Science.gov

Sample records for pin irradiation test

  1. Thermal analysis of the FSP-1 fuel pin irradiation test

    SciTech Connect

    Lyon, W.F. III.

    1990-07-25

    Thermal analysis of a pin from the FSP-1 fuels irradiation test has been completed. The purpose of the analysis was to provide predictions of fuel pin temperatures, determine the flow regime within the lithium annulus of the test assembly, and provide a standardized model for a consistent basis of comparison between pins within the test assembly. The calculations have predicted that the pin is operating at slightly above the test design temperatures and that the flow regime within the lithium annulus is a laminar buoyancy driven flow. 7 refs., 5 figs.

  2. SP-100 fuel pin performance: Results from irradiation testing

    SciTech Connect

    Makenas, B.J.; Paxton, D.M.; Vaidyanathan, S.; Hoth, C.W.

    1993-09-01

    A total of 86 experimental fuel pins with various fuel, liner, and cladding candidate materials have been irradiated in the Experimental Breeder Reactor-II (EBR-II) and the Fast Flux Test Facility (FFTF) reactor as part of the SP-100 fuel pin irradiation testing program. Postirradiation examination results from these fuel pin are key in establishing performance correlations and demonstrating the lifetime and safety of the reactor fuel system. This paper provides a brief description of the in-reactor fuel pin tests and presents the most recent irradiation data on the performance of wrought rhenium (Re) liner material and high density UN fuel at goal burnup of 6 atom percent (at. %). It also provides an overview of the significant variety of other fuel/liner/cladding combinations which were irradiated as part of this program and which may be of interest to more advanced efforts.

  3. Thermal analysis of the FSP-1 fuel pin irradiation test. [for SP-100 space power reactor

    NASA Technical Reports Server (NTRS)

    Lyon, William F., III

    1991-01-01

    Thermal analysis of a pin from the FSP-1 fuels irradiation test has been completed. The purpose of the analysis was to provide predictions of fuel pin temperatures, determine the flow regime within the lithium annulus of the test assembly, and provide a standardized model for a consistent basis of comparison between pins within the test assembly. The calculations have predicted that the pin is operating at slightly above the test design temperatures and that the flow regime within the lithium annulus is a laminar buoyancy driven flow.

  4. Design, fabrication, and operation of capsules for the irradiation testing of candidate advanced space reactor fuel pins

    NASA Technical Reports Server (NTRS)

    Thoms, K. R.

    1975-01-01

    Fuel irradiation experiments were designed, built, and operated to test uranium mononitride (UN) fuel clad in tungsten-lined T-111 and uranium dioxide fuel clad in both tungsten-lined T-111 and tungsten-lined Nb-1% Zr. A total of nine fuel pins was irradiated at average cladding temperatures ranging from 931 to 1015 C. The UN experiments, capsules UN-4 and -5, operated for 10,480 and 10,037 hr, respectively, at an average linear heat generation rate of 10 kW/ft. The UO2 experiment, capsule UN-6, operated for 8333 hr at an average linear heat generation rate of approximately 5 kW/ft. Following irradiation, the nine fuel pins were removed from their capsules, externally examined, and sent to the NASA Plum Brook Facility for more detailed postirradiation examination. During visual examination, it was discovered that the cladding of the fuel pin containing dense UN in each of capsules UN-4 and -5 had failed, exposing the UN fuel to the NaK in which the pins were submerged and permitting the release of fission gas from the failed pins. A rough analysis of the fission gas seen in samples of the gas in the fuel pin region indicated fission gas release-to-birth rates from these fuel pins in the range of .00001.

  5. First Tests for the Detection of the LINAC Irradiation Field Using PIN Diodes

    NASA Astrophysics Data System (ADS)

    Nava, C. E. Ojeda; Ramírez-Jiménez, F. J.; Navarro, L. F. Villaseñor; Cruz, M. Durán

    2008-08-01

    The employment of the technology of semiconductor detectors, in the medical physics environment is of great importance due to its versatility and dependability. In this work we present the first results and the experimental arrangement employed with PIN diodes that are conditioned for the measurement of the field of irradiation of a lineal accelerator (LINAC) used in radiotherapy. In our tests we used a PIN photodiode. In former experiments, this diode presented a response to the intensity of the applied field when it was exposed to an X-ray beam in medical and industrial radiography equipments. This diode is a low cost and easy acquisition one in the field. These characteristics transform it into a serious candidate as detector to be used in electronic arrangements for the detection of radiation fields in radio-therapy with X-rays. Experiments were designed to obtain the response of this diode when it was exposed to X-ray beams of a LINAC used in radiotherapy. Firstly the tests were carried out for a 6 MeV photon beam with a source to surface distance (SSD) of 100 cm, obtaining very encouraging results. We seek to carry out tests for more energy values in order to obtain the energy response of this detector as a radiation sensor device. This device could be applied in the design of working tools, for example, for the quality control in procedures of radiotherapy.

  6. First Tests for the Detection of the LINAC Irradiation Field Using PIN Diodes

    SciTech Connect

    Nava, C. E. Ojeda; Ramirez-Jimenez, F. J.; Navarro, L. F. Villasenor; Cruz, M. Duran

    2008-08-11

    The employment of the technology of semiconductor detectors, in the medical physics environment is of great importance due to its versatility and dependability. In this work we present the first results and the experimental arrangement employed with PIN diodes that are conditioned for the measurement of the field of irradiation of a lineal accelerator (LINAC) used in radiotherapy. In our tests we used a PIN photodiode. In former experiments, this diode presented a response to the intensity of the applied field when it was exposed to an X-ray beam in medical and industrial radiography equipments. This diode is a low cost and easy acquisition one in the field. These characteristics transform it into a serious candidate as detector to be used in electronic arrangements for the detection of radiation fields in radio-therapy with X-rays. Experiments were designed to obtain the response of this diode when it was exposed to X-ray beams of a LINAC used in radiotherapy. Firstly the tests were carried out for a 6 MeV photon beam with a source to surface distance (SSD) of 100 cm, obtaining very encouraging results. We seek to carry out tests for more energy values in order to obtain the energy response of this detector as a radiation sensor device. This device could be applied in the design of working tools, for example, for the quality control in procedures of radiotherapy.

  7. Whole-Pin Furnace system: An experimental facility for studying irradiated fuel pin behavior under potential reactor accident conditions

    SciTech Connect

    Liu, Y.Y.; Tsai, H.C.; Donahue, D.A.; Pushis, D.O.; Savoie, F.E.; Holland, J.W.; Wright, A.E.; August, C.; Bailey, J.L.; Patterson, D.R.

    1990-05-01

    The whole-pin furnace system is a new in-cell experimental facility constructed to investigate how irradiated fuel pins may fail under potential reactor accident conditions. Extensive checkouts have demonstrated excellent performance in remote operation, temperature control, pin breach detection, and fission gas handling. The system is currently being used in testing of EBIR-II-irradiated Integral Fast Reactor (IFR) metal fuel pins; future testing will include EBR-II-irradiated mixed-oxide fuel pins. 7 refs., 4 figs.

  8. Behaviour of irradiated PHWR fuel pins during high temperature heating

    NASA Astrophysics Data System (ADS)

    Viswanathan, U. K.; Unnikrishnan, K.; Mishra, Prerna; Banerjee, Suparna; Anantharaman, S.; Sah, D. N.

    2008-12-01

    Fuel pins removed from an irradiated pressurised heavy water reactor (PHWR) fuel bundle discharged after an extended burn up of 15,000 MWd/tU have been subjected to isothermal heating tests in temperature range 700-1300 °C inside hot-cells. The heating of the fuel pins was carried out using a specially designed remotely operable furnace, which allowed localized heating of about 100 mm length of the fuel pin at one end under flowing argon gas or in air atmosphere. Post-test examination performed in the hot-cells included visual examination, leak testing, dimension measurement and optical and scanning electron microscopy. Fuel pins having internal pressure of 2.1-2.7 MPa due to fission gas release underwent ballooning and micro cracking during heating for 10 min at 800 °C and 900 °C but not at 700 °C. Fuel pin heated at 1300 °C showed complete disruption of cladding in heating zone, due to the embrittlement of the cladding. The examination of fuel from the pin tested at 1300 °C showed presence of large number of bubbles; both intragranular as well as intergranular bubbles. Details of the experiments and the results are presented in this paper.

  9. Metallography and fuel cladding chemical interaction in fast flux test facility irradiated metallic U-10Zr MFF-3 and MFF-5 fuel pins

    NASA Astrophysics Data System (ADS)

    Carmack, W. J.; Chichester, H. M.; Porter, D. L.; Wootan, D. W.

    2016-05-01

    The Mechanistic Fuel Failure (MFF) series of metal fuel irradiations conducted in the Fast Flux Test Facility (FFTF) provides an important comparison between data generated in the Experimental Breeder Reactor (EBR-II) and that expected in a larger-scale fast reactor. The MFF fuel operated with a peak cladding temperature at the top of the fuel column, but developed peak burnup at the centerline of the core. This places the peak fuel temperature midway between the core center and the top of fuel, lower in the fuel column than in EBR-II experiments. Data from the MFF-3 and MFF-5 assemblies are most comparable to the data obtained from the EBR-II X447 experiment. The two X447 pin breaches were strongly influenced by fuel/cladding chemical interaction (FCCI) at the top of the fuel column. Post irradiation examination data from MFF-3 and MFF-5 are presented and compared to historical EBR-II data.

  10. PINS Testing and Modification for Explosive Identification

    SciTech Connect

    E.H. Seabury; A.J. Caffrey

    2011-09-01

    The INL's Portable Isotopic Neutron Spectroscopy System (PINS)1 non-intrusively identifies the chemical fill of munitions and sealed containers. PINS is used routinely by the U.S. Army, the Defense Threat Reduction Agency, and foreign military units to determine the contents of munitions and other containers suspected to contain explosives, smoke-generating chemicals, and chemical warfare agents such as mustard and nerve gas. The objects assayed with PINS range from softball-sized M139 chemical bomblets to 200 gallon DOT 500X ton containers. INL had previously examined2 the feasibility of using a similar system for the identification of explosives, and based on this proof-of-principle test, the development of a dedicated system for the identification of explosives in an improvised nuclear device appears entirely feasible. INL has been tasked by NNSA NA-42 Render Safe Research and Development with the development of such a system.

  11. Irradiation of TZM: Uranium dioxide fuel pin at 1700 K

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E.

    1973-01-01

    A fuel pin clad with TZM and containing solid pellets of uranium dioxide was fission heated in a static helium-cooled capsule at a maximum surface temperature of 1700 K for approximately 1000 hr and to a total burnup of 2.0 percent of the uranium-235. The results of the postirradiation examination indicated: (1) A transverse, intergranular failure of the fuel pin occurred when the fuel pin reached 2.0-percent burnup. This corresponds to 1330 kW-hr/cu cm, where the volume is the sum of the fuel, clad, and void volumes in the fuel region. (2) The maximum swelling of the fuel pin was less than 1.5 percent on the fuel-pin diameter. (3) There was no visible interaction between the TZM clad and the UO2. (4) Irradiation at 1700 K produced a course-grained structure, with an average grain diameter of 0.02 centimeter and with some of the grains extending one-half of the thickness of the clad. (5) Below approximately 1500 K, the irradiation of the clad produced a moderately fine-grained structure, with an average grain diameter of 0.004 centimeter.

  12. Lightning Pin Injection Testing on MOSFETS

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.; Koppen, Sandra V.; Mielnik, John J.; Vaughan, Roger K.; Wysocki, Philip F.; Celaya, Jose R.; Saha, Sankalita

    2009-01-01

    Lightning transients were pin-injected into metal-oxide-semiconductor field-effect transistors (MOSFETs) to induce fault modes. This report documents the test process and results, and provides a basis for subsequent lightning tests. MOSFETs may be present in DC-DC power supplies and electromechanical actuator circuits that may be used on board aircraft. Results show that unprotected MOSFET Gates are susceptible to failure, even when installed in systems in well-shielded and partial-shielded locations. MOSFET Drains and Sources are significantly less susceptible. Device impedance decreased (current increased) after every failure. Such a failure mode may lead to cascading failures, as the damaged MOSFET may allow excessive current to flow through other circuitry. Preliminary assessments on a MOSFET subjected to 20-stroke pin-injection testing demonstrate that Breakdown Voltage, Leakage Current and Threshold Voltage characteristics show damage, while the device continues to meet manufacturer performance specifications. The purpose of this research is to develop validated tools, technologies, and techniques for automated detection, diagnosis and prognosis that enable mitigation of adverse events during flight, such as from lightning transients; and to understand the interplay between lightning-induced surges and aging (i.e. humidity, vibration thermal stress, etc.) on component degradation.

  13. Retractable pin dual in-line package test clip

    DOEpatents

    Bandzuch, Gregory S.; Kosslow, William J.

    1996-01-01

    This invention is a Dual In-Line Package (DIP) test clip for use when troubleshooting circuits containing DIP integrated circuits. This test clip is a significant improvement over existing DIP test clips in that it has retractable pins which will permit troubleshooting without risk of accidentally shorting adjacent pins together when moving probes to different pins on energized circuits or when the probe is accidentally bumped while taking measurements.

  14. Retractable pin dual in-line package test clip

    SciTech Connect

    Bandzuch, G.S.; Kosslow, W.J

    1993-12-31

    This invention is a Dual In-line Package (DIP) test clip for use when troubleshooting circuits containing DIP integrated circuits. This test clip is a significant improvement over existing DIP test clips in that it has retractable pins which will permit troubleshooting without risk of accidentally shorting adjacent pins together when moving probes to different pins on energized circuits or when the probe is accidentally bumped while taking measurements.

  15. Irradiation performance of fast reactor MOX fuel pins with ferritic/martensitic cladding irradiated to high burnups

    SciTech Connect

    Uwaba, Tomoyuki; Ito, Masahiro; Mizuno, Tomoyasu; Katsuyama, Kozo; Makenas, Bruce J.; Wootan, David W.; Carmack, Jon

    2011-06-16

    The ACO-3 irradiation test, which attained extremely high burnups of about 232 GWd/t and resisted a high neutron fluence (E > 0.1 MeV) of about 39E26 n/m2 as one of the lead tests of the Core Demonstration Experiment in the Fast Flux Test Facility, demonstrated that the fuel pin cladding made of ferritic/martensitic HT-9 alloy had superior void swelling resistance. The measured diameter profiles of the irradiated ACO-3 fuel pins showed axially extensive incremental strain in the MOX fuel column region and localized incremental strain near the interfaces between the MOX fuel and upper blanket columns. These incremental strains were as low as 1.5% despite the extremely high level of the fast neutron fluence. Evaluation of the pin diametral strain indicated that the incremental strain in the MOX fuel column region was substantially due to cladding void swelling and irradiation creep caused by internal fission gas pressure, while the localized strain near the MOX fuel/upper blanket interface was likely the result of the pellet/cladding mechanical interaction (PCMI) caused by cesium/fuel reactions. The evaluation also suggested that the PCMI was effectively mitigated by a large gap size between the cladding and blanket column.

  16. Irradiation performance of fast reactor MOX fuel pins with ferritic/martensitic cladding irradiated to high burnups

    SciTech Connect

    Tomoyuki Uwaba; Masahiro Ito; Kozo Katsuyama; Bruce J. Makenas; David W. Wootan; Jon Carmack

    2011-05-01

    The ACO-3 irradiation test, which attained extremely high burnups of about 232 GWd/t and resisted a high neutron fluence (E > 0.1 MeV) of about 39 × 1026 n/m2 as one of the lead tests of the Core Demonstration Experiment in the Fast Flux Test Facility, demonstrated that the fuel pin cladding made of ferritic/martensitic HT-9 alloy had superior void swelling resistance. The measured diameter profiles of the irradiated ACO-3 fuel pins showed axially extensive incremental strain in the MOX fuel column region and localized incremental strain near the interfaces between the MOX fuel and upper blanket columns. These incremental strains were as low as 1.5% despite the extremely high level of the fast neutron fluence. Evaluation of the pin diametral strain indicated that the incremental strain in the MOX fuel column region was substantially due to cladding void swelling and irradiation creep caused by internal fission gas pressure, while the localized strain near the MOX fuel/upper blanket interface was likely the result of the pellet/cladding mechanical interaction (PCMI) caused by cesium/fuel reactions. The evaluation also suggested that the PCMI was effectively mitigated by a large gap size between the cladding and blanket column.

  17. Thermal analysis of the FSP-1RR irradiation test

    SciTech Connect

    Webb, R.H.; Lyon, W.F. III

    1992-10-14

    The thermal analysis of four unirradiated fuel pins to be tested in the FSP-1RR fuels irradiation experiment was completed. This test is a follow-on experiment in the series of fuel pin irradiation tests conducted by the SP-100 Program in the Fast Flux Test Facility. One of the pins contains several meltwire temperature monitors within the fuel and the Li annulus. A post-irradiation examination will verify the accuracy of the pre-irradiation thermal analysis. The purpose of the pre-irradiation analysis was to determine the appropriate insulating gap gas compositions required to provide the design goal cladding operating temperatures and to ensure that the meltwire temperature ranges in the temperature monitored pin bracket peak irradiation temperatures. This paper discusses the methodology and summarizes the results of the analysis.

  18. Diametral strain of fast reactor MOX fuel pins with austenitic stainless steel cladding irradiated to high burnup

    NASA Astrophysics Data System (ADS)

    Uwaba, Tomoyuki; Ito, Masahiro; Maeda, Koji

    2011-09-01

    The C3M irradiation test, which was conducted in the experimental fast reactor, "Joyo", demonstrated that mixed oxide (MOX) fuel pins with austenitic steel cladding could attain a peak pellet burnup of about 130 GWd/t safely. The test fuel assembly consisted of 61 fuel pins, whose design specifications were similar to those of driver fuel pins of a prototype fast breeder reactor, "Monju". The irradiated fuel pins exhibited diametral strain due to cladding void swelling and irradiation creep. The cladding irradiation creep strain were due to the pellet-cladding mechanical interaction (PCMI) as well as the internal gas pressure. From the fuel pin ceramographs and 137Cs gamma scanning, it was found that the PCMI was associated with the pellet swelling which was enhanced by the rim structure formation or by cesium uranate formation. The PCMI due to cesium uranate, which occurred near the top of the MOX fuel column, significantly affected cladding hoop stress and thermal creep, and the latter effect tended to increase the cumulative damage fraction (CDF) of the cladding though the CDF indicated that the cladding still had some margin to failure due to the creep damage.

  19. EXFILE: A program for compiling irradiation data on UN and UC fuel pins

    NASA Technical Reports Server (NTRS)

    Mayer, J. T.; Smith, R. L.; Weinstein, M. B.; Davison, H. W.

    1973-01-01

    A FORTRAN-4 computer program for handling fuel pin data is described. Its main features include standardized output, easy access for data manipulation, and tabulation of important material property data. An additional feature allows simplified preparation of input decks for a fuel swelling computer code (CYGRO-2). Data from over 300 high temperature nitride and carbide based fuel pin irradiations are listed.

  20. An Accelerated Method for Testing Soldering Tendency of Core Pins

    SciTech Connect

    Han, Qingyou; Xu, Hanbing; Ried, Paul; Olson, Paul

    2010-01-01

    An accelerated method for testing die soldering has been developed. High intensity ultrasonic vibrations has been used to simulate the die casting conditions such as high pressure and high impingement speed of molten metal on the pin. Soldering tendency of steels and coated pins has been examined. The results indicate that in the low carbon steel/Al system, the onset of soldering is 60 times faster with ultrasonic vibration than that without ultrasonic vibration. In the H13/A380 system, the onset of soldering reaction is accelerated to 30-60 times. Coating significantly reduces the soldering tendency of the core pins.

  1. Irradiation of three T-111 clad uranium nitride fuel pins for 8070 hours at 990 C (1815 F)

    NASA Technical Reports Server (NTRS)

    Slaby, J. G.; Siegel, B. L.; Gedeon, L.; Galbo, R. J.

    1973-01-01

    The design and successful operation of three tantalum alloy (Ta-8W-2Hf) clad uranium mononitride (UN) fuel pins irradiated for 8070 hr at 990 C (1815 F) is described. Two pin diameters having measured burnups of 0.47 and 0.90 uranium atom percent were tested. No clad failures or swelling was detected; however, postirradiation clad samples tested failed with 1 percent strain. The fuel density decrease was 2 percent, and the fission gas release was less than 0.05 percent. Isotropic fuel swelling, which averaged about 0.5 percent, was less than fuel pin assembly clearances. Thus the clad was not strained. Thermocouples with a modified hot zone operated at average temperatures to 1100 C (2012 F) without failure. Factors that influence the ability to maintain uniform clad temperature as well as the results of the heat transfer calculations are discussed.

  2. Evidence of new pinning centers in irradiated MgB2

    NASA Astrophysics Data System (ADS)

    Tarantini, C.; Martinelli, A.; Manfrinetti, P.; Palenzona, A.; Pallecchi, I.; Putti, M.; Ferdeghini, C.; Cimberle, M. R.

    2008-03-01

    It has been shown that C or SiC addictions can strongly enhance upper critical field of MgB2, leading to an in-field increase of critical current, but without introducing pinning centers other than grain boundaries. On the contrary neutron irradiation introduces new pinning centers, as highlighted by a significant shift of the maximum of pinning force and by a strong improvement of Jc at high field. This effect can be correlated to the defects that neutron irradiation produces. In fact TEM images show the presence of nanometric amorphous regions whose sizes are compatible with the coherence length and such as to act as pinning centers through two different mechanisms. The influence that neutron irradiation induces on MgB2 is also confirmed by magnetization decays that, differently by doped samples, show an important enhancement of pinning energies at high field. These measurements highlight as the increase of pinning energy with irradiation fluence is strongly correlated with Jc improvement.

  3. Examination of T-111 clad uranium nitride fuel pins irradiated up to 13,000 hours at a clad temperature of 990 C

    NASA Technical Reports Server (NTRS)

    Slaby, J. G.; Siegel, B. L.

    1973-01-01

    The examination of 27 fuel pins irradiated for up to 13,000 hours at 990 C is described. The fuel pin clad was a tantalum alloy with uranium nitride as the nuclear fuel. Two nominal fuel pin diameters were tested with a maximum burnup of 2.34 atom percent. Twenty-two fuel pins were tested for fission gas leaks; thirteen pins leaked. Clad ductility tests indicated clad embrittlement. The embrittlement is attributed to hydrogen from an n,p reaction in the fuel. Fuel swelling was burnup dependent, and the amount of fission gas release was low, generally less than 0.5 percent. No incompatibilities between fuel, liner, and clad were in evidence.

  4. Microstructural examination of high temperature creep failure of Zircaloy-2 cladding in irradiated PHWR fuel pins

    NASA Astrophysics Data System (ADS)

    Mishra, Prerna; Sah, D. N.; Kumar, Sunil; Anantharaman, S.

    2012-10-01

    Cladding samples taken from the ballooned region of the irradiated Zircaloy-2 cladded PHWR fuel pins which failed during isothermal heating tests carried out at 800-900 °C were examined using optical and scanning electron microscopy. The examination of samples from the fuel pin tested at 900 °C showed an intergranular mode of failure in the cladding due to formation of cracks, cavities and zirconium hydride precipitates on the grain boundaries in the cladding material. A thin hard α-Zr(O) layer was observed on outer surface due to dissolution of the oxide layer formed during reactor operation. Grain boundary sliding was identified to be the main mode of creep deformation of Zircaloy-2 at 900 °C. Examination of the cladding tested at 800 °C showed absence of cracks or cavities in the deformed material and no localisation of hydrides was observed at the grain boundaries. The failure of the cladding occurred after necking followed by extensive wall thinning of the cladding tube.

  5. Lightning Pin Injection Test: MOSFETS in "ON" State

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.; Koppen, Sandra V.; Mielnik, John J.; Vaughan, Roger K.; Saha, Sankalita; Wysocki, Philip F.; Celaya, Jose R.

    2011-01-01

    The test objective was to evaluate MOSFETs for induced fault modes caused by pin-injecting a standard lightning waveform into them while operating. Lightning Pin-Injection testing was performed at NASA LaRC. Subsequent fault-mode and aging studies were performed by NASA ARC researchers using the Aging and Characterization Platform for semiconductor components. This report documents the test process and results, to provide a basis for subsequent lightning tests. The ultimate IVHM goal is to apply prognostic and health management algorithms using the features extracted during aging to allow calculation of expected remaining useful life. A survey of damage assessment techniques based upon inspection is provided, and includes data for optical microscope and X-ray inspection. Preliminary damage assessments based upon electrical parameters are also provided.

  6. Test reactor irradiation coordination

    SciTech Connect

    Heartherly, D.W.; Siman Tov, I.I.; Sparks, D.W.

    1995-10-01

    This task was established to supply and coordinate irradiation services needed by NRC contractors other than ORNL. These services include the design and assembly of irradiation capsules as well as arranging for their exposure, disassembly, and return of specimens. During this period, the final design of the facility and specimen baskets was determined through an iterative process involving the designers and thermal analysts. The resulting design should permit the irradiation of all test specimens to within 5{degrees}C of their desired temperature. Detailing of all parts is ongoing and should be completed during the next reporting period. Procurement of the facility will also be initiated during the next review period.

  7. Effects of neutron irradiation on pinning force scaling in state-of-the-art Nb3Sn wires

    NASA Astrophysics Data System (ADS)

    Baumgartner, T.; Eisterer, M.; Weber, H. W.; Flükiger, R.; Scheuerlein, C.; Bottura, L.

    2014-01-01

    We present an extensive irradiation study involving five state-of-the-art Nb3Sn wires which were subjected to sequential neutron irradiation up to a fast neutron fluence of 1.6 × 1022 m-2 (E > 0.1 MeV). The volume pinning force of short wire samples was assessed in the temperature range from 4.2 to 15 K in applied fields of up to 7 T by means of SQUID magnetometry in the unirradiated state and after each irradiation step. Pinning force scaling computations revealed that the exponents in the pinning force function differ significantly from those expected for pure grain boundary pinning, and that fast neutron irradiation causes a substantial change in the functional dependence of the volume pinning force. A model is presented, which describes the pinning force function of irradiated wires using a two-component ansatz involving a point-pinning contribution stemming from radiation induced pinning centers. The dependence of this point-pinning contribution on fast neutron fluence appears to be a universal function for all examined wire types.

  8. Performance and breakdown characteristics of irradiated vertical power GaN P-i-N diodes

    DOE PAGESBeta

    King, M. P.; Armstrong, A. M.; Dickerson, J. R.; Vizkelethy, G.; Fleming, R. M.; Campbell, J.; Wampler, W. R.; Kizilyalli, I. C.; Bour, D. P.; Aktas, O.; et al

    2015-10-29

    Electrical performance and defect characterization of vertical GaN P-i-N diodes before and after irradiation with 2.5 MeV protons and neutrons is investigated. Devices exhibit increase in specific on-resistance following irradiation with protons and neutrons, indicating displacement damage introduces defects into the p-GaN and n- drift regions of the device that impact on-state device performance. The breakdown voltage of these devices, initially above 1700 V, is observed to decrease only slightly for particle fluence <; 1013 cm-2. Furthermore, the unipolar figure of merit for power devices indicates that while the on-resistance and breakdown voltage degrade with irradiation, vertical GaN P-i-Ns remainmore » superior to the performance of the best available, unirradiated silicon devices and on-par with unirradiated modern SiC-based power devices.« less

  9. Fuel motions in the multi-pin PFR/TREAT test series

    SciTech Connect

    Doemer, R.C.; Bauer, T.H.; Robinson, W.R.; Wright, A.E.

    1990-01-01

    Fuel motions during the early stages of failure were determined for the seven multi-pin PFR/TREAT tests from an integrated analysis of data from the Fast Neutron Hodoscope and the loop instrumentation. It was observed that motion in TUCOP simulations is in two stages; an initial slow movement at failure followed by abrupt dispersal. It was also found that axial movement of fresh fuel begins promptly at initial failure but that pre-irradiated fuel motion is delayed by 15 ms in both TOP and TUCOP simulations.

  10. Carbide fuel pin and capsule design for irradiations at thermionic temperatures

    NASA Technical Reports Server (NTRS)

    Siegel, B. L.; Slaby, J. G.; Mattson, W. F.; Dilanni, D. C.

    1973-01-01

    The design of a capsule assembly to evaluate tungsten-emitter - carbide-fuel combinations for thermionic fuel elements is presented. An inpile fuel pin evaluation program concerned with clad temperture, neutron spectrum, carbide fuel composition, fuel geometry,fuel density, and clad thickness is discussed. The capsule design was a compromise involving considerations between heat transfer, instrumentation, materials compatibility, and test location. Heat-transfer calculations were instrumental in determining the method of support of the fuel pin to minimize axial temperature variations. The capsule design was easily fabricable and utilized existing state-of-the-art experience from previous programs.

  11. Enhancement of critical current density and mechanism of vortex pinning in H+-irradiated FeSe single crystal

    NASA Astrophysics Data System (ADS)

    Sun, Yue; Pyon, Sunseng; Tamegai, Tsuyoshi; Kobayashi, Ryo; Watashige, Tatsuya; Kasahara, Shigeru; Matsuda, Yuji; Shibauchi, Takasada; Kitamura, Hisashi

    2015-11-01

    We report a comprehensive study of the effect of H+ irradiation on the critical current density Jc and vortex pinning in an FeSe single crystal. The value of Jc for FeSe is enhanced by more than a factor of 2 after 3-MeV H+ irradiation, which is explained by the introduction of point pinning centers. Vortex creep rates are found to be strongly suppressed after irradiation. Detailed analyses of the pinning energy based on collective-creep-theory and an extended Maley’s method show that the H+ irradiation enhances the value of Jc before the flux creep and also reduces the size of the flux bundle, which suppresses the field dependence of Jc owing to vortex motion.

  12. Testing of the KRI-developed Silicon PIN Radioxenon Detector

    SciTech Connect

    Foxe, Michael P.; McIntyre, Justin I.

    2015-01-23

    Radioxenon detectors are used for the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) in a network of detectors throughout the world called the International Monitoring System (IMS). The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) Provisional Technical Secretariat (PTS) has tasked Pacific Northwest National Laboratory (PNNL) with testing a V.G. Khlopin Radium Institute (KRI) and Lares Ltd-developed Silicon PIN detector for radioxenon detection. PNNL measured radioxenon with the silicon PIN detector and determined its potential compared to current plastic scintillator beta cells. While the PNNL tested Si detector experienced noise issues, a second detector was tested in Russia at Lares Ltd, which did not exhibit the noise issues. Without the noise issues, the Si detector produces much better energy resolution and isomer peak separation than a conventional plastic scintillator cell used in the SAUNA systems in the IMS. Under the assumption of 1 cm3 of Xe in laboratory-like conditions, 24-hr count time (12-hr count time for the SAUNA), with the respective shielding the minimum detectable concentrations for the Si detector tested by Lares Ltd (and a conventional SAUNA system) were calculated to be: 131mXe – 0.12 mBq/m3 (0.12 mBq/m3); 133Xe – 0.18 mBq/m3 (0.21 mBq/m3); 133mXe – 0.07 mBq/m3 (0.15 mBq/m3); 135Xe – 0.45 mBq/m3 (0.67 mBq/m3). Detection limits, which are one of the important factors in choosing the best detection technique for radioxenon in field conditions, are significantly better than for SAUNA-like detection systems for 131mXe and 133mXe, but similar for 133Xe and 135Xe. Another important factor is the amount of “memory effect” or carry over signal from one radioxenon measurement to the subsequent sample. The memory effect is

  13. Control of domain wall pinning by localised focused Ga {sup +} ion irradiation on Au capped NiFe nanowires

    SciTech Connect

    Burn, D. M. Atkinson, D.

