Pion form factor from a contact interaction
Gutierrez-Guerrero, L. X.; Bashir, A.; Cloeet, I. C.; Roberts, C. D.
2010-06-15
In a Poincare-covariant vector-boson-exchange theory, the pion possesses components of pseudovector origin, which materially influence its observable properties. For a range of such quantities, we explore the consequences of a momentum-independent interaction, regularized in a symmetry-preserving manner. The contact interaction, while capable of describing pion static properties, produces a form factor whose evolution for Q{sup 2}>0.17 GeV{sup 2} disagrees markedly with experiment and whose asymptotic power-law behavior conflicts strongly with perturbative QCD.
Pion form factor from a contact interaction.
Gutierrez-Guerrero, L. X.; Bashir, A.; Cloet, I. C.; Roberts, C. D.
2010-01-01
In a Poincare-covariant vector-boson-exchange theory, the pion possesses components of pseudovector origin, which materially influence its observable properties. For a range of such quantities, we explore the consequences of a momentum-independent interaction, regularized in a symmetry-preserving manner. The contact interaction, while capable of describing pion static properties, produces a form factor whose evolution for Q{sup 2} > 0.17 GeV{sup 2} disagrees markedly with experiment and whose asymptotic power-law behavior conflicts strongly with perturbative QCD.
Pion production in neutrino interactions with nuclei
Leitner, T.; Lalakulich, O.; Buss, O.; Mosel, U.; Alvarez-Ruso, L.
2010-03-30
Neutrino-induced pion production on nuclear targets is the major inelastic channel in all present-day neutrino-oscillation experiments. It has to be understood quantitatively in order to be able to reconstruct the neutrino-energy at experiments such as MiniBooNE or K2K and T2K. We report here results of cross section calculations for both this channel and for quasielastic scattering within the semiclassical GiBUU method. This method contains scattering, both elastic and inelastic, absorption and side-feeding of channels all in a unitary, common theoretical framework and code. We find that charged current quasielastic scattering (CCQE) and 1 pi production are closely entangled in actual experiments, due to final state interactions of the scattered nucleons on one hand and of the DELTA resonances and pions, on the other hand. We discuss the uncertainties in the elementary pion production cross sections from ANL and BNL. We find the surprising result that the recent 1 pi production cross section data from MiniBooNE are well described by calculations without any FSI. For higher energies we study the validity of the Bloom-Gilman quark-hadron duality for both electron- and neutrino-induced reactions. While this duality holds quite well for nucleon targets, for nuclear targets the average resonance contributions to the structure function F{sub 2} are always lower than the DIS values. This result indicates a significant impact of nuclear effects on observables, reducing the cross section and structure functions by at least 30-40% and changing the form of various distributions.
Experimental studies of pion-nucleus interactions at intermediate energies
Not Available
1991-12-31
This report summarizes the work on experimental research in intermediate energy nuclear physics carried out at New Mexico State University in 1991 under a great from the US Department of Energy. Most of these studies have involved investigations of various pion-nucleus interactions. The work has been carried out both with the LAMPF accelerator at the Los Alamos National Laboratory and with the cyclotron at the Paul Scherrer Institute (PSI) near Zurich, Switzerland. Part of the experimental work involves measurements of new data on double-charge-exchange scattering, using facilities at LAMPF which we helped modify, and on pion absorption, using a new detector system at PSI that covers nearly the full solid-angle region which we helped construct. Other work involved preparation for future experiments using polarized nuclear targets and a new high-resolution spectrometer system for detecting {pi}{sup 0} mesons. We also presented several proposals for works to be done in future years, involving studies related to pi-mesonic atoms, fundamental pion-nucleon interactions, studies of the difference between charged and neutral pion interactions with the nucleon, studies of the isospin structure of pion-nucleus interactions, and pion scattering from polarized {sup 3}He targets. This work is aimed at improving our understanding of the pion-nucleon interaction, of the pion-nucleus interaction mechanism, and of nuclear structure.
Interaction lengths of energetic pions and protons in iron.
NASA Technical Reports Server (NTRS)
Crannell, H.; Crannell, C. J.; Whiteside, H.; Ormes, J. F.; Ryan, M. J.
1973-01-01
Determination of the mean interaction lengths for 9.3-, 13.8-, and 17.8-GeV protons and 9.3- and 17.8-GeV positive pions in iron. The mean interaction length of pions is found to be approximately 20% greater than that of protons. No statistically significant variation of the mean interaction length for protons or pions as a function of energy is observed. With only two exceptions, the data obtained show a systematic 5% difference between measurements of the mean interaction length made with cosmic rays and those made with accelerator-produced protons.
Renormalization of NN Interaction with Relativistic Chiral Two Pion Exchange
Higa, R; Valderrama, M Pavon; Arriola, E Ruiz
2007-06-14
The renormalization of the NN interaction with the Chiral Two Pion Exchange Potential computed using relativistic baryon chiral perturbation theory is considered. The short distance singularity reduces the number of counter-terms to about a half as those in the heavy-baryon expansion. Phase shifts and deuteron properties are evaluated and a general overall agreement is observed.
Multiplicity of pions from a heated interacting gas
NASA Astrophysics Data System (ADS)
Vorov, O. K.; Hussein, M. S.
2001-09-01
We consider a toy model to mimic the properties of the hot self-interacting pion system created in high-energy collisions. We show that the distribution of the multiplicities is similar to the negative binomial distribution that is typical for the squeezed states.
Goldstone pion and other mesons using a scalar confining interaction
Gross, F. |; Milana, J.
1994-04-01
A covariant wave equation for q{bar q} interactions with an interaction kernel composed of the sum of constant vector and linear scalar confining interactions is solved for states with two quarks with identical mass. The model includes an NJL-like mechanism which links the dynamical breaking of chiral symmetry to the spontaneous generation of quark mass and the appearance of a low mass Goldstone pion. A novel feature of this approach is that it automatically explains the small mass of the pion even though the linear potential is a scalar interaction in Dirac space, and hence breaks chiral symmetry. Solutions for mesons composed of light quarks ({pi},{rho}, and low lying excited states) and heavy quarks ({rho}{sub c}, J/{Psi}, and low lying excited states) are presented and discussed.
Inelastic interaction mean free path of negative pions in tungsten
NASA Technical Reports Server (NTRS)
Cheshire, D. L.; Huggett, R. W.; Jones, W. V.; Rountree, S. P.; Schmidt, W. K. H.; Kurz, R. J.; Bowen, T.; Delise, D. A.; Krider, E. P.; Orth, C. D.
1975-01-01
The inelastic interaction mean free paths lambda of 5, 10, and 15 GeV/c pions were measured by determining the distribution of first interaction locations in a modular tungsten-scintillator ionization spectrometer. In addition to commonly used interaction signatures of a few (2-5) particles in two or three consecutive modules, a chi2 distribution is used to calculate the probability that the first interaction occurred at a specific depth in the spectrometer. This latter technique seems to be more reliable than use of the simpler criteria. No significant dependence of lambda on energy was observed. In tungsten, lambda for pions is 206 plus or minus 6 g/sq cm.
NASA Astrophysics Data System (ADS)
Kim, Changhoan
We report the results of a calculation of the K → pipi matrix elements of the DeltaI = 3/2 operators. Relying on the 3-flavor effective Hamiltonian, we calculate the low energy contribution to the matrix elements in quenched lattice QCD with the DBW2 action using domain wall fermions, while the high energy contribution is included in the Wilson coefficients. In order to generate interacting pipi states with non-zero relative momentum in lattice, we apply anti-periodic boundary conditions on pions. Since only the magnitude of the overlap of our interpolating operators with the initial and final state is determined, we can calculate only the magnitude of the matrix elements. From the comparison with the experimental result, however, we find some degree of discrepancy. This discrepancy might be ascribed to the unphysical kinematics we choose in this report.
Realistic models of pion-exchange three-nucleon interactions
Pieper, Steven C.; Pandharipande, V. R.; Wiringa, R. B.; Carlson, J.
2001-07-01
We present realistic models of pion-exchange three-nucleon interactions obtained by fitting the energies of all the 17 bound or narrow states of 3{<=}A{<=}8 nucleons, calculated with less than 2% error using the Green's function Monte Carlo method. The models contain two-pion-exchange terms due to {pi}N scattering in S and P waves, three-pion-exchange terms due to ring diagrams with one {Delta} in the intermediate states, and a phenomenological repulsive term to take into account relativistic effects, the suppression of the two-pion-exchange two-nucleon interaction by the third nucleon, and other effects. The models have five parameters, consisting of the strength of the four interactions and the short-range cutoff. The 17 fitted energies are insufficient to determine all of them uniquely. We consider five models, each having three adjustable parameters and assumed values for the other two. They reproduce the observed energies with an rms error <1% when used together with the Argonne v{sub 18} two-nucleon interaction. In one of the models the {pi}N S-wave scattering interaction is set to zero; in all others it is assumed to have the strength suggested by chiral effective-field theory. One of the models also assumes that the {pi}N P-wave scattering interaction has the strength suggested by effective-field theories, and the cutoff is adjusted to fit the data. In all other models the cutoff is taken to be the same as in the v{sub 18} interaction. The effect of relativistic boost correction to the two-nucleon interaction on the strength of the repulsive three-nucleon interaction is estimated. Many calculated properties of A{<=}8 nuclei, including radii, magnetic dipole, and electric quadrupole moments, isobaric analog energy differences, etc., are tabulated. Results obtained with only Argonne v{sub 8}' and v{sub 18} interactions are also reported. In addition, we present results for seven- and eight-body neutron drops in external potential wells.
Experimental studies of pion-nucleus interactions at intermediate energies. Annual progress report
Not Available
1991-12-31
This report summarizes the work on experimental research in intermediate energy nuclear physics carried out at New Mexico State University in 1991 under a great from the US Department of Energy. Most of these studies have involved investigations of various pion-nucleus interactions. The work has been carried out both with the LAMPF accelerator at the Los Alamos National Laboratory and with the cyclotron at the Paul Scherrer Institute (PSI) near Zurich, Switzerland. Part of the experimental work involves measurements of new data on double-charge-exchange scattering, using facilities at LAMPF which we helped modify, and on pion absorption, using a new detector system at PSI that covers nearly the full solid-angle region which we helped construct. Other work involved preparation for future experiments using polarized nuclear targets and a new high-resolution spectrometer system for detecting {pi}{sup 0} mesons. We also presented several proposals for works to be done in future years, involving studies related to pi-mesonic atoms, fundamental pion-nucleon interactions, studies of the difference between charged and neutral pion interactions with the nucleon, studies of the isospin structure of pion-nucleus interactions, and pion scattering from polarized {sup 3}He targets. This work is aimed at improving our understanding of the pion-nucleon interaction, of the pion-nucleus interaction mechanism, and of nuclear structure.
Nuclear interactions of 340-GeV pions in emulsion
Tufail, A.; Ahmad, S.; Khan, A.R.; Zafar, M.; Shafi, M. )
1990-10-01
Some results on heavy- and shower-particle multiplicities produced in interactions of 340-GeV pions in nuclear emulsion are presented and compared with similar results in proton-nucleus interactions at different energies. Values of {l angle}{ital N}{sub {ital g}}{r angle} in {pi}{sup {minus}}{ital A} interactions are found to be less than its value in {ital pA} interactions at similar energies. This is understood in terms of additive quark model. The result on mean normalized multiplicity reveals that the values of {ital R}{sub {ital A}1} are almost constant in the forward direction for all values of {l angle}{nu}({ital N}{sub {ital g}}){r angle} and {ital R}{sub {ital A}1} increases with {l angle}{nu}({ital N}{sub {ital g}}){r angle} in the intervals 1.2{lt}{eta}{le}2.0 and {eta}{le}1.2.
Equation of state of an interacting pion gas with realistic {pi}-{pi} interactions
Rapp, R.; Wambach, J.
1996-06-01
Within the finite-temperature Green{close_quote}s-function formalism we study the equation of state of a hot interacting pion gas at zero chemical potential. Employing realistic {pi}{pi} meson-exchange interactions, we self-consistently calculate the in-medium single-pion self-energy and the {pi}{pi} scattering amplitude in the quasiparticle approximation. These quantities are then used to evaluate the thermodynamic potential {Omega}{sub {pi}}({ital T}) from which the state variables of pressure, entropy, and energy density can be derived. In contrast to earlier calculations based on the low-energy Weinberg Lagrangian we find an overall increase as compared to the free-gas results. We also consider the possibility of a dropping {rho}-meson mass as suggested by the {open_quote}{open_quote}Brown-Rho scaling{close_quote}{close_quote} law. {copyright} {ital 1996 The American Physical Society.}
Investigation of pion-nucleus interactions. [295 MeV
Moore, C.F.
1992-09-01
This report summarizes the work carried out by personnel from the University of Texas at Austin at the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF). The research activities involved experiments done with the Energetic Pion Channel and Spectrometer (EPICS), the Low Energy Pion Channel (LEP), the Pion and Particle Physics Channel (P[sup 3]), the High Resolution Spectrometer (HRS), and planning a new experimental program associated with the new high-resolution Neutral Meson Spectrometer (NMS) at LAMPF. A brief overview of work supported by this grant is given followed by an account of the study of the double giant resonances in pion double charge exchange on [sup 51]V, [sup 115]In, and [sup 197]Au. This report contains a list of published papers and preprints, abstracts, and invited talks. These papers summarize experiments involving participants supported by this grant and indicate the work accomplished by these participants in this program of medium energy nuclear physics research. Lists of the most recent proposals on which we have participation at LAMPF, proposals which have been approved this past year to run as experiments, personnel who have participated in this research program are included. The research cited in this report is, in many cases, the collaborative effort of many groups associated with research at LAMPF.
Experimental studies of pion-nucleus interactions at intermediate energies. Annual progress report
Not Available
1992-12-31
This report summarizes investigations of various pion-nucleus interactions and nucleon-nucleus charge-exchange reactions. The work was carried out with the LAMPF accelerator at the Los Alamos National Laboratory and the cyclotrons at the Paul Scherrer Institute (PSI) near Zurich, Switzerland, and at Indiana University (IUCF), as a collaborative effort among several laboratories and universities. The experimental activity at LAMPF involved measurements of new data on pion double-charge-exchange scattering, some initial work on a new Neutral Meson Spectrometer system, a search for deeply-bound pionic atoms, measurements of elastic scattering, and studies of the (n,p) reaction on various nuclei. At PSI measurements of pion quasielastic scattering were carried out, with detection of the recoil proton. Work on the analysis of data from a previous experiment at PSI on pion absorption in nuclei was continued. This experiment involved using a detector system that covered nearly the full solid angle.
Pion- and proton-nucleus interactions at intermediate energy
Dehnhard, D.
1992-02-01
{pi}-meson and proton beams from the Los Alamos Meson Physics Facility (LAMPF) and the Indiana University Cyclotron Facility (IUCF) were used in scattering and reaction experiments on atomic nuclei. The experimental data allow tests of models of the reaction mechanism and of nuclear structure. For example, the asymmetries observed in a pion scattering experiment on polarized {sup 13}C nuclei were found to contain unique information on the isoscalar spin density. However, further experiments on polarized nuclei of simpler structure are needed to provide the data for a thorough analysis of the reaction mechanism. For this reason a pion scattering experiment on a polarized {sup 3}He target is planned and a high-resolution study on {sup 6}Li({pi},{pi}{prime}) will be done. An analysis of {pi}-triton coincidence events from the {sup 4}He({pi},{pi}{prime}t)p reaction yielded evidence for direct triton knock-out from {sup 4}He. This work will be continued at higher incident pion energies. Additional work on the {sup 4}He(p,n) reaction at IUCF is planned to determine the isovector strength in mass-4 nuclei and the level parameters of {sup 4}Li.
Constraining pion interactions at very high energies by cosmic ray data
NASA Astrophysics Data System (ADS)
Ostapchenko, Sergey; Bleicher, Marcus
2016-03-01
We demonstrate that a substantial part of the present uncertainties in model predictions for the average maximum depth of cosmic ray-induced extensive air showers is related to very high energy pion-air collisions. Our analysis shows that the position of the maximum of the muon production profile in air showers is strongly sensitive to the properties of such interactions. Therefore, the measurements of the maximal muon production depth by cosmic ray experiments provide a unique opportunity to constrain the treatment of pion-air interactions at very high energies and to reduce thereby model-related uncertainties for the shower maximum depth.
Experiments on the nuclear interactions of pions and electrons
Minehart, R. C.; Ziock, K. O.H.
1990-06-01
This paper discusses: {pi}{sup +} + d {yields} 2p; Pion Absorption in {sup 3}He; Pion Absorption in {sup 4}He; Evidence for narrow structure in the analyzing power of the {sup 3}He ({rvec p}, d)X reaction; Coherent {eta}-Meson Production in the Reaction {pi}{minus} + {sup 3}He {yields} {eta} + t; Search for heavy neutrinos; The search for fractionally charged particles; Search for the rare decay, {mu} {sup +} {yields} e{sup +} + {gamma}; A Precise Measurement of the {pi}{sup +} {yields} {pi}{sup 0} e{sup +}{nu} Decay Rate; Transverse and Longitudinal Response Functions for Several Nuclei near Q{sup 2} = 1 (GeV/c){sup 2}; The Q{sup 2}-dependence of the {sup 4}He (e, e'p) coincidence cross section at the quasielastic peak; The Response Function R{sub LT} in the reaction {sup 16}O(e, e' p); and Absorption of anti-protons in heavy nuclei.
Experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies
Not Available
1990-10-01
This report summarizes the work on experimental research in intermediate energy nuclear and particle physics carried out by New Mexico State University in 1988--91. Most of these studies have involved investigations of neutron-proton and pion-nucleus interactions. The neutron-proton research is part of a program of studies of interactions between polarized nucleons that we have been involved with for more than ten years. Its purpose has been to help complete the determination of the full set of ten complex nucleon-nucleon amplitudes at energies up to 800 MeV, as well as to continue investigating the possibility of the existence of dibaryon resonances. The give complex isospin-one amplitudes have been fairly well determined, partly as a result of this work. Our work in this period has involved measurements and analysis of data on elastic scattering and total cross sections for polarized neutrons on polarized protons. The pion-nucleus research continues our studies of this interaction in regions where it has not been well explored. One set of experiments includes studies of pion elastic and double-charge-exchange scattering at energies between 300 and 550 MeV, where our data is unique. Another involves elastic and single-charge-exchange scattering of pions from polarized nuclear targets, a new field of research which will give the first extensive set of information on spin-dependent pion-nucleus amplitudes. Still another involves the first set of detailed studies of the kinematic correlations among particles emitted following pion absorption in nuclei.
Ratio of Pion Kaon Production in Proton Carbon Interactions
Lebedev, Andrey V.; /Harvard U.
2007-05-01
The ratio of pion-kaon production by 120 GeV/c protons incident on carbon target is presented. The data was recorded with the Main Injector Particle Production experiment at Fermi National Accelerator Laboratory. Production ratios of K{sup +}/{pi}{sup +}, K{sup -}/{pi}{sup -}, K{sup -}/K{sup +}, and {pi}{sup -}/{pi}{sup +} are measured in 24 bins in longitudinal momentum from 20 to 90 GeV/c and transverse momentum up to 2 GeV/c. The measurement is compared to existing data sets, particle production Monte Carlo results from FLUKA-06, parametrization of proton-beryllium data at 400/450 GeV/c, and ratios measured by the MINOS experiment on the NuMI target.
A study of gamma-families generated in nucleon-nucleus (NA) and pion-nucleus (pi A) interactions
NASA Technical Reports Server (NTRS)
Azimov, S. A.; Mulladjanov, E. J.; Nuritdinov, H.; Yuldashbaev, T. S.
1985-01-01
The separation of the gamma families generated in nucleon-nuclear and pion-nuclear (PI-A) interactions is realized from the analysis of simulated gamma families. Some characteristics of NA and PI families and the influence of the process of inelastic charge-exchange of charged pions neutral ones type of PI + or - A yields are studied.
Inelastic-interaction mean free path of negative pions in tungsten
NASA Technical Reports Server (NTRS)
Cheshire, D. L.; Huggett, R. W.; Jones, W. V.; Rountree, S. P.; Schmidt, W. K. H.; Kurz, R. J.; Bowen, T.; Delise, D. A.; Krider, E. P.; Orth, C. D.
1975-01-01
The inelastic-interaction mean free paths (lambda) of 5-, 10-, and 15-GeV/c pions have been measured by determining the distribution of first-interaction locations in a modular tungsten-scintillator ionization spectrometer. In addition to commonly used interaction signatures of a few (2-5) particles in two or three consecutive modules, a chi-squared distribution is employed to calculate the probability that the first interaction occurred at a specific depth in the spectrometer. This latter technique seems to be more reliable than use of the simpler criteria. No significant dependence of lambda on energy has been observed. In tungsten, lambda for pions is 206 (plus or minus 6) g/sq cm.
Pion- and proton-nucleus interactions at intermediate energy
Dehnhard, D.
1992-12-01
We report on scattering and reaction experiments on light nuclei using the [pi]-meson and proton beams from the Los Alamos Meson Physics Facility (LAMPF) and the Indiana University Cyclotron Facility (IUCF). Differential cross sections, cross section asymmetries, and angular correlation functions have been measured in order to test models of the reaction mechanism and of nuclear structure. At LAMPF we have measured asymmetries for pion scattering from polarized [sup 13]C which are uniquely sensitive to the isoscalar spin density. In order to determine details of the reaction mechanism, we have obtained approval for a scattering experiment on polarized [sup 3]He for which the nuclear structure is very well known. We have completed data taking for two studies of elastic scattering of [pi][sup +] from [sup 6]Li and [sup l3]C. The detailed differential cross sections from these experiments will be used to constrain theoretical analyses of previous polarization experiments done at the Pierre-Scherrer-Institute (PSI) and at LAMPF. We have analyzed [pi]-triton coincidence events from the [sup 4]He([pi],[pi][prime] t)p reaction and have found evidence for direct triton knockout from [sup 4]He. We have extended these angular correlation measurements to higher energies and to [sup 2]H and [sup 3]He targets. At IUCF we have performed the first [sup 4]He(p,n) experiment at intermediate energies, T[sub p] = 100, 147, and 200 MeV, in a search for previously reported narrow states in [sup 4]Li of widths of [approx] 1 MeV. Within the statistics of the data we have found no evidence for such narrow structures.
Polarization analysis of vector-meson production in pion-nucleon interactions
NASA Astrophysics Data System (ADS)
Arash, Firooz; Habibi, Mohammad F.
1993-07-01
In view of the growing (though still incomplete) set of data on vector-meson production in pion-nucleon interactions, the polarization structure of this reaction is presented, together with polarization tests of one-particle-exchange processes in the s and t channels, as well as polarization tests for the Skyrmion model. The amplitude-observable relations are exhibited in the helicity, transversity, and planar-transverse frames. The desirable direction of future experimental programs is also outlined.
Possibility of measuring Adler angles in charged current single pion neutrino-nucleus interactions
NASA Astrophysics Data System (ADS)
Sánchez, F.
2016-05-01
Uncertainties in modeling neutrino-nucleus interactions are a major contribution to systematic errors in long-baseline neutrino oscillation experiments. Accurate modeling of neutrino interactions requires additional experimental observables such as the Adler angles which carry information about the polarization of the Δ resonance and the interference with nonresonant single pion production. The Adler angles were measured with limited statistics in bubble chamber neutrino experiments as well as in electron-proton scattering experiments. We discuss the viability of measuring these angles in neutrino interactions with nuclei.
Not Available
1992-12-31
This report summarizes investigations of various pion-nucleus interactions and nucleon-nucleus charge-exchange reactions. The work was carried out with the LAMPF accelerator at the Los Alamos National Laboratory and the cyclotrons at the Paul Scherrer Institute (PSI) near Zurich, Switzerland, and at Indiana University (IUCF), as a collaborative effort among several laboratories and universities. The experimental activity at LAMPF involved measurements of new data on pion double-charge-exchange scattering, some initial work on a new Neutral Meson Spectrometer system, a search for deeply-bound pionic atoms, measurements of elastic scattering, and studies of the (n,p) reaction on various nuclei. At PSI measurements of pion quasielastic scattering were carried out, with detection of the recoil proton. Work on the analysis of data from a previous experiment at PSI on pion absorption in nuclei was continued. This experiment involved using a detector system that covered nearly the full solid angle.
Gamberg, Leonard; Schlegel, Marc
2010-01-18
In the factorized picture of semi-inclusive hadronic processes the naive time reversal-odd parton distributions exist by virtue of the gauge link which renders it color gauge invariant. The link characterizes the dynamical effect of initial/final-state interactions of the active parton due soft gluon exchanges with the target remnant. Though these interactions are non-perturbative, studies of final-state interaction have been approximated by perturbative one-gluon approximation in Abelian models. We include higher-order contributions by applying non-perturbative eikonal methods incorporating color degrees of freedom in a calculation of the Boer-Mulders function of the pion. Lastly, using this framework we explore under what conditionsmore » the Boer Mulders function can be described in terms of factorization of final state interactions and a spatial distribution in impact parameter space.« less
Marc Schlegel, Leonard Gamberg
2010-02-01
In the factorized picture of semi-inclusive hadronic processes the naive time reversal-odd parton distributions exist by virtue of the gauge link which renders it color gauge invariant. The link characterizes the dynamical effect of initial/final-state interactions of the active parton due soft gluon exchanges with the target remnant. Though these interactions are non-perturbative, studies of final-state interaction have been approximated by perturbative one-gluon approximation in Abelian models. We include higher-order contributions by applying non-perturbative eikonal methods incorporating color degrees of freedom in a calculation of the Boer-Mulders function of the pion. Using this framework we explore under what conditions the Boer Mulders function can be described in terms of factorization of final state interactions and a spatial distribution in impact parameter space.
Gamberg, Leonard; Schlegel, Marc
2010-01-18
In the factorized picture of semi-inclusive hadronic processes the naive time reversal-odd parton distributions exist by virtue of the gauge link which renders it color gauge invariant. The link characterizes the dynamical effect of initial/final-state interactions of the active parton due soft gluon exchanges with the target remnant. Though these interactions are non-perturbative, studies of final-state interaction have been approximated by perturbative one-gluon approximation in Abelian models. We include higher-order contributions by applying non-perturbative eikonal methods incorporating color degrees of freedom in a calculation of the Boer-Mulders function of the pion. Lastly, using this framework we explore under what conditions the Boer Mulders function can be described in terms of factorization of final state interactions and a spatial distribution in impact parameter space.
DOE R&D Accomplishments Database
Nambu, Y.
1968-01-01
My talk is concerned with a review, not necessarily of the latest theoretical developments, but rather of an old idea which has contributed to recent theoretical activities. By soft pion processes I mean processes in which low energy pions are emitted or absorbed or scattered, just as we use the word soft photon in a similar context. Speaking more quantitatively, we may call a pion soft if its energy is small compared to a natural scale in the reaction. This scale is determined by the particular dynamics of pion interaction, and one may roughly say that a pion is soft if its energy is small compared to the energies of the other individual particles that participate in the reaction. It is important to note at this point that pion is by far the lightest member of all the hadrons, and much of the success of the soft pion formulas depends on this fact.
NASA Astrophysics Data System (ADS)
Le, Trung; Minerva Collaboration
2014-09-01
MINERvA is a neutrino scattering experiment which uses the intense neutrino beam from the NuMI beam line at FNAL. The detector employs high spatial resolution, is fully active, and designed to study interactions of neutrinos using different nuclei. We present the differential cross sections for single neutral pion produced by charged-current interactions of anti-neutrinos in plastic scintillator. We also compare the differential cross sections to predictions by the GENIE event generator.
Thermal dileptons from {pi}-{rho} interactions in a hot pion gas
Baier, R.; Dirks, M.; Redlich, K. |
1997-04-01
The production of low mass dileptons from {pi}-{rho} interactions in a hot medium is studied. Applying finite temperature perturbation theory the dilepton rate is computed up to order g{sub {rho}}{sup 2}. For dilepton masses below the {rho} the two-body reactions {pi}{pi}{r_arrow}{rho}{gamma}{sup {asterisk}}, {pi}{rho}{r_arrow}{pi}{gamma}{sup {asterisk}}, and the decay process {rho}{r_arrow}{pi}{pi}{gamma}{sup {asterisk}} give significant contributions. Nonequilibrium contributions to the thermal rate are estimated, including the modification of the particle distribution function with a nonzero pion chemical potential. A comparison of the dilepton rate with the recent data measured in nucleus-nucleus collisions at CERN SPS energy by the CERES Collaboration is also performed. It is shown that the additional thermal dileptons from {pi}-{rho} interactions can partially account for the excess of the soft dilepton yield seen experimentally. {copyright} {ital 1997} {ital The American Physical Society}
Eberly, Brandon M.
