress response in both trainee and expert maritime pilots.

  4. Instructor and student pilots' subjective evaluation of a general aviation simulator with a terrain visual system

    NASA Technical Reports Server (NTRS)

    Kiteley, G. W.; Harris, R. L., Sr.

    1978-01-01

    Ten student pilots were given a 1 hour training session in the NASA Langley Research Center's General Aviation Simulator by a certified flight instructor and a follow-up flight evaluation was performed by the student's own flight instructor, who has also flown the simulator. The students and instructors generally felt that the simulator session had a positive effect on the students. They recommended that a simulator with a visual scene and a motion base would be useful in performing such maneuvers as: landing approaches, level flight, climbs, dives, turns, instrument work, and radio navigation, recommending that the simulator would be an efficient means of introducing the student to new maneuvers before doing them in flight. The students and instructors estimated that about 8 hours of simulator time could be profitably devoted to the private pilot training.

  5. A piloted simulator investigation of augmentation systems to improve helicopter nap-of-the-earth handling qualities

    NASA Technical Reports Server (NTRS)

    Chen, R. T. N.; Talbot, P. D.; Gerdes, R. M.; Dugan, D. C.

    1978-01-01

    A piloted simulation study assessed various levels of stability and control augmentation designed to improve the handling qualities of several helicopters in nap-of-the-earth (NOE) flight. Five basic single rotor helicopters - one teetering, two articulated, and two hingeless - which were found to have a variety of major deficiencies in a previous fixed-based simulator study were selected as baseline configurations. The stability and control augmentation systems (SCAS) include simple control augmentation systems (CAS) to decouple pitch and yaw responses due to collective input and to quicken the pitch and roll control responses; SCAS of rate command type designed to optimize the sensitivity and damping and to decouple the pitch-roll due to aircraft angular rate; and attitude command type SCAS. Pilot ratings and commentary are presented as well as performance data related to the task. SCAS control usage and their gain levels associated with specific rotor type are also discussed.

  6. Piloted simulator investigation of helicopter control systems effects on handling qualities during instrument flight

    NASA Technical Reports Server (NTRS)

    Forrest, R. D.; Chen, R. T. N.; Gerdes, R. M.; Alderete, T. S.; Gee, D. R.

    1979-01-01

    An exploratory piloted simulation was conducted to investigate the effects of the characteristics of helicopter flight control systems on instrument flight handling qualities. This joint FAA/NASA study was motivated by the need to improve instrument flight capability. A near-term objective is to assist in updating the airworthiness criteria for helicopter instrument flight. The experiment consisted of variations of single-rotor helicopter types and levels of stability and control augmentation systems (SCAS). These configurations were evaluated during an omnirange approach task under visual and instrument flight conditions. The levels of SCAS design included a simple rate damping system, collective decoupling plus rate damping, and an attitude command system with collective decoupling. A limited evaluation of stick force versus airspeed stability was accomplished. Some problems were experienced with control system mechanization which had a detrimental effect on longitudinal stability. Pilot ratings, pilot commentary, and performance data related to the task are presented.

  7. Is the infant car seat challenge useful? A pilot study in a simulated moving vehicle.

    PubMed

    Arya, Renu; Williams, Georgina; Kilonback, Anna; Toward, Martin; Griffin, Michael; Blair, Peter S; Fleming, Peter

    2017-03-01

    The American Academy of Pediatrics recommends that preterm infants complete a predischarge 'car seat challenge' observation for cardiorespiratory compromise while in a car seat. This static challenge does not consider the more upright position in a car or the vibration of the seat when the car is moving. This pilot study was designed to assess the cardiorespiratory effects of vibration, mimicking the effect of being in a moving car, on preterm and term infants. A simulator was designed to reproduce vertical vibration similar to that in a rear-facing car seat at 30 mph. 19 healthy newborn term and 21 preterm infants, ready for hospital discharge, underwent cardiorespiratory measurements while lying flat in a cot (baseline), static in the seat (30°), simulator (40°) and during motion (vibration 40°). Median test age was 13 days (range 1-65 days) and median weight was 2.5 kg (IQR: 2.1-3.1 kg).Compared with baseline observations, only the total number of desaturations was significantly increased when infants were placed at 30° (p=0.03). At 40°, or with vibration, respiratory and heart rates increased and oxygen saturation decreased significantly. Profound desaturations <85% significantly increased during motion, regardless of gestational age. This is the first study to assess the effect of motion on infants seated in a car safety seat. Term and preterm infants showed significant signs of potentially adverse cardiorespiratory effects in the upright position at 40°, particularly with simulated motion, not identified in the standard challenge. A larger study is required to investigate the significance of these results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  8. The effect of simulated narratives that leverage EMR data on shared decision-making: a pilot study.

    PubMed

    Zeng-Treitler, Qing; Gibson, Bryan; Hill, Brent; Butler, Jorie; Christensen, Carrie; Redd, Douglas; Shao, Yijun; Bray, Bruce

    2016-07-22

    Shared decision-making can improve patient satisfaction and outcomes. To participate in shared decision-making, patients need information about the potential risks and benefits of treatment options. Our team has developed a novel prototype tool for shared decision-making called hearts like mine (HLM) that leverages EHR data to provide personalized information to patients regarding potential outcomes of different treatments. These potential outcomes are presented through an Icon array and/or simulated narratives for each "person" in the display. In this pilot project we sought to determine whether the inclusion of simulated narratives in the display affects individuals' decision-making. Thirty subjects participated in this block-randomized study in which they used a version of HLM with simulated narratives and a version without (or in the opposite order) to make a hypothetical therapeutic decision. After each decision, participants completed a questionnaire that measured decisional confidence. We used Chi square tests to compare decisions across conditions and Mann-Whitney U tests to examine the effects of narratives on decisional confidence. Finally, we calculated the mean of subjects' post-experiment rating of whether narratives were helpful in their decision-making. In this study, there was no effect of simulated narratives on treatment decisions (decision 1: Chi squared = 0, p = 1.0; decision 2: Chi squared = 0.574, p = 0.44) or Decisional confidence (decision 1, w = 105.5, p = 0.78; decision 2, w = 86.5, p = 0.28). Post-experiment, participants reported that narratives helped them to make decisions (mean = 3.3/4). We found that simulated narratives had no measurable effect on decisional confidence or decisions and most participants felt that the narratives were helpful to them in making therapeutic decisions. The use of simulated stories holds promise for promoting shared decision-making while minimizing their potential biasing effect.

  9. A comparison of effects of peripheral vision cues on pilot performance during instrument flight in dissimilar aircraft simulators.

    DOT National Transportation Integrated Search

    1968-09-01

    Pilot response to peripheral vision cues relating to aircraft bank angle was studied during instrument flight in two simulators representing (1) a conventional, medium weight, piston engine airliner, and (2) a heavy, jet engine, sweptwing transport. ...

  10. Application of Piloted Simulation to High-Angle-of-Attack Flight-Dynamics Research for Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Ogburn, Marilyn E.; Foster, John V.; Hoffler, Keith D.

    2005-01-01

    This paper reviews the use of piloted simulation at Langley Research Center as part of the NASA High-Angle-of-Attack Technology Program (HATP), which was created to provide concepts and methods for the design of advanced fighter aircraft. A major research activity within this program is the development of the design processes required to take advantage of the benefits of advanced control concepts for high-angle-of-attack agility. Fundamental methodologies associated with the effective use of piloted simulation for this research are described, particularly those relating to the test techniques, validation of the test results, and design guideline/criteria development.

  11. Simulated Conversations With Virtual Humans to Improve Patient-Provider Communication and Reduce Unnecessary Prescriptions for Antibiotics: A Repeated Measure Pilot Study

    PubMed Central

    2017-01-01

    Background Despite clear evidence that antibiotics do not cure viral infections, the problem of unnecessary prescribing of antibiotics in ambulatory care persists, and in some cases, prescribing patterns have increased. The overuse of antibiotics for treating viral infections has created numerous economic and clinical consequences including increased medical costs due to unnecessary hospitalizations, antibiotic resistance, disruption of gut bacteria, and obesity. Recent research has underscored the importance of collaborative patient-provider communication as a means to reduce the high rates of unnecessary prescriptions for antibiotics. However, most patients and providers do not feel prepared to engage in such challenging conversations. Objectives The aim of this pilot study was to assess the ability of a brief 15-min simulated role-play conversation with virtual humans to serve as a preliminary step to help health care providers and patients practice, and learn how to engage in effective conversations about antibiotics overuse. Methods A total of 69 participants (35 providers and 34 patients) completed the simulation once in one sitting. A pre-post repeated measures design was used to assess changes in patients’ and providers’ self-reported communication behaviors, activation, and preparedness, intention, and confidence to effectively communicate in the patient-provider encounter. Changes in patients’ knowledge and beliefs regarding antibiotic use were also evaluated. Results Patients experienced a short-term positive improvement in beliefs about appropriate antibiotic use for infection (F1,30=14.10, P=.001). Knowledge scores regarding the correct uses of antibiotics improved immediately postsimulation, but decreased at the 1-month follow-up (F1,30=31.16, P<.001). There was no change in patient activation and shared decision-making (SDM) scores in the total sample of patients (P>.10) Patients with lower levels of activation exhibited positive, short

  12. The effects of workload on respiratory variables in simulated flight: a preliminary study.

    PubMed

    Karavidas, Maria Katsamanis; Lehrer, Paul M; Lu, Shou-En; Vaschillo, Evgeny; Vaschillo, Bronya; Cheng, Andrew

    2010-04-01

    In this pilot study, we investigated respiratory activity and end-tidal carbon dioxide (P(et)CO(2)) during exposure to varying levels of work load in a simulated flight environment. Seven pilots (age: 34-60) participated in a one-session test on the Boeing 737-800 simulator. Physiological data were collected while pilots wore an ambulatory multi-channel recording device. Respiratory variables, including inductance plethysmography (respiratory pattern) and pressure of end-tidal carbon dioxide (P(et)CO(2)), were collected demonstrating change in CO(2) levels proportional to changes in flight task workload. Pilots performed a set of simulation flight tasks. Pilot performance was rated for each task by a test pilot; and self-report of workload was taken using the NASA-TLX scale. Mixed model analysis revealed that respiration rate and minute ventilation are significantly associated with workload levels and evaluator scores controlling for "vanilla baseline" condition. Hypocapnia exclusively occurred in tasks where pilots performed more poorly. This study was designed as a preliminary investigation in order to develop a psychophysiological assessment methodology, rather than to offer conclusive findings. The results show that the respiratory system is very reactive to high workload conditions in aviation and suggest that hypocapnia may pose a flight safety risk under some circumstances. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Studies of Pilot Control During Launching and Reentry of Space Vehicles, Utilizing the Human Centrifuge

    NASA Technical Reports Server (NTRS)

    Clark, Carl C.; Woodling, C. H.

    1959-01-01

    With the ever increasing complexity of airplanes and the nearness to reality of manned space vehicles the use of pilot-controlled flight simulators has become imperative. The state of the art in flight simulation has progressed well with the demand. Pilot-controlled flight simulators are finding increasing uses in aeromedical research, airplane and airplane systems design, and preflight training. At the present many flight simulators are in existence with various degrees of sophistication and sundry purposes. These vary from fixed base simulators where the pilot applies control inputs according to visual cues presented to him on an instrument display to moving base simulators where various combinations of angular and linear motions are added in an attempt to improve the flight simulation.

  14. Ride qualities criteria validation/pilot performance study: Flight test results

    NASA Technical Reports Server (NTRS)

    Nardi, L. U.; Kawana, H. Y.; Greek, D. C.

    1979-01-01

    Pilot performance during a terrain following flight was studied for ride quality criteria validation. Data from manual and automatic terrain following operations conducted during low level penetrations were analyzed to determine the effect of ride qualities on crew performance. The conditions analyzed included varying levels of turbulence, terrain roughness, and mission duration with a ride smoothing system on and off. Limited validation of the B-1 ride quality criteria and some of the first order interactions between ride qualities and pilot/vehicle performance are highlighted. An earlier B-1 flight simulation program correlated well with the flight test results.

  15. Life and Microgravity Sciences Spacelab Mission: Human Research Pilot Study

    NASA Technical Reports Server (NTRS)

    Arnaud, Sara B. (Editor); Walker, Karen R. (Editor); Hargens, Alan (Editor)

    1996-01-01

    The Life Sciences, Microgravity Science and Spacelab Mission contains a number of human experiments directed toward identifying the functional, metabolic and neurological characteristics of muscle weakness and atrophy during space flight. To ensure the successful completion of the flight experiments, a ground-based pilot study, designed to mimic the flight protocols as closely as possible, was carried out in the head-down tilt bed rest model. This report records the rationales, procedures, preliminary results and estimated value of the pilot study, the first of its kind, for 12 of the 13 planned experiments in human research. The bed rest study was conducted in the Human Research Facility at Ames Research Center from July 11 - August 28, 1995. Eight healthy male volunteers performed the experiments before, during and after 17 days bed rest. The immediate purposes of this simulation were to integrate the experiments, provide data in a large enough sample for publication of results, enable investigators to review individual experiments in the framework of a multi-disciplinary study and relay the experience of the pilot study to the mission specialists prior to launch.

  16. Partnering to Establish and Study Simulation in International Nursing Education.

    PubMed

    Garner, Shelby L; Killingsworth, Erin; Raj, Leena

    The purpose of this article was to describe an international partnership to establish and study simulation in India. A pilot study was performed to determine interrater reliability among faculty new to simulation when evaluating nursing student competency performance. Interrater reliability was below the ideal agreement level. Findings in this study underscore the need to obtain baseline interrater reliability data before integrating competency evaluation into a simulation program.

  17. Heads-Up Display with Virtual Precision Approach Path Indicator as Implemented in a Real-Time Piloted Lifting-Body Simulation

    NASA Technical Reports Server (NTRS)

    Neuhaus, Jason R.

    2018-01-01

    This document describes the heads-up display (HUD) used in a piloted lifting-body entry, approach and landing simulation developed for the simulator facilities of the Simulation Development and Analysis Branch (SDAB) at NASA Langley Research Center. The HUD symbology originated with the piloted simulation evaluations of the HL-20 lifting body concept conducted in 1989 at NASA Langley. The original symbology was roughly based on Shuttle HUD symbology, as interpreted by Langley researchers. This document focuses on the addition of the precision approach path indicator (PAPI) lights to the HUD overlay.

  18. Piloted simulator evaluation of a relaxed static stability fighter at high angle-of-attack

    NASA Technical Reports Server (NTRS)

    Lapins, M.; Klein, R. W.; Martorella, R. P.; Cangelosi, J.; Neely, W. R., Jr.

    1982-01-01

    A piloted simulator evaluation of the stability and control characteristics of a relaxed static stability fighter aircraft was conducted using a differential maneuvering simulator. The primary purpose of the simulation was to evaluate the effectiveness of the limiters in preventing departure from controlled flight. The simulation was conducted in two phases, the first consisting of open-loop point stability evaluations over a range of subsonic flight conditions, the second concentrating on closed-loop tracking of a preprogrammed target in low speed, high angle-of-attack air combat maneuvering. The command limiters were effective in preventing departure from controlled flight while permitting competent levels of sustained maneuvering. Parametric variations during the study included the effects of pitch control power and wing-body static margin. Stability and control issues were clearly shown to impact the configuration design.

  19. Pilot study comparing simulation-based and didactic lecture-based critical care teaching for final-year medical students.

    PubMed

    Solymos, Orsolya; O'Kelly, Patrick; Walshe, Criona M

    2015-10-21

    . Simulation is more resource intensive, as demonstrated by increased duration and personnel required, and this may have affected our results. The current pilot may be of use in informing future studies in this area.

  20. Effect of Alternate Nostril Breathing Exercise on Experimentally Induced Anxiety in Healthy Volunteers Using the Simulated Public Speaking Model: A Randomized Controlled Pilot Study.

    PubMed

    Kamath, Ashwin; Urval, Rathnakar P; Shenoy, Ashok K

    2017-01-01

    A randomized controlled pilot study was carried out to determine the effect of a 15-minute practice of ANB exercise on experimentally induced anxiety using the simulated public speaking model in yoga-naïve healthy young adults. Thirty consenting medical students were equally divided into test and control groups. The test group performed alternate nostril breathing exercise for 15 minutes, while the control group sat in a quiet room before participating in the simulated public speaking test (SPST). Visual Analog Mood Scale and Self-Statements during Public Speaking scale were used to measure the mood state at different phases of the SPST. The psychometric scores of both groups were comparable at baseline. Repeated-measures ANOVA showed a significant effect of phase ( p < 0.05), but group and gender did not have statistically significant influence on the mean anxiety scores. However, the test group showed a trend towards lower mean scores for the anxiety factor when compared with the control group. Considering the limitations of this pilot study and the trend seen towards lower anxiety in the test group, alternate nostril breathing may have potential anxiolytic effect in acute stressful situations. A study with larger sample size is therefore warranted. This trial is registered with CTRI/2014/03/004460.

  1. Effect of Alternate Nostril Breathing Exercise on Experimentally Induced Anxiety in Healthy Volunteers Using the Simulated Public Speaking Model: A Randomized Controlled Pilot Study

    PubMed Central

    Urval, Rathnakar P.; Shenoy, Ashok K.

    2017-01-01

    A randomized controlled pilot study was carried out to determine the effect of a 15-minute practice of ANB exercise on experimentally induced anxiety using the simulated public speaking model in yoga-naïve healthy young adults. Thirty consenting medical students were equally divided into test and control groups. The test group performed alternate nostril breathing exercise for 15 minutes, while the control group sat in a quiet room before participating in the simulated public speaking test (SPST). Visual Analog Mood Scale and Self-Statements during Public Speaking scale were used to measure the mood state at different phases of the SPST. The psychometric scores of both groups were comparable at baseline. Repeated-measures ANOVA showed a significant effect of phase (p < 0.05), but group and gender did not have statistically significant influence on the mean anxiety scores. However, the test group showed a trend towards lower mean scores for the anxiety factor when compared with the control group. Considering the limitations of this pilot study and the trend seen towards lower anxiety in the test group, alternate nostril breathing may have potential anxiolytic effect in acute stressful situations. A study with larger sample size is therefore warranted. This trial is registered with CTRI/2014/03/004460. PMID:29159176

  2. Pilot interaction with cockpit automation 2: An experimental study of pilots' model and awareness of the Flight Management System

    NASA Technical Reports Server (NTRS)

    Sarter, Nadine B.; Woods, David D.

    1994-01-01

    Technological developments have made it possible to automate more and more functions on the commercial aviation flight deck and in other dynamic high-consequence domains. This increase in the degrees of freedom in design has shifted questions away from narrow technological feasibility. Many concerned groups, from designers and operators to regulators and researchers, have begun to ask questions about how we should use the possibilities afforded by technology skillfully to support and expand human performance. In this article, we report on an experimental study that addressed these questions by examining pilot interaction with the current generation of flight deck automation. Previous results on pilot-automation interaction derived from pilot surveys, incident reports, and training observations have produced a corpus of features and contexts in which human-machine coordination is likely to break down (e.g., automation surprises). We used these data to design a simulated flight scenario that contained a variety of probes designed to reveal pilots' mental model of one major component of flight deck automation: the Flight Management System (FMS). The events within the scenario were also designed to probe pilots' ability to apply their knowledge and understanding in specific flight contexts and to examine their ability to track the status and behavior of the automated system (mode awareness). Although pilots were able to 'make the system work' in standard situations, the results reveal a variety of latent problems in pilot-FMS interaction that can affect pilot performance in nonnormal time critical situations.

  3. Study of the use of a nonlinear, rate limited, filter on pilot control signals

    NASA Technical Reports Server (NTRS)

    Adams, J. J.

    1977-01-01

    The use of a filter on the pilot's control output could improve the performance of the pilot-aircraft system. What is needed is a filter with a sharp high frequency cut-off, no resonance peak, and a minimum of lag at low frequencies. The present investigation studies the usefulness of a nonlinear, rate limited, filter in performing the needed function. The nonlinear filter is compared with a linear, first order filter, and no filter. An analytical study using pilot models and a simulation study using experienced test pilots was performed. The results showed that the nonlinear filter does promote quick, steady maneuvering. It is shown that the nonlinear filter attenuates the high frequency remnant and adds less phase lag to the low frequency signal than does the linear filter. It is also shown that the rate limit in the nonlinear filter can be set to be too restrictive, causing an unstable pilot-aircraft system response.

  4. Computer Simulation for Pain Management Education: A Pilot Study.

    PubMed

    Allred, Kelly; Gerardi, Nicole

    2017-10-01

    Effective pain management is an elusive concept in acute care. Inadequate knowledge has been identified as a barrier to providing optimal pain management. This study aimed to determine student perceptions of an interactive computer simulation as a potential method for learning pain management, as a motivator to read and learn more about pain management, preference over traditional lecture, and its potential to change nursing practice. A post-computer simulation survey with a mixed-methods descriptive design was used in this study. A college of nursing in a large metropolitan university in the Southeast United States. A convenience sample of 30 nursing students in a Bachelor of Science nursing program. An interactive computer simulation was developed as a potential alternative method of teaching pain management to nursing students. Increases in educational gain as well as its potential to change practice were explored. Each participant was asked to complete a survey consisting of 10 standard 5-point Likert scale items and 5 open-ended questions. The survey was used to evaluate the students' perception of the simulation, specifically related to educational benefit, preference compared with traditional teaching methods, and perceived potential to change nursing practice. Data provided descriptive statistics for initial evaluation of the computer simulation. The responses on the survey suggest nursing students perceive the computer simulation to be entertaining, fun, educational, occasionally preferred over regular lecture, and with potential to change practice. Preliminary data support the use of computer simulation in educating nursing students about pain management. Copyright © 2017 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  5. Piloted Aircraft Environment Simulation Techniques

    DTIC Science & Technology

    1978-04-01

    raS’I.Al. lIIf~iiI~.1 labL. lot. Rolmotion -oft. skylicav - ow d Roll rMotion -oft Skylicape - Off Fig 6 a A Effect of roll motion and akyscape, an msatwntn...greater realism and pilot involvement than ground based simu- lation, it still lacks some of the pilot motivating factors of actual combat. Flight

  6. A remotely piloted aircraft system in major incident management: concept and pilot, feasibility study.

    PubMed

    Abrahamsen, Håkon B

    2015-06-10

    Major incidents are complex, dynamic and bewildering task environments characterised by simultaneous, rapidly changing events, uncertainty and ill-structured problems. Efficient management, communication, decision-making and allocation of scarce medical resources at the chaotic scene of a major incident is challenging and often relies on sparse information and data. Communication and information sharing is primarily voice-to-voice through phone or radio on specified radio frequencies. Visual cues are abundant and difficult to communicate between teams and team members that are not co-located. The aim was to assess the concept and feasibility of using a remotely piloted aircraft (RPA) system to support remote sensing in simulated major incident exercises. We carried out an experimental, pilot feasibility study. A custom-made, remotely controlled, multirotor unmanned aerial vehicle with vertical take-off and landing was equipped with digital colour- and thermal imaging cameras, a laser beam, a mechanical gripper arm and an avalanche transceiver. We collected data in five simulated exercises: 1) mass casualty traffic accident, 2) mountain rescue, 3) avalanche with buried victims, 4) fisherman through thin ice and 5) search for casualties in the dark. The unmanned aerial vehicle was remotely controlled, with high precision, in close proximity to air space obstacles at very low levels without compromising work on the ground. Payload capacity and tolerance to wind and turbulence were limited. Aerial video, shot from different altitudes, and remote aerial avalanche beacon search were streamed wirelessly in real time to a monitor at a ground base. Electromagnetic interference disturbed signal reception in the ground monitor. A small remotely piloted aircraft can be used as an effective tool carrier, although limited by its payload capacity, wind speed and flight endurance. Remote sensing using already existing remotely piloted aircraft technology in pre

  7. Practises to identify and prevent adverse aircraft-and-rotorcraft-pilot couplings-A ground simulator perspective

    NASA Astrophysics Data System (ADS)

    Pavel, Marilena D.; Jump, Michael; Masarati, Pierangelo; Zaichik, Larisa; Dang-Vu, Binh; Smaili, Hafid; Quaranta, Giuseppe; Stroosma, Olaf; Yilmaz, Deniz; Johnes, Michael; Gennaretti, Massimmo; Ionita, Achim

    2015-08-01

    The aviation community relies heavily on flight simulators as a fundamental tool for research, pilot training and development of any new aircraft design. The goal of the present paper is to provide a review on how effective ground simulation is as an assessment tool for unmasking adverse Aircraft-and-Rotorcraft Pilot Couplings (APC/RPC). Although it is generally believed that simulators are not reliable in revealing the existence of A/RPC tendencies, the paper demonstrates that a proper selection of high-gain tasks combined with appropriate motion and visual cueing can reveal negative features of a particular aircraft that may lead to A/RPC. The paper discusses new methods for real-time A/RPC detection that can be used as a tool for unmasking adverse A/RPC. Although flight simulators will not achieve the level of reality of in-flight testing, exposing A/RPC tendencies in the simulator may be the only convenient safe place to evaluate the wide range of conditions that could produce hazardous A/RPC events.

  8. Fixed-base simulator study of the effect of time delays in visual cues on pilot tracking performance

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Riley, D. R.

    1975-01-01

    Factors were examined which determine the amount of time delay acceptable in the visual feedback loop in flight simulators. Acceptable time delays are defined as delays which significantly affect neither the results nor the manner in which the subject 'flies' the simulator. The subject tracked a target aircraft as it oscillated sinusoidally in a vertical plane only. The pursuing aircraft was permitted five degrees of freedom. Time delays of from 0.047 to 0.297 second were inserted in the visual feedback loop. A side task was employed to maintain the workload constant and to insure that the pilot was fully occupied during the experiment. Tracking results were obtained for 17 aircraft configurations having different longitudinal short-period characteristics. Results show a positive correlation between improved handling qualities and a longer acceptable time delay.

  9. Comparisons of pilot performance in simulated and actual flight. [effects of ingested barbiturates

    NASA Technical Reports Server (NTRS)

    Billings, C. E.; Gerke, R. J.; Wick, R. L., Jr.

    1975-01-01

    Five highly experienced professional pilots performed instrument landing system approaches under simulated instrument flight conditions in a Cessna 172 airplane and in a Link-Singer GAT-1 simulator while under the influence of orally administered secobarbital (0, 100, and 200 mg). Tracking performance in two axes and airspeed control were evaluated continuously during each approach. Error and RMS variability were about half as large in the simulator as in the airplane. The observed data were more strongly associated with the drug level in the simulator than in the airplane. Further, the drug-related effects were more consistent in the simulator. Improvement in performance suggestive of learning effects were seen in the simulator, but not in actual flight.

  10. Pilot physiology, cognition and flight performance during flight simulation exposed to a 3810-m hypoxic condition.

    PubMed

    Peacock, Corey A; Weber, Raymond; Sanders, Gabriel J; Seo, Yongsuk; Kean, David; Pollock, Brandon S; Burns, Keith J; Cain, Mark; LaScola, Phillip; Glickman, Ellen L

    2017-03-01

    Hypoxia is a physiological state defined as a reduction in the distribution of oxygen to the tissues of the body. It has been considered a major factor in aviation safety worldwide because of its potential for pilot disorientation. Pilots are able to operate aircrafts up to 3810 m without the use of supplemental oxygen and may exhibit symptoms associated with hypoxia. To determine the effects of 3810 m on physiology, cognition and performance in pilots during a flight simulation. Ten healthy male pilots engaged in a counterbalanced experimental protocol comparing a 0-m normoxic condition (NORM) with a 3810-m hypoxic condition (HYP) on pilot physiology, cognition and flight performance. Repeated-measures analysis of variance demonstrated a significant (p ≤ 0.05) time by condition interaction for physiological and cognitive alterations during HYP. A paired-samples t test demonstrated no differences in pilot performance (p ≥ 0.05) between conditions. Pilots exhibited physiological and cognitive impairments; however, pilot performance was not affected by HYP.

  11. Simulated Conversations With Virtual Humans to Improve Patient-Provider Communication and Reduce Unnecessary Prescriptions for Antibiotics: A Repeated Measure Pilot Study.

    PubMed

    Schoenthaler, Antoinette; Albright, Glenn; Hibbard, Judith; Goldman, Ron

    2017-04-19

    Despite clear evidence that antibiotics do not cure viral infections, the problem of unnecessary prescribing of antibiotics in ambulatory care persists, and in some cases, prescribing patterns have increased. The overuse of antibiotics for treating viral infections has created numerous economic and clinical consequences including increased medical costs due to unnecessary hospitalizations, antibiotic resistance, disruption of gut bacteria, and obesity. Recent research has underscored the importance of collaborative patient-provider communication as a means to reduce the high rates of unnecessary prescriptions for antibiotics. However, most patients and providers do not feel prepared to engage in such challenging conversations. The aim of this pilot study was to assess the ability of a brief 15-min simulated role-play conversation with virtual humans to serve as a preliminary step to help health care providers and patients practice, and learn how to engage in effective conversations about antibiotics overuse. A total of 69 participants (35 providers and 34 patients) completed the simulation once in one sitting. A pre-post repeated measures design was used to assess changes in patients' and providers' self-reported communication behaviors, activation, and preparedness, intention, and confidence to effectively communicate in the patient-provider encounter. Changes in patients' knowledge and beliefs regarding antibiotic use were also evaluated. Patients experienced a short-term positive improvement in beliefs about appropriate antibiotic use for infection (F 1,30 =14.10, P=.001). Knowledge scores regarding the correct uses of antibiotics improved immediately postsimulation, but decreased at the 1-month follow-up (F 1,30 =31.16, P<.001). There was no change in patient activation and shared decision-making (SDM) scores in the total sample of patients (P>.10) Patients with lower levels of activation exhibited positive, short-term benefits in increased intent and

  12. Investigating the Extent Realistic Moulage Impacts on Immersion and Performance Among Undergraduate Paramedicine Students in a Simulation-based Trauma Scenario: A Pilot Study.

    PubMed

    Mills, Brennen W; Miles, Alecka K; Phan, Tina; Dykstra, Peggy M C; Hansen, Sara S; Walsh, Andrew S; Reid, David N; Langdon, Claire

    2018-04-18

    Many healthcare education commentators suggest that moulage can be used in simulation to enhance scenario realism. However, few studies investigate to what extent using moulage in simulation impacts learners. We undertook a mixed-methods pilot study investigating how moulage influences student immersion and performance in simulation. Fifty undergraduate paramedicine students were randomized into two groups completing a trauma-based scenario with or without patient moulage. Task immersion was determined via a self-report questionnaire (National Aeronautics and Space Administration Task Load Index), eye-tracking, and postsimulation interviews. Performance was measured via independent observation of video by two paramedic clinical educators and time-to-action-when students first applied pressure to the primary wound. Eye-tracking suggested that students attended to the thigh wound more often with the inclusion of moulage than without. National Aeronautics and Space Administration Task Load Index data suggested that the inclusion of moulage heightened students' feeling of being rushed throughout the scenario. This elicited an expedited performance of tasks with moulage present compared with not. Students experienced greater immersion with the inclusion of moulage. However, including moulage enhanced scenario difficulty to the extent that overall clinical performance was negatively affected. However, no differences were found when more heavily weighting items felt to contribute most to the survivability of the patient. Including moulage engendered immersion and a greater sense of urgency and did not sacrifice performance of key life-saving interventions. As a result of undertaking this pilot project, we suggest that a large-scale randomized controlled trial is feasible and should be undertaken before implementing change to curricula.

  13. Pilot Study: Impact of Computer Simulation on Students' Economic Policy Performance. Pilot Study.

    ERIC Educational Resources Information Center

    Domazlicky, Bruce; France, Judith

    Fiscal and monetary policies taught in macroeconomic principles courses are concepts that might require both lecture and simulation methods. The simulation models, which apply the principles gleened from comparative statistics to a dynamic world, may give students an appreciation for the problems facing policy makers. This paper is a report of a…

  14. GEMINI-TITAN (GT)-9- TRAINING - AEROSPACE FLIGHT SIMULATOR - PILOT - TX

    NASA Image and Video Library

    1966-03-01

    S66-27990 (March 1966) --- Astronaut Eugene A. Cernan, pilot for the Gemini-9 spaceflight, works out procedures for his historic space excursion in a unique manned Aerospace Flight Simulator at LTV Corp. at Dallas, Texas. The LTV simulator is used frequently by NASA astronauts for a variety of space programs maneuvers to provide many of the sensations and visual scenes of actual spaceflight. Controlled through a complex of computers, the device makes it possible for the astronauts to work out procedures, solve problems and simulate missions in real time with great accuracy. The astronaut rides in a spacecraft-like gondola which moves in roll, pitch and yaw in response to his controls and accurate computer inputs. The simulator's usual spacecraft displays and canopy have been removed and AMU backpack complete with control electronics installed. The astronaut makes his simulated flight in an inflated pressure suit and with the NASA-developed Extravehicular Life Support system chest pack which will be used in the Gemini flight. Photo credit: NASA

  15. Pilot Evaluations of Runway Status Light System

    NASA Technical Reports Server (NTRS)

    Young, Steven D.; Wills, Robert W.; Smith, R. Marshall

    1996-01-01

    This study focuses on use of the Transport Systems Research Vehicle (TSRV) Simulator at the Langley Research Center to obtain pilot opinion and input on the Federal Aviation Administration's Runway Status Light System (RWSL) prior to installation in an operational airport environment. The RWSL has been designed to reduce the likelihood of runway incursions by visually alerting pilots when a runway is occupied. Demonstrations of the RWSL in the TSRV Simulator allowed pilots to evaluate the system in a realistic cockpit environment.

  16. Exploratory piloted simulator study of the effects of winglets on handling qualities of a representative agricultural airplane

    NASA Technical Reports Server (NTRS)

    Ogburn, M. E.; Brown, P. W.

    1980-01-01

    The effects on handling qualities of adding winglets to a representative agricultural aircraft configuration during swath-run maneuvering were evaluated. Aerodynamic data used in the simulation were based on low-speed wind tunnel tests of a full scale airplane and a subscale model. The Cooper-Harper handling qualities rating scale, supplementary pilot comments, and pilot vehicle performance data were used to describe the handling qualities of the airplane with the different wing-tip configurations. Results showed that the lateral-directional handling qualities of the airplane were greatly affected by the application of winglets and winglet cant angle. The airplane with winglets canted out 20 deg exhibited severely degraded lateral directional handling qualities in comparison to the basic airplane. When the winglets were canted inward 10 deg, the flying qualities of the configuration were markedly improved over those of the winglet-canted-out configuration or the basic configuration without winglets, indicating that proper tailoring of the winglet design may afford a potential benefit in the area of handling qualities.

  17. Guidelines for Simulator-Based Marine Pilot Training Programs

    DTIC Science & Technology

    1985-03-01

    Excellent’ Saifat Marginal Iiwartisfdc tory C oe n t s 0 / /0// .-ON I- FX- D OF V/L W L/wiT5. j :4 EX ER/? 15 r--5. 5Imu,1-tQ/0AJ OP- [319A/< E-.FPrc.r...REPOrT No. CG- D -25-85 CAORF-50-83 18-02 It) TECHNICAL REPORT GUIDELINES FOR SIMULATOR-BASED MARINE PILOT TRAINING PROGRAMS Reproduced From Best...constitute a standard, specification, or regulation. . Acoesson For - NTIS 7 &1 PTIC’ T,,R [_ 000, D.st r .. D !vr 4 i a -1 BIBLIOGRAPHIC DATA .Repof" No. 2. 3

  18. A piloted simulation of helicopter air combat to investigate effects of variations in selected performance and control response characteristics

    NASA Technical Reports Server (NTRS)

    Lewis, Michael S.; Mansur, M. Hossein; Chen, Robert T. N.

    1987-01-01

    A piloted simulation study investigating handling qualities and flight characteristics required for helicopter air to air combat is presented. The Helicopter Air Combat system was used to investigate this role for Army rotorcraft. Experimental variables were the maneuver envelope size (load factor and sideslip), directional axis handling qualities, and pitch and roll control-response type. Over 450 simulated, low altitude, one-on-one engagements were conducted. Results from the experiment indicate that a well damped directional response, low sideforce caused by sideslip, and some effective dihedral are all desirable for weapon system performance, good handling qualities, and low pilot workload. An angular rate command system was favored over the attitude type pitch and roll response for most applications, and an enhanced maneuver envelope size over that of current generation aircraft was found to be advantageous. Pilot technique, background, and experience are additional factors which had a significant effect on performance in the air combat tasks investigated. The implication of these results on design requirements for future helicopters is presented.

  19. Expectancy Effects on Self-Reported Attention-Deficit/Hyperactivity Disorder Symptoms in Simulated Neurofeedback: A Pilot Study.

    PubMed

    Lee, Grace J; Suhr, Julie A

    2018-03-31

    Expectancy is a psychological factor that can impact treatment effectiveness. Research on neurofeedback for attention-deficit/hyperactivity disorder (ADHD) suggests expectancy may contribute to treatment outcomes, though evidence for expectancy as an explanatory factor is sparse. This pilot study investigated the effects of expectancies on self-reported ADHD symptoms in simulated neurofeedback. Forty-six adults who were concerned that they had ADHD expected to receive active neurofeedback, but were randomly assigned to receive a placebo with false feedback indicating attentive (positive false feedback) or inattentive (negative false feedback) states. Effects of the expectancy manipulation were measured on an ADHD self-report scale. Large expectancy effects were found, such that individuals who received positive false feedback reported significant decreases in ADHD symptoms, whereas individuals who received negative false feedback reported significant increases in ADHD symptoms. Findings suggest that expectancy should be considered as an explanatory mechanism for ADHD symptom change in response to neurofeedback.

  20. Effect of caffeine on simulator flight performance in sleep-deprived military pilot students.

    PubMed

    Lohi, Jouni J; Huttunen, Kerttu H; Lahtinen, Taija M M; Kilpeläinen, Airi A; Muhli, Arto A; Leino, Tuomo K

    2007-09-01

    Caffeine has been suggested to act as a countermeasure against fatigue in military operations. In this randomized, double-blind, placebo-controlled study, the effect of caffeine on simulator flight performance was examined in 13 military pilots during 37 hours of sleep deprivation. Each subject performed a flight mission in simulator four times. The subjects received either a placebo (six subjects) or 200 mg of caffeine (seven subjects) 1 hour before the simulated flights. A moderate 200 mg intake of caffeine was associated with higher axillary temperatures, but it did not affect subjectively assessed sleepiness. Flight performance was similar in both groups during the four rounds flown under sleep deprivation. However, subjective evaluation of overall flight performance in the caffeine group tended to be too optimistic, indicating a potential flight safety problem. Based on our results, we do not recommend using caffeine pills in military flight operations.

  1. The effects of bed rest on crew performance during simulated shuttle reentry. Volume 1: Study overview and physiological results

    NASA Technical Reports Server (NTRS)

    Chambers, A.; Vykukal, H. C.

    1974-01-01

    A centrifuge study was carried out to measure physiological stress and control task performance during simulated space shuttle orbiter reentry. Jet pilots were tested with, and without, anti-g-suit protection. The pilots were exposed to simulated space shuttle reentry acceleration profiles before, and after, ten days of complete bed rest, which produced physiological deconditioning similar to that resulting from prolonged exposure to orbital zero g. Pilot performance in selected control tasks was determined during simulated reentry, and before and after each simulation. Physiological stress during reentry was determined by monitoring heart rate, blood pressure, and respiration rate. Study results indicate: (1) heart rate increased during the simulated reentry when no g protection was given, and remained at or below pre-bed rest values when g-suits were used; (2) pilots preferred the use of g-suits to muscular contraction for control of vision tunneling and grayout during reentry; (3) prolonged bed rest did not alter blood pressure or respiration rate during reentry, but the peak reentry acceleration level did; and (4) pilot performance was not affected by prolonged bed rest or simulated reentry.

  2. Hypoxia and Coriolis Illusion in Pilots During Simulated Flight.

    PubMed

    Kowalczuk, Krzysztof P; Gazdzinski, Stefan P; Janewicz, Michał; Gąsik, Marek; Lewkowicz, Rafał; Wyleżoł, Mariusz

    2016-02-01

    Pilots' vision and flight performance may be impeded by spatial disorientation and high altitude hypoxia. The Coriolis illusion affects both orientation and vision. However, the combined effect of simultaneous Coriolis illusion and hypoxia on saccadic eye movement has not been evaluated. A simulated flight was performed by 14 experienced pilots under 3 conditions: once under normal oxygen partial pressure and twice under reduced oxygen partial pressures, reflecting conditions at 5000 m and 6000 m (16,404 and 19,685 ft), respectively. Eye movements were evaluated with a saccadometer. At normal oxygen pressure, Coriolis illusion resulted in 55% and 31% increases in mean saccade amplitude and duration, respectively, but a 32% increase in mean saccade frequency was only noted for saccades smaller than the angular distance between cockpit instruments, suggesting an increase in the number of correction saccades. At lower oxygen pressures a pronounced increase in the standard deviation of all measures was noticed; however, the pattern of changes remained unchanged. Simple measures of saccadic movement are not affected by short-term hypoxia, most likely due to compensatory mechanisms.

  3. Simulation in an Undergraduate Nursing Pharmacology Course: A Pilot Study.

    PubMed

    Tinnon, Elizabeth; Newton, Rebecca

    This study examined the effectiveness of simulation as a method of teaching pharmacological concepts to nursing students; perceptions of satisfaction with simulation as a teaching strategy were also evaluated. Second-semester juniors participated in three simulations and completed the National League for Nursing Student Satisfaction and Self-Confidence in Learning Questionnaire and the Student Evaluation of Educational Quality Survey; a control group received traditional lectures. A unit exam on anticoagulant therapy content was administered to measure effectiveness. Findings support that simulation is as effective as traditional lecture for an undergraduate pharmacology course.

  4. AFHRL/FT [Air Force Human Resources Laboratory/Flight Training] Capabilities in Undergraduate Pilot Training Simulation Research: Executive Summary.

    ERIC Educational Resources Information Center

    Matheny, W. G.; And Others

    The document presents a summary description of the Air Force Human Resource Laboratory's Flying Training Division (AFHRL/FT) research capabilities for undergraduate pilot training. One of the research devices investigated is the Advanced Simulator for Undergraduate Pilot Training (ASUPT). The equipment includes the ASUPT, the instrumented T-37…

  5. Structural dynamic model obtained from flight use with piloted simulation and handling qualities analysis

    NASA Technical Reports Server (NTRS)

    Powers, Bruce G.