    2014-10-28

    Understanding domain wall pinning and propagation in nanowires are important for future spintronics and nanoparticle manipulation technologies. Here, the effects of microscopic local modification of the magnetic properties, induced by focused-ion-beam intermixing, in NiFe/Au bilayer nanowires on the pinning behavior of domain walls was investigated. The effects of irradiation dose and the length of the irradiated features were investigated experimentally. The results are considered in the context of detailed quasi-static micromagnetic simulations, where the ion-induced modification was represented as a local reduction of the saturation magnetization. Simulations show that domain wall pinning behavior depends on the magnitude of the magnetization change, the length of the modified region, and the domain wall structure. Comparative analysis indicates that reduced saturation magnetisation is not solely responsible for the experimentally observed pinning behavior.

  14. Advances in tribological testing of artificial joint biomaterials using multidirectional pin-on-disk testers

    PubMed Central

    Baykal, D.; Siskey, R.S.; Haider, H.; Saikko, V.; Ahlroos, T.; Kurtz, S.M.

    2013-01-01

    The introduction of numerous formulations of Ultra-high molecular weight polyethylene (UHMWPE), which is widely used as a bearing material in orthopedic implants, necessitated screening of bearing couples to identify promising iterations for expensive joint simulations. Pin-on-disk (POD) testers capable of multidirectional sliding can correctly rank formulations of UHMWPE with respect to their predictive in vivo wear behavior. However, there are still uncertainties regarding POD test parameters for facilitating clinically relevant wear mechanisms of UHMWPE. Studies on the development of POD testing were briefly summarized. We systematically reviewed wear rate data of UHMWPE generated by POD testers. To determine if POD testing was capable of correctly ranking bearings and if test parameters outlined in ASTM F732 enabled differentiation between wear behavior of various formulations, mean wear rates of non-irradiated, conventional (25–50 kGy) and highly crosslinked (≥90 kGy) UHMWPE were grouped and compared. The mean wear rates of non-irradiated, conventional and highly crosslinked UHMWPEs were 7.03, 5.39 and 0.67 mm3/MC. Based on studies that complied with the guidelines of ASTM F732, the mean wear rates of non-irradiated, conventional and highly crosslinked UHMWPEs were 0.32, 0.21 and 0.04 mm3/km, respectively. In both sets of results, the mean wear rate of highly crosslinked UHMPWE was smaller than both conventional and non-irradiated UHMWPEs (p<0.05). Thus, POD testers can compare highly crosslinked and conventional UHMWPEs despite different test parameters. Narrowing the allowable range for standardized test parameters could improve sensitivity of multi-axial testers in correctly ranking materials. PMID:23831149

  15. Evaluation of refractory-metal-clad uranium nitride and uranium dioxide fuel pins after irradiation for times up to 10 450 hours at 990 C

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.; Gluyas, R. E.

    1975-01-01

    The effects of some materials variables on the irradiation performance of fuel pins for a lithium-cooled space power reactor design concept were examined. The variables studied were UN fuel density, fuel composition, and cladding alloy. All pins were irradiated at about 990 C in a thermal neutron environment to the design fuel burnup. An 85-percent dense UN fuel gave the best overall results in meeting the operational goals. The T-111 cladding on all specimens was embrittled, possibly by hydrogen in the case of the UN fuel and by uranium and oxygen in the case of the UO2 fuel. Tests with Cb-1Zr cladding indicate potential use of this cladding material. The UO2 fueled specimens met the operational goals of less than 1 percent cladding strain, but other factors make UO2 less attractive than low-density UN for the contemplated space power reactor use.

  16. Flux pinning in neutron irradiated YBa sub 2 Cu sub 3 O sub 7 minus x

    SciTech Connect

    Lessure, H.A.; Simizu, S.; Baumert, B.A.; Sankar, S.G.; McHenry, M.E. ); Maley, M.P.; Cost, J.R.; Willis, J.O. )

    1991-03-01

    This paper reports on identical polycrystalline samples of YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} irradiated with fast neutrons (E {gt} 0.1 MeV) in eight steps between 0 and 2.1 {times} 10{sup 18} n/cm{sup 2}. Notable irradiation effects include a T{sub c} depression of nearly 2 K at the highest fluence and large improvement in the critical current density for fields from 0-9 T and temperatures between 4-80 K. Critical currents approaching 2 {times} 10{sup 7} A/cm{sup 2} are observed for optimally irradiated materials at 5K (in zero field) while at 77 K, J{sub c} (O kOe) approaches 5 {times} 10{sup 5} A/cm{sup 2}. Irradiation is seen to take a nearly equilibrium magnetization curve at 77 K and broaden it to a significantly hysteretic curve. A substantial shift in the effective pinning potential as a function of current density is inferred from magnetic relaxation measurements at H = 1T. This is the first such measurement in which systematically increased activation energies for flux creep (as a function of current density) are noted.

  17. Pintle Rod Qualification Test Plan and Report for Roll Pin Relocation

    SciTech Connect

    BOGER, R.M.

    1999-11-08

    A roll pin in the end of the pintle rod in core samplers needs to be moved upward to avoid potential interference with another part (the release disk) during installation of the retainer ring. This test plan/report is intended to demonstrate that the sampler valve closes normally and the pintle release mechanism operates normally with the new roll pin location.

  18. Elevated temperature tensile properties of irradiated 20/25/Nb stainless steel fuel pin cladding at low and high strain rates

    NASA Astrophysics Data System (ADS)

    Gravenor, J. G.; Douglas, J.

    1988-09-01

    Tensile specimens were prepared from 20/25/Nb stainless steel fuel pin cladding irradiated in a Commercial Advanced Gas-cooled Reactor (CAGR) at temperatures in the range 622-866 K and integrated fast neutron doses up to 16 × 10 24n/ m2. The tests were performed in air at temperatures in the range 298-873 K at strain rates from 2 × 10 -5s-1 to 7.2 s -1. The tensile properties varied with irradiation temperature, test temperature and strain rate. At lower irradiation temperature, strengthening produced by fast neutron damage was accompanied by reduced elongation. Strengthening was also observed at higher irradiation temperatures, possibly due to precipitation phenomena. The maximum irradiation embrittlement was observed in tests at 873 K at low strain rates between 2 × 10 -4s-1 and 2 × 10 -5s-1. The failure mode of embrittled specimens irradiated at higher temperatures was characterized by prematurely ruptured ductile fibres, rather than by intergranular cracking.

  19. Reduction of Fermi level pinning and recombination at polycrystalline CdTe surfaces by laser irradiation

    SciTech Connect

    Simonds, Brian J.; Kheraj, Vipul; Palekis, Vasilios; Ferekides, Christos; Scarpulla, Michael A.

    2015-06-14

    Laser processing of polycrystalline CdTe is a promising approach that could potentially increase module manufacturing throughput while reducing capital expenditure costs. For these benefits to be realized, the basic effects of laser irradiation on CdTe must be ascertained. In this study, we utilize surface photovoltage spectroscopy (SPS) to investigate the changes to the electronic properties of the surface of polycrystalline CdTe solar cell stacks induced by continuous-wave laser annealing. The experimental data explained within a model consisting of two space charge regions, one at the CdTe/air interface and one at the CdTe/CdS junction, are used to interpret our SPS results. The frequency dependence and phase spectra of the SPS signal are also discussed. To support the SPS findings, low-temperature spectrally-resolved photoluminescence and time-resolved photoluminescence were also measured. The data show that a modest laser treatment of 250 W/cm{sup 2} with a dwell time of 20 s is sufficient to reduce the effects of Fermi level pinning at the surface due to surface defects.

  20. Flux pinning and flux creep in neutron irradiated (Y,Gd)Ba sub 2 Cu sub 3 O sub x

    SciTech Connect

    Willis, J.O. Superconductivity Research Lab., Tokyo ); Sickafus, K.E.; Peterson, D.E. )

    1991-01-01

    Powder samples of Y{sub 0.9}Gd{sub 0.1}Ba{sub 2}Cu{sub 3}O{sub x} were irradiated with mixed spectrum ({approximately}50% E<0.5eV, 50% E>0.5eV) neutrons with most interactions expected to occur at the Gd site. As a function of fluence the samples showed increased ({approximately}X3-X8) magnetically measured critical current densities J{sub c} at low fluences, falling off at the highest values. An analysis of magnetic relaxation data, which allows for a nonlinear pinning potential U vs J relationship, revealed substantial increases in U at constant J, indicating that the irradiation introduced more effective pinning centers than those originally present. 13 refs., 3 figs., 1 tab.

  1. Development of a Fast Breeder Reactor Fuel Bundle Deformation Analysis Code - BAMBOO: Development of a Pin Dispersion Model and Verification by the Out-of-Pile Compression Test

    SciTech Connect

    Uwaba, Tomoyuki; Ito, Masahiro; Ukai, Shigeharu

    2004-02-15

    To analyze the wire-wrapped fast breeder reactor fuel pin bundle deformation under bundle/duct interaction conditions, the Japan Nuclear Cycle Development Institute has developed the BAMBOO computer code. This code uses the three-dimensional beam element to calculate fuel pin bowing and cladding oval distortion as the primary deformation mechanisms in a fuel pin bundle. The pin dispersion, which is disarrangement of pins in a bundle and would occur during irradiation, was modeled in this code to evaluate its effect on bundle deformation. By applying the contact analysis method commonly used in the finite element method, this model considers the contact conditions at various axial positions as well as the nodal points and can analyze the irregular arrangement of fuel pins with the deviation of the wire configuration.The dispersion model was introduced in the BAMBOO code and verified by using the results of the out-of-pile compression test of the bundle, where the dispersion was caused by the deviation of the wire position. And the effect of the dispersion on the bundle deformation was evaluated based on the analysis results of the code.

  2. Ultrasonic Transducer Irradiation Test Results

    SciTech Connect

    Daw, Joshua; Palmer, Joe; Ramuhalli, Pradeep; Keller, Paul; Montgomery, Robert; Chien, Hual-Te; Kohse, Gordon; Tittmann, Bernhard; Reinhardt, Brian; Rempe, Joy

    2015-02-01

    Ultrasonic technologies offer the potential for high-accuracy and -resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other ongoing efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. For this reason, the Pennsylvania State University (PSU) was awarded an ATR NSUF project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The goal of this research is to characterize and demonstrate magnetostrictive and piezoelectric transducer operation during irradiation, enabling the development of novel radiation-tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, one piezoelectric

  3. Irradiation Testing of Ultrasonic Transducers

    SciTech Connect

    Daw, Joshua; Tittmann, Bernhard; Reinhardt, Brian; Kohse, Gordon E.; Ramuhalli, Pradeep; Montgomery, Robert O.; Chien, Hual-Te; Villard, Jean-Francois; Palmer, Joe; Rempe, Joy

    2014-07-30

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. For this reason, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). The goal of this research is to characterize magnetostrictive and piezoelectric transducer survivability during irradiation, enabling the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). As such, this test will be an instrumented lead test and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.

  4. Irradiation Testing of Ultrasonic Transducers

    SciTech Connect

    Daw, Joshua; Tittmann, Bernhard; Reinhardt, Brian; Kohse, Gordon E.; Ramuhalli, Pradeep; Montgomery, Robert O.; Chien, Hual-Te; Villard, Jean-Francois; Palmer, Joe; Rempe, Joy

    2013-12-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. For this reason, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). The goal of this research is to characterize magnetostrictive and piezoelectric transducer survivability during irradiation, enabling the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). As such, this test will be an instrumented lead test and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.

  5. Consolidated fuel reprocessing program: Criticality experiments with fast test reactor fuel pins in an organic moderator

    SciTech Connect

    Bierman, S.R.

    1986-12-01

    The results obtained in a series of criticality experiments performed as part of a joint program on criticality data development between the United States Department of Energy and the Power Reactor and Nuclear Fuel Development Corporation of Japan are presented in this report along with a complete description of the experiments. The experiments involved lattices of Fast Test Reactor (FTR) fuel pins in an organic moderator mixture similar to that used in the solvent extraction stage of fuel reprocessing. The experiments are designed to provide data for direct comparison with previously performed experimental measurements with water moderated lattices of FTR fuel pins. The same lattice arrangements and FTR fuel pin types are used in these organic moderated experimental assemblies as were used in the water moderated experiments. The organic moderator is a mixture of 38 wt % tributylphosphate in a normal paraffin hydrocarbon mixture of C{sub 11}H{sub 24} to C{sub 15}H{sub 32} molecules. Critical sizes of 1054.8, 599.2, 301.8, 199.5 and 165.3 fuel pins were obtained respectively for organic moderated lattices having 0.761 cm, 0.968 cm, 1.242 cm, 1.537 cm and 1.935 cm square lattice pitches as compared to 1046.9, 571.9, 293.9, 199.7 and 165.1 fuel pins for the same lattices water moderated.

  6. Requalification of SPERT (Special Power Excursion Reactor Test) pins for use in university reactors

    SciTech Connect

    Snelgrove, J.L.; Domagala, R.F.; Dates, L.R.

    1986-12-01

    A series of nondestructive and destructive examinations have been performed on a representative sample of stainless steel-clad UO/sub 2/ fuel pins procured in the early-to-mid 1960s for the SPERT program. These examinations were undertaken in order to requalify the SPERT pins for use in converting university research reactors from the use of highly enriched uranium to the use of low-enriched uranium. The requalification program included visual and dimensional inspections of fuel pins and fuel pellets, radiographic inspections of welds, fill gas analyses, and chemical and spectrographic analyses of fuel and cladding materials. In general all attributes tested were within or very close to specified values, although some weld defects not covered by the original specifications were found. 1 ref., 4 figs., 11 tabs.

  7. RigidFix femoral fixation: a test for detecting inaccurate cross pin positioning.

    PubMed

    Papastergiou, Stergios G; Koukoulias, Nikolaos E; Dimitriadis, Theofilos; Pappis, Georgios; Parisis, Constantinos A

    2007-11-01

    The RigidFix Cross Pin System (DePuy Mitek, Raynham, MA) is a popular technique for femoral fixation of graft in ACL reconstruction. In some cases, though, cross pins miss the femoral tunnel resulting in inadequate proximal graft fixation. We present a simple test to detect the incorrect placement of cross pins. The pinholes are drilled through the guide frame, leaving 2 sleeves for cross pins insertion. The manufacturer's recommendations, at this stage, are to reinsert the femoral tunnel guidewire, remove the guide frame, and insert the graft without verifying accurate pinhole positioning. We reinsert the femoral tunnel guidewire without removing the guide frame, and a second guidewire is introduced through each of the sleeves in turn. In case of appropriate pinhole placement, the 2 guidewires will meet in the cannulated rod of the guide frame and the surgeon will have the metal-to-metal feeling. If the pinhole misses the femoral tunnel, the 2 guidewires will not meet and the surgeon will not have the metal-to-metal feeling. In our practice, 9 cases of inaccurate pinhole placement were detected with this test and verified by direct vision of the femoral tunnel with the arthroscope. We find this test simple, reliable, and not time consuming. PMID:17986419

  8. Analysis of pin removal experiments conducted in an SCWR-like test lattice

    SciTech Connect

    Chawla, R.; Raetz, D.; Jordan, K. A.; Perret, G.

    2012-07-01

    A comprehensive program of integral experiments, largely based on the measurement of reaction rate distributions, was carried out recently on an SCWR-like fuel lattice in the central test zone of the PROTEUS zero-power research reactor at the Paul Scherrer Inst. in Switzerland. The present paper reports on the analysis of a complementary set of measurements, in which the reactivity effects of removing individual pins from the unperturbed, heterogeneously moderated reference lattice were investigated. It has been found that the detailed Monte Carlo modeling of the whole reactor using MCNPX is able - as in the case of the reaction rate distributions - to reproduce the experimental results for the pin removal worths within the achievable statistical accuracy. A comparison of reduced-geometry calculations between MCNPX and the deterministic LWR assembly code CASMO-4E has revealed certain discrepancies. On the basis of a reactivity decomposition analysis of the differences between the codes, it has been suggested that these could be due to CASMO-4E deficiencies in calculating the effect, upon pin removal, of the extra moderation in the neighboring fuel pins. (authors)

  9. Highly effective mixed pinning landscape produced by combined proton and heavy-ion irradiations in commercial coated conductors

    NASA Astrophysics Data System (ADS)

    Civale, Leonardo; Leroux, Maxim; Kihlstrom, Karen; Welp, Ulrich; Kwok, Wai-Kwong; Rupich, Marty; Fleshler, Steven; Malozemoff, Alex P.; Ghigo, G.; Kayani, A.

    2015-03-01

    Particle irradiation is a very useful method to enhance the critical current density (Jc) in high Tc superconductors. As the nature of the damage produced under given irradiation conditions is well studied, it also provides a valuable tool to engineer controlled pinning landscapes to improve our understanding of vortex matter. Recently, it has been shown that proton irradiation can produce significant further Jc increase in commercial coated conductors (CC) with already high Jc. Here we report a further step towards Jc design, by combining 4 MeV proton and 250 MeV Au irradiations on the same CC. We show that the Jc improvement is better than what results from each individual irradiation, with columnar and random defects being dominant at low and high fields, respectively. Flux creep rates provide additional information about the vortex dynamics and depinning mechanisms in different regions of the Temperature-Field-Orientation phase diagram. Work supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. D.O.E., Office of Science, Office of Basic Energy Sciences.

  10. A study of erosion in die casting dies by a multiple pin accelerated erosion test

    NASA Astrophysics Data System (ADS)

    Shivpuri, R.; Yu, M.; Venkatesan, K.; Chu, Y.-L.

    1995-04-01

    An accelerated erosion test was developed to evaluate the erosion resistance of die materials and coatings for die casting application. An acceleration in wear was achieved by selecting pyramid-shaped core pins, hypereutectic aluminum silicon casting alloy, high melt temperatures and high gate velocities. Multiple pin design was selected to enable multiple test sites for comparative evaluation. Apilot run was conducted on a 300 ton commercial die casting machine at various sites (pins) to verify the thermal and flow similarities. Subsequently, campaigns were run on two different 300 ton commercial die casting machines to evaluate H13 die material and different coatings for erosive resistance. Coatings and surface treatments evaluated included surface micropeening, titanium nitride, boron carbide, vanadium carbide, and metallic coatings—tungsten, molybdenum, and platinum. Recent campaigns with different melt temperatures have indicated a possible link between soldering phenomena and erosive wear. This paper presents the details of the test set up and the results of the pilot and evaluation tests.

  11. HRB-22 irradiation phase test data report

    SciTech Connect

    Montgomery, F.C.; Acharya, R.T.; Baldwin, C.A.; Rittenhouse, P.L.; Thoms, K.R.; Wallace, R.L.

    1995-03-01

    Irradiation capsule HRB-22 was a test capsule containing advanced Japanese fuel for the High Temperature Test Reactor (HTTR). Its function was to obtain fuel performance data at HTTR operating temperatures in an accelerated irradiation environment. The irradiation was performed in the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL). The capsule was irradiated for 88.8 effective full power days in position RB-3B of the removable beryllium (RB) facility. The maximum fuel compact temperature was maintained at or below the allowable limit of 1300{degrees}C for a majority of the irradiation. This report presents the data collected during the irradiation test. Included are test thermocouple and gas flow data, the calculated maximum and volume average temperatures based on the measured graphite temperatures, measured gaseous fission product activity in the purge gas, and associated release rate-to-birth rate (R/B) results. Also included are quality assurance data obtained during the test.

  12. Abrasive Wear Resistance of Tool Steels Evaluated by the Pin-on-Disc Testing

    NASA Astrophysics Data System (ADS)

    Bressan, José Divo; Schopf, Roberto Alexandre

    2011-05-01

    Present work examines tool steels abrasion wear resistance and the abrasion mechanisms which are one main contributor to failure of tooling in metal forming industry. Tooling used in cutting and metal forming processes without lubrication fails due to this type of wear. In the workshop and engineering practice, it is common to relate wear resistance as function of material hardness only. However, there are others parameters which influences wear such as: fracture toughness, type of crystalline structure and the occurrence of hard precipitate in the metallic matrix and also its nature. In the present investigation, the wear mechanisms acting in tool steels were analyzed and, by normalized tests, wear resistance performance of nine different types of tool steels were evaluated by pin-on-disc testing. Conventional tool steels commonly used in tooling such as AISI H13 and AISI A2 were compared in relation to tool steels fabricated by sintering process such as Crucible CPM 3V, CPM 9V and M4 steels. Friction and wear testing were carried out in a pin-on-disc automated equipment which pin was tool steel and the counter-face was a abrasive disc of silicon carbide. Normal load of 5 N, sliding velocity of 0.45 m/s, total sliding distance of 3000 m and room temperature were employed. The wear rate was calculated by the Archard's equation and from the plotted graphs of pin cumulated volume loss versus sliding distance. Specimens were appropriately heat treated by quenching and three tempering cycles. Percentage of alloying elements, metallographic analyses of microstructure and Vickers microhardness of specimens were performed, analyzed and correlated with wear rate. The work is concluded by the presentation of a rank of tool steel wear rate, comparing the different tool steel abrasion wear resistance: the best tool steel wear resistance evaluated was the Crucible CPM 9V steel.

  13. Development of a linear pin wear test machine. [304 ss on 3. 50 maraging steel

    SciTech Connect

    Schmale, D.T.; Bourcier, R.J.

    1987-04-01

    In support of a study of the mechanical properties of amorphous alloys produced by laser surface melting, a linear pin wear test machine has been developed and constructed. The machine repeatedly follows a single straight path in one direction through the use of simple kinematic principles. The wear pin is held in a tone arm-like assembly which rides on an off-center rotating bearing. Wear track length can be adjusted by varying bearing eccentricity and tone-arm offset, while wear track location may be changed by specimen translation via two micrometer mounted ball slides. Frictional force is measured by using a load cell mounted on precision bearings while displacement is monitored by using a precalibrated LVDT. The specimen holder is designed to hold irregular specimens up to 0.46 x 1.90 x 2.54 cm. Selected frictional load and displacement data are recorded using a digital oscilloscope. Results of tests performed on an annealed 304 stainless steel specimen using a 350 maraging steel pin are presented.

  14. Imaging atomic-scale effects of high-energy ion irradiation on superconductivity and vortex pinning in Fe(Se,Te).

    PubMed

    Massee, Freek; Sprau, Peter Oliver; Wang, Yong-Lei; Davis, J C Séamus; Ghigo, Gianluca; Gu, Genda D; Kwok, Wai-Kwong

    2015-05-01

    Maximizing the sustainable supercurrent density, J C, is crucial to high-current applications of superconductivity. To achieve this, preventing dissipative motion of quantized vortices is key. Irradiation of superconductors with high-energy heavy ions can be used to create nanoscale defects that act as deep pinning potentials for vortices. This approach holds unique promise for high-current applications of iron-based superconductors because J C amplification persists to much higher radiation doses than in cuprate superconductors without significantly altering the superconducting critical temperature. However, for these compounds, virtually nothing is known about the atomic-scale interplay of the crystal damage from the high-energy ions, the superconducting order parameter, and the vortex pinning processes. We visualize the atomic-scale effects of irradiating FeSe x Te1-x with 249-MeV Au ions and find two distinct effects: compact nanometer-sized regions of crystal disruption or "columnar defects," plus a higher density of single atomic site "point" defects probably from secondary scattering. We directly show that the superconducting order is virtually annihilated within the former and suppressed by the latter. Simultaneous atomically resolved images of the columnar crystal defects, the superconductivity, and the vortex configurations then reveal how a mixed pinning landscape is created, with the strongest vortex pinning occurring at metallic core columnar defects and secondary pinning at clusters of point-like defects, followed by collective pinning at higher fields. PMID:26601180

  15. Imaging atomic-scale effects of high-energy ion irradiation on superconductivity and vortex pinning in Fe(Se,Te)

    PubMed Central

    Massee, Freek; Sprau, Peter Oliver; Wang, Yong-Lei; Davis, J. C. Séamus; Ghigo, Gianluca; Gu, Genda D.; Kwok, Wai-Kwong

    2015-01-01

    Maximizing the sustainable supercurrent density, JC, is crucial to high-current applications of superconductivity. To achieve this, preventing dissipative motion of quantized vortices is key. Irradiation of superconductors with high-energy heavy ions can be used to create nanoscale defects that act as deep pinning potentials for vortices. This approach holds unique promise for high-current applications of iron-based superconductors because JC amplification persists to much higher radiation doses than in cuprate superconductors without significantly altering the superconducting critical temperature. However, for these compounds, virtually nothing is known about the atomic-scale interplay of the crystal damage from the high-energy ions, the superconducting order parameter, and the vortex pinning processes. We visualize the atomic-scale effects of irradiating FeSexTe1−x with 249-MeV Au ions and find two distinct effects: compact nanometer-sized regions of crystal disruption or “columnar defects,” plus a higher density of single atomic site “point” defects probably from secondary scattering. We directly show that the superconducting order is virtually annihilated within the former and suppressed by the latter. Simultaneous atomically resolved images of the columnar crystal defects, the superconductivity, and the vortex configurations then reveal how a mixed pinning landscape is created, with the strongest vortex pinning occurring at metallic core columnar defects and secondary pinning at clusters of point-like defects, followed by collective pinning at higher fields. PMID:26601180

  16. Flux pinning defects induced by electron irradiation in Y sub 1 Ba sub 2 Cu sub 3 O sub 7-. delta. single crystals

    SciTech Connect

    Giapintzakis, J.; Lee, W.C.; Rice, J.P.; Ginsberg, D.M.; Robertson, I.M. ); Kirk, M.A.; Wheeler, R. )

    1992-06-01

    Single crystals of R{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7-{delta}}, (R=Y, Eu and Gd), have been irradiated with 0.4--1.0 MeV electrons in directions near the c-axis. An incident threshold electron energy for producing flux pinning defects has been found. In-situ TEM studies found no visible defects induced by electron irradiation. This means that point defects or small clusters ({le} 20 {Angstrom}) are responsible for the extra pinning. A consistent interpretation of the data suggests that the most likely pinning defect is the displacement of a Cu atom from the CuO{sub 2} planes.

  17. Flux pinning defects induced by electron irradiation in Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} single crystals

    SciTech Connect

    Giapintzakis, J.; Lee, W.C.; Rice, J.P.; Ginsberg, D.M.; Robertson, I.M.; Kirk, M.A.; Wheeler, R.

    1992-06-01

    Single crystals of R{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7-{delta}}, (R=Y, Eu and Gd), have been irradiated with 0.4--1.0 MeV electrons in directions near the c-axis. An incident threshold electron energy for producing flux pinning defects has been found. In-situ TEM studies found no visible defects induced by electron irradiation. This means that point defects or small clusters ({le} 20 {Angstrom}) are responsible for the extra pinning. A consistent interpretation of the data suggests that the most likely pinning defect is the displacement of a Cu atom from the CuO{sub 2} planes.

  18. Reusable Mechanical Pin Puller

    NASA Technical Reports Server (NTRS)

    Ngo, Son; Farley, Rodger; Devine, ED

    1991-01-01

    Reusable mechanical pin puller relatively simple spring-loaded trigger mechanism. Designed to save money and increase safety as substitute for costly and potentially dangerous pyrotechnic pin pullers used in development and testing of deployment mechanisms.

  19. AGR-1 Irradiation Experiment Test Plan

    SciTech Connect

    John T. Maki

    2009-10-01

    This document presents the current state of planning for the AGR-1 irradiation experiment, the first of eight planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The objectives of the AGR-1 experiment are: 1. To gain experience with multi-capsule test train design, fabrication, and operation with the intent to reduce the probability of capsule or test train failure in subsequent irradiation tests. 2. To irradiate fuel produced in conjunction with the AGR fuel process development effort. 3. To provide data that will support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. In order to achieve the test objectives, the AGR-1 experiment will be irradiated in the B-10 position of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). The test will contain six independently controlled and monitored capsules. Each capsule will contain a single type, or variant, of the AGR coated fuel. The irradiation is planned for about 700 effective full power days (approximately 2.4 calendar years) with a time-averaged, volume-average temperature of approximately 1050 °C. Average fuel burnup, for the entire test, will be greater than 17.7 % FIMA, and the fuel will experience fast neutron fluences between 2.4 and 4.5 x 1025 n/m2 (E>0.18 MeV).

  20. Nuclear fuel pin scanner

    DOEpatents

    Bramblett, Richard L.; Preskitt, Charles A.

    1987-03-03

    Systems and methods for inspection of nuclear fuel pins to determine fiss loading and uniformity. The system includes infeed mechanisms which stockpile, identify and install nuclear fuel pins into an irradiator. The irradiator provides extended activation times using an approximately cylindrical arrangement of numerous fuel pins. The fuel pins can be arranged in a magazine which is rotated about a longitudinal axis of rotation. A source of activating radiation is positioned equidistant from the fuel pins along the longitudinal axis of rotation. The source of activating radiation is preferably oscillated along the axis to uniformly activate the fuel pins. A detector is provided downstream of the irradiator. The detector uses a plurality of detector elements arranged in an axial array. Each detector element inspects a segment of the fuel pin. The activated fuel pin being inspected in the detector is oscillated repeatedly over a distance equal to the spacing between adjacent detector elements, thereby multiplying the effective time available for detecting radiation emissions from the activated fuel pin.

  1. High energy proton irradiation induced pinning centers in Bi-2212 and Bi-2223 superconductors

    SciTech Connect

    Willis, J.O.; Safar, H.; Cho, J.H.

    1995-12-01

    Bi-2212 single crystals and Bi-2223/Ag-sheathed tapes were irradiated with high energy protons. TEM images reveal the production of randomly oriented (splayed) columnar defects with an amorphous core of {approximately}10 nm diameter caused by the fissioning of Bi nuclei. The critical current density J{sub c} and irreversibility line both substantially increased with the proton dose for both crystals and tapes, especially for the magnetic field parallel to the c axis. An irradiated tape had a J{sub c} value {approximately}100 times greater than that of an unirradiated one at 1 T and 75 K.

  2. AGC-1 Irradiation Experiment Test Plan

    SciTech Connect

    R. L. Bratton

    2006-05-01

    The Advanced Graphite Capsule (AGC) irradiation test program supports the acquisition of irradiated graphite performance data to assist in the selection of the technology to be used for the VHTR. Six irradiations are planned to investigate compressive creep in graphite subjected to a neutron field and obtain irradiated mechanical properties of vibrationally molded, extruded, and iso-molded graphites for comparison. The experiments will be conducted at three temperatures: 600, 900, and 1200°C. At each temperature, two different capsules will be irradiated to different fluence levels, the first from 0.5 to 4 dpa and the second from 4 to 7 dpa. AGC-1 is the first of the six capsules designed for ATR and will focus on the prismatic fluence range.