2014-01-01
Precise knowledge of neutrino-nucleus interactions is increasingly important as neutrino oscillation measurements transition into the systematics-limited era. In addition to modifying the initial interaction, the nuclear medium can scatter and absorb the interaction by-products through final state interactions, changing the types and kinematic distributions of particles seen by the detector. Recent neutrino pion production data from MiniBooNE is inconsistent with the final state interaction strength predicted by models and theoretical calculations, and some models fit best to the MiniBooNE data only after removing final state interactions entirely. This thesis presents a measurement of dσ/dT_{π} and dσ/dθ_{π} for muon-neutrino charged current charged pion production in the MINER A scintillator tracker. MINER A is a neutrino-nucleus scattering experiment installed in the few-GeV NuMI beam line at Fermilab. The analysis is limited to neutrino energies between 1.5-10 GeV. Dependence on invariant hadronic mass W is studied through two versions of the analysis that impose the limits W < 1.4 GeV and W < 1.8 GeV. The lower limit on W increases compatibility with the MiniBooNE pion data. The shapes of the differential cross sections, which depend strongly on the nature of final state interactions, are compared to Monte Carlo and theoretical predictions. It is shown that the measurements presented in this thesis favor models that contain final state interactions. Additionally, a variety of neutrino-nucleus interaction models are shown to successfully reproduce the thesis measurements, while simultaneously failing to describe the shape of the MiniBooNE data.
NASA Technical Reports Server (NTRS)
Keropian, M. I.; Martirosov, R. M.; Avakian, V. V.; Karagjozian, G. V.; Mamidjanian, E. A.; Ovsepian, G. G.; Sokhoyan, S. O.
1985-01-01
Experimental results on the cross section of the single pion, proton and neutron inelastic interaction with carbon and lead nuclei in the 0.5 to 5.0 TeV energy interval obtained on the PION installation (Mount Aragats, Armenia, 3250 m) are presented. For this purpose the (N pi)/(N p) and inelastic (p Fe)/(pi Fe) ratios measured directly on the installation as well as the calculated inelastic (p A)/(pi A) dependence on the target nucleus atomic numbers were used.
Investigation of pion-nucleus interactions. Progress report, April 1, 1991--March 31, 1992
Moore, C.F.
1992-09-01
This report summarizes the work carried out by personnel from the University of Texas at Austin at the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF). The research activities involved experiments done with the Energetic Pion Channel and Spectrometer (EPICS), the Low Energy Pion Channel (LEP), the Pion and Particle Physics Channel (P{sup 3}), the High Resolution Spectrometer (HRS), and planning a new experimental program associated with the new high-resolution Neutral Meson Spectrometer (NMS) at LAMPF. A brief overview of work supported by this grant is given followed by an account of the study of the double giant resonances in pion double charge exchange on {sup 51}V, {sup 115}In, and {sup 197}Au. This report contains a list of published papers and preprints, abstracts, and invited talks. These papers summarize experiments involving participants supported by this grant and indicate the work accomplished by these participants in this program of medium energy nuclear physics research. Lists of the most recent proposals on which we have participation at LAMPF, proposals which have been approved this past year to run as experiments, personnel who have participated in this research program are included. The research cited in this report is, in many cases, the collaborative effort of many groups associated with research at LAMPF.
Johnson, M.B.; Matthews, J.L.
1995-07-01
The LAMPF accelerator, with its high-intensity teams of pions and array of high-resolution spectrometers, provides opportunities for investigations of nuclear structure as well as of strong-interaction hadron dynamics. During operation of LAMPF as a national users facility, Nuclear Physics has undergone an evolution in the way it pictures nuclei: from a system of nucleons interacting through potentials to a system of mutually coupled nucleons, {Delta}(1232)`s, and mesons. While nuclear physics is in the midst of yet another shift of paradigm, with quarks and gluons playing a central role, the traditional picture still has great predictive power, and LAMPF has new opportunities to contribute to solving problems of current interest. At the same time, LAMPF is poised to make important contributions to the evolving area of nonperturbative QCD, where we will be learning how to connect phenomena at large momentum transfer to those at lower momentum scales. where the physically observable hadrons are the natural degrees of freedom. Within the traditional area, exploration of nuclei having extreme ratios of neutron/proton number is of growing interest in a variety of contexts, including astrophysics. Pion double charge exchange (the ({pi}{sup {plus_minus}}, {pi}{sup {plus_minus}}) processes) can produce proton-rich nuclei such as {sup 9}C, {sup 10}C, and {sup 11}N as well as neutron-rich nuclei such as {sup 10}He, {sup 11}Li, {sup 14}Be, and {sup 17}B. With spectrometers available for analyzing the outgoing pion spectra, one can study interesting and controversial modes of motion (soft-dipole modes) and obtain angular distributions that explore the spatial extent of neutron halos.
Experiments on the nuclear interactions of pion and electrons. Final progress report
Minehart, R.C.
1998-05-01
The work in this report is grouped into four categories. (1) The experiments in pion nucleus physics were primarily studies of pion absorption and scattering in light nuclei, carried out at the Los Alamos Meson Physics Facility (LAMPF). (2) The experiments on fundamental particle properties were carried out at LAMPF and at the Paul Scherrer Institute (PSI) in Switzerland, the pion-beta decay experiment is still under construction and will begin taking data in 1999. (3) The experiments in electro-nuclear physics were performed at the Stanford Linear Electron Accelerator (SLAC), at the Saclay Laboratory in France, at the LEGS facility at the Brookhaven National Laboratory, and at the Continuous Electron Beam Accelerator Facility (CEBAF) at the Jefferson Laboratory. These experiments relate mainly to the question of the role of longitudinal and transverse strength for inelastic scattering from nuclei, measurements of fundamental nuclear properties with tagged polarized photons, and to the quark structure of the nucleon and its excited states. (4) Experiments on absorption of antiprotons in heavy nuclei, were carried out by K. Ziock primarily while on a sabbatical leave in Munich, Germany.
Willocq, S.
1992-05-01
The coherent production of single pions and and {rho} mesons in charged current interactions of neutrinos and antineutrinos on neon nuclei has been studied. The data were obtained using the Fermilab 15-foot Bubble Chamber, filled with a heavy Ne-H{sub 2} mixture and exposed to the Quadrupole Triplet neutrino beam produced by 800 GeV protons from the Tevatron. The average beam energy was 86 GeV. In a sample of 330000 frames, 1032 two-prong {nu}{sub {mu}} + {bar {nu}}{sub {mu}} charged current interactions were selected. The goal of this study was to investigate the low Q{sup 2} high {nu} region where the hadron dominance model can be tested. In this model, the vector and axial-vector parts of the weak hadronic current are dominated by the {rho} and a{sub 1} mesons respectively. Moreover, the Partially Conserved Axial Current (PCAC) hypothesis can be tested by studying the coherent production of single pions.
Charged pion production in $$\
Eberly, B.; et al.
2015-11-23
Charged pion production via charged-current νμ interactions on plastic scintillator (CH) is studied using the MINERvA detector exposed to the NuMI wideband neutrino beam at Fermilab. Events with hadronic invariant mass W < 1.4 GeV and W < 1.8 GeV are selected in separate analyses: the lower W cut isolates single pion production, which is expected to occur primarily through the Δ(1232) resonance, while results from the higher cut include the effects of higher resonances. Cross sections as functions of pion angle and kinetic energy are compared to predictions from theoretical calculations and generator-based models for neutrinos ranging in energymore » from 1.5–10 GeV. The data are best described by calculations which include significant contributions from pion intranuclear rescattering. As a result, these measurements constrain the primary interaction rate and the role of final state interactions in pion production, both of which need to be well understood by neutrino oscillation experiments.« less
Eberly, B.; et al.
2015-11-23
Charged pion production via charged-current νμ interactions on plastic scintillator (CH) is studied using the MINERvA detector exposed to the NuMI wideband neutrino beam at Fermilab. Events with hadronic invariant mass W < 1.4 GeV and W < 1.8 GeV are selected in separate analyses: the lower W cut isolates single pion production, which is expected to occur primarily through the Δ(1232) resonance, while results from the higher cut include the effects of higher resonances. Cross sections as functions of pion angle and kinetic energy are compared to predictions from theoretical calculations and generator-based models for neutrinos ranging in energy from 1.5–10 GeV. The data are best described by calculations which include significant contributions from pion intranuclear rescattering. As a result, these measurements constrain the primary interaction rate and the role of final state interactions in pion production, both of which need to be well understood by neutrino oscillation experiments.
Pion-nucleus interactions and the STAR experiment at RHIC. Progress report, 1990--1993
Moore, C.F.
1993-09-01
This report summarizes the work carried out by personnel from the University of Texas at Austin at the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF) during the calendar years 1990--1993 and on the STAR experiment at RHIC under grant DE-FGO5-87ER40343 between the University of Texas at Austin and the United States Department of Energy. A brief overview of work supported by this grant is given in Section 2. An account of the study of the double giant resonances in pion double charge exchange forms Section 3. This report contains a list of published papers and preprints in Section 6, invited talks in Section 7, and abstracts in Section 8. These papers summarize experiments involving participants supported by this grant and indicate the work accomplished by these participants in this program of medium energy nuclear physics research. Section 9 contains a list of personnel who have participated in this research program.
1996-10-01
This report summarizes the work on experimental research in intermediate energy nuclear physics carried out by New Mexico State University from April 1, 1994, through March 31, 1996 under a grant from the US Department of Energy. During this period we began phasing out our programs of study of pion-nucleus and pion-nucleon interaction and of nucleon-nucleus charge-exchange reactions, which have been our major focus of the past two or three years. At the same time we continued moving in a new direction of research on studies of the internal structure of nucleons and nuclei in terms of quarks and gluons. The pion and nucleon work has been aimed at improving our understanding of the nature of pion and proton interactions in the nuclear medium and of various aspects of nuclear structure. The studies of the quark-gluon structure of nucleons are aimed at clarifying such problems as the nature of the quark sea and the relation of the nucleon spin to the spins of the quarks within the nucleon, questions which are of a very fundamental nature.
Fluctuations of the number of neutral pions at high multiplicity in pp interactions at 50 GeV
Ryadovikov, V. N.
2012-08-15
Results obtained by measuring fluctuations of the number of neutral pions in the SERP-E-190 Experiment (Thermalization Project) upon irradiating a liquid-hydrogen target of the SVD-2 setup with a beam of 50-GeV protons are presented. A simulation of the detection of photons from the decay of neutral pions with the aid of an electromagnetic calorimeter revealed a linear relation between the number of detected photons and the mean number of neutral pions in an event. After the introduction of corrections for the loss of charged tracks because of a limited acceptance of the setup, trigger operation, and the efficiency of the data-treatment system, distributions of the number of neutral pions, N{sub 0}, were obtained for each value of the total number of particles in an event, N{sub tot} = N{sub ch} + N{sub 0}. The fluctuation parameter {omega} = D/ Left-Pointing-Angle-Bracket N{sub 0} Right-Pointing-Angle-Bracket was measured. In the region N{sub tot} > 22, fluctuations of the number of neutral pions increase, which, within statistical models (GCE, CE, MCE), indicates that the system involving a large number of pions approaches the pion-condensate state. This effect was observed for the first time.
Shuryak, E.V.
1990-04-01
Excited hadronic matter in the temperature interval T = 100--200 MeV is not an ideal pion gas, but rather a liquid, in which attractive interaction among particles plays an important role. Pion dispersion curve is in this case essentially modified by a kind of collective momentum-dependent potential, which becomes important as the quasipion'' comes to the boundary of the system. We show that effects can provide and explanation for a number of recent experimental puzzles, in particular, for the observed copious production of soft pions and soft photons in high energy hadronic reactions. 31 refs., 13 figs.
Evidence of multipion dynamical correlation in pion-nucleus interactions at GeV energy
Gosh, D.; Lahiri, M.; Sen, S.; Deb, A.; Das, S.
1994-06-01
This paper presents new data on multiparticle dynamical correlations among produced particles in hadron-nucleus interactions using normalized semi-inclusive rapidity gap correlation function. The experimental data, obtained from {pi}{sup {minus}}-Ag/Br interaction at 350 GeV/c and 200 GeV/c, are compared with the Monte-Carlo simulated values assuming an independent emission, to search for the presence of true dynamical correlations. The result shows the presence of dynamical correlations in small as well as in large gap lengths. 13 refs., 4 figs.
Study of inelastic interactions of 340-GeV/c pions with emulsion nuclei
Ahrar, H.; Zafar, M.; Shafi, M.
1986-01-01
Results from a study of interactions of a 340-GeV/c beam with emulsion nuclei at the CERN SPS are presented. Some characteristics of heavy- and shower-particle multiplicity distributions are reported. The Koba-Nielsen-Olesen scaling hypothesis has been tested. Single-particle pseudorapid- ity distributions and rapidity-gap distributions have been studied in detail. The pseudorapidity distributions show a bimodal structure in all A interactions and the rapidity-gap distributions indicate the production of clusters during the multiparticle production process. The production of heavy clusters has also been studied using the rapidity-interval method proposed by Adamovich et al. The result shows that 340 GeV is belgical-model predictions for this ratio in nuclear matter are approx. =10 . Any comparison of these two values assumes no mass fractionation has occurred in the geophysical disposition and subsequent extraction of the sodium forming the atomic beam and also no differences in the distribution of heavy isotopes among the elements, compared to normal isotopes, during their astrophysical formation. Making these assumptions enables limits to be placed on the heavy-particle annihilation cross sections in the formation process.
Radiation quality of beams of negative pions
Dicello, J.F.; Brenner, D.J.
1981-01-01
As a negative pion stops in tissue, it attaches itself to an adjacent atom to form a mesonic atom. Subsequently, the wave function of the pion interacts with that of the nucleus and the pion is absorbed. Because the energy associated with the rest mass of the pion is greater than the separation energy of the nuclear particles, the nucleus disintegrates (pion star). In tissue, approximately 40 MeV goes into overcoming the binding energies; 20 MeV goes into kinetic energy of charged particles; 80 MeV goes into kinetic energy of neutrons. In cases where biological studies are performed with beams of negative pions, as much as 20% of the total absorbed dose in the treatment volume and about 50% of the high-LET dose (> 100 keV/..mu..m) can result from neutrons. The degree of biological response and the variation of that response throughout the treatment volume can be altered by the neutron dose.
Single Pion production from Nuclei
Singh, S. K.; Athar, M. Sajjad; Ahmed, S.
2007-12-21
We have studied charged current one pion production induced by {nu}{sub {mu}}({nu}-bar{sub {mu}}) from some nuclei. The calculations have been done for the incoherent pion production processes from these nuclear targets in the {delta} dominance model and take into account the effect of Pauli blocking, Fermi motion and renormalization of {delta} properties in the nuclear medium. The effect of final state interactions of pions has also been taken into account. The numerical results have been compared with the recent results from the MiniBooNE experiment for the charged current 1{pi} production, and also with some of the older experiments in Freon and Freon-Propane from CERN.
Ad`yasevich, B.P.; Antonenko, V.G.; Vasil`ev, M.A.; Vinogradov, A.A.; Ippolitov, M.S.; Karadzhev, K.V.; Lebedev, A.L.; Man`ko, V.I.; Mgebrishvili, G.M.; Nikolaev, S.A.
1994-11-01
ACorrelations between a charged particle emitted in the angular interval 10-32{degrees} (in the lab system) and a pion emitted in the angular interval 45-135{degrees} are measured for the interactions of {sup 12}C and {sup 4}He nuclei of energy 3.6 GeV/nucleon with various nuclear targets. In all cases, the correlated emission of such particles is discovered. As in the case of baryonic nuclear fragments, correlations are negative for light targets (a fragment and the first particle are emitted preferentially in opposite directions). However, in contrast to the case of baryonic fragments, the amplitudes of the correlations decrease with increasing mass of the target nucleus, and correlations even become positive in the case of a Pb target. The magnitudes of the correlations depend systematically on the characteristics of the entrance and exit channels. As in the case of baryonic nuclear fragments, these observations are consistent with the notion of collective motion in nuclear matter. In addition, the effect of pion rescattering with reflection in nuclear matter is observed. 6 refs., 3 figs.
Beavis, D.; Fung, S.Y.; Gorn, W.; Keane, D.; Liu, Y.M.; Poe, R.T.; VanDalen, G.; Vient, M.
1984-01-01
Preliminary analysis of pion production in 1.2 GeV/nucleon Kr-RbBr collisions is presented. The negative pion multiplicity is consistent with a convolution of Poisson distributions and a freeze-out density between 1/3 and 1/2 normal nuclear density is extracted. Global negative pion kinematic variables are used to search for possible structure in the multi-pion emission. No evidence for structured emission or conservation constraints is found. Pion interferometry analysis gives a source radius of 5.4 +- 1.2 Fermi and a freeze-out density of .3 +- .2 times normal nuclear density. 10 refs., 5 figs.
1993-09-30
This report summarizes the work on experimental research in intermediate energy nuclear physics carried out at New Mexico State University in 1991-94 under a grant from the U.S. Department of Energy. Most of these studies involved investigations of various pion-nucleus interactions and nucleon-nucleus charge-exchange reactions. The work was carried out with the LAMPF accelerator at the Los Alamos National Laboratory and the cyclotrons at the Paul Scherrer Institute (PSI) near Zurich, Switzerland, at Indiana University (IUCF), and at TRIUMF in Vancouver, Canada, as collaborative efforts among several laboratories and universities. We have also worked on plans and preparations for new experiments involving studies of the quark structure of nucleons and nuclei, which would be carried out at Fermilab (FNAL), near Chicago, and at the HERA facility at the DESY laboratory in Hamburg, Germany. The NMSU personnel included two faculty members, five postdoctoral research associates, nine graduate students, and one undergraduate student.
Exclusive Reactions Involving Pions and Nucleons
NASA Technical Reports Server (NTRS)
Norbury, John W.; Blattnig, Steve R.; Tripathi, R. K.
2002-01-01
The HZETRN code requires inclusive cross sections as input. One of the methods used to calculate these cross sections requires knowledge of all exclusive processes contributing to the inclusive reaction. Conservation laws are used to determine all possible exclusive reactions involving strong interactions between pions and nucleons. Inclusive particle masses are subsequently determined and are needed in cross-section calculations for inclusive pion production.
Electromagnetic structure of pion
Mello, Clayton S.; Cruz Filho, Jose P.; Da Silva, Edson O.; El-Bennich, Bruno; De Melo, J. P.; Filho, Victo S.
2013-03-25
In this work, we analyze the electromagnetic structure of the pion, an elementary particle composed by a quark-antiquark bound state, by considering the calculation of its electromagnetic radius and its electromagnetic form factor in low and intermediate energy range. Such observables are determined by means of a theoretical model that takes into account the constituent quark and antiquark of the pion, in the formalism of the light-front field theory. In particular, it is considered a nonsymmetrical vertex for such a model, in which we have calculated the electromagnetic form factor of the pion in an optimized way, by varying its regulator mass, so that we can obtain the best value for the pion electromagnetic radius when compared with the experimental one. The theoretical calculations are also compared with the most recent experimental data involving the pion electromagnetic form factor and the results show very good agreement.
Pion Production Data Needed for Space Radiation
NASA Technical Reports Server (NTRS)
Norbury, John W.
2010-01-01
A recent discovery concerning the importance of hadron production in space radiation is that pions can contribute up to twenty percent of the dose from galactic cosmic ray interactions (S. Aghara, S. Blattnig, J. Norbury, R. Singleterry, Nuclear Instruments and Methods, Vol. 267, 2009, p. 1115). Although the contribution for dose equivalent will be smaller, the dose contribution could be important for fluence based radiation models. Pion production cross sections will be an essential ingredient to such models, and it is of interest to investigate the adequacy of the pion production experimental data base for energies relevant to space radiation. The pion production threshold in nucleon - nucleon reactions is at 280 MeV and, in an interesting accident of nature, this lies near the peak of the galactic cosmic ray proton spectrum. Therefore, pion production data are needed from threshold up to energies around 50 GeV/nucleon, where the galactic cosmic ray fluence is of decreasing importance. Total and differential cross section data for pion production in this energy range will be reviewed. The availability and accuracy of theoretical models will also be discussed. It will be shown that there are a significant lack of data in this important energy range and that theoretical models still need improvement.
A dynamical model for pion electroproduction on the nucleon
George L. Caia; Louis E. Wright; Vladimir Pascalutsa
2005-06-01
We develop a Lorenz- and gauge-invariant dynamical model for pion electroproduction in the resonance region. The model is based on solving of the Salpeter (instantaneous) equation for the pion-nucleon interaction with a hadron-exchange potential. We find that the one-particle-exchange kernel of the Salpeter equation for pion electroproduction develops an unphysical singularity for a finite value of Q{sup 2}. We analyze two methods of dealing with this problem. Results of our model are compared with recent single-polarization data for pion electroproduction.
Pion scattering and nuclear dynamics
Johnson, M.B.
1988-01-01
A phenomenological optical-model analysis of pion elastic scattering and single- and double-charge-exchange scattering to isobaric-analog states is reviewed. Interpretation of the optical-model parameters is briefly discussed, and several applications and extensions are considered. The applications include the study of various nuclear properties, including neutron deformation and surface-fluctuation contributions to the density. One promising extension for the near future would be to develop a microscopic approach based on powerful momentum-space methods brought to existence over the last decade. In this, the lowest-order optical potential as well as specific higher-order pieces would be worked out in terms of microscopic pion-nucleon and delta-nucleon interactions that can be determined within modern meson-theoretical frameworks. A second extension, of a more phenomenological nature, would use coupled-channel methods and shell-model wave functions to study dynamical nuclear correlations in pion double charge exchange. 35 refs., 11 figs., 1 tab.
NASA Astrophysics Data System (ADS)
Garcilazo, H.; Mathelitsch, L.
1994-03-01
We investigate the continuum three-pion problem within a relativistic three-body model that takes into account the ππ S and P waves. The dynamical input of the two-body subsystem is given by separable potentials, which yield a good fit to the ππ scattering data and resonance parameters up to a two-body invariant mass of 900MeV. We introduce a parameter ν expressing the ambiguity in the reduction of a fully relativistic theory to a three-dimensional one. The masses and widths of the ω, a 1(1260), and π(1300) mesons, which decay predominantly into three pions, are reasonably well described by our model. The h 1(1170) meson, however, which also decays into three pions, cannot be explained as a three-pion resonance. Some πρ Argand diagrams are shown in those channels where resonances exist.
Electromagnetic pion form factor
Roberts, C.D.
1995-08-01
A phenomenological Dyson-Schwinger/Bethe-Salpeter equation approach to QCD, formalized in terms of a QCD-based model field theory, the Global Color-symmetry Model (GCM), was used to calculate the generalized impulse approximation contribution to the electromagnetic pion form factor at space-like q{sup 2} on the domain [0,10] GeV{sup 2}. In effective field theories this form factor is sometimes understood as simply being due to Vector Meson Dominance (VMD) but this does not allow for a simple connection with QCD where the VMD contribution is of higher order than that of the quark core. In the GCM the pion is treated as a composite bound state of a confined quark and antiquark interacting via the exchange of colored vector-bosons. A direct study of the quark core contribution is made, using a quark propagator that manifests the large space-like-q{sup 2} properties of QCD, parameterizes the infrared behavior and incorporates confinement. It is shown that the few parameters which characterize the infrared form of the quark propagator may be chosen so as to yield excellent agreement with the available data. In doing this one directly relates experimental observables to properties of QCD at small space-like-q{sup 2}. The incorporation of confinement eliminates endpoint and pinch singularities in the calculation of F{sub {pi}}(q{sup 2}). With asymptotic freedom manifest in the dressed quark propagator the calculation yields q{sup 4}F{sub {pi}}(q{sup 2}) = constant, up to [q{sup 2}]- corrections, for space-like-q{sup 2} {approx_gt} 35 GeV{sup 2}, which indicates that soft, nonperturbative contributions dominate the form factor at presently accessible q{sup 2}. This means that the often-used factorization Ansatz fails in this exclusive process. A paper describing this work was submitted for publication. In addition, these results formed the basis for an invited presentation at a workshop on chiral dynamics and will be published in the proceedings.
NASA Astrophysics Data System (ADS)
Brown, Laurie Mark; Dresden, Max; Hoddeson, Lillian
2009-01-01
Part I. Introduction; 1. Pions to quarks: particle physics in the 1950s Laurie M Brown, Max Dresden and Lillian Hoddeson; 2. Particle physics in the early 1950s Chen Ning Yang; 3. An historian's interest in particle physics J. L. Heilbron; Part II. Particle discoveries in cosmic rays; 4. Cosmic-ray cloud-chamber contributions to the discovery of the strange particles in the decade 1947-1957 George D. Rochester; 5. Cosmic-ray work with emulsions in the 1940s and 1950s Donald H. Perkins; Part III. High-energy nuclear physics; Learning about nucleon resonances with pion photoproduction Robert L. Walker; 7. A personal view of nucleon structure as revealed by electron scattering Robert Hofstadter; 8. Comments on electromagnetic form factors of the nucleon Robert G. Sachs and Kameshwar C. Wali; Part IV. The new laboratory; 9. The making of an accelerator physicist Matthew Sands; 10. Accelerator design and construction in the 1950s John P. Blewett; 11. Early history of the Cosmotron and AGS Ernest D. Courant; 12. Panel on accelerators and detectors in the 1950s Lawrence W. Jones, Luis W. Alvarez, Ugo Amaldi, Robert Hofstadter, Donald W. Kerst, Robert R. Wilson; 13. Accelerators and the Midwestern Universities Research Association in the 1950s Donald W. Kerst; 14. Bubbles, sparks and the postwar laboratory Peter Galison; 15. Development of the discharge (spark) chamber in Japan in the 1950s Shuji Fukui; 16. Early work at the Bevatron: a personal account Gerson Goldhaber; 17. The discovery of the antiproton Owen Chamberlain; 18. On the antiproton discovery Oreste Piccioni; Part V. The Strange Particles; 19. The hydrogen bubble chamber and the strange resonances Luis W. Alvarez; 20. A particular view of particle physics in the fifties Jack Steinberger; 21. Strange particles William Chinowsky; 22. Strange particles: production by Cosmotron beams as observed in diffusion cloud chambers William B. Fowler; 23. From the 1940s into the 1950s Abraham Pais; Part VI. Detection of the
The pion: an enigma within the Standard Model
NASA Astrophysics Data System (ADS)
Horn, Tanja; Roberts, Craig D.
2016-07-01
Quantum chromodynamics (QCDs) is the strongly interacting part of the Standard Model. It is supposed to describe all of nuclear physics; and yet, almost 50 years after the discovery of gluons and quarks, we are only just beginning to understand how QCD builds the basic bricks for nuclei: neutrons and protons, and the pions that bind them together. QCD is characterised by two emergent phenomena: confinement and dynamical chiral symmetry breaking (DCSB). They have far-reaching consequences, expressed with great force in the character of the pion; and pion properties, in turn, suggest that confinement and DCSB are intimately connected. Indeed, since the pion is both a Nambu–Goldstone boson and a quark–antiquark bound-state, it holds a unique position in nature and, consequently, developing an understanding of its properties is critical to revealing some very basic features of the Standard Model. We describe experimental progress toward meeting this challenge that has been made using electromagnetic probes, highlighting both dramatic improvements in the precision of charged-pion form factor data that have been achieved in the past decade and new results on the neutral-pion transition form factor, both of which challenge existing notions of pion structure. We also provide a theoretical context for these empirical advances, which begins with an explanation of how DCSB works to guarantee that the pion is un-naturally light; but also, nevertheless, ensures that the pion is the best object to study in order to reveal the mechanisms that generate nearly all the mass of hadrons. In canvassing advances in these areas, our discussion unifies many aspects of pion structure and interactions, connecting the charged-pion elastic form factor, the neutral-pion transition form factor and the pion's leading-twist parton distribution amplitude. It also sketches novel ways in which experimental and theoretical studies of the charged-kaon electromagnetic form factor can provide
Measurement of the charged-pion polarizability.
