Science.gov

Sample records for pion-nucleon dynamics revisited

  1. Backward pion-nucleon scattering

    SciTech Connect

    F. Huang; Sibirtsev, Alex; Haidenbauer, Johann; Meissner, Ulf-G.

    2010-02-01

    A global analysis of the world data on differential cross sections and polarization asymmetries of backward pion-nucleon scattering for invariant collision energies above 3 GeV is performed in a Regge model. Including the $N_\\alpha$, $N_\\gamma$, $\\Delta_\\delta$ and $\\Delta_\\beta$ trajectories, we reproduce both angular distributions and polarization data for small values of the Mandelstam variable $u$, in contrast to previous analyses. The model amplitude is used to obtain evidence for baryon resonances with mass below 3 GeV. Our analysis suggests a $G_{39}$ resonance with a mass of 2.83 GeV as member of the $\\Delta_{\\beta}$ trajectory from the corresponding Chew-Frautschi plot.

  2. Invited Parallel Talk: Forward pion-nucleon charge exchange reaction and Regge constraints

    NASA Astrophysics Data System (ADS)

    Huang, Fei; Sibirtsev, A.; Krewald, S.; Hanhart, C.; Haidenbauer, J.; Meißner, U.-G.

    2009-12-01

    We present our recent study of pion-nucleon charge exchange amplitudes above 2 GeV. We analyze the forward pion-nucleon charge exchange reaction data in a Regge model and compare the resulting amplitudes with those from the Karlsruhe-Helsinki and George-Washington-University partial-wave analyses. We explore possible high-energy constraints for theoretical baryon resonance analyses in the energy region above 2 GeV. Our results show that for the pion-nucleon charge exchange reaction, the appropriate energy region for matching meson-nucleon dynamics to diffractive scattering should be around 3 GeV for the helicity flip amplitude.

  3. Low-energy pion-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Gibbs, W. R.; Ai, Li; Kaufmann, W. B.

    1998-02-01

    An analysis of low-energy charged pion-nucleon data from recent π+/-p experiments is presented. From the scattering lengths and the Goldberger-Miyazawa-Oehme (GMO) sum rule we find a value of the pion-nucleon coupling constant of f2=0.0756+/-0.0007. We also find, contrary to most previous analyses, that the scattering volumes for the P31 and P13 partial waves are equal, within errors, corresponding to a symmetry found in the Hamiltonian of many theories. For the potential models used, the amplitudes are extrapolated into the subthreshold region to estimate the value of the Σ term. Off-shell amplitudes are also provided.

  4. Low-energy pion-nucleon scattering

    SciTech Connect

    Gibbs, W.R.; Ai, L.; Kaufmann, W.B.

    1998-02-01

    An analysis of low-energy charged pion-nucleon data from recent {pi}{sup {plus_minus}}p experiments is presented. From the scattering lengths and the Goldberger-Miyazawa-Oehme (GMO) sum rule we find a value of the pion-nucleon coupling constant of f{sup 2}=0.0756{plus_minus}0.0007. We also find, contrary to most previous analyses, that the scattering volumes for the P{sub 31} and P{sub 13} partial waves are equal, within errors, corresponding to a symmetry found in the Hamiltonian of many theories. For the potential models used, the amplitudes are extrapolated into the subthreshold region to estimate the value of the {Sigma} term. Off-shell amplitudes are also provided. {copyright} {ital 1998} {ital The American Physical Society}

  5. Remarks on the pion-nucleon σ-term

    NASA Astrophysics Data System (ADS)

    Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.

    2016-09-01

    The pion-nucleon σ-term can be stringently constrained by the combination of analyticity, unitarity, and crossing symmetry with phenomenological information on the pion-nucleon scattering lengths. Recently, lattice calculations at the physical point have been reported that find lower values by about 3σ with respect to the phenomenological determination. We point out that a lattice measurement of the pion-nucleon scattering lengths could help resolve the situation by testing the values extracted from spectroscopy measurements in pionic atoms.

  6. Isospin breaking in low-energy pion-nucleon scattering

    SciTech Connect

    Gibbs, W.R.; Ai, L.; Kaufmann, W.B.