  3. Verification of the FBR fuel bundle-duct interaction analysis code BAMBOO by the out-of-pile bundle compression test with large diameter pins

    NASA Astrophysics Data System (ADS)

    Uwaba, Tomoyuki; Ito, Masahiro; Nemoto, Junichi; Ichikawa, Shoichi; Katsuyama, Kozo

    2014-09-01

    The BAMBOO computer code was verified by results for the out-of-pile bundle compression test with large diameter pin bundle deformation under the bundle-duct interaction (BDI) condition. The pin diameters of the examined test bundles were 8.5 mm and 10.4 mm, which are targeted as preliminary fuel pin diameters for the upgraded core of the prototype fast breeder reactor (FBR) and for demonstration and commercial FBRs studied in the FaCT project. In the bundle compression test, bundle cross-sectional views were obtained from X-ray computer tomography (CT) images and local parameters of bundle deformation such as pin-to-duct and pin-to-pin clearances were measured by CT image analyses. In the verification, calculation results of bundle deformation obtained by the BAMBOO code analyses were compared with the experimental results from the CT image analyses. The comparison showed that the BAMBOO code reasonably predicts deformation of large diameter pin bundles under the BDI condition by assuming that pin bowing and cladding oval distortion are the major deformation mechanisms, the same as in the case of small diameter pin bundles. In addition, the BAMBOO analysis results confirmed that cladding oval distortion effectively suppresses BDI in large diameter pin bundles as well as in small diameter pin bundles.

  4. Inert matrix fuel behaviour in test irradiations

    NASA Astrophysics Data System (ADS)

    Hellwig, Ch.; Streit, M.; Blair, P.; Tverberg, T.; Klaassen, F. C.; Schram, R. P. C.; Vettraino, F.; Yamashita, T.

    2006-06-01

    Among others, three large irradiation tests on inert matrix fuels have been performed during the last five years: the two irradiation tests IFA-651 and IFA-652 in the OECD Halden Material Test Reactor and the OTTO irradiation in the High Flux Reactor in Petten. While the OTTO irradiation is already completed, the other two irradiations are still ongoing. The objectives of the experiments differ: for OTTO, the focus was on the comparison of different concepts of IMF, i.e. homogeneous fuel versus different types of heterogeneous fuel. In IFA-651, single phase yttria stabilized zirconia (YSZ) doped with Pu is compared with MOX. In IFA-652, the potential of calcia stabilized zirconia (CSZ) as a matrix with and without thoria is evaluated. The design of the three experiments is explained and the current status is reviewed. The experiments show that the homogeneous, single phase YSZ-based or CSZ-based fuel show good and stable irradiation behaviour. It can be said that homogeneous stabilized zirconia based fuel is the most promising IMF concept for an LWR environment. Nevertheless, the fuel temperatures were relatively high due to the low thermal conductivity, potentially leading to high fission gas release, and must be taken into account in the fuel design.

  5. Continuous Monitoring of Pin Tip Wear and Penetration into Rock Surface Using a New Cerchar Abrasivity Testing Device

    NASA Astrophysics Data System (ADS)

    Hamzaban, Mohammad-Taghi; Memarian, Hossein; Rostami, Jamal

    2014-03-01

    Evaluation of rock abrasivity is important when utilizing mechanized excavation in various mining and civil projects in hard rock. This is due to the need for proper selection of the rock cutting tools, estimation of the tool wear, machine downtime for cutter change, and costs. The Cerchar Abrasion Index (CAI) test is one of the simplest and most widely used methods for evaluating rock abrasivity. In this study, a new device for the determination of frictional forces and depth of pin penetration into the rock surface during a Cerchar test is discussed. The measured parameters were used to develop an analytical model for calculation of the size of the wear flat (and hence a continuous measure of CAI as the pin moves over the sample) and pin tip penetration into the rock during the test. Based on this model, continuous curves of CAI changes and pin tip penetration into the rock were plotted. Results of the model were used for introduction of a new parameter describing rock-pin interaction and classification of rock abrasion.

  6. Measurement of Diameter Changes during Irradiation Testing

    SciTech Connect

    Davis, K. L.; Knudson, D. L.; Crepeau, J. C.; Solstad, S.

    2015-03-01

    New materials are being considered for fuel, cladding, and structures in advanced and existing nuclear reactors. Such materials can experience significant dimensional and physical changes during irradiation. Currently in the US, such changes are measured by repeatedly irradiating a specimen for a specified period of time and then removing it from the reactor for evaluation. The time and labor to remove, examine, and return irradiated samples for each measurement makes this approach very expensive. In addition, such techniques provide limited data and handling may disturb the phenomena of interest. In-pile detection of changes in geometry is sorely needed to understand real-time behavior during irradiation testing of fuels and materials in high flux US Material and Test Reactors (MTRs). This paper presents development results of an advanced Linear Variable Differential Transformer-based test rig capable of detecting real-time changes in diameter of fuel rods or material samples during irradiation in US MTRs. This test rig is being developed at the Idaho National Laboratory and will provide experimenters with a unique capability to measure diameter changes associated with fuel and cladding swelling, pellet-clad interaction, and crud buildup.

  7. Increment of the collective pinning energy in Na1 - xCa x Fe2As2 single crystals with random point defects introduced by proton irradiation

    NASA Astrophysics Data System (ADS)

    Haberkorn, N.; Kim, Jeehoon; Maiorov, B.; Usov, I.; Chen, G. F.; Yu, W.; Civale, L.

    2014-09-01

    We study the influence of random point defects introduced by 3 MeV proton irradiation (doses 1 × 1016 and 2 × 1016 cm2) on the vortex dynamics of Na x Ca1 - xFe2As2 (x = 0.5 and x = 0.75) single crystals. Our results indicate that the irradiation produces an enhancement of the critical current density and a reduction of the creep rate in vortex relaxation. The plateau in the temperature dependence of vortex creep rate initially present in as-grown single crystals disappears after irradiation. This fact can be associated with a large increment of the collective pinning energy (from <100 to 350-400 K). On the other hand, Maley analysis indicates that after irradiation both samples present a glassy exponent μ close to the one expected in the so-called large bundle regime (μ ≈ 7/9) for random point defects.

  8. Enhancement of the critical current density by increasing the collective pinning energy in heavy ion irradiated Co-doped BaFe2As2 single crystals

    NASA Astrophysics Data System (ADS)

    Haberkorn, N.; Kim, Jeehoon; Gofryk, K.; Ronning, F.; Sefat, A. S.; Fang, L.; Welp, U.; Kwok, W. K.; Civale, L.

    2015-05-01

    We investigate the effect of heavy ion irradiation (1.4 GeV Pb) on the vortex matter in Ba(Fe0.92Co0.08)2As2 single crystals by superconducting quantum interference device (SQUID) magnetometry. The defects created by the irradiation are discontinuous amorphous tracks, resulting in an effective track density smaller than 25% of the nominal doses. We observe large increases in the critical current density (Jc), ranging from a factor of ∼3 at low magnetic fields to a factor of ∼10 at fields close to 1 T after irradiation with a nominal fluence of BΦ = 3.5 T. From the normalized flux creep rates (S) and the Maley analysis, we determine that the Jc increase can be mainly attributed to a large increment in the pinning energy, from <50 K to ≈500 K, while the glassy exponent μ changes from ∼1.5 to <1. Although the enhancement of Jc is substantial in the entire temperature range and S is strongly suppressed, the artificial pinning landscape induced by the irradiation does not modify significantly the crossover to fast creep in the field-temperature vortex phase diagram.

  9. Irradiation Environment of the Materials Test Station

    SciTech Connect

    Pitcher, Eric John

    2012-06-21

    Conceptual design of the proposed Materials Test Station (MTS) at the Los Alamos Neutron Science Center (LANSCE) is now complete. The principal mission is the irradiation testing of advanced fuels and materials for fast-spectrum nuclear reactor applications. The neutron spectrum in the fuel irradiation region of MTS is sufficiently close to that of fast reactor that MTS can match the fast reactor fuel centerline temperature and temperature profile across a fuel pellet. This is an important characteristic since temperature and temperature gradients drive many phenomena related to fuel performance, such as phase stability, stoichiometry, and fission product transport. The MTS irradiation environment is also suitable in many respects for fusion materials testing. In particular, the rate of helium production relative to atomic displacements at the peak flux position in MTS matches well that of fusion reactor first wall. Nuclear transmutation of the elemental composition of the fusion alloy EUROFER97 in MTS is similar to that expected in the first wall of a fusion reactor.

  10. A model for the influence of microstructure, precipitate pinning and fission gas behavior on irradiation-induced recrystallization of nuclear fuels

    NASA Astrophysics Data System (ADS)

    Rest, J.

    2004-03-01

    Irradiation-induced recrystallization appears to be a general phenomenon in that it is observed to occur in a variety of nuclear fuel types, e.g. U-xMo, UO2, and U3O8. For temperatures below that where significant thermal annealing of defects occurs, an expression is derived for the fission density at which irradiation-induced recrystallization is initiated that is athermal and weakly dependent on fission rate. The initiation of recrystallization is to be distinguished from the subsequent progression and eventual consumption of the original fuel grain. The formulation takes into account the observed microstructural evolution of the fuel, the role of precipitate pinning and fission gas bubbles, and the triggering event for recrystallization. The calculated dislocation density, fission gas bubble-size distribution, and fission density at which recrystallization first appears are compared to measured quantities.

  11. LWRS ATR Irradiation Testing Readiness Status

    SciTech Connect

    Kristine Barrett

    2012-09-01

    The Light Water Reactor Sustainability (LWRS) Program was established by the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors. The LWRS Program is divided into four R&D Pathways: (1) Materials Aging and Degradation; (2) Advanced Light Water Reactor Nuclear Fuels; (3) Advanced Instrumentation, Information and Control Systems; and (4) Risk-Informed Safety Margin Characterization. This report describes an irradiation testing readiness analysis in preparation of LWRS experiments for irradiation testing at the Idaho National Laboratory (INL) Advanced Test Reactor (ATR) under Pathway (2). The focus of the Advanced LWR Nuclear Fuels Pathway is to improve the scientific knowledge basis for understanding and predicting fundamental performance of advanced nuclear fuel and cladding in nuclear power plants during both nominal and off-nominal conditions. This information will be applied in the design and development of high-performance, high burn-up fuels with improved safety, cladding integrity, and improved nuclear fuel cycle economics

  12. Delamination Strength of WC-Co Thermal-Sprayed Coating Under Combined Stresses by Torsion-Tension Pin-Test Method

    NASA Astrophysics Data System (ADS)

    Kaneko, Kenji; Higaki, Keitaro

    2014-08-01

    In this report, the delamination strength of WC -Co thermal-sprayed coatings under combined torsion and tension is evaluated using a newly developed method, which is called the torsion -tension pin-test. First, the effects of both the pin diameter and the coating thickness on the apparent delamination strength were investigated experimentally. Second, the stress distributions around the interface edge between the pin and the coating were numerically obtained by using the finite element analysis program "MARC." It was confirmed that the fractured plane of the torsion pin coincides with the interfacial plane between the coating and the pin. The apparent delamination strength obtained experimentally decreased linearly with increasing pin diameter and increased with increasing coating thickness t, but it was stable at t of 400 μm or more. The shear delamination strength decreased with increasing tensile stress. Similar stress distributions were observed at the interface when delaminations occurred for rather thick coatings, independent of the pin diameter. The critical combination of the strength of shear stress fields ( Ks) with that of tensile stress fields ( Ka), i.e., the delamination criteria of the coating under combined shear and tensile loadings, was obtained for a WC-12Co thermal-sprayed coating. These combinations were found to be independent of pin diameter and coating thickness.

  13. Pin puller impact shock attenuation

    NASA Technical Reports Server (NTRS)

    Auclair, G. F.; Leonard, B. S.; Robbins, R. E.; Proffitt, W. L.

    1976-01-01

    Design of a pin arresting mechanism for a pyrotechnically actuated pin puller is reviewed. The investigative approach is discussed and the impact shock test results for various candidate designs are presented. The selected pin arresting design reduced the peak value of the shock response spectrum by five to one.

  14. Irradiation performance of Fast Flux Test Facility drivers using D9 alloy

    SciTech Connect

    Pitner, A.L.; Gneiting, B.C.; Bard, F.E.

    1994-06-01

    Six test assemblies similar in design to the FFTF driver assembly but employing the advanced alloy D9 in place of Type 316 stainless steel for duct, cladding, and wire wrap material were irradiated to demonstrate the improved performance and lifetime capability of this design. A single pinhole-type breach was incurred in one of the high exposure tests after a peak fuel burnup of 155 MWd/kgM and peak fast neutron fluence of 25 {times} 10{sup 22} n/cm{sup 2} (E > 0.1 MeV). Postirradiation examinations were performed on four of the test assemblies and measured results were compared to analytical evaluations. A revised swelling correlation for D9 Alloy was developed to provide improved agreement between calculated and measured cladding deformation results. A fuel pin lifetime design criterion of 5% calculated hoop strain was derived. Alternatively, fuel pin lifetimes were developed for two irradiation parameters using statistical failure analyses. For a 99.99% reliability, the analyses indicated a peak fast fluence lifetime of 21.0 {times} 10{sup 22} n/cm{sup 2}, or a peak fuel burnup greater than 120 MWd/kgM. The extended lifetime capability of this design would reduce fuel supply requirements for the FFTF by a third relative to the reference driver design.

  15. Instrumentation to Enhance Advanced Test Reactor Irradiations

    SciTech Connect

    J. L. Rempe; D. L. Knudson; K. G. Condie; J. E. Daw; S. C. Taylor

    2009-09-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

  16. Measured and Simulated Dark J-V Characteristics of a-Si:H Single Junction p-i-n Solar Cells Irradiated with 40 keV Electrons

    NASA Technical Reports Server (NTRS)

    Lord, Kenneth; Woodyard, James R.

    2002-01-01

    The effect of 40 keV electron irradiation on a-Si:H p-i-n single-junction solar cells was investigated using measured and simulated dark J-V characteristics. EPRI-AMPS and PC-1D simulators were explored for use in the studies. The EPRI-AMPS simulator was employed and simulator parameters selected to produce agreement with measured J-V characteristics. Three current mechanisms were evident in the measured dark J-V characteristics after electron irradiation, namely, injection, shunting and a term of the form CV(sup m). Using a single discrete defect state level at the center of the band gap, good agreement was achieved between measured and simulated J-V characteristics in the forward-bias voltage region where the dark current density was dominated by injection. The current mechanism of the form CV(sup m) was removed by annealing for two hours at 140 C. Subsequent irradiation restored the CV(sup m) current mechanism and it was removed by a second anneal. Some evidence of the CV(sup m) term is present in device simulations with a higher level of discrete density of states located at the center of the bandgap.

  17. FFTF metal fuel pin sodium bond quality verification

    SciTech Connect

    Pitner, A.L.; Dittmer, J.O.

    1988-12-01

    The Fast Flux Test Facility (FFTF) Series III driver fuel design consists of U-10Zr fuel slugs contained in a ferritic alloy cladding. A liquid metal, sodium bond between the fuel and cladding is required to prevent unacceptable temperatures during operation. Excessive voiding or porosity in the sodium thermal bond could result in localized fuel melting during irradiation. It is therefore imperative that bond quality be verified during fabrication of these metal fuel pins prior to irradiation. This document discusses this verification.

  18. Technical Review Report for the Justification for Shipment of Sodium-Bonded Carbide Fuel Pins in the T-3 Cask

    SciTech Connect

    West, M; DiSabatino, A

    2008-01-04

    This report documents the review of the Fluor Submittal (hereafter, the Submittal), prepared by Savannah River Packaging Technology (SRPT) of Savannah River National Laboratory (SRNL), at the request of the Department of Energy's (DOE) Richland Operations Office, for the shipment of unirradiated and irradiated sodium-bonded carbide fuel pins. The sodium-bonded carbide fuel pins are currently stored at the Fast Flux Test Facility (FFTF) awaiting shipment to Idaho National Laboratory (INL). Normally, modified contents are included into the next revision of the SARP. However, the contents, identified to be shipped from FFTF to Idaho National Laboratory, are a one-way shipment of 18 irradiated fuel pins and 7 unirradiated fuel pins, where the irradiated and unirradiated fuel pins are shipped separately, and can be authorized with a letter amendment to the existing Certificate of Compliance (CoC).

  19. Pin care

    MedlinePlus

    There are different types of pin-cleaning solutions. The two most common solutions are: Sterile water A mixture of half normal saline and half hydrogen peroxide Use the solution that your surgeon recommends. Supplies you will need to ...

  20. Fuel pin

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  1. SIMULATE-4 pin power calculations

    SciTech Connect

    Bahadir, T.; Lindahl, S. Oe

    2006-07-01

    A new pin power reconstruction module has been implemented in Studsvik Scandpower's next generation nodal code, SIMULATE-4. Heterogeneous pin powers are calculated by modulating multi-group pin powers from the sub-mesh solver of SIMULATE-4 with pin form factors from single-assembly CASMO-5 lattice calculations. The multi-group pin power model captures instantaneous spectral effects, and actinide tracking on the assembly sub-mesh describes exposure-induced pin power variations. Model details and verification tests against high order multi-assembly transport methods are presented. The accuracy of the new methods is also demonstrated by comparing SIMULATE-4 calculations with measured critical experiment pin powers. (authors)

  2. AC-3-irradiation test of sphere-pac and pellet (U,Pu)C fuel in the US Fast Flux Test Facility

    NASA Astrophysics Data System (ADS)

    Bart, G.; Botta, F. B.; Hoth, C. W.; Ledergerber, G.; Mason, R. E.; Stratton, R. W.

    2008-05-01

    The objective of the AC-3 bundle experiment in the Fast Flux Test Facility (FFTF) was to evaluate a fuel fabrication method by 'direct conversion' of nitrate solutions into spherical uranium-plutonium carbide particles and to compare the irradiation performance of 'sphere-pac' fuel pins prepared at Paul Scherrer Institute (PSI) with standard pellet fuel pins fabricated at Los Alamos National Laboratory (LANL). The irradiation and post test examination results show that mixed carbide pellet fuel produced by powder methods and sphere-pac particle fuel developed by internal gelation techniques are both valuable advanced fuel candidates for liquid metal reactors. The PSI fabrication process with direct conversion of actinide nitrate solutions into various sizes of fuel spheres by internal gelation and direct filling of spheres into cladding tubes is seen as more easily transferable to remote operation, showing a significant reduction of process steps. The process is also adaptable for the fabrication of carbonitrides and nitrides (still based on a uranium matrix), as well as for actinides diluted in a (uranium-free) yttrium stabilized zirconium oxide matrix. The AC-3 fuel bundle was irradiated in the Fast Flux Test Facility (FFTF) during the years 1986-1988 for 630 full power days to a peak burn up of ˜8 at.% fissile material. All of the pins, irradiated at linear powers of up to 84 kW/m, with cladding outer temperatures of 465 °C appeared to be in good condition when removed from the assembly. The rebirth of interest for fast reactor systems motivated the earlier teams to report about the excellent, still perfectly relevant results reached; this paper focusing on the sphere-pac fuel behaviour.

  3. Fuel pin failure in the PFR/TREAT experiments

    SciTech Connect

    Herbert, R.; Hunter, C.W.; Kramer, J.M.; Wood, M.H.; Wright, A.E.

    1986-01-01

    The PFR/TREAT safety testing programme involves the transient testing of fresh and pre-irradiated UK and US fuel pins. This paper summarizes the experimental and calculational results obtained to date on fuel pin failure during transient overpower (resulting from an accidental addition of resolivity) and transient undercooling followed by overpower (arising from an accidental stoppage of the primary sodium circulating pumps) accidents. Companion papers at this conference address: (I) the progress and future plans of the programme, and (II) post-failure material movements.

  4. Status of the irradiation test vehicle for testing fusion materials in the Advanced Test Reactor

    SciTech Connect

    Tsai, H.; Gomes, I.C.; Smith, D.L.; Palmer, A.J.; Ingram, F.W.; Wiffen, F.W.

    1998-09-01

    The design of the irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) has been completed. The main application for the ITV is irradiation testing of candidate fusion structural materials, including vanadium-base alloys, silicon carbide composites, and low-activation steels. Construction of the vehicle is underway at the Lockheed Martin Idaho Technology Company (LMITCO). Dummy test trains are being built for system checkout and fine-tuning. Reactor insertion of the ITV with the dummy test trains is scheduled for fall 1998. Barring unexpected difficulties, the ITV will be available for experiments in early 1999.

  5. Neutron Flux Characterization of Irradiation Holes for Irradiation Test at HANARO

    NASA Astrophysics Data System (ADS)

    Yang, Seong Woo; Cho, Man Soon; Choo, Kee Nam; Park, Sang Jun

    2016-02-01

    The High flux Advanced Neutron Application ReactOr (HANARO) is a unique research reactor in the Republic of Korea, and has been used for irradiation testing since 1998. To conduct irradiation tests for nuclear materials, the irradiation holes of CT and OR5 have been used due to a high fast-neutron flux. Because the neutron flux must be accurately calculated to evaluate the neutron fluence of irradiated material, it was conducted using MCNP. The neutron flux was measured using fluence monitor wires to verify the calculated result. Some evaluations have been conducted, however, more than 20% errors have frequently occurred at the OR irradiation hole, while a good agreement between the calculated and measured data was shown at the CT irradiation hole.

  6. Dowel pin

    DOEpatents

    Wojcik, Thaddeus A.

    1978-01-01

    Two abutting members are locked together by reaming a hole entirely through one member and at least partly through the other, machining a circular groove in each through hole just below the surface of the member, press fitting a dowel pin having a thin wall extension on at least one end thereof into the hole in both members, a thin wall extension extending into each through hole, crimping or snapping the thin wall extension into the grooves to positively lock the dowel pin in place and, if necessary, tack welding the end of the thin-wall extension in place.

  7. Test procedure for Hasselblad field irradiance

    NASA Technical Reports Server (NTRS)

    George, C.

    1975-01-01

    The procedure is defined for determining the uniformity of film plane illumination (field irradiance) of the Hasselblad cameras. The data source shall consist of photographs, with X-Y scans being taken for indication only. The accuracy requirement is 2.0%.

  8. Design and Status of RERTR Irradiation Tests in the Advanced Test Reactor

    SciTech Connect

    Daniel M. Wachs; Richard G. Ambrosek; Gray Chang; Mitchell K. Meyer

    2006-10-01

    Irradiation testing of U-Mo based fuels is the central component of the Reduced Enrichment for Research and Test Reactors (RERTR) program fuel qualification plan. Several RERTR tests have recently been completed or are planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory in Idaho Falls, ID. Four mini-plate experiments in various stages of completion are described in detail, including the irradiation test design, objectives, and irradiation conditions. Observations made during and after the in-reactor RERTR-7A experiment breach are summarized. The irradiation experiment design and planned irradiation conditions for full-size plate test are described. Progress toward element testing will be reviewed.

  9. Locking Pull Pin

    NASA Technical Reports Server (NTRS)

    Killgrove, T. O.

    1986-01-01

    Proposed self-locking pull pin not accidentally released by shock or vibration but intentionally released by pull on lanyard. Any rotational movement of main pin traps secondary pin: prevents further rotation and disengagement of main pin.

  10. Discuss the testing problems of ultraviolet irradiance meters

    NASA Astrophysics Data System (ADS)

    Ye, Jun'an; Lin, Fangsheng

    2014-09-01

    Ultraviolet irradiance meters are widely used in many areas such as medical treatment, epidemic prevention, energy conservation and environment protection, computers, manufacture, electronics, ageing of material and photo-electric effect, for testing ultraviolet irradiance intensity. So the accuracy of value directly affects the sterile control in hospital, treatment, the prevention level of CDC and the control accuracy of curing and aging in manufacturing industry etc. Because the display of ultraviolet irradiance meters is easy to change, in order to ensure the accuracy, it needs to be recalibrated after being used period of time. By the comparison with the standard ultraviolet irradiance meters, which are traceable to national benchmarks, we can acquire the correction factor to ensure that the instruments working under accurate status and giving the accurate measured data. This leads to an important question: what kind of testing device is more accurate and reliable? This article introduces the testing method and problems of the current testing device for ultraviolet irradiance meters. In order to solve these problems, we have developed a new three-dimensional automatic testing device. We introduce structure and working principle of this system and compare the advantages and disadvantages of two devices. In addition, we analyses the errors in the testing of ultraviolet irradiance meters.

  11. Irradiation testing of high density uranium alloy dispersion fuels

    SciTech Connect

    Hayes, S.L.; Trybus, C.L.; Meyer, M.K.

    1997-10-01

    Two irradiation test vehicles have been designed, fabricated, and inserted into the Advanced Test Reactor in Idaho. Irradiation of these experiments began in August 1997. These irradiation tests were designed to obtain irradiation performance information on a variety of potential new, high-density dispersion fuels. Each of the two irradiation vehicles contains 32 microplates. Each microplate is aluminum clad, having an aluminum matrix phase and containing one of the following compositions as the fuel phase: U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru, U-10Mo-0.05Sn, U{sub 2}Mo, or U{sub 3}Si{sub 2}. These experiments will be discharged at peak fuel burnups of 40% and 80%. Of particular interest is the fission gas retention/swelling characteristics of these new fuel alloys. This paper presents the design of the irradiation vehicles and the irradiation conditions.

  12. Energy efficient engine pin fin and ceramic composite segmented liner combustor sector rig test report

    NASA Technical Reports Server (NTRS)

    Dubiel, D. J.; Lohmann, R. P.; Tanrikut, S.; Morris, P. M.

    1986-01-01

    Under the NASA-sponsored Energy Efficient Engine program, Pratt and Whitney has successfully completed a comprehensive test program using a 90-degree sector combustor rig that featured an advanced two-stage combustor with a succession of advanced segmented liners. Building on the successful characteristics of the first generation counter-parallel Finwall cooled segmented liner, design features of an improved performance metallic segmented liner were substantiated through representative high pressure and temperature testing in a combustor atmosphere. This second generation liner was substantially lighter and lower in cost than the predecessor configuration. The final test in this series provided an evaluation of ceramic composite liner segments in a representative combustor environment. It was demonstrated that the unique properties of ceramic composites, low density, high fracture toughness, and thermal fatigue resistance can be advantageously exploited in high temperature components. Overall, this Combustor Section Rig Test program has provided a firm basis for the design of advanced combustor liners.

  13. Operation and test of hybridized silicon p-i-n arrays using open-source array control hardware and software

    NASA Astrophysics Data System (ADS)

    Moore, Andrew C.; Ninkov, Zoran; Burley, Gregory S.; Forrest, William J.; McMurtry, Craig W.; Avery, Lars E.

    2003-05-01

    A system for controlling and testing high-resolution non-destructive astronomical imagers was constructed using open-source components, both hardware and software. The open-source electronics design, originated by Carnegie Observatories (OCIW) for CCD cameras, was modified, assembled, and augmented with new circuitry which facilitates monitoring of voltages and currents. The electronics was run from Python user interface software based on a design from the University of Rochester. This new software utilized the Numarray and pyFITS modules developed at the Space Telescope Science Institute (STScI). Interfacing to the "dv" FITS image analysis package from the NASA IRTF was also implemented. Python (the STScI language of choice) was used as the primary language for systems integration, scripts for data acquisition, and scripts for data analysis. The DSP clocking software was a mixture of C and Motorola 56303 assembly. An interrupt-driven kernel-mode PCI device driver for Red Hat Linux was written in C, and used the PC processor and memory for image processing and acquisition. Two 1Κ × 1Κ Raytheon SB226-based hybridized silicon p-i-n arrays were operated and tested with the new system at temperatures as low as 10K. Signal path gain, node capacitance, well depth, dark current, and MTF measurements were made and are presented here.

  14. USE OF SILICON CARBIDE MONITORS IN ATR IRRADIATION TESTING

    SciTech Connect

    K. L. Davis; B. Chase; T. Unruh; D. Knudson; J. L. Rempe

    2012-07-01

    In April 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) a National Scientific User Facility (NSUF) to advance US leadership in nuclear science and technology. By attracting new users from universities, laboratories, and industry, the ATR will support basic and applied nuclear research and development and help address the nation's energy security needs. In support of this new program, the Idaho National Laboratory (INL) has developed in-house capabilities to fabricate, test, and qualify new and enhanced temperature sensors for irradiation testing. Although most efforts emphasize sensors capable of providing real-time data, selected tasks have been completed to enhance sensors provided in irradiation locations where instrumentation leads cannot be included, such as drop-in capsule and Hydraulic Shuttle Irradiation System (HSIS) or 'rabbit' locations. For example, silicon carbide (SiC) monitors are now available to detect peak irradiation temperatures between 200°C and 800°C. Using a resistance measurement approach, specialized equipment installed at INL's High Temperature Test Laboratory (HTTL) and specialized procedures were developed to ensure that accurate peak irradiation temperature measurements are inferred from SiC monitors irradiated at the ATR. Comparison examinations were completed by INL to demonstrate this capability, and several programs currently rely on SiC monitors for peak temperature detection. This paper discusses the use of SiC monitors at the ATR, the process used to evaluate them at the HTTL, and presents representative measurements taken using SiC monitors.

  15. The Advanced Test Reactor Irradiation Facilities and Capabilities

    SciTech Connect

    S. Blaine Grover; Raymond V. Furstenau

    2007-03-01

    The Advanced Test Reactor (ATR) is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. The ATR is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These different capabilities include passive sealed capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. The ATR has enhanced capabilities in experiment monitoring and control systems for instrumented and/or temperature controlled experiments. The control systems utilize feedback from thermocouples in the experiment to provide a custom blended flowing inert gas mixture to control the temperature in the experiments. Monitoring systems have also been utilized on the exhaust gas lines from the experiment to monitor different parameters, such as fission gases for fuel experiments, during irradiation. ATR’s unique control system provides axial flux profiles in the experiments, unperturbed by axially positioned control components, throughout each reactor operating cycle and over the duration of test programs requiring many years of irradiation. The ATR irradiation positions vary in diameter from 1.6 cm (0.625 inches) to 12.7 cm (5.0 inches) over an active core length of 122 cm (48.0 inches). Thermal and fast neutron fluxes can be adjusted radially across the core depending on the needs of individual test programs. This paper will discuss the different irradiation capabilities available and the cost/benefit issues related to each capability. Examples of different experiments will also be discussed to demonstrate the use of the capabilities and facilities at ATR for performing irradiation experiments.

  16. Shock characterization of TOAD pins

    SciTech Connect

    Weirick, L.J.; Navarro, N.J.

    1995-08-01

    The purpose of this program was to characterize Time Of Arrival Detectors (TOAD) pins response to shock loading with respect to risetime, amplitude, repeatability and consistency. TOAD pins were subjected to impacts of 35 to 420 kilobars amplitude and approximately 1 ms pulse width to investigate the timing spread of four pins and the voltage output profile of the individual pins. Sets of pins were also aged at 45{degrees}, 60{degrees}, and 80{degrees}C for approximately nine weeks before shock testing at 315 kilobars impact stress. Four sets of pins were heated to 50.2{degrees}C (125{degrees}F) for approximately two hours and then impacted at either 50 or 315 kilobars. Also, four sets of pins were aged at 60{degrees}C for nine weeks and then heated to 50.2{degrees}C before shock testing at 50 and 315 kilobars impact stress, respectively. Particle velocity measurements at the contact point between the stainless steel targets and TOAD pins were made using a Velocity Interferometer System for Any Reflector (VISAR) to monitor both the amplitude and profile of the shock waves.