Adolph, C; Akhunzyanov, R; Alexeev, M G; Alexeev, G D; Amoroso, A; Andrieux, V; Anosov, V; Austregesilo, A; Badełek, B; Balestra, F; Barth, J; Baum, G; Beck, R; Bedfer, Y; Berlin, A; Bernhard, J; Bicker, K; Bieling, J; Birsa, R; Bisplinghoff, J; Bodlak, M; Boer, M; Bordalo, P; Bradamante, F; Braun, C; Bressan, A; Büchele, M; Burtin, E; Capozza, L; Chiosso, M; Chung, S U; Cicuttin, A; Colantoni, M; Crespo, M L; Curiel, Q; Dalla Torre, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Dinkelbach, A M; Donskov, S V; Doshita, N; Duic, V; Dünnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Frolov, V; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Geyer, R; Gnesi, I; Gobbo, B; Goertz, S; Gorzellik, M; Grabmüller, S; Grasso, A; Grube, B; Grussenmeyer, T; Guskov, A; Guthörl, T; Haas, F; von Harrach, D; Hahne, D; Hashimoto, R; Heinsius, F H; Herrmann, F; Hinterberger, F; Höppner, Ch; Horikawa, N; d'Hose, N; Huber, S; Ishimoto, S; Ivanov, A; Ivanshin, Yu; Iwata, T; Jahn, R; Jary, V; Jasinski, P; Jörg, P; Joosten, R; Kabuss, E; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koivuniemi, J H; Kolosov, V N; Kondo, K; Königsmann, K; Konorov, I; Konstantinov, V F; Kotzinian, A M; Kouznetsov, O; Krämer, M; Kroumchtein, Z V; Kuchinski, N; Kuhn, R; Kunne, F; Kurek, K; Kurjata, R P; Lednev, A A; Lehmann, A; Levillain, M; Levorato, S; Lichtenstadt, J; Maggiora, A; Magnon, A; Makke, N; Mallot, G K; Marchand, C; Martin, A; Marzec, J; Matousek, J; Matsuda, H; Matsuda, T; Meshcheryakov, G; Meyer, W; Michigami, T; Mikhailov, Yu V; Miyachi, Y; Moinester, M A; Nagaytsev, A; Nagel, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Novy, J; Nowak, W-D; Nunes, A S; Olshevsky, A G; Orlov, I; Ostrick, M; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Peshekhonov, D; Platchkov, S; Pochodzalla, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Ramos, S; Regali, C; Reicherz, G; Rocco, E; Rossiyskaya, N S; Ryabchikov, D I; Rychter, A; Samoylenko, V D; Sandacz, A; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schlüter, T; Schmidt, K; Schmieden, H; Schönning, K; Schopferer, S; Schott, M; Shevchenko, O Yu; Silva, L; Sinha, L; Sirtl, S; Slunecka, M; Sosio, S; Sozzi, F; Srnka, A; Steiger, L; Stolarski, M; Sulc, M; Sulej, R; Suzuki, H; Szabelski, A; Szameitat, T; Sznajder, P; Takekawa, S; ter Wolbeek, J; Tessaro, S; Tessarotto, F; Thibaud, F; Uhl, S; Uman, I; Virius, M; Wang, L; Weisrock, T; Wilfert, M; Windmolders, R; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zink, A
2015-02-13
The COMPASS collaboration at CERN has investigated pion Compton scattering, π(-)γ→π(-)γ, at center-of-mass energy below 3.5 pion masses. The process is embedded in the reaction π(-)Ni→π(-)γNi, which is initiated by 190 GeV pions impinging on a nickel target. The exchange of quasireal photons is selected by isolating the sharp Coulomb peak observed at smallest momentum transfers, Q(2)<0.0015 (GeV/c)(2). From a sample of 63,000 events, the pion electric polarizability is determined to be α(π)=(2.0±0.6(stat)±0.7(syst))×10(-4) fm(3) under the assumption α(π)=-β(π), which relates the electric and magnetic dipole polarizabilities. It is the most precise measurement of this fundamental low-energy parameter of strong interaction that has been addressed since long by various methods with conflicting outcomes. While this result is in tension with previous dedicated measurements, it is found in agreement with the expectation from chiral perturbation theory. An additional measurement replacing pions by muons, for which the cross-section behavior is unambiguously known, was performed for an independent estimate of the systematic uncertainty. PMID:25723208
Measurement of the Charged-Pion Polarizability
NASA Astrophysics Data System (ADS)
Adolph, C.; Akhunzyanov, R.; Alexeev, M. G.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Badełek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bicker, K.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S. U.; Cicuttin, A.; Colantoni, M.; Crespo, M. L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Dinkelbach, A. M.; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; Du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Geyer, R.; Gnesi, I.; Gobbo, B.; Goertz, S.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Guthörl, T.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F. H.; Herrmann, F.; Hinterberger, F.; Höppner, Ch.; Horikawa, N.; D'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Jörg, P.; Joosten, R.; Kabuß, E.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Krämer, M.; Kroumchtein, Z. V.; Kuchinski, N.; Kuhn, R.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G. K.; Marchand, C.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Moinester, M. A.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V. I.; Novy, J.; Nowak, W.-D.; Nunes, A. S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peshekhonov, D.; Platchkov, S.; Pochodzalla, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Rocco, E.; Rossiyskaya, N. S.; Ryabchikov, D. I.; Rychter, A.; Samoylenko, V. D.; Sandacz, A.; Sarkar, S.; Savin, I. A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlüter, T.; Schmidt, K.; Schmieden, H.; Schönning, K.; Schopferer, S.; Schott, M.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Uhl, S.; Uman, I.; Virius, M.; Wang, L.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.; Compass Collaboration
2015-02-01
The COMPASS collaboration at CERN has investigated pion Compton scattering, π-γ →π-γ , at center-of-mass energy below 3.5 pion masses. The process is embedded in the reaction π-Ni →π-γ Ni , which is initiated by 190 GeV pions impinging on a nickel target. The exchange of quasireal photons is selected by isolating the sharp Coulomb peak observed at smallest momentum transfers, Q2<0.0015 (GeV /c )2 . From a sample of 63 000 events, the pion electric polarizability is determined to be απ=(2.0 ±0. 6stat±0. 7syst)×1 0-4 fm3 under the assumption απ=-βπ, which relates the electric and magnetic dipole polarizabilities. It is the most precise measurement of this fundamental low-energy parameter of strong interaction that has been addressed since long by various methods with conflicting outcomes. While this result is in tension with previous dedicated measurements, it is found in agreement with the expectation from chiral perturbation theory. An additional measurement replacing pions by muons, for which the cross-section behavior is unambiguously known, was performed for an independent estimate of the systematic uncertainty.
Abelian anomaly and neutral pion production
Roberts, H. L. L.; Roberts, C. D.; Bashir, A.; Gutierrez-Guerrero, L. X.; Tandy, P. C.
2010-12-15
We show that in fully self-consistent treatments of the pion, namely, its static properties and elastic and transition form factors, the asymptotic limit of the product Q{sup 2}G{sub {gamma}}{sup *}{sub {gamma}{pi}}{sup 0}(Q{sup 2}), determined a priori by the interaction employed, is not exceeded at any finite value of spacelike momentum transfer. Furthermore, in such a treatment of a vector-vector contact-interaction one obtains a {gamma}{sup *{gamma}{yields}{pi}0} transition form factor that disagrees markedly with all available data. We explain that the contact interaction produces a pion distribution amplitude that is flat and nonvanishing at the endpoints. This amplitude characterizes a pointlike pion bound state. Such a state has the hardest possible form factors (i.e., form factors that become constant at large momentum transfers and hence are in striking disagreement with completed experiments). However, interactions with QCD-like behavior produce soft pions, a valence-quark distribution amplitude that vanishes as {approx}(1-x){sup 2} for x{approx}1, and results that agree with the bulk of existing data. Our analysis supports a view that the large-Q{sup 2} data obtained by the BaBar Collaboration is not an accurate measure of the {gamma}*{gamma}{yields}{pi}{sup 0} form factor.
Battye, Richard A.; Sutcliffe, Paul M.
2006-05-15
In the Skyrme model with massless pions, the minimal energy multi-Skyrmions are shell-like, with the baryon density localized on the edges of a polyhedron that is approximately spherical and generically of the fullerene-type. In this paper we show that in the Skyrme model with massive pions these configurations are unstable for sufficiently large baryon number. Using numerical simulations of the full nonlinear field theory, we show that these structures collapse to form qualitatively different stable Skyrmion solutions. These new Skyrmions have a flat structure and display a clustering phenomenon into lower charge components, particularly components of baryon numbers three and four. These new qualitative features of Skyrmions with massive pions are encouraging in comparison with the expectations based on real nuclei.
The user's view for the future of LAMPF, 1989: Reports from the pion physics working group
Burleson, G.R.; Ernst, D.J.
1990-01-01
This report contains a collection of papers on pion-nucleus interactions that were written as part of the long-range planning process of LAMPF that took place in spring, 1989. These papers served as the basis of the pion portion of a report to the Nuclear Science Advisory Committee (NSAC) for its Long Range Plan. They were read and discussed in some detail by the pion physics community and represent the views of the present and the future of pion physics by the authors and to a great extent by the pion physics community as a whole.
Longitudinal Lelectroproduction of Charged Pions on Hydrogen, Deuterium, and Helium 3
David Gaskell
2001-05-01
Conventional pictures of nuclear interactions, in which the pion mediates the long/medium range part of the nuclear force, predict an enhancement of the virtual pion cloud in nuclei relative to that in the free nucleon. Jefferson Lab Experiment E91003 measured charged pion electroproduction from Hydrogen, Deuterium, and Helium-3. The longitudinal cross section, which in the limit of pole dominance can be viewed as the quasifree knockout of a virtual pion, was extracted via a Rosenbluth separation. The longitudinal cross sections from Deuterium and Helium-3 were compared to Hydrogen to look for signatures of the nuclear pions.
Pion loop contribution to the electromagnetic pion charge radius
Roberts, C.D.; Bender, A.; Alkofer, R.
1995-08-01
There is a widely held misconception, based on a misrepresentation of the application of chiral perturbation theory, that the electromagnetic structure of the pion is dominated by the pion`s own pion-cloud. To clarify this the Global Color-symmetry Model (GCM), was used to calculate the electromagnetic charge radius of the pion. In this calculation the contributions from the quark core and pion loop were identified and compared. It was shown explicitly that the divergence of the charge radius in the chiral limit is due solely to the pion loop and that, at the physical value of the pion mass, this loop contributes less than 15% {l_angle}r{sub {pi}}{sup 2}{r_angle}; i.e. the quark core is the dominant determining characteristic for the pion. This suggests that quark-based models that fail to reproduce the m{sub {pi}} divergence of {l_angle}{sub {pi}}{sup 2}{r_angle} nevertheless incorporate the dominant characteristic of the pion: its quark core. The result`s studylend further support to the contention that, away from resonances, the dominant determining characteristic of kinematic and dynamical properties of hadrons is their quark core. A paper describing this work was submitted for publication.
NASA Astrophysics Data System (ADS)
Abe, K.; Andreopoulos, C.; Antonova, M.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bartet-Friburg, P.; Batkiewicz, M.; Berardi, V.; Berkman, S.; Bhadra, S.; Blondel, A.; Bolognesi, S.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buizza Avanzini, M.; Calland, R. G.; Cao, S.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Chikuma, N.; Christodoulou, G.; Clifton, A.; Coleman, J.; Collazuol, G.; Cremonesi, L.; Dabrowska, A.; De Rosa, G.; Dealtry, T.; Denner, P. F.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Dolan, S.; Drapier, O.; Duffy, K. E.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, D.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S. G.; Giganti, C.; Gizzarelli, F.; Gonin, M.; Grant, N.; Hadley, D. R.; Haegel, L.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Helmer, R. L.; Hierholzer, M.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Hogan, M.; Holeczek, J.; Horikawa, S.; Hosomi, F.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ikeda, M.; Imber, J.; Insler, J.; Intonti, R. A.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Jiang, M.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kim, H.; Kim, J.; King, S.; Kisiel, J.; Knight, A.; Knox, A.; Kobayashi, T.; Koch, L.; Koga, T.; Konaka, A.; Kondo, K.; Kopylov, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Larkin, E.; Lasorak, P.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Liptak, Z. J.; Litchfield, R. P.; Li, X.; Longhin, A.; Lopez, J. P.; Ludovici, L.; Lu, X.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Ma, W. Y.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Mezzetto, M.; Mijakowski, P.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakamura, K. D.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Patel, N. D.; Pavin, M.; Payne, D.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pickering, L.; Pinzon Guerra, E. S.; Pistillo, C.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reinherz-Aronis, E.; Riccio, C.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Rychter, A.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaikhiev, A.; Shaker, F.; Shaw, D.; Shiozawa, M.; Shirahige, T.; Short, S.; Smy, M.; Sobczyk, J. T.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Stewart, T.; Suda, Y.; Suvorov, S.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Terhorst, D.; Terri, R.; Thakore, T.; Thompson, L. F.; Tobayama, S.; Toki, W.; Tomura, T.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vallari, Z.; Vasseur, G.; Wachala, T.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Wilson, J. R.; Wilson, R. J.; Yamada, Y.; Yamamoto, K.; Yamamoto, M.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration
2016-06-01
We report the measurement of muon neutrino charged-current interactions on carbon without pions in the final state at the T2K beam energy using 5.734 ×1020 protons on target. For the first time the measurement is reported as a flux-integrated, double-differential cross section in muon kinematic variables (cos θμ, pμ), without correcting for events where a pion is produced and then absorbed by final state interactions. Two analyses are performed with different selections, background evaluations and cross-section extraction methods to demonstrate the robustness of the results against biases due to model-dependent assumptions. The measurements compare favorably with recent models which include nucleon-nucleon correlations but, given the present precision, the measurement does not distinguish among the available models. The data also agree with Monte Carlo simulations which use effective parameters that are tuned to external data to describe the nuclear effects. The total cross section in the full phase space is σ =(0.417 ±0.047 (syst ) ±0.005 (stat ) )×10-38 cm2 nucleon-1 and the cross section integrated in the region of phase space with largest efficiency and best signal-over-background ratio (cos θμ>0.6 and pμ>200 MeV ) is σ =(0.202 ±0.036 (syst ) ±0.003 (stat ) )×10-38 cm2 nucleon-1 .
Pion Production Momentum Loss of Cosmic Ray Hadrons
NASA Astrophysics Data System (ADS)
Krakau, S.; Schlickeiser, R.
2015-04-01
We present new results on the energy loss rate of high energy protons due to pion production in proton-proton interactions. Our calculations are based on the parameterized pion flux of Kelner et al. Our new results are valid for proton energies in the range of 1 GeV \\ll E≤slant {{10}8} GeV, which enhance the valid energy range by orders of magnitude. With these results one can calculate the energy loss due to pion production for cosmic ray protons from low energies to energies between the knee and ankle.
Roberts, C.D.
1994-09-01
The Dyson-Schwinger equations (DSEs) are a tower of coupled integral equations that relate the Green functions of QCD to one another. Solving these equations provides the solution of QCD. This tower of equations includes the equation for the quark self-energy, which is the analogue of the gap equation in superconductivity, and the Bethe-Salpeter equation, the solution of which is the quark-antiquark bound state amplitude in QCD. The application of this approach to solving Abelian and non-Abelian gauge theories is reviewed. The nonperturbative DSE approach is being developed as both: (1) a computationally less intensive alternative and; (2) a complement to numerical simulations of the lattice action of QCD. In recent years, significant progress has been made with the DSE approach so that it is now possible to make sensible and direct comparisons between quantities calculated using this approach and the results of numerical simulations of Abelian gauge theories. Herein the application of the DSE approach to the calculation of pion observables is described: the {pi}-{pi} scattering lengths (a{sub 0}{sup 0}, a{sub 0}{sup 2}, A{sub 1}{sup 1}, a{sub 2}{sup 2}) and associated partial wave amplitudes; the {pi}{sup 0} {yields} {gamma}{gamma} decay width; and the charged pion form factor, F{sub {pi}}(q{sup 2}). Since this approach provides a straightforward, microscopic description of dynamical chiral symmetry breaking (D{sub X}SB) and confinement, the calculation of pion observables is a simple and elegant illustrative example of its power and efficacy. The relevant DSEs are discussed in the calculation of pion observables and concluding remarks are presented.
NASA Technical Reports Server (NTRS)
Avakian, V. V.; Azarian, M. O.; Egiyan, K. S.; Mamidjanian, E. A.; Ohanian, G. Z.; Ter-Antonian, S. V.
1985-01-01
Based on the analysis of approximates 5 X 1000 events registered on the PION installation, data are obtained on the angular distribution and multiplicity of particles, flying back into the laboratory coordinate system (LCS) that are identified mainly as hadrons produced in the reactions of hFe yield h prime X type. The inclusively produced hadron energy is 200 MeV. The experimental data are compared to the results of the cumulative particle production in hA processes observed on accelerators at lower energies.
Pion exchange at high energies
Jones, L.M.
1980-07-01
The state of Regge pion exchange calculations for high-energy reactions is reviewed. Experimental evidence is summarized to show that (i) the pion trajectory has a slope similar to that of other trajectories; (ii) the pion exchange contribution can dominate contributions of higher trajectories up to quite a large energy; (iii) many two-body cross sections with large pion contributions can be fit only by models which allow for kinematical conspiracy at t=0. The theory of kinematic conspiracy is reviewed for two-body amplitudes, and calculations of the conspiring pion--Pomeron cut discussed. The author then summarizes recent work on pion exchange in Reggeized Deck models for multiparticle final states, with emphasis on the predictions of various models (with and without resonances) for phases of the partial wave amplitudes.
Radiobiology of pions at LAMPF.
Raju, M R; Tokita, N
1982-12-01
Recent radiobiology data for pion beams used in therapy are presented. The biological systems used were cultured cells suspended in gelatin and intestinal crypt assay. The importance of fast neutrons from pion stars in large treatment volumes is discussed. The data for compensating the depth dose distribution to produce uniform cell killing across the peak region are presented. The changes in biological effectiveness with peak width for pion beams (unlike heavy ions) are small because of fast neutron contribution from pion stars. The need for innovative radiobiology programs to guide high-LET radiotherapy is discussed. PMID:7161165
QCD vacuum: nuclear forces, nucleons, pions …
NASA Astrophysics Data System (ADS)
Robilotta, M. R.
2011-08-01
This contribution contains six sections, namely: 1. from QCD to chiral perturbation theory - QCD is widely accepted as the theory of strong interactions, but direct applications to low-energy hadronic processes are difficult. In this regime, the light quarks u and d prevail, and one can employ a rigorously equivalent effective theory, known a chiral perturbation theory, based on hadronic degrees of freedom. 2. strong vacuum and the pion - Chiral symmetry is not exact in the real world. Nevertheless, the absence of of parity multiplets and the smallness of the pion mass suggest that it is a good approximate symmetry, realized in the Nambu-Goldstone mode. Its ground state, the vacuum, is filled with a condensate, made of quark-antiquark pairs. In sections 1-3, instances are presented of observables strongly influenced by the QCD vacuum. 3. nuclear forces - In the last few years, chiral perturbation theory has produced a very reliable picture of both two- and three-nucleon forces. In particular, the important isospin independent central potential VC+ is well understood and known to be dominated by the scalar form factor of the nucleon, a function that describes the disturbance it produces over the vacuum. 4. nucleon scalar form factor - The spatial integration of the nucleon scalar form factor gives rise to σN, the nucleon σ-term. The value of this quantity can be extracted from experiment and the empirical value accepted presently is 45±8 MeV. A simple model, based on the idea that the pion cloud of the nucleon is constructed at the expenses of the surrounding condensate, produces a σN in the range 43-49 MeV, with no free parameters. 5. scalar radius of the pion - The value of this radius can be extracted from pion-pion scattering data and the most reliable estimate is
NASA Astrophysics Data System (ADS)
Miller, Jack
We have measured charged pion production in the reaction ^{139}La + ^{139}Latopi ^{+/-} + X at three beam energies (246, 183 and 138 MeV/nucleon) below the nucleon-nucleon threshold. Associated multiplicity for charged participants was obtained using a 110-element scintillator multiplicity array. Data were taken over the angular range of 21 ^circ-67^circ in the laboratory (equivalent to 30^ circ-90^circ in the center of mass). Dependence of the spectra upon pion charge, energy and angle, beam energy, system mass and associated multiplicity was investigated. Based on the isotropic angular distributions and the associated multiplicities for pion production, it apprears that subthreshold pions in the range of our experiment are produced predominantly from a source at rest in the center of mass and involving a large number of nucleons. The general character of the subthreshold pion spectra is comparable to previous results above threshold. However, the scaling of the subthreshold pion yield with system mass deviates from the dependence observed in light systems, to an extent which cannot be explained by a simple nucleon-nucleon model. We also found charge dependent structure in the pion spectra, which we analysed in the framework of both Coulomb distortion and clustering models. We conclude that while we did not clear evidence of collective effects in subthreshold pion production, it would be very worthwhile to conduct a systematic investigation of pion production for all charge states and over a range of angles, system masses and beam energies, below threshold.
Effect of three-pion unitarity on resonance poles from heavy meson decays
Satoshi X. Nakamura
2011-10-01
We study the final state interaction in 3-pion decay of meson resonances at the Excited Baryon Analysis Center (EBAC) of JLab. We apply the dynamical coupled-channels formulation which has been extensively used by EBAC to extract N* information. The formulation satisfies the 3-pion unitarity condition which has been missed in the existing works with the isobar models. We report the effect of the 3-pion unitarity on the meson resonance pole positions and Dalitz plot.
Study of the two pion final state photoproduction on deuterium
Lewis Graham, Kijun Park, Ralf Gothe, Elton Smith
2010-08-01
Understanding the structure of baryons in terms of the fundamental interaction of the constituent quarks and gluons is one of the challenges in strong interaction physics. This interaction is governed by Quantum Chromodynamics (QCD). However, solutions of this theory in the non-perturbative domain of the interaction are extremely difficult to achieve. In inelastic electron scattering, very little is known about exclusive hadron production purely contributed to a lack of knowledge. The gammaN interaction is recognized for being a powerful method for investigating hadrons and the mysteries that still exist within the strong interaction. From reactions with the nucleon, the strong interaction can be tested through the amplitudes of the N and Delta resonances. More specifically, if an electromagnetic interaction is well known then the intermediate resonance states may be evaluated through pion photoproduction. To gain more detailed insight into this interaction, we look to probe the baryon structure of Delta and the meson structure of the pion through photon scattering off a deuteron producing two pions in the final state. The photoproduction processes on the deuteron will be used to investigate known baryon resonances in the proton-pion channel. The two pion final state will be investigated for unraveling new information in to the rho decay at threshold. We want to explore both final states interactions to search for “missing” states that are predicted by quark models but have not yet been found experimentally. Using the CEBAF Large Acceptance Spectrometer (CLAS), the hadronic products are detected in coincidence with the scattered photon. This makes it possible to measure the differential cross section and the decay angular distribution for the production of two and three pion final states. The measured cross sections will contribute significantly and push the knowledge of the strong interaction to the next level. We propose to use the CEBAF Large Acceptance
Study of the two pion final state photoproduction on deuterium
Graham, Lewis; Gothe, Ralf; Park, Kijun; Smith, Elton
2010-08-05
Understanding the structure of baryons in terms of the fundamental interaction of the constituent quarks and gluons is one of the challenges in strong interaction physics. This interaction is governed by Quantum Chromodynamics (QCD). However, solutions of this theory in the non-perturbative domain of the interaction are extremely difficult to achieve. In inelastic electron scattering, very little is known about exclusive hadron production purely contributed to a lack of knowledge. The {gamma}N interaction is recognized for being a powerful method for investigating hadrons and the mysteries that still exist within the strong interaction. From reactions with the nucleon, the strong interaction can be tested through the amplitudes of the N and {Delta} resonances. More specifically, if an electromagnetic interaction is well known then the intermediate resonance states may be evaluated through pion photoproduction. To gain more detailed insight into this interaction, we look to probe the baryon structure of {Delta} and the meson structure of the pion through photon scattering off a deuteron producing two pions in the final state. The photoproduction processes on the deuteron will be used to investigate known baryon resonances in the proton-pion channel. The two pion final state will be investigated for unraveling new information in to the rho decay at threshold. We want to explore both final states interactions to search for ''missing'' states that are predicted by quark models but have not yet been found experimentally. Using the CEBAF Large Acceptance Spectrometer (CLAS), the hadronic products are detected in coincidence with the scattered photon. This makes it possible to measure the differential cross section and the decay angular distribution for the production of two and three pion final states. The measured cross sections will contribute significantly and push the knowledge of the strong interaction to the next level. We propose to use the CEBAF Large Acceptance
Pions from and about heavy ions
Rasmussen, J.O.
1982-09-01
A review is presented of the possibilities of pion production with heavy ion reactions. Major headings include: pion thermometry; hills and valleys in pion spectra; pionic orbits of nuclear size; pion confinement in the fireball; anomalons; and Schroedinger equation solutions for pionic atoms. 47 references, 9 figures. (GHT)
Sibirtsev, A; Haidenbauer, J; Huang, F; Krewald, S; Meissner, U -G
2009-04-01
We present a systematic analysis of backward pion photoproduction for the reactions $ \\gamma$ p $ \\rightarrow$ $ \\pi^{0}_{}$ p and $ \\gamma$ p $ \\rightarrow$ $ \\pi^{+}_{}$ n . Regge phenomenology is applied at invariant collision energies above 3GeV in order to fix the reaction amplitude. A comparision with older data on $ \\pi^{0}_{}$ - and $ \\pi^{+}_{}$ -photoproduction at $ \\vartheta$ = 180° indicates that the high-energy limit as given by the Regge calculation could be reached possibly at energies of around $ \\sqrt{{s}}$ ≃ 3 GeV. In the energy region of $ \\sqrt{{s}}$ $ \\le$2.5 GeV, covered by the new measurements of $ \\gamma$ p $ \\rightarrow$ $ \\pi^{0}_{}$ p differential cross-sections at large angles at ELSA, JLab, and LEPS, we see no clear signal for a convergence towards the Regge results. The baryon trajectories obtained in our analysis are in good agreement with those given by the spectrum of excited baryons.
Ryong Ji, C.; Pang, A.; Szczepaniak, A.
1994-04-01
It is pointed out that the correct criterion to define the legal PQCD contribution to the exclusive processes in the lightcone perturbative expansion should be based on the large off-shellness of the lightcone energy in the intermediate states. In the lightcone perturbative QCD calculation of the pion form factor, the authors find that the legal PQCD contribution defined by the lightcone energy cut saturates in the smaller Q{sup 2} region compared to that defined by the gluon four-momentum square cut. This is due to the contribution by the highly off-energy-shell gluons in the end point regions of the phase space, indicating that the gluon four-momentum-square cut may have cut too much to define the legal PQCD.
Haiyan Gao, Wei Chen
2009-12-01
We extracted the differential cross section for the gn --> pi-p process from a deuterium target using the CLAS detector at Jefferson Lab in Hall B for photon energies between 1.0 and 3.5 GeV and pion center-of-mass (c.m.) angles (theta c.m.) between 50 deg. and 115 deg. We confirm a previous indication of a broad enhancement around a c.m. energy (sqrt s) of 2.1 GeV at theta c.m. =90 deg. in the scaled differential cross section, s^7 ds/dt and a rapid fall-off in a center-of-mass energy region of about 400 MeV following the enhancement. Our data show an angular dependence of this enhancement as the suggested scaling region is approached for theta c.m. from 70 deg. to 10 deg.
Neutrino pion production off deuteron
NASA Astrophysics Data System (ADS)
Myhrer, F.; Pastore, S.
2016-03-01
Experimental investigations of neutrino properties, using neutrino beams generated at accelerators facilities, necessitate a detailed and precise knowledge of neutrinonucleus reaction mechanisms. In the energy region of nuclear quasi-elastic scattering, pion-production reactions constitute an important background process. A theoretical understanding of these processes is then required in order to correctly determine the produced neutrino energy spectrum. In the first stage of our research project, we study neutrino induced pion-production off deuterons. The choice of the deuteron minimizes the complications of the nuclear dynamics associated with larger nuclear systems. We evaluate the pion-production reaction near threshold using heavy baryon chiral perturbation theory.
Neutrino induced coherent pion production
Hernandez, E.; Nieves, J.; Valverde, M.; Vicente-Vacas, M. J.
2010-03-30
We discuss different parameterizations of the C{sub 5}{sup A}(q{sup 2}) NDELTA form factor, fitted to the old Argonne bubble chamber data for pion production by neutrinos, and we use coherent pion production to test their low q{sup 2} behavior. We find moderate effects that will be difficult to observe with the accuracy of present experiments. We also discuss the use of the Rein-Sehgal model for low energy coherent pion production. By comparison to a microscopic calculation, we show the weaknesses some of the approximations in that model that lead to very large cross sections as well as to the wrong shapes for differential ones. Finally we show that models based on the partial conservation of the axial current hypothesis are not fully reliable for differential cross sections that depend on the angle formed by the pion and the incident neutrino.
Selected problems in pion physics
Weise, W.
1987-12-01
In this talk I will discuss two seperate topics which can in principle be investigated with a high quality pion beam in the momentum range p/sub b//sub e//sub a//sub m/approx.1GeV/c up to several GeV/c: a) The structure of the nucleon resonances (other than the ..delta..(1232) and their properties in nuclei; b) the electric polarizabilitiy of the pion. The first subject can be seen as a continuation of earlier systematic explorations using the pion as a probe to investigate the properties of the ..delta..(1232) in a nuclear environment. The second topic concerns the intrinsic structure of the pion itself.