    1995-05-08

    We have analyzed low-energy pion-nucleon data for isospin invariance by comparing charge-exchange amplitudes derived from charge-exchange data with those predicted from recent {pi}{sup {plus_minus}}{ital p} elastic data through the application of isospin invariance. A discrepancy of the order of 7% is observed beyond the contributions of the {pi}{sup {plus_minus}}{ital p} Coulomb interaction and the hadronic mass differences.

  7. Roy-Steiner-equation analysis of pion-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.

    2016-04-01

    We review the structure of Roy-Steiner equations for pion-nucleon scattering, the solution for the partial waves of the t-channel process ππ → N ¯ N, as well as the high-accuracy extraction of the pion-nucleon S-wave scattering lengths from data on pionic hydrogen and deuterium. We then proceed to construct solutions for the lowest partial waves of the s-channel process πN → πN and demonstrate that accurate solutions can be found if the scattering lengths are imposed as constraints. Detailed error estimates of all input quantities in the solution procedure are performed and explicit parameterizations for the resulting low-energy phase shifts as well as results for subthreshold parameters and higher threshold parameters are presented. Furthermore, we discuss the extraction of the pion-nucleon σ-term via the Cheng-Dashen low-energy theorem, including the role of isospin-breaking corrections, to obtain a precision determination consistent with all constraints from analyticity, unitarity, crossing symmetry, and pionic-atom data. We perform the matching to chiral perturbation theory in the subthreshold region and detail the consequences for the chiral convergence of the threshold parameters and the nucleon mass.

  8. A New Pion-Nucleon Partial Wave Analysis

    NASA Astrophysics Data System (ADS)

    Sadler, Michael; Watson, Shon; Stahov, Jugoslav

    2006-10-01

    Existing determinations of the masses, widths and decay modes of low-lying excited states of the nucleon, as compiled in the Review of Particle Physics, are determined from energy-independent partial wave analyses of pion-nucleon scattering data. For the N*(1440) and most other resonances under 2 GeV, the analyses cited are the Karlsruhe-Helsinki, Carnegie Mellon-Berkeley and Kent State analyses, the latter of which used the elastic amplitudes from the other two. The data included in these analyses were published before 1980. Other analyses, notably the recent ones from George Washington University and the Pittsburgh-Argonne group, are ``not used for averages, fits, limits, etc.'' Complete sets of measurements (differential cross sections, analyzing powers and spin rotation parameters) have been measured in the N*(1440) resonance region since 1980, culminating in the Crystal Ball program at BNL to measure all-neutral final states (charge exchange, multiple pi-zero final states, and inverse photoproduction). A new partial wave analysis of the Karlsruhe-Helsinki type has been started by Abilene Christian University, University of Tuzla, and Rudjer Boskovic Institute. The analysis is constrained by fixed-t and interior hyperbolic dispersion relations. Comparisons of the new analysis to modern experimental data and to previous analyses will be presented.

  9. Pion-nucleon charge exchange amplitudes above 2 GeV

    NASA Astrophysics Data System (ADS)

    Huang, F.; Sibirtsev, A.; Krewald, S.; Hanhart, C.; Haidenbauer, J.; Meißner, U.-G.

    2009-04-01

    The amplitudes for the pion-nucleon charge exchange reaction of the Karlsruhe-Helsinki and the George-Washington-University partial-wave analyses are compared with those of a Regge-cut model with the aim to explore the possibility to provide high-energy constraints for theoretical baryon resonance analyses in the energy region above 2GeV.

  10. Polarization analysis of vector-meson production in pion-nucleon interactions

    NASA Astrophysics Data System (ADS)

    Arash, Firooz; Habibi, Mohammad F.

    1993-07-01

    In view of the growing (though still incomplete) set of data on vector-meson production in pion-nucleon interactions, the polarization structure of this reaction is presented, together with polarization tests of one-particle-exchange processes in the s and t channels, as well as polarization tests for the Skyrmion model. The amplitude-observable relations are exhibited in the helicity, transversity, and planar-transverse frames. The desirable direction of future experimental programs is also outlined.