  17. Shock characterization of toad pins

    SciTech Connect

    Weirick, L.J.; Navarro, M.J.

    1996-05-01

    The purpose of this program was to characterize Time Of Arrival Detectors (TOAD) pins response to shock loading with respect to risetime, amplitude, repeatability and consistency. TOAD pins were subjected to impacts of 35 to 420 kilobars amplitude and approximately 1 ms pulse width to investigate the timing spread of four pins and the voltage output profile of the individual pins. Sets of pins were also aged at 45{degree}, 60{degree} and 80{degree}C for approximately nine weeks before shock testing at 315 kilobars impact stress. Four sets of pins were heated to 50.2{degree}C (125{degree}F) for approximately two hours and then impacted at either 50 or 315 kilobars. Also, four sets of pins were aged at 60{degree}C for nine weeks and then heated to 50.2{degree}C before shock testing at 50 and 315 kilobars impact stress, respectively. Particle velocity measurements at the contact point between the stainless steel targets and TOAD pins were made using a Velocity Interferometer System for Any Reflector (VISAR) to monitor both the amplitude and profile of the shock waves. {copyright} {ital 1996 American Institute of Physics.}

  18. X-Ray-Diffraction Tests Of Irradiated Electronic Devices: I

    NASA Technical Reports Server (NTRS)

    Shaw, David C.; Lowry, Lynn E.; Barnes, Charles E.

    1993-01-01

    X-ray-diffraction tests performed on aluminum conductors in commercial HI1-507A complementary metal oxide/semiconductor (CMOS) integrated-circuit analog multiplexers, both before and after circuits exposed to ionizing radiation from Co(60) source, and after postirradiation annealing at ambient and elevated temperatures. Tests in addition to electrical tests performed to determine effects of irradiation and of postirradiation annealing on electrical operating characteristics of circuits. Investigators sought to determine whether relationship between effects of irradiation on devices and physical stresses within devices. X-ray diffraction potentially useful for nondestructive measurement of stresses.

  19. Irradiation Facilities at the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2005-12-01

    The Advanced Test Reactor (ATR) is the third generation and largest test reactor built in the Reactor Technology Complex (RTC – formerly known as the Test Reactor Area), located at the Idaho National Laboratory (INL), to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The RTC was established in the early 1950s with the development of the Materials Testing Reactor (MTR), which operated until 1970. The second major reactor was the Engineering Test Reactor (ETR), which operated from 1957 to 1981, and finally the ATR, which began operation in 1967 and will continue operation well into the future. These reactors have produced a significant portion of the world’s data on materials response to reactor environments. The wide range of experiment facilities in the ATR and the unique ability to vary the neutron flux in different areas of the core allow numerous experiment conditions to co-exist during the same reactor operating cycle. Simple experiments may involve a non-instrumented capsule containing test specimens with no real-time monitoring or control capabilities1. More sophisticated testing facilities include inert gas temperature control systems and pressurized water loops that have continuous chemistry, pressure, temperature, and flow control as well as numerous test specimen monitoring capabilities. There are also apparatus that allow for the simulation of reactor transients on test specimens.

  20. Small punch testing for irradiation embrittlement. Final report

    SciTech Connect

    Foulds, J.R.

    1995-08-01

    Fracture mechanics analyses are used to evaluate nuclear reactor vessel integrity. These analyses require knowledge of a range of vessel material mechanical properties, particularly fracture properties. Estimation of vessel material fracture properties is currently made indirectly via correlations between embrittlement and vessel steel chemistry and neutron fluence, and by standard Charpy testing (for transition temperature or RT{sub NDT}) of surveillance material. The small punch test approach is a miniature specimen mechanical test which, based on accumulated experience with fossil plant steels, shows significant application potential for in-service nuclear reactor vessel irradiation embrittlement evaluation. The small punch test specimen is small enough to potentially overcome the surveillance material availability problem (30 small punch test specimens can be easily removed from a single standard half-Charpy bar) and even permit a direct vessel material interrogation by non-disruptive removal of miniature samples from the vessel. An immediate, near-term benefit of the small punch test approach will be the conservation of surveillance material. The results of preliminary feasibility testing on a heat of reactor vessel steel weld metal in the unirradiated, irradiated, and irradiated + annealed conditions show that the small punch test transition temperature correlates with the standard Charpy transition temperature. In addition, application of the small punch test-based fracture toughness (K{sub Ic}, J{sub Ic}) estimation method developed on a previous EPRI project (RP2426-38) produced toughness estimates for the irradiated steel within the {+-}25% accuracy range demonstrated on RP2426-38. The results show that the small punch test can be a viable means of evaluating irradiation embrittlement of reactor vessel steels. Recommendations are provided for further developing the test method for this application.

  1. Meso-scale modeling of irradiated concrete in test reactor

    DOE PAGESBeta

    Giorla, Alain B.; Vaitová, M.; Le Pape, Yann; Štemberk, P.

    2015-10-18

    In this paper, we detail a numerical model accounting for the effects of neutron irradiation on concrete at the mesoscale. Irradiation experiments in test reactor (Elleuch et al.,1972), i.e., in accelerated conditions, are simulated. Concrete is considered as a two-phase material made of elastic inclusions (aggregate) subjected to thermal and irradiation-induced swelling and embedded in a cementitious matrix subjected to shrinkage and thermal expansion. The role of the hardened cement paste in the post-peak regime (brittle-ductile transition with decreasing loading rate), and creep effects are investigated. Radiation-induced volumetric expansion (RIVE) of the aggregate cause the development and propagation of damagemore » around the aggregate which further develops in bridging cracks across the hardened cement paste between the individual aggregate particles. The development of damage is aggravated when shrinkage occurs simultaneously with RIVE during the irradiation experiment. The post-irradiation expansion derived from the simulation is well correlated with the experimental data and, the obtained damage levels are fully consistent with previous estimations based on a micromechanical interpretation of the experimental post-irradiation elastic properties (Le Pape et al.,2015). In conclusion, the proposed modeling opens new perspectives for the interpretation of test reactor experiments in regards to the actual operation of light water reactors.« less

  2. Meso-scale modeling of irradiated concrete in test reactor

    SciTech Connect

    Giorla, Alain B.; Vaitová, M.; Le Pape, Yann; Štemberk, P.

    2015-10-18

    In this paper, we detail a numerical model accounting for the effects of neutron irradiation on concrete at the mesoscale. Irradiation experiments in test reactor (Elleuch et al.,1972), i.e., in accelerated conditions, are simulated. Concrete is considered as a two-phase material made of elastic inclusions (aggregate) subjected to thermal and irradiation-induced swelling and embedded in a cementitious matrix subjected to shrinkage and thermal expansion. The role of the hardened cement paste in the post-peak regime (brittle-ductile transition with decreasing loading rate), and creep effects are investigated. Radiation-induced volumetric expansion (RIVE) of the aggregate cause the development and propagation of damage around the aggregate which further develops in bridging cracks across the hardened cement paste between the individual aggregate particles. The development of damage is aggravated when shrinkage occurs simultaneously with RIVE during the irradiation experiment. The post-irradiation expansion derived from the simulation is well correlated with the experimental data and, the obtained damage levels are fully consistent with previous estimations based on a micromechanical interpretation of the experimental post-irradiation elastic properties (Le Pape et al.,2015). In conclusion, the proposed modeling opens new perspectives for the interpretation of test reactor experiments in regards to the actual operation of light water reactors.

  3. TEST RESULTS FROM GAMMA IRRADIATION OF ALUMINUM OXYHYDROXIDES

    SciTech Connect

    Fisher, D.; Westbrook, M.; Sindelar, R.

    2012-02-01

    Hydrated metal oxides or oxyhydroxides boehmite and gibbsite that can form on spent aluminum-clad nuclear fuel assemblies during in-core and post-discharge wet storage were exposed as granular powders to gamma irradiation in a {sup 60}Co irradiator in closed laboratory test vessels with air and with argon as separate cover gases. The results show that boehmite readily evolves hydrogen with exposure up to a dose of 1.8 x 10{sup 8} rad, the maximum tested, in both a full-dried and moist condition of the powder, whereas only a very small measurable quantity of hydrogen was generated from the granular powder of gibbsite. Specific information on the test setup, sample characteristics, sample preparation, irradiation, and gas analysis are described.

  4. Nondestrucive analysis of fuel pins

    DOEpatents

    Stepan, I.E.; Allard, N.P.; Suter, C.R.

    1972-11-03

    Disclosure is made of a method and a correspondingly adapted facility for the nondestructive analysis of the concentation of fuel and poison in a nuclear reactor fuel pin. The concentrations of fuel and poison in successive sections along the entire length of the fuel pin are determined by measuring the reactivity of a thermal reactor as each successive small section of the fuel pin is exposed to the neutron flux of the reactor core and comparing the measured reactivity with the reactivities measured for standard fuel pins having various known concentrations. Only a small section of the length of the fuel pin is exposed to the neutron flux at any one time while the remainder of the fuel pin is shielded from the neutron flux. In order to expose only a small section at any one time, a boron-10-lined dry traverse tube is passed through the test region within the core of a low-power thermal nuclear reactor which has a very high fuel sensitivity. A narrow window in the boron-10 lining is positioned at the core center line. The fuel pins are then systematically traversed through the tube past the narrow window such that successive small sections along the length of the fuel pin are exposed to the neutron flux which passes through the narrow window.

  5. AGR-2 IRRADIATION TEST FINAL AS-RUN REPORT

    SciTech Connect

    Blaise, Collin

    2014-07-01

    This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technical Development Office (TDO) program. The objectives of the AGR-2 experiment are to: (a) Irradiate UCO (uranium oxycarbide) and UO2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities. (b) Provide irradiated fuel samples for post-irradiation experiment (PIE) and safety testing. (c) Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO2 TRISO (tri-structural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S. produced fuel. In order to achieve the test objectives, the AGR-2 experiment was irradiated in the B-12 position of the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for a total irradiation duration of 559.2 effective full power days (EFPD). Irradiation began on June 22, 2010, and ended on October 16, 2013, spanning 12 ATR power cycles and approximately three and a half calendar years. The test

  6. Temperature controlled material irradiation in the advanced test reactor

    NASA Astrophysics Data System (ADS)

    Ingram, F. W.; Palmer, A. J.; Stites, D. J.

    1998-10-01

    The United States Department of Energy (US DOE) has initiated the development of an Irradiation Test Vehicle (ITV) for fusion materials irradiation at the Advanced Test Reactor (ATR) in Idaho Falls, Idaho, USA. The ITV is capable of providing neutron spectral tailoring and individual temperature control for up to 15 experiment capsules simultaneously. The test vehicle consists of three In-Pile Tubes (IPTs) running the length of the reactor vessel. These IPTs are kept dry and test trains with integral instrumentation are inserted and removed through a transfer shield plate above the reactor vessel head. The test vehicle is designed to irradiate specimens as large as 2.2 cm in diameter, at temperatures of 250-800°C, achieving neutron damage rates as high as 10 displacements per atom per year. The high fast to thermal neutron flux ratio required for fusion materials testing is accomplished by using an aluminum filler to displace as much water as possible from the flux trap and surrounding the filler piece with a ring of replaceable neutron absorbing material. The gas blend temperature control system remains in place from test to test, thus hardware costs for new tests are limited to the experiment capsule train and integral instrumentation.

  7. Super-flat wafer chucks: from simulation and testing to a complete 300mm wafer chuck with low wafer deformation between pins

    NASA Astrophysics Data System (ADS)

    Müller, Renate; Afanasiev, Kanstantin; Ziemann, Marcel; Schmidt, Volker

    2014-04-01

    Berliner Glas is a privately owned, mid-sized manufacturer of precision opto-mechanics in Germany. One specialty of Berliner Glas is the design and production of high performance vacuum and electrostatic wafer chucks. Driven by the need of lithography and inspection for smaller overlay values, we pursue the production of an ideally flat wafer chuck. An ideally flat wafer chuck holds a wafer with a completely flat backside and without lateral distortion within the wafer surface. Key parameters in influencing the wafer chucks effective flatness are thermal performance and thermal management, roughness of the surface, choice of materials and the contact area between wafer and wafer chuck. In this presentation we would like to focus on the contact area. Usually this is decreased as much as possible to avoid sticking effects and the chance of trapped particles between the chuck surface and the backside of the wafer. This can be realized with a pin structure on the chuck surface. Making the pins smaller and moving pins further apart from each other makes the contact area ever smaller but also adds new challenges to achieve a flat and undistorted wafer on the chuck. We would like to address methods of designing and evaluating such a pin structure. This involves not only the capability to simulate the ideal pattern of pins on the chuck's surface, for which we will present 2D and 3D simulation results. As well, we would like to share first results of our functional models. Finally, measurement capability has to be ensured, which means improving and further development of Fizeau flatness test interferometers.

  8. Proposed Design and Operation of a Heat Pipe Reactor using the Sandia National Laboratories Annular Core Test Facility and Existing UZrH Fuel Pins

    NASA Astrophysics Data System (ADS)

    Wright, Steven A.; Lipinski, Ronald J.; Pandya, Tara; Peters, Curtis

    2005-02-01

    Heat Pipe Reactors (HPR) for space power conversion systems offer a number of advantages not easily provided by other systems. They require no pumping, their design easily deals with freezing and thawing of the liquid metal, and they can provide substantial levels of redundancy. Nevertheless, no reactor has ever been operated and cooled with heat pipes, and the startup and other operational characteristics of these systems remain largely unknown. Signification deviations from normal reactor heat removal mechanisms exist, because the heat pipes have fundamental heat removal limits due to sonic flow issues at low temperatures. This paper proposes an early prototypic test of a Heat Pipe Reactor (using existing 20% enriched nuclear fuel pins) to determine the operational characteristics of the HPR. The proposed design is similar in design to the HOMER and SAFE-300 HPR designs (Elliot, Lipinski, and Poston, 2003; Houts, et. al, 2003). However, this reactor uses existing UZrH fuel pins that are coupled to potassium heat pipes modules. The prototype reactor would be located in the Sandia Annular Core Research Reactor Facility where the fuel pins currently reside. The proposed reactor would use the heat pipes to transport the heat from the UZrH fuel pins to a water pool above the core, and the heat transport to the water pool would be controlled by adjusting the pressure and gas type within a small annulus around each heat pipe. The reactor would operate as a self-critical assembly at power levels up to 200 kWth. Because the nuclear heated HPR test uses existing fuel and because it would be performed in an existing facility with the appropriate safety authorization basis, the test could be performed rapidly and inexpensively. This approach makes it possible to validate the operation of a HPR and also measure the feedback mechanisms for a typical HPR design. A test of this nature would be the world's first operating Heat Pipe Reactor. This reactor is therefore called "HPR-1".

  9. Micromechanical tests of ion irradiated materials: Atomistic simulations and experiments

    SciTech Connect

    Shin, C.; Jin, H. H.; Kwon, J.

    2012-07-01

    We investigated irradiation effects on Fe-Cr binary alloys by using a nano-indentation combined with a continuous stiffness measurement (CSM) technique. We modeled the nano-indentation test by using a finite element method. We could extract the intrinsic hardness and the yield stress of an irradiation hardened region by using a so-called inverse method. SiC micro-pillars of various sizes were fabricated by mask and inductively coupled plasma etching technique and compressed by using flat punch nano-indentation. Compressive fracture strength showed a clear specimen size effect. Brittle-to-Ductile transition at room temperature was observed as the specimen size decreases. The effect of irradiation on the fracture strength of SiC micro-pillars was evaluated by performing ion irradiation with Si ions. We have performed molecular dynamics simulations of nano-indentation and nano-pillar compression tests. Radiation effect was observed which is found to be due to the interaction of dislocations nucleated by spherical indenter with pre-existing radiation defects (voids). These atomistic simulations are expected to significantly contribute to the investigation of the fundamental deformation mechanism of small scale irradiated materials. (authors)

  10. X-Ray-Diffraction Tests Of Irradiated Electronic Devices: II

    NASA Technical Reports Server (NTRS)

    Shaw, David C.; Lowry, Lynn E.; Barnes, Charles E.

    1993-01-01

    Report describes research on use of x-ray diffraction to measure stresses in metal conductors of complementary metal oxide/semiconductor (CMOS) integrated circuits exposed to ionizing radiation. Expanding upon report summarized in "X-Ray-Diffraction Tests Of Irradiated Electronic Devices: I" (NPO-18803), presenting data further suggesting relationship between electrical performances of circuits and stresses and strains in metal conductors.

  11. AGR-1 Irradiation Test Final As-Run Report

    SciTech Connect

    Blaise P. Collin

    2012-06-01

    This document presents the as-run analysis of the AGR-1 irradiation experiment. AGR-1 is the first of eight planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the US Department of Energy (DOE) as part of the Next-Generation Nuclear Plant (NGNP) project. The objectives of the AGR-1 experiment are: 1. To gain experience with multi-capsule test train design, fabrication, and operation with the intent to reduce the probability of capsule or test train failure in subsequent irradiation tests. 2. To irradiate fuel produced in conjunction with the AGR fuel process development effort. 3. To provide data that will support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. In order to achieve the test objectives, the AGR-1 experiment was irradiated in the B-10 position of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) for a total duration of 620 effective full power days of irradiation. Irradiation began on December 24, 2006 and ended on November 6, 2009 spanning 13 ATR cycles and approximately three calendar years. The test contained six independently controlled and monitored capsules. Each capsule contained 12 compacts of a single type, or variant, of the AGR coated fuel. No fuel particles failed during the AGR-1 irradiation. Final burnup values on a per compact basis ranged from 11.5 to 19.6 %FIMA, while fast fluence values ranged from 2.21 to 4.39 ?1025 n/m2 (E >0.18 MeV). We’ll say something here about temperatures once thermal recalc is done. Thermocouples performed well, failing at a lower rate than expected. At the end of the irradiation, nine of the originally-planned 19 TCs were considered functional. Fission product release-to-birth (R/B) ratios were quite low. In most capsules, R/B values at the end of the irradiation were at or below 10-7 with only one

  12. High frequency circular translation pin-on-disk method for accelerated wear testing of ultrahigh molecular weight polyethylene as a bearing material in total hip arthroplasty.

    PubMed

    Saikko, Vesa

    2015-01-21

    The temporal change of the direction of sliding relative to the ultrahigh molecular weight polyethylene (UHMWPE) component of prosthetic joints is known to be of crucial importance with respect to wear. One complete revolution of the resultant friction vector is commonly called a wear cycle. It was hypothesized that in order to accelerate the wear test, the cycle frequency may be substantially increased if the circumference of the slide track is reduced in proportion, and still the wear mechanisms remain realistic and no overheating takes place. This requires an additional slow motion mechanism with which the lubrication of the contact is maintained and wear particles are conveyed away from the contact. A three-station, dual motion high frequency circular translation pin-on-disk (HF-CTPOD) device with a relative cycle frequency of 25.3 Hz and an average sliding velocity of 27.4 mm/s was designed. The pins circularly translated at high frequency (1.0 mm per cycle, 24.8 Hz, clockwise), and the disks at low frequency (31.4mm per cycle, 0.5 Hz, counter-clockwise). In a 22 million cycle (10 day) test, the wear rate of conventional gamma-sterilized UHMWPE pins against polished CoCr disks in diluted serum was 1.8 mg per 24 h, which was six times higher than that in the established 1 Hz CTPOD device. The wear mechanisms were similar. Burnishing of the pin was the predominant feature. No overheating took place. With the dual motion HF-CTPOD method, the wear testing of UHMWPE as a bearing material in total hip arthroplasty can be substantially accelerated without concerns of the validity of the wear simulation. PMID:25498368

  13. Insulation interlaminar shear strength testing with compression and irradiation

    SciTech Connect

    McManamy, T.J.; Brasier, J.E.; Snook, P.; Idaho National Engineering Lab., Idaho Falls, ID; Princeton Univ., NJ )

    1989-01-01

    The Compact Ignition Tokamak (CIT) project identified the need for research and development for the insulation to be used in the toroidal field coils. The requirements included tolerance to a combination of high compression and shear and a high radiation dose. Samples of laminate-type sheet material were obtained from commercial vendors. The materials included various combinations of epoxy, polyimide, E-glass, S-glass, and T-glass. The T-glass was in the form of a three-dimensional weave. The first tests were with 50 {times} 25 {times} 1 mm samples. These materials were loaded in compression and then to failure in shear. At 345-MPa compression, the interlaminar shear strength was generally in the range of 110 to 140 MPa for the different materials. A smaller sample configuration was developed for irradiation testing. The data before irradiation were similar to those for the larger samples but approximately 10% lower. Limited fatigue testing was also performed by cycling the shear load. No reduction in shear strength was found after 50,000 cycles at 90% of the failure stress. Because of space limitations, only three materials were chosen for irradiation: two polyimide systems and one epoxy system. All used boron-free glass. The small shear/compression samples and some flexure specimens were irradiated to 4 {times} 10{sup 9} and 2 {times} 10{sup 10} rad in the Advanced Technology Reactor at Idaho National Engineering Laboratory. A lead shield was used to ensure that the majority of the dose was from neutrons. The shear strength with compression before and after irradiation at the lower dose was determined. Flexure strength and the results from irradiation at the higher dose level will be available in the near future. 7 refs., 7 figs., 2 tabs.

  14. Fusion materials irradiation test facility test-cell instrumentation

    NASA Astrophysics Data System (ADS)

    Fuller, J. L.; Burke, R. J.

    1982-05-01

    Many of the facility instrumentation components and systems currently under development, though specifically designed for FMIT purposes, are similar to those useful for fusion reactors. Various ceramic-insulated signal-cable components are being evaluated for 14-MeV neutron tolerance. Thermocouples are shown to decalibrate in high energy fields. Nondestructive optical viewing of deuteron-induced residual gas flow is planned for beam profiling in real space and phase space. Various optics were irradiated to 10(18) n/cm(2) at 14 MeV with good results. Feasibility of neutron and gamma field imaging was demonstrated using pinhole collimator and microchannel plate devices. Infrared thermography and optical monitoring of the target surface is being investigated. Considerable experience on the compatibility of optical and insulator materials with (highly reactive) lithium was obtained.

  15. Radiation hardness characteristics of Si-PIN radiation detectors

    NASA Astrophysics Data System (ADS)

    Jeong, Manhee; Jo, Woo Jin; Kim, Han Soo; Ha, Jang Ho

    2015-06-01

    The Korea Atomic Energy Research Institute (KAERI) has fabricated Si-PIN radiation detectors with low leakage current, high resistivity (>11 kΩ cm) and low capacitance for high-energy physics and X-ray spectroscopy. Floating-zone (FZ) 6-in. diameter N-type silicon wafers, with <1 1 1> crystal orientation and 675 μm thick, were used in the detector fabrication. The active areas are 3 mm×3 mm, 5 mm×5 mm and 10 mm×10 mm. We used a double deep-diffused structure at the edge of the active area for protection from the surface leakage path. We also compared the electrical performance of the Si-PIN detector with anti-reflective coating (ARC). For a detector with an active area of 3 mm×3 mm, the leakage current is about 1.9 nA and 7.4 nA at a 100 V reverse bias voltage, and 4.6 pF and 4.4 pF capacitance for the detector with and without an ARC, respectively. In addition, to compare the energy resolution in terms of radiation hardness, we measured the energy spectra with 57Co and 133Ba before the irradiation. Using developed preamplifiers (KAERI-PA1) that have ultra-low noise and high sensitivity, and a 3 mm×3 mm Si-PIN radiation detector, we obtained energy resolutions with 122 keV of 57Co and 81 keV of 133Ba of 0.221 keV and 0.261 keV, respectively. After 10, 100, 103, 104 and 105 Gy irradiation, we tested the characteristics of the radiation hardness on the Si-PIN radiation detectors in terms of electrical and energy spectra performance changes. The fabricated Si-PIN radiation detectors are working well under high dose irradiation conditions.

  16. Can Pin-on-Disk Testing Be Used to Assess the Wear Performance of Retrieved UHMWPE Components for Total Joint Arthroplasty?

    PubMed Central

    Kurtz, Steven M.; MacDonald, Daniel W.; Kocagöz, Sevi; Baykal, Doruk

    2014-01-01

    The objective of this study was to assess the suitability of using multidirectional pin-on-disk (POD) testing to characterize wear behavior of retrieved ultrahigh molecular weight polyethylene (UHMWPE). The POD wear behavior of 25 UHMWPE components, retrieved after 10 years in vivo, was compared with 25 that were shelf aged for 10–15 years in their original packaging. Components were gamma sterilized (25–40 kGy) in an air or reduced oxygen (inert) package. 9 mm diameter pins were fabricated from each component and evaluated against CoCr disks using a super-CTPOD with 100 stations under physiologically relevant, multidirectional loading conditions. Bovine serum (20 g/L protein concentration) was used as lubricant. Volumetric wear rates were found to vary based on the aging environment, as well as sterilization environment. Volumetric wear rates were the lowest for the pins in the gamma inert, shelf aged cohort. These results support the utility of using modern, multidirectional POD testing with a physiologic lubricant as a novel method for evaluating wear properties of retrieved UHMWPE components. The data also supported the hypothesis that wear rates of gamma-inert liners were lower than gamma-air liners for both retrieved and shelf aging conditions. However, this difference was not statistically significant for the retrieved condition. PMID:25295264

  17. Evaluation of irradiated fuel during RIA simulation tests. Final report

    SciTech Connect

    Montgomery, R.O.; Rashid, Y.R.

    1996-08-01

    A critical assessment of the RIA-simulation experiments performed to date on previously irradiated test rods is presented. Included in this assessment are the SPERT-CDC, the NSRR, and the CABRI REP Na experimental programs. Information was collected describing the base irradiation, test rod characterization, and test procedures and conditions. The representativeness of the test rods and test conditions to anticipated LWR RIA accident conditions was evaluated using analysis results from fuel behavior and three-dimensional spatial kinetics simulations. It was shown that the pulse characteristics and coolant conditions are significantly different from those anticipated in an LWR-Furthermore, the unrepresentative test conditions were found to exaggerate the mechanisms that caused cladding failure. The data review identified several test rods which contained unusual cladding damage incurred prior to the RIA-simulation test that produced the observed failures. The mechanisms responsible for the observed test rod failures have been shown to result from processes that have a second order effect of burnup. A correlation with burnup could not be appropriately established for the fuel enthalpy at failure. However, the successful test rods can be used to construct a conservative region of success for fuel rod behavior during an RIA event.

  18. Calculation of the Fast Flux Test Facility fuel pin tests with the WIMS-E and MCNP codes

    SciTech Connect

    Schwinkendorf, K.N.; Wittekind, W.D.; Toffer, H.

    1991-10-01

    The Fuel Assembly Area (FAA) at the Fast Flux Test Facility site on the Hanford Site at Richland, Washington currently is being prepared to fabricate mixed oxide fuel (U, Pu) for the FFTF. Calculational tools are required to perform criticality safety analyses for various process locations and to establish safe limits for fissile material handling at the FAA. These codes require validation against experimental data appropriate for the compositions that will be handled. Critical array experiments performed by Bierman provide such data for mixed oxide fuel in the range Pu/(U+Pu) = 22 wt %, and with Pu-240 contents equal to 12 wt %. Both the Monte Carlo Neutron Photon (MCNP) and the Winfrith Improved Multigroup Scheme (WIMS-E) computer codes were used to calculate the neutron multiplication factor for explicit models of the various critical arrays. The W-CACTUS modules within the WIMS-E code system was used to calculate k{infinity} for the explicit array configuration, as well as few-group cross sections that were then used in a three-dimensional diffusion theory code for the calculation of k{sub eff} for the finite array. 10 refs., 15 figs., 7 tabs.

  19. Design of a Compact Fatigue Tester for Testing Irradiated Materials

    SciTech Connect

    Hartsell, Brian; Campbell, Michael; Fitton, Michael; Hurh, Patrick; Ishida, Taku; Nakadaira, Takeshi

    2015-06-01

    A compact fatigue testing machine that can be easily inserted into a hot cell for characterization of irradiated materials is beneficial to help determine relative fatigue performance differences between new and irradiated material. Hot cell use has been carefully considered by limiting the size and weight of the machine, simplifying sample loading and test setup for operation via master-slave manipulator, and utilizing an efficient design to minimize maintenance. Funded from a US-Japan collaborative effort, the machine has been specifically designed to help characterize titanium material specimens. These specimens are flat cantilevered beams for initial studies, possibly utilizing samples irradiated at other sources of beam. The option to test spherically shaped samples cut from the T2K vacuum window is also available. The machine is able to test a sample to $10^7$ cycles in under a week, with options to count cycles and sense material failure. The design of this machine will be presented along with current status.

  20. Severe test of a dangling bond only model of thin film silicon p-i-n solar cell degradation

    SciTech Connect

    Willett, D.R.

    1987-06-25

    This paper uses a model that links previous research into the metastable defects found in undoped thin film Si:H or a-Si:H (TFS) films to the light-induced degradation of TFS solar cells. The fill factor changes of two experimental studies are modeled. The first series is a group of 704, 4-cm/sup 2/ p-i-n solar cells with eleven different i-layer thicknesses ranging from 1,000A to 200,000A. The second series is a group of 144, 4-cm/sup 2/ p-i-n solar cells all made in the same deposition and then exposed under different illumination levels and temperatures. The dangling bond model is shown to be an incomplete explanation of the fill factor changes due to light soaking. Data for the short time region and long time region cannot both be fit with the same parameters

  1. Photopatch and UV-irradiated patch testing in photosensitive dermatitis

    PubMed Central

    Rai, Reena; Thomas, Maria

    2016-01-01

    Background: The photopatch test is used to detect photoallergic reactions to various antigens such as sunscreens and drugs. Photosensitive dermatitis can be caused due to antigens like parthenium, fragrances, rubbers and metals. The photopatch test does not contain these antigens. Therefore, the Indian Standard Series (ISS) along with the Standard photopatch series from Chemotechnique Diagnostics, Sweden was used to detect light induced antigens. Aim: To detect light induced antigens in patients with photosensitive dermatitis. Methods: This study was done in a descriptive, observer blinded manner. Photopatch test and ISS were applied in duplicate on the patient's back by the standard method. After 24 hours, readings were recorded according to ICDRG criteria. One side was closed and other side irradiated with 14 J/cm2 of UVA and a second set of readings were recorded after 48 hrs. Result: The highest positivity was obtained with parthenium, with 18 out of 35 (51%) patients showing a positive patch test reaction with both photoallergic contact dermatitis and photoaggravation. Four patients (11%) showed positive patch test reaction suggestive of contact dermatitis to potassium dichromate and fragrance mix. Six patients had contact dermatitis to numerous antigens such as nickel, cobalt, chinoform and para-phenylenediamine. None of these patients showed photoaggravation on patch testing. Conclusion: Parthenium was found to cause photoallergy, contact dermatitis with photoaggravation and contact allergy. Hence, photopatch test and UV irradiated patch test can be an important tool to detect light induced antigens in patients with photosensitive dermatitis. PMID:26955581

  2. Test of radiation hardness of CMOS transistors under neutron irradiation

    SciTech Connect

    Sadrozinski, H.F.W.; Rowe, W.A.; Seiden, A.; Spencer, E.; Hoffman, C.M.; Holtkamp, D.; Kinnison, W.W.; Sommer, W.F. Jr.; Ziock, H.J.