Shape of Pion Distribution Amplitude
Radyushkin, Anatoly
2009-11-01
A scenario is investigated in which the leading-twist pion distribution amplitude $\\varphi_\\pi (x)$ is approximated by the pion decay constant $f_\\pi$ for all essential values of the light-cone fraction $x$. A model for the light-front wave function $\\Psi (x, k_\\perp)$ is proposed that produces such a distribution amplitude and has a rapidly decreasing (exponential for definiteness) dependence on the light-front energy combination $ k_\\perp^2/x(1-x)$. It is shown that this model easily reproduces the fit of recent large-$Q^2$ BaBar data on the photon-pion transition form factor. Some aspects of scenario with flat pion distribution amplitude are discussed.
Pion condensation in holographic QCD
Albrecht, Dylan; Erlich, Joshua
2010-11-01
We study pion condensation at zero temperature in a hard-wall holographic model of hadrons with isospin chemical potential. We find that the transition from the hadronic phase to the pion condensate phase is first order except in a certain limit of model parameters. Our analysis suggests that immediately across the phase boundary the condensate acts as a stiff medium approaching the Zel'dovich limit of equal energy density and pressure.
Pion-photon reactions and chiral dynamics in Primakoff processes at COMPASS
NASA Astrophysics Data System (ADS)
Krämer, Markus
2016-05-01
At the COMPASS experiment at CERN, pion-photon reactions are investigated using the Primakoff effect, where high-energetic pions react with the quasi-real photons surrounding the target nuclei. The production of a single hard photon in such a pion scattering, at lowest momentum transfer to the nucleus, is related to pion Compton scattering. Studying the energy distribution of the outgoing photons, the pion polarizability can be extracted. In addition to the measurement with a pion beam, control measurements with a muon beam allow us to estimate the systematics. The COMPASS result is in tension with earlier dedicated measurements and rather in agreement with the theoretical expectation from chiral perturbation theory. Based on the same data set, reactions with neutral and charged pions in the final state are studied. At low invariant mass of the pion-photon system, these reactions are governed by chiral dynamics. Using partial-wave analysis techniques, the absolute cross sections for the production of π-π+π- and π-π0π0 states from π-γ interactions are measured and compared to predictions from chiral perturbation theory. At higher pion-photon masses, the production of 3π resonances is studied with the focus on their radiative couplings.
Study of the radiative pion decay
Chen, Chuan-Hung; Geng, Chao-Qiang; Lih, Chong-Chung
2011-04-01
We study the radiative pion decay of {pi}{sup +}{yields}e{sup +}{nu}{sub e}{gamma} in the light-front quark model. We also summarize the result in the chiral perturbation theory. The vector and axial-vector hadronic form factors (F{sub V,A}) for the {pi}{yields}{gamma} transition are evaluated in the whole allowed momentum transfer. In terms of these momentum dependent form factors, we calculate the decay branching ratio and compare our results with the experimental data and other theoretical predictions in the literature. We also constrain the possible size of the tensor interaction in the light-front quark model.
Nuclear transparencies from photoinduced pion production
W. Cosyn; M.C. Martinez; J. Ryckebusch; B. Van Overmeire
2006-12-01
We present a relativistic and cross-section factorized framework for computing nuclear transparencies extracted from A({gamma}, {pi} N) reactions at intermediate energies. The proposed quantum mechanical model adopts a relativistic extension to the multiple-scattering Glauber approximation to account for the final state interactions of the ejected nucleon and pion. The theoretical predictions are compared against the experimental {sup 4}He({gamma},p {pi}{sup -}) data from Jefferson Lab. For those data, our results show no conclusive evidence for the onset of mechanisms related to color transparency.
Charge symmetry breaking two-pion exchange
Niskanen, J.A. )
1992-06-01
Two-pion exchange (TPE) contribution to the charge symmetry breaking class IV neutron-proton interaction is examined in a potential and coupled channels approach. Based on nonrelativistic {pi}{ital NN} and {pi}{ital N}{Delta} vertices, a TPE interaction is treated in two ways, as a potential or as a part calculable by the coupled channels method plus a residual potential interaction. A practical parametrization of the TPE potentials is given, which can also be used in the case of class III charge symmetry breaking (CSB) forces as well as for charge symmetric interactions. The results show that below 300 MeV the TPE contribution to CSB in elastic {ital np} scattering is insignificant, whereas at higher energies it should not be neglected.
{delta}-mediated pion production in nuclei
Praet, C.; Lalakulich, O.; Jachowicz, N.; Ryckebusch, J.
2009-04-15
We present a fully relativistic formalism for describing neutrino-induced {delta}-mediated single-pion production in nuclei. We assess the ambiguities stemming from the {delta} interactions and quantify the uncertainties in the axial form-factor parameters by comparing with the available bubble-chamber neutrino-scattering data. To include nuclear effects, we turn to a relativistic plane-wave impulse approximation (RPWIA) using realistic bound-state wave functions derived in the Hartree approximation to the {sigma}-{omega} Walecka model. For neutrino energies larger than 1 GeV, we show that a relativistic Fermi-gas model with appropriate binding-energy correction produces results that are comparable to the RPWIA that naturally includes Fermi motion, nuclear-binding effects, and the Pauli exclusion principle. Including {delta} medium modifications roughly halves the RPWIA cross section. Calculations for primary (prior to undergoing final-state interactions) pion production are presented for both electron- and neutrino-induced processes, and a comparison with electron-scattering data and other theoretical approaches is included. We infer that the total {delta}-production strength is underestimated by about 20 to 25%, a fraction that is due to the pionless decay modes of the {delta} in a medium. The model presented in this work can be naturally extended to include the effect of final-state interactions in a relativistic and quantum-mechanical way.
The Pion Charge Form Factor Through Pion Electroproduction
Horn, Tanja
2006-04-01
The goal of Jefferson Lab experiment E01-004 (F?-2) was the measurement of the longitudinal and transverse cross sections via pion electroproduction from hydrogen and deuterium for the purpose of extracting the charged pion form factor using pole dominance. The data were taken at two values of Q2 (1.60 and 2.45 GeV/c)2. In order to attain full coverage in R?, charged pions were detected in parallel kinematics (along the direction of momentum transfer, q), and at Â±3 degrees off the direction of momentum transfer. For each Q2 data were taken for two values of the virtual photon polarization, ?, respectively. All data were taken at a fixed center of mass energy, W=2.22 GeV. The longitudinal and transverse pieces of the cross section were separated using the Rosenbluth separation method.
Electroproduction of pions at threshold in chiral perturbation theory
Lee, T.S.H.; Bernard, V.; Kaiser, N.; Meissner, U.G.
1995-08-01
The electroproduction of pions off protons close to threshold is studied within the framework of baryon chiral perturbation theory. The approach is based on the fundamental QCD property that at low energies the strong interactions are dictated by the spontaneously broken chiral symmetry. The calculation was done up to the 1-loop level by carrying out order-by-order renormalization procedures. A thorough study of the low-energy theorems related to electroproduction of pions was carried out. Our study showed how the axial radius of the nucleon can be related to the S-wave multipoles E{sub 0+}{sup (-)} and L{sub 0+}{sup (-)}.
Neutral Pion Production from Deuterium at the Legs Facility
NASA Astrophysics Data System (ADS)
Hicks, K. H.; Ardashev, K.; Blecher, M.; Caracappa, A.; Cichocki, A.; Commeaux, C.; D'Angelo, A.; Didilez, J.-P.; Deininger, R.; Hoblit, S.; Khandaker, M.; Kistner, O.; Kuczewski, A.; Lincoln, F.; Lindgren, R.; Lehmann, A.; Lowry, M.; Lucas, M.; Meyer, H.; Miceli, L.; Opper, A.; Preedom, B. M.; Norum, B.; Sandorfi, A. M.; Schaerf, C.; Ströher, H.; Thorn, C. E.; Tonnison, J.; Wang, K.; Wei, X.; Whisnant, C. S.; Willits, D.
2002-06-01
Neutral pion photoproduction from a liquid deuterium target was measured in the energy region near 300 MeV at the LEGS facility of Brookhaven National Laboratory. The inclusive cross sections from deuterium are in agreement with measurments from Mainz, yet the exclusive cross sections and spin asymmetries for neutral pion production in coincidence with a detected nucleon are much smaller than expected from a quasi-free approximation. This may indicate that substantial final state interactions play a significant role, which will complicate the extraction of the desired amplitudes that would be measured if a free neutron target could be used.
[ital I]=2 pion scattering amplitude with Wilson fermions
Gupta, R. ); Patel, A. ); Sharpe, S.R. )
1993-07-01
We present an exploratory calculation of the [ital I]=2 [pi][pi] scattering amplitude at threshold using Wilson fermions in the quenched approximation, including all the required contractions. We find good agreement with the predictions of chiral perturbation theory even for pions of mass 560--700 MeV. Within 10% error, we do not see the onset of the bad chiral behavior expected for Wilson fermions. We also derive rigorous inequalities that apply to two-particle correlators and as a consequence show that the interaction in the antisymmetric state of two pions has to be attractive.
Soft two-pion-exchange nucleon-nucleon potentials
Rijken, Th.A. )
1991-06-01
Two-pion-exchange nucleon-nucleon potentials are derived for the pseudo-vector pion-nucleon interaction, assuming strong dynamical pair-suppression. At the pion-nucleon vertices the authors include Gaussian form factors, which are incorporated into the relativistic two-body framework by using a dispersion representation for the one-pion-exchange amplitude. The Fourier transformations are performed using a factorization technique for the energy denominators. This leads to analytic expressions for the TPE-potentials containing at most one-dimensional integrals. The TPE-potentials are calculated up to orders {line integral}{sup 4} and (m/M){line integral}{sup 4}. The terms of order {line integral}{sup 4} come from the adiabatic contributions of the parallel and crossed three-dimensional momentum-space TPE-diagrams, and from the non-adiabatic contributions of the OPE-iteration. The (m/M)-corrections are due to the 1/M-terms in the non-adiabatic expansion of the nucleon energies in the intermediate states, and the 1/M-terms in the pion-nucleon vertices. The latter are typical for the PV-coupling and would be absent for the PS-coupling. The Gaussian form factors lead to soft TPE-potentials. These potentials can readily be exploited in NN-calculations in combination with, e.g., the Nijmegen soft-core OBE-model, and in nuclear (matter) calculations.
One-pion production in neutrino-nucleus collisions
Hernández, E.; Nieves, J.; Vicente-Vacas, J. M.
2015-05-15
We use our model for neutrino pion production on the nucleon to study pion production on a nucleus. The model is conveniently modified to include in-medium corrections and its validity is extended up to 2 GeV neutrino energies by the inclusion of new resonant contributions in the production process. Our results are compared with recent MiniBooNE data measured in mineral oil. Our total cross sections are below data for neutrino energies above ≈ 1 GeV. As with other theoretical calculations, the agreement with data improves if we neglect pion final state interaction. This is also the case for differential cross sections convoluted over the neutrino flux.
Four-nucleon potential due to exchange of pions
Robilotta, M.R.
1985-03-01
A four-body force due to the exchange of pions has been derived by means of It includes effects corresponding to pion-pion scattering, pion production, and pion-nucleon rescattering. The strength parameters of this four-body potential are typically one order of magnitude smaller than those of the two-pion-exchange three-body force.
Broemmel, D.; Diehl, M.; Goeckeler, M.; Schaefer, A.; Haegler, Ph.; Horsley, R.; Zanotti, J. M.; Nakamura, Y.; Pleiter, D.; Schierholz, G.
2008-09-19
We present the first calculation of the transverse spin structure of the pion in lattice QCD. Our simulations are based on two flavors of nonperturbatively improved Wilson fermions, with pion masses as low as 400 MeV in volumes up to (2.1 fm){sup 3} and lattice spacings below 0.1 fm. We find a characteristic asymmetry in the spatial distribution of transversely polarized quarks. This asymmetry is very similar in magnitude to the analogous asymmetry we previously obtained for quarks in the nucleon. Our results support the hypothesis that all Boer-Mulders functions are alike.
Comparison of the energy response of an ionization spectrometer for pions and protons
NASA Technical Reports Server (NTRS)
Jones, W. V.; Verma, S. D.
1971-01-01
An ionization spectrometer consisting of a sandwich of iron absorbers and plastic scintillation counters was used to measure the energy of pions and protons in the interval 10 to 1000 GeV. For the limited energy interval of 10 to 40 GeV, pions and protons were identified by an air cerenkov counter. Interactions in carbon were studied in a multiplate cloud chamber placed between the cerenkov counter and the spectrometer. Knowledge of these interactions were used in conjunction with a Monte Carlo simulation of the cascade process to study differences in the response of the spectrometer to pions and protons.
Study of the Two-pion Photoproduction on the Deuteron
Graham, Lewis P.
2012-12-01
Understanding the structure of baryons in terms of the fundamental interaction of the constituent quarks and gluons is one of the primary challenges in strong interaction physics. This interaction is governed by Quantum Chromodynamics (QCD), which is a theory for understanding the dynamics of strong. QCD displays the asymptotic freedom of hadrons at very short distances and also the confinement of quarks and gluons inside hadrons. However, solutions of this QCD theory in the non-perturbative domain of the interaction are extremely difficult to achieve, mainly because confinement happens on the hadronic scale on which the coupling constant is large and prevents any perturbative approach. Thus leaving us with strategies such as lattice QCD or formulating QCD sum rules to get around this problem. In exclusive hadron production the yN interaction is recognized for being a powerful method for investigating hadrons and the mysteries that still exist within the strong interaction. From reactions with the nucleon, the strong interaction can be investigated through the transition amplitudes to the N and Delta resonances. More specifically, if an electromagnetic interaction is well known then the intermediate resonance states may be evaluated through meson photoproduction. To gain more detailed insight into this interaction, we look to probe the baryon structure of the nucleon and the photo-excited resonance decays through photon scattering off a deuteron producing two pions in the final state. This photoproduction process off the deuteron will be used to investigate known baryon resonances in the two pion channel. The two pion final state will be investigated for unraveling new information into the photo-coupling strengths. We want to explore final state interactions, search for properties of known resonances, and to explore the possibility of seeing missing states that are predicted by quark models but have not yet been found experimentally. Using the CEBAF Large
Neutron star cooling and pion condensation
NASA Technical Reports Server (NTRS)
Umeda, Hideyuki; Nomoto, Ken'ichi; Tsuruta, Sachiko; Muto, Takumi; Tatsumi, Toshitaka
1994-01-01
The nonstandard cooling of a neutron star with the central pion core is explored. By adopting the latest results from the pion condensation theory, neutrino emissivity is calulated for both pure charged pions and a mixture of charged and neutral pions, and the equations of state are constructed for the pion condensate. The effect of superfluidity on cooling is investigated, adopting methods more realistic than in previous studies. Our theoretical models are compared with the currently updated observational data, and possible implications are explored.
Pauli Principle and Pion Scattering
DOE R&D Accomplishments Database
Bethe, H. A.
1972-10-01
It is pointed out that if the Pauli principle is taken into account in the discussion of pion scattering by complex nuclei (as it ought, of course, to be) some rather implausible consequences of some earlier treatments of this problem can be avoided. (auth)
Investigations in the problem of pion condensation using generator co-ordinate methods
NASA Astrophysics Data System (ADS)
Chattopadhyay, P.; Da Providencia, J.
1981-11-01
Pion condensation in neutron matter has been investigated using the generator coordinate method and a simple p-wave interaction. The assumption of a condensed mode corresponding to one pion momentum (determined variationally) helps evaluate all the necessary matrix elements exactly. The technique of charge projection from a coherent state of negative pions is discussed, and calculations have been carried out for the cases of average charge conservation, charge projection before variation and for a charge conserving trial function. The ground-state energies and the lowest excitations of the system are obtained from numerical solutions of the Hill-Wheeler equation.
Muon neutrino charged current inclusive charged pion (CCπ{sup ±}) production in MINERνA
Eberly, B.
2015-05-15
The production of charged pions by neutrinos interacting on nuclei is of great interest in nuclear physics and neutrino oscillation experiments. The MINERνA experiment is working towards releasing the world’s first high statistics neutrino pion production measurements in a few-GeV neutrino beam. We describe MINERνA’s CCπ{sup ±} analysis event selection in both the neutrino and antineutrino beams, noting reconstruction resolutions and kinematic limits. We also show area-normalized data-simulation comparisons of the reconstructed muon and charged pion kinetic energy distributions.
Quark mass functions and pion structure in Minkowski space
Biernat, Elmer P.; Gross, Franz L.; Pena, Maria Teresa; Stadler, Alfred
2014-03-01
We present a study of the dressed quark mass function and the pion structure in Minkowski space using the Covariant Spectator Theory (CST). The quark propagators are dressed with the same kernel that describes the interaction between different quarks. We use an interaction kernel in momentum space that is a relativistic generalization of the linear confining q-qbar potential and a constant potential shift that defines the energy scale. The confining interaction has a Lorentz scalar part that is not chirally invariant by itself but decouples from the equations in the chiral limit and therefore allows the Nambu--Jona-Lasinio (NJL) mechanism to work. We adjust the parameters of our quark mass function calculated in Minkowski-space to agree with LQCD data obtained in Euclidean space. Results of a calculation of the pion electromagnetic form factor in the relativistic impulse approximation using the same mass function are presented and compared with experimental data.
Measuring pion beta decay with high-energy pion beams
McFarlane, W.K. Temple Univ., Philadelphia, PA ); Hoffman, C.M. )
1993-01-01
Improved measurements of the pion beta decay rate are possible with an intense high-energy pion beam. The rate for the decay [pi][sup +] [yields] [pi][sup 0]e[sup +]v[epsilon] is predicted by the Standard Model (SM) to be R([pi][sup +] [yields] [pi][sup 0]e[sup +]v[epsilon]) = 0.3999[plus minus]0.0005 s[sup [minus]1]. The best experimental number, obtained using in-flight decays, is R([pi][sup +] [yields] [pi][sup 0]e[sup +]v[epsilon]) = 0.394 [plus minus] 0.015 s[sup [minus]1]. A precise measurement would test the SM by testing the unitarity of the Cabibbo-Kobayashi-Maskawa matrix for which one analysis of the nuclear beta decay data has shown a 0.4% discrepancy. Several nuclear correction factors, needed for nuclear decay, are not present for pion beta decay, so that an experiment at the 0.2% level would be a significant one. Detailed study of possible designs will be needed, as well as extensive testing of components. The reduction of systematic errors to the 0.1% level can only be done over a period of years with a highly stable apparatus and beam. At a minimum, three years of occupancy of a beam line, with 800 hours per year, would be required.
Measuring pion beta decay with high-energy pion beams
McFarlane, W.K. |; Hoffman, C.M.
1993-02-01
Improved measurements of the pion beta decay rate are possible with an intense high-energy pion beam. The rate for the decay {pi}{sup +} {yields} {pi}{sup 0}e{sup +}v{epsilon} is predicted by the Standard Model (SM) to be R({pi}{sup +} {yields} {pi}{sup 0}e{sup +}v{epsilon}) = 0.3999{plus_minus}0.0005 s{sup {minus}1}. The best experimental number, obtained using in-flight decays, is R({pi}{sup +} {yields} {pi}{sup 0}e{sup +}v{epsilon}) = 0.394 {plus_minus} 0.015 s{sup {minus}1}. A precise measurement would test the SM by testing the unitarity of the Cabibbo-Kobayashi-Maskawa matrix for which one analysis of the nuclear beta decay data has shown a 0.4% discrepancy. Several nuclear correction factors, needed for nuclear decay, are not present for pion beta decay, so that an experiment at the 0.2% level would be a significant one. Detailed study of possible designs will be needed, as well as extensive testing of components. The reduction of systematic errors to the 0.1% level can only be done over a period of years with a highly stable apparatus and beam. At a minimum, three years of occupancy of a beam line, with 800 hours per year, would be required.
Pion single charge exchange in three body nuclei at intermediate energies
Dowell, M.L.
1994-01-01
The purpose of this thesis is to present new experimental information about modifications to the pion-nucleon single charge exchange interaction, {pi}{sup +}n {yields}{pi}{sup 0} p or {pi}{sup {minus}} p {yields} {pi}{sup 0}n, due to the presence of other nucleons. The results of two experimental studies of pion single charge exchange in the three nucleon system near the {triangle}-resonance are presented. Both of these experiments were performed at the Clinton P. Anderson Meson Physics Facility (LAMPF), a division of the Los Alamos National Laboratory. Each explored different aspects of pion single charge exchange in three body nuclei--{sup 3}He and {sup 3}H. Since the nuclear wavefunctions of the three nucleon systems are believed to be well understood, it should be possible to perform theoretical calculations of pion interactions with this system and compare their predictions with the experimental results.
Pion production in the MiniBooNE experiment
NASA Astrophysics Data System (ADS)
Lalakulich, O.; Mosel, U.
2013-01-01
Background: Charged current pion production gives information on the axial form factors of nucleon resonances. It also introduces a noticeable background to quasielastic measurements on nuclear targets.Purpose: Understand pion production in neutrino interactions with nucleons and the reaction mechanism in nuclei.Method: The Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) model is used for an investigation of neutrino-nucleus reactions.Results: Theoretical results for integrated and differential cross sections for the MiniBooNE neutrino flux are compared to the data. Two sets of pion production data on elementary targets are used to obtain limits for the neutrino-nucleus reactions.Conclusions: The MiniBooNE pion production data are approximately consistent with the Brookhaven National Laboratory elementary data if a small flux renormalization is performed while the Argonne National Laboratory input data lead to significantly too low cross sections. A final determination of in-medium effects requires new data on elementary (p,D) targets.
How strange is pion electroproduction?
NASA Astrophysics Data System (ADS)
Gorchtein, Mikhail; Spiesberger, Hubert; Zhang, Xilin
2016-01-01
We consider pion production in parity-violating electron scattering (PVES) in the presence of nucleon strangeness in the framework of partial wave analysis with unitarity. Using the experimental bounds on the strange form factors obtained in elastic PVES, we study the sensitivity of the parity-violating asymmetry to strange nucleon form factors. For forward kinematics and electron energies above 1 GeV, we observe that this sensitivity may reach about 20% in the threshold region. With parity-violating asymmetries being as large as tens p.p.m., this study suggests that threshold pion production in PVES can be used as a promising way to better constrain strangeness contributions. Using this model for the neutral current pion production, we update the estimate for the dispersive γZ-box correction to the weak charge of the proton. In the kinematics of the Qweak experiment, our new prediction reads Re □γZV (E = 1.165 GeV) = (5.58 ± 1.41) ×10-3, an improvement over the previous uncertainty estimate of ± 2.0 ×10-3. Our new prediction in the kinematics of the upcoming MESA/P2 experiment reads Re □γZV (E = 0.155 GeV) = (1.1 ± 0.2) ×10-3.
A relativistic description of the quasifree radiative pion-capture reaction on nuclei
NASA Astrophysics Data System (ADS)
Johansson, J. I.; Sherif, H. S.
1995-02-01
We present a relativistic model for the reaction A( π+, γp) A - 1. This is an extension of our recent model for negative-pion photoproduction. The interaction of the pion with the target nucleon is comprised of the set of Born terms arising from the pseudovector form of the pion-nucleon interaction lagrangian, as well as s- and u-channel diagrams involving the propagation of the Δ(1232). The bound and continuum nucleons are described by solutions of the Dirac equation with appropriate scalar and vector potentials, while the pion wave function is a solution of the Klein-Gordon equation containing a pion-nucleus optical potential. Calculations of the triple differential cross section {d3σ }/{dω p dω γdEγ } as well as the polarization of the final proton are presented for the kinematics of TRIUMF experiment 550. Under appropriate kinematic conditions the contribution of the Δ(1232) is found to be dominant in this reaction. The results are sensitive to the choice of pion-nucleus optical potential but are not very sensitive to the nucleon interactions with the nucleus. We obtain qualitative agreement with data from TRIUMF experiment 550.
Isospin breaking in low-energy pion-nucleon scattering
Gibbs, W.R.; Ai, L.; Kaufmann, W.B.
1995-05-08
We have analyzed low-energy pion-nucleon data for isospin invariance by comparing charge-exchange amplitudes derived from charge-exchange data with those predicted from recent {pi}{sup {plus_minus}}{ital p} elastic data through the application of isospin invariance. A discrepancy of the order of 7% is observed beyond the contributions of the {pi}{sup {plus_minus}}{ital p} Coulomb interaction and the hadronic mass differences.
750 GeV dark pion: Cousin of a dark G -parity odd WIMP
NASA Astrophysics Data System (ADS)
Bai, Yang; Berger, Joshua; Lu, Ran
2016-04-01
We point out a potential common origin of the recently observed 750 GeV diphoton resonance and a weakly interacting massive particle (WIMP) candidate. In a dark QCD sector with an unbroken dark G parity, the diphoton resonance could be a dark G -even pion, while the WIMP could be the lightest dark G -odd pion. Both particles are Standard Model gauge singlets and have the same decay constant. For the dark pion decay constant of around 500 GeV, both the diphoton excess at the LHC and the dark matter thermal abundance can be accommodated in our model. Our model predicts additional dark G -even and dark G -odd color-octet pions within reach of the 13 TeV LHC runs. For the 5 +5 ¯ model, compatible with the grand unified theories, the WIMP mass is predicted to be within (613,750) GeV.
Pion interference correlations in pion-nucleus collisions at 10. 5 GeV/c
Wong, R.
1983-01-01
Inclusive reactions of pion, Ne collisions at 10.5 GeV/c have been studied. The pion intensity interference effect has been observed in identical pion (..pi../sup +/, ..pi../sup -/, and ..pi../sup -/, ..pi../sup -/) as well as non-identical (..pi../sup +/, ..pi../sup -/) pion pair correlations. A momentum dependence is observed in the interference correlation function at small momentum differences. Previously only the identical pion interference correlations have been reported. In this thesis, the non-identical pion pair correlation is also studied. The momentum dependence is also new. For (..pi../sup -/,..pi../sup +/) and (..pi../sup -/,..pi../sup -/) pairs, the enhancement is due mostly to pions with mom/sup */>600 MeV/c. However for (..pi../sup +/, ..pi../sup +/) pairs, the peak is due primarily to pions with mom<200 MeV/c. Using the method of Kopylov and Podgoretsky the identical pion source region is determined to be 4.1 +/- 2.3 fermis. Also the influence on the final state correlations by the Bose statistics, Coulomb, and nuclear forces is observed. The possibility of using the (..pi../sup +/,..pi../sup -/) pion pair correlations to examine the pions produced in the quark-gluon perturbative vacuum of high-energy nucleus-nucleus collisions is suggested.
Pion in deep inelastic scattering
Povh, B.
2008-10-13
The forward neutron production in the ep collisions at 300 GeV measured by the H1 and ZEUS Collaborations at DESY has been used to estimate the total probability for the proton fluctuation into n{pi}{sup +} and p{pi}{sup 0}. The probability found is on the order of the 30%. This number is compared with the numbers of obtained for the probability of quark fluctuation into {pi}{sup +} from several alternative DIS processes (Gottfried sum rule, polarized structure function) and the axial-vector coupling constant, where the pion fluctuation is believed to play an important role.
Collective and fractal properties of pion jets in the space of 4-velocities at intermediate energies
Okorokov, V. A. Ponosov, A. K.; Sergeev, F. M.
2010-11-15
Experimental results obtained by studying collective and fractal properties of soft pion jets in the space of relative 4-velocities at intermediate energies are presented. The mean square of the distance between secondary particles and the jet axis is found to be significantly smaller in the case of pion-proton interactions at initial energies of about 3 GeV than in the case of hadron-hadron collisions at similar energies. This reduction leads to a power-law dependence of this quantity on the interaction energy in the energy range between about 2 and 4 GeV, and this makes it possible to estimate the lower boundary of the region where color degrees of freedom manifest themselves in pion-jet production. The cluster dimensions of pion jets in various reactions were obtained for the first time. Fractional values of this dimension may be a manifestation of fractal properties of pion jets. The change in the mean kinetic energy of particles in the jet and the change in the fractal dimension in response to the change in the collision energy is compatible with the assumption that color degrees of freedom come into play in pion-jet production at intermediate energies.
Comparison of GiBUU calculations with MiniBooNE pion production data
Lalakulich, O.; Mosel, U.