    1996-01-01

    The ability to use flight data to determine an aircraft model with structural dynamic effects suitable for piloted simulation. and handling qualities analysis has been developed. This technique was demonstrated using SR-71 flight test data. For the SR-71 aircraft, the most significant structural response is the longitudinal first-bending mode. This mode was modeled as a second-order system, and the other higher order modes were modeled as a time delay. The distribution of the modal response at various fuselage locations was developed using a uniform beam solution, which can be calibrated using flight data. This approach was compared to the mode shape obtained from the ground vibration test, and the general form of the uniform beam solution was found to be a good representation of the mode shape in the areas of interest. To calibrate the solution, pitch-rate and normal-acceleration instrumentation is required for at least two locations. With the resulting structural model incorporated into the simulation, a good representation of the flight characteristics was provided for handling qualities analysis and piloted simulation.

  6. A study on aircraft map display location and orientation. [effects of map display location on manual piloting performance

    NASA Technical Reports Server (NTRS)

    Baty, D. L.; Wempe, T. E.; Huff, E. M.

    1973-01-01

    Six airline pilots participated in a fixed-base simulator study to determine the effects of two Horizontal Situation Display (HSD/map) panel locations relative to the Vertical Situation Display (VSD), and of three map orientations on manual piloting performance. Pilot comments and opinions were formally obtained. Significant performance differences were found between wind conditions, and among pilots, but not between map locations and orientations. The results also illustrate the potential tracking accuracy of such a display. Recommendations concerning display location and map orientation are made.

  7. A High-Fidelity Batch Simulation Environment for Integrated Batch and Piloted Air Combat Simulation Analysis

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.; McManus, John W.; Chappell, Alan R.

    1992-01-01

    A batch air combat simulation environment known as the Tactical Maneuvering Simulator (TMS) is presented. The TMS serves as a tool for developing and evaluating tactical maneuvering logics. The environment can also be used to evaluate the tactical implications of perturbations to aircraft performance or supporting systems. The TMS is capable of simulating air combat between any number of engagement participants, with practical limits imposed by computer memory and processing power. Aircraft are modeled using equations of motion, control laws, aerodynamics and propulsive characteristics equivalent to those used in high-fidelity piloted simulation. Databases representative of a modern high-performance aircraft with and without thrust-vectoring capability are included. To simplify the task of developing and implementing maneuvering logics in the TMS, an outer-loop control system known as the Tactical Autopilot (TA) is implemented in the aircraft simulation model. The TA converts guidance commands issued by computerized maneuvering logics in the form of desired angle-of-attack and wind axis-bank angle into inputs to the inner-loop control augmentation system of the aircraft. This report describes the capabilities and operation of the TMS.

  8. Pilot heart rate during in-flight simulated instrument approaches in a general aviation aircraft.

    DOT National Transportation Integrated Search

    1970-04-01

    Eight instrument rated pilots with flying experience ranging from 600 to 12,271 hours each flew 10 simulated ILS instrument approaches in a single engine, general aviation aircraft equipped with a primary flight display arranged in conventional 'T' c...

  9. Training monitoring skills in helicopter pilots.

    PubMed

    Potter, Brian A; Blickensderfer, Elizabeth L; Boquet, Albert J

    2014-05-01

    Prior research has indicated that ineffective pilot monitoring has been associated with aircraft accidents. Despite this finding, empirical research concerning pilot monitoring skill training programs is nearly nonexistent. E-learning may prove to be an effective method to foster nontechnical flight skills, including monitoring. This study examined the effect of using e-learning to enhance helicopter aircrew monitoring skill performance. The design was a posttest only field study. Forty-four helicopter pilots completed either an e-learning training module or a control activity and then flew two scenarios in a high-fidelity flight simulator. Learner reactions and knowledge gained were assessed immediately following the e-learning module. Two observer raters assessed behaviors and performance outcomes using recordings of the simulation flights. Subjects who completed the e-learning training module scored almost twice as high as did the control group on the administered knowledge test (experimental group, mean = 92.8%; control group, mean = 47.7%) and demonstrated up to 150% more monitoring behaviors during the simulated flights than the control subjects. In addition, the participating pilots rated the course highly. The results supported the hypothesis that a relatively inexpensive and brief training course implemented through e-learning can foster monitoring skill development among helicopter pilots.

  10. Pilot perception and confidence of location during a simulated helicopter navigation task.

    PubMed

    Yang, Ji Hyun; Cowden, Bradley T; Kennedy, Quinn; Schramm, Harrison; Sullivan, Joseph

    2013-09-01

    This paper aims to provide insights into human perception, navigation performance, and confidence in helicopter overland navigation. Helicopter overland navigation is a challenging mission area because it is a complex cognitive task, and failing to recognize when the aircraft is off-course can lead to operational failures and mishaps. A human-in-the-loop experiment to investigate pilot perception during simulated overland navigation by analyzing actual navigation trajectory, pilots' perceived location, and corresponding confidence levels was designed. There were 15 military officers with prior overland navigation experience who completed 4 simulated low-level navigation routes, 2 of which entailed auto-navigation. This route was paused roughly every 30 s for the subject to mark their perceived location on the map and their confidence level using a customized program. Analysis shows that there is no correlation between perceived and actual location of the aircraft, nor between confidence level and actual location. There is, however, some evidence that there is a correlation (rho = -0.60 to approximately 0.65) between perceived location and intended route of flight, suggesting that there is a bias toward believing one is on the intended flight route. If aviation personnel can proactively identify the circumstances in which usual misperceptions occur in navigation, they may reduce mission failure and accident rate. Fleet squadrons and instructional commands can benefit from this study to improve operations that require low-level flight while also improving crew resource management.

  11. A piloted-simulation evaluation of two electronic display formats for approach and landing

    NASA Technical Reports Server (NTRS)

    Steinmetz, G. G.; Morello, S. A.; Knox, C. E.; Person, L. H., Jr.

    1976-01-01

    The results of a piloted-simulation evaluation of the benefits of adding runway symbology and track information to a baseline electronic-attitude-director-indicator (EADI) format for the approach-to-landing task were presented. The evaluation was conducted for the baseline format and for the baseline format with the added symbology during 3 deg straight-in approaches with calm, cross-wind, and turbulence conditions. Flight-path performance data and pilot subjective comments were examined with regard to the pilot's tracking performance and mental workload for both display formats. The results show that the addition of a perspective runway image and relative track information to a basic situation-information EADI format improve the tracking performance both laterally and vertically during an approach-to-landing task and that the mental workload required to assess the approach situation was thus reduced as a result of integration of information.

  12. PILOT STUDY: THE TAMPA ASTHMATIC CHILDREN'S STUDY (TACS)

    EPA Science Inventory

    The Tampa Asthmatic Children's Study (TACS) was a pilot research study that focused on developing and evaluating air pollution exposure assessment methods and participant recruiting tools for children in the age range of 1-5 years old. The pilot study focused on (a) simple, cost-...

  13. Effects of motion base and g-seat cueing of simulator pilot performance

    NASA Technical Reports Server (NTRS)

    Ashworth, B. R.; Mckissick, B. T.; Parrish, R. V.

    1984-01-01

    In order to measure and analyze the effects of a motion plus g-seat cueing system, a manned-flight-simulation experiment was conducted utilizing a pursuit tracking task and an F-16 simulation model in the NASA Langley visual/motion simulator. This experiment provided the information necessary to determine whether motion and g-seat cues have an additive effect on the performance of this task. With respect to the lateral tracking error and roll-control stick force, the answer is affirmative. It is shown that presenting the two cues simultaneously caused significant reductions in lateral tracking error and that using the g-seat and motion base separately provided essentially equal reductions in the pilot's lateral tracking error.

  14. Functional Allocation with Airborne Self-Separation Evaluated in a Piloted Simulation

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Murdoch, Jennifer L.; Chamberlain, James P.; Consiglio, Maria C.; Hoardley, Sherwood T.; Hubbs, Clay E.; Palmer, Michael T.

    2010-01-01

    A human-in-the-loop simulation experiment was designed and conducted to evaluate an airborne self-separation concept. The activity supports the National Aeronautics and Space Administration s (NASA) research focus on function allocation for separation assurance. The objectives of the experiment were twofold: (1) use experiment design features in common with a companion study of ground-based automated separation assurance to promote comparability, and (2) assess agility of self-separation operations in managing trajectory-changing events in high traffic density, en-route operations with arrival time constraints. This paper describes the experiment and presents initial results associated with subjective workload ratings and group discussion feedback obtained from the experiment s commercial transport pilot participants.

  15. Prediction and measurement of human pilot dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.; Reedy, James T.

    1988-01-01

    An analytical and experimental study of human pilot control strategies in a manned rotorcraft simulation is described. The task simulated involves a low-speed, constant-altitude maneuvering task in which a head-down display is utilized to allow the pilot to track a moving hover point. The efficacy of the display law driving an 'acceleration symbol' is determined and the manner in which the prediction and measurement of pilot/vehicle dynamics can be made part of man/machine system evaluations is demonstrated.

  16. Flight Simulator Visual-Display Delay Compensation

    NASA Technical Reports Server (NTRS)

    Crane, D. Francis

    1981-01-01

    A piloted aircraft can be viewed as a closed-loop man-machine control system. When a simulator pilot is performing a precision maneuver, a delay in the visual display of aircraft response to pilot-control input decreases the stability of the pilot-aircraft system. The less stable system is more difficult to control precisely. Pilot dynamic response and performance change as the pilot attempts to compensate for the decrease in system stability. The changes in pilot dynamic response and performance bias the simulation results by influencing the pilot's rating of the handling qualities of the simulated aircraft. The study reported here evaluated an approach to visual-display delay compensation. The objective of the compensation was to minimize delay-induced change in pilot performance and workload, The compensation was effective. Because the compensation design approach is based on well-established control-system design principles, prospects are favorable for successful application of the approach in other simulations.

  17. Use of simulation to assess electronic health record safety in the intensive care unit: a pilot study

    PubMed Central

    March, Christopher A; Steiger, David; Scholl, Gretchen; Mohan, Vishnu; Hersh, William R; Gold, Jeffrey A

    2013-01-01

    Objective To establish the role of high-fidelity simulation training to test the efficacy and safety of the electronic health record (EHR)–user interface within the intensive care unit (ICU) environment. Design Prospective pilot study. Setting Medical ICU in an academic medical centre. Participants Postgraduate medical trainees. Interventions A 5-day-simulated ICU patient was developed in the EHR including labs, hourly vitals, medication administration, ventilator settings, nursing and notes. Fourteen medical issues requiring recognition and subsequent changes in management were included. Issues were chosen based on their frequency of occurrence within the ICU and their ability to test different aspects of the EHR–user interface. ICU residents, blinded to the presence of medical errors within the case, were provided a sign-out and given 10 min to review the case in the EHR. They then presented the case with their management suggestions to an attending physician. Participants were graded on the number of issues identified. All participants were provided with immediate feedback upon completion of the simulation. Primary and secondary outcomes To determine the frequency of error recognition in an EHR simulation. To determine factors associated with improved performance in the simulation. Results 38 participants including 9 interns, 10 residents and 19 fellows were tested. The average error recognition rate was 41% (range 6–73%), which increased slightly with the level of training (35%, 41% and 50% for interns, residents, and fellows, respectively). Over-sedation was the least-recognised error (16%); poor glycemic control was most often recognised (68%). Only 32% of the participants recognised inappropriate antibiotic dosing. Performance correlated with the total number of screens used (p=0.03). Conclusions Despite development of comprehensive EHRs, there remain significant gaps in identifying dangerous medical management issues. This gap remains despite high

  18. Developing a tool for observing group critical thinking skills in first-year medical students: a pilot study using physiology-based, high-fidelity patient simulations.

    PubMed

    Nguyen, Khoa; Ben Khallouq, Bertha; Schuster, Amanda; Beevers, Christopher; Dil, Nyla; Kay, Denise; Kibble, Jonathan D; Harris, David M

    2017-12-01

    Most assessments of physiology in medical school use multiple choice tests that may not provide information about a student's critical thinking (CT) process. There are limited performance assessments, but high-fidelity patient simulations (HFPS) may be a feasible platform. The purpose of this pilot study was to determine whether a group's CT process could be observed over a series of HFPS. An instrument [Critical Thinking Skills Rating Instrument CTSRI)] was designed with the IDEAS framework. Fifteen groups of students participated in three HFPS that consisted of a basic knowledge quiz and introduction, HFPS session, and debriefing. HFPS were video recorded, and two raters reviewed and scored all HFPS encounters with the CTSRI independently. Interrater analysis suggested good reliability. There was a correlation between basic knowledge scores and three of the six observations on the CTSRI providing support for construct validity. The median CT ratings significantly increased for all observations between the groups' first and last simulation. However, there were still large percentages of video ratings that indicated students needed substantial prompting during the HFPS. The data from this pilot study suggest that it is feasible to observe CT skills in HFPS using the CTSRI. Based on the findings from this study, we strongly recommend that first-year medical students be competent in basic knowledge of the relevant physiology of the HFPS before participating, to minimize the risk of a poor learning experience. Copyright © 2017 the American Physiological Society.

  19. Techniques for Improving Pilot Recovery from System Failures

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy R.

    2001-01-01

    This project examined the application of intelligent cockpit systems to aid air transport pilots at the tasks of reacting to in-flight system failures and of planning and then following a safe four dimensional trajectory to the runway threshold during emergencies. Two studies were conducted. The first examined pilot performance with a prototype awareness/alerting system in reacting to on-board system failures. In a full-motion, high-fidelity simulator, Army helicopter pilots were asked to fly a mission during which, without warning or briefing, 14 different failures were triggered at random times. Results suggest that the amount of information pilots require from such diagnostic systems is strongly dependent on their training; for failures they are commonly trained to react to with a procedural response, they needed only an indication of which failure to follow, while for 'un-trained' failures, they benefited from more intelligent and informative systems. Pilots were also found to over-rely on the system in conditions were it provided false or mis-leading information. In the second study, a proof-of-concept system was designed suitable for helping pilots replan their flights in emergency situations for quick, safe trajectory generation. This system is described in this report, including: the use of embedded fast-time simulation to predict the trajectory defined by a series of discrete actions; the models of aircraft and pilot dynamics required by the system; and the pilot interface. Then, results of a flight simulator evaluation with airline pilots are detailed. In 6 of 72 simulator runs, pilots were not able to establish a stable flight path on localizer and glideslope, suggesting a need for cockpit aids. However, results also suggest that, to be operationally feasible, such an aid must be capable of suggesting safe trajectories to the pilot; an aid that only verified plans entered by the pilot was found to have significantly detrimental effects on performance and

  20. Relationship of CogScreen-AE to flight simulator performance and pilot age.

    PubMed

    Taylor, J L; O'Hara, R; Mumenthaler, M S; Yesavage, J A

    2000-04-01

    We report on the relationship between CogScreen-Aeromedical Edition (AE) factor scores and flight simulator performance in aircraft pilots aged 50-69. Some 100 licensed, civilian aviators (average age 58+/-5.3 yr) performed aviation tasks in a Frasca model 141 flight simulator and the CogScreen-AE battery. The aviation performance indices were: a) staying on course; b) dialing in communication frequencies; c) avoiding conflicting traffic; d) monitoring cockpit instruments; e) executing the approach; and f) a summary score, which was the mean of these scores. The CogScreen predictors were based on a factor structure reported by Kay (11), which comprised 28 CogScreen scores. Through principal components analysis of Kay's nine factors, we reduced the number of predictors to five composite CogScreen scores: Speed/Working Memory (WM), Visual Associative Memory, Motor Coordination, Tracking, and Attribute Identification. Speed/WM scores had the highest correlation with the flight summary score, Spearman r(rho) = 0.57. A stepwise-forward multiple regression analysis indicated that four CogScreen variables could explain 45% of the variance in flight summary scores. Significant predictors, in order of entry, were: Speed/WM, Visual Associative Memory, Motor Coordination, and Tracking (p<0.05). Pilot age was found to significantly improve prediction beyond that which could be predicted by the four cognitive variables. In addition, there was some evidence for specific ability relationships between certain flight component scores and CogScreen scores, such as approach performance and tracking errors. These data support the validity of CogScreen-AE as a cognitive battery that taps skills relevant to piloting.

  1. Intraindividual variability in basic reaction time predicts middle-aged and older pilots' flight simulator performance.

    PubMed

    Kennedy, Quinn; Taylor, Joy; Heraldez, Daniel; Noda, Art; Lazzeroni, Laura C; Yesavage, Jerome

    2013-07-01

    Intraindividual variability (IIV) is negatively associated with cognitive test performance and is positively associated with age and some neurological disorders. We aimed to extend these findings to a real-world task, flight simulator performance. We hypothesized that IIV predicts poorer initial flight performance and increased rate of decline in performance among middle-aged and older pilots. Two-hundred and thirty-six pilots (40-69 years) completed annual assessments comprising a cognitive battery and two 75-min simulated flights in a flight simulator. Basic and complex IIV composite variables were created from measures of basic reaction time and shifting and divided attention tasks. Flight simulator performance was characterized by an overall summary score and scores on communication, emergencies, approach, and traffic avoidance components. Although basic IIV did not predict rate of decline in flight performance, it had a negative association with initial performance for most flight measures. After taking into account processing speed, basic IIV explained an additional 8%-12% of the negative age effect on initial flight performance. IIV plays an important role in real-world tasks and is another aspect of cognition that underlies age-related differences in cognitive performance.

  2. Pilot performance during simulated approaches and landings made with various computer-generated visual glidepath indicators.

    DOT National Transportation Integrated Search

    1979-01-01

    Two simulator experiments were conducted to quantify the effectiveness, in terms of pilot performance, of four different visual glidepath indicator systems in the severely reduced nighttime visual environment often referred to as the 'black hole'. A ...

  3. A mathematical representation of an advanced helicopter for piloted simulator investigations of control system and display variations

    NASA Technical Reports Server (NTRS)

    Aiken, E. W.

    1980-01-01

    A mathematical model of an advanced helicopter is described. The model is suitable for use in control/display research involving piloted simulation. The general design approach for the six degree of freedom equations of motion is to use the full set of nonlinear gravitational and inertial terms of the equations and to express the aerodynamic forces and moments as the reference values and first order terms of a Taylor series expansion about a reference trajectory defined as a function of longitudinal airspeed. Provisions for several different specific and generic flight control systems are included in the model. The logic required to drive various flight control and weapon delivery symbols on a pilot's electronic display is also provided. Finally, the model includes a simplified representation of low altitude wind and turbulence effects. This model was used in a piloted simulator investigation of the effects of control system and display variations for an attack helicopter mission.

  4. Focused and Corrective Feedback Versus Structured and Supported Debriefing in a Simulation-Based Cardiac Arrest Team Training: A Pilot Randomized Controlled Study.

    PubMed

    Kim, Ji-Hoon; Kim, Young-Min; Park, Seong Heui; Ju, Eun A; Choi, Se Min; Hong, Tai Yong

    2017-06-01

    The aim of the study was to compare the educational impact of two postsimulation debriefing methods-focused and corrective feedback (FCF) versus Structured and Supported Debriefing (SSD)-on team dynamics in simulation-based cardiac arrest team training. This was a pilot randomized controlled study conducted at a simulation center. Fourth-year medical students were randomly assigned to the FCF or SSD group, with each team composed of six students and a confederate. Each team participated in two simulations and the assigned debriefing (FCF or SSD) sessions and then underwent a test simulation. Two trained raters blindly assessed all of the recorded simulations using checklists. The primary outcome was the improvement in team dynamics scores between baseline and test simulation. The secondary outcomes were improvements before and after training in team clinical performance scores, self-assessed comprehension of and confidence in cardiac arrest management and team dynamics, as well as evaluations of the postsimulation debriefing intervention. In total, 95 students participated [FCF (8 teams, n = 47) and SSD (8 teams, n = 48)]. The SSD team dynamics score during the test simulation was higher than at baseline [baseline: 74.5 (65.9-80.9), test: 85.0 (71.9-87.6), P = 0.035]. However, there were no differences in the improvement in the team dynamics or team clinical performance scores between the two groups (P = 0.328, respectively). There was no significant difference in improvement in team dynamics scores during the test simulation compared with baseline between the SSD and FCF groups in a simulation-based cardiac arrest team training in fourth-year Korean medical students.

  5. Evidence for the need of realistic radio communications for airline pilot simulator training and evaluation

    DOT National Transportation Integrated Search

    2003-11-05

    This paper presents arguments in favor of realistic representation of radio communications during training and evaluation of airline pilots in the simulator. A survey of airlines showed that radio communications are mainly role-played by Instructor/E...

  6. A simulator study on information requirements for precision hovering

    NASA Technical Reports Server (NTRS)

    Lemons, J. L.; Dukes, T. A.

    1975-01-01

    A fixed base simulator study of an advanced helicopter instrument display utilizing translational acceleration, velocity and position information is reported. The simulation involved piloting a heavy helicopter using the Integrated Trajectory Error Display (ITED) in a precision hover task. The test series explored two basic areas. The effect on hover accuracy of adding acceleration information was of primary concern. Also of interest was the operators' ability to use degraded information derived from less sophisticated sources. The addition of translational acceleration to a display containing velocity and position information did not appear to improve the hover performance significantly. However, displayed acceleration information seemed to increase the damping of the man machine system. Finally, the pilots could use translational information synthesized from attitude and angular acceleration as effectively as perfect acceleration.

  7. Secondary task for full flight simulation incorporating tasks that commonly cause pilot error: Time estimation

    NASA Technical Reports Server (NTRS)

    Rosch, E.

    1975-01-01

    The task of time estimation, an activity occasionally performed by pilots during actual flight, was investigated with the objective of providing human factors investigators with an unobtrusive and minimally loading additional task that is sensitive to differences in flying conditions and flight instrumentation associated with the main task of piloting an aircraft simulator. Previous research indicated that the duration and consistency of time estimates is associated with the cognitive, perceptual, and motor loads imposed by concurrent simple tasks. The relationships between the length and variability of time estimates and concurrent task variables under a more complex situation involving simulated flight were clarified. The wrap-around effect with respect to baseline duration, a consequence of mode switching at intermediate levels of concurrent task distraction, should contribute substantially to estimate variability and have a complex effect on the shape of the resulting distribution of estimates.

  8. Pilot/Vehicle display development from simulation to flight

    NASA Technical Reports Server (NTRS)

    Dare, Alan R.; Burley, James R., II

    1992-01-01

    The Pilot Vehicle Interface Group, Cockpit Technology Branch, Flight Management Division, at the NASA Langley Research Center is developing display concepts for air combat in the next generation of highly maneuverable aircraft. The High-Alpha Technology Program, under which the research is being done, is involved in flight tests of many new control and display concepts on the High-Alpha Research Vehicle, a highly modified F-18 aircraft. In order to support display concept development through flight testing, a software/hardware system is being developed which will support each phase of the project with little or no software modifications, thus saving thousands of manhours in software development time. Simulation experiments are in progress now and flight tests are slated to begin in FY1994.

  9. Pilot Non-Conformance to Alerting System Commands

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy R.; Hansman, R. John

    1997-01-01

    Instances of pilot non-conformance to alerting system commands have been identified in previous studies. Pilot non-conformance changes the final behavior of the system, and therefore may reduce actual performance from that anticipated. A simulator study has examined pilot non-conformance, using the task of collision avoidance during closely spaced parallel approaches as a case study. Consonance between the display and the alerting system was found to significantly improve subject agreement with automatic alerts. Based on these results, a more general discussion of the factors involved in pilot conformance is given, and design guidelines for alerting systems are given.

  10. Initial Piloted Simulation Evaluation of the Reference-H High-Speed Civil Transport Design During Takeoff and Recovery From Limit Flight Conditions

    NASA Technical Reports Server (NTRS)

    Glaab, Louis J.

    1999-01-01

    An initial assessment of a proposed High-Speed Civil Transport (HSCT) was conducted in the fall of 1995 at the NASA Langley Research Center. This configuration, known as the Industry Reference-H (Ref.-H), was designed by the Boeing Aircraft Company as part of their work in the High Speed Research program. It included a conventional tail, a cranked-arrow wing, four mixed-flow turbofan engines, and capacity for transporting approximately 300 passengers. The purpose of this assessment was to evaluate and quantify operational aspects of the Reference-H configuration from a pilot's perspective with the additional goal of identifying design strengths as well as any potential configuration deficiencies. This study was aimed at evaluating the Ref.-H configuration at many points of the aircraft's envelope to determine the suitability of the vehicle to accomplish typical mission profiles as well as emergency or envelope-limit conditions. Pilot-provided Cooper-Harper ratings and comments constituted the primary vehicle evaluation metric. The analysis included simulated real-time piloted evaluations, performed in a 6 degree of freedom motion base NASA Langley Visual-Motion Simulator, combined with extensive bath analysis. The assessment was performed using the third major release of the simulation data base (known as Ref.-H cycle 2B).

  11. A study evaluating if targeted training for startle effect can improve pilot reactions in handling unexpected situations in a flight simulator

    NASA Astrophysics Data System (ADS)

    Gillen, Michael William

    Recent airline accidents point to a crew's failure to make correct and timely decisions following a sudden and unusual event that startled the crew. This study sought to determine if targeted training could augment decision making during a startle event. Following a startle event cognitive function is impaired for a short duration of time (30-90 seconds). In aviation, critical decisions are often required to be made during this brief, but critical, time frame. A total of 40 volunteer crews (80 individual pilots) were solicited from a global U.S. passenger airline. Crews were briefed that they would fly a profile in the simulator but were not made aware of what the profile would entail. The study participants were asked to complete a survey on their background and flying preferences. Every other crew received training on how to handle a startle event. The training consisted of a briefing and simulator practice. Crew members (subjects) were either presented a low altitude or high altitude scenario to fly in a full-flight simulator. The maneuver scenarios were analyzed using a series of one-way ANOVAs, t-tests and regression for the main effect of training on crew performance. The data indicated that the trained crews flew the maneuver profiles significantly better than the untrained crews and significantly better than the Federal Aviation Administration (FAA) Airline Transport Pilot (ATP) standards. Each scenario's sub factors were analyzed using regression to examine for specific predictors of performance. The results indicate that in the case of the high altitude profile, problem diagnosis was a significant factor, in the low altitude profile, time management was also a significant factor. These predicators can be useful in further targeting training. The study's findings suggest that targeted training can help crews manage a startle event, leading to a potential reduction of inflight loss of control accidents. The training was broad and intended to cover an

  12. Piloted Simulation Tests of Propulsion Control as Backup to Loss of Primary Flight Controls for a B747-400 Jet Transport

    DOT National Transportation Integrated Search

    1997-04-01

    This report describes the concept of a propulsion controlled aircraft (PCA), : discusses pilot controls, displays, and procedures; and presents the results of a : PCA piloted simulation test and evaluation of the B747-400 airplane conducted at : NASA...

  13. Estimation of Time-Varying Pilot Model Parameters

    NASA Technical Reports Server (NTRS)

    Zaal, Peter M. T.; Sweet, Barbara T.

    2011-01-01

    Human control behavior is rarely completely stationary over time due to fatigue or loss of attention. In addition, there are many control tasks for which human operators need to adapt their control strategy to vehicle dynamics that vary in time. In previous studies on the identification of time-varying pilot control behavior wavelets were used to estimate the time-varying frequency response functions. However, the estimation of time-varying pilot model parameters was not considered. Estimating these parameters can be a valuable tool for the quantification of different aspects of human time-varying manual control. This paper presents two methods for the estimation of time-varying pilot model parameters, a two-step method using wavelets and a windowed maximum likelihood estimation method. The methods are evaluated using simulations of a closed-loop control task with time-varying pilot equalization and vehicle dynamics. Simulations are performed with and without remnant. Both methods give accurate results when no pilot remnant is present. The wavelet transform is very sensitive to measurement noise, resulting in inaccurate parameter estimates when considerable pilot remnant is present. Maximum likelihood estimation is less sensitive to pilot remnant, but cannot detect fast changes in pilot control behavior.

  14. A simulation study of the flight dynamics of elastic aircraft. Volume 2: Data

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Davidson, John B.; Schmidt, David K.

    1987-01-01

    The simulation experiment described addresses the effects of structural flexibility on the dynamic characteristics of a generic family of aircraft. The simulation was performed using the NASA Langley VMS simulation facility. The vehicle models were obtained as part of this research project. The simulation results include complete response data and subjective pilot ratings and comments and so allow a variety of analyses. The subjective ratings and analysis of the time histories indicate that increased flexibility can lead to increased tracking errors, degraded handling qualities, and changes in the frequency content of the pilot inputs. These results, furthermore, are significantly affected by the visual cues available to the pilot.

  15. Expansion of flight simulator capability for study and solution of aircraft directional control problems on runways

    NASA Technical Reports Server (NTRS)

    Kibbee, G. W.

    1978-01-01

    The development, evaluation, and evaluation results of a DC-9-10 runway directional control simulator are described. An existing wide bodied flight simulator was modified to this aircraft configuration. The simulator was structured to use either two of antiskid simulations; (1) an analog mechanization that used aircraft hardware; or (2) a digital software simulation. After the simulation was developed it was evaluated by 14 pilots who made 818 simulated flights. These evaluations involved landings, rejected takeoffs, and various ground maneuvers. Qualitatively most pilots evaluated the simulator as realistic with good potential especially for pilot training for adverse runway conditions.

  16. Applications of pilot scanning behavior to integrated display research

    NASA Technical Reports Server (NTRS)

    Waller, M. C.

    1977-01-01

    The oculometer is an electrooptical device designed to measure pilot scanning behavior during instrument approaches and landing operations. An overview of some results from a simulation study is presented to illustrate how information from the oculometer installed in a visual motion simulator, combined with measures of performance and control input data, can provide insight into the behavior and tactics of individual pilots during instrument approaches. Differences in measured behavior of the pilot subjects are pointed out; these differences become apparent in the way the pilots distribute their visual attention, in the amount of control activity, and in selected performance measures. Some of these measured differences have diagnostic implications, suggesting the use of the oculometer along with performance measures as a pilot training tool.

  17. Piloted Simulation to Evaluate the Utility of a Real Time Envelope Protection System for Mitigating In-Flight Icing Hazards

    NASA Technical Reports Server (NTRS)

    Ranaudo, Richard J.; Martos, Borja; Norton, Bill W.; Gingras, David R.; Barnhart, Billy P.; Ratvasky, Thomas P.; Morelli, Eugene

    2011-01-01

    The utility of the Icing Contamination Envelope Protection (ICEPro) system for mitigating a potentially hazardous icing condition was evaluated by 29 pilots using the NASA Ice Contamination Effects Flight Training Device (ICEFTD). ICEPro provides real time envelope protection cues and alerting messages on pilot displays. The pilots participating in this test were divided into two groups; a control group using baseline displays without ICEPro, and an experimental group using ICEPro driven display cueing. Each group flew identical precision approach and missed approach procedures with a simulated failure case icing condition. Pilot performance, workload, and survey questionnaires were collected for both groups of pilots. Results showed that real time assessment cues were effective in reducing the number of potentially hazardous upset events and in lessening exposure to loss of control following an incipient upset condition. Pilot workload with the added ICEPro displays was not measurably affected, but pilot opinion surveys showed that real time cueing greatly improved their situation awareness of a hazardous aircraft state.

  18. Piloted simulation tests of propulsion control as backup to loss of primary flight controls for a mid-size jet transport

    NASA Technical Reports Server (NTRS)

    Bull, John; Mah, Robert; Davis, Gloria; Conley, Joe; Hardy, Gordon; Gibson, Jim; Blake, Matthew; Bryant, Don; Williams, Diane

    1995-01-01

    Failures of aircraft primary flight-control systems to aircraft during flight have led to catastrophic accidents with subsequent loss of lives (e.g. , DC-1O crash, B-747 crash, C-5 crash, B-52 crash, and others). Dryden Flight Research Center (DFRC) investigated the use of engine thrust for emergency flight control of several airplanes, including the B-720, Lear 24, F-15, C-402, and B-747. A series of three piloted simulation tests have been conducted at Ames Research Center to investigate propulsion control for safely landing a medium size jet transport which has experienced a total primary flight-control failure. The first series of tests was completed in July 1992 and defined the best interface for the pilot commands to drive the engines. The second series of tests was completed in August 1994 and investigated propulsion controlled aircraft (PCA) display requirements and various command modes. The third series of tests was completed in May 1995 and investigated PCA full-flight envelope capabilities. This report describes the concept of a PCA, discusses pilot controls, displays, and procedures; and presents the results of piloted simulation evaluations of the concept by a cross-section of air transport pilots.

  19. Piloted-simulation evaluation of escape guidance for microburst wind shear encounters. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1989-01-01

    Numerous air carrier accidents and incidents result from encounters with the atmospheric wind shear associated with microburst phenomena, in some cases resulting in heavy loss of life. An important issue in current wind shear research is how to best manage aircraft performance during an inadvertent wind shear encounter. The goals of this study were to: (1) develop techniques and guidance for maximizing an aircraft's ability to recover from microburst encounters following takeoff, (2) develop an understanding of how theoretical predictions of wind shear recovery performance might be achieved in actual use, and (3) gain insight into the piloting factors associated with recovery from microburst encounters. Three recovery strategies were implemented and tested in piloted simulation. Results show that a recovery strategy based on flying a flight path angle schedule produces improved performance over constant pitch attitude or acceleration-based recovery techniques. The best recovery technique was initially counterintuitive to the pilots who participated in the study. Evidence was found to indicate that the techniques required for flight through the turbulent vortex of a microburst may differ from the techniques being developed using classical, nonturbulent microburst models.

  20. Simulation Study of Impact of Aeroelastic Characteristics on Flying Qualities of a High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Jackson, E. Bruce; Buttrill, Carey S.

    2002-01-01

    A piloted simulation study conducted in NASA Langley Visual Motion Simulator addressed the impact of dynamic aero- servoelastic effects on flying qualities of a High Speed Civil Transport. The intent was to determine effectiveness of measures to reduce the impact of aircraft flexibility on piloting tasks. Potential solutions examined were increasing frequency of elastic modes through structural stiffening, increasing damping of elastic modes through active control, elimination of control effector excitation of the lowest frequency elastic modes, and elimination of visual cues associated with elastic modes. Six test pilots evaluated and performed simulated maneuver tasks, encountering incidents wherein cockpit vibrations due to elastic modes fed back into the control stick through involuntary vibrations of the pilots upper body and arm. Structural stiffening and compensation of the visual display were of little benefit in alleviating this impact, while increased damping and elimination of control effector excitation of the elastic modes both offered great improvements when applied in sufficient degree.

  1. Helicopter pilot scan techniques during low-altitude high-speed flight.

    PubMed

    Kirby, Christopher E; Kennedy, Quinn; Yang, Ji Hyun

    2014-07-01

    This study examined pilots' visual scan patterns during a simulated high-speed, low-level flight and how their scan rates related to flight performance. As helicopters become faster and more agile, pilots are expected to navigate at low altitudes while traveling at high speeds. A pilot's ability to interpret information from a combination of visual sources determines not only mission success, but also aircraft and crew survival. In a fixed-base helicopter simulator modeled after the U.S. Navy's MH-60S, 17 active-duty Navy helicopter pilots with varying total flight times flew and navigated through a simulated southern Californian desert course. Pilots' scan rate and fixation locations were monitored using an eye-tracking system while they flew through the course. Flight parameters, including altitude, were recorded using the simulator's recording system. Experienced pilots with more than 1000 total flight hours better maintained a constant altitude (mean altitude deviation = 48.52 ft, SD = 31.78) than less experienced pilots (mean altitude deviation = 73.03 ft, SD = 10.61) and differed in some aspects of their visual scans. They spent more time looking at the instrument display and less time looking out the window (OTW) than less experienced pilots. Looking OTW was associated with less consistency in maintaining altitude. Results may aid training effectiveness specific to helicopter aviation, particularly in high-speed low-level flight conditions.

  2. Arab-American adolescent tobacco use: four pilot studies.

    PubMed

    Rice, Virginia Hill; Templin, Thomas; Kulwicki, Anahid

    2003-11-01

    Four pilot studies were conducted to determine the (1) current tobacco use patterns and predictors among 14- to 18-year-old Arab-American youths; (2) psychometric properties of study measures (English and Arabic); (3) cultural appropriateness of Project Toward No Tobacco (TNT) for intervention; (4) accessible population for a longitudinal study. Three studies were descriptive and one used a pretest-posttest design. From four Pilot Focus groups (N = 28 smokers) key tobacco use themes emerged along with information on study measures and the Project TNT intervention; Pilot Intervention tested the tailored Project TNT intervention with 9 Arab-American teens; Pilot Clinic (N = 44) determined the characteristics of the accessible teen health clinic population; and Pilot School (N = 119) obtained tobacco use data only. From Pilot Focus seven themes (being cool, "nshar ma'a al shabab" [hanging out with the guys], present [time] orientation, smoking feels and tastes good, keeps your mind off trouble, easy to get, and (many) "barriers to quitting") emerged from the data. In the Pilot Intervention a 37.5% cessation rate was found. In the Pilot Clinic study, 24% males and 17% females smoked. The current smoking rate in the Pilot School (N = 119) sample was 17%; 34% admitted to having ever smoked (even a puff). Significant predictors for current tobacco use included poor grades, stress, having many family members and peers who smoke, being exposed to many hours of smoking each day, receiving offers of tobacco products, advertising and mail, and believing that tobacco can help one to make friends. The four pilots contributed unique and essential knowledge for designing a longitudinal clinical trial on tobacco use by Arab-American adolescents.

  3. Prediction of helicopter simulator sickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horn, R.D.; Birdwell, J.D.; Allgood, G.O.

    1990-01-01

    Machine learning methods from artificial intelligence are used to identify information in sampled accelerometer signals and associative behavioral patterns which correlates pilot simulator sickness with helicopter simulator dynamics. These simulators are used to train pilots in fundamental procedures, tactics, and response to emergency conditions. Simulator sickness induced by these systems represents a risk factor to both the pilot and manufacturer. Simulator sickness symptoms are closely aligned with those of motion sickness. Previous studies have been performed by behavioral psychologists using information gathered with surveys and motor skills performance measures; however, the results are constrained by the limited information which ismore » accessible in this manner. In this work, accelerometers were installed in the simulator cab, enabling a complete record of flight dynamics and the pilot's control response as a function of time. Given the results of performance measures administered to detect simulator sickness symptoms, the problem was then to find functions of the recorded data which could be used to help predict the simulator sickness level and susceptibility. Methods based upon inductive inference were used, which yield decision trees whose leaves indicate the degree of simulator-induced sickness. The long-term goal is to develop a gauge'' which can provide an on-line prediction of simulator sickness level, given a pilot's associative behavioral patterns (learned expectations). This will allow informed decisions to be made on when to terminate a hop and provide an effective basis for determining training and flight restrictions placed upon the pilot after simulator use. 6 refs., 6 figs.« less

  4. Robotic surgery basic skills training: Evaluation of a pilot multidisciplinary simulation-based curriculum

    PubMed Central

    Foell, Kirsten; Finelli, Antonio; Yasufuku, Kazuhiro; Bernardini, Marcus Q.; Waddell, Thomas K.; Pace, Kenneth T.; Honey, R. John D.’A.; Lee, Jason Y.

    2013-01-01

    Purpose: Simulation-based training improves clinical skills, while minimizing the impact of the educational process on patient care. We present results of a pilot multidisciplinary, simulation-based robotic surgery basic skills training curriculum (BSTC) for robotic novices. Methods: A 4-week, simulation-based, robotic surgery BSTC was offered to the Departments of Surgery and Obstetrics & Gynecology (ObGyn) at the University of Toronto. The course consisted of various instructional strategies: didactic lecture, self-directed online-training modules, introductory hands-on training with the da Vinci robot (dVR) (Intuitive Surgical Inc., Sunnyvale, CA), and dedicated training on the da Vinci Skills Simulator (Intuitive Surgical Inc., Sunnyvale, CA) (dVSS). A third of trainees participated in competency-based dVSS training, all others engaged in traditional time-based training. Pre- and post-course skill testing was conducted on the dVR using 2 standardized skill tasks: ring transfer (RT) and needle passing (NP). Retention of skills was assessed at 5 months post-BSTC. Results: A total of 37 participants completed training. The mean task completion time and number of errors improved significantly post-course on both RT (180.6 vs. 107.4 sec, p < 0.01 and 3.5 vs. 1.3 sec, p < 0.01, respectively) and NP (197.1 vs. 154.1 sec, p < 0.01 and 4.5 vs. 1.8 sec, p = 0.04, respectively) tasks. No significant difference in performance was seen between specialties. Competency-based training was associated with significantly better post-course performance. The dVSS demonstrated excellent face validity. Conclusions: The implementation of a pilot multidisciplinary, simulation-based robotic surgery BSTC revealed significantly improved basic robotic skills among novice trainees, regardless of specialty or level of training. Competency-based training was associated with significantly better acquisition of basic robotic skills. PMID:24381662

  5. An Experimental Study of the Effect of Out-of-the-Window Cues on Training Novice Pilots on a Flight Simulator

    NASA Technical Reports Server (NTRS)

    Khan, M. Javed; Rossi, Marcia; Heath, Bruce; Ali, Syed F.; Ward, Marcus

    2006-01-01

    The effects of out-of-the-window cues on learning a straight-in landing approach and a level 360deg turn by novice pilots on a flight simulator have been investigated. The treatments consisted of training with and without visual cues as well as density of visual cues. The performance of the participants was then evaluated through similar but more challenging tasks. It was observed that the participants in the landing study who trained with visual cues performed poorly than those who trained without the cues. However the performance of those who trained with a faded-cues sequence performed slightly better than those who trained without visual cues. In the level turn study it was observed that those who trained with the visual cues performed better than those who trained without visual cues. The study also showed that those participants who trained with a lower density of cues performed better than those who trained with a higher density of visual cues.

  6. Pilot Inter-Laboratory Studies for Evaluating Weathering-Induced Release of Carbon Nanotubes from Solid Matrices

    EPA Science Inventory

    Nanomaterials are increasingly being used in polymer composites to enhance the properties of these materials. Here we present results of a pilot inter-laboratory study to simulate the effects of weathering on the potential release of multiwalled carbon nanotubes (MWCNT) from thei...