  11. Pion-nucleon scattering in covariant baryon chiral perturbation theory with explicit Delta resonances

    NASA Astrophysics Data System (ADS)

    Yao, De-Liang; Siemens, D.; Bernard, V.; Epelbaum, E.; Gasparyan, A. M.; Gegelia, J.; Krebs, H.; Meißner, Ulf-G.

    2016-05-01

    We present the results of a third order calculation of the pion-nucleon scattering amplitude in a chiral effective field theory with pions, nucleons and delta resonances as explicit degrees of freedom. We work in a manifestly Lorentz invariant formulation of baryon chiral perturbation theory using dimensional regularization and the extended on-mass-shell renormalization scheme. In the delta resonance sector, the on mass-shell renormalization is realized as a complex-mass scheme. By fitting the low-energy constants of the effective Lagrangian to the S- and P -partial waves a satisfactory description of the phase shifts from the analysis of the Roy-Steiner equations is obtained. We predict the phase shifts for the D and F waves and compare them with the results of the analysis of the George Washington University group. The threshold parameters are calculated both in the delta-less and delta-full cases. Based on the determined low-energy constants, we discuss the pion-nucleon sigma term. Additionally, in order to determine the strangeness content of the nucleon, we calculate the octet baryon masses in the presence of decuplet resonances up to next-to-next-to-leading order in SU(3) baryon chiral perturbation theory. The octet baryon sigma terms are predicted as a byproduct of this calculation.

  12. a Phenomenological Determination of the Pion-Nucleon Scattering Lengths from Pionic Hydrogen

    NASA Astrophysics Data System (ADS)

    Ericson, T. E. O.; Loiseau, B.; Wycech, S.

    A model independent expression for the electromagnetic corrections to a phenomenological hadronic pion-nucleon (πN) scattering length ah, extracted from pionic hydrogen, is obtained. In a non-relativistic approach and using an extended charge distribution, these corrections are derived up to terms of order α2 log α in the limit of a short-range hadronic interaction. We infer ahπ ^-p=0.0870(5)m-1π which gives for the πNN coupling through the GMO relation g2π ^± pn/(4π )=14.04(17).

  13. Elastic pion-nucleon scattering in chiral perturbation theory: A fresh look

    NASA Astrophysics Data System (ADS)

    Siemens, D.; Bernard, V.; Epelbaum, E.; Gasparyan, A.; Krebs, H.; Meißner, Ulf-G.

    2016-07-01

    Elastic pion-nucleon scattering is analyzed in the framework of chiral perturbation theory up to fourth order within the heavy-baryon expansion and a covariant approach based on an extended on-mass-shell renormalization scheme. We discuss in detail the renormalization of the various low-energy constants and provide explicit expressions for the relevant β functions and the finite subtractions of the power-counting breaking terms within the covariant formulation. To estimate the theoretical uncertainty from the truncation of the chiral expansion, we employ an approach which has been successfully applied in the most recent analysis of the nuclear forces. This allows us to reliably extract the relevant low-energy constants from the available scattering data at low energy. The obtained results provide clear evidence that the breakdown scale of the chiral expansion for this reaction is related to the Δ resonance. The explicit inclusion of the leading contributions of the Δ isobar is demonstrated to substantially increase the range of applicability of the effective field theory. The resulting predictions for the phase shifts are in an excellent agreement with the predictions from the recent Roy-Steiner-equation analysis of pion-nucleon scattering.