    1989-01-01

    We have tested 2 micron CMOS test structures from various foundries in the LAMPF Beam stop for radiation damage under prolongued neutron irradiation. The fluxes employed covered the region expected to be encountered at the SSC and led to fluences of up to 10/sup 14/ neutrons/cm/sup 2/ in about 500 hrs of running. We show that test structures which have been measured to survive ionizing radiation of the order MRad also survive these high neutron fluences. 5 refs., 4 figs.

  3. [Effect of cignolin and infrared irradiation on the patch test and lymphocyte transformation test].

    PubMed

    Eter, J; Schulze, H J; Mahrle, G

    1990-09-01

    In a study on the effect of anthralin and infrared irradiation (IR) on the allergic patch test in vivo and the lymphocyte transformation test in vitro, we observed that anthralin enhanced the local test reaction. Our findings suggest an additive reaction of toxic anthralin dermatitis and allergic test reaction. Immunohistology showed that additional treatment with anthralin resulted in elevated numbers of the OKT-6+ dendritic cells in the epidermis. Anthralin in concentrations of greater than or equal to 10(-5) M inhibited the lymphocyte transformation in vitro. IR irradiation-either before or during patch testing-did not significantly influence the allergic test reaction or the lymphocyte transformation, if the temperature was adjusted to 37 degrees C. In comparison to convective heat, we found no specific effect of IR irradiation. PMID:2264370

  4. Neutron irradiation and compatibility testing of Li 2O

    NASA Astrophysics Data System (ADS)

    Porter, D. L.; Krsul, J. R.; Laug, M. T.; Walters, L. C.; Tetenbaum, M.

    1984-05-01

    A study was made of the neutron irradiation behavior of 6Li-enriched Li 2O in EBR-II. In addition, a stress corrosion study was performed ex-reactor to test the compatibility of Li 2O with a variety of stainless steels. The irradiation tests showed that tritium and helium retention in the Li 2O (˜ 89% dense) lessened with neutron exposure, and the retentions appear to approach a steady-state after ˜ 1% 6Li burnup. The stress corrosion studies, using 316 stainless steel (Ti-modified) and a 35% Ni alloy, showed that stress does not enhance the corrosion, and that dry Li 2O is not significantly corrosive, the LiOH content producing the corrosive effects. Corrosion, in general, was not severe because a passivation in sealed capsules seemed to occur after a time which greatly reduced corrosion rates.

  5. Design considerations of the irradiation test vehicle for the advanced test reactor

    SciTech Connect

    Tsai, H.; Gomes, I.C.; Smith, D.L.

    1997-08-01

    An irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) is being jointly developed by the Lockheed Martin Idaho Technologies Company (LMIT) and the U.S. Fusion Program. The vehicle is intended for neutron irradiation testing of candidate structural materials, including vanadium-based alloys, silicon carbide composites, and low activation steels. It could possibly be used for U.S./Japanese collaboration in the Jupiter Program. The first test train is scheduled to be completed by September 1998. In this report, we present the functional requirements for the vehicle and a preliminary design that satisfies these requirements.

  6. Test plan for the Parallex CANDU-MOX irradiation

    SciTech Connect

    Copeland, G.L.

    1997-06-01

    One of several options being considered by the United States and the Russian Federation for the disposition of excess plutonium from dismantled weapons is to convert it to mixed-oxide (MOX) fuel for use in Canadian uranium-deuterium (CANDU) reactors. This report describes an irradiation test demonstrating the feasibility of this concept with laboratory quantities of MOX fuel placed in the pressurized loops of the National Research Universal test reactor at the Atomic Energy of Canada, Ltd., Chalk River Laboratories. The objective of the Parallex (for parallel experiment) test is to simultaneously test laboratory-produced quantities of US and R.F. MOX fuel in a test reactor under heat generation rates representing those expected in the CANDU reactors. The MOX fuel will be produced with plutonium from disassembled weapons at the Los Alamos National Laboratory in the United States and at the Bochvar Institute in the Russian Federation. Thus, the test will serve to demonstrate the accomplishment of many parts of the disposition mission: disassembly of weapons, conversion of the plutonium to oxide, fabrication of MOX fuel, assembly of fuel elements and bundles, shipment to a reactor, irradiation, and finally, storage of the spent fuel elements awaiting eventual disposition in a geologic repository in Canada.

  7. AGR 3/4 Irradiation Test Final As Run Report

    SciTech Connect

    Collin, Blaise P.

    2015-06-01

    Several fuel and material irradiation experiments have been planned for the Idaho National Laboratory Advanced Reactor Technologies Technology Development Office Advanced Gas Reactor Fuel Development and Qualification Program (referred to as the INL ART TDO/AGR fuel program hereafter), which supports the development and qualification of tristructural-isotropic (TRISO) coated particle fuel for use in HTGRs. The goals of these experiments are to provide irradiation performance data to support fuel process development, qualify fuel for normal operating conditions, support development and validation of fuel performance and fission product transport models and codes, and provide irradiated fuel and materials for post irradiation examination and safety testing (INL 05/2015). AGR-3/4 combined the third and fourth in this series of planned experiments to test TRISO coated low enriched uranium (LEU) oxycarbide fuel. This combined experiment was intended to support the refinement of fission product transport models and to assess the effects of sweep gas impurities on fuel performance and fission product transport by irradiating designed-to-fail fuel particles and by measuring subsequent fission metal transport in fuel-compact matrix material and fuel-element graphite. The AGR 3/4 fuel test was successful in irradiating the fuel compacts to the burnup and fast fluence target ranges, considering the experiment was terminated short of its initial 400 EFPD target (Collin 2015). Out of the 48 AGR-3/4 compacts, 42 achieved the specified burnup of at least 6% fissions per initial heavy-metal atom (FIMA). Three capsules had a maximum fuel compact average burnup < 10% FIMA, one more than originally specified, and the maximum fuel compact average burnup was <19% FIMA for the remaining capsules, as specified. Fast neutron fluence fell in the expected range of 1.0 to 5.5×1025 n/m2 (E >0.18 MeV) for all compacts. In addition, the AGR-3/4 experiment was globally successful in keeping the

  8. Updated FY12 Ceramic Fuels Irradiation Test Plan

    SciTech Connect

    Nelson, Andrew T.

    2012-05-24

    The Fuel Cycle Research and Development program is currently devoting resources to study of numerous fuel types with the aim of furthering understanding applicable to a range of reactors and fuel cycles. In FY11, effort within the ceramic fuels campaign focused on planning and preparation for a series of rabbit irradiations to be conducted at the High Flux Isotope Reactor located at Oak Ridge National Laboratory. The emphasis of these planned tests was to study the evolution of thermal conductivity in uranium dioxide and derivative compositions as a function of damage induced by neutron damage. Current fiscal realities have resulted in a scenario where completion of the planned rabbit irradiations is unlikely. Possibilities for execution of irradiation testing within the ceramic fuels campaign in the next several years will thus likely be restricted to avenues where strong synergies exist both within and outside the Fuel Cycle Research and Development program. Opportunities to augment the interests and needs of modeling, advanced characterization, and other campaigns present the most likely avenues for further work. These possibilities will be pursued with the hope of securing future funding. Utilization of synthetic microstructures prepared to better understand the most relevant actors encountered during irradiation of ceramic fuels thus represents the ceramic fuel campaign's most efficient means to enhance understanding of fuel response to burnup. This approach offers many of the favorable attributes embraced by the Separate Effects Testing paradigm, namely production of samples suitable to study specific, isolated phenomena. The recent success of xenon-imbedded thick films is representative of this approach. In the coming years, this strategy will be expanded to address a wider range of problems in conjunction with use of national user facilities novel characterization techniques to best utilize programmatic resources to support a science-based research program.

  9. Characterization of nuclear transmutations in materials irradiated test facilities

    SciTech Connect

    Gomes, I.C.; Smith, D.L.

    1994-05-01

    This study presents a comparison of nuclear transmutation rates for candidate fusion first wall/blanket structural materials in available, fission test reactors with those produced in a typical fusion spectrum. The materials analyzed in this study include a vanadium alloy (V-4Cr-4Ti), a reduced activation martensitic steel (Fe-9Cr-2WVTa), a high conductivity copper alloy (Cu-Cr-Zr), and the SiC compound. The fission irradiation facilities considered include the EBR-II fast reactor, and two high flux mixed spectrum reactors, HFIR (High Flux Irradiation Reactor) and SM-3 (Russian reactor). The transmutation and dpa rates that occur in these test reactors are compared with the calculated transmutation and dpa rates characteristic of a D-T fusion first wall spectrum. In general, past work has shown that the displacement damage produced in these fission reactors can be correlated to displacement damage in a fusion spectrum; however, the generation of helium and hydrogen through threshold reactions [(n,x,{alpha}) and (n,xp)] are much higher in a fusion spectrum. As shown in this study, the compositional changes for several candidate structural materials exposed to a fast fission reactor spectrum are very low, similar to those for a characteristic fusion spectrum. However, the relatively high thermalized spectrum of a mixed spectrum reactor produces transmutation rates quite different from the ones predicted for a fusion reactor, resulting in substantial differences in the final composition of several candidate alloys after relatively short irradiation time.

  10. Characterization of irradiated test structures for the CMS tracker upgrade

    NASA Astrophysics Data System (ADS)

    Lutzer, Bernhard

    2013-12-01

    The CMS collaboration is currently conducting a campaign to identify radiation-hard materials for an upgrade of the CMS tracker. This upgrade is needed to be able to cope with the higher radiation background of the future HL-LHC; additionally the performance of the current tracker will be significantly degraded at the time of the upgrade, requiring a replacement. Several different test structures (TSs) and sensors have been designed for a 6 in. wafer layout. These wafers were produced by an industrial supplier (Hamamatsu Photonics K.K.) and differ by their bulk material (Float Zone, Magnetic Czochralski and CVD-Epi), thickness (from 50 μm to 320 μm) and N-P type doping. These TSs consist of different microelectronic devices including diodes, resistors or MOS structures. They enable the extraction of parameters which are not accessible in a silicon detector and allow the assessment of the quality of the sensors produced on the same wafer. The TSs have been irradiated with protons and neutrons to emulate the radiation damage caused by the particle fluence inside the future CMS tracker after 10 years of operation. This contribution will present measurements of non-irradiated and irradiated test structures at different fluences. The changes of the properties of the microelectronic devices will be discussed as well as the design of the TSs.

  11. Temperature controlled material irradiation in the advanced test reactor

    SciTech Connect

    Furstenau, R.V.; Ingrahm, F.W.

    1995-12-31

    The Advanced Test Reactor (ATR) is located at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, USA and is owned and regulated by the U.S. Department of Energy (US DOE). The ATR is operated for the US DOE by Lockheed Martin Idaho Technologies. In recent years, prime irradiation space in the ATR has been made available for use by customers having irradiation service needs in addition to the reactor`s principal user, the U.S. Naval Nuclear Propulsion Program. To enhance the reactor`s capabilities, the US DOE has initiated the development of an Irradiation Test Vehicle (ITV) capable of providing neutron spectral tailoring and temperature control for up to 28 experiments. The ATR-ITV will have the flexibility to simultaneously support a variety of experiments requiring fast, thermal or mixed spectrum neutron environments. Temperature control is accomplished by varying the thermal conductivity across a gas gap established between the experiment specimen capsule wall and the experiment `in-pile tube (IPT)` inside diameter. Thermal conductivity is adjusted by alternating the control gas mixture ratio of two gases with different thermal conductivities.

  12. Fabrication of FFTF fuel pin wire wrap

    SciTech Connect

    Epperson, E.M.

    1980-06-01

    Lateral spacing between FFTF fuel pins is required to provide a passageway for the sodium coolant to flow over each pin to remove heat generated by the fission process. This spacing is provided by wrapping each fuel pin with type 316 stainless steel wire. This wire has a 1.435mm (0.0565 in.) to 1.448mm (0.0570 in.) diameter, contains 17 +- 2% cold work and was fabricated and tested to exacting RDT Standards. About 500 kg (1100 lbs) or 39 Km (24 miles) of fuel pin wrap wire is used in each core loading. Fabrication procedures and quality assurance tests are described.

  13. Failure Analysis of Electrical Pin Connectors

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James M.; Smith, Stephen W.; Herath, Jeffrey A.

    2008-01-01

    A study was initiated to determine the root cause of failure for circuit board electrical connection pins that failed during vibRatory testing. The circuit board is part of an unmanned space probe, and the vibratory testing was performed to ensure component survival of launch loading conditions. The results of this study show that the pins failed as a result of fatigue loading.

  14. Pins for direct restorations.

    PubMed

    Papa, J; Wilson, P R; Tyas, M J

    1993-10-01

    Self-threading dentine pins permit the retention of large complex direct restorations but there are problems associated with their placement. Strain and crazing of dentine following pin insertion and pulpal and lateral perforations are common. Perforations can be avoided by operator awareness of tooth morphology. Strain and crazing has been found to be minimized by unscrewing the pin slightly after insertion, by using pins with a tap thread, and by using the smallest pin possible. Twist drill form and dulling affects the pin channel shape which in turn influences pin seating. A lack of standardization of pin and twist drill diameter and length has been implicated as the cause of poor pin retention. Manufacturers, in an attempt to standardize the depth of penetration of pins, have incorporated shoulders at the midpoint of the pin, which has met with varying success. More research in the area of limiting pin penetration is necessary, as well as attempts to improve the quality control of pin and twist drill manufacture. PMID:8227686

  15. TEMPERATURE DEPENDANT BEHAVIOUR OBSERVED IN THE AFIP-6 IRRADIATION TEST

    SciTech Connect

    A. B. Robinson; D. M. Wachs; P. Medvedev; S.J. Miller; F. J. Rice; M. K. Meyer; D. M. Perez

    2012-03-01

    The AFIP-6 test assembly was irradiated for one cycle in the Advanced Test Reactor at Idaho National Laboratory. The experiment was designed to test two monolithic fuel plates at power and burn-ups which bounded the operating conditions of both ATR and HFIR driver fuel. Both plates contained a solid U-Mo fuel foil with a zirconium diffusion barrier between 6061-aluminum cladding plates bonded by hot isostatic pressing. The experiment was designed with an orifice to restrict the coolant flow in order to obtain prototypic coolant temperature conditions. While these coolant temperatures were obtained, the reduced flow resulted in a sufficiently low heat transfer coefficient that failure of the fuel plates occurred. The increased fuel temperature led to significant variations in the fission gas retention behaviour of the U-Mo fuel. These variations in performance are outlined herein.

  16. Corrective Action Decision Document/Closure Report for Corrective Action Unit 371: Johnnie Boy Crater and Pin Stripe Nevada Test Site, Nevada, Revision 0

    SciTech Connect

    Patrick Matthews

    2010-07-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit 371, Johnnie Boy Crater and Pin Stripe, located within Areas 11 and 18 at the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit (CAU) 371 comprises two corrective action sites (CASs): • 11-23-05, Pin Stripe Contamination Area • 18-45-01, U-18j-2 Crater (Johnnie Boy) The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 371 based on the implementation of corrective actions. The corrective action of closure in place with administrative controls was implemented at both CASs. Corrective action investigation (CAI) activities were performed from January 8, 2009, through February 16, 2010, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 371: Johnnie Boy Crater and Pin Stripe. The approach for the CAI was divided into two facets: investigation of the primary release of radionuclides and investigation of other releases (migration in washes and chemical releases). The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 371 dataset of investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the dataset is acceptable for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against final action levels (FALs) established in this document. Radiological doses exceeding the FAL of 25 millirem per year were not found to be present in the surface soil. However, it was assumed that radionuclides are present in subsurface media within the Johnnie Boy crater and the fissure at Pin Stripe. Due to the assumption of radiological dose exceeding the FAL, corrective actions were undertaken

  17. Irradiation Creep in Graphite

    SciTech Connect

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  18. Thermoacoustic pin stacks. Summary report

    SciTech Connect

    Keolian, R.M.

    1994-07-06

    The construction and testing of a new stack geometry for thermoacoustic engines, called a pin stack, has been started. The stack is at the heart of a class of heat engines that use sound to deliver refrigeration, or use a temperature difference to generate sound. Calculations show that the pin stack should make useful improvements in engine efficiency. About 2000 wires will be hand sewn in a hexagonal lattice between the hot and cold heat exchangers in a sound source using low pressure neon gas between 300 K and 77 K. Thermoacoustics, Refrigeration, Acoustic source, Heat pump.

  19. Optical fuel pin scanner. [Patent application; for reading identifications

    DOEpatents

    Kirchner, T.L.; Powers, H.G.

    1980-12-09

    This patent relates to an optical identification system developed for post-irradiation disassembly and analysis of fuel bundle assemblies. The apparatus is designed to be lowered onto a stationary fuel pin to read identification numbers or letters imprinted on the circumference of the top fuel pin and cap. (DLC)

  20. Irradiation response of commercial, high-Tc superconducting tapes: Electromagnetic transport properties

    SciTech Connect

    Gapud, A. A.; Greenwood, N. T.; Alexander, J. A.; Khan, A.; Leonard, K. J.; Aytug, T.; List III, F. A.; Rupich, M. W.; Zhang, Y.

    2015-07-01

    Effects of low dose irradiation on the electrical transport current properties of commercially available high-temperature superconducting, coated-conductor tapes were investigated, in view of potential applications in the irradiative environment of fusion reactors. Three different tapes, each with unique as-grown flux-pinning structures, were irradiated with Au and Ni ions at energies that provide a range of damage effects, with accumulated damage levels near that expected for conductors in a fusion reactor environment. Measurements using transport current determined the pre- and post-irradiation resistivity, critical current density, and pinning force density, yielding critical temperatures, irreversibility lines, and inferred vortex creep rates. Results show that at the irradiation damage levels tested, any detriment to as-grown pre-irradiation properties is modest; indeed in one case already-superior pinning forces are enhanced, leading to higher critical currents.

  1. Irradiation response of commercial, high-Tc superconducting tapes: Electromagnetic transport properties

    NASA Astrophysics Data System (ADS)

    Gapud, A. A.; Greenwood, N. T.; Alexander, J. A.; Khan, A.; Leonard, K. J.; Aytug, T.; List, F. A.; Rupich, M. W.; Zhang, Y.

    2015-07-01

    Effects of low dose ion irradiation on the electrical transport current properties of commercially available high-temperature superconducting, coated-conductor tapes were investigated, in view of potential applications in irradiative environments. Three different tapes, each with unique and tailored as-grown flux-pinning structures, were irradiated with Au and Ni ions at energies that provide a range of damage effects, with accumulated damage levels near that expected for conductors in, for example, a fusion reactor environment. Measurements using transport current determined the pre- and post-irradiation resistivity, critical current density, and pinning force density, yielding critical temperatures, irreversibility lines, and inferred vortex creep rates. Results show that, at the irradiation damage levels tested, any detriment to as-grown pre-irradiation properties is modest; indeed in one case already-superior pinning forces are enhanced, leading to higher critical currents.

  2. Irradiation response of commercial, high-Tc superconducting tapes: Electromagnetic transport properties

    DOE PAGESBeta

    Gapud, A. A.; Greenwood, N. T.; Alexander, J. A.; Khan, A.; Leonard, K. J.; Aytug, T.; List III, F. A.; Rupich, M. W.; Zhang, Y.

    2015-07-01

    Effects of low dose irradiation on the electrical transport current properties of commercially available high-temperature superconducting, coated-conductor tapes were investigated, in view of potential applications in the irradiative environment of fusion reactors. Three different tapes, each with unique as-grown flux-pinning structures, were irradiated with Au and Ni ions at energies that provide a range of damage effects, with accumulated damage levels near that expected for conductors in a fusion reactor environment. Measurements using transport current determined the pre- and post-irradiation resistivity, critical current density, and pinning force density, yielding critical temperatures, irreversibility lines, and inferred vortex creep rates. Results showmore » that at the irradiation damage levels tested, any detriment to as-grown pre-irradiation properties is modest; indeed in one case already-superior pinning forces are enhanced, leading to higher critical currents.« less

  3. Irradiation Test of Advanced PWR Fuel in Fuel Test Loop at HANARO

    SciTech Connect

    Yang, Yong Sik; Bang, Je Geon; Kim, Sun Ki; Song, Kun Woo; Park, Su Ki; Seo, Chul Gyo

    2007-07-01

    A new fuel test loop has been constructed in the research reactor HANARO at KAERI. The main objective of the FTL (Fuel Test Loop) is an irradiation test of a newly developed LWR fuel under PWR or Candu simulated conditions. The first test rod will be loaded within 2007 and its irradiation test will be continued until a rod average their of 62 MWd/kgU. A total of five test rods can be loaded into the IPS (In-Pile Section) and fuel centerline temperature, rod internal pressure and fuel stack elongation can be measured by an on-line real time system. A newly developed advanced PWR fuel which consists of a HANA{sup TM} alloy cladding and a large grain UO{sub 2} pellet was selected as the first test fuel in the FTL. The fuel cladding, the HANA{sup TM} alloy, is an Nb containing Zirconium alloy that has shown better corrosion and creep resistance properties than the current Zircaloy-4 cladding. A total of six types of HANA{sup TM} alloy were developed and two or three of these candidate alloys will be used as test rod cladding, which have shown a superior performance to the others. A large-grain UO{sub 2} pellet has a 14{approx}16 micron 2D diameter grain size for a reduction of a fission gas release at a high burnup. In this paper, characteristics of the FTL and IPS are introduced and the expected operation and irradiation conditions are summarized for the test periods. Also the preliminary fuel performance analysis results, such as the cladding oxide thickness, fission gas release and rod internal pressure, are evaluated from the test rod safety analysis aspects. (authors)

  4. Post irradiation analysis of RERTR-7A, 7B and RERTR-8 tests

    SciTech Connect

    Hofman, G.L.; Kim, Yeon Soo; Shevlyakov, G.V.; Robinson, A.B.

    2008-07-15

    Addition of 2 wt% or more of silicon in the Al matrix for U-Mo/Al dispersion fuel has proved to be effective in reducing interaction layer growth from the RERTR-7A test to a burnup of {approx}100 at% U-235 (LEU equivalent). The recent RERTR-8 test also showed the consistent results. In this paper, we present the post irradiation analysis results of these tests. A considerable number of monolithic fuel plates were irradiated in the RERTR-7A and RERTR-8 tests. The post irradiation results of these plates are also included. The RERTR-7B test was a lower burnup test with similar power to the RERTR-7A. In this test, dispersion fuel plates with U-7Mo-1Ti and U- 7Mo-2Zr in Al-5Si were irradiated. The post irradiation results of these plates are also covered. (author)

  5. Straight SU-8 pins

    NASA Astrophysics Data System (ADS)

    Safavieh, R.; Pla Roca, M.; Qasaimeh, M. A.; Mirzaei, M.; Juncker, D.

    2010-05-01

    SU-8 can be patterned with high resolution, is flexible and tough. These characteristics qualify SU-8 as a material for making spotting pins for printing DNA and protein microarrays, and it can potentially replace the commonly used silicon and steel pins that are expensive, brittle in the case of silicon and can damage the substrate during the printing process. SU-8, however, accumulates large internal stress during fabrication and, as a consequence, thin and long SU-8 structures bend and coil up, which precludes using it for long, freestanding structures such as pins. Here we introduce (i) a novel fabrication process that allows the making of 30 mm long, straight spotting pins that feature (ii) a new design and surface chemistry treatments for better capillary flow control and more homogeneous spotting. A key innovation for the fabrication is a post-processing annealing step with slow temperature ramping and mechanical clamping between two identical substrates to minimize stress buildup and render it symmetric, respectively, which together yield a straight SU-8 structure. SU-8 pins fabricated using this process are compliant and resilient and can buckle without damage during printing. The pins comprise a novel flow stop valve for accurate metering of fluids, and their surface was chemically patterned to render the outside of the pin hydrophobic while the inside of the slit is hydrophilic, and the slit thus spontaneously fills when dipped into a solution while preventing droplet attachment on the outside. A single SU-8 pin was used to print 1392 protein spots in one run. SU-8 pins are inexpensive, straightforward to fabricate, robust and may be used as disposable pins for microarray fabrication. These pins serve as an illustration of the potential application of ultralow stress SU-8 for making freestanding microfabricated polymer microstructures.

  6. Statistics of dislocation pinning at localized obstacles

    NASA Astrophysics Data System (ADS)

    Dutta, A.; Bhattacharya, M.; Barat, P.

    2014-10-01

    Pinning of dislocations at nanosized obstacles like precipitates, voids, and bubbles is a crucial mechanism in the context of phenomena like hardening and creep. The interaction between such an obstacle and a dislocation is often studied at fundamental level by means of analytical tools, atomistic simulations, and finite element methods. Nevertheless, the information extracted from such studies cannot be utilized to its maximum extent on account of insufficient information about the underlying statistics of this process comprising a large number of dislocations and obstacles in a system. Here, we propose a new statistical approach, where the statistics of pinning of dislocations by idealized spherical obstacles is explored by taking into account the generalized size-distribution of the obstacles along with the dislocation density within a three-dimensional framework. Starting with a minimal set of material parameters, the framework employs the method of geometrical statistics with a few simple assumptions compatible with the real physical scenario. The application of this approach, in combination with the knowledge of fundamental dislocation-obstacle interactions, has successfully been demonstrated for dislocation pinning at nanovoids in neutron irradiated type 316-stainless steel in regard to the non-conservative motion of dislocations. An interesting phenomenon of transition from rare pinning to multiple pinning regimes with increasing irradiation temperature is revealed.

  7. Statistics of dislocation pinning at localized obstacles

    SciTech Connect

    Dutta, A.; Bhattacharya, M. Barat, P.

    2014-10-14

    Pinning of dislocations at nanosized obstacles like precipitates, voids, and bubbles is a crucial mechanism in the context of phenomena like hardening and creep. The interaction between such an obstacle and a dislocation is often studied at fundamental level by means of analytical tools, atomistic simulations, and finite element methods. Nevertheless, the information extracted from such studies cannot be utilized to its maximum extent on account of insufficient information about the underlying statistics of this process comprising a large number of dislocations and obstacles in a system. Here, we propose a new statistical approach, where the statistics of pinning of dislocations by idealized spherical obstacles is explored by taking into account the generalized size-distribution of the obstacles along with the dislocation density within a three-dimensional framework. Starting with a minimal set of material parameters, the framework employs the method of geometrical statistics with a few simple assumptions compatible with the real physical scenario. The application of this approach, in combination with the knowledge of fundamental dislocation-obstacle interactions, has successfully been demonstrated for dislocation pinning at nanovoids in neutron irradiated type 316-stainless steel in regard to the non-conservative motion of dislocations. An interesting phenomenon of transition from rare pinning to multiple pinning regimes with increasing irradiation temperature is revealed.

  8. Preirradiation Data summary for the GRIT-II HTGR irradiation test specimens

    SciTech Connect

    Hollenbeck, J.L.

    1995-05-01

    This document comprises a report of preirradiation data on the NPR-5 and NPR-8 fuel types tested in the GRIT-II HTGR Irradiation Test in the Advanced Test Reactor. A summary of fuel characterization, GRIT-II test fabrication data, outlines of fabrication procedures, and a discussion of the GRIT technique for individual fuel bead testing is presented. Objective of the test is to provide individual irradiated HTGR fuel beads for post-irradiation valuation with total target burnups of 25, 50, and 75% fissions of initial metal atoms (FIMA).

  9. Recent Accomplishments in the Irradiation Testing of Engineering-Scale Monolithic Fuel Specimens

    SciTech Connect

    N.E. Woolstenhulme; D.M. Wachs; M.K. Meyer; H.W. Glunz; R.B. Nielson

    2012-10-01

    The US fuel development team is focused on qualification and demonstration of the uranium-molybdenum monolithic fuel including irradiation testing of engineering-scale specimens. The team has recently accomplished the successful irradiation of the first monolithic multi-plate fuel element assembly within the AFIP-7 campaign. The AFIP-6 MKII campaign, while somewhat truncated by hardware challenges, exhibited successful irradiation of a large-scale monolithic specimen under extreme irradiation conditions. The channel gap and ultrasonic data are presented for AFIP-7 and AFIP-6 MKII, respectively. Finally, design concepts are summarized for future irradiations such as the base fuel demonstration and design demonstration experiment campaigns.

  10. AFCI Fuel Irradiation Test Plan, Test Specimens AFC-1Æ and AFC-1F

    SciTech Connect

    D. C. Crawford; S. L. Hayes; B. A. Hilton; M. K. Meyer; R. G. Ambrosek; G. S. Chang; D. J. Utterbeck

    2003-11-01

    The U. S. Advanced Fuel Cycle Initiative (AFCI) seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products, thereby dramatically decreasing the volume of material requiring disposition and the long-term radiotoxicity and heat load of high-level waste sent to a geologic repository (DOE, 2003). One important component of the technology development is actinide-bearing transmutation fuel forms containing plutonium, neptunium, americium (and possibly curium) isotopes. There are little irradiation performance data available on non-fertile fuel forms, which would maximize the destruction rate of plutonium, and low-fertile (i.e., uranium-bearing) fuel forms, which would support a sustainable nuclear energy option. Initial scoping level irradiation tests on a variety of candidate fuel forms are needed to establish a transmutation fuel form design and evaluate deployment of transmutation fuels.

  11. Photoactive TiO2 antibacterial coating on surgical external fixation pins for clinical application

    PubMed Central

    Villatte, Guillaume; Massard, Christophe; Descamps, Stéphane; Sibaud, Yves; Forestier, Christiane; Awitor, Komla-Oscar

    2015-01-01

    External fixation is a method of osteosynthesis currently used in traumatology and orthopedic surgery. Pin tract infection is a common problem in clinical practice. Infection occurs after bacterial colonization of the pin due to its contact with skin and the local environment. One way to prevent such local contamination is to create a specific coating that could be applied in the medical field. In this work, we developed a surface coating for external fixator pins based on the photocatalytic properties of titanium dioxide, producing a bactericidal effect with sufficient mechanical strength to be compatible with surgical use. The morphology and structure of the sol-gel coating layers were characterized using, respectively, scanning electron microscopy and X-ray diffraction. The resistance properties of the coating were investigated by mechanical testing. Photodegradation of acid orange 7 in aqueous solution was used as a probe to assess the photocatalytic activity of the titanium dioxide layers under ultraviolet irradiation. The bactericidal effect induced by the process was evaluated against two strains, ie, Staphylococcus aureus and multiresistant Staphylococcus epidermidis. The coated pins showed good mechanical strength and an efficient antibacterial effect after 1 hour of ultraviolet irradiation. PMID:26005347

  12. PINS Spectrum Identification Guide

    SciTech Connect

    A.J. Caffrey

    2012-03-01

    The Portable Isotopic Neutron Spectroscopy—PINS, for short—system identifies the chemicals inside munitions and containers without opening them, a decided safety advantage if the fill chemical is a hazardous substance like a chemical warfare agent or an explosive. The PINS Spectrum Identification Guide is intended as a reference for technical professionals responsible for the interpretation of PINS gamma-ray spectra. The guide is divided into two parts. The three chapters that constitute Part I cover the science and technology of PINS. Neutron activation analysis is the focus of Chapter 1. Chapter 2 explores PINS hardware, software, and related operational issues. Gamma-ray spectral analysis basics are introduced in Chapter 3. The six chapters of Part II cover the identification of PINS spectra in detail. Like the PINS decision tree logic, these chapters are organized by chemical element: phosphorus-based chemicals, chlorine-based chemicals, etc. These descriptions of hazardous, toxic, and/or explosive chemicals conclude with a chapter on the identification of the inert chemicals, e.g. sand, used to fill practice munitions.