  7. Comparative evaluation of twenty pilot workload assessment measure using a psychomotor task in a moving base aircraft simulator

    NASA Technical Reports Server (NTRS)

    Connor, S. A.; Wierwille, W. W.

    1983-01-01

    A comparison of the sensitivity and intrusion of twenty pilot workload assessment techniques was conducted using a psychomotor loading task in a three degree of freedom moving base aircraft simulator. The twenty techniques included opinion measures, spare mental capacity measures, physiological measures, eye behavior measures, and primary task performance measures. The primary task was an instrument landing system (ILS) approach and landing. All measures were recorded between the outer marker and the middle marker on the approach. Three levels (low, medium, and high) of psychomotor load were obtained by the combined manipulation of windgust disturbance level and simulated aircraft pitch stability. Six instrument rated pilots participated in four seasons lasting approximately three hours each.

  8. Performance of a pilot-scale constructed wetland system for treating simulated ash basin water.

    PubMed

    Dorman, Lane; Castle, James W; Rodgers, John H

    2009-05-01

    A pilot-scale constructed wetland treatment system (CWTS) was designed and built to decrease the concentration and toxicity of constituents of concern in ash basin water from coal-burning power plants. The CWTS was designed to promote the following treatment processes for metals and metalloids: precipitation as non-bioavailable sulfides, co-precipitation with iron oxyhydroxides, and adsorption onto iron oxides. Concentrations of Zn, Cr, Hg, As, and Se in simulated ash basin water were reduced by the CWTS to less than USEPA-recommended water quality criteria. The removal efficiency (defined as the percent concentration decrease from influent to effluent) was dependent on the influent concentration of the constituent, while the extent of removal (defined as the concentration of a constituent of concern in the CWTS effluent) was independent of the influent concentration. Results from toxicity experiments illustrated that the CWTS eliminated influent toxicity with regard to survival and reduced influent toxicity with regard to reproduction. Reduction in potential for scale formation and biofouling was achieved through treatment of the simulated ash basin water by the pilot-scale CWTS.

  9. Improving Resident Performance Through a Simulated Rapid Response Team: A Pilot Study.

    PubMed

    Burke, Peter A; Vest, Michael T; Kher, Hemant; Deutsch, Joseph; Daya, Sneha

    2015-07-01

    The Joint Commission requires hospitals to develop systems in which a team of clinicians can rapidly recognize and respond to changes in a patient's condition. The rapid response team (RRT) concept has been widely adopted as the solution to this mandate. The role of house staff in RRTs and the impact on resident education has been controversial. At Christiana Care Health System, eligible residents in their second through final years lead the RRTs. To evaluate the use of a team-based, interdisciplinary RRT training program for educating and training first-year residents in an effort to improve global RRT performance before residents start their second year. This pilot study was administered in 3 phases. Phase 1 provided residents with classroom-based didactic sessions using case-based RRT scenarios. Multiple choice examinations were administered, as well as a confidence survey based on a Likert scale before and after phase 1 of the program. Phase 2 involved experiential training in which residents engaged as mentored participants in actual RRT calls. A qualitative survey was used to measure perceived program effectiveness after phase 2. In phase 3, led by senior residents, simulated RRTs using medical mannequins were conducted. Participants were divided into 5 teams, in which each resident would rotate in the roles of leader, nurse, and respiratory therapist. This phase measured resident performance with regard to medical decision making, data gathering, and team behaviors during the simulated RRT scenarios. Performance was scored by an attending and a senior resident. A total of 18 residents were eligible (N=18) for participation. The average multiple choice test score improved by 20% after didactic training. The average confidence survey score before training was 3.44 out of 5 (69%) and after training was 4.13 (83%), indicating a 14% improvement. High-quality team behaviors correlated with medical decision making (0.92) more closely than did high-quality data

  10. Methodological approaches to conducting pilot and proof tests on reverse-osmosis systems: Results of comparative studies

    NASA Astrophysics Data System (ADS)

    Panteleev, A. A.; Bobinkin, V. V.; Larionov, S. Yu.; Ryabchikov, B. E.; Smirnov, V. B.; Shapovalov, D. A.

    2017-10-01

    When designing large-scale water-treatment plants based on reverse-osmosis systems, it is proposed to conduct experimental-industrial or pilot tests for validated simulation of the operation of the equipment. It is shown that such tests allow establishing efficient operating conditions and characteristics of the plant under design. It is proposed to conduct pilot tests of the reverse-osmosis systems on pilot membrane plants (PMPs) and test membrane plants (TMPs). The results of a comparative experimental study of pilot and test membrane plants are exemplified by simulating the operating parameters of the membrane elements of an industrial plant. It is concluded that the reliability of the data obtained on the TMP may not be sufficient to design industrial water-treatment plants, while the PMPs are capable of providing reliable data that can be used for full-scale simulation of the operation of industrial reverse-osmosis systems. The test membrane plants allow simulation of the operating conditions of individual industrial plant systems; therefore, potential areas of their application are shown. A method for numerical calculation and experimental determination of the true selectivity and the salt passage are proposed. An expression has been derived that describes the functional dependence between the observed and true salt passage. The results of the experiments conducted on a test membrane plant to determine the true value of the salt passage of a reverse-osmosis membrane are exemplified by magnesium sulfate solution at different initial operating parameters. It is shown that the initial content of a particular solution component has a significant effect on the change in the true salt passage of the membrane.

  11. OMV mission simulator

    NASA Technical Reports Server (NTRS)

    Cok, Keith E.

    1989-01-01

    The Orbital Maneuvering Vehicle (OMV) will be remotely piloted during rendezvous, docking, or proximity operations with target spacecraft from a ground control console (GCC). The real-time mission simulator and graphics being used to design a console pilot-machine interface are discussed. A real-time orbital dynamics simulator drives the visual displays. The dynamics simulator includes a J2 oblate earth gravity model and a generalized 1962 rotating atmospheric and drag model. The simulator also provides a variable-length communication delay to represent use of the Tracking and Data Relay Satellite System (TDRSS) and NASA Communications (NASCOM). Input parameter files determine the graphics display. This feature allows rapid prototyping since displays can be easily modified from pilot recommendations. A series of pilot reviews are being held to determine an effective pilot-machine interface. Pilots fly missions with nominal to 3-sigma dispersions in translational or rotational axes. Console dimensions, switch type and layout, hand controllers, and graphic interfaces are evaluated by the pilots and the GCC simulator is modified for subsequent runs. Initial results indicate a pilot preference for analog versus digital displays and for two 3-degree-of-freedom hand controllers.

  12. A flight investigation of simulated data-link communications during single-pilot IFR flight. Volume 2: Flight evaluations

    NASA Technical Reports Server (NTRS)

    Parker, J. F., Jr.; Duffy, J. W.

    1982-01-01

    Key problems in single pilot instrument flight operations are in the management of flight data and the processing of cockpit information during conditions of heavy workload. A flight data console was developed to allow simulation of a digital data link to replace the current voice communications stem used in air traffic control. This is a human factors evaluation of a data link communications system to determine how such a system might reduce cockpit workload, improve flight proficiency, and be accepted by general aviation pilots. The need for a voice channel as backup to a digital link is examined. The evaluations cover both airport terminal area operations and full mission instrument flight. Results show that general aviation pilots operate well with a digital data link communications system. The findings indicate that a data link system for pilot/ATC communications, with a backup voice channel, is well accepted by general aviation pilots and is considered to be safer, more efficient, and result in less workload than the current voice system.

  13. Conducting pilot and feasibility studies.

    PubMed

    Cope, Diane G

    2015-03-01

    Planning a well-designed research study can be tedious and laborious work. However, this process is critical and ultimately can produce valid, reliable study findings. Designing a large-scale randomized, controlled trial (RCT)-the gold standard in quantitative research-can be even more challenging. Even the most well-planned study potentially can result in issues with research procedures and design, such as recruitment, retention, or methodology. One strategy that may facilitate sound study design is the completion of a pilot or feasibility study prior to the initiation of a larger-scale trial. This article will discuss pilot and feasibility studies, their advantages and disadvantages, and implications for oncology nursing research. 
.

  14. Modeling Pilot Pulse Control

    NASA Technical Reports Server (NTRS)

    Bachelder, Edward; Hess, Ronald; Godfroy-Cooper, Martine; Aponso, Bimal

    2017-01-01

    In this study, behavioral models are developed that closely reproduced pulsive control response of two pilots from the experimental pool using markedly different control techniques (styles) while conducting a tracking task. An intriguing find was that the pilots appeared to: 1) produce a continuous, internally-generated stick signal that they integrated in time; 2) integrate the actual stick position; and 3) compare the two integrations to issue and cease pulse commands. This suggests that the pilots utilized kinesthetic feedback in order to perceive and integrate stick position, supporting the hypothesis that pilots can access and employ the proprioceptive inner feedback loop proposed by Hess' pilot Structural Model. The Pulse Models used in conjunction with the pilot Structural Model closely recreated the pilot data both in the frequency and time domains during closed-loop simulation. This indicates that for the range of tasks and control styles encountered, the models captured the fundamental mechanisms governing pulsive and control processes. The pilot Pulse Models give important insight for the amount of remnant (stick output uncorrelated with the forcing function) that arises from nonlinear pilot technique, and for the remaining remnant arising from different sources unrelated to tracking control (i.e. neuromuscular tremor, reallocation of cognitive resources, etc.).

  15. Aural glide slope cues : their effect on pilot performance during in-flight simulated ILS instrument approaches.

    DOT National Transportation Integrated Search

    1971-05-01

    Forty instrument rated commercial and ATR pilots with 250 to 12,271 flight hours each flew ten simulated ILS approaches in a single engine, general aviation aircraft. Divided into five groups, each group used a different glide slope cue display in co...

  16. A tutorial on pilot studies: the what, why and how

    PubMed Central

    2010-01-01

    Pilot studies for phase III trials - which are comparative randomized trials designed to provide preliminary evidence on the clinical efficacy of a drug or intervention - are routinely performed in many clinical areas. Also commonly know as "feasibility" or "vanguard" studies, they are designed to assess the safety of treatment or interventions; to assess recruitment potential; to assess the feasibility of international collaboration or coordination for multicentre trials; to increase clinical experience with the study medication or intervention for the phase III trials. They are the best way to assess feasibility of a large, expensive full-scale study, and in fact are an almost essential pre-requisite. Conducting a pilot prior to the main study can enhance the likelihood of success of the main study and potentially help to avoid doomed main studies. The objective of this paper is to provide a detailed examination of the key aspects of pilot studies for phase III trials including: 1) the general reasons for conducting a pilot study; 2) the relationships between pilot studies, proof-of-concept studies, and adaptive designs; 3) the challenges of and misconceptions about pilot studies; 4) the criteria for evaluating the success of a pilot study; 5) frequently asked questions about pilot studies; 7) some ethical aspects related to pilot studies; and 8) some suggestions on how to report the results of pilot investigations using the CONSORT format. PMID:20053272

  17. Piloted Simulator Tests of a Guidance System which Can Continously Predict Landing Point of a Low L/D Vehicle During Atmosphere Re-Entry

    NASA Technical Reports Server (NTRS)

    Wingrove, Rodney C.; Coate, Robert E.

    1961-01-01

    The guidance system for maneuvering vehicles within a planetary atmosphere which was studied uses the concept of fast continuous prediction of the maximum maneuver capability from existing conditions rather than a stored-trajectory technique. used, desired touchdown points are compared with the maximum range capability and heating or acceleration limits, so that a proper decision and choice of control inputs can be made by the pilot. In the method of display and control a piloted fixed simulator was used t o demonstrate the feasibility od the concept and to study its application to control of lunar mission reentries and recoveries from aborts.

  18. 3D and 4D Simulations for Landscape Reconstruction and Damage Scenarios: GIS Pilot Applications

    ERIC Educational Resources Information Center

    Pesaresi, Cristano; Van Der Schee, Joop; Pavia, Davide

    2017-01-01

    The project "3D and 4D Simulations for Landscape Reconstruction and Damage Scenarios: GIS Pilot Applications" has been devised with the intention to deal with the demand for research, innovation and applicative methodology on the part of the international programme, requiring concrete results to increase the capacity to know, anticipate…

  19. A STOL airworthiness investigation using a simulation of an augmentor wing transport. Volume 2: Simulation data and analysis

    NASA Technical Reports Server (NTRS)

    Heffley, R. K.; Stapleford, R. L.; Rumold, R. C.; Lehman, J. M.; Scott, B. C.; Hynes, C. S.

    1974-01-01

    A simulator study of STOL airworthiness was conducted using a model of an augmentor wing transport. The approach, flare and landing, go-around, and takeoff phases of flight were investigated. The simulation and the data obtained are described. These data include performance measures, pilot commentary, and pilot ratings. A pilot/vehicle analysis of glide slope tracking and of the flare maneuver is included.

  20. Piloted Simulation of a Model-Predictive Automated Recovery System

    NASA Technical Reports Server (NTRS)

    Liu, James (Yuan); Litt, Jonathan; Sowers, T. Shane; Owens, A. Karl; Guo, Ten-Huei

    2014-01-01

    This presentation describes a model-predictive automatic recovery system for aircraft on the verge of a loss-of-control situation. The system determines when it must intervene to prevent an imminent accident, resulting from a poor approach. It estimates the altitude loss that would result from a go-around maneuver at the current flight condition. If the loss is projected to violate a minimum altitude threshold, the maneuver is automatically triggered. The system deactivates to allow landing once several criteria are met. Piloted flight simulator evaluation showed the system to provide effective envelope protection during extremely unsafe landing attempts. The results demonstrate how flight and propulsion control can be integrated to recover control of the vehicle automatically and prevent a potential catastrophe.

  1. A PILOT-SCALE STUDY ON THE COMBUSTION OF WASTE ...

    EPA Pesticide Factsheets

    Symposium Paper Post-consumer carpet is a potential substitute fuel for high temperature thermal processes such as cement kilns and boilers.This paper reports on results examining emissions of PCDDs/Fs from a series of pilot-scale experiments performed on the EPA's rotary kiln incinerator simulator facility in Research triangle Park, NC.

  2. Computer Simulation of a Multiaxis Air-to-Air Tracking Task Using the Optimal Pilot Control Model.

    DTIC Science & Technology

    1982-12-01

    v ABSTRACT ........ ............................. .. vi CHAPTER 1 - INTRODUCTION ....... ..................... 1 1.1 Motivation... Introduction ......... . 4 2.2 Optimal Pilot Control Model and Control Synthesis 4 2.3 Pitch Tracking Task ...... ................... 6 2.4 Multiaxis...CHAPTER 3 - SIMULATION SYSTEM ...... .................. 33 3.1 Introduction ........ ....................... 33 3.2 System Hardware

  3. Pilot in Rendezvous Docking Simulator

    NASA Image and Video Library

    1962-12-19

    Unidentified Pilot eyeballs his way to a docking by peering through the portal in his capsule. Photo published in Spaceflight Revolution, NASA Langley Research Center From Sputnik to Apollo. By James R. Hansen. NASA SP-4308, 1995, p. 372.

  4. A Methodology for Evaluating the Fidelity of Ground-Based Flight Simulators

    NASA Technical Reports Server (NTRS)

    Zeyada, Y.; Hess, R. A.

    1999-01-01

    An analytical and experimental investigation was undertaken to model the manner in which pilots perceive and utilize visual, proprioceptive, and vestibular cues in a ground-based flight simulator. The study was part of a larger research effort which has the creation of a methodology for determining flight simulator fidelity requirements as its ultimate goal. The study utilized a closed-loop feedback structure of the pilot/simulator system which included the pilot, the cockpit inceptor, the dynamics of the simulated vehicle and the motion system. With the exception of time delays which accrued in visual scene production in the simulator, visual scene effects were not included in this study. The NASA Ames Vertical Motion Simulator was used in a simple, single-degree of freedom rotorcraft bob-up/down maneuver. Pilot/vehicle analysis and fuzzy-inference identification were employed to study the changes in fidelity which occurred as the characteristics of the motion system were varied over five configurations i The data from three of the five pilots that participated in the experimental study were analyzed in the fuzzy inference identification. Results indicate that both the analytical pilot/vehicle analysis and the fuzzyinference identification can be used to reflect changes in simulator fidelity for the task examined.

  5. A Methodology for Evaluating the Fidelity of Ground-Based Flight Simulators

    NASA Technical Reports Server (NTRS)

    Zeyada, Y.; Hess, R. A.

    1999-01-01

    An analytical and experimental investigation was undertaken to model the manner in which pilots perceive and utilize visual, proprioceptive, and vestibular cues in a ground-based flight simulator. The study was part of a larger research effort which has the creation of a methodology for determining flight simulator fidelity requirements as its ultimate goal. The study utilized a closed-loop feedback structure of the pilot/simulator system which included the pilot, the cockpit inceptor, the dynamics of the simulated vehicle and the motion system. With the exception of time delays which accrued in visual scene production in the simulator, visual scene effects were not included in this study. The NASA Ames Vertical Motion Simulator was used in a simple, single-degree of freedom rotorcraft bob-up/down maneuver. Pilot/vehicle analysis and fuzzy-inference identification were employed to study the changes in fidelity which occurred as the characteristics of the motion system were varied over five configurations. The data from three of the five pilots that participated in the experimental study were analyzed in the fuzzy-inference identification. Results indicate that both the analytical pilot/vehicle analysis and the fuzzy-inference identification can be used to reflect changes in simulator fidelity for the task examined.

  6. An Interprofessional Learning Workshop for Mammography and Sonography Students Focusing on Breast Cancer Care and Management Via Simulation: A Pilot Study.

    PubMed

    Giles, Eileen M; Parange, Nayana; Knight, Bronwyn

    2017-08-01

    The literature surrounding interprofessional education claims that students who learn with, from, and about one another in well-designed interprofessional programs will practice together collaboratively upon graduation, given the skills to do so. The objective of this study was to examine attitudes to interprofessional practice before and after an interprofessional learning (IPL) activity. A total of 35 postgraduate medical imaging students attended a week-long mammography workshop. The sessions provided a range of didactic sessions related to diagnosis and management of breast cancer. An IPL session was incorporated on completion of the workshop to consolidate learning. Props and authentic resources were used to increase the fidelity of the simulation. Participants completed pre- and post-workshop questionnaires comprising an interprofessional education and collaboration scale and a quiz to gauge knowledge of specific content related to professional roles. Responses to each statement in the scale and quiz score, pre or post workshop, were compared, whereas responses to open-ended questions in post-workshop survey were thematically analyzed. Seventeen paired surveys were received. There was a significant total improvement of 10.66% (P = .036). After simulation, there was a statistically significant improvement in participants' understanding (P < .05) that IPL offers holistic care to the patient and that teamwork is useful for reducing errors in patient care. Simulation helped participants develop more awareness of their role within the profession, improve their understanding of other professionals, and gain more realistic expectations of team members. This pilot study confirmed learning within an IPL simulation improved attitudes toward shared learning, teamwork, and communication. Simulation provides opportunities for learning in a safe environment, and technology can be used in diverse ways to provide authentic learning. Copyright © 2017 The Association

  7. Piloted Evaluation of Modernized Limited Authority Control Laws in the NASA-Ames Vertical Motion Simulator (VMS)

    NASA Technical Reports Server (NTRS)

    Sahasrabudhe, Vineet; Melkers, Edgar; Faynberg, Alexander; Blanken, Chris L.

    2003-01-01

    The UH-60 BLACK HAWK was designed in the 1970s, when the US Army primarily operated during the day in good visual conditions. Subsequently, the introduction of night-vision goggles increased the BLACK HAWK'S mission effectiveness, but the accident rate also increased. The increased accident rate is strongly tied to increased pilot workload as a result of a degradation in visual cues. Over twenty years of research in helicopter flight control and handling qualities has shown that these degraded handling qualities can be recovered by modifying the response type of the helicopter in low speed flight. Sikorsky Aircraft Corporation initiated a project under the National Rotorcraft Technology Center (NRTC) to develop modern flight control laws while utilizing the existing partial authority Stability Augmentation System (SAS) of the BLACK HAWK. This effort resulted in a set of Modernized Control Laws (MCLAWS) that incorporate rate command and attitude command response types. Sikorsky and the US Army Aeroflightdynamics Directorate (AFDD) conducted a piloted simulation on the NASA-Ames Vertical h4otion Simulator, to assess potential handling qualities and to reduce the risk of subsequent implementation and flight test of these modern control laws on AFDD's EH-60L helicopter. The simulation showed that Attitude Command Attitude Hold control laws in pitch and roll improve handling qualities in the low speed flight regime. These improvements are consistent across a range of mission task elements and for both good and degraded visual environments. The MCLAWS perform better than the baseline UH-60A control laws in the presence of wind and turbulence. Finally, while the improved handling qualities in the pitch and roll axis allow the pilot to pay more attention to the vertical axis and hence altitude performance also improves, it is clear from pilot comments and altitude excursions that the addition of an Altitude Hold function would further reduce workload and improve overall

  8. Why are people downloading the freeware AIDA diabetes computing software program: a pilot study.

    PubMed

    Lehmann, Eldon D

    2002-01-01

    The purpose of this paper is to report a pilot survey about why people are downloading the AIDA interactive educational diabetes simulator. AIDA is a diabetes computer program that permits the interactive simulation of plasma insulin and blood glucose profiles for teaching, demonstration, and self-learning purposes. It has been made freely available, without charge, on the Internet as a noncommercial contribution to continuing diabetes education. Since its launch in 1996 well over 200,000 visits have been logged at the main AIDA Website--www.2aida.org--and over 40,000 copies of the AIDA program have been downloaded free-of-charge. This article documents a pilot survey of comments left by Website visitors while they were downloading the AIDA software, before they had a chance to actually use the program. The overall paradigm adopted for this study has endeavored to establish why people are resorting to the Internet to obtain diabetes information. Specific intended goals of the study were: (1) to demonstrate ongoing use of the World Wide Web for surveying diabetes software users by obtaining their free-text comments; (2) to identify what sort of things people were planning to do with the AIDA software simulator; and (3) to more generally gain some insight into why people are turning to the Web for healthcare-related information. The Internet-based survey methodology was found to be robust and reliable. Over an 8-month period (from February 2, 2001 to October 1, 2001) 642 responses were received. During the corresponding period 2,248 actual visits were made to the Website survey page--giving a response rate to this pilot study of 28.6%. Responses were received from participants in over 56 countries--although over half of these (n = 343; 53.4%) originated from the United States and United Kingdom. Two hundred forty-four responses (38.0%) were received from patients with diabetes, and 73 (11.4%) from relatives of patients, with fewer responses from doctors, students

  9. The psychophysiological assessment method for pilot's professional reliability.

    PubMed

    Zhang, L M; Yu, L S; Wang, K N; Jing, B S; Fang, C

    1997-05-01

    Previous research has shown that a pilot's professional reliability depends on two relative factors: the pilot's functional state and the demands of task workload. The Psychophysiological Reserve Capacity (PRC) is defined as a pilot's ability to accomplish additive tasks without reducing the performance of the primary task (flight task). We hypothesized that the PRC was a mirror of the pilot's functional state. The purpose of this study was to probe the psychophysiological method for evaluating a pilot's professional reliability on a simulator. The PRC Comprehensive Evaluating System (PRCCES) which was used in the experiment included four subsystems: a) quantitative evaluation system for pilot's performance on simulator; b) secondary task display and quantitative estimating system; c) multiphysiological data monitoring and statistical system; and d) comprehensive evaluation system for pilot PRC. Two studies were performed. In study one, 63 healthy and 13 hospitalized pilots participated. Each pilot performed a double 180 degrees circuit flight program with and without secondary task (three digit operation). The operator performance, score of secondary task and cost of physiological effort were measured and compared by PRCCES in the two conditions. Then, each pilot's flight skill in training was subjectively scored by instructor pilot ratings. In study two, 7 healthy pilots volunteered to take part in the experiment on the effects of sleep deprivation on pilot's PRC. Each participant had PRC tested pre- and post-8 h sleep deprivation. The results show that the PRC values of a healthy pilot was positively correlated with abilities of flexibility, operating and correcting deviation, attention distribution, and accuracy of instrument flight in the air (r = 0.27-0.40, p < 0.05), and negatively correlated with emotional anxiety in flight (r = -0.40, p < 0.05). The values of PRC in healthy pilots (0.61 +/- 0.17) were significantly higher than that of hospitalized pilots

  10. Digital Family History Data Mining with Neural Networks: A Pilot Study.

    PubMed

    Hoyt, Robert; Linnville, Steven; Thaler, Stephen; Moore, Jeffrey

    2016-01-01

    Following the passage of the Health Information Technology for Economic and Clinical Health (HITECH) Act of 2009, electronic health records were widely adopted by eligible physicians and hospitals in the United States. Stage 2 meaningful use menu objectives include a digital family history but no stipulation as to how that information should be used. A variety of data mining techniques now exist for these data, which include artificial neural networks (ANNs) for supervised or unsupervised machine learning. In this pilot study, we applied an ANN-based simulation to a previously reported digital family history to mine the database for trends. A graphical user interface was created to display the input of multiple conditions in the parents and output as the likelihood of diabetes, hypertension, and coronary artery disease in male and female offspring. The results of this pilot study show promise in using ANNs to data mine digital family histories for clinical and research purposes.

  11. The Effect of Multiprofessional Simulation-Based Obstetric Team Training on Patient-Reported Quality of Care: A Pilot Study.

    PubMed

    Truijens, Sophie E M; Banga, Franyke R; Fransen, Annemarie F; Pop, Victor J M; van Runnard Heimel, Pieter J; Oei, S Guid

    2015-08-01

    This study aimed to explore whether multiprofessional simulation-based obstetric team training improves patient-reported quality of care during pregnancy and childbirth. Multiprofessional teams from a large obstetric collaborative network in the Netherlands were trained in teamwork skills using the principles of crew resource management. Patient-reported quality of care was measured with the validated Pregnancy and Childbirth Questionnaire (PCQ) at 6 weeks postpartum. Before the training, 76 postpartum women (sample I) completed the questionnaire 6 weeks postpartum. Three months after the training, another sample of 68 postpartum women (sample II) completed the questionnaire. In sample II (after the training), the mean (SD) score of 108.9 (10.9) on the PCQ questionnaire was significantly higher than the score of 103.5 (11.6) in sample I (before training) (t = 2.75, P = 0.007). The effect size of the increase in PCQ total score was 0.5. Moreover, the subscales "personal treatment during pregnancy" and "educational information" showed a significant increase after the team training (P < 0.001). Items with the largest increase in mean scores included communication between health care professionals, clear leadership, involvement in planning, and better provision of information. Despite the methodological restrictions of a pilot study, the preliminary results indicate that multiprofessional simulation-based obstetric team training seems to improve patient-reported quality of care. The possibility that this improvement relates to the training is supported by the fact that the items with the largest increase are about the principles of crew resource management, used in the training.

  12. Rand Symposium on Pilot Training and the Pilot Career. (Santa Monica, Calif., Feb. 23-27, 1970).

    ERIC Educational Resources Information Center

    Stewart, W. A.; Wainstein, E. S.

    This document contains discussions of the following: The pilot career; Career and education; The pilot skill--definition, measurement, and retention; Relevance of training to combat; Selection; Motivation; Training innovations and the role of research; Simulators; The instructor pilot; Topics for research. (Author/CK)

  13. Experience with a three-axis side-located controller during a static and centrifuge simulation of the piloted launch of a manned multistage vehicle

    NASA Technical Reports Server (NTRS)

    Andrews, William H.; Holleman, Euclid C.

    1960-01-01

    An investigation was conducted to determine a human pilot's ability to control a multistage vehicle through the launch trajectory. The simulation was performed statically and dynamically by utilizing a human centrifuge. An interesting byproduct of the program was the three-axis side-located controller incorporated for pilot control inputs. This method of control proved to be acceptable for the successful completion of the tracking task during the simulation. There was no apparent effect of acceleration on the mechanical operation of the controller, but the pilot's control feel deteriorated as his dexterity decreased at high levels of acceleration. The application of control in a specific control mode was not difficult. However, coordination of more than one mode was difficult, and, in many instances, resulted in inadvertent control inputs. The acceptable control harmony at an acceleration level of 1 g became unacceptable at higher acceleration levels. Proper control-force harmony for a particular control task appears to be more critical for a three-axis controller than for conventional controllers. During simulations in which the pilot wore a pressure suit, the nature of the suit gloves further aggravated this condition.

  14. An investigation of motion base cueing and G-seat cueing on pilot performance in a simulator

    NASA Technical Reports Server (NTRS)

    Mckissick, B. T.; Ashworth, B. R.; Parrish, R. V.

    1983-01-01

    The effect of G-seat cueing (GSC) and motion-base cueing (MBC) on performance of a pursuit-tracking task is studied using the visual motion simulator (VMS) at Langley Research Center. The G-seat, the six-degree-of-freedom synergistic platform motion system, the visual display, the cockpit hardware, and the F-16 aircraft mathematical model are characterized. Each of 8 active F-15 pilots performed the 2-min-43-sec task 10 times for each experimental mode: no cue, GSC, MBC, and GSC + MBC; the results were analyzed statistically in terms of the RMS values of vertical and lateral tracking error. It is shown that lateral error is significantly reduced by either GSC or MBC, and that the combination of cues produces a further, significant decrease. Vertical error is significantly decreased by GSC with or without MBC, whereas MBC effects vary for different pilots. The pattern of these findings is roughly duplicated in measurements of stick force applied for roll and pitch correction.

  15. Pilot Decision-Making Training

    DTIC Science & Technology

    1990-05-01

    Pilot Decisional Attitude Questionnaire (PDAQ). 2. Aeronautical Decision Making . a. The pilot judgment problem b. Relationship of judgment to training...lmEr OAT . REPOR TYPE ANO GATES COVEIRO May 1990 Final - June 1985 - December 1988 4 .MU AN m . .m m t 4i C ’u. SUM L FUNING MUMBRS Pilot Decision - Making ...13 AGSTRACT (Maxu’m 200 wo f -The effectiveness of a simulator-based approach to training pilot skills in risk assessment and decision making was

  16. Dietary Effects on Cognition and Pilots' Flight Performance.

    PubMed

    Lindseth, Glenda N; Lindseth, Paul D; Jensen, Warren C; Petros, Thomas V; Helland, Brian D; Fossum, Debra L

    2011-01-01

    The purpose of this study was to investigate the effects of diet on cognition and flight performance of 45 pilots. Based on a theory of self-care, this clinical study used a repeated-measure, counterbalanced crossover design. Pilots were randomly rotated through 4-day high-carbohydrate, high-protein, high-fat, and control diets. Cognitive flight performance was evaluated using a GAT-2 full-motion flight simulator. The Sternberg short-term memory test and Vandenberg's mental rotation test were used to validate cognitive flight test results. Pilots consuming a high-protein diet had significantly poorer ( p < .05) overall flight performance scores than pilots consuming high-fat and high-carbohydrate diets.

  17. Compensation for time delay in flight simulator visual-display systems

    NASA Technical Reports Server (NTRS)

    Crane, D. F.

    1983-01-01

    A piloted aircraft can be viewed as a closed-loop, man-machine control system. When a simulator pilot is performing a precision maneuver, a delay in the visual display of aircraft response to pilot-control input decreases the stability of the pilot-aircraft system. The less stable system is more difficult to control precisely. Pilot dynamic response and performance change as the pilot attempts to compensate for the decrease in system stability, and these changes bias the simulation results by influencing the pilot's rating of the handling qualities of the simulated aircraft. Delay compensation, designed to restore pilot-aircraft system stability, was evaluated in several studies which are reported here. The studies range from single-axis, tracking-task experiments (with sufficient subjects and trials to establish statistical significance of the results) to a brief evaluation of compensation of a computer-generated-imagery (CGI) visual display system in a full six-degree-of-freedom simulation. The compensation was effective - improvements in pilot performance and workload or aircraft handling-qualities rating (HQR) were observed. Results from recent aircraft handling-qualities research literature which support the compensation design approach are also reviewed.

  18. Physiological Effects of Acceleration Observed During a Centrifuge Study of Pilot Performance

    NASA Technical Reports Server (NTRS)

    Smedal, Harald A.; Creer, Brent Y.; Wingrove, Rodney C.

    1960-01-01

    An investigation was conducted by the National Aeronautics and Space Administration, Ames Research Center, and the Naval Air Development Center, Aviation Medical Acceleration Laboratory, to study the effects of acceleration on pilot performance and to obtain some meaningful data for use in establishing tolerance to acceleration levels. The flight simulator used in the study was the Johnsville centrifuge operated as a closed loop system. The pilot was required to perform a control task in various sustained acceleration fields typical of those that Might be encountered by a pilot flying an entry vehicle in which he is seated in a forward-facing position. A special restraint system was developed and designed to increase the pilot's tolerance to these accelerations. The results of this study demonstrated that a well-trained subject, such as a test pilot, can adequately carry out a control task during moderately high accelerations for prolonged periods of time. The maximum levels of acceleration tolerated were approximately 6 times that of gravity for approximately 6 minutes, and varied slightly with the acceleration direction. The tolerance runs were in each case terminated by the subject. In all but two instances, the cause was extreme fatigue. On two occasions the subject terminated the run when he "grayed out." Although there were subjective and objective findings involving the visual and cardiovascular systems, the respiratory system yielded the more critical limiting factors. It would appear that these limiting factors were less severe during the "eyeballs-out" accelerations when compared with the "eyeballs-in" accelerations. These findings are explained on the basis of the influence that the inertial forces of acceleration have on the mechanics of respiration. A condensed version of this report was presented at the Annual Meeting of the Aerospace Medical Association, Miami Beach, May 5-11, 1960, in a paper entitled "Ability of Pilots to Perform a Control Task in

  19. The effects of display and autopilot functions on pilot workload for Single Pilot Instrument Flight Rule (SPIFR) operations

    NASA Technical Reports Server (NTRS)

    Hoh, Roger H.; Smith, James C.; Hinton, David A.

    1987-01-01

    An analytical and experimental research program was conducted to develop criteria for pilot interaction with advanced controls and displays in single pilot instrument flight rules (SPIFR) operations. The analytic phase reviewed fundamental considerations for pilot workload taking into account existing data, and using that data to develop a divided attention SPIFR pilot workload model. The pilot model was utilized to interpret the two experimental phases. The first experimental phase was a flight test program that evaluated pilot workload in the presence of current and near-term displays and autopilot functions. The second experiment was conducted on a King Air simulator, investigating the effects of co-pilot functions in the presence of very high SPIFR workload. The results indicate that the simplest displays tested were marginal for SPIFR operations. A moving map display aided the most in mental orientation, but had inherent deficiencies as a stand alone replacement for an HSI. Autopilot functions were highly effective for reducing pilot workload. The simulator tests showed that extremely high workload situations can be adequately handled when co-pilot functions are provided.

  20. Pre-Study Walkthrough with a Commercial Pilot for a Preliminary Single Pilot Operations Experiment

    NASA Technical Reports Server (NTRS)

    O'Connor-Dreher, Ryan; Roberts, Z.; Ziccardi, J.; Vu, K-P. L.; Strybel, T.; Koteskey, Robert William; Lachter, Joel B.; Vi Dao, Quang; Johnson, Walter W.; Battiste, V.

    2013-01-01

    The number of crew members in commercial flights has decreased to two members, down from the five-member crew required 50 years ago. One question of interest is whether the crew should be reduced to one pilot. In order to determine the critical factors involved in safely transitioning to a single pilot, research must examine whether any performance deficits arise with the loss of a crew member. With a concrete understanding of the cognitive and behavioral role of a co-pilot, aeronautical technologies and procedures can be developed that make up for the removal of the second aircrew member. The current project describes a pre-study walkthrough process that can be used to help in the development of scenarios for testing future concepts and technologies for single pilot operations. Qualitative information regarding the tasks performed by the pilots can be extracted with this technique and adapted for future investigations of single pilot operations.

  1. Simulated flight path control of fighter pilots and novice subjects at +3 Gz in a human centrifuge.

    PubMed

    Dalecki, Marc; Bock, Otmar; Guardiera, Simon

    2010-05-01

    We have previously shown that subjects produce exaggerated manual forces in +3 Gz. When subjects execute discrete flight path changes in a flight simulator, their performance is less stable in +3 Gz than in +1 Gz. Here we explore whether Gz-related deficits are found with continuous flight path changes. Novice subjects and fighter pilots sat in a high-fidelity flight simulator equipped with the reproduction of the Eurofighter 2000 cockpit, including the realistic flight stick, and pursued continuous altitude changes of a target airplane in +1 Gz and +3 Gz. Subjects also produced verbal responses in a Stroop task. Pursuit and Stroop tasks were administered alone and concurrently. Flight instability increased in +3 Gz compared to +1 Gz in novices (+46%), but not in pilots (+3%), and even there only during the first minute. Flight performance improved after the first minute in both subject groups. Stroop reaction time was higher in novices (+5.27%) than in pilots (+3.77%) at +3 Gz. Dual-task costs did not differ between groups or Gz levels. Deficits of force production in high Gz are largely compensated for when subjects apply forces to produce a continuously changing flight path. This compensation seems not to require additional cognitive resources and may be achieved by using visual feedback. Force production deficits in high Gz seem to have no appreciable effects on flight performance and cognitive load of experienced pilots using a force-plus-displacement stick in +3 Gz. It remains to be shown whether this conclusion extends to purely isometric sticks and to higher Gz levels.

  2. Piloted Simulation Assessment of a High-Speed Civil Transport Configuration. [conducted with the Langley six-degree-of-freedom Visual Motion Simulator

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Raney, David L.; Glaab, Louis J.; Derry, Stephen D.

    2002-01-01

    An assessment of a proposed configuration of a high-speed civil transport was conducted by using NASA and industry research pilots. The assessment was conducted to evaluate operational aspects of the configuration from a pilot's perspective, with the primary goal being to identify potential deficiencies in the configuration. The configuration was evaluated within and at the limits of the design operating envelope to determine the suitability of the configuration to maneuver in a typical mission as well as in emergency or envelope-limit conditions. The Cooper-Harper rating scale was used to evaluate the flying qualities of the configuration. A summary flying qualities metric was also calculated. The assessment was performed in the Langley six-degree-of-freedom Visual Motion Simulator. The effect of a restricted cockpit field-of-view due to obstruction by the vehicle nose was not included in this study. Tasks include landings, takeoffs, climbs, descents, overspeeds, coordinated turns, and recoveries from envelope limit excursions. Emergencies included engine failures, loss of stability augmentation, engine inlet unstarts, and emergency descents. Minimum control speeds and takeoff decision, rotation, and safety speeds were also determined.

  3. Three astronauts inside Command Module Simulator during Apollo Simulation

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Three astronauts inside the Command Module Simulator in bldg 5 during an Apollo Simulation. Left to right are Astronauts Thomas P. Stafford, commander; John W. Young, command module pilot; and Eugene A. Cernan, lunar module pilot.

  4. Simulation Evaluation of Pilot Inputs for Real Time Modeling During Commercial Flight Operations

    NASA Technical Reports Server (NTRS)

    Martos, Borja; Ranaudo, Richard; Oltman, Ryan; Myhre, Nick

    2017-01-01

    Aircraft dynamics characteristics can only be identified from flight data when the aircraft dynamics are excited sufficiently. A preliminary study was conducted into what types and levels of manual piloted control excitation would be required for accurate Real-Time Parameter IDentification (RTPID) results by commercial airline pilots. This includes assessing the practicality for the pilot to provide this excitation when cued, and to further understand if pilot inputs during various phases of flight provide sufficient excitation naturally. An operationally representative task was evaluated by 5 commercial airline pilots using the NASA Ice Contamination Effects Flight Training Device (ICEFTD). Results showed that it is practical to use manual pilot inputs only as a means of achieving good RTPID in all phases of flight and in flight turbulence conditions. All pilots were effective in satisfying excitation requirements when cued. Much of the time, cueing was not even necessary, as just performing the required task provided enough excitation for accurate RTPID estimation. Pilot opinion surveys reported that the additional control inputs required when prompted by the excitation cueing were easy to make, quickly mastered, and required minimal training.

  5. Where have all the pilot studies gone? A follow-up on 30 years of pilot studies in Clinical Rehabilitation

    PubMed Central

    Kaur, Navaldeep; Figueiredo, Sabrina; Bouchard, Vanessa; Moriello, Carolina; Mayo, Nancy

    2017-01-01

    Introduction: Pilot studies are meritorious for determining the feasibility of a definitive clinical trial in terms of conduct and potential for efficacy, but their possible applications for planning a future trial are not always fully realized. The purpose of this review was to estimate the extent to which pilot/feasibility studies: (i) addressed needed objectives; (ii) led to definitive trials; and (iii) whether the subsequent undertaking of a definitive trial was influenced by the strength of the evidence of outcome improvement. Methods: Trials published in the journal Clinical Rehabilitation, since its inception, were eligible if the word ‘pilot’ or ‘feasibility’ was specified somewhere in the article. A total of 191 studies were reviewed, results were summarized descriptively, and between-group effect sizes were computed. Results: The specific purposes of piloting were stated in only 58% (n = 110) of the studies. The most frequent purpose was to estimate the potential for efficacy (85%), followed by testing the feasibility of the intervention (60%). Only 12% of the studies were followed by a definitive trial; <4% of studies had a main study underway or a published study protocol. There was no relationship between observed effect size and follow-up of pilot studies, although the confidence intervals were very wide owing to small number of trials that followed on. Discussion: Labelling and reporting of pilot studies needs to be improved to be concordant with the recently issued CONSORT guidelines. Feasibility needs to be fully tested and demonstrated prior to committing considerable human and monetary resources. PMID:28786333

  6. Study of occupational stress among railway engine pilots

    PubMed Central

    Kumar, Devesh; Singh, Jai Vir; Kharwar, Poonam S.