  14. Dynamic Topography Revisited

    NASA Astrophysics Data System (ADS)

    Moresi, Louis

    2015-04-01

    Dynamic Topography Revisited Dynamic topography is usually considered to be one of the trinity of contributing causes to the Earth's non-hydrostatic topography along with the long-term elastic strength of the lithosphere and isostatic responses to density anomalies within the lithosphere. Dynamic topography, thought of this way, is what is left over when other sources of support have been eliminated. An alternate and explicit definition of dynamic topography is that deflection of the surface which is attributable to creeping viscous flow. The problem with the first definition of dynamic topography is 1) that the lithosphere is almost certainly a visco-elastic / brittle layer with no absolute boundary between flowing and static regions, and 2) the lithosphere is, a thermal / compositional boundary layer in which some buoyancy is attributable to immutable, intrinsic density variations and some is due to thermal anomalies which are coupled to the flow. In each case, it is difficult to draw a sharp line between each contribution to the overall topography. The second definition of dynamic topography does seem cleaner / more precise but it suffers from the problem that it is not measurable in practice. On the other hand, this approach has resulted in a rich literature concerning the analysis of large scale geoid and topography and the relation to buoyancy and mechanical properties of the Earth [e.g. refs 1,2,3] In convection models with viscous, elastic, brittle rheology and compositional buoyancy, however, it is possible to examine how the surface topography (and geoid) are supported and how different ways of interpreting the "observable" fields introduce different biases. This is what we will do. References (a.k.a. homework) [1] Hager, B. H., R. W. Clayton, M. A. Richards, R. P. Comer, and A. M. Dziewonski (1985), Lower mantle heterogeneity, dynamic topography and the geoid, Nature, 313(6003), 541-545, doi:10.1038/313541a0. [2] Parsons, B., and S. Daly (1983), The

  15. Pion-nucleon scattering in the Skyrme model and the P-wave Born amplitudes

    NASA Astrophysics Data System (ADS)

    Hayashi, A.; Saito, S.; Uehara, M.

    1991-03-01

    We treat fluctuating pion fields around a rotating Skyrmion by means of Dirac's quantization method. The rotational collective motion of the Skyrmion is described by collective coordinates, and conventional gauge-fixing conditions are imposed. Taking into account all the relevant terms at the tree level appearing in the Hamiltonian, we show that pion-nucleon scattering amplitudes exhibit the P-wave Born amplitudes attributed to the Yukawa coupling of order √Nc , which is consistent with the prediction of chiral symmetry such as the Adler-Weisberger relation. This resolves the difficulty that the Skyrme model predicts a wrong Nc dependence for the coupling of order N-3/2c.

  16. A relativistic meson-exchange model of pion-nucleon scattering

    SciTech Connect

    Lee, T.S.H.; Hung, C.T.; Yang, S.N.

    1995-08-01

    Pion-nucleon scattering is investigated using the Kadshevsky three-dimensional reduction of the Bethe-Salpeter equation. The resulting potential includes the direct and crossed N and {Delta} terms, and the t-channel {sigma}- and {rho}-exchange terms. The nucleon-pole condition is imposed to define the renormalization of the nucleon mass and the {pi}NN coupling constant. A mixture of the scalar and vector {sigma}{pi}{pi} couplings is introduced to simulate the broad width of the s-wave correlated two-pion exchange mechanism. Good descriptions of the {pi}N phase shifts up to 400 MeV have been obtained in all S- and P-waves. The off-shell behavior for our model differs significantly from that obtained using different reductions. A paper describing our results was published.

  17. Chiral representation of the πN scattering amplitude and the pion-nucleon sigma term

    NASA Astrophysics Data System (ADS)

    Alarcón, J. M.; Camalich, J. Martin; Oller, J. A.

    2012-03-01

    We present a novel analysis of the πN scattering amplitude in Lorentz covariant baryon chiral perturbation theory renormalized in the extended-on-mass-shell scheme. This amplitude, valid up to O(p3) in the chiral expansion, systematically includes the effects of the Δ(1232) in the δ-counting, has the right analytic properties, and is renormalization-scale independent. This approach overcomes the limitations that previous chiral analyses of the πN scattering amplitude had, providing an accurate description of the partial wave phase shifts of the Karlsruhe-Helsinki and George-Washington groups up to energies just below the resonance region. We also study the solution of the Matsinos group which focuses on the parameterization of the data at low energies. Once the values of the low-energy constants are determined by adjusting the center-of-mass energy dependence of the amplitude to the scattering data, we obtain predictions on different observables. In particular, we extract an accurate value for the pion-nucleon sigma term, σπN. This allows us to avoid the usual method of extrapolation to the unphysical region of the amplitude. Our study indicates that the inclusion of modern meson-factory and pionic-atom data favors relatively large values of the sigma term. We report the value σπN=59(7)MeV and comment on implications that this result may have.