  13. Ion irradiation testing of Improved Accident Tolerant Cladding Materials

    SciTech Connect

    Anderoglu, Osman; Tesmer, Joseph R.; Maloy, Stuart A.

    2014-01-14

    This report summarizes the results of ion irradiations conducted on two FeCrAl alloys (named as ORNL A&B) for improving the accident tolerance of LWR nuclear fuel cladding. After irradiation with 1.5 MeV protons to ~0.5 to ~1 dpa and 300°C nanoindentations were performed on the cross-sections along the ion range. An increase in hardness was observed in both alloys. Microstructural analysis shows radiation induced defects.

  14. Initiate test loop irradiations of ALSEP process solvent

    SciTech Connect

    Peterman, Dean R.; Olson, Lonnie G.; McDowell, Rocklan G.

    2014-09-01

    This report describes the initial results of the study of the impacts of gamma radiolysis upon the efficacy of the ALSEP process and is written in completion of milestone M3FT-14IN030202. Initial irradiations, up to 100 kGy absorbed dose, of the extraction section of the ALSEP process have been completed. The organic solvent used for these experiments contained 0.05 M TODGA and 0.75 M HEH[EHP] dissolved in n-dodecane. The ALSEP solvent was irradiated while in contact with 3 M nitric acid and the solutions were sparged with compressed air in order to maintain aerated conditions. The irradiated phases were used for the determination of americium and europium distribution ratios as a function of absorbed dose for the extraction and stripping conditions. Analysis of the irradiated phases in order to determine solvent composition as a function of absorbed dose is ongoing. Unfortunately, the failure of analytical equipment necessary for the analysis of the irradiated samples has made the consistent interpretation of the analytical results difficult. Continuing work will include study of the impacts of gamma radiolysis upon the extraction of actinides and lanthanides by the ALSEP solvent and the stripping of the extracted metals from the loaded solvent. The irradiated aqueous and organic phases will be analyzed in order to determine the variation in concentration of solvent components with absorbed gamma dose. Where possible, radiolysis degradation product will be identified.

  15. Shear punch testing of candidate reactor materials after irradiation in fast reactors and spallation environments

    NASA Astrophysics Data System (ADS)

    Maloy, S. A.; Romero, T. J.; Hosemann, P.; Toloczko, M. B.; Dai, Y.

    2011-10-01

    Ferritic/martensitic steels and nickel-base superalloys are potential materials for use in spallation targets and fusion and fast reactors. To investigate the effects of irradiation on these materials, tests were performed after irradiation in the high energy proton beam at the Paul Scherrer Institute (SINQ Target Irradiation Program (STIP), 570 MeV), as well on specimens obtained from a driver duct irradiated in the Fast Flux Test Facility (FFTF). Dose accumulations were up to 18 dpa for STIP irradiations (at 147-406 °C) and up to 155 dpa in FFTF (at 383-505 °C). The helium/dpa ratios ranged from 0.2 to 80 appm/dpa. Mechanical testing was performed at 25 °C. Increases in shear yield and shear maximum stress with increasing dose mirrored the results observed from companion tensile tests.

  16. IRRADIATION TESTING OF THE RERTR FUEL MINIPLATES WITH BURNABLE ABSORBERS IN THE ADVANCED TEST REACTOR

    SciTech Connect

    I. Glagolenko; D. Wachs; N. Woolstenhulme; G. Chang; B. Rabin; C. Clark; T. Wiencek

    2010-10-01

    Based on the results of the reactor physics assessment, conversion of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) can be potentially accomplished in two ways, by either using U-10Mo monolithic or U-7Mo dispersion type plates in the ATR fuel element. Both designs, however, would require incorporation of the burnable absorber in several plates of the fuel element to compensate for the excess reactivity and to flatten the radial power profile. Several different types of burnable absorbers were considered initially, but only borated compounds, such as B4C, ZrB2 and Al-B alloys, were selected for testing primarily due to the length of the ATR fuel cycle and fuel manufacturing constraints. To assess and compare irradiation performance of the U-Mo fuels with different burnable absorbers we have designed and manufactured 28 RERTR miniplates (20 fueled and 8 non-fueled) containing fore-mentioned borated compounds. These miniplates will be tested in the ATR as part of the RERTR-13 experiment, which is described in this paper. Detailed plate design, compositions and irradiations conditions are discussed.

  17. Mutagenicity test of gamma-irradiated humus in aqueous solution for the safety evaluation of irradiated water

    NASA Astrophysics Data System (ADS)

    Furuta, Masakazu; Hosokawa, Yasushi; Fujita, Shin'ichi; Nagata, Yoshio; Katayama, Tadashi; Shiomi, Nobuyuki; Toratani, Hirokazu; Takeda, Atsuhiko

    Fulvic acid and humic acid which are difficult to be removed from water by ordinary purification processes were degraded by 60Co gamma-irradiation and the partially degraded samples were examined for the mutagenetic activity using Salmonella mutagenicity test. No mutagenic activity was detected even in 1000-fold concentrated samples. Addition of S9 mix did not stimulate mutagenicity either. These results revealed that 60Co gamma irradiation did not produce mutagenetic substances from the partially degraded fulvic and humic acids at detectable quantities.

  18. Spring loaded locator pin assembly

    DOEpatents

    Groll, T.A.; White, J.P.

    1998-03-03

    This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece. 5 figs.

  19. Spring loaded locator pin assembly

    DOEpatents

    Groll, Todd A.; White, James P.

    1998-01-01

    This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece.

  20. The actuated latch pin and its development

    NASA Technical Reports Server (NTRS)

    Lawlor, P. J.

    1980-01-01

    An actuated latch pin developed to meet the need for a reusable locking device is described. The unit can function as a pin puller or as a pin pusher latch. Initial prototype testing demonstrated the feasibility of the device with the unit being driven from a 28 V dc supply and using 15 W to drive a 12 mm diameter pin through a stroke of 10 mm with a side load of 100 N in 120 ms. High wear rates with a MOS2 lubrication on the ballscrew and angular contact bearings have necessitated the reduction in the duty cycle from 1000 cycles in air and vacuum to 100 in air and 1000 in vacuum.

  1. Irradiation Programs and Test Plans to Assess High-Fluence Irradiation Assisted Stress Corrosion Cracking Susceptibility.

    SciTech Connect

    Teysseyre, Sebastien

    2015-03-01

    . Irradiation assisted stress corrosion cracking (IASCC) is a known issue in current reactors. In a 60 year lifetime, reactor core internals may experience fluence levels up to 15 dpa for boiling water reactors (BWR) and 100+ dpa for pressurized water reactors (PWR). To support a safe operation of our fleet of reactors and maintain their economic viability it is important to be able to predict any evolution of material behaviors as reactors age and therefore fluence accumulated by reactor core component increases. For PWR reactors, the difficulty to predict high fluence behavior comes from the fact that there is not a consensus of the mechanism of IASCC and that little data is available. It is however possible to use the current state of knowledge on the evolution of irradiated microstructure and on the processes that influences IASCC to emit hypotheses. This report identifies several potential changes in microstructure and proposes to identify their potential impact of IASCC. The susceptibility of a component to high fluence IASCC is considered to not only depends on the intrinsic IASCC susceptibility of the component due to radiation effects on the material but to also be related to the evolution of the loading history of the material and interaction with the environment as total fluence increases. Single variation type experiments are proposed to be performed with materials that are representative of PWR condition and with materials irradiated in other conditions. To address the lack of IASCC propagation and initiation data generated with material irradiated in PWR condition, it is proposed to investigate the effect of spectrum and flux rate on the evolution of microstructure. A long term irradiation, aimed to generate a well-controlled irradiation history on a set on selected materials is also proposed for consideration. For BWR, the study of available data permitted to identify an area of concern for long term performance of component. The efficiency of

  2. Unrestrained swelling of uranium-nitride fuel irradiated at temperatures ranging from 1100 to 1400 K (1980 to 2520 R)

    NASA Technical Reports Server (NTRS)

    Rohal, R. G.; Tambling, T. N.

    1973-01-01

    Six fuel pins were assembled, encapsulated, and irradiated in the Plum Brook Reactor. The fuel pins employed uranium mononitride (UN) in a stainless steel (type 304L) clad. The pins were irradiated for approximately 4000 hours to burnups of about 2.0 atom percent uranium. The average clad surface temperature during irradiation was about 1100 K (1980 deg R). Since stainless steel has a very low creep strength relative to that of UN at this temperature, these tests simulated unrestrained swelling of UN. The tests indicated that at 1 percent uranium atom burnup the unrestrained diametrical swelling of UN is about 0.5, 0.8, and 1.0 percent at 1223, 1264, and 1306 K (2200, deg 2273 deg, and 2350 deg R), respectively. The tests also indicated that the irradiation induced swelling of unrestrained UN fuel pellets appears to be isotropic.

  3. Microstructure and fracture behavior of F82H steel under different irradiation and tensile test conditions

    NASA Astrophysics Data System (ADS)

    Wang, K.; Dai, Y.; Spätig, P.

    2016-01-01

    Specimens of martensitic steel F82H were irradiated to doses ranging from 10.7 dpa/850 appm He to 19.6 dpa/1740 appm He at temperatures between 165 and 305 °C in the second experiment of SINQ Target Irradiation Program (STIP-II). Tensile tests were conducted at different temperatures and various fracture modes were observed. Microstructural changes including irradiation-induced defect clusters, dislocation loops and helium bubbles under different irradiation conditions were investigated using transmission electron microscopy (TEM). The deformation microstructures of tensile tested specimens were carefully examined to understand the underlying deformation mechanisms. Deformation twinning was for the first time observed in irradiated martensitic steels. A change of deformation mechanism from dislocation channeling to deformation twinning was observed when the fracture mode changed from rather ductile (quasi-cleavage) to brittle (intergranular or cleavage and intergranular mixed).

  4. Test system accurately determines tensile properties of irradiated metals at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Levine, P. J.; Skalka, R. J.; Vandergrift, E. F.

    1967-01-01

    Modified testing system determines tensile properties of irradiated brittle-type metals at cryogenic temperatures. The system includes a lightweight cryostat, split-screw grips, a universal joint, and a special temperature control system.

  5. The Next Generation Nuclear Plant Graphite Creep Experiment Irradiation in the Advanced Test Reactor

    SciTech Connect

    Blaine Grover

    2010-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating six gas reactor graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These graphite irradiations are being accomplished to support development of the next generation reactors in the United States. The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant (NGNP) Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six stacks will have differing compressive loads applied to the top half of each pair of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be the capability of sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during initial start-up of

  6. A double tuned rail damper—increased damping at the two first pinned-pinned frequencies

    NASA Astrophysics Data System (ADS)

    Maes, J.; Sol, H.

    2003-10-01

    Railway-induced vibrations are a growing matter of environmental concern. The rapid development of transportation, the increase of vehicle speeds and vehicle weights have resulted in higher vibration levels. In the meantime vibrations that were tolerated in the past are now considered to be a nuisance. Numerous solutions have been proposed to remedy these problems. The majority only acts on a specific part of the dynamic behaviour of the track. This paper presents a possible solution to reduce the noise generated by the 'pinned-pinned' frequencies. Pinned-pinned frequencies correspond with standing waves whose nodes are positioned exactly at the sleeper supports. The two first pinned-pinned frequencies are situated approximately at 950 and 2200 Hz (UIC60-rail and sleeper spacing of 0.60 m). To attenuate these vibrations, the Department of MEMC at the VUB has developed a dynamic vibration absorber called the Double Tuned Rail Damper (DTRD). The DTRD is mounted between two sleepers on the rail and is powered by the motion of the rail. The DTRD consists of two major parts: a steel plate which is connected to the rail with an interface of an elastic layer, and a rubber mass. The two first resonance frequencies of the steel plate coincide with the targeted pinned-pinned frequencies of the rail. The rubber mass acts as a motion controller and energy absorber. Measurements at a test track of the French railway company (SNCF) have shown considerable attenuation of the envisaged pinned-pinned frequencies. The attenuation rate surpasses 5 dB/m at certain frequency bands.

  7. Status of the NGNP Fuel Experiment AGR-2 Irradiated in the Advanced Test Reactor

    SciTech Connect

    Blaine Grover

    2012-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and support systems will be briefly discussed, followed by the progress and status of the experiment to date.

  8. Status of the NGNP fuel experiment AGR-2 irradiated in the advanced test reactor

    SciTech Connect

    S. Blaine Grover; David A. Petti

    2014-05-01

    The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also undergo on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and sup

  9. Review of diffusion barrier technology for application in SP-100 fuel pins

    NASA Astrophysics Data System (ADS)

    Schmidt, M. A.; Kania, M. J.

    1987-08-01

    The fuel pin design for the SP-100 reactor uses uranium nitride fuel contained in a niobium alloy (Nb-1Zr) cladding. Chemical reactions occur between the fuel and the cladding at the planned operating temperatures of 1350 to 1500 K, so a diffusion barrier is required to prevent degradation. The technology associated with diffusion barriers in similar fuel pins is reviewed to identify fabrication techniques and to summarize previous results of chemical compatibility and irradiation tests. Four fabrication techniques were identified. In previous tests, diffusion barriers have performed successfully for up to 12,000 h at cladding temperatures near 1300 K. A significant challenge remains to develop and qualify a diffusion barrier for the SP-100 mission application, which has a lifetime greater than 60,000 h.

  10. Reweldability test of irradiated SS316 by the TIG welding method

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Kunihiko; Kawamura, Hiroshi; Oyamada, Rokuro

    1996-10-01

    Stainless steel is a candidate material for the structural material in fusion reactors. Rewelding of irradiated materials will have a large impact on the design and the maintenance of in-vessel components. In the present work, the welding specimens made of type 316 stainless steel were irradiated in JMTR (Japan materials testing reactor) to a fast neutron fluence of ˜2.0 × 10 20 n/cm 2 ( E > 1 MeV) at a temperature of ˜200°C. The rewelding of unirradiated and/or irradiated stainless steel was performed by the tungsten inert gas (TIG) welding method and the weldments of unirradiated and/or irradiated SS316 were characterized by tensile testing (test temp.: 20°C and 200°C), hardness, metallographical observation and SEM/XMA analyses.

  11. JOYO-1 Irradiation Test Campaign Technical Close-out, For Information

    SciTech Connect

    G. Borges

    2006-01-31

    The JOYO-1 irradiation testing was designed to screen the irradiation performance of candidate cladding, structural and reflector materials in support of space reactor development. The JOYO-1 designation refers to the first of four planned irradiation tests in the JOYO reactor. Limited irradiated material performance data for the candidate materials exists for the expected Prometheus-1 duration, fluences and temperatures. Materials of interest include fuel element cladding and core materials (refractory metal alloys and silicon carbide (Sic)), vessel and plant structural materials (refractory metal alloys and nickel-base superalloys), and control and reflector materials (BeO). Key issues to be evaluated were long term microstructure and material property stability. The JOYO-1 test campaign was initiated to irradiate a matrix of specimens at prototypical temperatures and fluences anticipated for the Prometheus-1 reactor [Reference (1)]. Enclosures 1 through 9 describe the specimen and temperature monitors/dosimetry fabrication efforts, capsule design, disposition of structural material irradiation rigs, and plans for post-irradiation examination. These enclosures provide a detailed overview of Naval Reactors Prime Contractor Team (NRPCT) progress in specific areas; however, efforts were in various states of completion at the termination of NRPCT involvement with and restructuring of Project Prometheus.

  12. Pre-irradiation testing of actively cooled Be-Cu divertor modules

    SciTech Connect

    Linke, J.; Duwe, R.; Kuehnlein, W.

    1995-09-01

    A set of neutron irradiation tests is prepared on different plasma facing materials (PFM) candidates and miniaturized components for ITER. Beside beryllium the irradiation program which will be performed in the High Flux Reactor (HFR) in Petten, includes different carbon fiber composites (CFQ) and tungsten alloys. The target values for the neutron irradiation will be 0.5 dpa at temperatures of 350{degrees}C and 700{degrees}C, resp.. The post irradiation examination (PIE) will cover a wide range of mechanical tests; in addition the degradation of thermal conductivity will be investigated. To determine the high heat flux (HHF) performance of actively cooled divertor modules, electron beam tests which simulate the expected heat loads during the operation of ITER, are scheduled in the hot cell electron beam facility JUDITH. These tests on a selection of different actively cooled beryllium-copper and CFC-copper divertor modules are performed before and after neutron irradiation; the pre-irradiation testing is an essential part of the program to quantify the zero-fluence high heat flux performance and to detect defects in the modules, in particular in the brazed joints.

  13. PINS-3X Operations

    SciTech Connect

    E.H. Seabury

    2013-09-01

    Idaho National Laboratory’s (INL’s) Portable Isotopic Neutron Spectroscopy System (PINS) non-intrusively identifies the chemical fill of munitions and sealed containers. The PINS-3X variant of the system is used to identify explosives and uses a deuterium-tritium (DT) electronic neutron generator (ENG) as the neutron source. Use of the system, including possession and use of the neutron generator and shipment of the system components requires compliance with a number of regulations. This report outlines some of these requirements as well as some of the requirements in using the system outside of INL.

  14. Diffusion inspires selection of pinning nodes in pinning control

    NASA Astrophysics Data System (ADS)

    Zhou, Ming-Yang; He, Xingsheng; Fu, Zhong-Qian; Liao, Hao; Cai, Shi-min; Zhuo, Zhao

    2016-03-01

    The outstanding problem of controlling a complex network via pinning is related to network dynamics and has the potential to master large-scale real-world systems as well. This paper addresses the heart issue about how to choose pinning nodes for pinning control, where pinning control aims to control a network to an identical state by injecting feedback control signals to a small fraction of nodes. We explore networks' controllability from not only mathematical analysis, but also the aspects of network topology and information diffusion. Then, the connection between pinning control and information diffusion is given, and pinning node selection is transferred into multi-spreader problem in information diffusion. Based on information diffusion, a heuristic method is proposed to select pinning nodes by optimizing the spreading ability of multiple spreaders. The proposed method greatly improves the controllability of large practical networks, and provides a new perspective to investigate pinning node selection.

  15. Advanced Test Reactor In-Canal Ultrasonic Scanner: Experiment Design and Initial Results on Irradiated Plates

    SciTech Connect

    D. M. Wachs; J. M. Wight; D. T. Clark; J. M. Williams; S. C. Taylor; D. J. Utterbeck; G. L. Hawkes; G. S. Chang; R. G. Ambrosek; N. C. Craft

    2008-09-01

    An irradiation test device has been developed to support testing of prototypic scale plate type fuels in the Advanced Test Reactor. The experiment hardware and operating conditions were optimized to provide the irradiation conditions necessary to conduct performance and qualification tests on research reactor type fuels for the RERTR program. The device was designed to allow disassembly and reassembly in the ATR spent fuel canal so that interim inspections could be performed on the fuel plates. An ultrasonic scanner was developed to perform dimensional and transmission inspections during these interim investigations. Example results from the AFIP-2 experiment are presented.

  16. Neutron-Irradiated Samples as Test Materials for MPEX

    DOE PAGESBeta

    Ellis, Ronald James; Rapp, Juergen

    2015-10-09

    Plasma Material Interaction (PMI) is a major concern in fusion reactor design and analysis. The Material-Plasma Exposure eXperiment (MPEX) will explore PMI under fusion reactor plasma conditions. Samples with accumulated displacements per atom (DPA) damage produced by fast neutron irradiations in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) will be studied in the MPEX facility. This paper presents assessments of the calculated induced radioactivity and resulting radiation dose rates of a variety of potential fusion reactor plasma-facing materials (such as tungsten). The scientific code packages MCNP and SCALE were used to simulate irradiation of themore » samples in HFIR including the generation and depletion of nuclides in the material and the subsequent composition, activity levels, gamma radiation fields, and resultant dose rates as a function of cooling time. A challenge of the MPEX project is to minimize the radioactive inventory in the preparation of the samples and the sample dose rates for inclusion in the MPEX facility.« less

  17. Neutron-Irradiated Samples as Test Materials for MPEX

    SciTech Connect

    Ellis, Ronald James; Rapp, Juergen

    2015-10-09

    Plasma Material Interaction (PMI) is a major concern in fusion reactor design and analysis. The Material-Plasma Exposure eXperiment (MPEX) will explore PMI under fusion reactor plasma conditions. Samples with accumulated displacements per atom (DPA) damage produced by fast neutron irradiations in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) will be studied in the MPEX facility. This paper presents assessments of the calculated induced radioactivity and resulting radiation dose rates of a variety of potential fusion reactor plasma-facing materials (such as tungsten). The scientific code packages MCNP and SCALE were used to simulate irradiation of the samples in HFIR including the generation and depletion of nuclides in the material and the subsequent composition, activity levels, gamma radiation fields, and resultant dose rates as a function of cooling time. A challenge of the MPEX project is to minimize the radioactive inventory in the preparation of the samples and the sample dose rates for inclusion in the MPEX facility.

  18. A comparative TEM study of in-reactor and post-irradiation tensile tested copper

    NASA Astrophysics Data System (ADS)

    Pakarinen, J.; Tähtinen, S.; Singh, B. N.

    2013-11-01

    The deformation microstructures of oxygen-free high-conductivity (OFHC) copper were examined by transmission electron microscopy (TEM) following in-reactor and post-irradiation slow strain rate tensile tests. The TEM results suggest that the main modes of deformation differ between all examined cases. Plastic deformation appeared predominantly localized in the defect-free cleared channels following post-irradiation testing and hardly any dislocations were seen outside the channels. The microstructures following in-reactor tests were characterized by a small amount of cleared channels and a distinct dislocation density within the matrix. However, the dislocations observed following in-reactor testing did not seem to interact with each other, whereas that was the main mode of deformation in the non-irradiated reference sample. The possible mechanisms of plastic deformation are discussed based on the experimental results. Dislocation-dislocation interactions played the major role if irradiation or irradiation damage is not present. As a result of the interactions, the microstructure of non-irradiated reference copper was characterized by a well-defined cellularized dislocation microstructure. Dynamic dislocation-displacement cascade interactions dominated the deformation process at the in-reactor tensile tests. As a result, the formation of defect-free cleared channels was delayed, dislocations were found from the matrix between the channels, and a clear strain hardening was observed after the yield point. No clear difference between accumulated irradiation damage at in-reactor and post-irradiation samples was found, which may be due to localized nature of SFT evolution in displacement cascades at copper. In the post-irradiation experiments, dislocations were confined to slip planes and annihilate irradiation defects, while moving on the planes and creating defect-free cleared channels. The plastic deformation is localized into these channels, causing a decrease in

  19. Test plan for the irradiation of nonmetallic materials.

    SciTech Connect

    Brush, Laurence H.; Farnum, Cathy Ottinger; Dahl, M.; Joslyn, C. C.; Venetz, T. J.

    2013-05-01

    A comprehensive test program to evaluate nonmetallic materials use in the Hanford tank farms is described in detail. This test program determines the effects of simultaneous multiple stressors at reasonable conditions on in-service configuration components by engineering performance testing.

  20. Test plan for the irradiation of nonmetallic materials.

    SciTech Connect

    Brush, Laurence H.; Farnum, Cathy Ottinger; Gelbard, Fred; Dahl, M.; Joslyn, C. C.; Venetz, T. J.

    2013-03-01

    A comprehensive test program to evaluate nonmetallic materials use in the Hanford Tank Farms is described in detail. This test program determines the effects of simultaneous multiple stressors at reasonable conditions on in-service configuration components by engineering performance testing.

  1. Linear variable differential transformer (LVDT)-based elongation measurements in Advanced Test Reactor high temperature irradiation testing

    SciTech Connect

    D. L. Knudson; J. L. Rempe

    2012-02-01

    New materials are being considered for fuel, cladding, and structures in next generation and existing nuclear reactors. These materials can undergo significant dimensional and physical changes during high temperature irradiations. Currently, such changes are determined by repeatedly irradiating a specimen for a specified period of time in the Advanced Test Reactor (ATR) and then removing it from the reactor for evaluation. The labor and time to remove, examine, and return irradiated samples for each measurement makes this approach very expensive. In addition, such techniques provide limited data and may disturb the phenomena of interest. To resolve these issues, an instrumented creep testing capability is being developed for specimens irradiated in pressurized water reactor (PWR) coolant conditions in the ATR at the Idaho National Laboratory (INL). This paper reports the status of INL efforts to develop this testing capability. In addition to providing an overview of in-pile creep test capabilities available at other test reactors, this paper focuses on efforts to design and evaluate a prototype test rig in an autoclave at INL's High Temperature Test Laboratory (HTTL).

  2. Linear variable differential transformer (LVDT)-based elongation measurements in Advanced Test Reactor high temperature irradiation testing

    SciTech Connect

    D. L. Knudson; J. L. Rempe

    2012-02-01

    New materials are being considered for fuel, cladding and structures in next generation and existing nuclear reactors. These materials can undergo significant dimensional and physical changes during high temperature irradiations. Currently, such changes are determined by repeatedly irradiating a specimen for a specified period of time in the Advanced Test Reactor (ATR) and then removing it from the reactor for evaluation. The labor and time to remove, examine and return irradiated samples for each measurement make this approach very expensive. In addition, such techniques provide limited data and may disturb the phenomena of interest. To resolve these issues, an instrumented creep testing capability is being developed for specimens irradiated under pressurized water reactor coolant conditions in the ATR at the Idaho National Laboratory (INL). This paper reports the status of INL efforts to develop this testing capability. In addition to providing an overview of in-pile creep test capabilities available at other test reactors, this paper focuses on efforts to design and evaluate a prototype test rig in an autoclave at INL’s High Temperature Test Laboratory.

  3. Characterization and irradiation program: extended-burnup gadolina lead test assembly (Mark GdB)

    SciTech Connect

    Newman, L W

    1984-11-01

    This advanced fuel assembly uses a UO/sub 2/-Gd/sub 2/O/sub 3/ fuel burnable-absorber mixture along with other state-of-the-art fuel performance and uranium utilization-enhancing design features that include annular pellets, annealed guide tubes, Zircaloy intermediate grids, and a removable upper end fitting. Goal of the program is to extend the burnup of pressurized water reactor fuel assemblies to 50,000 MWd/mtU batch average burnup. To achieve this goal, five lead test assemblies have been designed, manufactured, characterized, and inserted for irradiation in Oconee Unit 1 cycle 8. One lead test assembly will receive 13,989 MWd/mtU burnup by its discharge at the end of cycle 8. Three of the four remaining lead test assemblies will receive approximately 45,000 MWd/mtU burnup by their discharge at the end of cycle 10. The fourth lead test assembly will receive approximately 58,000 MWd/mtU before being discharged at the end of cycle 11. The lead test assemblies and their constituent components have been extensively characterized to acquire a beginning-of-life data base to compare with future post-irradiation examination results and thereby determine the irradiation performance of the assemblies and their components. This report contains a description of the lead test assemblies and the pre-irradiation characterization data. Also, the plans for irradiating and examining these assemblies are discussed.

  4. MELT WIRE SENSORS AVAILABLE TO DETERMINE PEAK TEMPERATURES IN ATR IRRADIATION TESTING

    SciTech Connect

    K. L. Davis; D. Knudson; J. Daw; J. Palmer; J. L. Rempe

    2012-07-01

    In April 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) a National Scientific User Facility (NSUF) to advance US leadership in nuclear science and technology. By attracting new users from universities, laboratories, and industry, the ATR will support basic and applied nuclear research and development and help address the nation's energy security needs. In support of this new program, the Idaho National Laboratory (INL) has developed in-house capabilities to fabricate, test, and qualify new and enhanced temperature sensors for irradiation testing. Although most efforts emphasize sensors capable of providing real-time data, selected tasks have been completed to enhance sensors provided in irradiation locations where instrumentation leads cannot be included, such as drop-in capsule and Hydraulic Shuttle Irradiation System (HSIS) or 'rabbit' locations. To meet the need for these locations, the INL has developed melt wire temperature sensors for use in ATR irradiation testing. Differential scanning calorimetry and environmental testing of prototypical sensors was used to develop a library of 28 melt wire materials, capable of detecting peak irradiation temperatures ranging from 85 to 1500°C. This paper will discuss the development work and present test results.

  5. Properties of precipitation hardened steel irradiated at 323 K in the Japan materials testing reactor

    NASA Astrophysics Data System (ADS)

    Niimi, M.; Matsui, Y.; Jitsukawa, S.; Hoshiya, T.; Tsukada, T.; Ohmi, M.; Mimura, H.; Ooka, N.; Hide, K.

    A precipitation hardening type 630 stainless steel was irradiated in the Japan Materials Testing Reactor (JMTR) in contact with the reactor primary coolant. The temperature of the irradiated specimens was about 330 K. The fast neutron ( E > 1 MeV) fluence for the specimens ranged from 10 24 to 10 26 m -2. Tension tests and fracture toughness tests were carried out at room temperature, while Charpy impact tests were done at temperatures of 273-453 K. Tensile strength data showed a peak of 1600 MPa at around 7 × 10 24 m -2, then gradually decreased to about 1500 MPa at 1.2 × 10 26 m -2. The elongation decreased with irradiation from 12% for unirradiated material to 6% at 1.2 × 10 26 m -2. The fractography after the tension test revealed that the fracture was ductile. Fracture toughness decreased to about a half of the value for unirradiated material with irradiation. The cleavage fracture was dominant on the fractured surface. Charpy impact tests showed an increase of ductile-brittle transition temperature (DBTT) by 60 K with irradiation.

  6. Irradiation test of tungsten clad uranium carbide-zirconium carbide ((U,Zr)C) specimens for thermionic reactor application at conditions conductive to long-term performance

    NASA Technical Reports Server (NTRS)

    Creagh, J. W. R.; Smith, J. R.

    1973-01-01

    Uranium carbide fueled, thermionic emitter configurations were encapsulated and irradiated. One capsule contained a specimen clad with fluoride derived chemically vapor deposited (CVD) tungsten. The other capsule used a duplex clad specimen consisting of chloride derived on floride derived CVD tungsten. Both fuel pins were 16 millimeters in diameter and contained a 45.7-millimeter length of fuel.

  7. Identification of neutron irradiation induced strain rate sensitivity change using inverse FEM analysis of Charpy test

    NASA Astrophysics Data System (ADS)

    Haušild, Petr; Materna, Aleš; Kytka, Miloš

    2015-04-01

    A simple methodology how to obtain additional information about the mechanical behaviour of neutron-irradiated WWER 440 reactor pressure vessel steel was developed. Using inverse identification, the instrumented Charpy test data records were compared with the finite element computations in order to estimate the strain rate sensitivity of 15Ch2MFA steel irradiated with different neutron fluences. The results are interpreted in terms of activation volume change.