    2011-01-01

    Background: Traffic volume and speed is going to be increased in Indian Railways successively, leading to higher stress in staff connected with train operations. The jobs of railway engine pilots come under the category of high-strain jobs, necessitating a need to conduct multicentric study to unfold the factors associated with occupational stress and organizational strategies. Materials and Methods: Present study covered 185 railway engine pilots and office clerks working in various railway zones by incidental method. Occupational Stress Index (OSI) test developed by Srivastva and Singh, questionnaire of specific stressors constructed by authors and laboratory test battery for psychological screening of high-speed train pilots were used as tools. Results: Means of OSI and all the 12 occupational stressors of railway engine pilots were found significantly higher to that of office clerks. Means of OSI and occupational stressors of goods train pilots were significantly higher in comparison to high-speed train pilots and passenger train pilots. Study revealed positive correlation of speed perception and complex reaction time tests and negative correlation of other constituent tests of laboratory test battery to OSI test. Highest subgroup of stressor observedwas role overload followed by role conflict. Conclusions: These findings provide a prima facie evidence of higher occupational stress among railway engine pilots because of identified specific stressors prevalent in their job and explore the possible intervention strategies for its reduction. Significant correlation is noticed between OSI and laboratory test results, indicating its relevant utility in preliminary psychological screening. PMID:21808497

  7. Motion simulator study of longitudinal stability requirements for large delta wing transport airplanes during approach and landing with stability augmentation systems failed

    NASA Technical Reports Server (NTRS)

    Snyder, C. T.; Fry, E. B.; Drinkwater, F. J., III; Forrest, R. D.; Scott, B. C.; Benefield, T. D.

    1972-01-01

    A ground-based simulator investigation was conducted in preparation for and correlation with an-flight simulator program. The objective of these studies was to define minimum acceptable levels of static longitudinal stability for landing approach following stability augmentation systems failures. The airworthiness authorities are presently attempting to establish the requirements for civil transports with only the backup flight control system operating. Using a baseline configuration representative of a large delta wing transport, 20 different configurations, many representing negative static margins, were assessed by three research test pilots in 33 hours of piloted operation. Verification of the baseline model to be used in the TIFS experiment was provided by computed and piloted comparisons with a well-validated reference airplane simulation. Pilot comments and ratings are included, as well as preliminary tracking performance and workload data.

  8. Piloted Simulation of Various Synthetic Vision Systems Terrain Portrayal and Guidance Symbology Concepts for Low Altitude En-Route Scenario

    NASA Technical Reports Server (NTRS)

    Takallu, M. A.; Glaab, L. J.; Hughes, M. F.; Wong, D. T.; Bartolone, A. P.

    2008-01-01

    In support of the NASA Aviation Safety Program's Synthetic Vision Systems Project, a series of piloted simulations were conducted to explore and quantify the relationship between candidate Terrain Portrayal Concepts and Guidance Symbology Concepts, specific to General Aviation. The experiment scenario was based on a low altitude en route flight in Instrument Metrological Conditions in the central mountains of Alaska. A total of 18 general aviation pilots, with three levels of pilot experience, evaluated a test matrix of four terrain portrayal concepts and six guidance symbology concepts. Quantitative measures included various pilot/aircraft performance data, flight technical errors and flight control inputs. The qualitative measures included pilot comments and pilot responses to the structured questionnaires such as perceived workload, subjective situation awareness, pilot preferences, and the rare event recognition. There were statistically significant effects found from guidance symbology concepts and terrain portrayal concepts but no significant interactions between them. Lower flight technical errors and increased situation awareness were achieved using Synthetic Vision Systems displays, as compared to the baseline Pitch/Roll Flight Director and Blue Sky Brown Ground combination. Overall, those guidance symbology concepts that have both path based guidance cue and tunnel display performed better than the other guidance concepts.

  9. Some Factors Influencing Transfer of Simulator Training.

    ERIC Educational Resources Information Center

    Caro, Paul W.

    Studies of transfer of training may be used to determine whether simulator training improves pilot performance in an aircraft. Some approaches to determining simulator training effectiveness, such as surveys of pilot and instructor opinions, are not considered particularly reliable. Several other approaches have also been suggested. One factor…

  10. APMP Pilot Study on Transmittance Haze

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Chun; Hwang, Jisoo; Koo, Annette; Wu, Houping; Leecharoen, Rojana; Yu, Hsueh-Ling

    2018-02-01

    Five NMIs within APMP, including CMS/ITRI, MSL, NIM, NIMT and KRISS from TCPR applied to the APMP technical committee initiative project for funding to carry out a pilot comparison of transmittance haze in 2012. The project started in 2014 and the final report was completed at the end of 2016. In this pilot comparison, three different haze standards were adopted, and transmittance haze for each standard was measured according to ASTM D1003 or ISO 14782. This paper presents the first results of an APMP pilot study of transmittance haze and the analysis of the variation among different haze measurement systems which are commonly used. The study shows that the variables such as sphere multiplier, transmittance distribution, fluorescence of samples and optical path of the incident beam cause discrepancies among NMIs and highlight deficiencies in current documentary standards.

  11. Comparison of batch sorption tests, pilot studies, and modeling for estimating GAC bed life.

    PubMed

    Scharf, Roger G; Johnston, Robert W; Semmens, Michael J; Hozalski, Raymond M

    2010-02-01

    Saint Paul Regional Water Services (SPRWS) in Saint Paul, MN experiences annual taste and odor episodes during the warm summer months. These episodes are attributed primarily to geosmin that is produced by cyanobacteria growing in the chain of lakes used to convey and store the source water pumped from the Mississippi River. Batch experiments, pilot-scale experiments, and model simulations were performed to determine the geosmin removal performance and bed life of a granular activated carbon (GAC) filter-sorber. Using batch adsorption isotherm parameters, the estimated bed life for the GAC filter-sorber ranged from 920 to 1241 days when challenged with a constant concentration of 100 ng/L of geosmin. The estimated bed life obtained using the AdDesignS model and the actual pilot-plant loading history was 594 days. Based on the pilot-scale GAC column data, the actual bed life (>714 days) was much longer than the simulated values because bed life was extended by biological degradation of geosmin. The continuous feeding of high concentrations of geosmin (100-400 ng/L) in the pilot-scale experiments enriched for a robust geosmin-degrading culture that was sustained when the geosmin feed was turned off for 40 days. It is unclear, however, whether a geosmin-degrading culture can be established in a full-scale filter that experiences taste and odor episodes for only 1 or 2 months per year. The results of this research indicate that care must be exercised in the design and interpretation of pilot-scale experiments and model simulations for predicting taste and odor removal in full-scale GAC filter-sorbers. Adsorption and the potential for biological degradation must be considered to estimate GAC bed life for the conditions of intermittent geosmin loading typically experienced by full-scale systems. (c) 2009 Elsevier Ltd. All rights reserved.

  12. Nursing students' perceptions of a video-based serious game's educational value: A pilot study.

    PubMed

    Johnsen, Hege M; Fossum, Mariann; Vivekananda-Schmidt, Pirashanthie; Fruhling, Ann; Slettebø, Åshild

    2018-03-01

    Despite an increasing number of serious games (SGs) in nursing education, few evaluation studies specifically address their educational value in terms of face, content, and construct validity. To assess nursing students' perceptions of a video-based SG in terms of face, content, and construct validity. In addition, the study assessed perceptions of usability, individual factors, and preferences regarding future use. A pilot study was conducted. An SG prototype was implemented as part of two simulation courses in nursing education: one for home health care and one for hospital medical-surgical wards. The SG aimed to teach clinical reasoning and decision-making skills to nursing students caring for patients with chronic obstructive pulmonary disease. A total of 249second-year nursing students participated in pilot testing of the SG. A paper-based survey was used to assess students' perceptions of the SG's educational value. Overall, students from both simulation courses perceived the SG as educationally valuable and easy to use. No significant differences were found in perceptions of educational value between nursing students with previous healthcare experience versus those with none. However, significantly more students in the home healthcare simulation course indicated that the SG tested their clinical reasoning and decision-making skills. Students from both the medical-surgical and home healthcare simulation courses suggested that more video-based SGs should be developed and used in nursing education. Overall, the survey results indicate that the participants perceived the SG as educationally valuable, and that the SG has potential as an educational tool in nursing education, especially in caring for patients with chronic diseases and in home healthcare simulation. Showing a SG's educational value and user acceptance among nursing students may justify the development and application of more SGs in nursing education. Copyright © 2017 Elsevier Ltd. All rights

  13. Astronaut John Young in Command Module Simulator during Apollo Simulation

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Astronaut John W. Young, command module pilot, inside the Command Module Simulator in bldg 5 during an Apollo Simulation. Astronauts Thomas P. Stafford, commander and Eugene A. Cernan, lunar module pilot are out of the view.

  14. Piloted studies of Enhanced or Synthetic Vision display parameters

    NASA Technical Reports Server (NTRS)

    Harris, Randall L., Sr.; Parrish, Russell V.

    1992-01-01

    This paper summarizes the results of several studies conducted at Langley Research Center over the past few years. The purposes of these studies were to investigate parameters of pictorial displays and imaging sensors that affect pilot approach and landing performance. Pictorial displays have demonstrated exceptional tracking performance and improved the pilots' spatial awareness. Stereopsis cueing improved pilot flight performance and reduced pilot stress. Sensor image parameters such as increased field-of-view. faster image update rate, and aiding symbology improved flare initiation. Finer image resolution and magnification improved attitude control performance parameters.

  15. Three astronauts inside Command Module Simulator during Apollo Simulation

    NASA Image and Video Library

    1968-01-15

    S68-15952 (15 Jan. 1968) --- Three astronauts inside the Command Module Simulator in Building 5 during an Apollo Simulation. Left to right, are astronauts Thomas P. Stafford, commander; John W. Young, command module pilot; and Eugene A. Cernan, lunar module pilot.

  16. Rand Symposium on Pilot Training and the Pilot Career; Recollections of the Chairman.

    ERIC Educational Resources Information Center

    Stewart, W. A.

    Topics discussed in this 1970 symposium included the economics of flight training, careers in flying, college versus high school graduates, defining the trained pilot, motivation and selection, innovation in pilot training, training goals, transfer of training, and the role of simulators. Conferees agreed that the present Air Force undergraduate…

  17. A flight investigation of simulated data-link communications during single-pilot IFR flight. Volume 1: Experimental design and initial test

    NASA Technical Reports Server (NTRS)

    Parker, J. F., Jr.; Duffy, J. W.; Christensen, D. G.

    1981-01-01

    A Flight Data Console simulation of a digital communication link to replace the current voice communication system used in air traffic control (ATC) was developed. The study determined how a digital communications system reduces cockpit workload, improve, flight proficiency, and is acceptable to general aviation pilots. It is shown that instrument flight, including approach and landing, can be accomplished by using a digital data link system for ATC communication.

  18. Pilots' monitoring strategies and performance on automated flight decks: an empirical study combining behavioral and eye-tracking data.

    PubMed

    Sarter, Nadine B; Mumaw, Randall J; Wickens, Christopher D

    2007-06-01

    The objective of the study was to examine pilots' automation monitoring strategies and performance on highly automated commercial flight decks. A considerable body of research and operational experience has documented breakdowns in pilot-automation coordination on modern flight decks. These breakdowns are often considered symptoms of monitoring failures even though, to date, only limited and mostly anecdotal data exist concerning pilots' monitoring strategies and performance. Twenty experienced B-747-400 airline pilots flew a 1-hr scenario involving challenging automation-related events on a full-mission simulator. Behavioral, mental model, and eye-tracking data were collected. The findings from this study confirm that pilots monitor basic flight parameters to a much greater extent than visual indications of the automation configuration. More specifically, they frequently fail to verify manual mode selections or notice automatic mode changes. In other cases, they do not process mode annunciations in sufficient depth to understand their implications for aircraft behavior. Low system observability and gaps in pilots' understanding of complex automation modes were shown to contribute to these problems. Our findings describe and explain shortcomings in pilot's automation monitoring strategies and performance based on converging behavioral, eye-tracking, and mental model data. They confirm that monitoring failures are one major contributor to breakdowns in pilot-automation interaction. The findings from this research can inform the design of improved training programs and automation interfaces that support more effective system monitoring.

  19. Impact characteristics for high-pressure large-flow water-based emulsion pilot operated check valve reverse opening

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Huang, Chuanhui; Yu, Ping; Zhang, Lei

    2017-10-01

    To improve the dynamic characteristics and cavitation characteristics of large-flow pilot operated check valve, consider the pilot poppet as the research object, analyses working principle and design three different kinds of pilot poppets. The vibration characteristics and impact characteristics are analyzed. The simulation model is established through flow field simulation software. The cavitation characteristics of large-flow pilot operated check valve are studied and discussed. On this basis, high-pressure large-flow impact experimental system is used for impact experiment, and the cavitation index is discussed. Then optimal structure is obtained. Simulation results indicate that the increase of pilot poppet half cone angle can effectively reduce the cavitation area, reducing the generation of cavitation. Experimental results show that the pressure impact is not decreasing with increasing of pilot poppet half cone angle in process of unloading, but the unloading capacity, response speed and pilot poppet half cone angle are positively correlated. The impact characteristics of 60° pilot poppet, and its cavitation index is lesser, which indicates 60° pilot poppet is the optimal structure, with the theory results are basically identical.

  20. Pilot Study: Foam Wedge Chin Support Static Tolerance Testing

    DTIC Science & Technology

    2017-10-24

    AFRL-SA-WP-SR-2017-0026 Pilot Study : Foam Wedge Chin Support Static Tolerance Testing Austin M. Fischer, BS1; William W...COVERED (From – To) April – October 2017 4. TITLE AND SUBTITLE Pilot Study : Foam Wedge Chin Support Static Tolerance Testing 5a. CONTRACT NUMBER...prototype to mitigate the increase in helmet weight and forward center of gravity. The purpose of this pilot study was to determine the feasibility and

  1. Piloting an online grocery store simulation to assess children's food choices.

    PubMed

    Heard, Amy M; Harris, Jennifer L; Liu, Sai; Schwartz, Marlene B; Li, Xun

    2016-01-01

    Public health interventions must address poor diet among U.S. children, but research is needed to better understand factors influencing children's food choices. Using an online grocery store simulation, this research piloted a novel method to assess children's snack selection in a controlled but naturalistic laboratory setting, evaluate predictors of choice, and experimentally test whether promotions on food packages altered choices. Children (7-12 years, N = 61) were randomly assigned to one of three conditions: promotions on healthy products; promotions on unhealthy products; and no promotions (control). They selected from a variety of healthy and unhealthy foods and beverages and rated all products on healthfulness and taste. Promotions on food packaging did not affect snack selection in this study, but findings supported our other hypothesis that perceived taste would be the strongest predictor of food choice. Children accurately rated product healthfulness, but these ratings did not predict healthy snack choices or taste ratings for healthy or unhealthy snacks. These results suggest that interventions to improve children's food choices should focus on increasing availability of healthy options and identifying opportunities to enhance children's liking of healthy options. However, nutrition education alone is unlikely to improve children's diets. Further testing is required, but the simulated online grocery store method shows potential for measuring children's food choices. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Improving Aviation Safety with information Visualization: A Flight Simulation Study

    NASA Technical Reports Server (NTRS)

    Aragon, Cecilia R.; Hearst, Marti

    2005-01-01

    Many aircraft accidents each year are caused by encounters with invisible airflow hazards. Recent advances in aviation sensor technology offer the potential for aircraft-based sensors that can gather large amounts of airflow velocity data in real-time. With this influx of data comes the need to study how best to present it to the pilot - a cognitively overloaded user focused on a primary task other than that of information visualization. In this paper, we present the results of a usability study of an airflow hazard visualization system that significantly reduced the crash rate among experienced helicopter pilots flying a high fidelity, aerodynamically realistic fixed-base rotorcraft flight simulator into hazardous conditions. We focus on one particular aviation application, but the results may be relevant to user interfaces in other operationally stressful environments.

  3. Pilot self-coding applied in optical OFDM systems

    NASA Astrophysics Data System (ADS)

    Li, Changping; Yi, Ying; Lee, Kyesan

    2015-04-01

    This paper studies the frequency offset correction technique which can be applied in optical OFDM systems. Through theoretical analysis and computer simulations, we can observe that our proposed scheme named pilot self-coding (PSC) has a distinct influence for rectifying the frequency offset, which could mitigate the OFDM performance deterioration because of inter-carrier interference and common phase error. The main approach is to assign a pilot subcarrier before data subcarriers and copy this subcarrier sequence to the symmetric side. The simulation results verify that our proposed PSC is indeed effective against the high degree of frequency offset.

  4. Experimental and Numerical Study on Effect of Sample Orientation on Auto-Ignition and Piloted Ignition of Poly(methyl methacrylate)

    PubMed Central

    Peng, Fei; Zhou, Xiao-Dong; Zhao, Kun; Wu, Zhi-Bo; Yang, Li-Zhong

    2015-01-01

    In this work, the effect of seven different sample orientations from 0° to 90° on pilot and non-pilot ignition of PMMA (poly(methyl methacrylate)) exposed to radiation has been studied with experimental and numerical methods. Some new and significant conclusions are drawn from the study, including a U-shape curve of ignition time and critical mass flux as sample angle increases for pilot ignition conditions. However, in auto-ignition, the ignition time and critical mass flux increases with sample angle α. Furthermore, a computational fluid dynamic model have been built based on the Fire Dynamics Simulator (FDS6) code to investigate the mechanisms controlling the dependence on sample orientation of the ignition of PMMA under external radiant heating. The results of theoretical analysis and modeling results indicate the decrease of total incident heat flux at sample surface plays the dominant role during the ignition processes of auto-ignition, but the volatiles gas flow has greater influence for piloted ignition conditions. PMID:28793421

  5. The influence of ATC message length and timing on pilot communication

    NASA Technical Reports Server (NTRS)

    Morrow, Daniel; Rodvold, Michelle

    1993-01-01

    Pilot-controller communication is critical to safe and efficient flight. It is often a challenging component of piloting, which is reflected in the number of incidents and accidents involving miscommunication. Our previous field study identified communication problems that disrupt routine communication between pilots and controllers. The present part-task simulation study followed up the field results with a more controlled investigation of communication problems. Pilots flew a simulation in which they were frequently vectored by Air Traffic Control (ATC), requiring intensive communication with the controller. While flying, pilots also performed a secondary visual monitoring task. We examined the influence of message length (one message with four commands vs. two messages with two commands each) and noncommunication workload on communication accuracy and length. Longer ATC messages appeared to overload pilot working memory, resulting in more incorrect or partial readbacks, as well as more requests to repeat the message. The timing between the two short messages also influenced communication. The second message interfered with memory for or response to the first short message when it was delivered too soon after the first message. Performing the secondary monitoring task did not influence communication. Instead, communication reduced monitoring accuracy.

  6. Simulating Visual Attention Allocation of Pilots in an Advanced Cockpit Environment

    NASA Technical Reports Server (NTRS)

    Frische, F.; Osterloh, J.-P.; Luedtke, A.

    2011-01-01

    This paper describes the results of experiments conducted with human line pilots and a cognitive pilot model during interaction with a new 40 Flight Management System (FMS). The aim of these experiments was to gather human pilot behavior data in order to calibrate the behavior of the model. Human behavior is mainly triggered by visual perception. Thus, the main aspect was to setup a profile of human pilots' visual attention allocation in a cockpit environment containing the new FMS. We first performed statistical analyses of eye tracker data and then compared our results to common results of familiar analyses in standard cockpit environments. The comparison has shown a significant influence of the new system on the visual performance of human pilots. Further on, analyses of the pilot models' visual performance have been performed. A comparison to human pilots' visual performance revealed important improvement potentials.

  7. Manual transmission enhances attention and driving performance of ADHD adolescent males: pilot study.

    PubMed

    Cox, Daniel J; Punja, Mohan; Powers, Katie; Merkel, R Lawrence; Burket, Roger; Moore, Melissa; Thorndike, Frances; Kovatchev, Boris

    2006-11-01

    Inattention is a major contributor to driving mishaps and is especially problematic among adolescent drivers with ADHD, possibly contributing to their 2 to 4 times higher incidence of collisions. Manual transmission has been demonstrated to be associated with greater arousal. This study tests the hypotheses that manual transmission, compared to automatic transmission, would be associated with better attention and performance on a driving simulator. Ten adolescent drivers with ADHD practice driving on the simulator in the manual and automatic mode. Employing a single-blind, cross-over design, participants drive the simulator at 19:30 and 22:30 hr for 30 min in both transmissions and rate their attention to driving. Subjectively, participants report being more attentive while driving in manual transmission mode. Objectively, participants drive safer in the manual transmission mode. Although in need of replication, this pilot study suggests a behavioral intervention to improve driving performance among ADHD adolescents.

  8. Experimental Studies Of Pilot Performance At Collision Avoidance During Closely Spaced Parallel Approaches

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy R.; Hansman, R. John

    1997-01-01

    Efforts to increase airport capacity include studies of aircraft systems that would enable simultaneous approaches to closely spaced parallel runway in Instrument Meteorological Conditions (IMC). The time-critical nature of a parallel approach results in key design issues for current and future collision avoidance systems. Two part-task flight simulator studies have examined the procedural and display issues inherent in such a time-critical task, the interaction of the pilot with a collision avoidance system, and the alerting criteria and avoidance maneuvers preferred by subjects.

  9. Retaining U.S. Air Force Pilots When the Civilian Demand for Pilots Is Growing

    DTIC Science & Technology

    2016-01-01

    pilot retention and determine the changes in ARP and AP that could offset those effects. It also simulates the effects of eliminating AP for pilots...array of compensation policies for pilots, thereby providing the USAF with an empirically based analytical platform to determine the special and...greatly from the input and support of our project monitor, Maj Ryan Theiss, Chief, Rated Force Policy-Mobility Forces (HQ USAF/A1PPR), as well as Lt

  10. A mixed method pilot study: the researchers' experiences.

    PubMed

    Secomb, Jacinta M; Smith, Colleen

    2011-08-01

    This paper reports on the outcomes of a small well designed pilot study. Pilot studies often disseminate limited or statistically meaningless results without adding to the body knowledge on the comparative research benefits. The design a pre-test post-test group parallel randomised control trial and inductive content analysis of focus group transcripts was tested specifically to increase outcomes in a proposed larger study. Strategies are now in place to overcome operational barriers and recruitment difficulties. Links between the qualitative and quantitative arms of the proposed larger study have been made; it is anticipated that this will add depth to the final report. More extensive reporting on the outcomes of pilot studies would assist researchers and increase the body of knowledge in this area.

  11. A Comprehensive Study of Three Delay Compensation Algorithms for Flight Simulators

    NASA Technical Reports Server (NTRS)

    Guo, Liwen; Cardullo, Frank M.; Houck, Jacob A.; Kelly, Lon C.; Wolters, Thomas E.

    2005-01-01

    This paper summarizes a comprehensive study of three predictors used for compensating the transport delay in a flight simulator; The McFarland, Adaptive and State Space Predictors. The paper presents proof that the stochastic approximation algorithm can achieve the best compensation among all four adaptive predictors, and intensively investigates the relationship between the state space predictor s compensation quality and its reference model. Piloted simulation tests show that the adaptive predictor and state space predictor can achieve better compensation of transport delay than the McFarland predictor.

  12. The Results of a Simulator Study to Determine the Effects on Pilot Performance of Two Different Motion Cueing Algorithms and Various Delays, Compensated and Uncompensated

    NASA Technical Reports Server (NTRS)

    Guo, Li-Wen; Cardullo, Frank M.; Telban, Robert J.; Houck, Jacob A.; Kelly, Lon C.

    2003-01-01

    A study was conducted employing the Visual Motion Simulator (VMS) at the NASA Langley Research Center, Hampton, Virginia. This study compared two motion cueing algorithms, the NASA adaptive algorithm and a new optimal control based algorithm. Also, the study included the effects of transport delays and the compensation thereof. The delay compensation algorithm employed is one developed by Richard McFarland at NASA Ames Research Center. This paper reports on the analyses of the results of analyzing the experimental data collected from preliminary simulation tests. This series of tests was conducted to evaluate the protocols and the methodology of data analysis in preparation for more comprehensive tests which will be conducted during the spring of 2003. Therefore only three pilots were used. Nevertheless some useful results were obtained. The experimental conditions involved three maneuvers; a straight-in approach with a rotating wind vector, an offset approach with turbulence and gust, and a takeoff with and without an engine failure shortly after liftoff. For each of the maneuvers the two motion conditions were combined with four delay conditions (0, 50, 100 & 200ms), with and without compensation.

  13. Intubation after rapid sequence induction performed by non-medical personnel during space exploration missions: a simulation pilot study in a Mars analogue environment.

    PubMed

    Komorowski, Matthieu; Fleming, Sarah

    2015-01-01

    The question of the safety of anaesthetic procedures performed by non anaesthetists or even by non physicians has long been debated. We explore here this question in the hypothetical context of an exploration mission to Mars. During future interplanetary space missions, the risk of medical conditions requiring surgery and anaesthetic techniques will be significant. On Earth, anaesthesia is generally performed by well accustomed personnel. During exploration missions, onboard medical expertise might be lacking, or the crew doctor could become ill or injured. Telemedical assistance will not be available. In these conditions and as a last resort, personnel with limited medical training may have to perform lifesaving procedures, which could include anaesthesia and surgery. The objective of this pilot study was to test the ability for unassisted personnel with no medical training to perform oro-tracheal intubation after a rapid sequence induction on a simulated deconditioned astronaut in a Mars analogue environment. The experiment made use of a hybrid simulation model, in which the injured astronaut was represented by a torso manikin, whose vital signs and hemodynamic status were emulated using a patient simulator software. Only assisted by an interactive computer tool (PowerPoint(®) presentation), five participants with no previous medical training completed a simplified induction of general anaesthesia with intubation. No major complication occurred during the simulated trials, namely no cardiac arrest, no hypoxia, no cardiovascular collapse and no failure to intubate. The study design was able to reproduce many of the constraints of a space exploration mission. Unassisted personnel with minimal medical training and familiarization with the equipment may be able to perform advanced medical care in a safe and efficient manner. Further studies integrating this protocol into a complete anaesthetic and surgical scenario will provide valuable input in designing health

  14. Cockpit simulation study of use of flight path angle for instrument approaches

    NASA Technical Reports Server (NTRS)

    Hanisch, B.; Ernst, H.; Johnston, R.

    1981-01-01

    The results of a piloted simulation experiment to evaluate the effect of integrating flight path angle information into a typical transport electronic attitude director indicator display format for flight director instrument landing system approaches are presented. Three electronic display formats are evaluated during 3 deg straight-in approaches with wind shear and turbulence conditions. Flight path tracking data and pilot subjective comments are analyzed with regard to the pilot's tracking performance and workload for all three display formats.

  15. SUPERFUND TREATABILITY CLEARINGHOUSE: SOIL STABILIZATION PILOT STUDY, UNITED CHROME NPL SITE PILOT STUDY AND HEALTH AND SAFETY PROGRAM, UNITED CHROME NPL SITE PILOT STUDY

    EPA Science Inventory

    This document is a project plan for a pilot study at the United Chrome NPL site, Corvallis, Oregon and includes the health and safety and quality assurance/quality control plans. The plan reports results of a bench-scale study of the treatment process as iieasured by the ...

  16. Controlling road rage : a literature review and pilot study

    DOT National Transportation Integrated Search

    1999-06-01

    This report discusses results of a literature review and pilot study on how to prevent aggressive driving and road rage. The study "Controlling Road Rage: A Literature Review and Pilot Study" defines road rage as "an incident in which an angry or imp...

  17. SPEEDIER Project. Preliminary Report on Social Studies Pilot Projects.

    ERIC Educational Resources Information Center

    Myers, Charles B.; And Others

    This preliminary report describes five social studies pilot programs in the counties of Dauphin, Lancaster, Lebanon, and York, Pennsylvania. It is expected that these pilot endeavors will affect educators in the counties served by SPEEDIER as follows: 1) increase understanding of the newer content, ideas, and strategies in the pilot programs; 2)…

  18. Human factors in aviation crashes involving older pilots.

    PubMed

    Li, Guohua; Baker, Susan P; Lamb, Margaret W; Grabowski, Jurek G; Rebok, George W

    2002-02-01

    Pilot errors are recognized as a contributing factor in as many as 80% of aviation crashes. Experimental studies using flight simulators indicate that due to decreased working memory capacity, older pilots are outperformed by their younger counterparts in communication tasks and flight summary scores. This study examines age-related differences in crash circumstances and pilot errors in a sample of pilots who flew commuter aircraft or air taxis and who were involved in airplane or helicopter crashes. A historical cohort of 3306 pilots who in 1987 flew commuter aircraft or air taxis and were 45-54 yr of age was constructed using the Federal Aviation Administration's airmen information system. Crash records of the study subjects for the years 1983-1997 were obtained from the National Transportation Safety Board (NTSB) by matching name and date of birth. NTSB's investigation reports were reviewed to identify pilot errors and other contributing factors. Comparisons of crash circumstances and human factors were made between pilots aged 40-49 yr and pilots aged 50-63 yr. A total of 165 crash records were studied, with 52% of these crashes involving pilots aged 50-63 yr. Crash circumstances, such as time and location of crash, type and phase of flight, and weather conditions, were similar between the two age groups. Pilot error was a contributing factor in 73% of the crashes involving younger pilots and in 69% of the crashes involving older pilots (p = 0.50). Age-related differences in the pattern of pilot errors were statistically insignificant. Overall, 23% of pilot errors were attributable to inattentiveness, 20% to flawed decisions, 18% to mishandled aircraft kinetics, and 18% to mishandled wind/runway conditions. Neither crash circumstances nor the prevalence and patterns of pilot errors appear to change significantly as age increases from the 40s to the 50s and early 60s.

  19. The Effect of Lateral-Directional Control Coupling on Pilot Control of an Airplane as Determined in Flight and in a Fixed-Base Flight Simulator

    NASA Technical Reports Server (NTRS)

    Vomaske, Richard F.; Sadoff, Melvin; Drinkwater, Fred J., III

    1961-01-01

    A flight and fixed-base simulator study was made of the effects of aileron-induced yaw on pilot opinion of aircraft lateral-directional controllability characteristics. A wide range of adverse and favorable aileron-induced yaw was investigated in flight at several levels of Dutch-roll damping. The flight results indicated that the optimum values of aileron- induced yaw differed only slightly from zero for Dutch-roll damping from satisfactory to marginally controllable levels. It was also shown that each range of values of aileron-induced yawing moment considered satisfactory, acceptable, or controllable increased with an increase in the Dutch- roll damping. The increase was most marked for marginally controllable configurations exhibiting favorable aileron-induced yaw. Comparison of fixed-base flight simulator results with flight results showed agreement, indicating that absence of kinesthetic motion cues did not markedly affect the pilots' evaluation of the type of control problem considered in this study. The results of the flight study were recast in terms of several parameters which were considered to have an important effect on pilot opinion of lateral-directional handling qualities, including the effects of control coupling. Results of brief tests with a three-axis side-arm controller indicated that for control coupling problems associated with highly favorable yaw and cross-control techniques, use of the three-axis controller resulted in a deterioration of control relative to results obtained with the conventional center stick and rudder pedals.

  20. High Working Memory Load Impairs Language Processing during a Simulated Piloting Task: An ERP and Pupillometry Study.

    PubMed

    Causse, Mickaël; Peysakhovich, Vsevolod; Fabre, Eve F

    2016-01-01

    Given the important amount of visual and auditory linguistic information that pilots have to process, operating an aircraft generates a high working-memory load (WML). In this context, the ability to focus attention on relevant information and to remain responsive to concurrent stimuli might be altered. Consequently, understanding the effects of WML on the processing of both linguistic targets and distractors is of particular interest in the study of pilot performance. In the present work, participants performed a simplified piloting task in which they had to follow one of three colored aircraft, according to specific written instructions (i.e., the written word for the color corresponding to the color of one of the aircraft) and to ignore either congruent or incongruent concurrent auditory distractors (i.e., a spoken name of color). The WML was manipulated with an n-back sub-task. Participants were instructed to apply the current written instruction in the low WML condition, and the 2-back written instruction in the high WML condition. Electrophysiological results revealed a major effect of WML at behavioral (i.e., decline of piloting performance), electrophysiological, and autonomic levels (i.e., greater pupil diameter). Increased WML consumed resources that could not be allocated to the processing of the linguistic stimuli, as indexed by lower P300/P600 amplitudes. Also, significantly, lower P600 responses were measured in incongruent vs. congruent trials in the low WML condition, showing a higher difficulty reorienting attention toward the written instruction, but this effect was canceled in the high WML condition. This suppression of interference in the high load condition is in line with the engagement/distraction trade-off model. We propose that P300/P600 components could be reliable indicators of WML and that they allow an estimation of its impact on the processing of linguistic stimuli.

  1. High Working Memory Load Impairs Language Processing during a Simulated Piloting Task: An ERP and Pupillometry Study

    PubMed Central

    Causse, Mickaël; Peysakhovich, Vsevolod; Fabre, Eve F.

    2016-01-01

    Given the important amount of visual and auditory linguistic information that pilots have to process, operating an aircraft generates a high working-memory load (WML). In this context, the ability to focus attention on relevant information and to remain responsive to concurrent stimuli might be altered. Consequently, understanding the effects of WML on the processing of both linguistic targets and distractors is of particular interest in the study of pilot performance. In the present work, participants performed a simplified piloting task in which they had to follow one of three colored aircraft, according to specific written instructions (i.e., the written word for the color corresponding to the color of one of the aircraft) and to ignore either congruent or incongruent concurrent auditory distractors (i.e., a spoken name of color). The WML was manipulated with an n-back sub-task. Participants were instructed to apply the current written instruction in the low WML condition, and the 2-back written instruction in the high WML condition. Electrophysiological results revealed a major effect of WML at behavioral (i.e., decline of piloting performance), electrophysiological, and autonomic levels (i.e., greater pupil diameter). Increased WML consumed resources that could not be allocated to the processing of the linguistic stimuli, as indexed by lower P300/P600 amplitudes. Also, significantly, lower P600 responses were measured in incongruent vs. congruent trials in the low WML condition, showing a higher difficulty reorienting attention toward the written instruction, but this effect was canceled in the high WML condition. This suppression of interference in the high load condition is in line with the engagement/distraction trade-off model. We propose that P300/P600 components could be reliable indicators of WML and that they allow an estimation of its impact on the processing of linguistic stimuli. PMID:27252639

  2. Modeling of pilot's visual behavior for low-level flight

    NASA Astrophysics Data System (ADS)

    Schulte, Axel; Onken, Reiner

    1995-06-01

    Developers of synthetic vision systems for low-level flight simulators deal with the problem to decide which features to incorporate in order to achieve most realistic training conditions. This paper supports an approach to this problem on the basis of modeling the pilot's visual behavior. This approach is founded upon the basic requirement that the pilot's mechanisms of visual perception should be identical in simulated and real low-level flight. Flight simulator experiments with pilots were conducted for knowledge acquisition. During the experiments video material of a real low-level flight mission containing different situations was displayed to the pilot who was acting under a realistic mission assignment in a laboratory environment. Pilot's eye movements could be measured during the replay. The visual mechanisms were divided into rule based strategies for visual navigation, based on the preflight planning process, as opposed to skill based processes. The paper results in a model of the pilot's planning strategy of a visual fixing routine as part of the navigation task. The model is a knowledge based system based upon the fuzzy evaluation of terrain features in order to determine the landmarks used by pilots. It can be shown that a computer implementation of the model selects those features, which were preferred by trained pilots, too.

  3. A listening skill educational intervention for pediatric rehabilitation clinicians: A mixed-methods pilot study.

    PubMed

    King, Gillian; Servais, Michelle; Shepherd, Tracy A; Willoughby, Colleen; Bolack, Linda; Moodie, Sheila; Baldwin, Patricia; Strachan, Deborah; Knickle, Kerry; Pinto, Madhu; Parker, Kathryn; McNaughton, Nancy

    2017-01-01

    To prepare for an RCT by examining the effects of an educational intervention on the listening skills of pediatric rehabilitation clinicians, piloting study procedures, and investigating participants' learning experiences. Six experienced clinicians received the intervention, consisting of video simulations and solution-focused coaching regarding personal listening goals. Self- and observer-rated measures of listening skill were completed and qualitative information was gathered in interviews and a member checking session. Significant change on self-reported listening skills was found from pre- to post-test and/or follow-up. The pilot provided useful information to improve the study protocol, including the addition of an initial orientation to listening skills. Participants found the intervention to be a highly valuable and intense learning experience, and reported immediate changes to their clinical and interprofessional practice. The educational intervention has the potential to be an effective means to enhance the listening skills of practicing pediatric rehabilitation clinicians.

  4. Algorithm for Simulating Atmospheric Turbulence and Aeroelastic Effects on Simulator Motion Systems

    NASA Technical Reports Server (NTRS)

    Ercole, Anthony V.; Cardullo, Frank M.; Kelly, Lon C.; Houck, Jacob A.

    2012-01-01

    Atmospheric turbulence produces high frequency accelerations in aircraft, typically greater than the response to pilot input. Motion system equipped flight simulators must present cues representative of the aircraft response to turbulence in order to maintain the integrity of the simulation. Currently, turbulence motion cueing produced by flight simulator motion systems has been less than satisfactory because the turbulence profiles have been attenuated by the motion cueing algorithms. This report presents a new turbulence motion cueing algorithm, referred to as the augmented turbulence channel. Like the previous turbulence algorithms, the output of the channel only augments the vertical degree of freedom of motion. This algorithm employs a parallel aircraft model and an optional high bandwidth cueing filter. Simulation of aeroelastic effects is also an area where frequency content must be preserved by the cueing algorithm. The current aeroelastic implementation uses a similar secondary channel that supplements the primary motion cue. Two studies were conducted using the NASA Langley Visual Motion Simulator and Cockpit Motion Facility to evaluate the effect of the turbulence channel and aeroelastic model on pilot control input. Results indicate that the pilot is better correlated with the aircraft response, when the augmented channel is in place.

  5. Astronaut John Young in Command Module Simulator during Apollo Simulation

    NASA Image and Video Library

    1968-01-15

    S68-15979 (15 Jan. 1968) --- Astronaut John W. Young, command module pilot, inside the Command Module Simulator in Building 5 during an Apollo Simulation. Out of view are astronaut Thomas P. Stafford (on the left), commander; and astronaut Eugene A. Cernan (on the right), lunar module pilot.

  6. Recommendations for Planning Pilot Studies in Clinical and Translational Research

    PubMed Central

    Moore, Charity G.; Carter, Rickey E.; Nietert, Paul J.; Stewart, Paul W.

    2011-01-01

    Abstract  Advances in clinical and translation science are facilitated by building on prior knowledge gained through experimentation and observation. In the context of drug development, preclinical studies are followed by a progression of phase I through phase IV clinical trials. At each step, the study design and statistical strategies are framed around research questions that are prerequisites for the next phase. In other types of biomedical research, pilot studies are used for gathering preliminary support for the next research step. However, the phrase “pilot study” is liberally applied to projects with little or no funding, characteristic of studies with poorly developed research proposals, and usually conducted with no detailed thought of the subsequent study. In this article, we present a rigorous definition of a pilot study, offer recommendations for the design, analysis and sample size justification of pilot studies in clinical and translational research, and emphasize the important role that well‐designed pilot studies play in the advancement of science and scientific careers. Clin Trans Sci 2011; Volume 4: 332–337 PMID:22029804

  7. Head-up transition behavior of pilots with and without head-up display in simulated low-visibility approaches

    NASA Technical Reports Server (NTRS)

    Haines, R. F.; Fischer, E.; Price, T. A.

    1980-01-01

    To quantify head-up transition behavior with and without a flightpath type head-up display, eight rated B-727 pilots each flew 31 manual and coupled approaches in a simulator with B-727 dynamics and collimated model board external scene. Data were also obtained on the roll played by the head-up display in the coupled-to-manual transition. Various wind shears, low visibilities, and ceilings were tested along with unexpected misalignment between the runway and head-up display symbology. The symbolic format used was a conformal scene. Every pilot except one stayed head-up, flying with the display after descending below the ceiling. Without the display and as altitude decreased, the number of lookups from the instrument panel decreased and the duration of each one increased. No large differences in mean number or duration of transitions up or down were found during the head-up display runs comparing the no-misalignment with the lateral instrument landing system offset misalignment runs. The head-up display led to fewer transitions after the pilot made a decision to land or execute a missed approach. Without the display, pilots generally waited until they had descended below the ceiling to look outside the first time, but with it several pilots looked down at their panel at relatively high altitudes (if they looked down at all). Manual takeover of control was rapid and smooth both with and without the display which permitted smoother engine power changes.

  8. SolarPILOT | Concentrating Solar Power | NREL

    Science.gov Websites

    tools. Unlike exclusively ray-tracing tools, SolarPILOT runs the analytical simulation engine that uses engine alongside a ray-tracing core for more detailed simulations. The SolTrace simulation engine is

  9. The DOE water cycle pilot study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, N. L.; King, A. W.; Miller, M. A.

    Intercompare Regional Climate Simulations (Takle et al. 1999), and model uncertainties within land surface models are being evaluated within the Program to Intercompare Land Surface Schemes (e.g., Henderson-Sellers 1993; Wood et al. 1998; Lohmann et al. 1998). In the context of understanding the water budget at watershed scales, the following two research questions that highlight DOE's unique water isotope analysis and high-performance modeling capabilities were posed as the foci of this pilot study: (1) Can the predictability of the regional water budget be improved using high-resolution model simulations that are constrained and validated with new hydrospheric water measurements? (2) Can water isotopic tracers be used to segregate different pathways through the water cycle and predict a change in regional climate patterns? To address these questions, numerical studies using regional atmospheric-land surface models and multiscale land surface hydrologic models were generated and, to the extent possible, the results were evaluated with observations. While the number of potential processes that may be important in the local water budget is large, several key processes were examined in detail. Most importantly, a concerted effort was made to understand water cycle processes and feedbacks at the land surface-atmosphere interface at spatial scales ranging from 30 m to hundreds of kilometers. A simple expression for the land surface water budget at the watershed scale is expressed as {Delta}S = P + G{sub in} - ET - Q - G{sub out}, where {Delta}S is the change in water storage, P is precipitation, ET is evapotranspiration, Q is streamflow, G{sub in} is groundwater entering the watershed, and G{sub out} is groundwater leaving the watershed, per unit time. The WCPS project identified data gaps and necessary model improvements that will lead to a more accurate representation of the terms in Eq. (1). Table 1 summarizes the components of this water cycle pilot study and the respective

  10. Numerical and flight simulator test of the flight deterioration concept

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.; Norviel, V.