  18. Pion-Nucleon Scattering and Analysis from threshold to the N*(1440) Resonance Region

    NASA Astrophysics Data System (ADS)

    Sadler, Michael; Watson, Shon; Stahov, Jugoslav

    2008-10-01

    Many measurements for pion-nucleon scattering from threshold to the N*(1440) resonance region have been made since 1980, when the landmark Karlsruhe-Helsinki (KH) and Carnegie Mellon-Berkeley (CMB) partial wave analyses (PWA) were completed. These measurements consist of differential cross sections and analyzing powers for elastic scattering and charge exchange. Spin rotation parameters for elastic scattering in the momentum interval 0.4 -- 0.7 GeV/c have also been obtained. The program culminated with measurements of π-p -> Neutrals (charge exchange, multiple pi-zero final states, eta production, and inverse photoproduction) using the Crystal Ball at BNL. Resonance parameters for the N*(1440) in the Review of Particle Physics by the Particle Data Group have been obtained from the KH and CMB analyses. The 2006 edition also includes the analysis by George Washington University (GWU) ``for averages, fits, limits, etc.'', but the parameters were unchanged. An overview of the data will be presented along with comparisons to PWA.

  19. Determination of the pion-nucleon coupling constant and scattering lengths

    NASA Astrophysics Data System (ADS)

    Ericson, T. E.; Loiseau, B.; Thomas, A. W.

    2002-07-01

    We critically evaluate the isovector Goldberger-Miyazawa-Oehme (GMO) sum rule for forward πN scattering using the recent precision measurements of π-p and π-d scattering lengths from pionic atoms. We deduce the charged-pion-nucleon coupling constant, with careful attention to systematic and statistical uncertainties. This determination gives, directly from data, g2c(GMO)/ 4π=14.11+/-0.05(statistical)+/-0.19(systematic) or f2c/4π=0.0783(11). This value is intermediate between that of indirect methods and the direct determination from backward np differential scattering cross sections. We also use the pionic atom data to deduce the coherent symmetric and antisymmetric sums of the pion-proton and pion-neutron scattering lengths with high precision, namely, (aπ-p+aπ-n)/2=[- 12+/-2(statistical)+/-8(systematic)]×10-4 m-1π and (aπ-p-aπ- n)/2=[895+/-3(statistical)+/-13 (systematic)]×10-4 m-1π. For the need of the present analysis, we improve the theoretical description of the pion-deuteron scattering length.

  20. Cortical dynamics revisited.

    PubMed

    Singer, Wolf

    2013-12-01

    Recent discoveries on the organisation of the cortical connectome together with novel data on the dynamics of neuronal interactions require an extension of classical concepts on information processing in the cerebral cortex. These new insights justify considering the brain as a complex, self-organised system with nonlinear dynamics in which principles of distributed, parallel processing coexist with serial operations within highly interconnected networks. The observed dynamics suggest that cortical networks are capable of providing an extremely high-dimensional state space in which a large amount of evolutionary and ontogenetically acquired information can coexist and be accessible to rapid parallel search. PMID:24139950

  1. Measurements of observables in the pion-nucleon system, nuclear a- dependence of heavy quark production and rare decays of D and B mesons

    SciTech Connect

    Sadler, M.E.; Isenhower, L.D.

    1992-02-15

    This report discusses research on the following topics: pion-nucleon interactions; detector tomography facility; nuclear dependence of charm and beauty quark production and a study of two-prong decays of neutral D and B mesons; N* collaboration at CEBAF; and pilac experiments. (LSP)

  2. Axial, induced pseudoscalar, and pion-nucleon form factors in manifestly Lorentz-invariant chiral perturbation theory

    SciTech Connect

    Schindler, M. R.; Fuchs, T.; Scherer, S.; Gegelia, J.