2015-05-15
Background: Neutrino-induced pion production can give important informationon the axial coupling to nucleon resonances. Furthermore, pion production represents a major background to quasielastic-like events. one pion production data from the MiniBooNE in charged current neutrino scattering in mineral oil appeared higher than expected within conventional theoretical approaches. Purpose: We aim to investigate which model parameters affect the calculated cross section and how they do this. Method: The Giessen Boltzmann–Uehling–Uhlenbeck (GiBUU) model is used for an investigation of neutrino-nucleus reactions. Results: Presented are integrated and differential cross sections for 1π{sup +} and 1π{sup 0} production before and after final state interactions in comparison with the MiniBooNE data. Conclusions: For the MiniBooNE flux all processes (QE, 1π-background, Δ, higher resonance production, DIS) contribute to the observed final state with one pion of a given charge. The uncertainty in elementary pion production cross sections leads to a corresponding uncertainty in the nuclear cross sections. Final state interactions change the shape of the muon-related observables only slightly, but they significantly change the shape of pion distributions.
Summary of the pion production sessions
Dytman, S. A.
2015-05-15
This is a short summary of the 10 talks given in the Pion Production Sessions at NUINT12. There were 2 very interesting themes that spanned talks - problems with data for single nucleons and pion absorption in the nuclear medium. In addition, a number of interesting new efforts were described.
Strangeness production with protons and pions
Dover, C.B.
1993-04-01
We discuss the spectrum of physics questions related to strangeness which could be addressed with intense beams of protons and pions in the few GeV region. We focus on various aspects of strangeness production, including hyperon production in pp collisions, studies of hyperon-nucleon scattering, production of hypernuclei in proton and pion-nucleus collisions, and spin phenomena in hypernuclei.
Strangeness production with protons and pions
Dover, C.B.
1993-01-01
We discuss the spectrum of physics questions related to strangeness which could be addressed with intense beams of protons and pions in the few GeV region. We focus on various aspects of strangeness production, including hyperon production in pp collisions, studies of hyperon-nucleon scattering, production of hypernuclei in proton and pion-nucleus collisions, and spin phenomena in hypernuclei.
Heavy ion pion production: spectral irregularities
Rasmussen, J.O.
1982-09-01
Data on ..pi../sup -//..pi../sup +/ ratios and on hills and valleys in spectra from heavy ion collisions are reviewed. Theoretical studies to handle Coulomb effects on pion spectra are examined. The possible role of strongly-bound pion orbitals of nuclear size is discussed.
Pion Asymmetries due to Hyperon Decays in the Qweak Experiment
NASA Astrophysics Data System (ADS)
Elledge, Jacob
2015-10-01
The Qweak experiment took place at the Thomas Jefferson National Accelerator Facility between 2010 and 2012. In the experiment an electron beam was directed onto a liquid hydrogen target. The purpose of the Qweak experiment is to investigate the weak interaction between the proton and the electron. The experiment determined the proton's weak charge by measuring the asymmetry in elastic scattering when changing the helicity of the incoming electron beam 960 times per second. Under different kinematic conditions the experiment investigated inelastic scattering with pions in the final state, a background for the elastic scattering measurement. In this inelastic measurement, a false asymmetry due to parity-violating hyperon decays must be determined. Using the results of a simulation written in Geant4, I have been able to isolate the cross sections for samples of opposite helicities. By combining this cross section with the signal of detected pions from hyperon decay, I was able to isolate the expected false asymmetry.
Harada, Koji; Kubo, Hirofumi; Yamamoto, Yuki
2011-03-15
Nuclear effective field theory (NEFT) including pions in the two-nucleon sector is examined from the Wilsonian renormalization group point of view. The pion exchange is cut off at the floating cutoff scale, {Lambda}, with the short-distance part being represented as contact interactions in accordance with the general principle of renormalization. We derive the nonperturbative renormalization group equations in the leading order of the nonrelativistic approximation in the operator space up to including O(p{sup 2}), and find the nontrivial fixed points in the {sup 1}S{sub 0} and {sup 3}S{sub 1}-{sup 3}D{sub 1} channels which are identified with those in the pionless NEFT. The scaling dimensions, which determine the power counting, of the contact interactions at the nontrivial fixed points are also identified with those in the pionless NEFT. We emphasize the importance of the separation of the pion exchange into the short-distance and the long-distance parts, since a part of the former is nonperturbative while the latter is perturbative.
Tavakoli, Mohammad Bagher; Mohammadi, Mohammad Mehdi; Reiazi, Reza; Jabbari, Keyvan
2015-01-01
Geant4 is an open source simulation toolkit based on C++, which its advantages progressively lead to applications in research domains especially modeling the biological effects of ionizing radiation at the sub-cellular scale. However, it was shown that Geant4 does not give a reasonable result in the prediction of antiproton dose especially in Bragg peak. One of the reasons could be lack of reliable physic model to predict the final states of annihilation products like pions. Considering the fact that most of the antiproton deposited dose is resulted from high-LET nuclear fragments following pion interaction in surrounding nucleons, we reproduced depth dose curves of most probable energy range of pions and neutron particle using Geant4. We consider this work one of the steps to understand the origin of the error and finally verification of Geant4 for antiproton tracking. Geant4 toolkit version 9.4.6.p01 and Fluka version 2006.3 were used to reproduce the depth dose curves of 220 MeV pions (both negative and positive) and 70 MeV neutrons. The geometry applied in the simulations consist a 20 × 20 × 20 cm3 water tank, similar to that used in CERN for antiproton relative dose measurements. Different physic lists including Quark-Gluon String Precompound (QGSP)_Binary Cascade (BIC)_HP, the recommended setting for hadron therapy, were used. In the case of pions, Geant4 resulted in at least 5% dose discrepancy between different physic lists at depth close to the entrance point. Even up to 15% discrepancy was found in some cases like QBBC compared to QGSP_BIC_HP. A significant difference was observed in dose profiles of different Geant4 physic list at small depths for a beam of pions. In the case of neutrons, large dose discrepancy was observed when LHEP or LHEP_EMV lists were applied. The magnitude of this dose discrepancy could be even 50% greater than the dose calculated by LHEP (or LHEP_EMV) at larger depths. We found that effect different Geant4 physic list in
Tavakoli, Mohammad Bagher; Mohammadi, Mohammad Mehdi; Reiazi, Reza; Jabbari, Keyvan
2015-01-01
Geant4 is an open source simulation toolkit based on C++, which its advantages progressively lead to applications in research domains especially modeling the biological effects of ionizing radiation at the sub-cellular scale. However, it was shown that Geant4 does not give a reasonable result in the prediction of antiproton dose especially in Bragg peak. One of the reasons could be lack of reliable physic model to predict the final states of annihilation products like pions. Considering the fact that most of the antiproton deposited dose is resulted from high-LET nuclear fragments following pion interaction in surrounding nucleons, we reproduced depth dose curves of most probable energy range of pions and neutron particle using Geant4. We consider this work one of the steps to understand the origin of the error and finally verification of Geant4 for antiproton tracking. Geant4 toolkit version 9.4.6.p01 and Fluka version 2006.3 were used to reproduce the depth dose curves of 220 MeV pions (both negative and positive) and 70 MeV neutrons. The geometry applied in the simulations consist a 20 × 20 × 20 cm(3) water tank, similar to that used in CERN for antiproton relative dose measurements. Different physic lists including Quark-Gluon String Precompound (QGSP)_Binary Cascade (BIC)_HP, the recommended setting for hadron therapy, were used. In the case of pions, Geant4 resulted in at least 5% dose discrepancy between different physic lists at depth close to the entrance point. Even up to 15% discrepancy was found in some cases like QBBC compared to QGSP_BIC_HP. A significant difference was observed in dose profiles of different Geant4 physic list at small depths for a beam of pions. In the case of neutrons, large dose discrepancy was observed when LHEP or LHEP_EMV lists were applied. The magnitude of this dose discrepancy could be even 50% greater than the dose calculated by LHEP (or LHEP_EMV) at larger depths. We found that effect different Geant4 physic list in
Backward pion-nucleon scattering
F. Huang; Sibirtsev, Alex; Haidenbauer, Johann; Meissner, Ulf-G.
2010-02-01
A global analysis of the world data on differential cross sections and polarization asymmetries of backward pion-nucleon scattering for invariant collision energies above 3 GeV is performed in a Regge model. Including the $N_\\alpha$, $N_\\gamma$, $\\Delta_\\delta$ and $\\Delta_\\beta$ trajectories, we reproduce both angular distributions and polarization data for small values of the Mandelstam variable $u$, in contrast to previous analyses. The model amplitude is used to obtain evidence for baryon resonances with mass below 3 GeV. Our analysis suggests a $G_{39}$ resonance with a mass of 2.83 GeV as member of the $\\Delta_{\\beta}$ trajectory from the corresponding Chew-Frautschi plot.
Radiative pion capture by C12.
NASA Technical Reports Server (NTRS)
Lam, W. C.; Gotow, K.; Macdonald, B.; Trower, W. P.; Anderson, D. K.
1972-01-01
The energy spectrum of neutrons from radiative pion capture by carbon is investigated. Radiative pion capture is identified by coincidence of a stop signal and a signal from one of six lead-glass gamma detectors when negative pions traverse a beam telescope and are stopped in a carbon target. The energy of the neutrons is measured using the time interval between a stop signal coincident with a gamma-counter signal and a signal from a liquid-oscillator neutron counter. Asymmetry in the neutron-photon angular correlation increases with neutron energy and is accounted for by direct neutron emission.
Pions in and out of equilibrium
Gavin, S.
1991-12-01
Can final state scattering wrestle the secondaries in nucleus-nucleus collisions into a fluid state near local thermal equilibrium What do the pion p{sub T} spectra measured in pp, pA and SPS light ion experiments already tell us about the approach to equilibrium To begin to address these questions, we must face the nonequilibrium nature of hadronic evolution in the late stages of these collisions. I will outline efforts to apply transport theory to the nonequilibrium pion fluid at midrapidity focusing on two phenomena: partial thermalization and pion conservation.
Pions in and out of equilibrium
Gavin, S.
1991-12-01
Can final state scattering wrestle the secondaries in nucleus-nucleus collisions into a fluid state near local thermal equilibrium? What do the pion p{sub T} spectra measured in pp, pA and SPS light ion experiments already tell us about the approach to equilibrium? To begin to address these questions, we must face the nonequilibrium nature of hadronic evolution in the late stages of these collisions. I will outline efforts to apply transport theory to the nonequilibrium pion fluid at midrapidity focusing on two phenomena: partial thermalization and pion conservation.
NASA Astrophysics Data System (ADS)
Lu, Egang; Moore, Guy D.
2011-04-01
We compute the bulk viscosity of a gas of pions at temperatures below the QCD crossover temperature, for the physical value of mπ, to lowest order in chiral perturbation theory. Bulk viscosity is controlled by number-changing processes which become exponentially slow at low temperatures when the pions become exponentially dilute, leading to an exponentially large bulk viscosity ζ~(F08/mπ5)exp(2mπ/T), where F0≃93MeV is the pion decay constant.
Quark and pion effective couplings from polarization effects
NASA Astrophysics Data System (ADS)
Braghin, Fábio L.
2016-05-01
A flavor SU(2) effective model for pions and quarks is derived by considering polarization effects departing from the usual quark-quark effective interaction induced by dressed gluon exchange, i.e. a global color model for QCD. For that, the quark field is decomposed into a component that yields light mesons and the quark-antiquark condensate, being integrated out by means of the auxiliary field method, and another component which yields constituent quarks, which is basically a background quark field. Within a long-wavelength and weak quark field expansion (or large quark effective mass expansion) of a quark determinant, the leading terms are found up to the second order in a zero-order derivative expansion, by neglecting vector mesons that are considerably heavier than the pion. Pions are considered in the structureless limit and, besides the chiral invariant terms that reproduce previously derived expressions, symmetry breaking terms are also presented. The leading chiral quark-quark effective couplings are also found corresponding to a NJL and a vector-NJL couplings. All the resulting effective coupling constants and parameters are expressed in terms of the current and constituent quark masses and of the coupling g.
Confinement singularities in two-pion decays of mesons
Anisovich, A. V.; Anisovich, V. V. Matveev, M. A.; Nikonov, V. A.; Nyiri, J.; Sarantsev, A. V.
2010-07-15
We consider as an example the two-pion decay of the {rho} meson, the {sup 3}S{sub 1}qq-bar state of the constituent quarks-the decay being determined by the transition qq-bar {sup {yields} {pi}{pi}} contains information about confinement interactions. One can specify in this decay two types of transitions: (i) the bremsstrahlung radiation of a pion q {sup {yields}}q + {pi} (or q-bar {sup {yields}}q-bar + {pi}) with a subsequent fusion qq-bar {sup {yields} {pi}}, and (ii) the direct transition qq-bar {sup {yields} {pi}{pi}}. We demonstrate how in the amplitudes of the corresponding transitions the quark singularities have to disappear, i.e., what is the way the quark confinement at relatively short distances can be realized. We calculate and estimate the contributions of processes with bremsstrahlung radiation of the pion and of the direct transition qq-bar {sup {yields} {pi}{pi}}. The estimates demonstrate that the processes involving the direct transition qq-bar {sup {yields} {pi}{pi}} are necessary, but they cannot be determined unambiguously by the decay {rho}(775) {sup {yields} {pi}{pi}}. We conclude that for the determination of the qq-bar {sup {yields} {pi}{pi}} transition more complete data on the resonance decays into the {pi}{pi} channels are needed than those available at the moment.
Lattice QCD study of mixed systems of pions and kaons
William Detmold, Brian Smigielski
2011-07-01
The O(100) different ground state energies of N-pion and M-kaon systems for N+M <= 12 are studied in lattice QCD. These energies are then used to extract the various two- and three- body interactions that occur in these systems. These calculations are performed using one ensemble of 2+1 flavor anisotropic lattices with a spatial lattice spacing $a_s$ ~ 0.125 fm, an anisotropy factor $\\xi=a_s/a_t=3.5$, and a spatial volume $L^3\\sim (2.5\\ {\\rm fm})^3$. Particular attention is paid to additional thermal states present in the spectrum because of the finite temporal extent. The quark masses used correspond to pion and kaon masses of $m_\\pi$ ~ 383 MeV and $m_K$ ~ 537 MeV, respectively. The isospin and strangeness chemical potentials of these systems are found to be in the region where chiral perturbation theory and hadronic models predict a phase transition between a pion condensed phase and a kaon condensed phase.
Two-pion correlations in heavy ion collisions
Zajc, W.A.
1982-08-01
An application of intensity interferometry to relativistic heavy ion collisions is reported. Specifically, the correlation between two like-charged pions is used to study the reactions Ar+KCl..-->..2..pi../sup +-/+X and Ne+NaF..-->..2..pi../sup -/+X. Source sizes are obtained that are consistent with a simple geometric interpretation. Lifetimes are less well determined but are indicative of a faster pion production process than predicted by Monte Carlo cascade calculations. There appears to be a substantial coherent component of the pion source, although measurement is complicated by the presence of final state interactions. Additionally, the generation of spectra of uncorrelated events is discussed. In particular, the influence of the correlation function on the background spectrum is analyzed, and a prescription for removal of this influence is given. A formulation to describe the statistical errors in the background is also presented. Finally, drawing from the available literature, a self-contained introduction to Bose-Einstein correlations and the Hanbury-Brown - Twiss effect is provided, with an emphasis on points of contact between classical and quantum mechanical descriptions.
Cross-Section Parameterizations for Pion and Nucleon Production From Negative Pion-Proton Collisions
NASA Technical Reports Server (NTRS)
Norbury, John W.; Blattnig, Steve R.; Norman, Ryan; Tripathi, R. K.
2002-01-01
Ranft has provided parameterizations of Lorentz invariant differential cross sections for pion and nucleon production in pion-proton collisions that are compared to some recent data. The Ranft parameterizations are then numerically integrated to form spectral and total cross sections. These numerical integrations are further parameterized to provide formula for spectral and total cross sections suitable for use in radiation transport codes. The reactions analyzed are for charged pions in the initial state and both charged and neutral pions in the final state.
PION PRODUCTION MODELS AND NEUTRINO FACTORIES
COLLOT,J.; KIRK,H.G.; MOKHOV,N.V.
2000-02-11
Scenarios for the building of muon colliders or storage rings suitable for the generation of robust neutrino beams call for the generation of a prodigious quantity of pions. These pions are then conducted into a decay channel where the resulting muon decay products can be collected for cooling and subsequent acceleration. Central to this concept is the design and construction of a target which will be highly efficient in producing pions of both signs while mitigating the absorption of these pions before they decay. This design effort is being facilitated by using two computer codes FLUKA and MARS. The authors present comparisons of the two computer codes and also present a comparison of these codes with available data.
Neutrino-induced coherent pion production
Alvarez-Ruso, L.; Geng, L. S.; Vacas, M. J. Vicente; Hirenzaki, S.; Leitner, T.; Mosel, U.
2007-12-21
We have investigated the neutrino induced coherent pion production reaction at the energies of interest for recent experiments like K2K and MiniBooNE. The model includes pion, nucleon and the {delta}(1232) resonance. Medium effects in the production mechanism and the distortion of the pion wave function are taken into account. We find a strong reduction of the cross section due to these effects and also substantial modifications in the energy distributions of the final pion. The sensitivity of the results on the axial N-{delta} coupling C{sub 5}{sup A}(0) and the coherent fraction in neutral-current {pi}{sup 0} production are discussed.
Pion valence-quark parton distribution function
NASA Astrophysics Data System (ADS)
Chang, Lei; Thomas, Anthony W.
2015-10-01
Within the Dyson-Schwinger equation formulation of QCD, a rainbow ladder truncation is used to calculate the pion valence-quark distribution function (PDF). The gap equation is renormalized at a typical hadronic scale, of order 0.5 GeV, which is also set as the default initial scale for the pion PDF. We implement a corrected leading-order expression for the PDF which ensures that the valence-quarks carry all of the pion's light-front momentum at the initial scale. The scaling behavior of the pion PDF at a typical partonic scale of order 5.2 GeV is found to be (1 - x) ν, with ν ≃ 1.6, as x approaches one.
Neutron Radii from Low Energy Pion Scattering.
NASA Astrophysics Data System (ADS)
Gyles, William
Recent electron scattering measurements and muonic atom studies have allowed precise determinations of the charge distributions of nuclei. Measurements of the neutron distributions, however, have not progressed to this degree of sophistication, largely because of the uncertainties in the hadron-nucleus interaction. Charge distribution measurements provide good tests of nuclear structure calculations, but measurements of neutron distributions will provide independent constraints on these calculations and the potentials used. In this experiment, (pi)('-) differential cross section ratios were measured on pairs of isotopes (('36)S,('32)S), (('34)S,('32)S) with 50 MeV pions and (('26)Mg,('24)Mg) with 45 MeV pions. Absolute differential cross sections were also measured for ('32)S and ('24)Mg. Magnetic spectro -meters were used to collect the data. The cross section ratios were compared to optical model calcula-tions in which the parameters of a Fermi function representing the neutron distribution of the larger isotope of each pair were varied. The rms radius difference between the two isotopes producing the best fit was found to be independent of the details of the optical potential used, as long as the potential produced a fit to the absolute cross sections. The neutron distribution of the larger isotope was also rep-resented as a Fermi function modified by a sum of spherical Bessel functions, the coefficients of which were allowed to vary. The results for the rms radius differences were consistent with the Fermi function fits, except for ('34)S-('32)S, where the results differed by a full standard deviation. The rms radius differences found for the sulfur isotopes agreed with the results of shell-model calculations by Hodgson (Str82,Hod83). The extracted rms radius difference of the magnesium isotopes was one standard deviation less than the shell-model prediction. The results for the Fermi function fits, Fourier Bessell fits and the single particle potential (SPP
Pion Cloud Contributions to the Proton Sea
NASA Astrophysics Data System (ADS)
Furukawa, Kayla; Aldahlawi, Feras; Merfeld, Kara
2012-10-01
A proton may split into a meson and a baryon as allowed by the Heisenberg uncertainty principle. This process and the possible meson-baryon combinations have been studied by several theoretical models. In this study, we investigate the proton and its constituents through the pion cloud model. The pion cloud model depends on the splitting function, fπB(y), which represents the probability of a proton splitting into a pion and a baryon, and the pion parton distribution function, qπ(z). The goal of our research is to examine the way the proton antiquark distributions depend on qπ(z) and the form factors and cutoffs of fπB(y). We have studied functional forms for the dbar and ubar quarks given by the Durham HepData Project, compared their difference and ratio to the E866 experimental data from FermiLab and have studied a simplified pion cloud model. For Henley and Miller's fπN(y) we show how different qπ(z) affect the proton antiquark distribution. We consider the pion parton distribution function of Sutton et al., as well as Aicher et al., and other forms of qπ(z).
Two-pion exchange and chiral symmetry restoration
Birse, M.C. )
1994-04-01
The scalar, isoscalar piece of the two-pion exchange force between two nucleons is calculated in the linear [sigma] model. A large contribution to this force is found to come from terms involving direct coupling of the [sigma] field to the nucleons. This part of the interaction can be related to the partial restoration of chiral symmetry experienced by a nucleon in nuclear matter, and it has a strength determined by the [sigma] commutator. Even if the elementary'' [sigma] is taken to be heavy ([ital m][sub [sigma
PILAC: A Pion Linac facility for 1-GeV pion physics at LAMPF
Thiessen, H.A.
1991-12-31
A design study for a Pion Linac (PILAC) at LAMPF is underway at Los Alamos. We present here a reference design for a system of pion source, linac, and high-resolution beam line and spectrometer that will provide 10{sup 9} pions per second on target and 200-keV resolution for the ({pi} {sup +}, K{sup +}) reaction at 0.92 GeV. A general-purpose beam line that delivers both positive and negative pions in the energy range 0.4--1.1 GeV is included, thus opening up the possibility of a broad experimental program as is discussed in this report. A kicker-based beam sharing system allows delivery of beam to both beamlines simultaneously with independent sign and energy control. Because the pion linac acts like and rf particle separator, all beams produced by PILAC will be free of electron (or positron) and proton contamination.
On the origin of the pion-decay radiation in the 1982 June 3 solar flare
NASA Technical Reports Server (NTRS)
Ramaty, R.; Murphy, R. J.; Dermer, C. D.
1987-01-01
The June 3, 1982 flare produced a wealth of observed gamma-ray, energetic particle, and neutron emissions. It is shown that the predictions of an interaction model developed for the June 3 flare by Murphy, Dermer, and Ramaty (1987) compare favorably with new data on the time-dependent flux on pion-decay emission from this flare. It is concluded that the particles which produced the bulk of the pions could have the same origin as the particle observed in interplanetary space from the June 3 flare.
ν¯l induced pion production from nuclei at ˜1GeV
NASA Astrophysics Data System (ADS)
Alam, M. Rafi; Chauhan, S.; Athar, M. Sajjad; Singh, S. K.
2013-10-01
We have studied charged current ν¯l induced one pion production from C12 and O16 nuclear targets at MiniBooNE and atmospheric antineutrino energies. The calculations have been done for the incoherent pion production process as well as for the pions coming from the hyperons in the quasielastic production of Λ and Σ. The calculations are done in the local density approximation. For the inelastic processes the calculations have been done in the Δ dominance model, and we take into account the effect of Pauli blocking, Fermi motion of the nucleon, and renormalization of Δ properties in the nuclear medium. The effect of final state interaction (FSI) of pions is also taken into account. For the hyperon production, the nuclear medium effects due to Fermi motion and FSI effects due to hyperon-nucleon scattering have been taken into account. These results may be quite useful in the analysis of SciBooNE, MicroBooNE, MINERνA, and ArgoNeuT experiments when the pion analysis is done by using antineutrino beams.
Short-range NN and N. Delta. correlations in pion double charge exchange (DCX)
Johnson, M.B.
1990-01-01
I will review several important results related to the short-range nucleon-nucleon and delta-nucleon interaction that have been obtained from recent studies of pion double charge exchange in selected nuclei. 32 refs., 5 figs., 3 tabs.
Detection of pion-induced radioactivity by autoradiography and positron emission tomography (PET)
Shirato, H.; Harrison, R.; Kornelsen, R. O.; Lam, G. K. Y.; Gaffney, C. C.; Goodman, G. B.; Grochowski, E.; Pate, B.
1989-05-01
An autoradiographic technique incorporating a new imaging system was used to detect pion-induced radioactivity in Plexiglass and the results were compared with aluminium activation and PET imaging. The activity distribution in the region of the pion-stopping peak was similar in all three cases. Another large signal in the entrance region due to in-flight interactions (/sup 12/C(..pi../minus/,..pi../minus//ital n/)/sup 11/C) was detected by autoradiography and by PET but was not reflected in the aluminium activation measurements. This new technique is capable of defining the stopping region in phantoms with a better resolution than PET scanning and is useful as a complementary technique to other methods of pion dosimetry.
Pion-induced double-charge exchange reactions in the {delta} resonance region
Buss, O.; Alvarez-Ruso, L.; Larionov, A. B.; Mosel, U.
2006-10-15
We have applied the Giessen BUU (GiBUU) transport model to the description of the double-charge exchange (DCX) reaction of pions with different nuclear targets at incident kinetic energies of 120-180 MeV. The DCX process is highly sensitive to details of the interactions of pions with the nuclear medium and, therefore, represents a major benchmark for any model of pion scattering off nuclei at low and intermediate energies. The impact of surface effects, such as the neutron skins of heavy nuclei, is investigated. The dependence of the total cross section on the nuclear mass number is also discussed. We achieve a good quantitative agreement with the extensive data set obtained at LAMPF. Furthermore, we compare the solutions of the transport equations obtained in the test-particle ansatz using two different schemes: the full and the parallel ensemble methods.
Pion treatment procedures and verification techniques
Zink, S.R.; Bush, S.E.; Gilman, C.J.; Hilko, R.H.; Justice, R.K.; Osborne, E.C.; Smith, A.R.; Berardo, P.A.
1984-05-01
Procedures and techniques developed for the negative pi-meson (pion) radiotherapy program at the Los Alamos Meson Physics Facility, Los Alamos, NM, are reviewed and described. A particular pion patient is followed through the entire planning and treatment sequence to describe CT scanning procedures, bolus and collimator and treatment techniques developed to minimize positioning errors (less than 5 mm). Comparison of 2-D and 3-d isodose calculation developed at Los Alamos showed differences of less than 10% attributable to multiple scattering effects and the computational models used. Treatment verification methods using in vivo ion chamber dosimetry generally confirmed the prescribed dose delivery within 10% and using TLD within 18%.
Beam dynamics design of a pion linac
Nath, S; Swain, G.; Garnett, R.; Wangler, T.P.
1990-01-01
We have conducted a study of a superconducting linac to accelerate pions produced at LAMPF from 400 or 500 MeV to 925 MeV kinetic energy. For such a linac, it is necessary to keep the machine as short as practical in order to minimize the loss of beam due to particle decay, and to tailor the beam to achieve the maximum flux within the desired momentum bite at the exit. The interplay of these and other considerations with the transverse and longitudinal beam dynamics is discussed, and is illustrated with the simulated performance of reference pion-linac designs.
Neutrino-induced coherent pion production off nuclei reexamined
Leitner, T.; Mosel, U.; Winkelmann, S.
2009-05-15
It is pointed out that so far all theoretical estimates of coherent pion production off nuclei induced by neutrinos rely on the ''local approximation'' well known in photonuclear physics. The effects of dropping this approximation are discussed. It is found that in a plane wave approximation for the pion, the local approximation overestimates the coherent neutrino-induced pion production on nuclei.
PILAC: A pion linac facility for 1-GeV pion physics at LAMPF
Thiessen, H.A.
1991-01-01
A design study or a Pion Linac (PILAC) at LAMPF is underway at Los Alamos. We present here a reference design for a system of pion sources, linac, and high-resolution beam line and spectrometer that will provide 10{sup 9} pions per second on target and 200-keV resolution for the ({pi}{sup +}, K{sup +}) reaction at 0.92 GeV. A general-purpose beam line that delivers both positive and negative pions in the energy range 0.4--1.1 GeV is included, thus opening up the possibility of a broad experimental program as is discussed in this report. A kicker-based beam sharing system allows delivery of beam to both beamlines simultaneously with independent sign and energy control. Because the pionlinac acts like an rf particle separator, all beams produced by PILAC will be free of electron (or positron) and proton contamination. 4 refs., 6 figs.
Low energy pion-pion elastic scattering in the Sakai-Sugimoto model
Parthasarathy, R.; Viswanathan, K. S.
2008-06-01
We have considered the holographic large N{sub c} QCD model proposed by Sakai and Sugimoto and evaluated the non-Abelian DBI-action on the D8-brane up to ({alpha}{sup '}){sup 4} terms. Restricting to the pion sector, these corrections give rise to four derivative contact terms for the pion field. We derive the Weinberg's phenemenological Lagrangian. The coefficients of the four derivative terms are determined in terms of g{sub YM}{sup 2}. The low energy pion-pion scattering amplitudes are evaluated. Numerical results are presented with the choice of M{sub KK}=0.94 GeV and N{sub c}=11. The results are compared with the amplitudes calculated using the experimental phase shifts. The agreement with the experimental data is found to be satisfactory.