  8. Corrective Action Investigation Plan for Corrective Action Unit 371: Johnnie Boy Crater and Pin Stripe Nevada Test Site, Nevada, Revision 0

    SciTech Connect

    Patrick Matthews

    2009-02-01

    Corrective Action Unit (CAU) 371 is located in Areas 11 and 18 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 371 is comprised of the two corrective action sites (CASs) listed below: • 11-23-05, Pin Stripe Contamination Area • 18-45-01, U-18j-2 Crater (Johnnie Boy) These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on November 19, 2008, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 371. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the corrective action investigation for CAU 371 includes the following activities: • Move surface debris and/or materials, as needed, to facilitate sampling. • Conduct radiological surveys. • Measure in situ external dose rates using thermoluminescent dosimeters or other dose measurement devices. • Collect and submit environmental samples for laboratory analysis to determine internal dose rates. • Combine internal and external dose rates to determine whether total

  9. SUMMARY OF ‘AFIP’ FULL SIZED PLATE IRRADIATIONS IN THE ADVANCED TEST REACTOR

    SciTech Connect

    Robinson, Adam B; Wachs, Daniel M

    2010-03-01

    Recent testing at the Idaho National Laboratory has included four AFIP (ATR Full Size plate In center flux trap Position) experiments. These experiments included both dispersion plates and monolithic plates fabricated by both hot isostatic pressing and friction bonding utilizing both thermally sprayed inter-layers and zirconium barriers. These plates were tested between 100 and 350 w/cm2 at low temperatures and high burn-ups. The post irradiation exams performed have indicated good performance under the conditions tested and a summary of the findings and irradiation history are included herein.

  10. Advanced Gas Reactor (AGR)-5/6/7 Fuel Irradiation Experiments in the Advanced Test Reactor

    SciTech Connect

    A. Joseph Palmer; David A. Petti; S. Blaine Grover

    2014-04-01

    The United States Department of Energy’s Very High Temperature Reactor (VHTR) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which each consist of at least five separate capsules, are being irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gases also have on-line fission product monitoring the effluent from each capsule to track performance of the fuel during irradiation. The first two experiments (designated AGR-1 and AGR-2), have been completed. The third and fourth experiments have been combined into a single experiment designated AGR-3/4, which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. The design of the fuel qualification experiment, designated AGR-5/6/7, is well underway and incorporates lessons learned from the three previous experiments. Various design issues will be discussed with particular details related to selection of thermometry.

  11. Lever-Arm Pin Puller

    NASA Technical Reports Server (NTRS)

    Macmartin, Malcolm

    1994-01-01

    Mechanism holds retaining pins in place except when actuated to release pins quickly. Mechanism is integral part of cover designed to be removed with simple downward motion of hand. Before removal, mechanism secures cover in place. After removal, mechanism holds retaining pins for reuse.

  12. Status of fuel, blanket, and absorber testing in the fast flux test facility

    SciTech Connect

    Baker, R.B.; Bard, F.E.; Leggett, R.D.; Pitner, A.L. )

    1992-01-01

    On December 2, 1980, the Fast Flux Test Facility (FFTF) reached its full design power of 400 MW for the first time. From the start, the FFTF provided a modern liquid-metal reactor (LMR) test facility recognized for excellence, innovation, and efficiency of operation. Its unique instrumentation and special test capabilities have allowed the facility to stay at the cutting edge of technology. Prototypical size and core environment allow the FFTF to demonstrate core components and directly support design optimization of LMRs. Since December 1980, the FFTF has irradiated > 64,000 mixed-oxide driver and test fuel pins, > 1,000 metal-fueled pins, > 100 carbide-fueled pins, and > 35 nitride-fueled pins (supporting the U.S. space reactor program). This paper reviews the status of one of the major activities at the FFTF for its first 12 yr of operation - DOE-sponsored testing and development of fuel, blanket, and absorber assemblies for commercial LMRs.

  13. Advanced Test Reactor Capabilities and Future Irradiation Plans

    SciTech Connect

    Frances M. Marshall

    2006-10-01

    The Advanced Test Reactor (ATR), located at the Idaho National Laboratory (INL), is one of the most versatile operating research reactors in the Untied States. The ATR has a long history of supporting reactor fuel and material research for the US government and other test sponsors. The INL is owned by the US Department of Energy (DOE) and currently operated by Battelle Energy Alliance (BEA). The ATR is the third generation of test reactors built at the Test Reactor Area, now named the Reactor Technology Complex (RTC), whose mission is to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The current experiments in the ATR are for a variety of customers--US DOE, foreign governments and private researchers, and commercial companies that need neutrons. The ATR has several unique features that enable the reactor to perform diverse simultaneous tests for multiple test sponsors. The ATR has been operating since 1967, and is expected to continue operating for several more decades. The remainder of this paper discusses the ATR design features, testing options, previous experiment programs, future plans for the ATR capabilities and experiments, and some introduction to the INL and DOE's expectations for nuclear research in the future.

  14. The Advanced Test Reactor Irradiation Capabilities Available as a National Scientific User Facility

    SciTech Connect

    S. Blaine Grover

    2008-09-01

    The Advanced Test Reactor (ATR) is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. The ATR is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These capabilities include simple capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. Monitoring systems have also been utilized to monitor different parameters such as fission gases for fuel experiments, to measure specimen performance during irradiation. ATR’s control system provides a stable axial flux profile throughout each reactor operating cycle, and allows the thermal and fast neutron fluxes to be controlled separately in different sections of the core. The ATR irradiation positions vary in diameter from 16 mm to 127 mm over an active core height of 1.2 m. This paper discusses the different irradiation capabilities with examples of different experiments and the cost/benefit issues related to each capability. The recent designation of ATR as a national scientific user facility will make the ATR much more accessible at very low to no cost for research by universities and possibly commercial entities.

  15. Post-irradiation mechanical tests on F82H EB and TIG welds

    NASA Astrophysics Data System (ADS)

    Rensman, J.; van Osch, E. V.; Horsten, M. G.; d'Hulst, D. S.

    2000-12-01

    The irradiation behaviour of electron beam (EB) and tungsten inert gas (TIG) welded joints of the reduced-activation martensitic steel IEA heat F82H-mod. was investigated by neutron irradiation experiments in the high flux reactor (HFR) in Petten. Mechanical test specimens, such as tensile specimens and KLST-type Charpy impact specimens, were neutron irradiated up to a dose level of 2-3 dpa at a temperature of 300°C in the HFR reactor in Petten. The tensile results for TIG and EB welds are as expected with practically no strain hardening capacity left. Considering impact properties, there is a large variation in impact properties for the TIG weld. The irradiation tends to shift the DBTT of particularly the EB welds to very high values, some cases even above +250°C. PWHT of EB-welded material gives a significant improvement of the DBTT and USE compared to the as-welded condition.

  16. Spatial Pinning Control

    NASA Astrophysics Data System (ADS)

    Frasca, Mattia; Buscarino, Arturo; Rizzo, Alessandro; Fortuna, Luigi

    2012-05-01

    In this Letter, we introduce the concept of spatial pinning control for a network of mobile chaotic agents. In a planar space, N agents move as random walkers and interact according to a time-varying r-disk proximity graph. A control input is applied only to those agents which enter a given area, called control region. The control is effective in driving all the agents to a reference evolution and has better performance than pinning control on a fixed set of agents. We derive analytical conditions on the relative size of the control region and the agent density for the global convergence of the system to the reference evolution and study the system under different regimes inherited by the velocity.

  17. Heat transfer in a fuel pin shipping container. [IDENT 1578

    SciTech Connect

    Ingham, J.G.

    1980-11-11

    Maximum cladding temperatures occur when the IDENT 1578 fuel pin shipping container is installed in the T-3 Cask. The maximum allowable cladding temperature of 800/sup 0/F is reached when the rate of energy deposited in the 19-pin basket reaches 400 watts. Since 45% of the energy which is generated in the fuel escapes the 19-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 400/.55 = 727 watts. Similarly, the maximum allowable cladding temperature of 800/sup 0/F is reached when the rate of energy deposited in the 40-pin basket reaches 465 watts. Since 33% of the energy which is generated in the fuel escapes the 40-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 465/.66 = 704 watts. The IDENT 1578 fuel pin shipping container therefore meets its thermal design criteria. IDENT 1578 can handle fuel pins with a decay heat load of 600 watts while maintaining the maximum fuel pin cladding temperature below 800/sup 0/F. The emissivities which were determined from the test results for the basket tubes and container are relatively low and correspond to new, shiny conditions. As the IDENT 1578 container is exposed to high temperatures for extended periods of time during the transportation of fuel pins, the emissivities will probably increase. This will result in reduced temperatures.

  18. Fuel or irradiation subassembly

    DOEpatents

    Seim, O.S.; Hutter, E.

    1975-12-23

    A subassembly for use in a nuclear reactor is described which incorporates a loose bundle of fuel or irradiation pins enclosed within an inner tube which in turn is enclosed within an outer coolant tube and includes a locking comb consisting of a head extending through one side of the inner sleeve and a plurality of teeth which extend through the other side of the inner sleeve while engaging annular undercut portions in the bottom portion of the fuel or irradiation pins to prevent movement of the pins.

  19. Fuel Accident Condition Simulator (FACS) Furnace for Post-Irradiation Heating Tests of VHTR Fuel Compacts

    SciTech Connect

    Paul A Demkowicz; Paul Demkowicz; David V Laug

    2010-10-01

    Abstract –Fuel irradiation testing and post-irradiation examination are currently in progress as part of the Next Generation Nuclear Plant Fuels Development and Qualification Program. The PIE campaign will include extensive accident testing of irradiated very high temperature reactor fuel compacts to verify fission product retention characteristics at high temperatures. This work will be carried out at both the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory, beginning with accident tests on irradiated fuel from the AGR-1 experiment in 2010. A new furnace system has been designed, built, and tested at INL to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000°C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, Eu, and I) and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator (FACS) furnace system, as well as preliminary system calibration results.

  20. Design of the Advanced Gas Reactor Fuel Experiments for Irradiation in the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2005-10-01

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight particle fuel tests in the Advanced Test Reactor (ATR) located at the newly formed Idaho National Laboratory (INL) to support development of the next generation Very High Temperature Reactor (VHTR) in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments will be irradiated in an inert sweep gas atmosphere with on-line temperature monitoring and control combined with on-line fission product monitoring of the sweep gas. The final design phase has just been completed on the first experiment (AGR-1) in this series and the support systems and fission product monitoring system that will monitor and control the experiment during irradiation. This paper discusses the development of the experimental hardware and support system designs and the status of the experiment.

  1. Status of the Combined Third and Fourth NGNP Fuel Irradiations In the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover; David A. Petti; Michael E. Davenport

    2013-07-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and is currently scheduled to be completed in September 2013. The third and fourth experiments have been combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. Since the purpose of this combined experiment is to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment is

  2. AGR-2 Irradiation Test Final As-Run Report, Rev 2

    SciTech Connect

    Blaise Collin

    2014-08-01

    This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technical Development Office (TDO) program. The objectives of the AGR-2 experiment are to: (a) Irradiate UCO (uranium oxycarbide) and UO2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities. (b) Provide irradiated fuel samples for post-irradiation experiment (PIE) and safety testing. (c) Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO2 TRISO (tri-structural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S. produced fuel. In order to achieve the test objectives, the AGR-2 experiment was irradiated in the B-12 position of the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for a total irradiation duration of 559.2 effective full power days (EFPD). Irradiation began on June 22, 2010, and ended on October 16, 2013, spanning 12 ATR power cycles and approximately three and a half calendar years. The test

  3. AGR-2 irradiation test final as-run report, Rev. 1

    SciTech Connect

    Collin, Blaise

    2014-08-01

    This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technical Development Office (TDO) program. The objectives of the AGR-2 experiment are to: (a) Irradiate UCO (uranium oxycarbide) and UO2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities; (b) Provide irradiated fuel samples for post-irradiation experiment (PIE) and safety testing; and, (c) Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO2 TRISO (tri-structural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S. produced fuel. In order to achieve the test objectives, the AGR-2 experiment was irradiated in the B-12 position of the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for a total irradiation duration of 559.2 effective full power days (EFPD). Irradiation began on June 22, 2010, and ended on October 16, 2013, spanning 12 ATR power cycles and approximately three and a half calendar years. The test

  4. Safety Assurance for Irradiating Experiments in the Advanced Test Reactor

    SciTech Connect

    T. A. Tomberlin; S. B. Grover

    2004-11-01

    The Advanced Test Reactor (ATR), located at the Idaho National Engineering and Environmental Laboratory (INEEL), was specifically designed to provide a high neutron flux test environment for conducting a variety of experiments. This paper addresses the safety assurance process for two general types of experiments conducted in the ATR facility and how the safety analyses for experiments are related to the ATR safety basis. One type of experiment is more routine and generally represents greater risks; therefore, this type of experiment is addressed in more detail in the ATR safety basis. This allows the individual safety analysis for this type of experiment to be more standardized. The second type of experiment is defined in more general terms in the ATR safety basis and is permitted under more general controls. Therefore, the individual safety analysis for the second type of experiment tends to be more unique and is tailored to each experiment.

  5. Fuel plate and fusion insulator irradiation test program

    SciTech Connect

    Miller, L.G.; Beeston, J.M.

    1980-11-01

    As the prices of fuel fabricating, shipping, and reprocessing continue to rise at rapid rates, research people look for alternate methods to keep their reactor fuel costs within limited funds. Extending fuel element lifetimes without jeopardizing reactor safety can reduce fuel costs by up to a factor of two. But to gain this factor, some fuel plate tests must be performed to the higher burnup to verify burnup fuel plate performance. In this proposed test, fuel plates will be constructed to a maximum fuel loading which can be produced on a commercial basis, contain a maximum boron content as used in ATR to reduce initial reactor reactivity, and will be loaded with UAl/sub 2/ to obtain higher uranium content and better operating performance over UAl/sub 3/.

  6. LIGHT WATER REACTOR ACCIDENT TOLERANT FUELS IRRADIATION TESTING

    SciTech Connect

    Carmack, William Jonathan; Barrett, Kristine Eloise; Chichester, Heather Jean MacLean

    2015-09-01

    The purpose of Accident Tolerant Fuels (ATF) experiments is to test novel fuel and cladding concepts designed to replace the current zirconium alloy uranium dioxide (UO2) fuel system. The objective of this Research and Development (R&D) is to develop novel ATF concepts that will be able to withstand loss of active cooling in the reactor core for a considerably longer time period than the current fuel system while maintaining or improving the fuel performance during normal operations, operational transients, design basis, and beyond design basis events. It was necessary to design, analyze, and fabricate drop-in capsules to meet the requirements for testing under prototypic LWR temperatures in Idaho National Laboratory's Advanced Test Reactor (ATR). Three industry led teams and one DOE team from Oak Ridge National Laboratory provided fuel rodlet samples for their new concepts for ATR insertion in 2015. As-built projected temperature calculations were performed on the ATF capsules using the BISON fuel performance code. BISON is an application of INL’s Multi-physics Object Oriented Simulation Environment (MOOSE), which is a massively parallel finite element based framework used to solve systems of fully coupled nonlinear partial differential equations. Both 2D and 3D models were set up to examine cladding and fuel performance.

  7. Gamma-irradiation tests of IR optical fibres for ITER thermography--a case study

    SciTech Connect

    Reichle, R.; Pocheau, C.; Jouve, M.

    2008-03-12

    In the course of the development of a concept for a spectrally resolving infrared thermography diagnostic for the ITER divertor we have tested 3 types of infrared (IR) fibres in Co{sup 60} irradiation facilities under {gamma} irradiation. The fibres were ZrF{sub 4} (and HfF{sub 4}) fibres from different manufacturers, hollow fibres (silica capillaries with internal Ag/AgJ coating) and a sapphire fibre. For the IR range, only the latter fibre type encourages to go further for neutron tests in a reactor. If one restricted the interest onto the near infrared range, high purity core silica fibres could be used. This study might be seen as a typical example of the relation between diagnostic development for a nuclear environment and irradiation experiments.

  8. Identification of irradiated wheat by germination test, DNA comet assay and electron spin resonance

    NASA Astrophysics Data System (ADS)

    Barros, Adilson C.; Freund, Maria Teresa L.; Villavicencio, Ana Lúcia C. H.; Delincée, Henry; Arthur, Valter

    2002-03-01

    In several countries, there has been an increase in the use of radiation for food processing thus improving the quality and sanitary conditions, inhibiting pathogenic microorganisms, delaying the natural aging process and so extending product lifetime. The need to develop analytical methods to detect these irradiated products is also increasing. The goal of this research was to identify wheat irradiated using different radiation doses. Seeds were irradiated with a gamma 60Co source (Gammacell 220 GC) in the Centro de Energia Nuclear na Agricultura and the Instituto de Pesquisas Energéticas e Nucleares. Dose rate used were 1.6 and 5.8kGy/h. Applied doses were 0.0, 0.10, 0.25, 0.50, 0.75, 1.0, and 2.0kGy. After irradiation, seeds were analysed over a 6 month period. Three different detection methods were employed to determine how irradiation had modified the samples. Screening methods consisted of a germination test measuring the inhibition of shooting and rooting and analysis of DNA fragmentation. The method of electron spin resonance spectroscopy allowed a better dosimetric evaluation. These techniques make the identification of irradiated wheat with different doses possible.

  9. Irradiation testing of 316L(N)-IG austenitic stainless steel for ITER

    NASA Astrophysics Data System (ADS)

    van Osch, E. V.; Horsten, M. G.; de Vries, M. I.

    1998-10-01

    In the frame work of the European Fusion Technology Programme and the International Thermonuclear Experimental Reactor (ITER), ECN is investigating the irradiation behaviour of the structural materials for ITER. The main structural material for ITER is austenitic stainless steel Type 316L(N)-IG. The operating temperatures of (parts of) the components are envisaged to range between 350 and 700 K. A significant part of the dose-temperature domain of irradiation conditions relevant for ITER has already been explored, there is, however, very little data at about 600 K. Available data tend to indicate a maximum in the degradation of the mechanical properties after irradiation at this temperature, e.g. a minimum in ductility and a maximum of hardening. Therefore an irradiation program for plate material 316L(N)-IG, its Electron Beam (EB) weld and Tungsten Inert Gas (TIG) weld metal, and also including Hot Isostatically Pressed (HIP) 316L(N) powder and solid-solid joints, was set up in 1995. Irradiations have been carried out in the High Flux Reactor (HFR) in Petten at a temperature of 600 K, at dose levels from 1 to 10 dpa. The paper presents the currently available post-irradiation test results. Next to tensile and fracture toughness data on plate, EB and TIG welds, first results of powder HIP material are included.

  10. Validation of the Physics Analysis used to Characterize the AGR-1 TRISO Fuel Irradiation Test

    SciTech Connect

    Sterbentz, James W.; Harp, Jason M.; Demkowicz, Paul A.; Hawkes, Grant L.; Chang, Gray S.

    2015-05-01

    The results of a detailed physics depletion calculation used to characterize the AGR-1 TRISO-coated particle fuel test irradiated in the Advanced Test Reactor (ATR) at the Idaho National Laboratory are compared to measured data for the purpose of validation. The particle fuel was irradiated for 13 ATR power cycles over three calendar years. The physics analysis predicts compact burnups ranging from 11.30-19.56% FIMA and cumulative neutron fast fluence from 2.21?4.39E+25 n/m2 under simulated high-temperature gas-cooled reactor conditions in the ATR. The physics depletion calculation can provide a full characterization of all 72 irradiated TRISO-coated particle compacts during and post-irradiation, so validation of this physics calculation was a top priority. The validation of the physics analysis was done through comparisons with available measured experimental data which included: 1) high-resolution gamma scans for compact activity and burnup, 2) mass spectrometry for compact burnup, 3) flux wires for cumulative fast fluence, and 4) mass spectrometry for individual actinide and fission product concentrations. The measured data are generally in very good agreement with the calculated results, and therefore provide an adequate validation of the physics analysis and the results used to characterize the irradiated AGR-1 TRISO fuel.

  11. The PIN-FORMED (PIN) protein family of auxin transporters

    PubMed Central

    2009-01-01

    Summary The PIN-FORMED (PIN) proteins are secondary transporters acting in the efflux of the plant signal molecule auxin from cells. They are asymmetrically localized within cells and their polarity determines the directionality of intercellular auxin flow. PIN genes are found exclusively in the genomes of multicellular plants and play an important role in regulating asymmetric auxin distribution in multiple developmental processes, including embryogenesis, organogenesis, tissue differentiation and tropic responses. All PIN proteins have a similar structure with amino- and carboxy-terminal hydrophobic, membrane-spanning domains separated by a central hydrophilic domain. The structure of the hydrophobic domains is well conserved. The hydrophilic domain is more divergent and it determines eight groups within the protein family. The activity of PIN proteins is regulated at multiple levels, including transcription, protein stability, subcellular localization and transport activity. Different endogenous and environmental signals can modulate PIN activity and thus modulate auxin-distribution-dependent development. A large group of PIN proteins, including the most ancient members known from mosses, localize to the endoplasmic reticulum and they regulate the subcellular compartmentalization of auxin and thus auxin metabolism. Further work is needed to establish the physiological importance of this unexpected mode of auxin homeostasis regulation. Furthermore, the evolution of PIN-based transport, PIN protein structure and more detailed biochemical characterization of the transport function are important topics for further studies. PMID:20053306

  12. Burnup Predictions for Metal Fuel Tests in the Fast Flux Test Facility

    SciTech Connect

    Wootan, David W.; Nelson, Joseph V.

    2012-06-01

    The Fast Flux Test Facility (FFTF) is the most recent Liquid Metal Reactor (LMR) to be designed, constructed, and operated by the U.S. Department of Energy (DOE). The FFTF operated successfully from initial startup in 1980 through the end of the last operating cycle in March, 1992. A variety of fuel tests were irradiated in FFTF to provide performance data over a range of conditions. The MFF-3 and MFF-5 tests were U10Zr metal fuel tests with HT9 cladding. The MFF-3 and MFF-5 tests were both aggressive irradiation tests of U10Zr metal fuel pins with HT9 cladding that were prototypic of full scale LMR designs. MFF-3 was irradiated for 726 Effective Full Power Days (EFPD), starting from Cycle 10C1 (from November 1988 through March 1992), and MFF-5 was irradiated for 503 EFPD starting from Cycle 11B1 (from January 1990 through March 1992). A group of fuel pins from these two tests are undergoing post irradiation examination at the Idaho National Laboratory (INL) for the Fuel Cycle Research and Development Program (FCRD). The generation of a data package of key information on the irradiation environment and current pin detailed compositions for these tests is described. This information will be used in interpreting the results of these examinations.

  13. AGR-1 Irradiation Test Final As-Run Report, Rev. 3

    SciTech Connect

    Collin, Blaise P.

    2015-01-01

    This document presents the as-run analysis of the AGR-1 irradiation experiment. AGR-1 is the first of eight planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the US Department of Energy (DOE) as part of the Next-Generation Nuclear Plant (NGNP) project. The objectives of the AGR-1 experiment are: 1. To gain experience with multi-capsule test train design, fabrication, and operation with the intent to reduce the probability of capsule or test train failure in subsequent irradiation tests. 2. To irradiate fuel produced in conjunction with the AGR fuel process development effort. 3. To provide data that will support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. In order to achieve the test objectives, the AGR-1 experiment was irradiated in the B-10 position of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) for a total duration of 620 effective full power days of irradiation. Irradiation began on December 24, 2006 and ended on November 6, 2009 spanning 13 ATR cycles and approximately three calendar years. The test contained six independently controlled and monitored capsules. Each capsule contained 12 compacts of a single type, or variant, of the AGR coated fuel. No fuel particles failed during the AGR-1 irradiation. Final burnup values on a per compact basis ranged from 11.5 to 19.6 %FIMA, while fast fluence values ranged from 2.21 to 4.39 x 1025 n/m2 (E >0.18 MeV). We’ll say something here about temperatures once thermal recalc is done. Thermocouples performed well, failing at a lower rate than expected. At the end of the irradiation, nine of the originally-planned 19 TCs were considered functional. Fission product release-to-birth (R/B) ratios were quite low. In most capsules, R/B values at the end of the irradiation were at or below

  14. Pip pin reliability and design

    NASA Technical Reports Server (NTRS)

    Skyles, Lane P.

    1994-01-01

    Pip pins are used in many engineering applications. Of particular interest to the aerospace industry is their use in various mechanism designs. Many payloads that fly aboard our nation's Space Shuttle have at least one actuated mechanism. Often these mechanisms incorporate pip pins in their design in order to fasten interfacing parts or joints. Pip pins are most often used when an astronaut will have a direct interface with the mechanism. This interfacing can be done during Space Shuttle mission EVA's (ExtraVehicular Activity). The main reason for incorporating pip pins is convenience and their ability to provide a quick release for interfacing parts. However, there are some issues that must be taken into account when using them in a design. These issues include documented failures and quality control problems when using substandard pip pins. A history of pip pins as they relate to the aerospace industry as well as general design features is discussed.

  15. Weapons-Grade MOX Fuel Burnup Characteristics in Advanced Test Reactor Irradiation

    SciTech Connect

    G. S. Chang

    2006-07-01

    Mixed oxide (MOX) test capsules prepared with weapons-derived plutonium have been irradiated to a burnup of 50 GWd/t. The MOX fuel was fabricated at Los Alamos National Laboratory (LANL) by a master-mix process and has been irradiated in the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). Previous withdrawals of the same fuel have occurred at 9, 21, 30, 40, and 50 GWd/t. Oak Ridge National Laboratory (ORNL) manages this test series for the Department of Energy’s Fissile Materials Disposition Program (FMDP). A UNIX BASH (Bourne Again SHell) script CMO has been written and validated at the Idaho National Laboratory (INL) to couple the Monte Carlo transport code MCNP with the depletion and buildup code ORIGEN-2 (CMO). The new Monte Carlo burnup analysis methodology in this paper consists of MCNP coupling through CMO with ORIGEN-2(MCWO). MCWO is a fully automated tool that links the Monte Carlo transport code MCNP with the radioactive decay and burnup code ORIGEN-2. The fuel burnup analyses presented in this study were performed using MCWO. MCWO analysis yields time-dependent and neutron-spectrum-dependent minor actinide and Pu concentrations for the ATR small I-irradiation test position. The purpose of this report is to validate both the Weapons-Grade Mixed Oxide (WG-MOX) test assembly model and the new fuel burnup analysis methodology by comparing the computed results against the neutron monitor measurements and the irradiated WG-MOX post irradiation examination (PIE) data.

  16. Charpy impact test results for low activation ferritic alloys irradiated to 30 dpa

    SciTech Connect

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S.

    1996-04-01

    Miniature specimens of six low activation ferritic alloys have been impact field tested following irradiation at 370{degrees}C to 30 dpa. Comparison of the results with those of control specimens and specimens irradiated to 10 dpa indicates that degradation in the impact behavior appears to have saturated by {approx}10 dpa in at least four of these alloys. The 7.5Cr-2W alloy referred to as GA3X appears most promising for further consideration as a candidate structural material in fusion reactor applications, although the 9Cr-1V alloy may also warrant further investigation.

  17. Results of the Irradiation of R6R018 in the Advanced Test Reactor

    SciTech Connect

    Adam B Robinson; Daniel Wachs; Pavel Medvedev; Curtis Clark; Gray Chang; Misti Lillo; Jan-Fong Jue; Glenn Moore; Jared Wight

    2010-04-01

    For over 30 years the Reduced Enrichment for Research and Test Reactors (RERTR) program has worked to provide the fuel technology and analytical support required to convert research and test reactors from nuclear fuels that utilize highly enriched uranium (HEU) to fuels based on low-enriched uranium (LEU) (defined as <20% U-235). This effort is driven by a desire to minimize international civilian commerce in weapons usable materials. The RERTR fuel development program has executed a wide array of fuel tests over the last decade that clearly established the viability of research reactor fuels based on uranium-molybdenum (U-Mo) alloys. Fuel testing has included a large number of dispersion type fuels capable of providing uranium densities up to approximately 8.5 g U/cc (~1.7 g U-235/cc at 20% enrichment). The dispersion fuel designs tested are very similar to existing research test reactor fuels in that the U-Mo particles simply replace the current fuel phase within the matrix. In 2003 it became evident that the first generation U-Mo-based dispersion fuel within an aluminum matrix exhibited significant fuel performance problems at high power and burn-up. These issues have been successfully addressed with a modest modification to the matrix material composition. Testing has shown that small additions of silicon (2–5 wt%) to the aluminum (Al) matrix stabilizes the fuel performance. The fuel plate R6R018 which was irradiated in the Advanced Test Reactor (ATR) as part of the RERTR-9B experiment was part of an investigation into the role of the silicon content in the matrix. This plate consisted of a U-7Mo fuel phase dispersed in an Al-3.5Si matrix clad in Al-6061. This report outlines the fabrication history, the as fabricated analysis performed prior to irradiation, the irradiation conditions, the post irradiation examination results, and an analysis of the plates behavior.

  18. Irradiation data for the MFA-1 and MFA-2 tests in the FFTF

    SciTech Connect

    Nelson, J.V.

    1997-04-24

    This report provides key information on the irradiation environment of the MONJU fuel tests MFA-1 and MFA-2 in the Fast Flux Test Facility (FFTF). This information includes the fission powers, neutron fluxes, sodium temperatures and sodium flow rates in MFA-I, MFA-2 and adjacent assemblies. It also includes MFA-1 and MFA-2 compositions as a function of exposure. The work was performed at the request of Power Reactor and Nuclear Fuels Corporation (PNC) of Japan.

  19. Design and use of nonstandard tensile specimens for irradiated materials testing

    SciTech Connect

    Panayotou, N.F.; Atkin, S.D.; Puigh, R.J.

    1983-08-01

    Two types of miniature specimens been developed to utilize the limited irradiation volume of high energy neutron sources such as the Rotating Target Neutron Source (RTNS)-II and the Fusion Materials Irradiation Test (FMIT) facility. Wire-type specimens have been used to obtain tensile data for several metals irradiated at RTNS-II. Difficulties in the control of wire specimen dimensions led to the design of a miniature tensile specimen which could be fabricated from 0.25 mm thick sheet stock. Sheet-type tensile specimens are currently our standard tensile specimen for high energy neutron source experiments. These specimens are fabricated, like transmission electron microscopy (TEM) disks, by a punching technique. Precise test frame alignment is essential if reproducible test data are to be obtained. The dedicated test frame developed for miniature tensile specimen testing is briefly described. Miniature tensile specimens of a range of metals have been fabricated and tested. The data are reproducible and are in good agreement with data obtained from larger specimens.