    1982-01-01

    Manned flight simulator response to theoretical wind shear profiles was studied in an effort to calibrate fixed-stick and pilot-in-the-loop numerical models of jet transport aircraft on approach to landing. Results of the study indicate that both fixed-stick and pilot-in-the-loop models overpredict the deleterious effects of aircraft approaches when compared to pilot performance in the manned simulator. Although the pilot-in-the-loop model does a better job than does the fixed-stick model, the study suggests that the pilot-in-the-loop model is suitable for use in meteorological predictions of adverse low-level wind shear along approach and departure courses to identify situations in which pilots may find difficulty. The model should not be used to predict the success or failure of a specific aircraft. It is suggested that the pilot model be used as part of a ground-based Doppler radar low-level wind shear detection and warning system.

  11. Head-up transition behavior of pilots during simulated low-visibility approaches

    NASA Technical Reports Server (NTRS)

    Haines, R. F.

    1980-01-01

    Each of 13 commercial pilots from four airlines flew a total of 108 manual flight director approaches in a moving base simulation of a medium-sized turbojet (95,000 lb gross weight) which had a day and night Redifon external scene. Three levels of runway visual range (RVR) (1,600; 2,400; and greater than 8,000 ft), three wind-shear profiles, nine ceiling heights, and continuous and intermittent visibility after initial breakout were tested. The results indicated that: (1) mean decision time ranged from 2 to 4.6 sec for ceilings under 380 ft across the three RVR conditions; (2) mean vertical distance traveled during the visual-cue assessment period was a relatively constant proportion below the existing ceiling; (3) a significant three way interaction in mean decision time between wind shear, day-night, and ceiling RVR variables occurred; (4) mean number of head-up transitions to VFR conditions after breakout ranged from 4.6 to 13.4 and increased as a function of ceiling and severity of wind shear; the typical duration of fixation out the window was 1.5 sec; and (5) subjective pilot ratings of controllability and precision of control as well as amount of skill, attention, or effort required to make the landing were influenced significantly by the wind shear, night conditions, and low breakout ceiling conditions.

  12. Using Simulation Speeds to Differentiate Controller Interface Concepts

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna; Pope, Alan

    2008-01-01

    This study investigated two concepts: (1) whether speeding a human-in-the-loop simulation (or the subject's "world") scales time stress in such a way as to cause primary task performance to reveal workload differences between experimental conditions and (2) whether using natural hand motions to control the attitude of an aircraft makes controlling the aircraft easier and more intuitive. This was accomplished by having pilots and non-pilots make altitude and heading changes using three different control inceptors at three simulation speeds. Results indicate that simulation speed does affect workload and controllability. The bank and pitch angle error was affected by simulation speed but not by a simulation speed by controller type interaction; this may have been due to the relatively easy flying task. Results also indicate that pilots could control the bank and pitch angle of an aircraft about equally as well with the glove as with the sidestick. Non-pilots approached the pilots ability to control the bank and pitch angle of an aircraft using the positional glove - where the hand angle is directly proportional to the commanded aircraft angle. Therefore, (1) changing the simulation speed lends itself to objectively indexing a subject s workload and may also aid in differentiating among interface concepts based upon performance if the task being studied is sufficiently challenging and (2) using natural body movements to mimic the movement of an airplane for attitude control is feasible.

  13. Crisis Resources for Emergency Workers (CREW II): results of a pilot study and simulation-based crisis resource management course for emergency medicine residents.

    PubMed

    Hicks, Christopher M; Kiss, Alex; Bandiera, Glen W; Denny, Christopher J

    2012-11-01

    Emergency department resuscitation requires the coordinated efforts of an interdisciplinary team. Aviation-based crisis resource management (CRM) training can improve safety and performance during complex events. We describe the development, piloting, and multilevel evaluation of "Crisis Resources for Emergency Workers" (CREW), a simulation-based CRM curriculum for emergency medicine (EM) residents. Curriculum development was informed by an a priori needs assessment survey. We constructed a 1-day course using simulated resuscitation scenarios paired with focused debriefing sessions. Attitudinal shifts regarding team behaviours were assessed using the Human Factors Attitude Survey (HFAS). A subset of 10 residents participated in standardized pre- and postcourse simulated resuscitation scenarios to quantify the effect of CREW training on our primary outcome of CRM performance. Pre/post scenarios were videotaped and scored by two blinded reviewers using a validated behavioural rating scale, the Ottawa CRM Global Rating Scale (GRS). Postcourse survey responses were highly favourable, with the majority of participants reporting that CREW training can reduce errors and improve patient safety. There was a nonsignificant trend toward improved team-based attitudes as assessed by the HFAS (p  =  0.210). Postcourse performance demonstrated a similar trend toward improved scores in all categories on the Ottawa GRS (p  =  0.16). EM residents find simulation-based CRM instruction to be useful, effective, and highly relevant to their practice. Trends toward improved performance and attitudes may have arisen because our study was underpowered to detect a difference. Future efforts should focus on interdisciplinary training and recruiting a larger sample size.

  14. Field-scale simulation of chemical flooding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saad, N.

    1989-01-01

    A three-dimensional compositional chemical flooding simulator (UTCHEM) has been improved. The new mathematical formulation, boundary conditions, and a description of the physicochemical models of the simulator are presented. This improved simulator has been used for the study of the low tension pilot project at the Big Muddy field near Casper, Wyoming. Both the tracer injection conducted prior to the injection of the chemical slug, and the chemical flooding stages of the pilot project, have been analyzed. Not only the oil recovery but also the tracers, polymer, alcohol and chloride histories have been successfully matched with field results. Simulation results indicatemore » that, for this fresh water reservoir, the salinity gradient during the preflush and the resulting calcium pickup by the surfactant slug played a major role in the success of the project. In addition, analysis of the effects of the crossflow on the performance of the pilot project indicates that, for the well spacing of the pilot, crossflow does not play as important a role as it might for a large-scale project. To improve the numerical efficiency of the simulator, a third order convective differencing scheme has been applied to the simulator. This method can be used with non-uniform mesh, and therefore is suited for simulation studies of large-scale multiwell heterogeneous reservoirs. Comparison of the results with one and two dimensional analytical solutions shows that this method is effective in eliminating numerical dispersion using relatively large grid blocks. Results of one, two and three-dimensional miscible water/tracer flow, water flooding, polymer flooding, and micellar-polymer flooding test problems, and results of grid orientation studies, are presented.« less

  15. The application of the pilot points in groundwater numerical inversion model

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Teng, Yanguo; Cheng, Lirong

    2015-04-01

    Numerical inversion simulation of groundwater has been widely applied in groundwater. Compared to traditional forward modeling, inversion model has more space to study. Zones and inversing modeling cell by cell are conventional methods. Pilot points is a method between them. The traditional inverse modeling method often uses software dividing the model into several zones with a few parameters needed to be inversed. However, distribution is usually too simple for modeler and result of simulation deviation. Inverse cell by cell will get the most actual parameter distribution in theory, but it need computational complexity greatly and quantity of survey data for geological statistical simulation areas. Compared to those methods, pilot points distribute a set of points throughout the different model domains for parameter estimation. Property values are assigned to model cells by Kriging to ensure geological units within the parameters of heterogeneity. It will reduce requirements of simulation area geological statistics and offset the gap between above methods. Pilot points can not only save calculation time, increase fitting degree, but also reduce instability of numerical model caused by numbers of parameters and other advantages. In this paper, we use pilot point in a field which structure formation heterogeneity and hydraulics parameter was unknown. We compare inversion modeling results of zones and pilot point methods. With the method of comparative analysis, we explore the characteristic of pilot point in groundwater inversion model. First, modeler generates an initial spatially correlated field given a geostatistical model by the description of the case site with the software named Groundwater Vistas 6. Defining Kriging to obtain the value of the field functions over the model domain on the basis of their values at measurement and pilot point locations (hydraulic conductivity), then we assign pilot points to the interpolated field which have been divided into 4

  16. Simulation Testing for Selection of Critical Care Medicine Trainees. A Pilot Feasibility Study.

    PubMed

    Cocciante, Adriano G; Nguyen, Martin N; Marane, Candida F; Panayiotou, Anita E; Karahalios, Amalia; Beer, Janet A; Johal, Navroop; Morris, John; Turner, Stacy; Hessian, Elizabeth C

    2016-04-01

    Selection of physicians into anesthesiology, intensive care, and emergency medicine training has traditionally relied on evaluation of curriculum vitae, letters of recommendation, and interviews, despite these methods being poor predictors of subsequent workplace performance. In this study, we evaluated the feasibility and face validity of incorporating assessment of nontechnical skills in simulation and personality traits into an existing junior doctor selection framework. Candidates short-listed for a critical care residency position were invited to participate in the study. On the interview day, consenting candidates participated in a simulation scenario and debriefing and completed a personality test (16 Personality Factor Questionnaire) and a survey. Timing of participants' progression through the stations and faculty staff numbers were evaluated. Nontechnical skills were evaluated and candidates ranked using the Ottawa Crisis Resource Management Global Rating Scale (Ottawa GRS). Nontechnical skills ranking and traditional selection method ranking were compared using the concordance correlation coefficient. Interrater reliability was assessed using the concordance correlation coefficient. Thirteen of 20 eligible participants consented to study inclusion. All participants completed the necessary stations without significant time delays. Eighteen staff members were required to conduct interviews, simulation, debriefing, and personality testing. Participants rated the simulation station to be acceptable, fair, and relevant and as providing an opportunity to demonstrate abilities. Personality testing was rated less fair, less relevant, and less acceptable, and as giving less opportunity to demonstrate abilities. Participants reported that simulation was equally as stressful as the interview, whereas personality testing was rated less stressful. Assessors rated both personality testing and simulation as acceptable and able to provide additional information about

  17. A piloted evaluation of an oblique-wing research aircraft motion simulation with decoupling control laws

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Mcneill, Walter E.; Gilyard, Glenn B.; Maine, Trindel A.

    1988-01-01

    The NASA Ames Research Center developed an oblique-wing research plane from NASA's digital fly-by-wire airplane. Oblique-wing airplanes show large cross-coupling in control and dynamic behavior which is not present on conventional symmetric airplanes and must be compensated for to obtain acceptable handling qualities. The large vertical motion simulator at NASA Ames-Moffett was used in the piloted evaluation of a proposed flight control system designed to provide decoupled handling qualities. Five discrete flight conditions were evaluated ranging from low altitude subsonic Mach numbers to moderate altitude supersonic Mach numbers. The flight control system was effective in generally decoupling the airplane. However, all participating pilots objected to the high levels of lateral acceleration encountered in pitch maneuvers. In addition, the pilots were more critical of left turns (in the direction of the trailing wingtip when skewed) than they were of right turns due to the tendency to be rolled into the left turns and out of the right turns. Asymmetric side force as a function of angle of attack was the primary cause of lateral acceleration in pitch. Along with the lateral acceleration in pitch, variation of rolling and yawing moments as functions of angle of attack caused the tendency to roll into left turns and out of right turns.

  18. Web-Based Simulation in Psychiatry Residency Training: A Pilot Study

    ERIC Educational Resources Information Center

    Gorrindo, Tristan; Baer, Lee; Sanders, Kathy M.; Birnbaum, Robert J.; Fromson, John A.; Sutton-Skinner, Kelly M.; Romeo, Sarah A.; Beresin, Eugene V.

    2011-01-01

    Background: Medical specialties, including surgery, obstetrics, anesthesia, critical care, and trauma, have adopted simulation technology for measuring clinical competency as a routine part of their residency training programs; yet, simulation technologies have rarely been adapted or used for psychiatry training. Objective: The authors describe…

  19. Piloted Evaluation of an Integrated Methodology for Propulsion and Airframe Control Design

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.; Garg, Sanjay; Mattern, Duane L.; Ranaudo, Richard J.; Odonoghue, Dennis P.

    1994-01-01

    An integrated methodology for propulsion and airframe control has been developed and evaluated for a Short Take-Off Vertical Landing (STOVL) aircraft using a fixed base flight simulator at NASA Lewis Research Center. For this evaluation the flight simulator is configured for transition flight using a STOVL aircraft model, a full nonlinear turbofan engine model, simulated cockpit and displays, and pilot effectors. The paper provides a brief description of the simulation models, the flight simulation environment, the displays and symbology, the integrated control design, and the piloted tasks used for control design evaluation. In the simulation, the pilots successfully completed typical transition phase tasks such as combined constant deceleration with flight path tracking, and constant acceleration wave-off maneuvers. The pilot comments of the integrated system performance and the display symbology are discussed and analyzed to identify potential areas of improvement.

  20. Enabling CSPA Operations Through Pilot Involvement in Longitudinal Approach Spacing

    NASA Technical Reports Server (NTRS)

    Battiste, Vernol (Technical Monitor); Pritchett, Amy

    2003-01-01

    Several major airports around the United States have, or plan to have, closely-spaced parallel runways. This project complemented current and previous research by examining the pilots ability to control their position longitudinally within their approach stream.This project s results considered spacing for separation from potential positions of wake vortices from the parallel approach. This preventive function could enable CSPA operations to very closely spaced runways. This work also considered how pilot involvement in longitudinal spacing could allow for more efficient traffic flow, by allowing pilots to keep their aircraft within tighter arrival slots then air traffic control (ATC) might be able to establish, and by maintaining space within the arrival stream for corresponding departure slots. To this end, this project conducted several research studies providing an analytic and computational basis for calculating appropriate aircraft spacings, experimental results from a piloted flight simulator test, and an experimental testbed for future simulator tests. The following sections summarize the results of these three efforts.

  1. Simulator study of the effect of visual-motion time delays on pilot tracking performance with an audio side task

    NASA Technical Reports Server (NTRS)

    Riley, D. R.; Miller, G. K., Jr.

    1978-01-01

    The effect of time delay was determined in the visual and motion cues in a flight simulator on pilot performance in tracking a target aircraft that was oscillating sinusoidally in altitude only. An audio side task was used to assure the subject was fully occupied at all times. The results indicate that, within the test grid employed, about the same acceptable time delay (250 msec) was obtained for a single aircraft (fighter type) by each of two subjects for both fixed-base and motion-base conditions. Acceptable time delay is defined as the largest amount of delay that can be inserted simultaneously into the visual and motion cues before performance degradation occurs. A statistical analysis of the data was made to establish this value of time delay. Audio side task provided quantitative data that documented the subject's work level.

  2. Effect of lift-to-drag ratio in pilot rating of the HL-20 landing task

    NASA Technical Reports Server (NTRS)

    Jackson, E. B.; Rivers, Robert A.; Bailey, Melvin L.

    1993-01-01

    A man-in-the-loop simulation study of the handling qualities of the HL-20 lifting-body vehicle was made in a fixed-base simulation cockpit at NASA Langley Research Center. The purpose of the study was to identify and substantiate opportunities for improving the original design of the vehicle from a handling qualities and landing performance perspective. Using preliminary wind-tunnel data, a subsonic aerodynamic model of the HL-20 was developed. This model was adequate to simulate the last 75-90 s of the approach and landing. A simple flight-control system was designed and implemented. Using this aerodynamic model as a baseline, visual approaches and landings were made at several vehicle lift-to-drag ratios. Pilots rated the handling characteristics of each configuration using a conventional numerical pilot-rating scale. Results from the study showed a high degree of correlation between the lift-to-drag ratio and pilot rating. Level 1 pilot ratings were obtained when the L/D ratio was approximately 3.8 or higher.

  3. Effect of lift-to-drag ratio in pilot rating of the HL-20 landing task

    NASA Astrophysics Data System (ADS)

    Jackson, E. B.; Rivers, Robert A.; Bailey, Melvin L.

    1993-10-01

    A man-in-the-loop simulation study of the handling qualities of the HL-20 lifting-body vehicle was made in a fixed-base simulation cockpit at NASA Langley Research Center. The purpose of the study was to identify and substantiate opportunities for improving the original design of the vehicle from a handling qualities and landing performance perspective. Using preliminary wind-tunnel data, a subsonic aerodynamic model of the HL-20 was developed. This model was adequate to simulate the last 75-90 s of the approach and landing. A simple flight-control system was designed and implemented. Using this aerodynamic model as a baseline, visual approaches and landings were made at several vehicle lift-to-drag ratios. Pilots rated the handling characteristics of each configuration using a conventional numerical pilot-rating scale. Results from the study showed a high degree of correlation between the lift-to-drag ratio and pilot rating. Level 1 pilot ratings were obtained when the L/D ratio was approximately 3.8 or higher.

  4. Initial Development and Pilot Study Design of Interactive Lecture Demonstrations for ASTRO 101

    NASA Astrophysics Data System (ADS)

    Schwortz, Andria C.; French, D. A; Gutierrez, Joseph V; Sanchez, Richard L; Slater, Timothy F.; Tatge, Coty

    2014-06-01

    Interactive lecture demonstrations (ILDs) have repeatedly shown to be effective tools for improving student achievement in the context of learning physics. As a first step toward systematic development of interactive lecture demonstrations in ASTRO 101, the introductory astronomy survey course, a systematic review of education research, describing educational computer simulations (ECSs) reveals that initial development requires a targeted study of how ASTRO 101 students respond to ECSs in the non-science majoring undergraduate lecture setting. In this project we have adopted the process by which ILDs were designed, pilot-tested, and successfully implemented in the context of physics teaching (Sokoloff & Thornton, 1997; Sokoloff & Thornton, 2004). We have designed the initial pilot-test set of ASTRO 101 ILD instructional materials relying heavily on ECSs. Both an instructor’s manual and a preliminary classroom-ready student workbook have been developed, and we are implementing a pilot study to explore their effectiveness in communicating scientific content, and the extent to which they might enhance students’ knowledge of and perception about astronomy and science in general. The study design uses a pre-/post-test quasi-experimental study design measuring students’ normalized gain scores, calculated as per Hake (1998) and Prather (2009), using a slightly modified version of S. Slater’s (2011) Test Of Astronomy STandards TOAST combined with other instruments. The results of this initial study will guide the iterative development of ASTRO 101 ILDs that are intended to both be effective at enhancing student achievement and easy for instructors to successfully implement.

  5. LAM Pilot Study with Imatinib Mesylate (LAMP-1)

    DTIC Science & Technology

    2015-10-01

    AD______________ AWARD NUMBER: W81XWH-14-1-0132 TITLE: LAM Pilot Study with Imatinib Mesylate (LAMP-1) PRINCIPAL INVESTIGATOR: Charlie...AND SUBTITLE LAM Pilot Study with Imatinib Mesylate (LAMP-1) 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0132 5c. PROGRAM ELEMENT...designed to generate short-term safety and efficacy data regarding imatinib mesylate (imatinib) in the treatment of Lymphangioleiomyomatosis ( LAM

  6. Enhanced Oceanic Operations Human-In-The-Loop In-Trail Procedure Validation Simulation Study

    NASA Technical Reports Server (NTRS)

    Murdoch, Jennifer L.; Bussink, Frank J. L.; Chamberlain, James P.; Chartrand, Ryan C.; Palmer, Michael T.; Palmer, Susan O.

    2008-01-01

    The Enhanced Oceanic Operations Human-In-The-Loop In-Trail Procedure (ITP) Validation Simulation Study investigated the viability of an ITP designed to enable oceanic flight level changes that would not otherwise be possible. Twelve commercial airline pilots with current oceanic experience flew a series of simulated scenarios involving either standard or ITP flight level change maneuvers and provided subjective workload ratings, assessments of ITP validity and acceptability, and objective performance measures associated with the appropriate selection, request, and execution of ITP flight level change maneuvers. In the majority of scenarios, subject pilots correctly assessed the traffic situation, selected an appropriate response (i.e., either a standard flight level change request, an ITP request, or no request), and executed their selected flight level change procedure, if any, without error. Workload ratings for ITP maneuvers were acceptable and not substantially higher than for standard flight level change maneuvers, and, for the majority of scenarios and subject pilots, subjective acceptability ratings and comments for ITP were generally high and positive. Qualitatively, the ITP was found to be valid and acceptable. However, the error rates for ITP maneuvers were higher than for standard flight level changes, and these errors may have design implications for both the ITP and the study's prototype traffic display. These errors and their implications are discussed.

  7. A Methodology to Determine the Psychomotor Performance of Helicopter Pilots During Flight Maneuvers.

    PubMed

    McMahon, Terry W; Newman, David G

    2015-07-01

    Helicopter flying is a complex psychomotor task requiring continuous control inputs to maintain stable flight and conduct maneuvers. Flight safety is impaired when this psychomotor performance is compromised. A comprehensive understanding of the psychomotor performance of helicopter pilots, under various operational and physiological conditions, remains to be developed. The purpose of this study was to develop a flight simulator-based technique for capturing psychomotor performance data of helicopter pilots. Three helicopter pilots conducted six low-level flight sequences in a helicopter simulator. Accelerometers applied to each flight control recorded the frequency and magnitude of movements. The mean (± SEM) number of control inputs per flight was 2450 (± 136). The mean (± SEM) number of control inputs per second was 1.96 (± 0.15). The mean (± SEM) force applied was 0.44 G (± 0.05 G). No significant differences were found between pilots in terms of flight completion times or number of movements per second. The number of control inputs made by the hands was significantly greater than the number of foot movements. The left hand control input forces were significantly greater than all other input forces. This study shows that the use of accelerometers in flight simulators is an effective technique for capturing accurate, reliable data on the psychomotor performance of helicopter pilots. This technique can be applied in future studies to a wider range of operational and physiological conditions and mission types in order to develop a greater awareness and understanding of the psychomotor performance demands on helicopter pilots.

  8. [3D Virtual Reality Laparoscopic Simulation in Surgical Education - Results of a Pilot Study].

    PubMed

    Kneist, W; Huber, T; Paschold, M; Lang, H

    2016-06-01

    The use of three-dimensional imaging in laparoscopy is a growing issue and has led to 3D systems in laparoscopic simulation. Studies on box trainers have shown differing results concerning the benefit of 3D imaging. There are currently no studies analysing 3D imaging in virtual reality laparoscopy (VRL). Five surgical fellows, 10 surgical residents and 29 undergraduate medical students performed abstract and procedural tasks on a VRL simulator using conventional 2D and 3D imaging in a randomised order. No significant differences between the two imaging systems were shown for students or medical professionals. Participants who preferred three-dimensional imaging showed significantly better results in 2D as wells as in 3D imaging. First results on three-dimensional imaging on box trainers showed different results. Some studies resulted in an advantage of 3D imaging for laparoscopic novices. This study did not confirm the superiority of 3D imaging over conventional 2D imaging in a VRL simulator. In the present study on 3D imaging on a VRL simulator there was no significant advantage for 3D imaging compared to conventional 2D imaging. Georg Thieme Verlag KG Stuttgart · New York.

  9. Prediction of pilot opinion ratings using an optimal pilot model. [of aircraft handling qualities in multiaxis tasks

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1977-01-01

    A brief review of some of the more pertinent applications of analytical pilot models to the prediction of aircraft handling qualities is undertaken. The relative ease with which multiloop piloting tasks can be modeled via the optimal control formulation makes the use of optimal pilot models particularly attractive for handling qualities research. To this end, a rating hypothesis is introduced which relates the numerical pilot opinion rating assigned to a particular vehicle and task to the numerical value of the index of performance resulting from an optimal pilot modeling procedure as applied to that vehicle and task. This hypothesis is tested using data from piloted simulations and is shown to be reasonable. An example concerning a helicopter landing approach is introduced to outline the predictive capability of the rating hypothesis in multiaxis piloting tasks.

  10. Flight simulator requirements for airline transport pilot training - An evaluation of motion system design alternatives

    NASA Technical Reports Server (NTRS)

    Lee, A. T.; Bussolari, S. R.

    1986-01-01

    The effect of motion platform systems on pilot behavior is considered with emphasis placed on civil aviation applications. A dynamic model for human spatial orientation based on the physiological structure and function of the human vestibular system is presented. Motion platform alternatives were evaluated on the basis of the following motion platform conditions: motion with six degrees-of-freedom required for Phase II simulators and two limited motion conditions. Consideration was given to engine flameout, airwork, and approach and landing scenarios.

  11. Cognitive Workload and Psychophysiological Parameters During Multitask Activity in Helicopter Pilots.

    PubMed

    Gaetan, Sophie; Dousset, Erick; Marqueste, Tanguy; Bringoux, Lionel; Bourdin, Christophe; Vercher, Jean-Louis; Besson, Patricia

    2015-12-01

    Helicopter pilots are involved in a complex multitask activity, implying overuse of cognitive resources, which may result in piloting task impairment or in decision-making failure. Studies usually investigate this phenomenon in well-controlled, poorly ecological situations by focusing on the correlation between physiological values and either cognitive workload or emotional state. This study aimed at jointly exploring workload induced by a realistic simulated helicopter flight mission and emotional state, as well as physiological markers. The experiment took place in the helicopter full flight dynamic simulator. Six participants had to fly on two missions. Workload level, skin conductance, RMS-EMG, and emotional state were assessed. Joint analysis of psychological and physiological parameters associated with workload estimation revealed particular dynamics in each of three profiles. 1) Expert pilots showed a slight increase of measured physiological parameters associated with the increase in difficulty level. Workload estimates never reached the highest level and the emotional state for this profile only referred to positive emotions with low emotional intensity. 2) Non-Expert pilots showed increasing physiological values as the perceived workload increased. However, their emotional state referred to either positive or negative emotions, with a greater variability in emotional intensity. 3) Intermediate pilots were similar to Expert pilots regarding emotional states and similar to Non-Expert pilots regarding physiological patterns. Overall, high interindividual variability of these results highlight the complex link between physiological and psychological parameters with workload, and question whether physiology alone could predict a pilot's inability to make the right decision at the right time.

  12. Fully automatic guidance and control for rotorcraft nap-of-the-Earth flight following planned profiles. Volume 1: Real-time piloted simulation

    NASA Technical Reports Server (NTRS)

    Clement, Warren F.; Gorder, Peter J.; Jewell, Wayne F.

    1991-01-01

    Developing a single-pilot, all-weather nap-of-the-earth (NOE) capability requires fully automatic NOE (ANOE) navigation and flight control. Innovative guidance and control concepts are investigated in a four-fold research effort that: (1) organizes the on-board computer-based storage and real-time updating of NOE terrain profiles and obstacles in course-oriented coordinates indexed to the mission flight plan; (2) defines a class of automatic anticipative pursuit guidance algorithms and necessary data preview requirements to follow the vertical, lateral, and longitudinal guidance commands dictated by the updated flight profiles; (3) automates a decision-making process for unexpected obstacle avoidance; and (4) provides several rapid response maneuvers. Acquired knowledge from the sensed environment is correlated with the forehand knowledge of the recorded environment (terrain, cultural features, threats, and targets), which is then used to determine an appropriate evasive maneuver if a nonconformity of the sensed and recorded environments is observed. This four-fold research effort was evaluated in both fixed-based and moving-based real-time piloted simulations, thereby, providing a practical demonstration for evaluating pilot acceptance of the automated concepts, supervisory override, manual operation, and re-engagement of the automatic system. Volume one describes the major components of the guidance and control laws as well as the results of the piloted simulations. Volume two describes the complete mathematical model of the fully automatic guidance system for rotorcraft NOE flight following planned flight profiles.

  13. Flight Deck Surface Trajectory-based Operations (STBO): Results of Piloted Simulations and Implications for Concepts of Operation (ConOps)

    NASA Technical Reports Server (NTRS)

    Foyle, David C.; Hooey, Becky L.; Bakowski, Deborah L.

    2013-01-01

    The results offour piloted medium-fidelity simulations investigating flight deck surface trajectory-based operations (STBO) will be reviewed. In these flight deck STBO simulations, commercial transport pilots were given taxi clearances with time and/or speed components and required to taxi to the departing runway or an intermediate traffic intersection. Under a variety of concept of operations (ConOps) and flight deck information conditions, pilots' ability to taxi in compliance with the required time of arrival (RTA) at the designated airport location was measured. ConOps and flight deck information conditions explored included: Availability of taxi clearance speed and elapsed time information; Intermediate RTAs at intermediate time constraint points (e.g., intersection traffic flow points); STBO taxi clearances via ATC voice speed commands or datal ink; and, Availability of flight deck display algorithms to reduce STBO RTA error. Flight Deck Implications. Pilot RTA conformance for STBO clearances, in the form of ATC taxi clearances with associated speed requirements, was found to be relatively poor, unless the pilot is required to follow a precise speed and acceleration/deceleration profile. However, following such a precise speed profile results in inordinate head-down tracking of current ground speed, leading to potentially unsafe operations. Mitigating these results, and providing good taxi RTA performance without the associated safety issues, is a flight deck avionics or electronic flight bag (EFB) solution. Such a solution enables pilots to meet the taxi route RTA without moment-by-moment tracking of ground speed. An avionics or EFB "error-nulling" algorithm allows the pilot to view the STBO information when the pilot determines it is necessary and when workload alloys, thus enabling the pilot to spread his/her attention appropriately and strategically on aircraft separation airport navigation, and the many other flight deck tasks concurrently required

  14. Analytical methodology for determination of helicopter IFR precision approach requirements. [pilot workload and acceptance level

    NASA Technical Reports Server (NTRS)

    Phatak, A. V.

    1980-01-01

    A systematic analytical approach to the determination of helicopter IFR precision approach requirements is formulated. The approach is based upon the hypothesis that pilot acceptance level or opinion rating of a given system is inversely related to the degree of pilot involvement in the control task. A nonlinear simulation of the helicopter approach to landing task incorporating appropriate models for UH-1H aircraft, the environmental disturbances and the human pilot was developed as a tool for evaluating the pilot acceptance hypothesis. The simulated pilot model is generic in nature and includes analytical representation of the human information acquisition, processing, and control strategies. Simulation analyses in the flight director mode indicate that the pilot model used is reasonable. Results of the simulation are used to identify candidate pilot workload metrics and to test the well known performance-work-load relationship. A pilot acceptance analytical methodology is formulated as a basis for further investigation, development and validation.

  15. Helicopter flight simulation motion platform requirements

    NASA Astrophysics Data System (ADS)

    Schroeder, Jeffery Allyn

    Flight simulators attempt to reproduce in-flight pilot-vehicle behavior on the ground. This reproduction is challenging for helicopter simulators, as the pilot is often inextricably dependent on external cues for pilot-vehicle stabilization. One important simulator cue is platform motion; however, its required fidelity is unknown. To determine the required motion fidelity, several unique experiments were performed. A large displacement motion platform was used that allowed pilots to fly tasks with matched motion and visual cues. Then, the platform motion was modified to give cues varying from full motion to no motion. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositionings. This refutes the view that pilots estimate altitude and altitude rate in simulation solely from visual cues. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.

  16. A piloted simulator investigation of stability and control, display and crew-loading requirements for helicopter instrument approach. Part 1: Technical discussion and results

    NASA Technical Reports Server (NTRS)

    Lebacqz, J. V.; Forrest, R. D.; Gerdes, R. M.

    1982-01-01

    A ground-simulation experiment was conducted to investigate the influence and interaction of flight-control system, fight-director display, and crew-loading situation on helicopter flying qualities during terminal area operations in instrument conditions. The experiment was conducted on the Flight Simulator for Advanced Aircraft at Ames Research Center. Six levels of control complexity, ranging from angular rate damping to velocity augmented longitudinal and vertical axes, were implemented on a representative helicopter model. The six levels of augmentation were examined with display variations consisting of raw elevation and azimuth data only, and of raw data plus one-, two-, and three-cue flight directors. Crew-loading situations simulated for the control-display combinations were dual-pilot operation (representative auxiliary tasks of navigation, communications, and decision-making). Four pilots performed a total of 150 evaluations of combinations of these parameters for a representative microwave landing system (MLS) approach task.

  17. A predictive pilot model for STOL aircraft landing

    NASA Technical Reports Server (NTRS)

    Kleinman, D. L.; Killingsworth, W. R.

    1974-01-01

    An optimal control approach has been used to model pilot performance during STOL flare and landing. The model is used to predict pilot landing performance for three STOL configurations, each having a different level of automatic control augmentation. Model predictions are compared with flight simulator data. It is concluded that the model can be effective design tool for studying analytically the effects of display modifications, different stability augmentation systems, and proposed changes in the landing area geometry.

  18. Mixed virtual reality simulation--taking endoscopic simulation one step further.

    PubMed

    Courteille, O; Felländer-Tsai, L; Hedman, L; Kjellin, A; Enochsson, L; Lindgren, G; Fors, U

    2011-01-01

    This pilot study aimed to assess medical students' appraisals of a "mixed" virtual reality simulation for endoscopic surgery (with a virtual patient case in addition to a virtual colonoscopy) as well as the impact of this simulation set-up on students' performance. Findings indicate that virtual patients can enhance contextualization of simulated endoscopy and thus facilitate an authentic learning environment, which is important in order to increase motivation.

  19. Justification for, and design of, an economical programmable multiple flight simulator

    NASA Technical Reports Server (NTRS)

    Kreifeldt, J. G.; Wittenber, J.; Macdonald, G.

    1981-01-01

    The considered research interests in air traffic control (ATC) studies revolve about the concept of distributed ATC management based on the assumption that the pilot has a cockpit display of traffic and navigation information (CDTI) via CRT graphics. The basic premise is that a CDTI equipped pilot can, in coordination with a controller, manage a part of his local traffic situation thereby improving important aspects of ATC performance. A modularly designed programmable flight simulator system is prototyped as a means of providing an economical facility of up to eight simulators to interface with a mainframe/graphics system for ATC experimentation, particularly CDTI-distributed management in which pilot-pilot interaction can have a determining effect on system performance. Need for a multiman simulator facility is predicted on results from an earlier three simulator facility.

  20. The use of vestibular models for design and evaluation of flight simulator motion

    NASA Technical Reports Server (NTRS)

    Bussolari, Steven R.; Young, Laurence R.; Lee, Alfred T.

    1989-01-01

    Quantitative models for the dynamics of the human vestibular system are applied to the design and evaluation of flight simulator platform motion. An optimal simulator motion control algorithm is generated to minimize the vector difference between perceived spatial orientation estimated in flight and in simulation. The motion controller has been implemented on the Vertical Motion Simulator at NASA Ames Research Center and evaluated experimentally through measurement of pilot performance and subjective rating during VTOL aircraft simulation. In general, pilot performance in a longitudinal tracking task (formation flight) did not appear to be sensitive to variations in platform motion condition as long as motion was present. However, pilot assessment of motion fidelity by means of a rating scale designed for this purpose, were sensitive to motion controller design. Platform motion generated with the optimal motion controller was found to be generally equivalent to that generated by conventional linear crossfeed washout. The vestibular models are used to evaluate the motion fidelity of transport category aircraft (Boeing 727) simulation in a pilot performance and simulator acceptability study at the Man-Vehicle Systems Research Facility at NASA Ames Research Center. Eighteen airline pilots, currently flying B-727, were given a series of flight scenarios in the simulator under various conditions of simulator motion. The scenarios were chosen to reflect the flight maneuvers that these pilots might expect to be given during a routine pilot proficiency check. Pilot performance and subjective rating of simulator fidelity was relatively insensitive to the motion condition, despite large differences in the amplitude of motion provided. This lack of sensitivity may be explained by means of the vestibular models, which predict little difference in the modeled motion sensations of the pilots when different motion conditions are imposed.

  1. Pilot non dialysis chronic renal insufficiency study (P-ND-CRIS): a pilot study of an open prospective hospital-based French cohort.

    PubMed

    Massol, Jacques; Janin, Gérard; Bachot, Camille; Gousset, Christophe; Deville, Geoffroy Sainte-Claire; Chalopin, Jean-Marc

    2017-02-01

    Before establishing a prospective cohort, an initial pilot study is recommended. However, there are no precise guidelines on this subject. This paper reports the findings of a French regional pilot study carried out in three nephrology departments, before realizing a major prospective Non Dialysis Chronic Renal Insufficiency study (ND-CRIS). We carried out an internal pilot study. The objectives of this pilot study were to validate the feasibility (regulatory approval, providing patients with information, availability of variables, refusal rate of eligible patients) and quality criteria (missing data, rate of patients lost to follow-up, characteristics of the patients included and non-included eligible patients, quality control of the data gathered) and estimate the human resources necessary (number of clinical research associates required). The authorizations obtained (CCTIRS - CNIL) and the contracts signed with hospitals have fulfilled the regulatory requirements. After validating the information on the study provided to patients, 1849 of them were included in three centres (university hospital, intercommunal hospital, town hospital) between April 2012 and September 2015. The low refusal rate (51 patients) and the characteristics of non-included patients have confirmed the benefit for patients of participating in the study and provide evidence of the feasibility and representativeness of the population studied. The lack of missing data on the variables studied, the quality of the data analyzed and the low number of patients lost to follow-up are evidence of the quality of the study. By taking into account the time spent by CRAs to enter data and to travel, as well as the annual patient numbers in each hospital, we estimate that five CRAs will be required in total. With no specific guidelines on how to realize a pilot study before implementing a major prospective cohort, we considered it pertinent to report our experience of P-ND-CRIS. This experience confirms

  2. NORTHWEST ORGEON PILOT STUDY AREA (USA): THE USE OF LANDSCAPE SCIENCE FOR ENVIRONMENTAL ASSESSMENT PILOT STUDY

    EPA Science Inventory

    The Northwest Oregon Pilot Study Area encompasses approximately 59,167 km2 and varies in elevation from sea level to 3,200 m. Annual precipitation varies with elevation and meridian and ranges from 25 - 460cm. The study area comprises a mixture of federal, state, and privately ow...

  3. Addressing Control Research Issues Leading to Piloted Simulations in Support of the IFCS F-15

    NASA Technical Reports Server (NTRS)

    Napolitano, Marcello; Perhinschi, Mario; Campa, Giampiero; Seanor, Brad

    2004-01-01

    This report summarizes the research effort by a team of researchers at West Virginia University in support of the NASA Intelligent Flight Control System (IFCS) F-15 program. In particular, WVU researchers assisted NASA Dryden researchers in the following technical tasks leading to piloted simulation of the 'Gen_2' IFCS control laws. Task #1- Performance comparison of different neural network (NN) augmentation for the Dynamic Inversion (DI) -based VCAS 'Gen_2' control laws. Task #2- Development of safety monitor criteria for transition to research control laws with and without failure during flight test. Task #3- Fine-tuning of the 'Gen_2' control laws for cross-coupling reduction at post-failure conditions. Matlab/Simulink-based simulation codes were provided to the technical monitor on a regular basis throughout the duration of the project. Additional deliverables for the project were Power Point-based slides prepared for different project meetings. This document provides a description of the methodology and discusses the general conclusions from the simulation results.

  4. Visual performance modeling in the human operator simulator

    NASA Technical Reports Server (NTRS)

    Strieb, M. I.

    1979-01-01

    A brief description of the history of the development of the human operator simulator (HOS) model is presented. Features of the HOS micromodels that impact on the obtainment of visual performance data are discussed along with preliminary details on a HOS pilot model designed to predict the results of visual performance workload data obtained through oculometer studies on pilots in real and simulated approaches and landings.

  5. Reference H Piloted Assessment (LaRC.1) Pilot Briefing Guide

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Raney, David L.; Hahne, David E.; Derry, Stephen D.; Glaab, Louis J.

    1999-01-01

    This document describes the purpose of and method by which an assessment of the Boeing Reference H High-Speed Civil Transport design was evaluated in the NASA Langley Research Center's Visual/Motion Simulator in January 1997. Six pilots were invited to perform approximately 60 different Mission Task Elements that represent most normal and emergency flight operations of concern to the High Speed Research program. The Reference H design represents a candidate configuration for a High-Speed Civil Transport, a second generation supersonic civilian transport aircraft. The High-Speed Civil Transport is intended to be economically sound and environmentally safe while carrying passengers and cargo at supersonic speeds with a trans-Pacific range. This simulation study was designated "LaRC. 1" for the purposes of planning, scheduling and reporting within the Guidance and Flight Controls super-element of the High-Speed Research program. The study was based upon Cycle 3 release of the Reference H simulation model.

  6. EXPOSURE ASSESSMENT METHODS DEVELOPMENT PILOTS FOR THE NATIONAL CHILDREN'S STUDY

    EPA Science Inventory

    Accurate exposure classification tools are needed to link exposure with health effects. EPA began methods development pilot studies in 2000 to address general questions about exposures and outcome measures. Selected pilot studies are highlighted in this poster. The “Literature Re...

  7. Helicopter training simulators: Key market factors

    NASA Technical Reports Server (NTRS)

    Mcintosh, John

    1992-01-01

    Simulators will gain an increasingly important role in training helicopter pilots only if the simulators are of sufficient fidelity to provide positive transfer of skills to the aircraft. This must be done within an economic model of return on investment. Although rotor pilot demand is still only a small percentage of overall pilot requirements, it will grow in significance. This presentation described the salient factors influencing the use of helicopter training simulators.

  8. An investigation into pilot and system response to critical in-flight events, volume 2

    NASA Technical Reports Server (NTRS)

    Rockwell, T. H.; Giffin, W. C.

    1981-01-01

    Critical in-flight event is studied using mission simulation and written tests of pilot responses. Materials and procedures used in knowledge tests, written tests, and mission simulations are included

  9. The analysis of the pilot's cognitive and decision processes

    NASA Technical Reports Server (NTRS)

    Curry, R. E.

    1975-01-01

    Articles are presented on pilot performance in zero-visibility precision approach, failure detection by pilots during automatic landing, experiments in pilot decision-making during simulated low visibility approaches, a multinomial maximum likelihood program, and a random search algorithm for laboratory computers. Other topics discussed include detection of system failures in multi-axis tasks and changes in pilot workload during an instrument landing.

  10. Rehabilitation Education: A Pilot Study

    ERIC Educational Resources Information Center

    Vander Kolk, Charles; Jaques, Marceline E.

    1972-01-01

    The presentation of undergraduate courses in rehabilitation could serve several purposes: (a) preparation for graduate level work; (b) training for support personnel; and (c) interdisciplinary education. This article describes a pilot study of a course in rehabilitation to investigate through pre- and post measures, attitude change, attainment of…

  11. Identification of pilot-vehicle dynamics from simulation and flight test

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1990-01-01

    The paper discusses an identification problem in which a basic feedback control structure, or pilot control strategy, is hypothesized. Identification algorithms are employed to determine the particular form of pilot equalization in each feedback loop. It was found that both frequency- and time-domain identification techniques provide useful information.