Quark-Hadron Duality for the Pion: a Phenomenological Study
Wally Melnitchouk
2002-08-01
We explore the relationship between exclusive and inclusive electromagnetic scattering from the pion, focusing on the transition region at intermediate Q{sup 2}. Combining Drell-Yan data on the leading twist quark distribution in the pion with a model for the resonance region at large x, we calculate QCD moments of the pion structure function over a range of Q{sup 2}, and quantify the role of higher twist corrections. Using a parameterization of the pion elastic form factor and phenomenological models for the pi --> p transition form factor, we test the extent to which local duality may be valid for the pion.
Parameterizations of Pion Energy Spectrum in Nucleon-Nucleon Collisions
NASA Technical Reports Server (NTRS)
Cucinotta, Franics A.; Wilson, John W.; Norbury, John W.
1998-01-01
The effects of pion (PI) production are expected to play an important role in radiation exposures in the upper atmosphere or on the Martian surface. Nuclear databases for describing pion production are developed for radiation transport codes to support these studies. We analyze the secondary energy spectrum of pions produced in nucleon-nucleon (NN) collisions in the relativistic one-pion exchange model. Parametric formulas of the isospin cross sections for one-pion production channels are discussed and are used to renormalize the model spectrum. Energy spectra for the deuteron related channels (NN yields dPi) are also described.
Pion double charge exchange and hadron dynamics
Johnson, M.B.
1991-01-01
This paper will review theoretical results to show how pion double charge exchange is contributing to our understanding of hadron dynamics in nuclei. The exploitation of the nucleus as a filter is shown to be essential in facilitating the comparison between theory and experiment. 23 refs., 3 figs., 2 tabs.
Low energy scattering with a nontrivial pion
Fariborz, Amir H.
2007-12-01
An earlier calculation in a generalized linear sigma model showed that the well-known current algebra formula for low energy pion-pion scattering held even though the massless Nambu Goldstone pion contained a small admixture of a two-quark two-antiquark field. Here we turn on the pion mass and note that the current algebra formula no longer holds exactly. We discuss this small deviation and also study the effects of a SU(3) symmetric quark mass type term on the masses and mixings of the eight SU(3) multiplets in the model. We calculate the s-wave scattering lengths, including the beyond current algebra theorem corrections due to the scalar mesons, and observe that the effect of the scalar mesons is to improve the agreement with experiment. In the process, we uncover the way in which linear sigma models give controlled corrections (due to the presence of scalar mesons) to the current algebra scattering formula. Such a feature is commonly thought to exist only in the nonlinear sigma model approach.
The Pion cloud: Insights into hadron structure
A.W. Thomas
2007-11-01
Modern nuclear theory presents a fascinating study in contrasting approaches to the structure of hadrons and nuclei. Nowhere is this more apparent than in the treatment of the pion cloud. As this discussion really begins with Yukawa, it is entirely appropriate that this invited lecture at the Yukawa Institute in Kyoto should deal with the issue.
High Purity Pion Beam at TRIUMF
Kettell, S.; Kettell, S.; Aguilar-Arevalo, A.; Blecher, M.; Bryman, D.A.; Comfort, J.; Doornbos, J.; Doria, L.; Hussein, A.; Ito, N.; et al.
2009-10-11
An extension of the TRIUMF M13 low-energy pion channel designed to suppress positrons based on an energy-loss technique is described. A source of beam channel momentum calibration from the decay {pi}{sup +} {yields} e{sup +}{nu} is also described.
Probing neutron-proton dynamics by pions
NASA Astrophysics Data System (ADS)
Ikeno, Natsumi; Ono, Akira; Nara, Yasushi; Ohnishi, Akira
2016-04-01
In order to investigate the nuclear symmetry energy at high density, we study the pion production in central collisions of neutron-rich nuclei 132Sn+124Sn at 300 MeV/nucleon using a new approach that combines antisymmetrized molecular dynamics (AMD) and a hadronic cascade model (JAM). The dynamics of neutrons and protons is solved by AMD, and then pions and Δ resonances in the reaction process are handled by JAM. We see the mechanism by which the Δ resonance and pions are produced, reflecting the dynamics of neutrons and protons. We also investigate the impacts of cluster correlations as well as of the high-density symmetry energy on the nucleon dynamics and consequently on the pion ratio. We find that the Δ-/Δ++ production ratio agrees very well with the neutron-proton squared ratio (N/Z ) 2 in the high-density and high-momentum region. We show quantitatively that the Δ production ratio, and therefore (N/Z ) 2, are directly reflected in the π-/π+ ratio, with modification in the final stage of the reaction.
Large-angle production of charged pions with incident pion beams on nuclear targets
Apollonio, M.; Chimenti, P.; Giannini, G.; Artamonov, A.; Giani, S.; Gilardoni, S.; Gorbunov, P.; Grant, A.; Grossheim, A.; Ivanchenko, A.; Ivanchenko, V.; Kayis-Topaksu, A.; Panman, J.; Papadopoulos, I.; Tcherniaev, E.; Tsukerman, I.; Wiebusch, C.; Zucchelli, P.; Bagulya, A.; Grichine, V.
2009-12-15
Measurements of the double-differential {pi}{sup {+-}} production cross section in the range of momentum 100{<=}p{<=}800 MeV/c and angle 0.35{<=}{theta}{<=}2.15 rad using {pi}{sup {+-}} beams incident on beryllium, aluminum, carbon, copper, tin, tantalum, and lead targets are presented. The data were taken with the large-acceptance hadron production (HARP) detector in the T9 beam line of the CERN Proton Synchrotron. The secondary pions were produced by beams in a momentum range from 3 to 12.9GeV/c hitting a solid target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using a small-radius cylindrical time projection chamber placed inside a solenoidal magnet. Incident particles were identified by an elaborate system of beam detectors. Results are obtained for the double-differential cross sections d{sup 2}{sigma}/dp d{theta} at six incident-beam momenta. Data at 3,5,8, and 12GeV/c are available for all targets, while additional data at 8.9 and 12.9GeV/c were taken in positive particle beams on Be and Al targets, respectively. The measurements are compared with several generators of GEANT4 and the MARS Monte Carlo simulation.
Large-angle production of charged pions with incident pion beams on nuclear targets
NASA Astrophysics Data System (ADS)
Apollonio, M.; Artamonov, A.; Bagulya, A.; Barr, G.; Blondel, A.; Bobisut, F.; Bogomilov, M.; Bonesini, M.; Booth, C.; Borghi, S.; Bunyatov, S.; Burguet-Castell, J.; Catanesi, M. G.; Cervera-Villanueva, A.; Chimenti, P.; Coney, L.; Capua, E. Di; Dore, U.; Dumarchez, J.; Edgecock, R.; Ellis, M.; Ferri, F.; Gastaldi, U.; Giani, S.; Giannini, G.; Gibin, D.; Gilardoni, S.; Gorbunov, P.; Gößling, C.; Gómez-Cadenas, J. J.; Grant, A.; Graulich, J. S.; Grégoire, G.; Grichine, V.; Grossheim, A.; Guglielmi, A.; Howlett, L.; Ivanchenko, A.; Ivanchenko, V.; Kayis-Topaksu, A.; Kirsanov, M.; Kolev, D.; Krasnoperov, A.; Martín-Albo, J.; Meurer, C.; Mezzetto, M.; Mills, G. B.; Morone, M. C.; Novella, P.; Orestano, D.; Palladino, V.; Panman, J.; Papadopoulos, I.; Pastore, F.; Piperov, S.; Polukhina, N.; Popov, B.; Prior, G.; Radicioni, E.; Schmitz, D.; Schroeter, R.; Skoro, G.; Sorel, M.; Tcherniaev, E.; Temnikov, P.; Tereschenko, V.; Tonazzo, A.; Tortora, L.; Tsenov, R.; Tsukerman, I.; Vidal-Sitjes, G.; Wiebusch, C.; Zucchelli, P.
2009-12-01
Measurements of the double-differential π± production cross section in the range of momentum 100⩽p⩽800 MeV/c and angle 0.35⩽θ⩽2.15 rad using π± beams incident on beryllium, aluminum, carbon, copper, tin, tantalum, and lead targets are presented. The data were taken with the large-acceptance hadron production (HARP) detector in the T9 beam line of the CERN Proton Synchrotron. The secondary pions were produced by beams in a momentum range from 3 to 12.9GeV/c hitting a solid target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using a small-radius cylindrical time projection chamber placed inside a solenoidal magnet. Incident particles were identified by an elaborate system of beam detectors. Results are obtained for the double-differential cross sections d2σ/dpdθ at six incident-beam momenta. Data at 3,5,8, and 12GeV/c are available for all targets, while additional data at 8.9 and 12.9GeV/c were taken in positive particle beams on Be and Al targets, respectively. The measurements are compared with several generators of GEANT4 and the MARS Monte Carlo simulation.
Impact of pion dynamics on nuclear shell structure
Litvinova, Elena
2015-10-15
Spin-isospin response in exotic nuclear systems is investigated. It is found that in some nuclei excitations with pionic quantum numbers (0{sup −}, 1{sup +}, 2{sup −}, …) appear at very low energies with large transition probabilities, which is an indication of the vicinity of the onset of pion condensation. As an example, 2{sup −} components of the spin-dipole resonance in {sup 78}Ni and {sup 132}Sn are considered. The existence of such modes points out to the necessity of taking into account their coupling to other elementary modes of excitation, e.g. single-quasiparticle ones. This coupling is introduced in the theory for the first time. Thereby, both rho-meson and pion-exchange contributions to the nucleon-nucleon interaction are included in the relativistic framework beyond the Hartree-Fock approximation. Namely, classes of Feynman diagrams are selected according to their significance for nuclear spectroscopic characteristics, such as single-particle energies and strength functions, and included into the nucleonic self-energy in all orders of meson-exchange. As an illustration, the impact of these new contributions on the single-particle energies of {sup 100}Sn is discussed.
Strong Coulomb effects on pions produced in heavy ion collisons
NASA Astrophysics Data System (ADS)
Sullivan, J. P.; Bistirlich, J. A.; Bowman, H. R.; Bossingham, R.; Buttke, T.; Crowe, K. M.; Frankel, K. A.; Martoff, C. J.; Miller, J.; Murphy, D. L.; Rasmussen, J. O.; Zajc, W. A.; Hashimoto, O.; Koike, M.; Péter, J.; Benenson, W.; Crawley, G. M.; Kashy, E.; Nolen, J. A.
1982-03-01
Doubly differential cross sections for the production of π+ and π- near the velocity of the incident beam for pion laboratory angles from 0 to 20 degrees are presented. Beams of 20Ne with EA=280, 380, and 480 MeV and 40Ar with EA=535 MeV incident on C, NaF, KCl, Cu, and U targets were used. A sharp peak in the π- spectrum and a depression in the π+ spectrum is observed at 0° near the incident projectile velocity. The effect is explained in terms of Coulomb interactions between pions and fragments of the incident beam. Least squares fits to the data using the Coulomb correction formulas of Gyulassy and Kauffmann and an effective projectile fragment charge are made. The relationship between these data and previously measured projectile fragmentation data is discussed and a simple parametrization of projectile mass, target mass, and beam energy dependence of the differential cross sections is given. NUCLEAR REACTIONS C, NaF, Cu, U (20Ne,π+/-)X, EA=280-480 MeV; C, KCl (40Ar,π+/-)X, EA=535 MeV; measured σ(Eπ,θπ), θπ=0°-20°, π velocity near beam velocity; deduced projectile fragment charges, Coulomb effects.
Nuclear collective flow and charged-pion emission in Ne-nucleus collisions at E/A = 800 MeV
NASA Technical Reports Server (NTRS)
Gosset, J.; Valette, O.; Alard, J. P.; Augerat, J.; Babinet, R.; Bastid, N.; Brochard, F.; De Marco, N.; Dupieux, P.; Fodor, Z.; Fraysse, L.; Gorodetzky, P.; Lemaire, M. C.; L'Hote, D.; Lucas, B.; Marroncle, J.; Montarou, G.; Parizet, M. J.; Poitou, J.; Racca, C.; Rahmani, A.; Schimmerling, W.; Terrien, Y.
1989-01-01
Triple-differential cross sections of charged pions were measured for collisions of Ne projectiles at E/A = 800 MeV with NaF, Nb, and Pb targets. The reaction plane was estimated event by event from the light-baryon momentum distribution. For heavy targets, preferential emission of charged pions away from the interaction zone towards the projectile side was observed in the transverse direction. Such a preferential emission, which is not predicted by cascade calculations, may be attributed to a stronger pion absorption by the heavier spectator remnant.
Charged-Current Neutral Pion production at SciBooNE
Catala-Perez, J.; /Valencia U., IFIC
2009-10-01
SciBooNE, located in the Booster Neutrino Beam at Fermilab, collected data from June 2007 to August 2008 to accurately measure muon neutrino and anti-neutrino cross sections on carbon below 1 GeV neutrino energy. SciBooNE is studying charged current interactions. Among them, neutral pion production interactions will be the focus of this poster. The experimental signature of neutrino-induced neutral pion production is constituted by two electromagnetic cascades initiated by the conversion of the {pi}{sup 0} decay photons, with an additional muon in the final state for CC processes. In this poster, I will present how we reconstruct and select charged-current muon neutrino interactions producing {pi}{sup 0}'s in SciBooNE.
Low-energy pion-nucleon scattering
NASA Astrophysics Data System (ADS)
Gibbs, W. R.; Ai, Li; Kaufmann, W. B.
1998-02-01
An analysis of low-energy charged pion-nucleon data from recent π+/-p experiments is presented. From the scattering lengths and the Goldberger-Miyazawa-Oehme (GMO) sum rule we find a value of the pion-nucleon coupling constant of f2=0.0756+/-0.0007. We also find, contrary to most previous analyses, that the scattering volumes for the P31 and P13 partial waves are equal, within errors, corresponding to a symmetry found in the Hamiltonian of many theories. For the potential models used, the amplitudes are extrapolated into the subthreshold region to estimate the value of the Σ term. Off-shell amplitudes are also provided.
Low-energy pion-nucleon scattering
Gibbs, W.R.; Ai, L.; Kaufmann, W.B.
1998-02-01
An analysis of low-energy charged pion-nucleon data from recent {pi}{sup {plus_minus}}p experiments is presented. From the scattering lengths and the Goldberger-Miyazawa-Oehme (GMO) sum rule we find a value of the pion-nucleon coupling constant of f{sup 2}=0.0756{plus_minus}0.0007. We also find, contrary to most previous analyses, that the scattering volumes for the P{sub 31} and P{sub 13} partial waves are equal, within errors, corresponding to a symmetry found in the Hamiltonian of many theories. For the potential models used, the amplitudes are extrapolated into the subthreshold region to estimate the value of the {Sigma} term. Off-shell amplitudes are also provided. {copyright} {ital 1998} {ital The American Physical Society}
Entanglement of Quasielastic Scattering and Pion Production
Mosel, Ulrich; Lalakulich, Olga; Leitner, Tina
2011-11-23
The extraction of neutrino oscillation parameters requires the determination of the neutrino energy from observations of the hadronic final state. Here we discuss the difficulties connected with this energy reconstruction for the ongoing experiments MiniBooNE and T2K. We point out that a lower limit to the uncertainty in the reconstructed energy from Fermi motion alone amounts to about 15%. The entanglement of very different elementary processes, in this case quasielastic scattering and pion production, in the actual observables leads to considerably larger errors. We discuss the sensitivity of the energy reconstruction to detection techniques and experimental acceptances. We also calculate the misidentification cross section for electron appearance in the T2K experiment due to neutral pion production.
Pion contamination in the MICE muon beam
NASA Astrophysics Data System (ADS)
Adams, D.; Alekou, A.; Apollonio, M.; Asfandiyarov, R.; Barber, G.; Barclay, P.; de Bari, A.; Bayes, R.; Bayliss, V.; Bertoni, R.; Blackmore, V. J.; Blondel, A.; Blot, S.; Bogomilov, M.; Bonesini, M.; Booth, C. N.; Bowring, D.; Boyd, S.; Brashaw, T. W.; Bravar, U.; Bross, A. D.; Capponi, M.; Carlisle, T.; Cecchet, G.; Charnley, C.; Chignoli, F.; Cline, D.; Cobb, J. H.; Colling, G.; Collomb, N.; Coney, L.; Cooke, P.; Courthold, M.; Cremaldi, L. M.; DeMello, A.; Dick, A.; Dobbs, A.; Dornan, P.; Drews, M.; Drielsma, F.; Filthaut, F.; Fitzpatrick, T.; Franchini, P.; Francis, V.; Fry, L.; Gallagher, A.; Gamet, R.; Gardener, R.; Gourlay, S.; Grant, A.; Greis, J. R.; Griffiths, S.; Hanlet, P.; Hansen, O. M.; Hanson, G. G.; Hart, T. L.; Hartnett, T.; Hayler, T.; Heidt, C.; Hills, M.; Hodgson, P.; Hunt, C.; Iaciofano, A.; Ishimoto, S.; Kafka, G.; Kaplan, D. M.; Karadzhov, Y.; Kim, Y. K.; Kuno, Y.; Kyberd, P.; Lagrange, J.-B.; Langlands, J.; Lau, W.; Leonova, M.; Li, D.; Lintern, A.; Littlefield, M.; Long, K.; Luo, T.; Macwaters, C.; Martlew, B.; Martyniak, J.; Mazza, R.; Middleton, S.; Moretti, A.; Moss, A.; Muir, A.; Mullacrane, I.; Nebrensky, J. J.; Neuffer, D.; Nichols, A.; Nicholson, R.; Nugent, J. C.; Oates, A.; Onel, Y.; Orestano, D.; Overton, E.; Owens, P.; Palladino, V.; Pasternak, J.; Pastore, F.; Pidcott, C.; Popovic, M.; Preece, R.; Prestemon, S.; Rajaram, D.; Ramberger, S.; Rayner, M. A.; Ricciardi, S.; Roberts, T. J.; Robinson, M.; Rogers, C.; Ronald, K.; Rubinov, P.; Rucinski, P.; Sakamato, H.; Sanders, D. A.; Santos, E.; Savidge, T.; Smith, P. J.; Snopok, P.; Soler, F. J. P.; Speirs, D.; Stanley, T.; Stokes, G.; Summers, D. J.; Tarrant, J.; Taylor, I.; Tortora, L.; Torun, Y.; Tsenov, R.; Tunnell, C. D.; Uchida, M. A.; Vankova-Kirilova, G.; Virostek, S.; Vretenar, M.; Warburton, P.; Watson, S.; White, C.; Whyte, C. G.; Wilson, A.; Winter, M.; Yang, X.; Young, A.; Zisman, M.
2016-03-01
The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240 MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than ~1% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is fπ < 1.4% at 90% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.
Pion and kaon freezeout in NA44
NA44 Collaboration
1994-12-01
The NA44 spectrometer is optimized for the study of single and two-particle particle spectra near mid-rapidity for transverse momenta below {approx} 1 GeV/c. A large fraction of all pairs in the spectrometer`s acceptance are at low relative momenta, resulting in small statistical uncertainties on the extracted size parameters. In addition, the spectrometer`s clean particle identification allows the authors to measure correlation functions for pions, kaons, and protons. This contribution will concentrate on the source size parameters determined from pion and kaon correlation functions. These size parameters will be compared to calculations from the RQMD event generator and also interpreted in the context of a hydrodynamic model. Finally, the measured single particle spectra will be examined from the viewpoint of hydrodynamics.
Isospin violation in pion-kaon scattering
NASA Astrophysics Data System (ADS)
Kubis, Bastian; Meißner, Ulf-G.
2002-03-01
We consider strong and electromagnetic isospin violation in near-threshold pion-kaon scattering. At tree level, such effects are small for all physical channels. We work out the complete one-loop corrections to the process π-K +→ π0K 0. They come out rather small. We also show that the corresponding radiative cross section is highly suppressed at threshold.
Two Photon Exchange for Exclusive Pion Electroproduction
Afanaciev, Andrei V.; Aleksejevs, Aleksandrs G.; Barkanova, Svetlana G.
2013-09-01
We perform detailed calculations of two-photon-exchange QED corrections to the cross section of pion electroproduction. The results are obtained with and without the soft-photon approximation; analytic expressions for the radiative corrections are derived. The relative importance of the two-photon correction is analyzed for the kinematics of several experiments at Jefferson Lab. A significant, over 20%, effect due to two-photon exchange is predicted for the backward angles of electron scattering at large transferred momenta.
Modeling the Pion Generalized Parton Distribution
NASA Astrophysics Data System (ADS)
Mezrag, C.
2016-02-01
We compute the pion Generalized Parton Distribution (GPD) in a valence dressed quarks approach. We model the Mellin moments of the GPD using Ansätze for Green functions inspired by the numerical solutions of the Dyson-Schwinger Equations (DSE) and the Bethe-Salpeter Equation (BSE). Then, the GPD is reconstructed from its Mellin moment using the Double Distribution (DD) formalism. The agreement with available experimental data is very good.
Covariant density functional theory: The role of the pion
Lalazissis, G. A.; Karatzikos, S.; Serra, M.; Otsuka, T.; Ring, P.
2009-10-15
We investigate the role of the pion in covariant density functional theory. Starting from conventional relativistic mean field (RMF) theory with a nonlinear coupling of the {sigma} meson and without exchange terms we add pions with a pseudovector coupling to the nucleons in relativistic Hartree-Fock approximation. In order to take into account the change of the pion field in the nuclear medium the effective coupling constant of the pion is treated as a free parameter. It is found that the inclusion of the pion to this sort of density functionals does not destroy the overall description of the bulk properties by RMF. On the other hand, the noncentral contribution of the pion (tensor coupling) does have effects on single particle energies and on binding energies of certain nuclei.
Pion momentum distributions in the nucleon in chiral effective theory
Burkardt, Matthias R.; Hendricks, K. S.; Ji, Cheung Ryong; Melnitchouk, Wally; Thomas, Anthony W.
2013-03-01
We compute the light-cone momentum distributions of pions in the nucleon in chiral effective theory using both pseudovector and pseudoscalar pion--nucleon couplings. For the pseudovector coupling we identify $\\delta$-function contributions associated with end-point singularities arising from the pion-nucleon rainbow diagrams, as well as from pion tadpole diagrams which are not present in the pseudoscalar model. Gauge invariance is demonstrated, to all orders in the pion mass, with the inclusion of Weinberg-Tomozawa couplings involving operator insertions at the $\\pi NN$ vertex. The results pave the way for phenomenological applications of pion cloud models that are manifestly consistent with the chiral symmetry properties of QCD.
A Study of Charged Current Single Charged Pion Productions on Carbon in a Few-GeV Neutrino Beam
Hiraide, Katsuki
2009-01-01
Understanding single charged pion production via neutrino-nucleus charged current interaction in the neutrino energy region of a few GeV is essential for future neutrino oscillation experiments since this process is a dominant background for v_{μ} → v_{x} oscillation measurements. There are two contributions to this process: single pion production via baryonic resonance (v_{μ}N → μ^{-} Nπ^{+}) and coherent pion production interacting with the entire nucleus (v_{μ}A → μ^{-} Aπ^{+}), where N is nucleon in the nucleus and A is the nucleus. The purpose of the study presented in this thesis is a precise measurement of charged current single charged pion productions, resonant and coherent pion productions, with a good final state separation in the neutrino energy region of a few GeV. In this thesis, we focus on the study of charged current coherent pion production from muon neutrinos scattering on carbon, v_{μ} ^{12}C → μ^{-12}Cπ^{+}, in the SciBooNE experiment. This is motivated by the fact that without measuring this component first, the precise determination of resonant pion production cross section can not be achieved since the contribution of coherent pion production in the region of small muon scattering angle is not small. Furthermore, the coherent process is particularly interesting because it is deeply rooted in fundamental physics via Adler's partially conserved axial-vector current theorem. We took data from June 2007 until August 2008, in both the neutrino and antineutrino beam. In total, 2.52 x 10^{20} protons on target were collected. We have performed a search for charged current coherent pion production by using SciBooNE's full neutrino data set, corresponding to 0.99 x 10^{20} protons on target. No evidence for coherent pion production is observed. We set 90% confidence level upper limits on the cross section ratio of charged
Pion condensation and instabilities: current theory and experiment
Gyulassy, M.
1980-05-01
Current calculations of pion condensation phenomena in symmetric nuclear matter are reviewed. The RPA and MFA methods are compared. Latest results (LBL-10572) with a relativistic MFA theory constrained by bulk nuclear properties are presented. The differences between equilibrium (condensation) and nonequilibrium (dynamic) instabilities are discussed. Finally, two-proton correlation experiments aimed at looking for critical scattering phenomena and two-pion correlation experiments aimed at looking for pion field coherence are analyzed. 10 figures, 2 tables.
Status of PILAC: A pion linac facility for 1-GeV pion physics at LAMPF
Thiessen, H.A.
1990-01-01
A Pion Linac (PILAC) is being designed for LAMPF. Together with its high resolution beam line and spectrometer, the system is optimized to provide 10{sup 9} pions per second on target and 200-keV resolution for the ({pi}{sup +},K{sup +}) reaction at 920, MeV. There will also be an achromatic beam line capable of utilizing the maximum energy available, thus opening up the possibility of a broad experimental program as is being discussed at this workshop. 12 figs.
NASA Astrophysics Data System (ADS)
Kunne, Fabienne
2016-02-01
We present preliminary COMPASS results on pion and kaon multiplicities produced in semi inclusive deep inelastic scattering of 160GeV muons off an isoscalar (6LiD) target. The results constitute an impressive data set of more than 400 points in p and 400 in K, covering a large x,Q2 and z domain in a fine binning, which will be used in future QCD fits at next to leading order to extract quark fragmentation functions. We show results of a first leading order fit performed to extract the favored and unfavored quark fragmentation functions into pions Dfavπ and Dunfavπ.
Joint Resummation for TMD Wave Function of Pion
NASA Astrophysics Data System (ADS)
Wang, Yu-Ming
2015-02-01
QCD corrections to transverse-momentum-dependent pion wave function develop the mixed double logarithm ln x ln(ζ P2/k_T^2), when the gluon emission is collinear to the energetic pion. The fist scheme-independent kT factorization formula for γ*π → γ transition form factor is achieved by resumming all the enhanced logarithms for both pion wave function and short-distance coefficient function. High-order QCD corrections and transfer momentum √ {Q2} dependence of pion form factor are found to be distinct from those predicted by the conventional resummation approach.
Design and Simulation of the nuSTORM Pion Beamline
Liu, A.; Neuffer, D.; Bross, A.
2015-08-15
The nuSTORM (neutrinos from STORed Muons) proposal presents a detailed design for a neutrino facility based on a muon storage ring, with muon decay in the production straight section of the ring providing well defined neutrino beams. The facility includes a primary high-energy proton beam line, a target station with pion production and collection, and a pion beamline for pion transportation and injection into a muon decay ring. The nuSTORM design uses “stochastic injection”, in which pions are directed by a chicane, referred to as the Orbit Combination Section (OCS), into the production straight section of the storage ring. Pions that decay within that straight section provide muons within the circulating acceptance of the ring. Furthermore, the design enables injection without kickers or a separate pion decay transport line. The beam line that the pions traverse before being extracted from the decay ring is referred to as the pion beamline. Our paper describes the design and simulation of the pion beamline, and includes full beam dynamics simulations of the system.
Nonmonotonic Target Excitation Dependence of Pion Clans in Relativistic Nucleus-Nucleus Collisions
NASA Astrophysics Data System (ADS)
Ghosh, Dipak; Deb, Argha; Dutta, Srimonti
Target excitation dependence of fluctuation of produced pions (i.e. classifying data of the fluctuation pattern on pions on the basis of the number of gray tracks) is studied for nucleus-nucleus collisions at different projectile energies. In each set the experimental multiplicity distribution is compared with the negative binomial distribution (NBD), which is found to describe the experimental distribution quite well. Target excitation dependence is studied in respect of the clan model parameters bar {n}c and bar {N}, which are extracted from the NBD fit parameters bar {n} and k. A detailed comparison between different interactions at the same energy and the same interactions at different energies is also drawn. A nonmonotonic dependence of D2/bar {n} on
Neutral-pion-decay gamma rays from the Galaxy and the interstellar gas content
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1973-01-01
Knowledge of the total gamma-ray production rate per H atom from the decay of neutral pions produced in interstellar cosmic-ray interactions is essential for determining the possible amount of interstellar H2. This production rate is recalculated here using the latest accelerator data on neutral pion production in p-p interactions up to about 1500 GeV. A simple but accurate approximation used here resolves the past disagreement over the magnitude of this rate. An upper limit is obtained of (1.51 plus or minus 0.23) times 10 to the -25th power/sec, consistent with the observed upper limit of 1.6 times 10 to the -25th power/sec.