  20. TCT and test beam results of irradiated magnetic Czochralski silicon (MCz-Si) detectors

    SciTech Connect

    Luukka, P.; Harkonen, J.; Maenpaa, T.; Betchart, B.; Czellar, S.; Demina, R.; Furgeri, A.; Gotra, Y.; Frey, M.; Hartmann, F.; Korjenevski, S.; ,

    2009-01-01

    Pad and strip detectors processed on high resistivity n-type magnetic Czochralski silicon (MCz-Si) were irradiated to several different fluences with protons. The pad detectors were characterized with the transient current technique (TCT) and the full-size strip detectors with a reference beam telescope and a 225 GeV muon beam. The TCT measurements indicate a double junction structure and space charge sign inversion in MCz-Si detectors after 6x1014 1 MeV neq/cm2 fluence. In the beam test a signal-to-noise (S/N) ratio of 50 was measured for a non-irradiated MCz-Si sensor, and a S/N ratio of 20 for the sensors irradiated to the fluences of 1x1014 1 and 5x1014 1 MeV neq/cm2.

  1. Heat transfer coefficients for staggered arrays of short pin fins

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. J.

    1981-01-01

    Short pin fins are often used to increase that heat transfer to the coolant in the trailing edge of a turbine blade. Due primarily to limits of casting technology, it is not possible to manufacture pins of optimum length for heat transfer purposes in the trailing edge region. In many cases the pins are so short that they actually decrease the total heat transfer surface area compared to a plain wall. A heat transfer data base for these short pins is not available in the literature. Heat transfer coefficients on pin and endwall surfaces were measured for several staggered arrays of short pin fins. The measured Nusselt numbers when plotted versus Reynolds numbers were found to fall on a single curve for all surfaces tested. The heat transfer coefficients for the short pin fins (length to diameter ratios of 1/2 and 2) were found to be about a factor of two lower than data from the literature for longer pin arrays (length to diameter ratios of about 8).

  2. Heat transfer coefficients for staggered arrays of short pin fins

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. J.

    1981-01-01

    Short pin fins are often used to increase the heat transfer to the coolant in the trailing edge of a turbine blade. Due primarily to limits of casting technology, it is not possible to manufacture pins of optimum length for heat transfer purposes in the trailing edge region. In many cases the pins are so short that they actually decrease the total heat transfer surface area compared to a plain wall. A heat transfer data base for these short pins is not available in the literature. Heat transfer coefficients on pin and endwall surfaces were measured for several staggered arrays of short pin fins. The measured Nusselt numbers when plotted versus Reynolds numbers were found to fall on a single curve for all surfaces tested. The heat transfer coefficients for the short pin fins (length to diameter ratios of 1/2 and 2) were found to be about a factor of two lower than data from the literature for longer pin arrays (length to diameter ratios of about 8).

  3. Accelerated life time testing of fused silica upon ArF laser irradiation

    NASA Astrophysics Data System (ADS)

    Mühlig, Ch.; Triebel, W.; Kufert, S.; Natura, U.

    2008-10-01

    We report on two approaches to strongly shorten life time testing of fused silica's absoption degradation upon 193 nm laser irradiation. Both approaches are based on enhancing the two photon absorption (TPA) induced generation of E' and NBOH defects centers in fused silica compared to common marathon test irradiation parameters. For the first approach the irradiation fluence is increased from typical values H<1 mJ/cm2 to H=10 mJ/cm2, therefore increasing the peak laser power for a more efficient TPA process. To avoid microchannel formation in the samples, being a common break-down criterion in marathon tests based on transmission measurements, a small sample of 10 mm length is irradiated and the absorption is measured directly by the laser induced deflection (LID) technique. For comparing the experimental results with a real marathon test at H=1.3 mJ/cm2, an experimental grade sample with very low hydrogen content, i.e. fast absorption changes due to reduced defect annealing, is choosen. During the fluence dependent absorption measurements after the prolonged irradiation at H=10 mJ/cm2 it is found, that both experiments reveal very comparable absorption data for H=1.3 mJ/cm2. For investigating standard material with high hydrogen content, i.e. slow absorption increase due to effective defect annealing, a sample is cooled down to -180 °C in a special designed experimental setup and irradiated at a laser fluence H=10 mJ/cm2. To control the increase of the defect density and to determine the end of the TPA induced defect generation, the fluorescence at 650 nm of the generated NBOH centers is monitored. Before and after the low temperature experiment, the absorption coefficient is measured directly by LID technique. By applying both, elevated laser fluence and low temperature, the ArF laser induced generation of E' and NBOH centers in the investigated sample is terminated after about 1.2*107 laser pulses. Therefore, a strong reduction of irradiation time is achieved

  4. Small-Scale Mechanical Testing on Proton Beam-Irradiated 304 SS from Room Temperature to Reactor Operation Temperature

    NASA Astrophysics Data System (ADS)

    Vo, H.; Reichardt, A.; Howard, C.; Abad, M. D.; Kaoumi, D.; Chou, P.; Hosemann, P.

    2015-12-01

    Austenitic stainless steels are common structural components in light water reactors. Because reactor components are subjected to harsh conditions such as high operating temperatures and neutron radiation, they can undergo irradiation-induced embrittlement and related failure, which compromises reliable operation. Small-scale mechanical testing has seen widespread use as a testing method for both ion- and reactor-irradiated materials because it allows access to the mechanical properties of the ion beam-irradiated region, and for safe handling of a small amount of activated material. In this study, nanoindentation and microcompression testing were performed on unirradiated and 10 dpa proton-irradiated 304 SS, from 25°C to 300°C. Increases in yield stress (YS), critical resolved shear stress (CRSS) and hardness ( H) were seen in the irradiated region relative to the unirradiated region. Relationships between H, YS, and CRSS of irradiated and unirradiated materials are discussed over this temperature range.

  5. Transmutation behaviour of Eurofer under irradiation in the IFMIF test facility and fusion power reactors

    NASA Astrophysics Data System (ADS)

    Fischer, U.; Simakov, S. P.; Wilson, P. P. H.

    2004-08-01

    The transmutation behaviour of the low activation steel Eurofer was analysed for irradiation simulations in the high flux test module (HFTM) of the International Fusion Material Irradiation Facility (IFMIF) neutron source and the first wall of a typical fusion power reactor (FPR) employing helium cooled lithium lead (HCLL) and pebble bed (HCPB) blankets. The transmutation calculations were conducted with the analytical and laplacian adaptive radioactivity analysis (ALARA) code and IEAF-2001 data for the IFMIF and the EASY-2003 system for the fusion power reactor (FPR) irradiations. The analyses showed that the transmutation of the main constituents of Eurofer, including iron and chromium, is not significant. Minor constituents such as Ti, V and Mn increase by 5-15% per irradiation year in the FPR and by 10-35% in the IFMIF HFTM. Other minor constituents such as B, Ta, and W show a different transmutation behaviour resulting in different elemental compositions of the Eurofer steel after high fluence irradiations in IFMIF and fusion power reactors.

  6. Status of the Norwegian thorium light water reactor (LWR) fuel development and irradiation test program

    SciTech Connect

    Drera, S.S.; Bjork, K.I.; Kelly, J.F.; Asphjell, O.

    2013-07-01

    Thorium based fuels offer several benefits compared to uranium based fuels and should thus be an attractive alternative to conventional fuel types. In order for thorium based fuel to be licensed for use in current LWRs, material properties must be well known for fresh as well as irradiated fuel, and accurate prediction of fuel behavior must be possible to make for both normal operation and transient scenarios. Important parameters are known for fresh material but the behaviour of the fuel under irradiation is unknown particularly for low Th content. The irradiation campaign aims to widen the experience base to irradiated (Th,Pu)O{sub 2} fuel and (Th,U)O{sub 2} with low Th content and to confirm existing data for fresh fuel. The assumptions with respect to improved in-core fuel performance are confirmed by our preliminary irradiation test results, and our fuel manufacture trials so far indicate that both (Th,U)O{sub 2} and (Th,Pu)O{sub 2} fuels can be fabricated with existing technologies, which are possible to upscale to commercial volumes.

  7. Assessment of Initial Test Conditions for Experiments to Assess Irradiation Assisted Stress Corrosion Cracking Mechanisms

    SciTech Connect

    Busby, Jeremy T; Gussev, Maxim N

    2011-04-01

    Irradiation-assisted stress corrosion cracking is a key materials degradation issue in today s nuclear power reactor fleet and affects critical structural components within the reactor core. The effects of increased exposure to irradiation, stress, and/or coolant can substantially increase susceptibility to stress-corrosion cracking of austenitic steels in high-temperature water environments. . Despite 30 years of experience, the underlying mechanisms of IASCC are unknown. Extended service conditions will increase the exposure to irradiation, stress, and corrosive environment for all core internal components. The objective of this effort within the Light Water Reactor Sustainability program is to evaluate the response and mechanisms of IASCC in austenitic stainless steels with single variable experiments. A series of high-value irradiated specimens has been acquired from the past international research programs, providing a valuable opportunity to examine the mechanisms of IASCC. This batch of irradiated specimens has been received and inventoried. In addition, visual examination and sample cleaning has been completed. Microhardness testing has been performed on these specimens. All samples show evidence of hardening, as expected, although the degree of hardening has saturated and no trend with dose is observed. Further, the change in hardening can be converted to changes in mechanical properties. The calculated yield stress is consistent with previous data from light water reactor conditions. In addition, some evidence of changes in deformation mode was identified via examination of the microhardness indents. This analysis may provide further insights into the deformation mode under larger scale tests. Finally, swelling analysis was performed using immersion density methods. Most alloys showed some evidence of swelling, consistent with the expected trends for this class of alloy. The Hf-doped alloy showed densification rather than swelling. This observation may be

  8. AGR-2: The first irradiation of French HTR fuel in Advanced Test Reactor

    SciTech Connect

    T. Lambert; B. Grover; P. Guillermier; D. Moulinier; F. Imbault Huart

    2012-10-01

    AGR-2, the second irradiation of the US program for qualification of the NGNP fuel, is open to international participation within the scope of the Generation IV International Forum. In this frame, it includes in its multi-capsule irradiation rig an irradiation of French HTR fuel manufactured in the CAPRI line (GAIA facility at CEA/Cadarache and AREVA/CERCA compacting line at Romans). The AGR-2 irradiation is designed to place our first fabrications of HTR particles under operating conditions that are representative of ANTARES project while keeping close to the test range of the German fuel as much as possible, which is the reference in terms of irradiation behavior. A few batches of particles and 12 fuel compacts were produced and characterized in 2009 by CEA and CERCA. The fuel main characteristics are in conformity with our specifications and in compliance with INL requirements. The AGR-2 experiment is based on the design and devices used in the first experiment of the AGR program. The design makes it possible to monitor the irradiation conditions and in particular, the temperature, the power and the fission products released from fuel particles. The in pile equipment consists of a multi-capsule device designed to simultaneously irradiate six independent capsules with temperature control. The out-of-core part consists of the equipment for actively controlling temperature and measuring the fission products release on-line. The target conditions for the irradiation experiment were defined with the aim of comparing the results obtained under irradiation with German particles along with the objectives of reaching burn-up and fluence targets to validate the behavior of our fuel in a significant range (15% FIMA – 5 × 1025 n/m2 at 600 EFPD with centerline fuel temperature about 1100 degrees C). These conditions have to be representative of ANTARES project characteristics. These target conditions were compared with final results from neutron and thermal design studies

  9. Doses from external irradiation to Marshall Islanders from Bikini and Enewetak nuclear weapons tests.

    PubMed

    Bouville, André; Beck, Harold L; Simon, Steven L

    2010-08-01

    Annual doses from external irradiation resulting from exposure to fallout from the 65 atmospheric nuclear weapons tests conducted in the Marshall Islands at Bikini and Enewetak between 1946 and 1958 have been estimated for the first time for Marshallese living on all inhabited atolls. All tests that deposited fallout on any of the 23 inhabited atolls or separate reef islands have been considered. The methodology used to estimate the radiation doses at the inhabited atolls is based on test- and location-specific radiation survey data, deposition density estimates of 137Cs, and fallout times-of-arrival provided in a companion paper (Beck et al.), combined with information on the radionuclide composition of the fallout at various times after each test. These estimates of doses from external irradiation have been combined with corresponding estimates of doses from internal irradiation, given in a companion paper (Simon et al.), to assess the cancer risks among the Marshallese population (Land et al.) resulting from exposure to radiation from the nuclear weapons tests. PMID:20622549

  10. Independent Review of AFC 2A, 2B, and 2E ATR Irradiation Tests

    SciTech Connect

    M. Cappiello; R. Hobbins; K. Penny; L. Walters

    2014-01-01

    As part of the Department of Energy Advanced Fuel Cycle program, a series of fuels development irradiation tests have been performed in the Advanced Test Reactor (ATR) at the Idaho National Laboratory. These tests are providing excellent data for advanced fuels development. The program is focused on the transmutation of higher actinides which best can be accomplished in a sodium-cooled fast reactor. Because a fast test reactor is no longer available in the US, a special test vehicle is used to achieve near-prototypic fast reactor conditions (neutron spectra and temperature) for use in ATR (a water-cooled thermal reactor). As part of the testing program, there were many successful tests of advanced fuels including metals and ceramics. Recently however, there have been three experimental campaigns using metal fuels that experienced failure during irradiation. At the request of the program, an independent review committee was convened to review the post-test analyses performed by the fuels development team, to assess the conclusions of the team for the cause of the failures, to assess the adequacy and completeness of the analyses, to identify issues that were missed, and to make recommendations for improvements in the design and operation of future tests. Although there is some difference of opinion, the review committee largely agreed with the conclusions of the fuel development team regarding the cause of the failures. For the most part, the analyses that support the conclusions are sufficient.

  11. Test beam and irradiation test results of Triple-GEM detector prototypes for the upgrade of the muon system of the CMS experiment

    NASA Astrophysics Data System (ADS)

    Vai, I.

    2016-07-01

    The CMS Collaboration is developing GEM detectors for the upgrade of the CMS muon system. Their performance will be presented, analyzing the results of several test beams and an irradiation test performed in the last years.

  12. Studies on the methods of identification of irradiated food I. Seedling growth test

    NASA Astrophysics Data System (ADS)

    Qiongying, Liu; Yanhua, Kuang; Yuemei, Zheng

    1993-07-01

    A seedling growth test for the identification of gamma irradiated edible vegetable seeds was described. The identification of gamma irradiated grape and the other seeds has been investigated. The purpose of this study was to develop an easy, rapid and practical technique for the identification of irradiated edible vegetable seeds. Seven different irradiated edible vegetable seeds as: rice ( Oryza sativa), peanut ( Arachis hypogaea), maize ( Zeamays), soybean ( Glycine max), red bean ( Phaseolus angularis), mung bean ( Phaseolus aureus) and catjang cowpea ( Vigna cylindrica) were tested by using the method of seedling growth. All of the edible vegetable seeds were exposed to gamma radiation on different doses, O(CK), 0.5, 1.0, 1.5, 2.0, 3.0, 5.0 kGy. After treatment with above 1.0 kGy dose to the seeds, the seedling rate was less than 50% compared with the control. Although the seedling rate of rice seeds can reached 58%, the seedling growth was not normal and the seedling leaves appeared deformed. The results by this method were helpful to identify gamma treatment of the edible vegetable seeds with above 1.0 kGy dose.

  13. Charpy impact tests on martensitic/ferritic steels after irradiation in SINQ target-3

    NASA Astrophysics Data System (ADS)

    Dai, Yong; Marmy, Pierre

    2005-08-01

    Charpy impact tests were performed on martensitic/ferritic (MF) steels T91, F82H, Optifer-V and Optimax-A/-C irradiated in SINQ Target-3 up to 7.5 dpa and 500 appm He in a temperature range of 120-195 °C. Results demonstrate that for all the four kinds of steels, the ductile-to-brittle transition temperature (DBTT) increases with irradiation dose. The difference in the DBTT shifts (ΔDBTT) of the different steels is not significant after irradiation in the SINQ target. The ΔDBTT data from the previous small punch (Δ DBTT SP) and the present Charpy impact (ΔDBTT CVN) tests can be correlated with the expression: Δ DBTT SP = 0.4ΔDBTT CVN. All the ΔDBTT data fall into a linear band when they are plotted versus helium concentration. The results indicate that helium effects on the embrittlement of MF steels are significant, particularly at higher concentrations. It suggests that MF steels may not be very suitable for applications at low temperatures in spallation irradiation environments where helium production is high.

  14. Electron cyclotron resonance ion source related development work for heavy-ion irradiation tests

    SciTech Connect

    Koivisto, H.; Suominen, P.; Tarvainen, O.; Virtanen, A.; Parkkinen, A.

    2006-03-15

    The European Space Agency (ESA) uses the facilities at the Accelerator Laboratory (Department of Physics, University of Jyvaeskylae: JYFL) for heavy-ion irradiation tests of electronic components. Electron cyclotron resonance ion source related development work has been carried out in order to meet the requirements set by the project. During the irradiation tests several beam changes are performed during the day. Therefore, the time needed for the beam changes has to be minimized. As a consequence, a beam cocktail having nearly the same m/q ratio is used. This makes it possible a quick tuning of the cyclotron to select the required ion for the irradiation. In addition to this requirement, very high charge states for the heavy elements are needed to reach a penetration depth of 100 {mu}m in silicon. In this article we present some procedures to optimize the ion source operation. We also present results of the first three-frequency heating tests. The main frequency of 14 GHz was fed from a klystron and both secondary frequencies were launched from a traveling-wave tube amplifier (TWTA). Two separate frequency generators were used simultaneously to provide different signals for the TWTA. During the test an improvement of about 20% was observed for {sup 84}Kr{sup 25+} and {sup 129}Xe{sup 30+} ion beams when the third frequency was applied.

  15. Fuel pin cladding

    DOEpatents

    Vaidyanathan, Swaminathan; Adamson, Martyn G.

    1986-01-01

    An improved fuel pin cladding, particularly adapted for use in breeder reactors, consisting of composite tubing with austenitic steel on the outer portion of the thickness of the tube wall and with nickel and/or ferritic material on the inner portion of the thickness of the tube wall. The nickel forms a sacrificial barrier as it reacts with certain fission products thereby reducing fission product activity at the austenitic steel interface. The ferritic material forms a preventive barrier for the austenitic steel as it is immune to liquid metal embrittlement. The improved cladding permits the use of high density fuel which in turn leads to a better breeding ratio in breeder reactors, and will increase the threshold at which failure occurs during temperature transients.

  16. Fuel pin cladding

    DOEpatents

    Vaidyanathan, S.; Adamson, M.G.

    1983-12-16

    An improved fuel pin cladding, particularly adapted for use in breeder reactors, is described which consist of composite tubing with austenitic steel on the outer portion of the thickness of the tube wall and with nickel an/or ferritic material on the inner portion of the thickness of the tube wall. The nickel forms a sacrificial barrier as it reacts with certain fission products thereby reducing fission product activity at the austenitic steel interface. The ferritic material forms a preventive barrier for the austenitic steel as it is immune to liquid metal embrittlement. The improved cladding permits the use of high density fuel which in turn leads to a better breeding ratio in breeder reactors, and will increase the threshold at which failure occurs during temperature transients.

  17. Fuel pin cladding

    DOEpatents

    Vaidyanathan, S.; Adamson, M.G.

    1986-01-28

    Disclosed is an improved fuel pin cladding, particularly adapted for use in breeder reactors, consisting of composite tubing with austenitic steel on the outer portion of the thickness of the tube wall and with nickel and/or ferritic material on the inner portion of the thickness of the tube wall. The nickel forms a sacrificial barrier as it reacts with certain fission products thereby reducing fission product activity at the austenitic steel interface. The ferritic material forms a preventive barrier for the austenitic steel as it is immune to liquid metal embrittlement. The improved cladding permits the use of high density fuel which in turn leads to a better breeding ratio in breeder reactors, and will increase the threshold at which failure occurs during temperature transients. 2 figs.

  18. Characterization of an in-core irradiator for testing of microelectronics in a mixed radiation environment

    NASA Astrophysics Data System (ADS)

    Aghara, Sukesh K.

    In recent years, the space industry is increasingly in search of easily available commercial and emerging technology devices in order to meet rigorous spacecraft requirements such as weight, power, and cost. Before an electronic device is put in a radiation environment, it is pre-tested and certified for space applications. This process of radiation testing and certification is costly and time intensive. Development of a test methodology and a facility to perform these tests quickly and cost effectively, would facilitate the radiation effects community and NASA to fulfill the "Faster, Better, Cheaper". With the rapid developments in the field of satellite-based telecommunications, the move from analog to digital controls for all electronic devices is imminent; hence, need for radiation-hardened mixed signal processing devices is obvious. Digital-to-Analog Converters (DAC) are of particular interest due to their complex design and performance and their importance in digital signal processing. Limited literature exists for radiation effects on DAC; most of these studies were performed with gamma-ray irradiations (Total Ionization Dose, TID) but the much needed displacement damage data is absent. In the first phase of this work, an in-core mixed radiation (neutron and gamma-ray) test facility at the University of Texas at Austin TRIGA Mark II nuclear research reactor was fully characterized. Further, a test methodology to perform radiation testing on complex "off-the-shelf" semiconductor circuits in a time and cost effective manner was developed. In the second phase, the characterized test facility and the methodology were then employed to successfully assess performance degradation of three commercially available DAC circuits: DAC 0808, MC 1408 (DIP package) and MC 1408 (SOIC package). This research has resulted in the development of a unique in-core fast neutron irradiation facility from a research reactor source. The average fast flux of 1.2E9 n/cm2-s at 1 k

  19. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions.

    PubMed

    Garrison, L M; Zenobia, S J; Egle, B J; Kulcinski, G L; Santarius, J F

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA-500 μA; the typical current used is 72 μA, which is an average flux of 9 × 10(14) ions/(cm(2) s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials. PMID:27587118

  20. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    NASA Astrophysics Data System (ADS)

    Garrison, L. M.; Zenobia, S. J.; Egle, B. J.; Kulcinski, G. L.; Santarius, J. F.

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA-500 μA; the typical current used is 72 μA, which is an average flux of 9 × 1014 ions/(cm2 s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.

  1. Anvil for Flaring PCB Guide Pins

    NASA Technical Reports Server (NTRS)

    Winn, E.; Turner, R.

    1985-01-01

    Spring-loaded anvil results in fewer fractured pins. New anvil for flaring guide pins in printed-circuit boards absorbs approximately 80 percent of press force. As result fewer pins damaged, and work output of flaring press greatly increased.

  2. Irradiation performance of reduced-enrichment fuels tested under the US RERTR program

    SciTech Connect

    Snelgrove, J.L.; Hofman, G.L.; Copeland, G.L.

    1985-01-01

    Considerable progress in the irradiation testing of high-density, reduced-enrichment fuels has been made during the past year. Miniplates containing UA1, U/sub 3/Si/sub 2/, U/sub 3/Si/sub 1.5/, U/sub 3/Si, U/sub 3/SiCu, and, U/sub 6/Fe have been irradiated. Postirradiation examinations have revealed that breakway swelling has occurred in 6.4-Mg U/m/sup 3/ U/sub 3/Si plates at approx.2.8 x 10/sup 27/ fissions/m/sup 3/. U/sub 3/Si/sub 2/ plates are continuing to show satisfactory performance. The testing of full-sized fuel elements in the ORR and the SILOE reactor have continued with good results. Postirradiation examinations are confirming the satisfactory performance of these elements.

  3. Irradiation tests of ITER candidate Hall sensors using two types of neutron spectra

    SciTech Connect

    Duran, I.; Viererbl, L.; Lahodova, Z.; Sentkerestiova, J.; Bem, P.

    2010-10-15

    We report on irradiation tests of InSb based Hall sensors at two irradiation facilities with two distinct types of neutron spectra. One was a fission reactor neutron spectrum with a significant presence of thermal neutrons, while another one was purely fast neutron field. Total neutron fluence of the order of 10{sup 16} cm{sup -2} was accumulated in both cases, leading to significant drop of Hall sensor sensitivity in case of fission reactor spectrum, while stable performance was observed at purely fast neutron spectrum. This finding suggests that performance of this particular type of Hall sensors is governed dominantly by transmutation. Additionally, it further stresses the need to test ITER candidate Hall sensors under neutron flux with ITER relevant spectrum.

  4. Irradiation tests of ITER candidate Hall sensors using two types of neutron spectra.

    PubMed

    Ďuran, I; Bolshakova, I; Viererbl, L; Sentkerestiová, J; Holyaka, R; Lahodová, Z; Bém, P

    2010-10-01

    We report on irradiation tests of InSb based Hall sensors at two irradiation facilities with two distinct types of neutron spectra. One was a fission reactor neutron spectrum with a significant presence of thermal neutrons, while another one was purely fast neutron field. Total neutron fluence of the order of 10(16) cm(-2) was accumulated in both cases, leading to significant drop of Hall sensor sensitivity in case of fission reactor spectrum, while stable performance was observed at purely fast neutron spectrum. This finding suggests that performance of this particular type of Hall sensors is governed dominantly by transmutation. Additionally, it further stresses the need to test ITER candidate Hall sensors under neutron flux with ITER relevant spectrum. PMID:21033987

  5. Small punch test evaluation of neutron-irradiation-induced embrittlement of a Cr-Mo low-alloy steel

    SciTech Connect

    Song, S.-H. . E-mail: shsonguk@yahoo.co.uk; Faulkner, R.G.; Flewitt, P.E.J.; Marmy, P.; Weng, L.-Q.

    2004-09-15

    Neutron-irradiation-induced embrittlement of a 2.25Cr1Mo steel is investigated by means of small punch testing along with scanning electron microscopy. There is an apparent irradiation-induced embrittlement effect after the steel is irradiated at about 400 deg. C for 86 days with a neutron dose rate of 1.75x10{sup -8} dpa/s. The embrittlement is mainly nonhardening embrittlement caused by impurity grain boundary segregation.

  6. Graphite Isotope Ratio Method Development Report: Irradiation Test Demonstration of Uranium as a Low Fluence Indicator

    SciTech Connect

    Reid, B.D.; Gerlach, D.C.; Love, E.F.; McNeece, J.P.; Livingston, J.V.; Greenwood, L.R.; Petersen, S.L.; Morgan, W.C.

    1999-10-20

    This report describes an irradiation test designed to investigate the suitability of uranium as a graphite isotope ratio method (GIRM) low fluence indicator. GIRM is a demonstrated concept that gives a graphite-moderated reactor's lifetime production based on measuring changes in the isotopic ratio of elements known to exist in trace quantities within reactor-grade graphite. Appendix I of this report provides a tutorial on the GIRM concept.

  7. Minimum bar size for flexure testing of irradiated SiC/SiC composite

    SciTech Connect

    Youngblood, G.E.; Jones, R.H.

    1998-03-01

    This report covers material presented at the IEA/Jupiter Joint International Workshop on SiC/SiC Composites for Fusion structural Applications held in conjunction with ICFRM-8, Sendai, Japan, Oct. 23-24, 1997. The minimum bar size for 4-point flexure testing of SiC/SiC composite recommended by PNNL for irradiation effects studies is 30 {times} 6 {times} 2 mm{sup 3} with a span-to-depth ratio of 10/1.

  8. High irradiance UV/condensation testers allow faster accelerated weathering test results

    SciTech Connect

    Brennan, P.J.; Fedor, G.R.

    1993-12-31

    Because outdoor exposures are so time consuming, accelerated laboratory testing is used extensively by industry. One of the more popular laboratory weathering testers is the ASTM G53 UV/Condensation device, also known as the QUV. This paper examines an enhancement to the G53 weather tester that allows precise control of light output and higher than previous light intensity levels. Data is presented on the accelerating effect of higher irradiance on several common polymers.

  9. Hydraulic Shuttle Irradiation System (HSIS) Recently Installed in the Advanced Test Reactor (ATR)

    SciTech Connect

    A. Joseph Palmer; Gerry L. McCormick; Shannon J. Corrigan

    2010-06-01

    2010 International Congress on Advances in Nuclear Power Plants (ICAPP’10) ANS Annual Meeting Imbedded Topical San Diego, CA June 13 – 17, 2010 Hydraulic Shuttle Irradiation System (HSIS) Recently Installed in the Advanced Test Reactor (ATR) Author: A. Joseph Palmer, Mechanical Engineer, Irradiation Test Programs, 208-526-8700, Joe.Palmer@INL.gov Affiliation: Idaho National Laboratory P.O. Box 1625, MS-3840 Idaho Falls, ID 83415 INL/CON-10-17680 ABSTRACT Most test reactors are equipped with shuttle facilities (sometimes called rabbit tubes) whereby small capsules can be inserted into the reactor and retrieved during power operations. With the installation of Hydraulic Shuttle Irradiation System (HSIS) this capability has been restored to the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). The general design and operating principles of this system were patterned after the hydraulic rabbit at Oak Ridge National Laboratory’s (ORNL) High Flux Isotope Reactor (HFIR), which has operated successfully for many years. Using primary coolant as the motive medium the HSIS system is designed to simultaneously transport fourteen shuttle capsules, each 16 mm OD x 57 mm long, to and from the B-7 position of the reactor. The B-7 position is one of the higher flux positions in the reactor with typical thermal and fast (>1 Mev) fluxes of 2.8E+14 n/cm2/sec and 1.9E+14 n/cm2/sec respectively. The available space inside each shuttle is approximately 14 mm diameter x 50 mm long. The shuttle containers are made from titanium which was selected for its low neutron activation properties and durability. Shuttles can be irradiated for time periods ranging from a few minutes to several months. The Send and Receive Station (SRS) for the HSIS is located 2.5 m deep in the ATR canal which allows irradiated shuttles to be easily moved from the SRS to a wet loaded cask, or transport pig. The HSIS system first irradiated (empty) shuttles in September 2009 and has since completed

  10. Status Report on the Fabrication of Fuel Cladding Chemical Interaction Test Articles for ATR Irradiations

    SciTech Connect

    Field, Kevin G.; Howard, Richard H.

    2015-09-28

    FeCrAl alloys are a promising new class of alloys for light water reactor (LWR) applications due to their superior oxidation and corrosion resistance in high temperature environments. The current R&D efforts have focused on the alloy composition and processing routes to generate nuclear grade FeCrAl alloys with optimized properties for enhanced accident tolerance while maintaining properties needed for normal operation conditions. Therefore, the composition and processing routes must be optimized to maintain the high temperature steam oxidation (typically achieved by increasing the Cr and Al content) while still exhibiting properties conducive to normal operation in a LWR (such as radiation tolerance where reducing Cr content is favorable). Within this balancing act is the addition of understanding the influence on composition and processing routes on the FeCrAl alloys for fuel-cladding chemical interactions (FCCI). Currently, limited knowledge exists on FCCI for the FeCrAl-UO2 clad-fuel system. To overcome the knowledge gaps on the FCCI for the FeCrAl-UO2 clad-fuel system a series of fueled irradiation tests have been developed for irradiation in the Advanced Test Reactor (ATR) housed at the Idaho National Laboratory (INL). The first series of tests has already been reported. These tests used miniaturized 17x17 PWR fuel geometry rodlets of second-generation FeCrAl alloys fueled with industrial Westinghouse UO2 fuel. These rodlets were encapsulated within a stainless steel housing.To provide high fidelity experiments and more robust testing, a new series of rodlets have been developed deemed the Accident Tolerant Fuel Experiment #1 Oak Ridge National Laboratory FCCI test (ATF-1 ORNL FCCI). The main driving factor, which is discussed in detail, was to provide a radiation environment where prototypical fuel-clad interface temperatures are met while still maintaining constant contact between industrial fuel and the candidate cladding alloys