  12. Breakthrough Listen on MWA Pilot Study

    NASA Astrophysics Data System (ADS)

    Croft, S.; Siemion, A.; Kaplan, D. L.; Tremblay, S.

    2016-07-01

    We propose a pilot study, using the Voltage Capture System, for Breakthrough Listen on the MWA. Breakthrough Listen (BL) is a major new project that aims to dramatically improve the coverage of parameter space in the search for intelligent life beyond Earth. BL has already deployed hardware and software to the Green Bank Telescope, and will bring a similar program with the Parkes Telescope online in the second half of 2016. The low frequency sky is however currently very poorly explored. The superb capabilities of the MWA (large field of view, low frequency of operation, and location in a very radio quiet site) provide a unique opportunity for a pilot study to obtain voltage data for a SETI (Search For Extraterrestrial Intelligence) study of the Galactic Plane. We propose commensal observations, piggybacking on the proposed pulsar search of Tremblay et al. Using existing VCS software, combined with the pipeline developed for Breakthrough Listen at GBT and Parkes, we will perform a blind search for candidate signals from extraterrestrial intelligence. Although the chances of a detection are not large, particularly for a pilot study such as that proposed here, the Breakthrough Listen team plan to perform extensive testing and analysis on the data obtained which should be useful for other users of the MWA VCS. We will make the secondary SETI data products and associated documentation available as a resource to the community via the Breakthrough Listen online archive.

  13. Gemini Simulator and Neil Armstrong

    NASA Image and Video Library

    1963-11-06

    Astronaut Neil Armstrong (left) was one of 14 astronauts, 8 NASA test pilots, and 2 McDonnell test pilots who took part in simulator studies. Armstrong was the first astronaut to participate (November 6, 1963). A.W. Vogeley described the simulator in his paper "Discussion of Existing and Planned Simulators For Space Research," "Many of the astronauts have flown this simulator in support of the Gemini studies and they, without exception, appreciated the realism of the visual scene. The simulator has also been used in the development of pilot techniques to handle certain jet malfunctions in order that aborts could be avoided. In these situations large attitude changes are sometimes necessary and the false motion cues that were generated due to earth gravity were somewhat objectionable; however, the pilots were readily able to overlook these false motion cues in favor of the visual realism." Roy F. Brissenden, noted in his paper "Initial Operations with Langley's Rendezvous Docking Facility," "The basic Gemini control studies developed the necessary techniques and demonstrated the ability of human pilots to perform final space docking with the specified Gemini-Agena systems using only visual references. ... Results... showed that trained astronauts can effect the docking with direct acceleration control and even with jet malfunctions as long as good visual conditions exist.... Probably more important than data results was the early confidence that the astronauts themselves gained in their ability to perform the maneuver in the ultimate flight mission." Francis B. Smith, noted in his paper "Simulators for Manned Space Research," "Some major areas of interest in these flights were fuel requirements, docking accuracies, the development of visual aids to assist alignment of the vehicles, and investigation of alternate control techniques with partial failure modes. However, the familiarization and confidence developed by the astronaut through flying and safely docking the

  14. TASKILLAN II - Pilot strategies for workload management

    NASA Technical Reports Server (NTRS)

    Segal, Leon D.; Wickens, Christopher D.

    1990-01-01

    This study focused on the strategies used by pilots in managing their workload level, and their subsequent task performance. Sixteen licensed pilots flew 42 missions on a helicopter simulation, and were evaluated on their performance of the overall mission, as well as individual tasks. Pilots were divided in four groups, defined by the presence or absence of scheduling control over tasks and the availability of intelligence concerning the type and stage of difficulties imposed during the flight. Results suggest that intelligence supported strategies that yielded significant higher performance levels, while scheduling control seemed to have no impact on performance. Both difficulty type and the stage of difficulty impacted performance significantly, with strongest effects for time stresss and difficulties imposed late in the flight.

  15. Pilots' use of a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier operations. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Chappell, Sheryl L.; Billings, Charles E.; Scott, Barry C.; Tuttell, Robert J.; Olsen, M. Christine; Kozon, Thomas E.

    1989-01-01

    Pilots' use of and responses to a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier line operations are discribed in Volume 1. TCAS 2 monitors the positions of nearby aircraft by means of transponder interrogation, and it commands a climb or descent which conflicting aircraft are projected to reach an unsafe closest point-of-approach within 20 to 25 seconds. A different level of information about the location of other air traffic was presented to each of three groups of flight crews during their execution of eight simulated air carrier flights. A fourth group of pilots flew the same segments without TCAS 2 equipment. Traffic conflicts were generated at intervals during the flights; many of the conflict aircraft were visible to the flight crews. The TCAS equipment successfully ameliorated the seriousness of all conflicts; three of four non-TCAS crews had hazardous encounters. Response times to TCAS maneuver commands did not differ as a function of the amount of information provided, nor did response accuracy. Differences in flight experience did not appear to contribute to the small performance differences observed. Pilots used the displays of conflicting traffic to maneuver to avoid unseen traffic before maneuver advisories were issued by the TCAS equipment. The results indicate: (1) that pilots utilize TCAS effectively within the response times allocated by the TCAS logic, and (2) that TCAS 2 is an effective collision avoidance device. Volume 2 contains the appendices referenced in Volume 1, providing details of the experiment and the results, and the text of two reports written in support of the program.

  16. Pilot mental workload: how well do pilots really perform?

    PubMed

    Morris, Charles H; Leung, Ying K

    2006-12-15

    The purpose of this study was to investigate the effects of increasing mental demands on various aspects of aircrew performance. In particular, the robustness of the prioritization and allocation hierarchy of aviate-navigate-communicate was examined, a hierarchy commonly used within the aviation industry. A total of 42 trainee pilots were divided into three workload groups (low, medium, high) to complete a desktop, computer-based exercise that simulated combinations of generic flight deck activities: flight control manipulation, rule-based actions and higher level cognitive processing, in addition to Air Traffic Control instructions that varied in length from one chunk of auditory information to seven chunks. It was found that as mental workload and auditory input increased, participants experienced considerable difficulty in carrying out the primary manipulation task. A similar decline in prioritization was also observed. Moreover, when pilots were under a high mental workload their ability to comprehend more than two chunks of auditory data deteriorated rapidly.

  17. 76 FR 70152 - Pilot Program for Early Feasibility Study Investigational Device Exemption Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-10

    ...] Pilot Program for Early Feasibility Study Investigational Device Exemption Applications AGENCY: Food and... feasibility study investigational device exemption (IDE) applications. The pilot program will conform to the... Feasibility Medical Device Clinical Studies, Including Certain First in Human (FIH) Studies.'' Under the pilot...

  18. Training Pediatric Fellows in Palliative Care: A Pilot Comparison of Simulation Training and Didactic Education.

    PubMed

    Brock, Katharine E; Cohen, Harvey J; Sourkes, Barbara M; Good, Julie J; Halamek, Louis P

    2017-10-01

    Pediatric fellows receive little palliative care (PC) education and have few opportunities to practice communication skills. In this pilot study, we assessed (1) the relative effectiveness of simulation-based versus didactic education, (2) communication skill retention, and (3) effect on PC consultation rates. Thirty-five pediatric fellows in cardiology, critical care, hematology/oncology, and neonatology at two institutions enrolled: 17 in the intervention (simulation-based) group (single institution) and 18 in the control (didactic education) group (second institution). Intervention group participants participated in a two-day program over three months (three simulations and videotaped PC panel). Control group participants received written education designed to be similar in content and time. (1) Self-assessment questionnaires were completed at baseline, post-intervention and three months; mean between-group differences for each outcome measure were assessed. (2) External reviewers rated simulation-group encounters on nine communication domains. Within-group changes over time were assessed. (3) The simulation-based site's PC consultations were compared in the six months pre- and post-intervention. Compared to the control group, participants in the intervention group improved in self-efficacy (p = 0.003) and perceived adequacy of medical education (p < 0.001), but not knowledge (p = 0.20). Reviewers noted nonsustained improvement in four domains: relationship building (p = 0.01), opening discussion (p = 0.03), gathering information (p = 0.01), and communicating accurate information (p = 0.04). PC consultation rate increased 64%, an improvement when normalized to average daily census (p = 0.04). This simulation-based curriculum is an effective method for improving PC comfort, education, and consults. More frequent practice is likely needed to lead to sustained improvements in communication competence.

  19. Seaside, Oregon, Tsunami Vulnerability Assessment Pilot Study

    NASA Astrophysics Data System (ADS)

    Dunbar, P. K.; Dominey-Howes, D.; Varner, J.

    2006-12-01

    The results of a pilot study to assess the risk from tsunamis for the Seaside-Gearhart, Oregon region will be presented. To determine the risk from tsunamis, it is first necessary to establish the hazard or probability that a tsunami of a particular magnitude will occur within a certain period of time. Tsunami inundation maps that provide 100-year and 500-year probabilistic tsunami wave height contours for the Seaside-Gearhart, Oregon, region were developed as part of an interagency Tsunami Pilot Study(1). These maps provided the probability of the tsunami hazard. The next step in determining risk is to determine the vulnerability or degree of loss resulting from the occurrence of tsunamis due to exposure and fragility. The tsunami vulnerability assessment methodology used in this study was developed by M. Papathoma and others(2). This model incorporates multiple factors (e.g. parameters related to the natural and built environments and socio-demographics) that contribute to tsunami vulnerability. Data provided with FEMA's HAZUS loss estimation software and Clatsop County, Oregon, tax assessment data were used as input to the model. The results, presented within a geographic information system, reveal the percentage of buildings in need of reinforcement and the population density in different inundation depth zones. These results can be used for tsunami mitigation, local planning, and for determining post-tsunami disaster response by emergency services. (1)Tsunami Pilot Study Working Group, Seaside, Oregon Tsunami Pilot Study--Modernization of FEMA Flood Hazard Maps, Joint NOAA/USGS/FEMA Special Report, U.S. National Oceanic and Atmospheric Administration, U.S. Geological Survey, U.S. Federal Emergency Management Agency, 2006, Final Draft. (2)Papathoma, M., D. Dominey-Howes, D.,Y. Zong, D. Smith, Assessing Tsunami Vulnerability, an example from Herakleio, Crete, Natural Hazards and Earth System Sciences, Vol. 3, 2003, p. 377-389.

  20. Simulation Test Of Descent Advisor

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Green, Steven M.

    1991-01-01

    Report describes piloted-simulation test of Descent Advisor (DA), subsystem of larger automation system being developed to assist human air-traffic controllers and pilots. Focuses on results of piloted simulation, in which airline crews executed controller-issued descent advisories along standard curved-path arrival routes. Crews able to achieve arrival-time precision of plus or minus 20 seconds at metering fix. Analysis of errors generated in turns resulted in further enhancements of algorithm to increase accuracies of its predicted trajectories. Evaluations by pilots indicate general support for DA concept and provide specific recommendations for improvement.

  1. Portable Weather Applications for General Aviation Pilots.

    PubMed

    Ahlstrom, Ulf; Ohneiser, Oliver; Caddigan, Eamon

    2016-09-01

    The objective of this study was to examine the potential benefits and impact on pilot behavior from the use of portable weather applications. Seventy general aviation (GA) pilots participated in the study. Each pilot was randomly assigned to an experimental or a control group and flew a simulated single-engine GA aircraft, initially under visual meteorological conditions (VMC). The experimental group was equipped with a portable weather application during flight. We recorded measures for weather situation awareness (WSA), decision making, cognitive engagement, and distance from the aircraft to hazardous weather. We found positive effects from the use of the portable weather application, with an increased WSA for the experimental group, which resulted in credibly larger route deviations and credibly greater distances to hazardous weather (≥30 dBZ cells) compared with the control group. Nevertheless, both groups flew less than 20 statute miles from hazardous weather cells, thus failing to follow current weather-avoidance guidelines. We also found a credibly higher cognitive engagement (prefrontal oxygenation levels) for the experimental group, possibly reflecting increased flight planning and decision making on the part of the pilots. Overall, the study outcome supports our hypothesis that portable weather displays can be used without degrading pilot performance on safety-related flight tasks, actions, and decisions as measured within the constraints of the present study. However, it also shows that an increased WSA does not automatically translate to enhanced flight behavior. The study outcome contributes to our knowledge of the effect of portable weather applications on pilot behavior and decision making. © 2016, Human Factors and Ergonomics Society.

  2. Simulation System Fidelity Assessment at the Vertical Motion Simulator

    NASA Technical Reports Server (NTRS)

    Beard, Steven D.; Reardon, Scott E.; Tobias, Eric L.; Aponso, Bimal L.

    2013-01-01

    Fidelity is a word that is often used but rarely understood when talking about groundbased simulation. Assessing the cueing fidelity of a ground based flight simulator requires a comparison to actual flight data either directly or indirectly. Two experiments were conducted at the Vertical Motion Simulator using the GenHel UH-60A Black Hawk helicopter math model that was directly compared to flight data. Prior to the experiment the simulator s motion and visual system frequency responses were measured, the aircraft math model was adjusted to account for the simulator motion system delays, and the motion system gains and washouts were tuned for the individual tasks. The tuned motion system fidelity was then assessed against the modified Sinacori criteria. The first experiments showed similar handling qualities ratings (HQRs) to actual flight for a bob-up and sidestep maneuvers. The second experiment showed equivalent HQRs between flight and simulation for the ADS33 slalom maneuver for the two pilot participants. The ADS33 vertical maneuver HQRs were mixed with one pilot rating the flight and simulation the same while the second pilot rated the simulation worse. In addition to recording HQRs on the second experiment, an experimental Simulation Fidelity Rating (SFR) scale developed by the University of Liverpool was tested for applicability to engineering simulators. A discussion of the SFR scale for use on the Vertical Motion Simulator is included in this paper.

  3. Ekofisk waterflood pilot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, L.K.; Dixon, T.N.; Evans, C.E.

    1987-02-01

    This paper describes the evaluation of a waterflood pilot in the highly fractured Maastrichtian reservoir of the Ekofisk field in the Norwegian sector of the North Sea. A four-well pilot consisting of one water injector and three producers was initiated in Spring 1981 and was concluded in mid-1984. A total of 21 x 10/sup 6/ bbl(3.3 x 10/sup 6/ m/sup 3/) of water was injected, and water breakthrough occurred in two of the production wells. Simulation of waterflood performance in the pilot was conducted with a three-dimensional (3D), three-phase dual-porosity model. Initial and boundary conditions were taken from a fullmore » 3D single-porosity model of the reservoir. The pilot was conducted to determine the following information for the Maastrichtian: water-cut performance vs. time, water imbibition characteristics, and anisotropy. Results from this work have been incorporated into a full-field waterflood study. Reservoir description included the determination of fractured areas, matrix block sizes, water/oil capillary imbibition, matrix permeability and porosity, and effective permeability. These data were derived from fracture core analysis, pressure transient tests, laboratory water/oil imbibition studies, repeat formation pressure test results, and open- and cased-hole logs. An excellent match of waterflood performance was obtained with the dual-porosity model. Of particular interest are the imbibition characteristics of the Maastrichtian in the Ekofisk field and the character of the water-cut performance of the producing wells following injector shutdowns and startups.« less

  4. Long-term simulation of the activated sludge process at the Hanover-Gümmerwald pilot WWTP.

    PubMed

    Makinia, Jacek; Rosenwinkel, Karl-Heinz; Spering, Volker

    2005-04-01

    The aim of this study was to obtain a validated model, consisting of the Activated Sludge Model No. 3 (ASM3) and the EAWAG bio-P module, which could be used as a decision tool for estimating the maximum allowable peak flow to wastewater treatment plants during stormwater conditions. The databases used for simulations originated from the Hanover-Gummerwald pilot plant subjected to a series of controlled, short-term hydraulic shock loading experiments. The continuous influent wastewater composition was generated using on-line measurements of only three parameters (COD, N-NH4+, P-PO4 3-). Model predictions were compared with on-line data from different locations in the activated sludge system including the aerobic zone (concentrations of N-NH4+, N-NO3-) and secondary effluent (concentrations of P-PO4 3-). The simulations confirmed experimental results concerning the capabilities of the system for handling increased flows during stormwater events. No (or minor) peaks of N-NH4+ were predicted for the line with the double dry weather flowrate, whereas peaks of N-NH4+ at the line with the quadruple dry weather flowrate were normally exceeding 8 g Nm(-3) (similar to the observations).

  5. Pilot Fatigue and Circadian Desynchronosis

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Pilot fatigue and circadian desynchronosis, its significance to air transport safety, and research approaches, were examined. There is a need for better data on sleep, activity, and other pertinent factors from pilots flying a variety of demanding schedules. Simulation studies of flight crew performance should be utilized to determine the degree of fatigue induced by demanding schedules and to delineate more precisely the factors responsible for performance decrements in flight and to test solutions proposed to resolve problems induced by fatigue and desynchronosis. It was concluded that there is a safety problem of uncertain magnitude due to transmeridian flying and a potential problem due to fatigue associated with various factors found in air transport operations.

  6. Piloted Simulator Investigation of Techniques to Achieve Attitude Command Response with Limited Authority Servos

    NASA Technical Reports Server (NTRS)

    Key, David L.; Heffley, Robert K.

    2002-01-01

    The purpose of the study was to develop generic design principles for obtaining attitude command response in moderate to aggressive maneuvers without increasing SCAS series servo authority from the existing +/- 10%. In particular, to develop a scheme that would work on the UH-60 helicopter so that it can be considered for incorporation in future upgrades. The basic math model was a UH-60A version of GENHEL. The simulation facility was the NASA-Ames Vertical Motion Simulator (VMS). Evaluation tasks were Hover, Acceleration-Deceleration, and Sidestep, as defined in ADS-33D-PRF for Degraded Visual Environment (DVE). The DVE was adjusted to provide a Usable Cue Environment (UCE) equal to two. The basic concept investigated was the extent to which the limited attitude command authority achievable by the series servo could be supplemented by a 10%/sec trim servo. The architecture used provided angular rate feedback to only the series servo, shared the attitude feedback between the series and trim servos, and when the series servo approached saturation the attitude feedback was slowly phased out. Results show that modest use of the trim servo does improve pilot ratings, especially in and around hover. This improvement can be achieved with little degradation in response predictability during moderately aggressive maneuvers.

  7. Space shuttle pilot-induced-oscillation research testing

    NASA Technical Reports Server (NTRS)

    Powers, B. G.

    1984-01-01

    The simulation requirements for investigation of pilot-induced-oscillation (PIO) characteristics during the landing phase are discussed. Orbiters simulations and F-8 digital fly-by-wire aircraft tests are addressed.

  8. Feasibility and Pilot Studies in Palliative Care Research: A Systematic Review.

    PubMed

    Jones, Terry A; Olds, Timothy S; Currow, David C; Williams, Marie T

    2017-07-01

    Feasibility and pilot study designs are common in palliative care research. Finding standard guidelines on the structure and reporting of these study types is difficult. In feasibility and pilot studies in palliative care research, to determine 1) how commonly a priori feasibility are criteria reported and whether results are subsequently reported against these criteria? and 2) how commonly are participants' views on acceptability of burden of the study protocol assessed? Four databases (OVID Medline, EMBASE, CINAHL, and PubMed via caresearch.com.au.) were searched. Search terms included palliative care, terminal care, advance care planning, hospice, pilot, feasibility, with a publication date between January 1, 2012 and December 31, 2013. Articles were selected and appraised by two independent reviewers. Fifty-six feasibility and/or pilot studies were included in this review. Only three studies had clear a priori criteria to measure success. Sixteen studies reported participant acceptability or burden with measures. Forty-eight studies concluded feasibility. The terms "feasibility" and "pilot" are used synonymously in palliative care research when describing studies that test for feasibility. Few studies in palliative care research outline clear criteria for success. The assessment of participant acceptability and burden is uncommon. A gold standard for feasibility study design in palliative care research that includes both clear criteria for success and testing of the study protocol for participant acceptability and burden is needed. Such a standard would assist with consistency in the design, conduct and reporting of feasibility and pilot studies. Copyright © 2017 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  9. Real-time piloted simulation of fully automatic guidance and control for rotorcraft nap-of-the-earth (NOE) flight following planned profiles

    NASA Technical Reports Server (NTRS)

    Clement, Warren F.; Gorder, Pater J.; Jewell, Wayne F.; Coppenbarger, Richard

    1990-01-01

    Developing a single-pilot all-weather NOE capability requires fully automatic NOE navigation and flight control. Innovative guidance and control concepts are being investigated to (1) organize the onboard computer-based storage and real-time updating of NOE terrain profiles and obstacles; (2) define a class of automatic anticipative pursuit guidance algorithms to follow the vertical, lateral, and longitudinal guidance commands; (3) automate a decision-making process for unexpected obstacle avoidance; and (4) provide several rapid response maneuvers. Acquired knowledge from the sensed environment is correlated with the recorded environment which is then used to determine an appropriate evasive maneuver if a nonconformity is observed. This research effort has been evaluated in both fixed-base and moving-base real-time piloted simulations thereby evaluating pilot acceptance of the automated concepts, supervisory override, manual operation, and reengagement of the automatic system.

  10. Physiological studies on air tanker pilots flying forest fire retardant missions.

    DOT National Transportation Integrated Search

    1968-10-01

    Pre-flight and post-flight studies were carried out on five air tanker pilots; in-flight studies were carried out on four of these five pilots. Pre- and post-flight studies consisted of a questionnaire and determinations of blood pressure, psychomoto...

  11. Structural Differences in Gray Matter between Glider Pilots and Non-Pilots. A Voxel-Based Morphometry Study

    PubMed Central

    Ahamed, Tosif; Kawanabe, Motoaki; Ishii, Shin; Callan, Daniel E.

    2014-01-01

    Glider flying is a unique skill that requires pilots to control an aircraft at high speeds in three dimensions and amidst frequent full-body rotations. In the present study, we investigated the neural correlates of flying a glider using voxel-based morphometry. The comparison between gray matter densities of 15 glider pilots and a control group of 15 non-pilots exhibited significant gray matter density increases in left ventral premotor cortex, anterior cingulate cortex, and the supplementary eye field. We posit that the identified regions might be associated with cognitive and motor processes related to flying, such as joystick control, visuo-vestibular interaction, and oculomotor control. PMID:25506339

  12. Structural Differences in Gray Matter between Glider Pilots and Non-Pilots. A Voxel-Based Morphometry Study.

    PubMed

    Ahamed, Tosif; Kawanabe, Motoaki; Ishii, Shin; Callan, Daniel E

    2014-01-01

    Glider flying is a unique skill that requires pilots to control an aircraft at high speeds in three dimensions and amidst frequent full-body rotations. In the present study, we investigated the neural correlates of flying a glider using voxel-based morphometry. The comparison between gray matter densities of 15 glider pilots and a control group of 15 non-pilots exhibited significant gray matter density increases in left ventral premotor cortex, anterior cingulate cortex, and the supplementary eye field. We posit that the identified regions might be associated with cognitive and motor processes related to flying, such as joystick control, visuo-vestibular interaction, and oculomotor control.

  13. Regaining Lost Separation in a Piloted Simulation of Autonomous Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Eischeid, Todd M.; Palmer, Michael T.; Wing, David J.

    2002-01-01

    NASA is currently investigating a new concept of operations for the National Airspace System, designed to improve capacity while maintaining or improving current levels of safety. This concept, known as Distributed Air/Ground Traffic Management (DAG-TM), allows appropriately equipped autonomous aircraft to maneuver freely for flight optimization while resolving conflicts with other traffic and staying out of special use airspace and hazardous weather. While Airborne Separation Assurance System (ASAS) tools would normally allow pilots to resolve conflicts before they become hazardous, evaluation of system performance in sudden, near-term conflicts is needed in order to determine concept feasibility. If an acceptable safety level can be demonstrated in these situations, then operations may be conducted with lower separation minimums. An experiment was conducted in NASA Langley s Air Traffic Operations Lab to address issues associated with resolving near-term conflicts and the potential use of lower separation minimums. Sixteen commercial airline pilots flew a total of 32 traffic scenarios that required them to use prototype ASAS tools to resolve close range pop-up conflicts. Required separation standards were set at either 3 or 5 NM lateral spacing, with 1000 ft vertical separation being used for both cases. Reducing the lateral separation from 5 to 3 NM did not appear to increase operational risk, as indicated by the proximity to the intruder aircraft. Pilots performed better when they followed tactical guidance cues provided by ASAS than when they didn't follow the guidance. As air-air separation concepts are evolved, further studies will consider integration issues between ASAS and existing Airborne Collision Avoidance Systems (ACAS).These types of non-normal events will require the ASAS to provide effective alerts and resolutions prior to the time that an Airborne Collision Avoidance System (ACAS) would give a Resolution Advisory (RA). When an RA is issued, a

  14. A pilot study on the Chinese Minnesota Multiphasic Personality Inventory-2 in detecting feigned mental disorders: Simulators classified by using the Structured Interview of Reported Symptoms.

    PubMed

    Chang, Yi-Ting; Tam, Wai-Cheong C; Shiah, Yung-Jong; Chiang, Shih-Kuang

    2017-09-01

    The Minnesota Multiphasic Personality Inventory-2 (MMPI-2) is often used in forensic psychological/psychiatric assessment. This was a pilot study on the utility of the Chinese MMPI-2 in detecting feigned mental disorders. The sample consisted of 194 university students who were either simulators (informed or uninformed) or controls. All the participants were administered the Chinese MMPI-2 and the Structured Interview of Reported Symptoms-2 (SIRS-2). The results of the SIRS-2 were utilized to classify the participants into the feigning or control groups. The effectiveness of eight detection indices was investigated by using item analysis, multivariate analysis of covariance (MANCOVA), and receiver operating characteristic (ROC) analysis. Results indicated that informed-simulating participants with prior knowledge of mental disorders did not perform better in avoiding feigning detection than uninformed-simulating participants. In addition, the eight detection indices of the Chinese MMPI-2 were effective in discriminating participants in the feigning and control groups, and the best cut-off scores of three of the indices were higher than those obtained from the studies using the English MMPI-2. Thus, in this sample of university students, the utility of the Chinese MMPI-2 in detecting feigned mental disorders was tentatively supported, and the Chinese Infrequency Scale (ICH), a scale developed specifically for the Chinese MMPI-2, was also supported as a valid scale for validity checking. © 2017 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  15. Pilot study on effectiveness of simulation for surgical robot design using manipulability.

    PubMed

    Kawamura, Kazuya; Seno, Hiroto; Kobayashi, Yo; Fujie, Masakatsu G

    2011-01-01

    Medical technology has advanced with the introduction of robot technology, which facilitates some traditional medical treatments that previously were very difficult. However, at present, surgical robots are used in limited medical domains because these robots are designed using only data obtained from adult patients and are not suitable for targets having different properties, such as children. Therefore, surgical robots are required to perform specific functions for each clinical case. In addition, the robots must exhibit sufficiently high movability and operability for each case. In the present study, we focused on evaluation of the mechanism and configuration of a surgical robot by a simulation based on movability and operability during an operation. We previously proposed the development of a simulator system that reproduces the conditions of a robot and a target in a virtual patient body to evaluate the operability of the surgeon during an operation. In the present paper, we describe a simple experiment to verify the condition of the surgical assisting robot during an operation. In this experiment, the operation imitating suturing motion was carried out in a virtual workspace, and the surgical robot was evaluated based on manipulability as an indicator of movability. As the result, it was confirmed that the robot was controlled with low manipulability of the left side manipulator during the suturing. This simulation system can verify the less movable condition of a robot before developing an actual robot. Our results show the effectiveness of this proposed simulation system.

  16. Helicopter simulation: Making it work

    NASA Technical Reports Server (NTRS)

    Payne, Barry

    1992-01-01

    The opportunities for improved training and checking by using helicopter simulators are greater than they are for airplane pilot training. Simulators permit the safe creation of training environments that are conducive to the development of pilot decision-making, situational awareness, and cockpit management. This paper defines specific attributes required in a simulator to meet a typical helicopter operator's training and checking objectives.

  17. Pilots' visual scan patterns and situation awareness in flight operations.

    PubMed

    Yu, Chung-San; Wang, Eric Min-Yang; Li, Wen-Chin; Braithwaite, Graham

    2014-07-01

    Situation awareness (SA) is considered an essential prerequisite for safe flying. If the impact of visual scanning patterns on a pilot's situation awareness could be identified in flight operations, then eye-tracking tools could be integrated with flight simulators to improve training efficiency. Participating in this research were 18 qualified, mission-ready fighter pilots. The equipment included high-fidelity and fixed-base type flight simulators and mobile head-mounted eye-tracking devices to record a subject's eye movements and SA while performing air-to-surface tasks. There were significant differences in pilots' percentage of fixation in three operating phases: preparation (M = 46.09, SD = 14.79), aiming (M = 24.24, SD = 11.03), and release and break-away (M = 33.98, SD = 14.46). Also, there were significant differences in pilots' pupil sizes, which were largest in the aiming phase (M = 27,621, SD = 6390.8), followed by release and break-away (M = 27,173, SD = 5830.46), then preparation (M = 25,710, SD = 6078.79), which was the smallest. Furthermore, pilots with better SA performance showed lower perceived workload (M = 30.60, SD = 17.86), and pilots with poor SA performance showed higher perceived workload (M = 60.77, SD = 12.72). Pilots' percentage of fixation and average fixation duration among five different areas of interest showed significant differences as well. Eye-tracking devices can aid in capturing pilots' visual scan patterns and SA performance, unlike traditional flight simulators. Therefore, integrating eye-tracking devices into the simulator may be a useful method for promoting SA training in flight operations, and can provide in-depth understanding of the mechanism of visual scan patterns and information processing to improve training effectiveness in aviation.

  18. Simulation Study of Flap Effects on a Commercial Transport Airplane in Upset Conditions

    NASA Technical Reports Server (NTRS)

    Cunningham, Kevin; Foster, John V.; Shah, Gautam H.; Stewart, Eric C.; Ventura, Robin N.; Rivers, Robert A.; Wilborn, James E.; Gato, William

    2005-01-01

    As part of NASA's Aviation Safety and Security Program, a simulation study of a twinjet transport airplane crew training simulation was conducted to address fidelity for upset or loss of control conditions and to study the effect of flap configuration in those regimes. Piloted and desktop simulations were used to compare the baseline crew training simulation model with an enhanced aerodynamic model that was developed for high-angle-of-attack conditions. These studies were conducted with various flap configurations and addressed the approach-to-stall, stall, and post-stall flight regimes. The enhanced simulation model showed that flap configuration had a significant effect on the character of departures that occurred during post-stall flight. Preliminary comparisons with flight test data indicate that the enhanced model is a significant improvement over the baseline. Some of the unrepresentative characteristics that are predicted by the baseline crew training simulation for flight in the post-stall regime have been identified. This paper presents preliminary results of this simulation study and discusses key issues regarding predicted flight dynamics characteristics during extreme upset and loss-of-control flight conditions with different flap configurations.

  19. Team play with a powerful and independent agent: a full-mission simulation study.

    PubMed

    Sarter, N B; Woods, D D

    2000-01-01

    One major problem with pilot-automation interaction on modern flight decks is a lack of mode awareness; that is, a lack of knowledge and understanding of the current and future status and behavior of the automation. A lack of mode awareness is not simply a pilot problem; rather, it is a symptom of a coordination breakdown between humans and machines. Recent changes in automation design can therefore be expected to have an impact on the nature of problems related to mode awareness. To examine how new automation properties might affect pilot-automation coordination, we performed a full-mission simulation study on one of the most advanced automated aircraft, the Airbus A-320. The results of this work indicate that mode errors and "automation surprises" still occur on these advanced aircraft. However, there appear to be more opportunities for delayed or missing interventions with undesirable system activities, possibly because of higher system autonomy and coupling.

  20. Modeling Pilot State in Next Generation Aircraft Alert Systems

    NASA Technical Reports Server (NTRS)

    Carlin, Alan S.; Alexander, Amy L.; Schurr, Nathan

    2011-01-01

    The Next Generation Air Transportation System will introduce new, advanced sensor technologies into the cockpit that must convey a large number of potentially complex alerts. Our work focuses on the challenges associated with prioritizing aircraft sensor alerts in a quick and efficient manner, essentially determining when and how to alert the pilot This "alert decision" becomes very difficult in NextGen due to the following challenges: 1) the increasing number of potential hazards, 2) the uncertainty associated with the state of potential hazards as well as pilot slate , and 3) the limited time to make safely-critical decisions. In this paper, we focus on pilot state and present a model for anticipating duration and quality of pilot behavior, for use in a larger system which issues aircraft alerts. We estimate pilot workload, which we model as being dependent on factors including mental effort, task demands. and task performance. We perform a mathematically rigorous analysis of the model and resulting alerting plans. We simulate the model in software and present simulated results with respect to manipulation of the pilot measures.

  1. Comparison of long-term numerical simulations at the Ketzin pilot site using the Schlumberger ECLIPSE and LBNL TOUGH2 simulators

    NASA Astrophysics Data System (ADS)

    Kempka, T.; Norden, B.; Tillner, E.; Nakaten, B.; Kühn, M.

    2012-04-01

    Geological modelling and dynamic flow simulations were conducted at the Ketzin pilot site showing a good agreement of history matched geological models with CO2 arrival times in both observation wells and timely development of reservoir pressure determined in the injection well. Recently, a re-evaluation of the seismic 3D data enabled a refinement of the structural site model and the implementation of the fault system present at the top of the Ketzin anticline. The updated geological model (model size: 5 km x 5 km) shows a horizontal discretization of 5 x 5 m and consists of three vertical zones, with the finest discretization at the top (0.5 m). According to the revised seismic analysis, the facies modelling to simulate the channel and floodplain facies distribution at Ketzin was updated. Using a sequential Gaussian simulator for the distribution of total and effective porosities and an empiric porosity-permeability relationship based on site and literature data available, the structural model was parameterized. Based on this revised reservoir model of the Stuttgart formation, numerical simulations using the TOUGH2-MP/ECO2N and Schlumberger Information Services (SIS) ECLIPSE 100 black-oil simulators were undertaken in order to evaluate the long-term (up to 10,000 years) migration of the injected CO2 (about 57,000 t at the end of 2011) and the development of reservoir pressure over time. The simulation results enabled us to quantitatively compare both reservoir simulators based on current operational data considering the long-term effects of CO2 storage including CO2 dissolution in the formation fluid. While the integration of the static geological model developed in the SIS Petrel modelling package into the ECLIPSE simulator is relatively flawless, a work-flow allowing for the export of Petrel models into the TOUGH2-MP input file format had to be implemented within the scope of this study. The challenge in this task was mainly determined by the presence of a

  2. 76 FR 12367 - Proposed Information Collection; Visibility Valuation Survey Pilot Study

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-07

    ... Survey Pilot Study AGENCY: National Park Service, U.S. Department of the Interior. ACTION: Notice... Code of Federal Regulations). Updated estimates of visibility benefits are required because the studies... a pilot study to test the survey instrument and implementation procedures prior to the full survey...

  3. Rendezvous Docking Simulator

    NASA Image and Video Library

    1964-10-29

    Originally the Rendezvous was used by the astronauts preparing for Gemini missions. The Rendezvous Docking Simulator was then modified and used to develop docking techniques for the Apollo program. "The LEM pilot's compartment, with overhead window and the docking ring (idealized since the pilot cannot see it during the maneuvers), is shown docked with the full-scale Apollo Command Module." A.W. Vogeley described the simulator as follows: "The Rendezvous Docking Simulator and also the Lunar Landing Research Facility are both rather large moving-base simulators. It should be noted, however, that neither was built primarily because of its motion characteristics. The main reason they were built was to provide a realistic visual scene. A secondary reason was that they would provide correct angular motion cues (important in control of vehicle short-period motions) even though the linear acceleration cues would be incorrect." -- Published in A.W. Vogeley, "Piloted Space-Flight Simulation at Langley Research Center," Paper presented at the American Society of Mechanical Engineers, 1966 Winter Meeting, New York, NY, November 27 - December 1, 1966;

  4. Simulator fidelity : the effect of platform motion.

    DOT National Transportation Integrated Search

    2000-07-31

    As part of the Federal Aviation Administration's (FAA) initiative towards affordable flight simulators for U.S. commuter airlines, this study empirically examined the effect of six-degree-of-freedom simulator platform motion on recurrent pilot traini...

  5. Pilot/vehicle model analysis of visually guided flight

    NASA Technical Reports Server (NTRS)

    Zacharias, Greg L.

    1991-01-01

    Information is given in graphical and outline form on a pilot/vehicle model description, control of altitude with simple terrain clues, simulated flight with visual scene delays, model-based in-cockpit display design, and some thoughts on the role of pilot/vehicle modeling.

  6. Exploration of an oculometer-based model of pilot workload

    NASA Technical Reports Server (NTRS)

    Krebs, M. J.; Wingert, J. W.; Cunningham, T.

    1977-01-01

    Potential relationships between eye behavior and pilot workload are discussed. A Honeywell Mark IIA oculometer was used to obtain the eye data in a fixed base transport aircraft simulation facility. The data were analyzed to determine those parameters of eye behavior which were related to changes in level of task difficulty of the simulated manual approach and landing on instruments. A number of trends and relationships between eye variables and pilot ratings were found. A preliminary equation was written based on the results of a stepwise linear regression. High variability in time spent on various instruments was related to differences in scanning strategy among pilots. A more detailed analysis of individual runs by individual pilots was performed to investigate the source of this variability more closely. Results indicated a high degree of intra-pilot variability in instrument scanning. No consistent workload related trends were found. Pupil diameter which had demonstrated a strong relationship to task difficulty was extensively re-exmained.

  7. Improving FHWA's Ability to Assess Highway Infrastructure Health : Pilot Study Report

    DOT National Transportation Integrated Search

    2012-07-01

    This report documents the results of a pilot study conducted as part of a project on improving FHWAs ability to assess highway infrastructure health. As part of the pilot study, a section of Interstate 90 through South Dakota, Minnesota, and Wisco...

  8. The effect of bone fracture unevenness on ultrasound axial transmission measurements: A pilot 2D simulation study

    NASA Astrophysics Data System (ADS)

    Machado, Christiano B.; Pereira, Wagner C. A.; Padilla, Frédéric; Laugier, Pascal

    2012-05-01

    Ultrasound axial transmission (UAT) has been proposed to the diagnosis and follow-up of fracture healing. Some researchers have already pointed out the influence of fracture length, geometry and callus composition on the ultrasound time-of-flight and attenuation, with experimental and simulation studies. The aim of this work was to develop a pilot study on the effect of bone fracture unevenness on UAT measurements. Two-dimensional (2D) numerical simulations of ultrasound wave propagation were run using a custom-made finite-difference time domain code (SimSonic2D). Numerical models were composed of two 4-mm thick bone plates, with fracture lengths varying from 0 to 4 mm. For each case, an upward (UWun) and downward (DWun) unevenness of 0.5, 1.0 and 1.5 mm was implemented in the second plate. The 1-MHz emitter and receptor transducers were placed at 40 mm from each other, 20 mm apart from the center fracture. Two configurations were considered: 1.5 mm above the plates (for the 0-mm unevenness case) and transducers in contact with bone plate. For each situation, the time-of-flight of the first arriving signal (TOFFAS) and the FAS energy amplitude loss measured by the sound pressure level (SPLFAS) were computed. Results showed that there was a linear increase in TOFFAS with increasing fracture length, and a decrease of SPLFAS with the presence of a discontinuity. TOFFAS values were decreased with UWun (-0.87 μs for UWun = 1.5 mm), and increased with DWun (+0.99 μs for DWun = 1.5 mm). The SPLFAS increased with both UWun (+3.54 dB for UWun = 1.5 mm) and DWun (+8.15 dB for DWun = 1.5 mm). Both parameters showed the same variability. When transducers were put in contact with bone surface, fracture unevenness had no influence on TOF and SPL estimates. Previous works have already demonstrated that a fracture of 3 mm can increase TOFFAS in an order of 1 μs. Considering these preliminary results, it can be concluded that, although the variable fracture unevenness (until 1

  9. An investigation into pilot and system response to critical in-flight events. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Rockwell, T. H.; Griffin, W. C.

    1981-01-01

    Critical in-flight events (CIFE) that threaten the aircraft were studied. The scope of the CIFE was described and defined with emphasis on characterizing event development, detection and assessment; pilot information requirements, sources, acquisition, and interpretation, pilot response options, decision processed, and decision implementation and event outcome. Detailed scenarios were developed for use in simulators and paper and pencil testing for developing relationships between pilot performance and background information as well as for an analysis of pilot reaction decision and feedback processes. Statistical relationships among pilot characteristics and observed responses to CIFE's were developed.

  10. Simulation of the effects of different pilot helmets on neck loading during air combat.

    PubMed

    Mathys, R; Ferguson, S J

    2012-09-21

    New generation pilot helmets with mounted devices enhance the capabilities of pilots substantially. However, the additional equipment increases the helmet weight and shifts its center of mass forward. Two helmets with different mass properties were modeled to simulate their effects on the pilot's neck. A musculoskeletal computer model was used, with the methods of inverse dynamics and static optimization, to compute the muscle activations and joint reaction forces for a given range of quasi-static postures at various accelerations experienced during air combat. Head postures which induce much higher loads on the cervical spine than encountered in a neutral position could be identified. The increased weight and the forward shift of the center of mass of a new generation helmet lead to higher muscle activations and higher joint reaction loads over a wide range of head and neck movements. The muscle activations required to balance the head and neck in extreme postures increased the compressive force at the T1-C7 level substantially, while in a neutral posture the muscle activations remained low. The lateral neck muscles can reach activations of 100% and cause compressive joint forces up to 1100N during extensive rotations and extensions at high 'vertical' accelerations (Gz). The calculated values have to be interpreted with care as the model has not been validated. Nevertheless, this systematic analysis could separate the effects of head posture, acceleration and helmet mass on neck loading. More reliable data about mass properties and muscle morphometry with a more detailed motion analysis would help to refine the existing model. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. The value of a pilot study in breast-feeding research.