Charged pion production in {sub 44}{sup 96}Ru+{sub 44}{sup 96}Ru collisions at 400A and 1528A MeV
Hong, B.; Sim, K.S.; Kim, Y.J.; Herrmann, N.; Stockmeier, M.R.; Benabderrahmane, M. L.; Mangiarotti, A.; Merschmeyer, M.; Pelte, D.; Andronic, A.; Gobbi, A.; Hartmann, O.N.; Hildenbrand, K.D.; Koczon, P.; Kress, T.; Leifels, Y.; Reisdorf, W.; Schuettauf, A.; Xiao, Z.G.; Barret, V.
2005-03-01
We present transverse momentum and rapidity spectra of charged pions in central Ru+Ru collisions at 400A and 1528A MeV. The data exhibit enhanced production at low transverse momenta compared to expectations from a thermal model that includes the decay of {delta}(1232) resonances and thermal pions. Modifications of the {delta} spectral function and the Coulomb interaction are necessary to describe the detailed shape of the transverse momentum spectra. Within the framework of the thermal model, the freeze-out radii of pions are similar at both beam energies. The isospin quantum molecular dynamics model reproduces the shapes of the transverse momentum and rapidity spectra of pions, but the predicted absolute yields are larger than in the measurements, especially at lower beam energy.
Unitary constraints on neutral pion electroproduction
Laget, J. -M.
2010-11-10
At large virtuality $Q^2$, the coupling to the vector meson production channels provides us with a natural explanation of the surprisingly large cross section of the neutral pion electroproduction recently measured at Jefferson Laboratory, without destroying the good agreement between the Regge pole model and the data at the real photon point. Lastly, elastic rescattering of the $\\pi^0$ provides us with a way to explain why the node, that appears at $t\\sim -0.5$~GeV$^2$ at the real photon point, disappears as soon as $Q^2$ differs from zero.
Unitary constraints on neutral pion electroproduction
Laget, J. -M.
2010-11-10
At large virtualitymore » $Q^2$, the coupling to the vector meson production channels provides us with a natural explanation of the surprisingly large cross section of the neutral pion electroproduction recently measured at Jefferson Laboratory, without destroying the good agreement between the Regge pole model and the data at the real photon point. Lastly, elastic rescattering of the $$\\pi^0$$ provides us with a way to explain why the node, that appears at $$t\\sim -0.5$$~GeV$^2$ at the real photon point, disappears as soon as $Q^2$ differs from zero.« less
Rare kaon, muon, and pion decay
Littenberg, L.
1998-12-01
The author discusses the status of and prospects for the study of rare decays of kaons, muons, and pions. Studies of rare kaon decays are entering an interesting new phase wherein they can deliver important short-distance information. It should be possible to construct an alternative unitarity triangle to that determined in the B sector, and thus perform a critical check of the Standard Model by comparing the two. Rare muon decays are beginning to constrain supersymmetric models in a significant way, and future experiments should reach sensitivities which this kind of model must show effects, or become far less appealing.
Pion transverse charge density and the edge of hadrons
Carmignotto, Marco; Horn, Tanja; Miller, Gerald A.
2014-08-01
We use the world data on the pion form factor for space-like kinematics and a technique used to extract the proton transverse densities, to extract the transverse pion charge density and its uncertainty due to experimental uncertainties and incomplete knowledge of the pion form factor at large values of Q2. The pion charge density at small values of b<0.1 fm is dominated by this incompleteness error while the range between 0.1-0.3 fm is relatively well constrained. A comparison of pion and proton charge densities shows that the pion is denser than the proton for values of b<0.2 fm. The pion and proton distributions seem to be the same for values of b=0.2-0.6 fm. Future data from Jlab 12 GeV and the EIC will increase the dynamic extent of the data to higher values of Q2 and thus reduce the uncertainties in the extracted pion charge density.
High lying N* studies in electromagnetic double charged pion production
V. I. Mokeev; M. Ripani; M. Anghinolfi; M. Battaglieri; R. De Vita; G. V. Fedotov; E. N. Golovach; B. S. Ishkhanov; M. V. Osipenko; G. Ricco; V. Sapunenko; M. Taiuti
2002-06-07
A phenomenological model for double charged pion production is presented, aimed to exact N* electromagnetic form factors from measured observables (differential cross-sections, asymmetries). The preliminary results of CLAS data analysis on double charged pion production by virtual photons are discussed, focusing on high lying N* electromagnetic excitation and signals from possible ''missing'' baryon states.
Pion Cloud and the Sea of the Nucleon
Wally Melnitchouk
2009-05-01
I review recent progress in understanding the structure of the nucleon sea and the role of the nucleon's pion cloud. In particular, I discuss the consequences of the pion cloud for the d-bar - u-bar asymmetry in the proton, the neutron's electric form factor, and the proton's electric to magnetic form factor ratio.
End point behaviour of the pion distribution amplitude
NASA Astrophysics Data System (ADS)
Szcepaniak, Adam; Mankiewicz, Lech
1991-08-01
We study the end point structure of the pion distribution amplitude and reexamine the perturbative analysis of the high-Q2 pion form factor in the factorization approach. Permanent address: Nicolaus Copernicus Astronomical Centre, Bartycka 18, PL-00-716 Warsaw, Poland.
Design and Simulation of the nuSTORM Pion Beamline
Liu, A.; Neuffer, D.; Bross, A.
2015-08-15
The nuSTORM (neutrinos from STORed Muons) proposal presents a detailed design for a neutrino facility based on a muon storage ring, with muon decay in the production straight section of the ring providing well defined neutrino beams. The facility includes a primary high-energy proton beam line, a target station with pion production and collection, and a pion beamline for pion transportation and injection into a muon decay ring. The nuSTORM design uses “stochastic injection”, in which pions are directed by a chicane, referred to as the Orbit Combination Section (OCS), into the production straight section of the storage ring. Pionsmore » that decay within that straight section provide muons within the circulating acceptance of the ring. Furthermore, the design enables injection without kickers or a separate pion decay transport line. The beam line that the pions traverse before being extracted from the decay ring is referred to as the pion beamline. Our paper describes the design and simulation of the pion beamline, and includes full beam dynamics simulations of the system.« less
Neutrino-induced coherent pion production off nuclei
Leitner, T.; Mosel, U.; Winkelmann, S.
2009-11-25
All available theoretical estimates of neutrino-induced coherent pion production rely on the 'local approximation' for the Delta propagator. The validity of this approximation is scrutinized. It is found that the local approximation overestimates the neutrino-induced coherent pion production on nuclei significantly, by up to 100%.
Pion Electromagnetic Form Factor in Virtuality Distribution Formalism
Radyushkin, Anatoly V.
2016-01-01
We discuss two applications of the {\\it Virtuality Distribution Amplitudes} (VDA) formalism developed in our recent papers. We start with an overview of the main properties of the pion distribution amplitude emphasizing the quantitative measures of its width, and possibility to access them through the pion transition form factor studies. We formulate the basic concepts of the VDA approach and introduce the pion {\\it transverse momentum distribution amplitude} (TMDA) which plays, in a covariant Lagrangian formulation, a role similar to that of the pion wave function in the 3-dimensional Hamiltonian light-front approach. We propose simple factorized models for soft TMDAs, and use them to describe existing data on the pion transition form factor, thus fixing the scale determining the size of the transverse-momentum effects. Finally, we apply the VDA approach to the one-gluon exchange contribution for the pion electromagnetic form factor. We observe a very late $Q^2 \\gtrsim 20$ GeV$^2$ onset of transition to the asymptotic pQCD predictions and show that in the $Q^2 \\lesssim 10$ GeV$^2$ region there is essentially no sensitivity to the shape of the pion distribution amplitude. Furthermore, the magnitude of the one-gluon exchange contribution in this region is estimated to be an order of magnitude below the Jefferson Lab data, thus leaving the Feynman mechanism as the only one relevant to the pion electromagnetic form factor behavior for accessible $Q^2$.
Pion transverse charge density and the edge of hadrons
NASA Astrophysics Data System (ADS)
Carmignotto, Marco; Horn, Tanja; Miller, Gerald A.
2014-08-01
We use the world data on the pion form factor for space-like kinematics and a technique previously used to extract the proton transverse densities to extract the transverse pion charge density and its uncertainty due the incomplete knowledge of the pion form factor at large values of Q2 and the experimental uncertainties. The pion charge density at small values of impact parameter b < 0.1 fm is dominated by this incompleteness error while the range between 0.1-0.3 fm is relatively well constrained. A comparison of pion and proton transverse charge densities shows that the pion is denser than the proton for values of b <0.2fm. The pion and proton transverse charge densities seem to be the same for values of b =0.3-0.6 fm. Future data from Thomas Jefferson National Accelerator Facility (JLab) 12 GeV and the Electron-Ion Collider (EIC) will increase the dynamic extent of the form factor data to higher values of Q2 and thus reduce the uncertainties in the extracted pion transverse charge density.
NASA Astrophysics Data System (ADS)
Kulkarni, Arun Venkatesh
Pi-nuclear scattering calculations that use multiple scattering usually require the knowledge not only of the pi-nucleon interaction in free space but also its modification inside a nuclear medium. A relativistic 3-Body model consisting of the pion, the i^ {rm th}-nucleon and the residual nucleus also called the core, is developed. In this model the nucleon core separation in co-ordinate space is approximated by the separation between the center of mass of the pi-i^{rm th} nucleon subsystem called the Composite, and the core. The instant form of dynamics was employed to introduce interactions between the pion and the nucleon and between the pi N Composite and the Core. The Composite-Core Hamiltonian is assumed to admit no bound states. The relativistic 3-Body total Hamiltonian is then diagonalized by nested-separable eigenfunctions. This diagonalization allows the construction of an expression for matrix elements of the medium modified pi N scattering operator tau_ {i} in the lab frame in terms of the CM pi N free space t-matrix elements. Terms that are quadratic in the pi N t -matrix elements in this expression are neglected. The Sequential Single Charge eXchange (SSCX) mechanism contribution to inclusive pi- ^4He Double Charge eXchange (DCX) is calculated using only the double scattering term of the Watson multiple scattering series. The tau-matrix elements obtained from the 3-Body model are used for the first scattering. It contains explicit dependance upon the matrix elements of the Composite-Core scattering operator t_{pi N-C}. This explicit dependance is ignored in the second scattering. The pole of the intermediate pion Green function is fixed from 3-Body model considerations and the requirement that pion be on the mass shell at the pole. The calculated inclusive cross sections {{d^2sigma}over{d Omega dT_pi}} are compared with the Kinney et al. experimental results and essential agreement with the spectrum for incident pion kinetic energy T_sp{pi}{rm In
Coherent neutrinoproduction of photons and pions in a chiral effective field theory for nuclei
NASA Astrophysics Data System (ADS)
Zhang, Xilin; Serot, Brian D.
2012-09-01
Background: The neutrinoproduction of photons and pions from nucleons and nuclei is relevant to the background analysis in neutrino-oscillation experiments [for example, the MiniBooNE; MiniBooNE Collaboration, A. A. Aquilar-Arevalo , Phys. Rev. Lett.0031-900710.1103/PhysRevLett.100.032301 100, 032301 (2008)]. The production from nucleons and incoherent production with Eν⩽0.5GeV have been studied in B. D. Serot and X. Zhang, Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.86.015501 86, 015501 (2012); and X. Zhang and B. D. Serot, Phys. Rev. C1110-865710.1103/PhysRevC.86.035502 86, 035502 (2012).Purpose: Study coherent productions with Eν⩽0.5GeV. Also address the contributions of two contact terms in neutral current (NC) photon production that are partially related to the proposed anomalous ω(ρ), Z boson, and photon interactions.Methods: We work in the framework of a Lorentz-covariant effective field theory (EFT), which contains nucleons, pions, the Δ (1232) (Δs), isoscalar scalar (σ) and vector (ω) fields, and isovector vector (ρ) fields, and incorporates a nonlinear realization of (approximate) SU(2)L⊗SU(2)R chiral symmetry. A revised version of the so-called “optimal approximation” is applied, where one-nucleon interaction amplitude is factorized out and the medium-modifications and pion wave function distortion are included. The calculation is tested against the coherent pion photoproduction data.Results: The computation shows an agreement with the pion photoproduction data, although precisely determining the Δ modification is entangled with one mentioned contact term. The uncertainty in the Δ modification leads to uncertainties in both pion and photon neutrinoproductions. In addition, the contact term plays a significant role in NC photon production.Conclusions: First, the contact term increases NC photon production by ˜10% assuming a reasonable range of the contact coupling, which however seems not significant enough to explain the Mini
Multiplicity dependence of two-pion correlations
Soltz, R.A.; E802 Collaboration
1993-12-31
Experiment E859 has measured two-pion correlations for 14.6 A{center_dot}GeV/c {sup 28}Si + Au and {sup 28}Si + Al systems as a function of total charged particle multiplicity. The data have been divided into three multiplicity regions for each system, and fits to two-dimensional Gaussian sources have been performed. The extracted source parameters R{sub l} and {tau} show little or no multiplicity dependence while the parameters R{sub t} and R show a slight dependence. Two-pion correlations were also measured for the 11.6 A{center_dot}GeV/c {sup 197}Au + Au system as part of experiment E866. The rms radius (R{sub rms}) for this system was found to be 7.03 {plus_minus} 0.53 fm, consistent with a scaling of R{sub rms} = 1.2A{sub p}{sup 1/3}, where A{sub p} is the number of projectile nucleons.
Pion contamination in the MICE muon beam
Adams, D.; Alekou, A.; Apollonio, M.; Asfandiyarov, R.; Barber, G.; Barclay, P.; de Bari, A.; Bayes, R.; Bayliss, V.; Bertoni, R.; et al
2016-03-01
Here, the international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less thanmore » $$\\sim$$1% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is $$f_\\pi < 1.4\\%$$ at 90% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.« less
Pion inelastic scattering from sup 20 Ne
Burlein, M. . Dept. of Physics)
1989-12-01
Angular distributions for {sup 20}Ne({pi}{sup {plus minus}}, {pi}{sup {plus minus}}{prime}) were measured on the Energetic Pion Channel and Spectrometer (EPICS) at the Clinton P. Anderson Meson Physics Facility (LAMPF). Data were taken with both {pi}{sup {plus}} and {pi}{sup {minus}} over an angular range of 12{degree} to 90{degree} for T{sub {pi}}=180 MeV and with {pi}{sup +} from 15{degree} to 90{degree} for T{sub {pi}}=120 MeV. The data were analyzed using both the distorted-wave impulse approximation (DWIA) and the coupled-channels impulse approximation (CCIA) with collective transition densities. In addition, microscopic transition densities were used in the DWIA analysis for states in the lowest rotational bands. The transitions to the 6.73-MeV 0{sup +} and several 1{sup {minus}} states, including the states at 5.79 MeV and 8.71 MeV, were studied using several models for the transition density. Strong evidence for the importance of two-step routes in pion inelastic scattering was seen in several angular distributions, including the 5.79-MeV 1{sup {minus}}, the first three 4{sup +} states, and the 8.78-MeV 6{sup +}. 100 refs., 81 figs., 33 tabs.
Sivers asymmetries for inclusive pion and kaon production in deep-inelastic scattering
Ellis, John; Hwang, Dae Sung; Kotzinian, Aram
2009-10-01
We calculate the Sivers distribution functions induced by the final-state interaction due to one-gluon exchange in diquark models of a nucleon structure, treating the cases of scalar and axial-vector diquarks with both dipole and Gaussian form factors. We use these distribution functions to calculate the Sivers single-spin asymmetries for inclusive pion and kaon production in deep-inelastic scattering. We compare our calculations with the results of HERMES and COMPASS, finding good agreement for {pi}{sup +} production at HERMES, and qualitative agreement for {pi}{sup 0} and K{sup +} production. Our predictions for pion and kaon production at COMPASS could be probed with increased statistics. The successful comparison of our calculations with the HERMES data constitutes prima facie evidence that the quarks in the nucleon have some orbital angular momentum in the infinite-momentum frame.
Reanalysis of bubble chamber measurements of muon-neutrino induced single pion production
NASA Astrophysics Data System (ADS)
Wilkinson, Callum; Rodrigues, Philip; Cartwright, Susan; Thompson, Lee; McFarland, Kevin
2014-12-01
There exists a long-standing disagreement between bubble chamber measurements of the single pion production channel νμp →μ-p π+ from the Argonne and Brookhaven National Laboratories. We digitize and reanalyze data from both experiments to produce cross-section ratios for various interaction channels, for which the flux uncertainties cancel, and find good agreement between the experiments. By multiplying the cross-section ratio by the well-understood charged-current quasielastic cross section on free nucleons, we extract single-pion production cross sections which do not depend on the flux normalization predictions. The νμp →μ-p π+ cross sections we extract show good agreement between the ANL and BNL data sets.
The atmospheric charged kaon/pion ratio using seasonal variation methods
NASA Astrophysics Data System (ADS)
Grashorn, E. W.; de Jong, J. K.; Goodman, M. C.; Habig, A.; Marshak, M. L.; Mufson, S.; Osprey, S.; Schreiner, P.
2010-04-01
Observed since the 1950s, the seasonal effect on underground muons is a well studied phenomenon. The interaction height of incident cosmic rays changes as the temperature of the atmosphere changes, which affects the production height of mesons (mostly pions and kaons). The decay of these mesons produces muons that can be detected underground. The production of muons is dominated by pion decay, and previous work did not include the effect of kaons. In this work, the methods of Barrett and MACRO are extended to include the effect of kaons. These efforts give rise to a new method to measure the atmospheric K/π ratio at energies beyond the reach of current fixed target experiments. These methods were applied to data from the MINOS far detector. A method is developed for making these measurements at other underground detectors, including OPERA, Super-K, IceCube, Baksan and the MINOS near detector.
Weak quasielastic production of hyperons and threshold production of two pions
NASA Astrophysics Data System (ADS)
Singh, S. K.; Athar, M. Sajjad; Alam, M. Rafi; Chauhan, Shikha; Hernández, E.; Nieves, J.; Valverde, M.; Vacas, M. J. Vicente
2015-10-01
We have studied quasielastic charged current hyperon production induced by v¯μ on free nucleon and the nucleons bound inside the nucleus and the results are presented for several nuclear targets like 40Ar, 56Fe and 208Pb. The hyperon-nucleon transition form factors are determined from neutrino-nucleon scattering and semileptonic decays of neutron and hyperons using SU(3) symmetry. The nuclear medium effects(NME) due to Fermi motion and final state interaction(FSI) effect due to hyperon-nucleon scattering have been taken into account. Also we have studied two pion production at threshold induced by neutrinos off nucleon targets. The contribution of nucleon, pion, and contact terms are calculated using Lagrangian given by nonlinear σ model. The contribution of the Roper resonance has also been taken into account. The numerical results for the cross sections are presented and compared with the experimental results from ANL and BNL.
Sivers asymmetries for inclusive pion and kaon production in deep-inelastic scattering
NASA Astrophysics Data System (ADS)
Ellis, John; Hwang, Dae Sung; Kotzinian, Aram
2009-10-01
We calculate the Sivers distribution functions induced by the final-state interaction due to one-gluon exchange in diquark models of a nucleon structure, treating the cases of scalar and axial-vector diquarks with both dipole and Gaussian form factors. We use these distribution functions to calculate the Sivers single-spin asymmetries for inclusive pion and kaon production in deep-inelastic scattering. We compare our calculations with the results of HERMES and COMPASS, finding good agreement for π+ production at HERMES, and qualitative agreement for π0 and K+ production. Our predictions for pion and kaon production at COMPASS could be probed with increased statistics. The successful comparison of our calculations with the HERMES data constitutes prima facie evidence that the quarks in the nucleon have some orbital angular momentum in the infinite-momentum frame.
Nikolaev, N.N.; Schaefer, W.; Zakharov, B.G.; Zoller, V.R.
2005-04-01
Based on an approach to non-Abelian propagation of color dipoles in a nuclear medium, we formulate a nonlinear k{sub perpendicular} factorization for the breakup of photons and pions into forward hard dijets in terms of the collective Weizsaecker-Williams glue of nuclei. We find quite distinct practical consequences of nonlinear nuclear k{sub perpendicular} factorization for interactions of pointlike photons and nonpointlike pions. In the former case, the large transverse momentum p{sub perpendicular} of jets comes from the intrinsic momentum of quarks and antiquarks in the photon, and nuclear effects manifest themselves as an azimuthal decorrelation with an acoplanarity momentum of the order of the nuclear saturation momentum Q{sub A}. In the breakup of pions off free nucleons to the leading order in pQCD, the spectator parton has a small transverse momentum and the hard dijet cross section is suppressed. In the breakup of pions off heavy nuclei, the forward hard jets are predicted to be entirely decorrelated. We comment on the sensitivity of the pionic dijet cross section to the pion distribution amplitude. The predicted distinction between the breakup of photons and pions can be tested by the sphericity and thrust analysis of the forward hadronic system in the COMPASS experiment at CERN.
The Planar-Transverse Phase Pattern in Pion-Deuteron Scattering
NASA Astrophysics Data System (ADS)
Arash, Firooz; Garcilazo, Humberto; Goldstein, Gary R.; Moravcsik, Michael J.
It is shown that a current high-precision theoretical model for pion-deuteron elastic scattering at a few hundred MeV’s predicts amplitudes in the planar-transverse optimal frame which have, to a high degree of accuracy, the feature previously observed in a variety of strong interaction processes, namely that these amplitudes are relatively real or imaginary with respect to each other. This fact provides additional and even more definitive evidence for the existence of this yet unexplained property of strong interactions.
Systematics of pion double charge exchange
Gilman, R.A.
1985-10-01
Differential cross sections have been measured for pion-induced double-charge-exchange (DCX) reactions leading to double-isobaric-analog states (DIAS) and low-lying nonanalog states in the residual nuclei. A description of the experimental details and data analysis is presented. The experimentally observed systematics of reactions leading to DIAS, to nonanalog ground states, and to low-lying 2 states are described. Lowest-order optical-model calculations of DIAS DCX are compared to the data. Efforts to understand the anomalies by invoking additional reaction-mechanism amplitudes and a higher-order optical potential are described. Calculations of nonanalog DCX reactions leading to J/sup / = 0 states were performed within a distorted-wave impulse-approximation framework. The sensitivities of these calculations to input parameters are discussed. 58 refs., 41 figs., 16 tabs.
Incoherent neutral pion photoproduction on 12C.
Tarbert, C M; Watts, D P; Aguar, P; Ahrens, J; Annand, J R M; Arends, H J; Beck, R; Bekrenev, V; Boillat, B; Braghieri, A; Branford, D; Briscoe, W J; Brudvik, J; Cherepnya, S; Codling, R; Downie, E J; Föhl, K; Glazier, D I; Grabmayr, P; Gregor, R; Heid, E; Hornidge, D; Jahn, O; Kashevarov, V L; Knezevic, A; Kondratiev, R; Korolija, M; Kotulla, M; Krambrich, D; Krusche, B; Lang, M; Lisin, V; Livingston, K; Lugert, S; Macgregor, I J D; Manley, D M; Martinez, M; McGeorge, J C; Mekterovic, D; Metag, V; Nefkens, B M K; Nikolaev, A; Novotny, R; Owens, R O; Pedroni, P; Polonski, A; Prakhov, S N; Price, J W; Rosner, G; Rost, M; Rostomyan, T; Schadmand, S; Schumann, S; Sober, D; Starostin, A; Supek, I; Thomas, A; Unverzagt, M; Walcher, Th; Zehr, F
2008-04-01
We present the first detailed measurement of incoherent photoproduction of neutral pions to a discrete state of a residual nucleus. The 12C(gamma,pi(0))(12)C*(4.4 MeV) reaction has been studied with the Glasgow photon tagger at MAMI employing a new technique which uses the large solid angle Crystal Ball detector both as a pi(0) spectrometer and to detect decay photons from the excited residual nucleus. The technique has potential applications to a broad range of future nuclear measurements with the Crystal Ball and similar detector systems elsewhere. Such data are sensitive to the propagation of the Delta in the nuclear medium and will give the first information on matter transition form factors from measurements with an electromagnetic probe. The incoherent cross sections are compared to two theoretical predictions including a Delta-hole model. PMID:18517938
Measurement of Charged Pion Photoproduction at ELPH
NASA Astrophysics Data System (ADS)
Kanda, Hiroki; Beckford, Brian; Fujibayashi, Takeji; Fujii, Takao; Fujii, Yu; Futatsukawa, Kenta; Gogami, Toshiyuki; Han, Yun-Cheng; Hashimoto, Osamu; Hirose, Kentaro; Hosomi, Kenji; Honda, Ryotaro; Iguchi, Alan; Ishikawa, Takatsugu; Kaneta, Masashi; Kaneko, Yusuke; Kasai, Yuma; Kawasaki, Taito; Kimura, Chigusa; Kiyokawa, Shogo; Koike, Takeshi; Maeda, Kazushige; Maruyama, Nayuta; Matsubara, Masao; Miwa, Koji; Miyagi, Yohei; Nagao, Sho; Nakamura, Satoshi N.; Nishizawa, Takashi; Okuyama, Akira; Shimizu, Hajime; Suzuki, Kotaku; Tamae, Tadaaki; Tamura, Hirokazu; Tsukada, Kyo; Terada, Nobu; Ukai, Mifuyu; Wang, Tie-Shan; Yamamoto, Fumiya; Yamazaki, Hirohito
We investigated the charged pion photoproductions on the deuteron in the photon energy region of 0.65 to 1.1 GeV at Research Center for Electron Photon Science, Tohoku University. The objective is to explore the π+π- photoproduction process which dominates at Eγ > 0.8 GeV. We measured the charged particles from the photoreaction on the deuteron with the Neutral Kaon Spectrometer-2 (NKS2). The analyses both for quasi-free and non-quasi-free processes are underway. As one of the non-quasi-free processes, γd → π+π-d was separated by requiring π+, π- and d. The relative yield and the π+π- invariant mass spectra are presented. We are also proceeding with the development of the new photon tagger to be ready in 2014.
Structure of compact stars in a pion superfluid phase
NASA Astrophysics Data System (ADS)
Mao, Shijun
2014-06-01
The gross structure of compact stars composed of pion superfluid quark matter is investigated in the frame of the Nambu-Jona-Lasinio model. Under the Pauli-Villars regularization scheme, the uncertainty of the thermodynamic functions for inhomogeneous states is cured, and the Larkin-Ovchinnikov-Fulde-Ferrel state that appeared in the hard cutoff scheme is removed from the phase diagram of the pion superfluid. Different from the unpaired quark matter and color superconductor, the strongly coupled pion superfluid is a possible candidate of compact stars with mass M ≃3M⊙ and radius R ≃14 km.
Remarks on the pion-nucleon σ-term
NASA Astrophysics Data System (ADS)
Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.
2016-09-01
The pion-nucleon σ-term can be stringently constrained by the combination of analyticity, unitarity, and crossing symmetry with phenomenological information on the pion-nucleon scattering lengths. Recently, lattice calculations at the physical point have been reported that find lower values by about 3σ with respect to the phenomenological determination. We point out that a lattice measurement of the pion-nucleon scattering lengths could help resolve the situation by testing the values extracted from spectroscopy measurements in pionic atoms.
Kaon, pion, and proton associated photofission of Bi nuclei
Song, Y.; Margaryan, A.; Acha, A.; Ahmidouch, A.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Baker, O. K.; Baturin, P.; Benmokhtar, F.; Carlini, R.; Chen, X.; Christy, M.; Cole, L.; Danagoulian, S.; Daniel, A.; Dharmawardane, V.; Egiyan, K.; Elaasar, M.; Ent, R.
2010-10-15
The first measurement of proton, pion, and kaon associated fission of Bi nuclei has been performed in a photon energy range 1. 45 < E{sub {gamma}}< 1. 55 GeV. The fission probabilities are compared with an inclusive fission probabilities obtained with photons, protons and pions. The fission probability of Bi nuclei in coincidence with kaons is 0. 18 {+-} 0. 06 which is {approx}3 times larger than the proton and pion associated fission probabilities and {approx}2 times larger than inclusive ones. The kaon associated excess fission events are explained in terms of bound {Lambda} residual states and their weak nonmesonic decays.
Pion electromagnetic form factor in the Covariant Spectator Theory
Biernat, Elmar P.; Gross, Franz L.; Pena, Teresa; Stadler, Alfred
2014-01-01
The pion electromagnetic form factor at spacelike momentum transfer is calculated in relativistic impulse approximation using the Covariant Spectator Theory. The same dressed quark mass function and the equation for the pion bound-state vertex function as discussed in the companion paper are used for the calculation, together with a dressed quark current that satisfies the Ward-Takahashi identity. The results obtained for the pion form factor are in agreement with experimental data, they exhibit the typical monopole behavior at high momentum transfer and they satisfy some remarkable scaling relations.
Incoherent neutrinoproduction of photons and pions in a chiral effective field theory for nuclei
NASA Astrophysics Data System (ADS)
Zhang, Xilin; Serot, Brian D.
2012-09-01
We study the incoherent neutrinoproduction of photons and pions with neutrino energy Eν⩽0.5GeV. These processes are relevant to the background analysis in neutrino-oscillation experiments [for example, MiniBooNE; A. A. Aquilar-Arevalo (MiniBooNE Collaboration), Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.100.032301 100, 032301 (2008)]. The calculations are carried out using a Lorentz-covariant effective field theory (EFT), which contains nucleons, pions, the Delta (1232) (Δ), isoscalar scalar (σ) and vector (ω) fields, and isovector vector (ρ) fields, and has SU(2)L⊗SU(2)R chiral symmetry realized nonlinearly. The contributions of one-body currents are studied in the local Fermi gas approximation. The current form factors are generated by meson dominance in the EFT Lagrangian. The conservation of the vector current and the partial conservation of the axial current are satisfied automatically, which is crucial for photon production. The Δ dynamics in nuclei, as a key component in the study, is explored. Introduced Δ-meson couplings explain the Δ spin-orbit coupling in nuclei, and this leads to interesting constraints on the theory. Meanwhile, a phenomenological approach is applied to parametrize the Δ width. To benchmark our approximations, we calculate the differential cross sections for quasielastic scattering and incoherent electroproduction of pions without a final-state interaction (FSI). The FSI can be ignored for photon production.
Nucleon thermal width owing to pion-baryon loops and its contributions to shear viscosity
NASA Astrophysics Data System (ADS)
Ghosh, Sabyasachi
2014-08-01
In real-time thermal field theory, the standard expression of shear viscosity for nucleonic constituents is derived from the two-point function of nucleonic viscous stress tensors at finite temperature and density. The finite thermal width or Landau damping is traditionally included in the nucleon propagators. This thermal width is calculated from the in-medium self-energy of nucleons for different possible pion-baryon loops. The dynamical part of nucleon-pion-baryon interactions are accounted for by the effective Lagrangian densities of standard hadronic model. The shear viscosity to entropy density ratio of the nucleonic component decreases with the temperature and increases with the nucleon chemical potential. However, adding the contribution of the pionic component, the total viscosity to entropy density ratio also reduces with the nucleon chemical potential when the mixing effect between pion and nucleon components in the mixed gas is considered. Within the hadronic domain, the viscosity to entropy density ratio of the nuclear matter gradually reduces as temperature and nucleon chemical potential increase and therefore the nuclear matter is approaching the (nearly) perfect-fluid state.
Measurement of the production of charged pions by protons on a tantalum target
NASA Astrophysics Data System (ADS)
Catanesi, M. G.; Radicioni, E.; Edgecock, R.; Ellis, M.; Robbins, S.; Soler, F. J. P.; Gößling, C.; Bunyatov, S.; Krasnoperov, A.; Popov, B.; Serdiouk, V.; Tereschenko, V.; di Capua, E.; Vidal-Sitjes, G.; Arce, P.; Artamonov, A.; Giani, S.; Gilardoni, S.; Gorbunov, P.; Grant, A.; Grossheim, A.; Gruber, P.; Ivanchenko, V.; Kayis-Topaksu, A.; Panman, J.; Papadopoulos, I.; Pasternak, J.; Tcherniaev, E.; Tsukerman, I.; Veenhof, R.; Wiebusch, C.; Zucchelli, P.; Blondel, A.; Borghi, S.; Campanelli, M.; Morone, M. C.; Prior, G.; Schroeter, R.; Engel, R.; Meurer, C.; Kato, I.; Gastaldi, U.; Mills, G. B.; Graulich, J. S.; Grégoire, G.; Kirsanov, M.; Bonesini, M.; Ferri, F.; Paganoni, M.; Paleari, F.; Bagulya, A.; Grichine, V.; Polukhina, N.; Palladino, V.; Coney, L.; Schmitz, D.; Barr, G.; de Santo, A.; Pattison, C.; Zuber, K.; Bobisut, F.; Gibin, D.; Guglielmi, A.; Mezzetto, M.; Dumarchez, J.; Vannucci, F.; Dore, U.; Orestano, D.; Pastore, F.; Tonazzo, A.; Tortora, L.; Booth, C.; Buttar, C.; Hodgson, P.; Howlett, L.; Bogomilov, M.; Chizhov, M.; Kolev, D.; Tsenov, R.; Piperov, S.; Temnikov, P.; Apollonio, M.; Chimenti, P.; Giannini, G.; Santin, G.; Burguet-Castell, J.; Cervera-Villanueva, A.; Gómez-Cadenas, J. J.; Martín-Albo, J.; Novella, P.; Sorel, M.; Tornero, A.
2007-08-01
A measurement of the double-differential cross-section for the production of charged pions in proton tantalum collisions emitted at large angles from the incoming beam direction is presented. The data were taken in 2002 with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 GeV/c to 12 GeV/c hitting a tantalum target with a thickness of 5% of a nuclear interaction length. The angular and momentum range covered by the experiment (100 MeV/c ≤p< 800 MeV/c and 0.35 rad ≤θ< 2.15 rad) is of particular importance for the design of a neutrino factory. The produced particles were detected using a small-radius cylindrical time projection chamber (TPC) placed in a solenoidal magnet. Track recognition, momentum determination and particle identification were all performed based on the measurements made with the TPC. An elaborate system of detectors in the beam line ensured the identification of the incident particles. Results are shown for the double-differential cross-sections d2σ/dpdθ at four incident proton beam momenta (3 GeV/c, 5 GeV/c, 8 GeV/c and 12 GeV/c). In addition, the pion yields within the acceptance of typical neutrino factory designs are shown as a function of beam momentum. The measurement of these yields within a single experiment eliminates most systematic errors in the comparison between rates at different beam momenta and between positive and negative pion production.
Pion Total Cross Section in Nucleon - Nucleon Collisions
NASA Technical Reports Server (NTRS)
Norbury, John W.
2009-01-01
Total cross section parameterizations for neutral and charged pion production in nucleon - nucleon collisions are compared to experimental data over the projectile momentum range from threshold to 300 GeV. Both proton - proton and proton - neutron reactions are considered. Overall excellent agreement between parameterizations and experiment is found, except for notable disagreements near threshold. In addition, the hypothesis that the neutral pion production cross section can be obtained from the average charged pion cross section is checked. The theoretical formulas presented in the paper obey this hypothesis for projectile momenta below 500 GeV. The results presented provide a test of engineering tools used to calculate the pion component of space radiation.
QED Radiative Corrections in Processes of Exclusive Pion Electroproduction
Andrei Afanasev; I. Akushevich; Volker Burkert; K. Joo
2002-03-01
Formalism for radiative correction (RC) calculation in exclusive pion electroproduction on the proton is presented. A FORTRAN code EXCLURAD is developed for the RC procedure. The numerical analysis is done in the kinematics of current Jefferson Lab experiments.
QED radiative corrections in processes of exclusive pion electroproduction
NASA Astrophysics Data System (ADS)
Afanasev, A.; Akushevich, I.; Burkert, V.; Joo, K.
2002-10-01
A formalism for radiative correction (RC) calculation in exclusive pion electroproduction on the proton is presented. A FORTRAN code EXCLURAD is developed for the RC procedure. The numerical analysis is done in the kinematics of current Jefferson Lab experiments.
Hadron dynamics in high-energy pion-nucleus scattering
Johnson, M.B.
1992-12-31
It is argued that pion-nucleus scattering at high energy (above 300 MeV) is likely to be easier to interpret than it has been at lower energies where the {Delta}{sub 33} resonance dominates. We establish this by examining the relative importance of various dynamic ingredients of scattering theory for high-energy pions and comparing different versions of the theory: a ``model-exact`` microscopic optical model and an eikonal approximation. For nuclei as heavy as Ca, the eikonal theory is an excellent approximation to the full theory for the angular distribution out to the position of the second minimum in the cross section. The prospects for using high-energy pions to examine modifications of nucleons and baryon resonances in nuclei, nuclear structure, exchange currents, short-range correlations, and to characterize pion propagation are discussed.
Pion production for neutrino factories and muon colliders
Mokhov, N.V.; Guidman, K.K.; Strait, J.B.; Striganov, S.I.; /Fermilab
2009-12-01
Optimization of pion and muon production/collection for neutrino factories and muon colliders is described along with recent developments of the MARS15 code event generators and effects influencing the choice of the optimal beam energy.
Comparing pion production models to MiniBooNE data
Rodrigues, P. A.
2015-05-15
Predictions for neutrino-induced charged- and neutral-current single pion production on CH{sub 2} from theoretical models and Monte Carlo event generators are compared with the cross section measurements from the MiniBooNE experiment.
BPS pion domain walls in the supersymmetric chiral Lagrangian
NASA Astrophysics Data System (ADS)
Gudnason, Sven Bjarke; Nitta, Muneto; Sasaki, Shin
2016-07-01
We construct exact solutions of BPS pion domain walls in the four-dimensional N =1 supersymmetric S U (N ) chiral Lagrangian with pion masses introduced via linear and quadratic superpotentials. The model admits N discrete vacua in the center of S U (N ) for the linear superpotential. In addition to the latter, new vacua appear for the quadratic superpotential. We find that the domain wall solutions of pions (Nambu-Goldstone bosons) that interpolate between a pair of (pion) vacua preserve half of supersymmetry. Contrary to our expectations, we have not been able to find domain walls involving the quasi-Nambu-Goldstone bosons present in the theory, which in turn has the consequence that not all vacua of the theory are connected by a BPS domain wall solution.
Pion interferometry in {sup 28}Si + Pb central collisions
Xu, Nu; E814 Collaboration: BNL-GSI-McGill Univ.-Univ. of Pittsburg-SUNY Stony Brook-Univ. of Sao Paulo-Wayne State Univ.-Yale Univ.
1994-08-01
Two-pion correlation functions have been studied using the E814 apparatus in 14.6 A{center_dot}GeV/c {sup 28}Si + Pb central collisions. Results of the correlation functions for pions from the RQMD event generator are compared to the data and show that a source with RMS radius of 8.3 fm is compartable with the experimental data.
The Onset of Quark-Hadron Duality in Pion Electroproduction
Tigran Navasardyan; Gary Adams; Abdellah Ahmidouch; Tatiana Angelescu; John Arrington; Razmik Asaturyan; O. Baker; Nawal Benmouna; Crystal Bertoncini; Henk Blok; Werner Boeglin; Peter Bosted; Herbert Breuer; Michael Christy; Simon Connell; Yonggang Cui; Mark Dalton; Samuel Danagoulian; Donal Day; T. Dodario; James Dunne; Dipangkar Dutta; Najib Elkhayari; Rolf Ent; Howard Fenker; Valera Frolov; Liping Gan; David Gaskell; Kawtar Hafidi; Wendy Hinton; Roy Holt; Tanja Horn; Garth Huber; Ed Hungerford; Xiaodong Jiang; Mark Jones; Kyungseon Joo; Narbe Kalantarians; James Kelly; Cynthia Keppel; Edward Kinney; V. Kubarovski; Ya Li; Yongguang Liang; Simona Malace; Pete Markowitz; Erin McGrath; Daniella Mckee; David Meekins; Hamlet Mkrtchyan; Brian Moziak; Gabriel Niculescu; Maria-Ioana Niculescu; Allena Opper; Tanya Ostapenko; Paul Reimer; Joerg Reinhold; Julie Roche; Stephen Rock; Elaine Schulte; Edwin Segbefia; C. Smith; G.R. Smith; Paul Stoler; Vardan Tadevosyan; Liguang Tang; Maurizio Ungaro; Alicia Uzzle; Sandra Vidakovic; Anthony Villano; William Vulcan; Miao Wang; Glen Warren; Frank Wesselmann; Bogdan Wojtsekhowski; Stephen Wood; Chuncheng Xu; Lulin Yuan; Xiaochao Zheng; Hong Guo Zhu
2006-08-29
A large data set of charged-pion electroproduction from both hydrogen and deuterium targets has been obtained spanning the low-energy residual-mass region. These data conclusively show the onset of the quark-hadron duality phenomenon, as predicted for high-energy hadron electroproduction. We construct several ratios from these data to exhibit the relation of this phenomenon to the high-energy factorization ansatz of electron-quark scattering and subsequent quark-to- pion production mechanisms.
Coherent and neutral pion production results from MINERνA
Palomino, J. L.; Higuera, A.
2015-05-15
MINERνA is a neutrino-nucleus scattering experiment employing multiple nuclear targets. The experiment is studying neutral pion production due to coherent, resonant and deep-inelastic processes, from both charged current and neutral current reactions. Neutral pions are detected through their two photon decay and the resultant electromagnetic showers. We will describe the analysis for the cross sections of inclusive and exclusive processes.
The Pion Renormalized Light-Cone Wave Function
NASA Astrophysics Data System (ADS)
Trawiński, Arkadiusz P.
2016-06-01
An approximate light-cone wave function for the pion effective quark-antiquark Fock sector corresponding to a small value of the renormalization group parameter is presented. The approximate wave function is motivated by the LF-holography and the quadratic confinement potential in the front form of Hamiltonian dynamics, which is in harmony with the linear confining potential in the instant form. The pion radius, decay constant and form-factor are also presented.
Stopping pions in high-energy nuclear cascades.
NASA Technical Reports Server (NTRS)
Jones, W. V.; Johnson, D. P.; Thompson, J. A.
1973-01-01
Results of Monte Carlo calculations for the number and energy spectra of charged pions from nuclear-electromagnetic cascades developing in rock are presented for primary hadron energies ranging from 3 to 3000 GeV. These spectra are given as functions of the longitudinal depth in the absorber and the lateral distance from the cascade axis. The number of charged pions which stop in the absorber increases with the primary energy of the hadron initiating the cascade.
Two-photon exchange corrections to the pion form factor
Peter G. Blunden; Melnitchouk, Wally; Tjon, John A.
2010-01-06
Here, we compute two-photon exchange corrections to the electromagnetic form factor of the pion, taking into account the finite size of the pion. Compared to the soft-photon approximation for the infrared divergent contribution which neglects hadron structure effects, the corrections are found to be ≲ 1% for small Q2 (Q2 < 0.1 GeV2), but increase to several percent for Q2 ≳ 1 GeV2 at extreme backward angles.
The onset of quark-hadron duality in pion electroproduction.
Navasardyan, T.; Adams, G. S.; Ahnidouch, A.; Angelescu, T.; Arrington, T.; Arrington, J.; Hafidi, K.; Holt, R. J.; Reimer, P.; Schulte, E.; Zheng, X.; Physics; Yerevan Physics Inst.; Rensselaer Polytechnic Inst.; North Carolina A & T Univ.; Bucharest Univ.
2007-01-01
A large data set of charged-pion ({pi}*) electroproduction from both hydrogen and deuterium targets has been obtained spanning the low-energy residual-mass region. These data conclusively show the onset of the quark-hadron duality phenomenon, as predicted for high-energy hadron electroproduction. We construct several ratios from these data to exhibit the relation of this phenomenon to the high-energy factorization ansatz of electron-quark scattering and subsequent quark {yields} pion production mechanisms.
Di-photon resonance and Dark Matter as heavy pions
NASA Astrophysics Data System (ADS)
Redi, Michele; Strumia, Alessandro; Tesi, Andrea; Vigiani, Elena
2016-05-01
We analyse confining gauge theories where the 750 GeV di-photon resonance is a composite techni-pion that undergoes anomalous decays into SM vectors. These scenarios naturally contain accidentally stable techni-pions Dark Matter candidates. The di-photon resonance can acquire a larger width by decaying into Dark Matter through the CP-violating θ-term of the new gauge theory reproducing the cosmological Dark Matter density as a thermal relic.
Flare gamma ray continuum emission from neutral pion decay
NASA Technical Reports Server (NTRS)
Alexander, David; Mackinnon, Alec L.
1992-01-01
We investigate, in detail, the production of solar flare gamma ray emission above 100 MeV via the interaction of high energy protons with the ambient solar atmosphere. We restrict our considerations to the broadband gamma ray spectrum resulting from the decay of neutral pions produced in p-H reactions. Thick-target calculations are performed to determine the photon fluences. However, proton transport is not considered. Inferences about the form of the proton spectrum at 10-100 MeV have already been drawn from de-excitation gamma ray lines. Our aim is to constrain the proton spectrum at higher energies. Thus, the injected proton spectrum is assumed to have the form of a Bessel Function, characteristics of stochastic energy at higher energies. The detailed shape of the gamma ray spectra around 100 MeV is found to have a strong dependence on the spectral index of the power law and on the turnover energy (from Bessel function to power law). As would be expected, the harder the photon spectrum the wider the 100 MeV feature. The photon spectra are to be compared with observations and used to place limits upon the number of particles accelerated and to constrain acceleration models.
Pion transverse charge density from timelike form factor data
Gerald Miller, Mark Strikman, Christian Weiss
2011-01-01
The transverse charge density in the pion can be represented as a dispersion integral of the imaginary part of the pion form factor in the timelike region. This formulation incorporates information from e+e- annihilation experiments and allows one to reconstruct the transverse density much more accurately than from the spacelike pion form factor data alone. We calculate the transverse density using an empirical parametrization of the timelike pion form factor and estimate that it is determined to an accuracy of ~10% at a distance b ~ 0.1 fm, and significantly better at larger distances. The density is found to be close to that obtained from a zero-width rho meson pole over a wide range and shows a pronounced rise at small distances. The resulting two-dimensional image of the fast-moving pion can be interpreted in terms of its partonic structure in QCD. We argue that the singular behavior of the charge density at the center requires a substantial presence of pointlike configurations in the pion's partonic wave function, which can be probed in other high-momentum transfer processes.
Scadron, Michael D.; Kleefeld, Frieder; Rupp, George
2007-02-27
Light constituent quark masses and the corresponding dynamical quark masses are determined by data, the quark-level linear {sigma} model, and infrared QCD. This allows to define effective nonstrange and strange current quark masses, which reproduce the experimental pion and kaon masses very accurately, by simple additivity. In contrast, the usual nonstrange and strange current quarks employed by the Particle Data Group and Chiral Perturbation Theory do not allow a straightforward quantitative explanation of the pion and kaon masses.
NASA Astrophysics Data System (ADS)
Bhattacharyya, S.; De, B.; Guptaroy, P.
2001-08-01
The pion densities and the nature of kaon-pion ratios offer two very prominent and crucial physical observables on which sufficient data for heavy nucleus collisions, to date, are available. In the light of two models - one purely phenomenological and the other with a sound dynamical basis - we would try to examine here the state of agreement between calculations and experimental results obtainable from the past and the latest measurements. Impact and implications of all these would also finally be spelt out.
Optimized perturbation theory: the pion form factor
Gupta, R.
1981-10-01
The order ..cap alpha../sup 2//sub s/(Q/sup 2/) corrections to the pion form-factor F/sub ..pi../(Q/sup 2/) are calculated using perturbative QCD and dimensional regularization. The result is compared in the MS and MOM subtraction schemes and plotted as a function of Q/sup 2//Q/sup 2/ where Q is the subtraction point. There is a large dependence on the scheme, the definition of the running coupling constant ..cap alpha../sub s/(Q/sup 2/) and the subtraction point Q. We find it best to invert the ..beta..-function equation for the definition of ..cap alpha../sub s/ rather than make an expansion in powers of log(Q/sup 2//..lambda../sup 2/). We study two methods to optimize the result with respect to Q: Stevenson's prescription and putting the 0(..cap alpha../sup 2//sub s/) term to zero. Both methods give almost the same value for Q/sup 2/F/sub ..pi../ and this value is scheme independent.
Pion scattering poles and chiral symmetry restoration
Fernandez-Fraile, D.; Nicola, A. Gomez; Herruzo, E. T.
2007-10-15
Using unitarized chiral perturbation theory methods, we perform a detailed analysis of the {pi}{pi} scattering poles f{sub 0}(600) and {rho}(770) behavior when medium effects such as temperature or density drive the system towards chiral symmetry restoration. In the analysis of real poles below threshold, we show that it is crucial to extend properly the unitarized amplitudes so that they match the perturbative Adler zeros. Our results do not show threshold enhancement effects at finite temperature in the f{sub 0}(600) channel, which remains as a pole of broad nature. We also implement T=0 finite-density effects related to chiral symmetry restoration, by varying the pole position with the pion decay constant. Although this approach takes into account only a limited class of contributions, we reproduce the expected finite-density restoration behavior, which drives the poles towards the real axis, producing threshold enhancement and {pi}{pi} bound states. We compare our results with several model approaches and discuss the experimental consequences, both in relativistic heavy ion collisions and in {pi}{yields}{pi}{pi} and {gamma}{yields}{pi}{pi} reactions in nuclei.
Meson spectroscopy in diffractive dissociation of high-energetic pions at COMPASS
Friedrich, Jan
2011-07-15
COMPASS at CERN uses hadron and muon beams with up to 200 GeV/c momentum, produced from the SPS proton beam, for investigations in hadron structure and spectroscopy. From a pilot run with a 190 GeV/c pion beam on a lead target, various results are presented. In the region of low momentum transfer, interference of photon-exchange and strong production of the a{sub 1}(1260) and a{sub 2}(1320) resonances is observed, revealing the different nature of the two interactions.
a Phenomenological Determination of the Pion-Nucleon Scattering Lengths from Pionic Hydrogen
NASA Astrophysics Data System (ADS)
Ericson, T. E. O.; Loiseau, B.; Wycech, S.
A model independent expression for the electromagnetic corrections to a phenomenological hadronic pion-nucleon (πN) scattering length ah, extracted from pionic hydrogen, is obtained. In a non-relativistic approach and using an extended charge distribution, these corrections are derived up to terms of order α2 log α in the limit of a short-range hadronic interaction. We infer ahπ ^-p=0.0870(5)m-1π which gives for the πNN coupling through the GMO relation g2π ^± pn/(4π )=14.04(17).
Production spectrum of gamma rays in interstellar space through neutral pion decay
NASA Technical Reports Server (NTRS)
Stephens, S. A.; Badhwar, G. D.
1981-01-01
A simple representation is obtained of the observed invariant cross section for the production of neutral pions in proton-proton collisions. Using this representation, the differential and integral production spectra of gamma rays in the galaxy are calculated from interactions of cosmic ray nuclei with interstellar gas. It is shown that the uncertainties in deducing interstellar proton spectrum by demodulating the observed spectrum have only a limited effect on the gamma ray spectrum. Also determined is the gamma ray production spectrum through bremsstrahlung process for a typical interstellar electron spectrum derived from the radio spectrum in the galaxy.
Two-pion exchange contributions to the relativistic NN kernel: Peripheral scattering
Cozma, M. D.; Scholten, O.; Timmermans, R. G. E.; Tjon, J. A.
2007-01-15
The relativistic one-boson-exchange model for NN scattering is extended by including two-pion exchange (TPE) contributions in the kernel. We develop the formalism for the evaluation of the TPE diagrams within the relativistic quasipotential approach. The peripheral partial waves in elastic NN scattering are studied within this model. The TPE interactions contain a strongly attractive isoscalar-scalar component which requires a low value of the cutoff parameter: {lambda}=650-800 MeV. With this prescription, the peripheral waves can be reasonably described.
Two-body pion absorption on {sup 3}He at threshold
Lee, T.S.H.; Kiang, L.L.; Riska, D.O.
1995-08-01
We showed that a drastic reduction of the ratio of the rates of the reactions {sup 3}He({pi}{sup -},nn) and {sup 3}He({pi}{sup -},np) for stopped pions is obtained once the effect of the short-range two-nucleon components of the axial charge operator for nuclear systems is taken into account. In a calculation using realistic models of nucleon-nucleon interactions in the construction of these short-range components of the axial charge operator, the predicted ratios can be brought to within 10-20% of the empirical value. A paper describing our results was published.
Pion Form Factor in Chiral Limit of Hard-Wall AdS/QCD Model
Anatoly Radyushkin; Hovhannes Grigoryan
2007-12-01
We develop a formalism to calculate form factor and charge density distribution of pion in the chiral limit using the holographic dual model of QCD with hard-wall cutoff. We introduce two conjugate pion wave functions and present analytic expressions for these functions and for the pion form factor. They allow to relate such observables as the pion decay constant and the pion charge electric radius to the values of chiral condensate and hard-wall cutoff scale. The evolution of the pion form factor to large values of the momentum transfer is discussed, and results are compared to existing experimental data.
Nucleon polarisabilities at and beyond physical pion masses
NASA Astrophysics Data System (ADS)
Grießhammer, Harald W.; McGovern, Judith A.; Phillips, Daniel R.
2016-05-01
We examine the results of Chiral Effective Field Theory ( χ EFT) for the scalar- and spin-dipole polarisabilities of the proton and neutron, both for the physical pion mass and as a function of {m_{π}}. This provides chiral extrapolations for lattice QCD polarisability computations. We include both the leading and subleading effects of the nucleon's pion cloud, as well as the leading ones of the Δ(1232)-resonance and its pion cloud. The analytic results are complete at N2LO in the δ counting for pion masses close to the physical value, and at leading order for pion masses similar to the Delta-nucleon mass splitting. In order to quantify the truncation error of our predictions and fits as 68% degree-of-belief intervals, we use a Bayesian procedure recently adapted to EFT expansions. At the physical point, our predictions for the spin polarisabilities are, within respective errors, in good agreement with alternative extractions using experiments and dispersion-relation theory. At larger pion masses we find that the chiral expansion of all polarisabilities becomes intrinsically unreliable as {m_{π}} approaches about 300 MeV -as has already been seen in other observables. χ EFT also predicts a substantial isospin splitting above the physical point for both the electric and magnetic scalar polarisabilities; and we speculate on the impact this has on the stability of nucleons. Our results agree very well with emerging lattice computations in the realm where χ EFT converges. Curiously, for the central values of some of our predictions, this agreement persists to much higher pion masses. We speculate on whether this might be more than a fortuitous coincidence.
Valence-quark distribution functions in the kaon and pion
NASA Astrophysics Data System (ADS)
Chen, Chen; Chang, Lei; Roberts, Craig D.; Wan, Shaolong; Zong, Hong-Shi
2016-04-01
We describe expressions for pion and kaon dressed-quark distribution functions that incorporate contributions from gluons which bind quarks into these mesons and hence overcome a flaw of the commonly used handbag approximation. The distributions therewith obtained are purely valence in character, ensuring that dressed quarks carry all the meson's momentum at a characteristic hadronic scale and vanish as (1 -x )2 when Bjorken-x →1 . Comparing such distributions within the pion and kaon, it is apparent that the size of S U (3 ) -flavor symmetry breaking in meson parton distribution functions is modulated by the flavor dependence of dynamical chiral symmetry breaking. Corrections to these leading-order formulas may be divided into two classes, responsible for shifting dressed-quark momentum into glue and sea quarks. Working with available empirical information, we build an algebraic framework that is capable of expressing the principal impact of both classes of corrections. This enables a realistic comparison with experiment which allows us to identify and highlight basic features of measurable pion and kaon valence-quark distributions. We find that whereas roughly two thirds of the pion's light-front momentum is carried by valence dressed quarks at a characteristic hadronic scale; this fraction rises to 95% in the kaon; evolving distributions with these features to a scale typical of available Drell-Yan data produces a kaon-to-pion ratio of u -quark distributions that is in agreement with the single existing data set, and predicts a u -quark distribution within the pion that agrees with a modern reappraisal of π N Drell-Yan data. Precise new data are essential in order to validate this reappraisal and because a single modest-quality measurement of the kaon-to-pion ratio cannot be considered definitive.
Relativistic O ( q4 ) two-pion exchange nucleon-nucleon potential: Configuration space
NASA Astrophysics Data System (ADS)
Higa, R.; Robilotta, M. R.; da Rocha, C. A.
2004-03-01
We have recently performed a relativistic O ( q4 ) chiral expansion of the two-pion exchange NN potential, and here we explore its configuration space content. Interactions are determined by three families of diagrams, two of which involve just gA and fπ , whereas the third one depends on empirical coefficients fixed by subthreshold πN data. In this sense, the calculation has no adjusted parameters and gives rise to predictions, which are tested against phenomenological potentials. The dynamical structure of the eight leading nonrelativistic components of the interaction is investigated and, in most cases, found to be clearly dominated by a well defined class of diagrams. In particular, the central isovector and spin-orbit, spin-spin, and tensor isoscalar terms are almost completely fixed by just gA and fπ . The convergence of the chiral series in powers of the ratio (pion mass/nucleon mass) is studied as a function of the internucleon distance and, for r>1 fm , found to be adequate for most components of the potential. An important exception is the dominant central isoscalar term, where the convergence is evident only for r>2.5 fm . Finally, we compare the spatial behavior of the functions that enter the relativistic and heavy baryon formulations of the interaction and find that, in the region of physical interest, they differ by about 5% .