    PubMed

    Carfoot, Sue; Williamson, Paula R; Dickson, Rumona

    2004-06-01

    To test the integrity of a protocol for a randomised controlled trial (RCT) to examine the effectiveness of skin-to-skin care compared to routine care on the initiation and duration of breast feeding and to provide data to be used in the power calculation for a proposed trial. Randomised pilot study. Warrington Hospital, Cheshire, UK. Women at 36 weeks' gestation with healthy singleton pregnancies, who intended to breast feed, who had 'booked' for care at Warrington Hospital and had given informed consent to participate. Twenty-eight women were randomised in the pilot study. Women were randomly allocated to receive either routine or skin-to-skin care following birth. The first breast feed was assessed using the Breast-feeding Assessment Tool (BAT). Mothers were followed up at discharge from hospital and again at four months to provide details of duration of breast feeding. 66 women were approached to participate in the trial and 44 consented (67% consent rate). Twenty-eight women were randomised in the study and 26 breast feeds were observed (93%). The pilot study identified procedural changes that were required in the design of the main study, provided an estimate of recruitment rates and confirmed the previously calculated sample size. The pilot study demonstrated that a large RCT of skin-to-skin versus routine care was feasible. This is an example of how a pilot study has the ability to identify unforeseen challenges in the conduct of the trial as well as allowing necessary changes to be made to the design that will increase the quality of the subsequent research.

  12. An Experimental Study of the Effect of Shared Information on Pilot/Controller Re-Route Negotiation

    NASA Technical Reports Server (NTRS)

    Farley, Todd C.; Hansman, R. John

    1999-01-01

    Air-ground data link systems are being developed to enable pilots and air traffic controllers to share information more fully. The sharing of information is generally expected to enhance their shared situation awareness and foster more collaborative decision making. An exploratory, part-task simulator experiment is described which evaluates the extent to which shared information may lead pilots and controllers to cooperate or compete when negotiating route amendments. The results indicate an improvement in situation awareness for pilots and controllers and a willingness to work cooperatively. Independent of data link considerations, the experiment also demonstrates the value of providing controllers with a good-quality weather representation on their plan view displays. Observed improvements in situation awareness and separation assurance are discussed. It is argued that deployment of this relatively simple, low-risk addition to the plan view displays be accelerated.

  13. Classification of response-types for single-pilot NOE helicopter combat tasks

    NASA Technical Reports Server (NTRS)

    Mitchell, David G.; Hoh, Roger H.; Atencio, Adolph, Jr.

    1987-01-01

    Two piloted simulations have recently been conducted to evaluate both workload and handling qualities requirements for operation of a helicopter by a single pilot in a nap-of-the-earth combat environment. An advanced cockpit, including a moving-map display and an interactive touchpad screen, provided aircraft mission, status, and position information to the pilot. The results of the simulations are reviewed, and the impact of these results on the development of a revised helicopter handling qualities specification is discussed. Rate command is preferred over attitude command in pitch and roll, and attitude hold over groundspeed hold, for low-speed precision pointing tasks. Position hold is necessary for Level 1 handling qualities in hover when the pilot is required to perform secondary tasks. Addition of a second crew member improves pilot ratings.

  14. Why undertake a pilot in a qualitative PhD study? Lessons learned to promote success.

    PubMed

    Wray, Jane; Archibong, Uduak; Walton, Sean

    2017-01-23

    Background Pilot studies can play an important role in qualitative studies. Methodological and practical issues can be shaped and refined by undertaking pilots. Personal development and researchers' competence are enhanced and lessons learned can inform the development and quality of the main study. However, pilot studies are rarely published, despite their potential to improve knowledge and understanding of the research. Aim To present the main lessons learned from undertaking a pilot in a qualitative PhD study. Discussion This paper draws together lessons learned when undertaking a pilot as part of a qualitative research project. Important methodological and practical issues identified during the pilot study are discussed including access, recruitment, data collection and the personal development of the researcher. The resulting changes to the final study are also highlighted. Conclusion Sharing experiences of and lessons learned in a pilot study enhances personal development, improves researchers' confidence and competence, and contributes to the understanding of research. Implications for practice Pilots can be used effectively in qualitative studies to refine the final design, and provide the researcher with practical experience to enhance confidence and competence.

  15. Assessing Critical Thinking Outcomes of Dental Hygiene Students Utilizing Virtual Patient Simulation: A Mixed Methods Study.

    PubMed

    Allaire, Joanna L

    2015-09-01

    Dental hygiene educators must determine which educational practices best promote critical thinking, a quality necessary to translate knowledge into sound clinical decision making. The aim of this small pilot study was to determine whether virtual patient simulation had an effect on the critical thinking of dental hygiene students. A pretest-posttest design using the Health Science Reasoning Test was used to evaluate the critical thinking skills of senior dental hygiene students at The University of Texas School of Dentistry at Houston Dental Hygiene Program before and after their experience with computer-based patient simulation cases. Additional survey questions sought to identify the students' perceptions of whether the experience had helped develop their critical thinking skills and improved their ability to provide competent patient care. A convenience sample of 31 senior dental hygiene students completed both the pretest and posttest (81.5% of total students in that class); 30 senior dental hygiene students completed the survey on perceptions of the simulation (78.9% response rate). Although the results did not show a significant increase in mean scores, the students reported feeling that the use of virtual patients was an effective teaching method to promote critical thinking, problem-solving, and confidence in the clinical realm. The results of this pilot study may have implications to support the use of virtual patient simulations in dental hygiene education. Future research could include a larger controlled study to validate findings from this study.

  16. The effects of enhanced hexapod motion on airline pilot recurrent training and evaluation

    DOT National Transportation Integrated Search

    2003-08-13

    A quasi-transfer experiment tested the effect of : simulator motion on recurrent evaluation and training : of airline pilots. Two groups of twenty B747-400 pilots : were randomly assigned to a flight simulator with or : without platform motion. In th...

  17. Simulator sickness in a helicopter flight training school.

    PubMed

    Webb, Catherine M; Bass, Julie M; Johnson, David M; Kelley, Amanda M; Martin, Christopher R; Wildzunas, Robert M

    2009-06-01

    Simulator sickness (SS) is a common problem during flight training and can affect both instructor pilots (IP) and student pilots (SP). This study was conducted in response to complaints about a high incidence of SS associated with use of new simulators for rotary-wing aircraft. The problem was evaluated using the Simulator Sickness Questionnaire (SSQ) to collect data on 73 IP and 129 SP who used the new simulators. Based on analysis of these data, operator comments, and a search of the literature, we recommended limiting simulator flights to 2 h, removing unusual or unnatural maneuvers, turning off the sidescreens to reduce the field-of-view, avoiding use of improperly calibrated simulators until repaired, and stressing proper rest and health discipline among the pilots. The success of these measures was evaluated 1 yr later by collecting SSQ data on 25 IP and 50 SP. There was a main effect of time, in that after the recommendations were implemented, there was a significant reduction in nausea, oculomotor, and total SSQ scores from the pre-study to the post-study. There was also a main effect of experience, as IP reported significantly greater SS than SP for the same scores. Implementation of the recommendations reduced SS in the new simulators at the cost of limiting session duration and shutting down some simulator features. Although the optimal solution to the SS problem lies in addressing SS during a simulator's design stage, these recommendations can be used as interim solutions to reduce SS.

  18. Piloted Simulator Evaluation of Maneuvering Envelope Information for Flight Crew Awareness

    NASA Technical Reports Server (NTRS)

    Lombaerts, Thomas; Schuet, Stefan; Acosta, Diana; Kaneshige, John; Shish, Kimberlee; Martin, Lynne

    2015-01-01

    The implementation and evaluation of an efficient method for estimating safe aircraft maneuvering envelopes are discussed. A Bayesian approach is used to produce a deterministic algorithm for estimating aerodynamic system parameters from existing noisy sensor measurements, which are then used to estimate the trim envelope through efficient high- fidelity model-based computations of attainable equilibrium sets. The safe maneuverability limitations are extended beyond the trim envelope through a robust reachability analysis derived from an optimal control formulation. The trim and maneuvering envelope limits are then conveyed to pilots through three axes on the primary flight display. To evaluate the new display features, commercial airline crews flew multiple challenging approach and landing scenarios in the full motion Advanced Concepts Flight Simulator at NASA Ames Research Center, as part of a larger research initiative to investigate the impact on the energy state awareness of the crew. Results show that the additional display features have the potential to significantly improve situational awareness of the flight crew.

  19. Airborne Conflict Management within Confined Airspace in a Piloted Simulation of DAG-TM Autonomous Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan; Johnson, Edward; Wing, David J.; Barhydt, Richard

    2003-01-01

    A human-in-the-loop experiment was performed at the NASA Langley Research Center to study the feasibility of Distributed Air/Ground Traffic Management (DAG-TM) autonomous aircraft operations in highly constrained airspace. The airspace was constrained by a pair of special use airspace (SUA) regions on either side of the pilot s planned route. The available airspace was further varied by changing the separation standard for lateral separation between 3 nm and 5 nm. The pilot had to maneuver through the corridor between the SUA s, avoid other traffic and meet flow management constraints. Traffic flow management (TFM) constraints were imposed as a required time of arrival and crossing altitude at an en route fix. This is a follow-up study to work presented at the 4th USA/Europe Air Traffic Management R&D Seminar in December 2001. Nearly all of the pilots were able to meet their TFM constraints while maintaining adequate separation from other traffic. In only 3 out of 59 runs were the pilots unable to meet their required time of arrival. Two loss of separation cases are studied and it is found that the pilots need conflict prevention information presented in a clearer manner. No degradation of performance or safety was seen between the wide and narrow corridors. Although this was not a thorough study of the consequences of reducing the en route lateral separation, nothing was found that would refute the feasibility of reducing the separation requirement from 5 nm to 3 nm. The creation of additional, second-generation conflicts is also investigated. Two resolution methods were offered to the pilots: strategic and tactical. The strategic method is a closed-loop alteration to the Flight Management System (FMS) active route that considers other traffic as well as TFM constraints. The tactical resolutions are short-term resolutions that leave avoiding other traffic conflicts and meeting the TFM constraints to the pilot. Those that made use of the strategic tools avoided

  20. A pilot study of surgical training using a virtual robotic surgery simulator.

    PubMed

    Tergas, Ana I; Sheth, Sangini B; Green, Isabel C; Giuntoli, Robert L; Winder, Abigail D; Fader, Amanda N

    2013-01-01

    Our objectives were to compare the utility of learning a suturing task on the virtual reality da Vinci Skills Simulator versus the da Vinci Surgical System dry laboratory platform and to assess user satisfaction among novice robotic surgeons. Medical trainees were enrolled prospectively; one group trained on the virtual reality simulator, and the other group trained on the da Vinci dry laboratory platform. Trainees received pretesting and post-testing on the dry laboratory platform. Participants then completed an anonymous online user experience and satisfaction survey. We enrolled 20 participants. Mean pretest completion times did not significantly differ between the 2 groups. Training with either platform was associated with a similar decrease in mean time to completion (simulator platform group, 64.9 seconds [P = .04]; dry laboratory platform group, 63.9 seconds [P < .01]). Most participants (58%) preferred the virtual reality platform. The majority found the training "definitely useful" in improving robotic surgical skills (mean, 4.6) and would attend future training sessions (mean, 4.5). Training on the virtual reality robotic simulator or the dry laboratory robotic surgery platform resulted in significant improvements in time to completion and economy of motion for novice robotic surgeons. Although there was a perception that both simulators improved performance, there was a preference for the virtual reality simulator. Benefits unique to the simulator platform include autonomy of use, computerized performance feedback, and ease of setup. These features may facilitate more efficient and sophisticated simulation training above that of the conventional dry laboratory platform, without loss of efficacy.

  1. On the relation between personality and job performance of airline pilots.

    PubMed

    Hormann, H J; Maschke, P

    1996-01-01

    The validity of a personality questionnaire for the prediction of job success of airline pilots is compared to validities of a simulator checkflight and of flying experience data. During selection, 274 pilots applying for employment with a European charter airline were examined with a multidimensional personality questionnaire (Temperature Structure Scales; TSS). Additionally, the applicants were graded in a simulator checkflight. On the basis of training records, the pilots were classified as performing at standard or below standard after about 3 years of employment in the hiring company. In a multiple-regression model, this dichotomous criterion for job success can be predicted with 73.8% accuracy through the simulator checkflight and flying experience prior to employment. By adding the personality questionnaire to the regression equation, the number of correct classifications increases to 79.3%. On average, successful pilots score substantially higher on interpersonal scales and lower on emotional scales of the TSS.

  2. Validating Visual Cues In Flight Simulator Visual Displays

    NASA Astrophysics Data System (ADS)

    Aronson, Moses

    1987-09-01

    Currently evaluation of visual simulators are performed by either pilot opinion questionnaires or comparison of aircraft terminal performance. The approach here is to compare pilot performance in the flight simulator with a visual display to his performance doing the same visual task in the aircraft as an indication that the visual cues are identical. The A-7 Night Carrier Landing task was selected. Performance measures which had high pilot performance prediction were used to compare two samples of existing pilot performance data to prove that the visual cues evoked the same performance. The performance of four pilots making 491 night landing approaches in an A-7 prototype part task trainer were compared with the performance of 3 pilots performing 27 A-7E carrier landing qualification approaches on the CV-60 aircraft carrier. The results show that the pilots' performances were similar, therefore concluding that the visual cues provided in the simulator were identical to those provided in the real world situation. Differences between the flight simulator's flight characteristics and the aircraft have less of an effect than the pilots individual performances. The measurement parameters used in the comparison can be used for validating the visual display for adequacy for training.

  3. Training Research Program and Plans: Advanced Simulation in Undergraduate Pilot Training.

    ERIC Educational Resources Information Center

    Matheny, W. G.

    The study reports the work done by a panel of experts in training research toward defining priority research investigations to be undertaken through the Human Resources Laboratory, Flying Training Division (HRL/FT). A list of recommended investigations judged to be important for increasing the effectiveness of beginning pilot training was…

  4. Physiological recording from pilots operating an aircraft simulator.

    DOT National Transportation Integrated Search

    1964-09-01

    The questions to be answered were reduced to the following : (1) to determine whether or not theraputic doses of two common drugs, a tranquilizer and an antihistamine, cause decrements in the operating proficiency of pilots, and (2) do those drugs wh...

  5. A methodology for the assessment of manned flight simulator fidelity

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.; Malsbury, Terry N.

    1989-01-01

    A relatively simple analytical methodology for assessing the fidelity of manned flight simulators for specific vehicles and tasks is offered. The methodology is based upon an application of a structural model of the human pilot, including motion cue effects. In particular, predicted pilot/vehicle dynamic characteristics are obtained with and without simulator limitations. A procedure for selecting model parameters can be implemented, given a probable pilot control strategy. In analyzing a pair of piloting tasks for which flight and simulation data are available, the methodology correctly predicted the existence of simulator fidelity problems. The methodology permitted the analytical evaluation of a change in simulator characteristics and indicated that a major source of the fidelity problems was a visual time delay in the simulation.

  6. STS-44 Atlantis, OV-104, Pilot Henricks in FB-SMS training at JSC

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-44 Atlantis, Orbiter Vehicle (OV) 104, Pilot Terence T. Henricks, seated at the pilots station on the forward flight deck, reviews checklists before a flight simulation in the Fixed Base (FB) Shuttle Mission Simulator (SMS) located in JSC's Mission Simulation and Training Facility Bldg 5. Surrounding Henricks are the seat back, the overhead panels, forward panels, and forward windows.

  7. Flight Simulator and Training Human Factors Validation

    NASA Technical Reports Server (NTRS)

    Glaser, Scott T.; Leland, Richard

    2009-01-01

    Loss of control has been identified as the leading cause of aircraft accidents in recent years. Efforts have been made to better equip pilots to deal with these types of events, commonly referred to as upsets. A major challenge in these endeavors has been recreating the motion environments found in flight as the majority of upsets take place well beyond the normal operating envelope of large aircraft. The Environmental Tectonics Corporation has developed a simulator motion base, called GYROLAB, that is capable of recreating the sustained accelerations, or G-forces, and motions of flight. A two part research study was accomplished that coupled NASA's Generic Transport Model with a GYROLAB device. The goal of the study was to characterize physiological effects of the upset environment and to demonstrate that a sustained motion based simulator can be an effective means for upset recovery training. Two groups of 25 Air Transport Pilots participated in the study. The results showed reliable signs of pilot arousal at specific stages of similar upsets. Further validation also demonstrated that sustained motion technology was successful in improving pilot performance during recovery following an extensive training program using GYROLAB technology.

  8. 78 FR 70399 - Paperless Hazard Communications Pilot Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ..., and airplanes) and during inspection and emergency response simulations. (Note: For purposes of the pilot tests conducted under this project, ``simulation'' refers to planned exercises designed solely to... participants. The scope of the simulations will be defined by project data collection needs for testing...

  9. A qualitative analysis of bus simulator training on transit incidents : a case study in Florida. [Summary].

    DOT National Transportation Integrated Search

    2013-01-01

    The simulator was once a very expensive, large-scale mechanical device for training military pilots or astronauts. Modern computers, linking sophisticated software and large-screen displays, have yielded simulators for the desktop or configured as sm...

  10. Role of the Controller in an Integrated Pilot-Controller Study for Parallel Approaches

    NASA Technical Reports Server (NTRS)

    Verma, Savvy; Kozon, Thomas; Ballinger, Debbi; Lozito, Sandra; Subramanian, Shobana

    2011-01-01

    Closely spaced parallel runway operations have been found to increase capacity within the National Airspace System but poor visibility conditions reduce the use of these operations [1]. Previous research examined the concepts and procedures related to parallel runways [2][4][5]. However, there has been no investigation of the procedures associated with the strategic and tactical pairing of aircraft for these operations. This study developed and examined the pilot s and controller s procedures and information requirements for creating aircraft pairs for closely spaced parallel runway operations. The goal was to achieve aircraft pairing with a temporal separation of 15s (+/- 10s error) at a coupling point that was 12 nmi from the runway threshold. In this paper, the role of the controller, as examined in an integrated study of controllers and pilots, is presented. The controllers utilized a pairing scheduler and new pairing interfaces to help create and maintain aircraft pairs, in a high-fidelity, human-in-the loop simulation experiment. Results show that the controllers worked as a team to achieve pairing between aircraft and the level of inter-controller coordination increased when the aircraft in the pair belonged to different sectors. Controller feedback did not reveal over reliance on the automation nor complacency with the pairing automation or pairing procedures.

  11. The Doe Water Cycle Pilot Study.

    NASA Astrophysics Data System (ADS)

    Miller, N. L.; King, A. W.; Miller, M. A.; Springer, E. P.; Wesely, M. L.; Bashford, K. E.; Conrad, M. E.; Costigan, K.; Foster, P. N.; Gibbs, H. K.; Jin, J.; Klazura, J.; Lesht, B. M.; Machavaram, M. V.; Pan, F.; Song, J.; Troyan, D.; Washington-Allen, R. A.

    2005-03-01

    A Department of Energy (DOE) multilaboratory Water Cycle Pilot Study (WCPS) investigated components of the local water budget at the Walnut River watershed in Kansas to study the relative importance of various processes and to determine the feasibility of observational water budget closure. An extensive database of local meteorological time series and land surface characteristics was compiled. Numerical simulations of water budget components were generated and, to the extent possible, validated for three nested domains within the Southern Great Plains-the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Cloud Atmospheric Radiation Testbed (CART), the Walnut River watershed (WRW), and the Whitewater watershed (WW), in Kansas.A 2-month intensive observation period (IOP) was conducted to gather extensive observations relevant to specific details of the water budget, including finescale precipitation, streamflow, and soil moisture measurements that were not made routinely by other programs. Event and seasonal water isotope (d18O, dD) sampling in rainwater, streams, soils, lakes, and wells provided a means of tracing sources and sinks within and external to the WW, WRW, and the ARM CART domains. The WCPS measured changes in the leaf area index for several vegetation types, deep groundwater variations at two wells, and meteorological variables at a number of sites in the WRW. Additional activities of the WCPS include code development toward a regional climate model that includes water isotope processes, soil moisture transect measurements, and water-level measurements in groundwater wells.

  12. The effects of cockpit environment on long-term pilot performance

    NASA Technical Reports Server (NTRS)

    Stave, A. M.

    1977-01-01

    A fixed-base helicopter simulator was used to examine pilot performance as influenced by noise, vibration, and fatigue. Subjects flew the simulator for periods ranging between three and eight hours while exposed to vibrations (at 17 Hz) ranging from 0.1 to 0.3 g, and noise stimuli varying between 74 (ambient) and 100 dB. Despite reports of extreme fatigue on these long flights, subject performance did not degrade. Within the limits of this study, performance tended to improve as environmental stress increased. However, subjects did suffer from lapses resulting in abnormally poor performance. These lapses are probably of short duration (seconds) and occur at unpredictable times. If such lapses occur in actual flight, they could provide an explanation for many so-called 'pilot error' accidents.

  13. Apollo Rendezvous Docking Simulator

    NASA Image and Video Library

    1964-11-02

    Originally the Rendezvous was used by the astronauts preparing for Gemini missions. The Rendezvous Docking Simulator was then modified and used to develop docking techniques for the Apollo program. The pilot is shown maneuvering the LEM into position for docking with a full-scale Apollo Command Module. From A.W. Vogeley, Piloted Space-Flight Simulation at Langley Research Center, Paper presented at the American Society of Mechanical Engineers, 1966 Winter Meeting, New York, NY, November 27 - December 1, 1966. The Rendezvous Docking Simulator and also the Lunar Landing Research Facility are both rather large moving-base simulators. It should be noted, however, that neither was built primarily because of its motion characteristics. The main reason they were built was to provide a realistic visual scene. A secondary reason was that they would provide correct angular motion cues (important in control of vehicle short-period motions) even though the linear acceleration cues would be incorrect. Apollo Rendezvous Docking Simulator: Langley s Rendezvous Docking Simulator was developed by NASA scientists to study the complex task of docking the Lunar Excursion Module with the Command Module in Lunar orbit.

  14. An Investigation of the Ability to Recover from Transients Following Failures for Single-Pilot Rotorcraft

    NASA Technical Reports Server (NTRS)

    Mansur, M. Hossein; Schroeder, Jeffery A.

    1988-01-01

    A moving-base simulation was conducted to investigate a pilot's ability to recover from transients following single-axis hard-over failures of the flight-control system. The investigation was performed in conjunction with a host simulation that examined the influence of control modes on a single pilot's ability to perform various mission elements under high-workload conditions. The NASA Ames large-amplitude-motion Vertical Motion Simulator (VMS) was utilized, and the experimental variables were the failure axis, the severity of the failure, and the airspeed at which the failure occurred. Other factors, such as pilot workload and terrain and obstacle proximity at the time of failure, were kept as constant as possible within the framework of the host simulation task scenarios. No explicit failure warnings were presented to the pilot. Data from the experiment are shown, and pilot ratings are compared with the proposed handling-qualities requirements for military rotorcraft. Results indicate that the current proposed failure transient requirements may need revision.

  15. Spatial Disorientation Training in the Rotor Wing Flight Simulator.

    PubMed

    Powell-Dunford, Nicole; Bushby, Alaistair; Leland, Richard A

    This study is intended to identify efficacy, evolving applications, best practices, and challenges of spatial disorientation (SD) training in flight simulators for rotor wing pilots. Queries of a UK Ministry of Defense research database and Pub Med were undertaken using the search terms 'spatial disorientation,' 'rotor wing,' and 'flight simulator.' Efficacy, evolving applications, best practices, and challenges of SD simulation for rotor wing pilots were also ascertained through discussion with subject matter experts and industrial partners. Expert opinions were solicited at the aeromedical physiologist, aeromedical psychologist, instructor pilot, aeromedical examiner, and corporate executive levels. Peer review literature search yielded 129 articles, with 5 relevant to the use of flight simulators for the spatial disorientation training of rotor wing pilots. Efficacy of such training was measured subjectively and objectively. A preponderance of anecdotal reports endorse the benefits of rotor wing simulator SD training, with a small trial substantiating performance improvement. Advancing technologies enable novel training applications. The mobile nature of flight students and concurrent anticollision technologies can make long-range assessment of SD training efficacy challenging. Costs of advanced technologies could limit the extent to which the most advanced simulators can be employed across the rotor wing community. Evidence suggests the excellent training value of rotor wing simulators for SD training. Objective data from further research, particularly with regards to evolving technologies, may justify further usage of advanced simulator platforms for SD training and research. Powell-Dunford N, Bushby A, Leland RA. Spatial disorientation training in the rotor wing flight simulator. Aerosp Med Hum Perform. 2016; 87(10):890-893.

  16. A simulator evaluation of an automatic terminal approach system

    NASA Technical Reports Server (NTRS)

    Hinton, D. A.

    1983-01-01

    The automatic terminal approach system (ATAS) is a concept for improving the pilot/machine interface with cockpit automation. The ATAS can automatically fly a published instrument approach by using stored instrument approach data to automatically tune airplane avionics, control the airplane's autopilot, and display status information to the pilot. A piloted simulation study was conducted to determine the feasibility of an ATAS, determine pilot acceptance, and examine pilot/ATAS interaction. Seven instrument-rated pilots each flew four instrument approaches with a base-line heading select autopilot mode. The ATAS runs resulted in lower flight technical error, lower pilot workload, and fewer blunders than with the baseline autopilot. The ATAS status display enabled the pilots to maintain situational awareness during the automatic approaches. The system was well accepted by the pilots.

  17. Integration of visual and motion cues for simulator requirements and ride quality investigation. [computerized simulation of aircraft landing, visual perception of aircraft pilots

    NASA Technical Reports Server (NTRS)

    Young, L. R.

    1975-01-01

    Preliminary tests and evaluation are presented of pilot performance during landing (flight paths) using computer generated images (video tapes). Psychophysiological factors affecting pilot visual perception were measured. A turning flight maneuver (pitch and roll) was specifically studied using a training device, and the scaling laws involved were determined. Also presented are medical studies (abstracts) on human response to gravity variations without visual cues, acceleration stimuli effects on the semicircular canals, and neurons affecting eye movements, and vestibular tests.

  18. Error rate information in attention allocation pilot models

    NASA Technical Reports Server (NTRS)

    Faulkner, W. H.; Onstott, E. D.

    1977-01-01

    The Northrop urgency decision pilot model was used in a command tracking task to compare the optimized performance of multiaxis attention allocation pilot models whose urgency functions were (1) based on tracking error alone, and (2) based on both tracking error and error rate. A matrix of system dynamics and command inputs was employed, to create both symmetric and asymmetric two axis compensatory tracking tasks. All tasks were single loop on each axis. Analysis showed that a model that allocates control attention through nonlinear urgency functions using only error information could not achieve performance of the full model whose attention shifting algorithm included both error and error rate terms. Subsequent to this analysis, tracking performance predictions for the full model were verified by piloted flight simulation. Complete model and simulation data are presented.

  19. Pilot Study: Unit on White Racism.

    ERIC Educational Resources Information Center

    Hurwitz, Alan; Snook, Valerie

    This report is an attempt to explore approaches in which white people examine their own racism, understand its nature and its consequences, and then plan self-directed changes in the direction of increasingly anti-racist behavior. In the pilot study described and evaluated in the report, three general purposes indicated were: assisting…

  20. Large eddy simulation of piloted pulverised coal combustion using extended flamelet/progress variable model

    NASA Astrophysics Data System (ADS)

    Wen, Xu; Luo, Kun; Jin, Hanhui; Fan, Jianren

    2017-09-01

    An extended flamelet/progress variable (EFPV) model for simulating pulverised coal combustion (PCC) in the context of large eddy simulation (LES) is proposed, in which devolatilisation, char surface reaction and radiation are all taken into account. The pulverised coal particles are tracked in the Lagrangian framework with various sub-models and the sub-grid scale (SGS) effects of turbulent velocity and scalar fluctuations on the coal particles are modelled by the velocity-scalar joint filtered density function (VSJFDF) model. The presented model is then evaluated by LES of an experimental piloted coal jet flame and comparing the numerical results with the experimental data and the results from the eddy break up (EBU) model. Detailed quantitative comparisons are carried out. It is found that the proposed model performs much better than the EBU model on radial velocity and species concentrations predictions. Comparing against the adiabatic counterpart, we find that the predicted temperature is evidently lowered and agrees well with the experimental data if the conditional sampling method is adopted.

  1. An approach to the determination of aircraft handling qualities using pilot transfer functions

    NASA Technical Reports Server (NTRS)

    Adams, J. J.; Hatch, H. G., Jr.

    1978-01-01

    It was shown that a correlation exists between pilot-aircraft system closed-loop characteristics, determined by using analytical expressions for pilot response along with the analytical expression for the aircraft response, and pilot ratings obtained in many previous flight and simulation studies. Two different levels of preferred pilot response were used. These levels were: (1) a static gain and a second-order lag function with a lag time constant of 0.2 second; and (2) a static gain, a lead time constant of 1 second, and a 0.2-second lag time constant. If a system response with a pitch-angle time constant of 2.6 seconds and a stable oscillatory mode of motion with a period of 2.5 seconds could be achieved with the first-level pilot model, it was shown that the pilot rating will be satisfactory for that vehicle.

  2. High-Alpha Research Vehicle (HARV) longitudinal controller: Design, analyses, and simulation resultss

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.; Hoffler, Keith D.; Proffitt, Melissa S.; Brown, Philip W.; Phillips, Michael R.; Rivers, Robert A.; Messina, Michael D.; Carzoo, Susan W.; Bacon, Barton J.; Foster, John F.

    1994-01-01

    This paper describes the design, analysis, and nonlinear simulation results (batch and piloted) for a longitudinal controller which is scheduled to be flight-tested on the High-Alpha Research Vehicle (HARV). The HARV is an F-18 airplane modified for and equipped with multi-axis thrust vectoring. The paper includes a description of the facilities, a detailed review of the feedback controller design, linear analysis results of the feedback controller, a description of the feed-forward controller design, nonlinear batch simulation results, and piloted simulation results. Batch simulation results include maximum pitch stick agility responses, angle of attack alpha captures, and alpha regulation for full lateral stick rolls at several alpha's. Piloted simulation results include task descriptions for several types of maneuvers, task guidelines, the corresponding Cooper-Harper ratings from three test pilots, and some pilot comments. The ratings show that desirable criteria are achieved for almost all of the piloted simulation tasks.

  3. The ergonomic evaluation of eye movement and mental workload in aircraft pilots.

    PubMed

    Itoh, Y; Hayashi, Y; Tsukui, I; Saito, S

    1990-06-01

    This paper presents an experiment which examines characteristics of pilots' scanning behaviour when using integrated CRT displays, and the changes in characteristics when pilots face abnormal situations. The subjects were five experienced pilots. They performed two modes of flight tasks, under normal and abnormal situations, in flight simulators with standard settings. The flight simulators were for a Boeing 747-300 (B747), which made use of electromechanical displays, and for a Boeing 767 (B767), equipped with integrated CRT displays. The results showed that the B767 pilots tended to gaze at the attitude director indicator which was displayed in the integrated CRT display. It was assumed that 'gaze-type scanning' might be one of the characteristics of pilots' scanning behaviour in cockpits which use the integrated display. By employing subjective ratings and heart rate variability to measure mental workload, no differences in mental workload between the B767 pilots and the B747 pilots were observed. However, in abnormal situations, the changes in scanning pattern for B767 pilots were found to be smaller than those of the B747 pilots. It is concluded that the application of integrated displays helps pilots to obtain sufficient information more easily than electromechanical displays do, even under abnormal situations.

  4. Effect of shaping sensor data on pilot response

    NASA Technical Reports Server (NTRS)

    Bailey, Roger M.

    1990-01-01

    The pilot of a modern jet aircraft is subjected to varying workloads while being responsible for multiple, ongoing tasks. The ability to associate the pilot's responses with the task/situation, by modifying the way information is presented relative to the task, could provide a means of reducing workload. To examine the feasibility of this concept, a real time simulation study was undertaken to determine whether preprocessing of sensor data would affect pilot response. Results indicated that preprocessing could be an effective way to tailor the pilot's response to displayed data. The effects of three transformations or shaping functions were evaluated with respect to the pilot's ability to predict and detect out-of-tolerance conditions while monitoring an electronic engine display. Two nonlinear transformations, on being the inverse of the other, were compared to a linear transformation. Results indicate that a nonlinear transformation that increases the rate-or-change of output relative to input tends to advance the prediction response and improve the detection response, while a nonlinear transformation that decreases the rate-of-change of output relative to input tends to lengthen the prediction response and make detection more difficult.

  5. Introducing technology into medical education: two pilot studies.

    PubMed

    George, Paul; Dumenco, Luba; Dollase, Richard; Taylor, Julie Scott; Wald, Hedy S; Reis, Shmuel P

    2013-12-01

    Educators are integrating new technology into medical curriculum. The impact of newer technology on educational outcomes remains unclear. We aimed to determine if two pilot interventions, (1) introducing iPads into problem-based learning (PBL) sessions and (2) online tutoring would improve the educational experience of our learners. We voluntarily assigned 26 second-year medical students to iPad-based PBL sessions. Five students were assigned to Skype for exam remediation. We performed a mixed-method evaluation to determine efficacy. Pilot 1: Seventeen students completed a survey following their use of an iPad during the second-year PBL curriculum. Students noted the iPad allows for researching information in real time, annotating lecture notes, and viewing sharper images. Data indicate that iPads have value in medical education and are a positive addition to the curriculum. Pilot 2: Students agreed that online tutoring is at least or more effective than in-person tutoring. In our pilot studies, students experienced that iPads and Skype are beneficial in medical education and can be successfully employed in areas such as PBL and remediation. Educators should continue to further examine innovative opportunities for introducing technology into medical education. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Physiological effects of night vision goggle counterweights on neck musculature of military helicopter pilots.

    PubMed

    Harrison, Michael F; Neary, J Patrick; Albert, Wayne J; Veillette, Major Dan W; Forcest, Canadian; McKenzie, Neil P; Croll, James C

    2007-08-01

    Increased helmet-mounted mass and specific neck postures have been found to be a cause of increased muscular activity and stress. However, pilots who use night vision goggles (NVG) frequently use counterweight (CW) equipment such as a lead mass that is attached to the back of the flight helmet to provide balance to counter the weight of the NVG equipment mounted to the front of the flight helmet. It is proposed that this alleviates this stress. However, no study has yet investigated the physiological effects of CW during an extended period of time during which the pilots performed normal operational tasks. Thirty-one Canadian Forces pilots were monitored on consecutive days during a day and a NVG mission in a CH-146 flight simulator. Near infrared spectroscopy probes were attached bilaterally to the trapezius muscles and hemodynamics, i.e., total oxygenation index, total hemoglobin, oxyhemoglobin, and deoxyhemoglobin, were monitored for the duration of the mission. Pilots either wore CW (n = 25) or did not wear counterweights (nCW, n = 6) as per their usual operational practice. Levene's statistical tests were conducted to test for homogeneity and only total oxygenation index returned a significant result (p < or = 0.05). For the near infrared spectroscopy variables, significant differences were found to exist between CW and nCW pilots for total hemoglobin, deoxyhemoglobin, and oxyhemoglobin during NVG flights. The CW pilots displayed less metabolic and hemodynamic stress during simulated missions as compared to the nCW pilots. The results of this study would suggest that the use of CW equipment during NVG missions in military helicopter pilots does minimize the metabolic and hemodynamic responses of the trapezius muscles.

  7. The effect of visual-motion time delays on pilot performance in a pursuit tracking task

    NASA Technical Reports Server (NTRS)

    Miller, G. K., Jr.; Riley, D. R.

    1976-01-01

    A study has been made to determine the effect of visual-motion time delays on pilot performance of a simulated pursuit tracking task. Three interrelated major effects have been identified: task difficulty, motion cues, and time delays. As task difficulty, as determined by airplane handling qualities or target frequency, increases, the amount of acceptable time delay decreases. However, when relatively complete motion cues are included in the simulation, the pilot can maintain his performance for considerably longer time delays. In addition, the number of degrees of freedom of motion employed is a significant factor.

  8. 78 FR 23941 - Pilot Program for Early Feasibility Study Investigational Device Exemption Applications...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-23

    ...] Pilot Program for Early Feasibility Study Investigational Device Exemption Applications; Extending the... 13343), FDA terminated the acceptance of applications into the program and extended the pilot program for the nine accepted sponsors until May 8, 2013. The pilot program will be further extended for the...

  9. Physiological Indices of Pilots' Abilities Under Varying Task Demands.

    PubMed

    Wang, Zhen; Zheng, Lingxiao; Lu, Yanyu; Fu, Shan

    2016-04-01

    This study investigated pilots' ability by examining the effects of flight experience and task demand on physiological reactions, and analyzing the diagnostic meanings underlying correlated parameters. A total of 12 experienced pilots and 12 less experienced pilots performed 4 simulated flight tasks, including normal and emergency situations. Fixation duration (FD), saccade rate (SR), blink rate (BR), heart rate (HR), respiration rate (RR), and respiration amplitude (RA) were measured during the tasks. More experienced pilots adapted their SR flexibly to changing task demands and had significantly lower SR than less experienced pilots during emergency tasks (29.6 ± 20.0 vs. 70.1 ± 67.1 saccades/min). BR, HR, and RR were affected by pilot experience but not by task demand. More experienced pilots had lower BR, HR, and RR than less experienced pilots during both normal tasks (BR: 14.3 ± 13.0 vs. 32.9 ± 25.8 blinks/min; HR: 72.7 ± 7.9 vs. 83.2 ± 7.2 bpm; RR: 15.4 ± 2.1 vs. 19.5 ± 5.2 breaths/min) and emergency tasks (BR: 10.2 ± 5.0 vs. 32.3 ± 20.8 blinks/min; HR: 73.3 ± 7.3 vs. 82.2 ± 11.6 bpm; RR: 15.6 ± 1.9 vs. 18.0 ± 3.2 breaths/min). FD and RA were not sensitive to either flight experience or task demand. Physiological reactions have the potential to reflect pilots' ability from different aspects. SR and BR could indicate pilots' differences in information access strategy. HR and RR could reflect a pilot's physical fitness. These findings are useful for understanding a pilot's ability.

  10. Assimilating Flow Data into Complex Multiple-Point Statistical Facies Models Using Pilot Points Method

    NASA Astrophysics Data System (ADS)

    Ma, W.; Jafarpour, B.

    2017-12-01

    We develop a new pilot points method for conditioning discrete multiple-point statistical (MPS) facies simulation on dynamic flow data. While conditioning MPS simulation on static hard data is straightforward, their calibration against nonlinear flow data is nontrivial. The proposed method generates conditional models from a conceptual model of geologic connectivity, known as a training image (TI), by strategically placing and estimating pilot points. To place pilot points, a score map is generated based on three sources of information:: (i) the uncertainty in facies distribution, (ii) the model response sensitivity information, and (iii) the observed flow data. Once the pilot points are placed, the facies values at these points are inferred from production data and are used, along with available hard data at well locations, to simulate a new set of conditional facies realizations. While facies estimation at the pilot points can be performed using different inversion algorithms, in this study the ensemble smoother (ES) and its multiple data assimilation variant (ES-MDA) are adopted to update permeability maps from production data, which are then used to statistically infer facies types at the pilot point locations. The developed method combines the information in the flow data and the TI by using the former to infer facies values at select locations away from the wells and the latter to ensure consistent facies structure and connectivity where away from measurement locations. Several numerical experiments are used to evaluate the performance of the developed method and to discuss its important properties.

  11. Exploring the role of 3-dimensional simulation in surgical training: feedback from a pilot study.

    PubMed

    Podolsky, Dale J; Martin, Allan R; Whyne, Cari M; Massicotte, Eric M; Hardisty, Michael R; Ginsberg, Howard J

    2010-12-01

    Randomized control study assessing the efficacy of a pedicle screw insertion simulator. To evaluate the efficacy of an in-house developed 3-dimensional software simulation tool for teaching pedicle screw insertion, to gather feedback about the utility of the simulator, and to help identify the context and role such simulation has in surgical education. Traditional instruction for pedicle screw insertion technique consists of didactic teaching and limited hands-on training on artificial or cadaveric models before guided supervision within the operating room. Three-dimensional computer simulation can provide a valuable tool for practicing challenging surgical procedures; however, its potential lies in its effective integration into student learning. Surgical residents were recruited from 2 sequential years of a spine surgery course. Patient and control groups both received standard training on pedicle screw insertion. The patient group received an additional 1-hour session of training on the simulator using a CT-based 3-dimensional model of their assigned cadaver's spine. Qualitative feedback about the simulator was gathered from the trainees, fellows, and staff surgeons, and all pedicles screws physically inserted into the cadavers during the courses were evaluated through CT. A total of 185 thoracic and lumbar pedicle screws were inserted by 37 trainees. Eighty-two percent of the 28 trainees who responded to the questionnaire and all fellows and staff surgeons felt the simulator to be a beneficial educational tool. However, the 1-hour training session did not yield improved performance in screw placement. A 3-dimensional computer-based simulation for pedicle screw insertion was integrated into a cadaveric spine surgery instructional course. Overall, the tool was positively regarded by the trainees, fellows, and staff surgeons. However, the limited training with the simulator did not translate into widespread comfort with its operation or into improvement in

  12. Discrete time modelization of human pilot behavior

    NASA Technical Reports Server (NTRS)

    Cavalli, D.; Soulatges, D.

    1975-01-01

    This modelization starts from the following hypotheses: pilot's behavior is a time discrete process, he can perform only one task at a time and his operating mode depends on the considered flight subphase. Pilot's behavior was observed using an electro oculometer and a simulator cockpit. A FORTRAN program has been elaborated using two strategies. The first one is a Markovian process in which the successive instrument readings are governed by a matrix of conditional probabilities. In the second one, strategy is an heuristic process and the concepts of mental load and performance are described. The results of the two aspects have been compared with simulation data.

  13. An investigation of correlation between pilot scanning behavior and workload using stepwise regression analysis

    NASA Technical Reports Server (NTRS)

    Waller, M. C.

    1976-01-01

    An electro-optical device called an oculometer which tracks a subject's lookpoint as a time function has been used to collect data in a real-time simulation study of instrument landing system (ILS) approaches. The data describing the scanning behavior of a pilot during the instrument approaches have been analyzed by use of a stepwise regression analysis technique. A statistically significant correlation between pilot workload, as indicated by pilot ratings, and scanning behavior has been established. In addition, it was demonstrated that parameters derived from the scanning behavior data can be combined in a mathematical equation to provide a good representation of pilot workload.

  14. Helicopter Flight Simulation Motion Platform Requirements

    NASA Technical Reports Server (NTRS)

    Schroeder, Jeffery Allyn

    1999-01-01

    To determine motion fidelity requirements, a series of piloted simulations was performed. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositioning. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.

  15. A Distributed Simulation Facility to Support Human Factors Research in Advanced Air Transportation Technology

    NASA Technical Reports Server (NTRS)

    Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.

    1998-01-01

    A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.

  16. Modeling human response errors in synthetic flight simulator domain

    NASA Technical Reports Server (NTRS)

    Ntuen, Celestine A.

    1992-01-01

    This paper presents a control theoretic approach to modeling human response errors (HRE) in the flight simulation domain. The human pilot is modeled as a supervisor of a highly automated system. The synthesis uses the theory of optimal control pilot modeling for integrating the pilot's observation error and the error due to the simulation model (experimental error). Methods for solving the HRE problem are suggested. Experimental verification of the models will be tested in a flight quality handling simulation.

  17. The Impact of Suggestive Maneuver Guidance on UAS Pilots Performing the Detect and Avoid Function

    NASA Technical Reports Server (NTRS)

    Rorie, Conrad; Fern, Lisa; Shively, Jay

    2016-01-01

    This presentation discusses the results of a recent UAS Integration into the NAS human-in-the-loop simulation. In the study, 16 active UAS pilots flew a UAS through civil airspace and were tasked with maintaining well clear from other aircraft in the area. Pilots performed the task with four different detect and avoid (DAA) traffic displays, each of which varied in the form of guidance it provided to pilots The present findings focus on how the different displays impacted pilots' measured response to scripted conflicts with their aircraft. Measured response is made up of several components, each of which help inform our understanding of the pilots' role in the overall detect and avoid task.

  18. Pilots' use of a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier operations. Volume 1: Methodology, summary and conclusions

    NASA Technical Reports Server (NTRS)

    Chappell, Sheryl L.; Billings, Charles E.; Scott, Barry C.; Tuttell, Robert J.; Olsen, M. Christine; Kozon, Thomas E.

    1989-01-01

    Pilots' use of and responses to a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier line operations are described in Volume 1. TCAS 2 monitors the positions of nearby aircraft by means of transponder interrogation, and it commands a climb or descent when conflicting aircraft are projected to reach an unsafe closest point-of-approach within 20 to 25 seconds. A different level of information about the location of other air traffic was presented to each of three groups of flight crews during their execution of eight simulated air carrier flights. A fourth group of pilots flew the same segments without TCAS 2 equipment. Traffic conflicts were generated at intervals during the flights; many of the conflict aircraft were visible to the flight crews. The TCAS equipment successfully ameliorated the seriousness of all conflicts; three of four non-TCAS crews had hazardous encounters. Response times to TCAS maneuver commands did not differ as a function of the amount of information provided, nor did response accuracy. Differences in flight experience did not appear to contribute to the small performance differences observed. Pilots used the displays of conflicting traffic to maneuver to avoid unseen traffic before maneuver advisories were issued by the TCAS equipment. The results indicate: (1) that pilots utilize TCAS effectively within the response times allocated by the TCAS logic, and (2) that TCAS 2 is an effective collision avoidance device. Volume II contains the appendices referenced in Volume I, providing details of the experiment and the results, and the text of two reports written in support of the program.

  19. Use of a virtual reality physical ride-on sailing simulator as a rehabilitation tool for recreational sports and community reintegration: a pilot study.

    PubMed

    Recio, Albert C; Becker, Daniel; Morgan, Marjorie; Saunders, Norman R; Schramm, Lawrence P; McDonald, John W

    2013-12-01

    Participation in sailing by people with disabilities, particularly in small sailboats, is widely regarded as having positive outcomes on self-esteem and general health for the participants. However, a major hurdle for people with no previous experience of sailing, even by those without disabilities, is the perception that sailing is elitist, expensive, and dangerous. Real-time "ride-on" sailing simulators have the potential to bridge the gap between dry-land and on-the-water sailing. These provide a realistic, safe, and easily supervised medium in which nonsailors can easily and systematically learn the required skills before venturing out on the water. The authors report a 12-wk pilot therapeutic sailing program using the VSail-Access sailing simulation system followed by on-water experience. After completion of the training, all subjects demonstrated the ability to navigate a simple course around marker buoys (triangular configuration) on the computer screen, the ability to sail independently in winds of moderate strength (up to 14 knots) on water, and measurable improvements in their psychologic health. In addition, the subjects were able to participate in a sports activity with their respective family members and experienced a sense of optimism about their future.

  20. TASK 2: QUENCH ZONE SIMULATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fusselman, Steve

    Aerojet Rocketdyne (AR) has developed an innovative gasifier concept incorporating advanced technologies in ultra-dense phase dry feed system, rapid mix injector, and advanced component cooling to significantly improve gasifier performance, life, and cost compared to commercially available state-of-the-art systems. A key feature of the AR gasifier design is the transition from the gasifier outlet into the quench zone, where the raw syngas is cooled to ~ 400°C by injection and vaporization of atomized water. Earlier pilot plant testing revealed a propensity for the original gasifier outlet design to accumulate slag in the outlet, leading to erratic syngas flow from themore » outlet. Subsequent design modifications successfully resolved this issue in the pilot plant gasifier. In order to gain greater insight into the physical phenomena occurring within this zone, AR developed a cold flow simulation apparatus with Coanda Research & Development with a high degree of similitude to hot fire conditions with the pilot scale gasifier design, and capable of accommodating a scaled-down quench zone for a demonstration-scale gasifier. The objective of this task was to validate similitude of the cold flow simulation model by comparison of pilot-scale outlet design performance, and to assess demonstration scale gasifier design feasibility from testing of a scaled-down outlet design. Test results did exhibit a strong correspondence with the two pilot scale outlet designs, indicating credible similitude for the cold flow simulation device. Testing of the scaled-down outlet revealed important considerations in the design and operation of the demonstration scale gasifier, in particular pertaining to the relative momentum between the downcoming raw syngas and the sprayed quench water and associated impacts on flow patterns within the quench zone. This report describes key findings from the test program, including assessment of pilot plant configuration simulations relative to

  1. Development of a virtual flight simulator.

    PubMed

    Kuntz Rangel, Rodrigo; Guimarães, Lamartine N F; de Assis Correa, Francisco

    2002-10-01

    We present the development of a flight simulator that allows the user to interact in a created environment by means of virtual reality devices. This environment simulates the sight of a pilot in an airplane cockpit. The environment is projected in a helmet visor and allows the pilot to see inside as well as outside the cockpit. The movement of the airplane is independent of the movement of the pilot's head, which means that the airplane might travel in one direction while the pilot is looking at a 30 degrees angle with respect to the traveled direction. In this environment, the pilot will be able to take off, fly, and land the airplane. So far, the objects in the environment are geometrical figures. This is an ongoing project, and only partial results are available now.

  2. Turbulence flight director analysis and preliminary simulation

    NASA Technical Reports Server (NTRS)

    Johnson, D. E.; Klein, R. E.

    1974-01-01

    A control column and trottle flight director display system is synthesized for use during flight through severe turbulence. The column system is designed to minimize airspeed excursions without overdriving attitude. The throttle system is designed to augment the airspeed regulation and provide an indication of the trim thrust required for any desired flight path angle. Together they form an energy management system to provide harmonious display indications of current aircraft motions and required corrective action, minimize gust upset tendencies, minimize unsafe aircraft excursions, and maintain satisfactory ride qualities. A preliminary fixed-base piloted simulation verified the analysis and provided a shakedown for a more sophisticated moving-base simulation to be accomplished next. This preliminary simulation utilized a flight scenario concept combining piloting tasks, random turbulence, and discrete gusts to create a high but realistic pilot workload conducive to pilot error and potential upset. The turbulence director (energy management) system significantly reduced pilot workload and minimized unsafe aircraft excursions.

  3. Correlating Computed and Flight Instructor Assessments of Straight-In Landing Approaches by Novice Pilots on a Flight Simulator

    NASA Technical Reports Server (NTRS)

    Heath, Bruce E.; Khan, M. Javed; Rossi, Marcia; Ali, Syed Firasat

    2005-01-01

    The rising cost of flight training and the low cost of powerful computers have resulted in increasing use of PC-based flight simulators. This has prompted FAA standards regulating such use and allowing aspects of training on simulators meeting these standards to be substituted for flight time. However, the FAA regulations require an authorized flight instructor as part of the training environment. Thus, while costs associated with flight time have been reduced, the cost associated with the need for a flight instructor still remains. The obvious area of research, therefore, has been to develop intelligent simulators. However, the two main challenges of such attempts have been training strategies and assessment. The research reported in this paper was conducted to evaluate various performance metrics of a straight-in landing approach by 33 novice pilots flying a light single engine aircraft simulation. These metrics were compared to assessments of these flights by two flight instructors to establish a correlation between the two techniques in an attempt to determine a composite performance metric for this flight maneuver.

  4. Enhancing the revision of the static geological model of the Stuttgart Formation at the Ketzin pilot site by integration of reservoir simulations and 3D seismics

    NASA Astrophysics Data System (ADS)

    Kempka, Thomas; Norden, Ben; Ivanova, Alexandra; Lüth, Stefan

    2017-04-01

    Pilot-scale carbon dioxide storage has been performed at the Ketzin pilot site in Germany from June 2007 to August 2013 with about 67 kt of CO2 injected into the Upper Triassic Stuttgart Formation. In this context, the main aims focussed on verification of the technical feasibility of CO2 storage in saline aquifers and development of efficient strategies for CO2 behaviour monitoring and prediction. A static geological model has been already developed at an early stage of this undertaking, and continuously revised with the availability of additional geological and operational data as well as by means of reservoir simulations, allowing for revisions in line with the efforts to achieve a solid history match in view of well bottomhole pressures and CO2 arrival times at the observation wells. Three 3D seismic campaigns followed the 2005 3D seismic baseline in 2009, 2012 and 2015. Consequently, the interpreted seismic data on spatial CO2 thickness distributions in the storage reservoir as well as seismic CO2 detection limits from recent conformity studies enabled us to enhance the previous history-matching results by adding a spatial component to the previous observations, limited to points only. For that purpose, we employed the latest version of the history-matched static geological reservoir model and revised the gridding scheme of the reservoir simulation model by coarsening and introducing local grid refinements at the areas of interest. Further measures to ensure computational efficiency included the application of the MUFITS reservoir simulator (BLACKOIL module) with PVT data derived from the MUFITS GASSTORE module. Observations considered in the inverse model calibration for a simulation time of about 5 years included well bottomhole pressures, CO2 arrival times and seismically determined CO2 thickness maps for 2009 and 2012. Pilot points were employed by means of the PEST++ inverse simulation framework to apply permeability multipliers, interpolated by kriging

  5. Simulator study of minimum acceptable level of longitudinal stability for a representative STOL configuration during landing approach

    NASA Technical Reports Server (NTRS)

    Grantham, W. D.; Deal, P. L.

    1974-01-01

    A fixed-base simulator study was conducted to determine the minimum acceptable level of longitudinal stability for a representative turbofan STOL (short take-off and landing) transport airplane during the landing approach. Real-time digital simulation techniques were used. The computer was programed with equations of motion for six degrees of freedom, and the aerodynamic inputs were based on measured wind-tunnel data. The primary piloting task was an instrument approach to a breakout at a 60-m (200-ft) ceiling.

  6. Unified Theory for Aircraft Handling Qualities and Adverse Aircraft-Pilot Coupling

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1997-01-01

    A unified theory for aircraft handling qualities and adverse aircraft-pilot coupling or pilot-induced oscillations is introduced. The theory is based on a structural model of the human pilot. A methodology is presented for the prediction of (1) handling qualities levels; (2) pilot-induced oscillation rating levels; and (3) a frequency range in which pilot-induced oscillations are likely to occur. Although the dynamics of the force-feel system of the cockpit inceptor is included, the methodology will not account for effects attributable to control sensitivity and is limited to single-axis tasks and, at present, to linear vehicle models. The theory is derived from the feedback topology of the structural model and an examination of flight test results for 32 aircraft configurations simulated by the U.S. Air Force/CALSPAN NT-33A and Total In-Flight Simulator variable stability aircraft. An extension to nonlinear vehicle dynamics such as that encountered with actuator saturation is discussed.

  7. Intelligent Pilot Aids for Flight Re-Planning in Emergencies

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy R.; Ockerman, Jennifer

    2005-01-01

    an immediately understandable manner, and in a manner that would allow the pilot to modify an automatically-generated route and/or detect any inappropriate elements in an automatically-generated route. Likewise, a flight simulator study examined different cockpit systems for the relative merits of providing pilots with any of a variety of automated functions for emergency flight planning. The results provide specific guidance for the design of such systems.

  8. 77 FR 13343 - Pilot Program for Early Feasibility Study Investigational Device Exemption Applications...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-06

    ...] Pilot Program for Early Feasibility Study Investigational Device Exemption Applications; Termination of... acceptance of nominations for the Early Feasibility Study Investigational Device Exemption (IDE) Applications... technologies to participate in a pilot program for early feasibility study IDE applications. FDA is also...

  9. Objective measure of pilot workload

    NASA Technical Reports Server (NTRS)

    Kantowitz, B. H.

    1984-01-01

    Timesharing behavior in a data-entry task, similar to a pilot entering navigation data into an on-board computer is investigated. Auditory reaction time as a function of stimulus information and dimensionality is examined. This study has direct implications for stimulus selection for secondary tasks used in the GAT flight simulator at Ames Research Center. Attenuation effects of heat and cold stress in a psychological refractory period task were studied. The focus of interest is the general effects of stress on attention rather than upon specific temperature related phenomena.

  10. Simulation-based inter-professional education to improve attitudes towards collaborative practice: a prospective comparative pilot study in a Chinese medical centre

    PubMed Central

    Yang, Ling-Yu; Yang, Ying-Ying; Huang, Chia-Chang; Liang, Jen-Feng; Lee, Fa-Yauh; Cheng, Hao-Min; Huang, Chin-Chou; Kao, Shou-Yen

    2017-01-01

    Objectives Inter-professional education (IPE) builds inter-professional collaboration (IPC) attitude/skills of health professionals. This interventional IPE programme evaluates whether benchmarking sharing can successfully cultivate seed instructors responsible for improving their team members’ IPC attitudes. Design Prospective, pre-post comparative cross-sectional pilot study. Setting/participants Thirty four physicians, 30 nurses and 24 pharmacists, who volunteered to be trained as seed instructors participated in 3.5-hour preparation and 3.5-hour simulation courses. Then, participants (n=88) drew lots to decide 44 presenters, half of each profession, who needed to prepare IPC benchmarking and formed Group 1. The remaining participants formed Group 2 (regular). Facilitators rated the Group 1 participants’ degree of appropriate transfer and sustainable practice of the learnt IPC skills in the workplace according to successful IPC examples in their benchmarking sharing. Results For the three professions, improvement in IPC attitude was identified by sequential increase in the post-course (second month, T2) and end-of-study (third month, T3) Interdisciplinary Education Perception Scale (IEPS) and Attitudes Towards Healthcare Teams Scale (ATHCTS) scores, compared with pre-course (first month, T1) scores. By IEPS and ATHCTS-based assessment, the degree of sequential improvements in IPC attitude was found to be higher among nurses and pharmacists than in physicians. In benchmarking sharing, the facilitators’ agreement about the degree of participants’appropriate transfer and sustainable practice learnt ‘communication and teamwork’ skills in the workplace were significantly higher among pharmacists and nurses than among physicians. The post-intervention random sampling survey (sixth month, Tpost) found that the IPC attitude of the three professions improved after on-site IPC skill promotion by new programme-trained seed instructors within teams. Conclusions

  11. Development of a subjective cognitive decline questionnaire using item response theory: a pilot study.

    PubMed

    Gifford, Katherine A; Liu, Dandan; Romano, Raymond; Jones, Richard N; Jefferson, Angela L

    2015-12-01

    Subjective cognitive decline (SCD) may indicate unhealthy cognitive changes, but no standardized SCD measurement exists. This pilot study aims to identify reliable SCD questions. 112 cognitively normal (NC, 76±8 years, 63% female), 43 mild cognitive impairment (MCI; 77±7 years, 51% female), and 33 diagnostically ambiguous participants (79±9 years, 58% female) were recruited from a research registry and completed 57 self-report SCD questions. Psychometric methods were used for item-reduction. Factor analytic models assessed unidimensionality of the latent trait (SCD); 19 items were removed with extreme response distribution or trait-fit. Item response theory (IRT) provided information about question utility; 17 items with low information were dropped. Post-hoc simulation using computerized adaptive test (CAT) modeling selected the most commonly used items (n=9 of 21 items) that represented the latent trait well (r=0.94) and differentiated NC from MCI participants (F(1,146)=8.9, p=0.003). Item response theory and computerized adaptive test modeling identified nine reliable SCD items. This pilot study is a first step toward refining SCD assessment in older adults. Replication of these findings and validation with Alzheimer's disease biomarkers will be an important next step for the creation of a SCD screener.

  12. Defining the Simulation Technician Role: Results of a Survey-Based Study.

    PubMed

    Bailey, Rachel; Taylor, Regina G; FitzGerald, Michael R; Kerrey, Benjamin T; LeMaster, Thomas; Geis, Gary L

    2015-10-01

    In health care simulation, simulation technicians perform multiple tasks to support various educational offerings. Technician responsibilities and the tasks that accompany them seem to vary between centers. The objectives were to identify the range and frequency of tasks that technicians perform and to determine if there is a correspondence between what technicians do and what they feel their responsibilities should be. We hypothesized that there is a core set of responsibilities and tasks for the technician position regardless of background, experience, and type of simulation center. We conducted a prospective, survey-based study of individuals currently functioning in a simulation technician role in a simulation center. This survey was designed internally and piloted within 3 academic simulation centers. Potential respondents were identified through a national mailing list, and the survey was distributed electronically during a 3-week period. A survey request was sent to 280 potential participants, 136 (49%) responded, and 73 met inclusion criteria. Five core tasks were identified as follows: equipment setup and breakdown, programming scenarios into software, operation of software during simulation, audiovisual support for courses, and on-site simulator maintenance. Independent of background before they were hired, technicians felt unprepared for their role once taking the position. Formal training was identified as a need; however, the majority of technicians felt experience over time was the main contributor toward developing knowledge and skills within their role. This study represents a first step in defining the technician role within simulation-based education and supports the need for the development of a formal job description to allow recruitment, development, and certification.

  13. Age-related visual signal changes induced by hypoxemic hypoxia: a study on aircraft pilots of different ages.

    PubMed

    Pescosolido, Nicola; Buomprisco, Giuseppe; Di Blasio, Dario

    2014-10-01

    Exposure to high altitude leads to a series of alterations of higher nervous functions because of hypobaric hypoxia. Sensory systems, mainly the visual one, seem to be particularly involved. This study aimed to assess the effects of hypoxemic hypoxia on the transmission of the visual stimulus simulating a condition of breathing at an altitude of 18,000 feet (5,486 m) through the administration of an air mixture with 10% O2. The subjects involved in the study were 98 pilots of military aircraft (male, acclimated, healthy, 20/20 Uncorrected Visual Acuity (UCVA)/Best Corrected Visual Acuity (BCVA), and aged between 26 and 49 years) divided into 2 groups according to age (A: 26-36 years; B: 37-49 years). The visual evoked potentials were initially recorded at sea level (760 mm Hg) and subsequently at a simulated altitude of 18,000 feet (5,486 m) through the administration of an air mixture with 10% O2 that induced a blood saturation of 80% O2 after 15 minutes. The analysis was carried out using two different kinds of stimulus (15' and 60' of arc). The latency and the amplitude of N-75 (N1) and P-100 (P1) waves have been evaluated. Results obtained from visual evoked potentials were analyzed with Student t-test. In the first group (pilots aged 26-36 years), an increase in both latency and amplitude of P-100 wave was observed and in the second group (pilots aged 37-49 years), an increase was found in latency and a significant reduction in amplitude. The study suggests the existence of a mechanism or a particular anatomic and physiologic condition (probably the neurovascular coupling) that connects the local neuronal activity and the resulting changes in cerebral perfusion. This complex series of events binds together different structures and cell types, and it seems that younger people have a better resistance against the hypoxic insult to the central nervous system because of more efficient compensatory mechanisms.

  14. Evaluation of Piloted Inputs for Onboard Frequency Response Estimation

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Martos, Borja

    2013-01-01

    Frequency response estimation results are presented using piloted inputs and a real-time estimation method recently developed for multisine inputs. A nonlinear simulation of the F-16 and a Piper Saratoga research aircraft were subjected to different piloted test inputs while the short period stabilator/elevator to pitch rate frequency response was estimated. Results show that the method can produce accurate results using wide-band piloted inputs instead of multisines. A new metric is introduced for evaluating which data points to include in the analysis and recommendations are provided for applying this method with piloted inputs.

  15. Study of Adaptive Mathematical Models for Deriving Automated Pilot Performance Measurement Techniques. Volume I. Model Development.

    ERIC Educational Resources Information Center

    Connelly, Edward A.; And Others

    A new approach to deriving human performance measures and criteria for use in automatically evaluating trainee performance is documented in this report. The ultimate application of the research is to provide methods for automatically measuring pilot performance in a flight simulator or from recorded in-flight data. An efficient method of…

  16. Effects of 'Real World' Radio Chatter on Mid-Phase Instrument Ground Trainer Proficiency: A Pilot Study.

    ERIC Educational Resources Information Center

    Goebel, Ronald A.; And Others

    Under a background condition of either recorded radio chatter or no radio chatter, the individual performances of two flights of mid-phase instrument student pilots were measured during a simulated instrument cross-country mission in the T-38 ground trainer. Operational constraints prevented the exercise of optimal experimental controls, thereby…

  17. The Impact of Integrated Maneuver Guidance Information on UAS Pilots Performing the Detect and Avoid Task

    NASA Technical Reports Server (NTRS)

    Rorie, Conrad; Fern, Lisa

    2015-01-01

    The integrated human-in-the-loop (iHITL) simulation examined the effect of four different Detect-and-Avoid (DAA) display concepts on unmanned aircraft system (UAS) pilots' ability to maintain safe separation. The displays varied in the type and amount of guidance they provided to pilots. The study's background and methodology are discussed, followed by the 'measured response' data (i.e., pilots' end-to-end response time in reacting to traffic alerts on their DAA display). Results indicate that display type had a significant impact on how long pilot's spent interacting with the interface (i.e., edit times).

  18. The Pilot Training Study: A Cost-Estimating Model for Advanced Pilot Training (APT).

    ERIC Educational Resources Information Center

    Knollmeyer, L. E.

    The Advanced Pilot Training Cost Model is a statement of relationships that may be used, given the necessary inputs, for estimating the resources required and the costs to train pilots in the Air Force formal flying training schools. Resources and costs are computed by weapon system on an annual basis for use in long-range planning or sensitivity…

  19. Defining and measuring pilot mental workload

    NASA Technical Reports Server (NTRS)

    Kantowitz, Barry H.

    1988-01-01

    A theory is sought that is general enough to help the researcher deal with a wide range of situations involving pilot mental stress. A limited capacity theory of attention forms the basis for the theory. Mental workload is then defined as an intervening variable, similar to attention, that modulates or indexes the tuning between the demands of the environment and the capacity of the organism. Two methods for measuring pilot mental workload are endorsed: (1) objective measures based on secondary tasks; and (2) psychophysiological measures, which have not yet been perfected but which will become more useful as theoretical models are refined. Secondary-task research is illustrated by simulator studies in which flying performance has been shown not to be adversely affected by adding a complex choice-reaction secondary task.

  20. AVCS Simulator Test Plan and Design Guide

    NASA Technical Reports Server (NTRS)

    Shelden, Stephen

    2001-01-01

    Internal document for communication of AVCS direction and documentation of simulator functionality. Discusses methods for AVCS simulation evaluation of pilot functions, implementation strategy of varying functional representation of pilot tasks (by instantiations of a base AVCS to reasonably approximate the interface of various vehicles -- e.g. Altair, GlobalHawk, etc.).

  1. Pilot Field Test Study

    NASA Technical Reports Server (NTRS)

    Sherriff, Abigail

    2015-01-01

    The Field Test study is currently in full swing, preceded by the successful completion of the Pilot Field Test study that paved the way for collecting data on the astronauts in the medical tent in Kazakhstan. Abigail Sherriff worked alongside Logan Dobbe on one Field Test aspect to determine foot clearance over obstacles (5cm, 10cm, and 15cm) using APDM Inc. Internal Measurement Units (IMU) worn by the astronauts. They created a program to accurately calculate foot clearance using the accelerometer, magnetometer, and gyroscope data with the IMUs attached to the top of the shoes. To validate the functionality of their program, they completed a successful study on test subjects performing various tasks in an optical motion studio, considered a gold standard in biomechanics research. Future work will include further validation and expanding the program to include other analyses.

  2. Methods for Discerning Cloud Reflectivity Changes due to the Indirect Effect of Aerosol: A Pilot-study for Triana

    NASA Technical Reports Server (NTRS)

    Kinne, S.; Wiscombe, Warren; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Understanding the effect of aerosol on cloud systems is one of the major challenges in atmospheric and climate research. Local studies suggest a multitude of influences on cloud properties. Yet the overall effect on cloud albedo, a critical parameter in climate simulations, remains uncertain. NASA's Triana mission will provide, from its EPIC multi-spectral imager, simultaneous data on aerosol properties and cloud reflectivity. With Triana's unique position in space these data will be available not only globally but also over the entire daytime, well suited to accommodate the often short lifetimes of aerosol and investigations around diurnal cycles. This pilot study explores the ability to detect relationships between aerosol properties and cloud reflectivity with sophisticated statistical methods. Sample results using data from the EOS Terra platform to simulate Triana are presented.

  3. Piloted simulation of an air-ground profile negotiation process in a time-based Air Traffic Control environment

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Green, Steven M.

    1993-01-01

    Historically, development of airborne flight management systems (FMS) and ground-based air traffic control (ATC) systems has tended to focus on different objectives with little consideration for operational integration. A joint program, between NASA's Ames Research Center (Ames) and Langley Research Center (Langley), is underway to investigate the issues of, and develop systems for, the integration of ATC and airborne automation systems. A simulation study was conducted to evaluate a profile negotiation process (PNP) between the Center/TRACON Automation System (CTAS) and an aircraft equipped with a four-dimensional flight management system (4D FMS). Prototype procedures were developed to support the functional implementation of this process. The PNP was designed to provide an arrival trajectory solution which satisfies the separation requirements of ATC while remaining as close as possible to the aircraft's preferred trajectory. Results from the experiment indicate the potential for successful incorporation of aircraft-preferred arrival trajectories in the CTAS automation environment. Fuel savings on the order of 2 percent to 8 percent, compared to fuel required for the baseline CTAS arrival speed strategy, were achieved in the test scenarios. The data link procedures and clearances developed for this experiment, while providing the necessary functionality, were found to be operationally unacceptable to the pilots. In particular, additional pilot control and understanding of the proposed aircraft-preferred trajectory, and a simplified clearance procedure were cited as necessary for operational implementation of the concept.

  4. Peripheral vision cues : their effect on pilot performance during instrument landing approaches and recoveries from unusual attitudes.

    DOT National Transportation Integrated Search

    1968-05-01

    The study explores the effects of peripheral vision cues on the performance of a 20 ATR pilots during simulated instrument landing approaches in a Boeing 720 jet aircraft simulator. Recoveries from unusal attitudes were also investigated. Results of ...

  5. Pilots' Attention Distributions Between Chasing a Moving Target and a Stationary Target.

    PubMed

    Li, Wen-Chin; Yu, Chung-San; Braithwaite, Graham; Greaves, Matthew

    2016-12-01

    Attention plays a central role in cognitive processing; ineffective attention may induce accidents in flight operations. The objective of the current research was to examine military pilots' attention distributions between chasing a moving target and a stationary target. In the current research, 37 mission-ready F-16 pilots participated. Subjects' eye movements were collected by a portable head-mounted eye-tracker during tactical training in a flight simulator. The scenarios of chasing a moving target (air-to-air) and a stationary target (air-to-surface) consist of three operational phases: searching, aiming, and lock-on to the targets. The findings demonstrated significant differences in pilots' percentage of fixation during the searching phase between air-to-air (M = 37.57, SD = 5.72) and air-to-surface (M = 33.54, SD = 4.68). Fixation duration can indicate pilots' sustained attention to the trajectory of a dynamic target during air combat maneuvers. Aiming at the stationary target resulted in larger pupil size (M = 27,105, SD = 6565), reflecting higher cognitive loading than aiming at the dynamic target (M = 23,864, SD = 8762). Pilots' visual behavior is not only closely related to attention distribution, but also significantly associated with task characteristics. Military pilots demonstrated various visual scan patterns for searching and aiming at different types of targets based on the research settings of a flight simulator. The findings will facilitate system designers' understanding of military pilots' cognitive processes during tactical operations. They will assist human-centered interface design to improve pilots' situational awareness. The application of an eye-tracking device integrated with a flight simulator is a feasible and cost-effective intervention to improve the efficiency and safety of tactical training.Li W-C, Yu C-S, Braithwaite G, Greaves M. Pilots' attention distributions between chasing a moving target and a stationary target. Aerosp Med

  6. Synthesized speech rate and pitch effects on intelligibility of warning messages for pilots

    NASA Technical Reports Server (NTRS)

    Simpson, C. A.; Marchionda-Frost, K.

    1984-01-01

    In civilian and military operations, a future threat-warning system with a voice display could warn pilots of other traffic, obstacles in the flight path, and/or terrain during low-altitude helicopter flights. The present study was conducted to learn whether speech rate and voice pitch of phoneme-synthesized speech affects pilot accuracy and response time to typical threat-warning messages. Helicopter pilots engaged in an attention-demanding flying task and listened for voice threat warnings presented in a background of simulated helicopter cockpit noise. Performance was measured by flying-task performance, threat-warning intelligibility, and response time. Pilot ratings were elicited for the different voice pitches and speech rates. Significant effects were obtained only for response time and for pilot ratings, both as a function of speech rate. For the few cases when pilots forgot to respond to a voice message, they remembered 90 percent of the messages accurately when queried for their response 8 to 10 sec later.

  7. The Pilot Staffing Conundrum: A Delphi Study

    DTIC Science & Technology

    2009-06-01

    Project, AFIT/ GMO /LAL/98J-2. School of Logistics and Acquisition Management, Air Force Institute of Technology (AU), Wright Patterson AFB, OH, June...Kafer, John H. Relationship of Airline Pilot Demand and Air Force Pilot Retention. Graduate Research Project, AFIT/ GMO /LAL/98J-11. School of Logistics

  8. Entropy, instrument scan and pilot workload

    NASA Technical Reports Server (NTRS)

    Tole, J. R.; Stephens, A. T.; Vivaudou, M.; Harris, R. L., Jr.; Ephrath, A. R.

    1982-01-01

    Correlation and information theory which analyze the relationships between mental loading and visual scanpath of aircraft pilots are described. The relationship between skill, performance, mental workload, and visual scanning behavior are investigated. The experimental method required pilots to maintain a general aviation flight simulator on a straight and level, constant sensitivity, Instrument Landing System (ILS) course with a low level of turbulence. An additional periodic verbal task whose difficulty increased with frequency was used to increment the subject's mental workload. The subject's looppoint on the instrument panel during each ten minute run was computed via a TV oculometer and stored. Several pilots ranging in skill from novices to test pilots took part in the experiment. Analysis of the periodicity of the subject's instrument scan was accomplished by means of correlation techniques. For skilled pilots, the autocorrelation of instrument/dwell times sequences showed the same periodicity as the verbal task. The ability to multiplex simultaneous tasks increases with skill. Thus autocorrelation provides a way of evaluating the operator's skill level.

  9. Hidden Markov Models as a tool to measure pilot attention switching during simulated ILS approaches

    DOT National Transportation Integrated Search

    2003-04-14

    The pilot's instrument scanning data contain information about not only the pilot's eye movements, but also the pilot's : cognitive process during flight. However, it is often difficult to interpret the scanning data at the cognitive level : because:...

  10. An investigation of sensory information, levels of automation, and piloting experience on unmanned aircraft pilot performance.

    DOT National Transportation Integrated Search

    2012-03-01

    "The current experiment was intended to examine the effect of sensory information on pilot reactions to system : failures within a UAS control station simulation. This research also investigated the level of automation used in : controlling the aircr...

  11. Electronic problem-solving treatment: description and pilot study of an interactive media treatment for depression.

    PubMed

    Cartreine, James Albert; Locke, Steven E; Buckey, Jay C; Sandoval, Luis; Hegel, Mark T

    2012-09-25

    Computer-automated depression interventions rely heavily on users reading text to receive the intervention. However, text-delivered interventions place a burden on persons with depression and convey only verbal content. The primary aim of this project was to develop a computer-automated treatment for depression that is delivered via interactive media technology. By using branching video and audio, the program simulates the experience of being in therapy with a master clinician who provides six sessions of problem-solving therapy. A secondary objective was to conduct a pilot study of the program's usability, acceptability, and credibility, and to obtain an initial estimate of its efficacy. The program was produced in a professional multimedia production facility and incorporates video, audio, graphics, animation, and text. Failure analyses of patient data are conducted across sessions and across problems to identify ways to help the user improve his or her problem solving. A pilot study was conducted with persons who had minor depression. An experimental group (n = 7) used the program while a waitlist control group (n = 7) was provided with no treatment for 6 weeks. All of the experimental group participants completed the trial, whereas 1 from the control was lost to follow-up. Experimental group participants rated the program high on usability, acceptability, and credibility. The study was not powered to detect clinical improvement, although these pilot data are encouraging. Although the study was not powered to detect treatment effects, participants did find the program highly usable, acceptable, and credible. This suggests that the highly interactive and immersive nature of the program is beneficial. Further clinical trials are warranted. ClinicalTrials.gov NCT00906581; http://clinicaltrials.gov/ct2/show/NCT00906581 (Archived by WebCite at http://www.webcitation.org/6A5Ni5HUp).

  12. Pilot Certification, Age of Pilot, and Drug Use in Fatal Civil Aviation Accidents.

    PubMed

    Akparibo, Issaka Y; Stolfi, Adrienne

    2017-10-01

    This study examined the association between mean age of pilot, pilot license, pilot medical certificate and drug use trends in pilots fatally injured in aircraft accidents. The prevalence of prescription drugs, OTC drugs, controlled drugs and drugs that may be potentially impairing was also examined. This study was a descriptive observational study in which the NTSB Aviation Accident Database was searched from the period beginning January 1, 2012 to December 31, 2014. During the study period a total of 706 accidents involving 711 fatalities were investigated by the NTSB. This study included 633 of these accidents, involving 646 fatalities. Of these pilots, 42.1% had drugs in their biological samples. The prevalence of prescription drugs, controlled drugs, OTC drugs, opioids, and potentially impairing drugs in the fatally injured pilot population over the study period was 28.9%, 15.0%, 20.1%, 5.1%, and 25.5%, respectively. Pilots with any drugs in their samples were significantly older than those without drugs. Medical certificate held was associated with drug use; pilots who held third class certificates had the highest prevalence at 54.1%. Pilot license was not associated with drug use. In 3.8% of the accidents, drugs were a contributing factor in the cause. Despite current FAA medical regulations, potentially impairing drugs are frequently found in biological samples of fatally injured pilots in the U.S. More education of airmen by aviation medical examiners is needed on the safety of drug use.Akparibo IY, Stolfi A. Pilot certification, age of pilot, and drug use in fatal civil aviation accidents. Aerosp Med Hum Perform. 2017; 88(10):931-936.

  13. Simulator evaluation of display concepts for pilot monitoring and control of space shuttle approach and landing. Phase 2: Manual flight control

    NASA Technical Reports Server (NTRS)

    Gartner, W. B.; Baldwin, K. M.

    1973-01-01

    A study of the display requirements for final approach management of the space shuttle orbiter vehicle is presented. An experimental display concept, providing a more direct, pictorial representation of the vehicle's movement relative to the selected approach path and aiming points, was developed and assessed as an aid to manual flight path control. Both head-up, windshield projections and head-down, panel mounted presentations of the experimental display were evaluated in a series of simulated orbiter approach sequence. Data obtained indicate that the experimental display would enable orbiter pilots to exercise greater flexibility in implementing alternative final approach control strategies. Touchdown position and airspeed dispersion criteria were satisfied on 91 percent of the approach sequences, representing various profile and wind effect conditions. Flight path control and airspeed management satisfied operationally-relevant criteria for the two-segment, power-off orbiter approach and were consistently more accurate and less variable when the full set of experimental display elements was available to the pilot. Approach control tended to be more precise when the head-up display was used; however, the data also indicate that the head-down display would provide adequate support for the manual control task.

  14. Predictions of Cockpit Simulator Experimental Outcome Using System Models

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Goka, T.

    1984-01-01

    This study involved predicting the outcome of a cockpit simulator experiment where pilots used cockpit displays of traffic information (CDTI) to establish and maintain in-trail spacing behind a lead aircraft during approach. The experiments were run on the NASA Ames Research Center multicab cockpit simulator facility. Prior to the experiments, a mathematical model of the pilot/aircraft/CDTI flight system was developed which included relative in-trail and vertical dynamics between aircraft in the approach string. This model was used to construct a digital simulation of the string dynamics including response to initial position errors. The model was then used to predict the outcome of the in-trail following cockpit simulator experiments. Outcome included performance and sensitivity to different separation criteria. The experimental results were then used to evaluate the model and its prediction accuracy. Lessons learned in this modeling and prediction study are noted.

  15. A model for the pilot's use of motion cues in roll-axis tracking tasks

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Junker, A. M.

    1977-01-01

    Simulated target-following and disturbance-regulation tasks were explored with subjects using visual-only and combined visual and motion cues. The effects of motion cues on task performance and pilot response behavior were appreciably different for the two task configurations and were consistent with data reported in earlier studies for similar task configurations. The optimal-control model for pilot/vehicle systems provided a task-independent framework for accounting for the pilot's use of motion cues. Specifically, the availability of motion cues was modeled by augmenting the set of perceptual variables to include position, rate, acceleration, and accleration-rate of the motion simulator, and results were consistent with the hypothesis of attention-sharing between visual and motion variables. This straightforward informational model allowed accurate model predictions of the effects of motion cues on a variety of response measures for both the target-following and disturbance-regulation tasks.

  16. Study to determine the IFR operational profile and problems to the general aviation pilot

    NASA Technical Reports Server (NTRS)

    Weislogel, S.

    1983-01-01

    A study of the general aviation single pilot operating under instrument flight rules (GA SPIFR) has been conducted for NASA Langley Research Center. The objectives of the study were to (1) develop a GA SPIFR operational profile, (2) identify problems experienced by the GA SPIFR pilot, and (3) identify research tasks which have the potential for eliminating or reducing the severity of the problems. To obtain the information necessary to accomplish these objectives, a mail questionnaire survey of instrument rated pilots was conducted. Complete questionnaire data is reported in NASA CR-165805, "Statistical Summary: Study to Determine the IFR Operational Profile and Problems of the General Aviation Single Pilot'-Based upon the results of the GA SPIFR survey, this final report presents the general aviation IFR single pilot operational profile, illustrates selected data analysis, examples, identifies the problems which he is experiencing, and recommends further research.

  17. An analysis of airline landing flare data based on flight and training simulator measurements

    NASA Technical Reports Server (NTRS)

    Heffley, R. K.; Schulman, T. M.; Clement, T. M.

    1982-01-01

    Landings by experienced airline pilots transitioning to the DC-10, performed in flight and on a simulator, were analyzed and compared using a pilot-in-the-loop model of the landing maneuver. By solving for the effective feedback gains and pilot compensation which described landing technique, it was possible to discern fundamental differences in pilot behavior between the actual aircraft and the simulator. These differences were then used to infer simulator fidelity in terms of specific deficiencies and to quantify the effectiveness of training on the simulator as compared to training in flight. While training on the simulator, pilots exhibited larger effective lag in commanding the flare. The inability to compensate adequately for this lag was associated with hard or inconsistent landings. To some degree this deficiency was carried into flight, thus resulting in a slightly different and inferior landing technique than exhibited by pilots trained exclusively on the actual aircraft.

  18. Fixed base simulator study of an externally blown flap STOL transport airplane during approach and landing

    NASA Technical Reports Server (NTRS)

    Grantham, W. D.; Nguyen, L. T.; Patton, J. M., Jr.; Deal, P. L.; Champine, R. A.; Carter, C. R.

    1972-01-01

    A fixed-base simulator study was conducted to determine the flight characteristics of a representative STOL transport having a high wing and equipped with an external-flow jet flap in combination with four high-bypass-ratio fan-jet engines during the approach and landing. Real-time digital simulation techniques were used. The computer was programed with equations of motion for six degrees of freedom and the aerodynamic inputs were based on measured wind-tunnel data. A visual display of a STOL airport was provided for simulation of the flare and touchdown characteristics. The primary piloting task was an instrument approach to a breakout at a 200-ft ceiling with a visual landing.

  19. Non-local features of a hydrodynamic pilot-wave system

    NASA Astrophysics Data System (ADS)

    Nachbin, Andre; Couchman, Miles; Bush, John

    2016-11-01

    A droplet walking on the surface of a vibrating fluid bath constitutes a pilot-wave system of the form envisaged for quantum dynamics by Louis de Broglie: a particle moves in resonance with its guiding wave field. We here present an examination of pilot-wave hydrodynamics in a confined domain. Specifically, we present a one-dimensional water wave model that describes droplets walking in single and multiple cavities. The cavities are separated by a submerged barrier, and so allow for the study of tunneling. They also highlight the non-local dynamical features arising due to the spatially-extended wave field. Results from computational simulations are complemented by laboratory experiments.

  20. Trauma Non-Technical Training (TNT-2): the development, piloting and multilevel assessment of a simulation-based, interprofessional curriculum for team-based trauma resuscitation.

    PubMed

    Doumouras, Aristithes G; Keshet, Itay; Nathens, Avery B; Ahmed, Najma; Hicks, Christopher M

    2014-10-01

    Medical error is common during trauma resuscitations. Most errors are nontechnical, stemming from ineffective team leadership, nonstandardized communication among team members, lack of global situational awareness, poor use of resources and inappropriate triage and prioritization. We developed an interprofessional, simulation-based trauma team training curriculum for Canadian surgical trainees. Here we discuss its piloting and evaluation.