    2007-02-15

    We calculate the nucleon form factors G{sub A} and G{sub P} of the isovector axial-vector current and the pion-nucleon form factor G{sub {pi}}{sub N} in manifestly Lorentz-invariant baryon chiral perturbation theory up to and including order O(p{sup 4}). In addition to the standard treatment including the nucleon and pions, we also consider the axial-vector meson a{sub 1} as an explicit degree of freedom. This is achieved by using the reformulated infrared renormalization scheme. We find that the inclusion of the axial-vector meson effectively results in one additional low-energy coupling constant that we determine by a fit to the data for G{sub A}. The inclusion of the axial-vector meson results in an improved description of the experimental data for G{sub A}, while the contribution to G{sub P} is small.

  3. Pion-nucleon correlations in finite nuclei in a relativistic framework: Effects on the shell structure

    NASA Astrophysics Data System (ADS)

    Litvinova, Elena

    2016-04-01

    The relativistic particle-vibration coupling (RPVC) model is extended by the inclusion of isospin-flip excitation modes into the phonon space, introducing a new mechanism of dynamical interaction between nucleons with different isospin in the nuclear medium. Protons and neutrons exchange by collective modes which are formed by isovector π and ρ-mesons, in turn, softened considerably because of coupling to nucleons of the medium. These modes are investigated within the proton-neutron relativistic random phase approximation (pn-RRPA) and relativistic proton-neutron time blocking approximation (pn-RTBA). The appearance of isospin-flip states with sizable transition probabilities at low energies points out that they are likely to couple to the single-particle degrees of freedom and, in addition to isoscalar low-lying phonons, to modify their spectroscopic characteristics. Such a coupling is quantified for the shell structure of 100,132Sn and found significant for the location of the dominant single-particle states.

  4. Measurements of observables in the pion-nucleon system, nuclear a- dependence of heavy quark production and rare decays of D and B mesons. Progress report, 1 December, 1990--15 February, 1992

    SciTech Connect

    Sadler, M.E.; Isenhower, L.D.

    1992-02-15

    This report discusses research on the following topics: pion-nucleon interactions; detector tomography facility; nuclear dependence of charm and beauty quark production and a study of two-prong decays of neutral D and B mesons; N* collaboration at CEBAF; and pilac experiments. (LSP)

  5. Baryon fields with UL(3 ) ×UR(3 ) chiral symmetry. V. Pion-nucleon and kaon-nucleon Σ terms

    NASA Astrophysics Data System (ADS)

    Dmitrašinović, V.; Chen, Hua-Xing; Hosaka, Atsushi

    2016-06-01

    We have previously calculated the pion-nucleon Σπ N term in the chiral mixing approach with u ,d flavors only, and found the lower bound Σπ N≥(" close=")mu0+md0)">1 +16/3 sin2θ 3/2 (gA(0 )+gA(3 )) , where gA(0 ),gA(3 ) , are the flavor-singlet and the isovector axial couplings. With presently accepted values of current quark masses, this leads to Σπ N≥58.0 ±4.5 -6.5+11.4 MeV, which is in agreement with the values extracted from experiments, and substantially higher than most previous two-flavor calculations. The causes of this enhancement are: (1) the large, (16/3 ≃5.3 ), purely SUL(2 ) ×SUR(2 ) algebraic factor; (2) the admixture of the [(1 ,1/2 ) ⊕(1/2 ,1 ) ] chiral multiplet component in the nucleon, whose presence has been known for some time, but that had not been properly taken into account, yet. We have now extended these calculations of Σπ N to three light flavors, i.e., to SUL(3 ) ×SUR(3 ) multiplet mixing. Phenomenology of chiral SUL(3 ) ×SUR(3 ) multiplet mixing demands the presence of three chiral SUL(3 ) ×SUR(3 ) multiplets, viz. [(6 ,3 )⊕(3 ,6 )],[(3 ,3 ¯) ⊕(3 ¯,3 ) ] , and [(3 ¯,3 ) ⊕(3 ,3 ¯) ] , in order to successfully reproduce the baryons' flavor-octet and flavor-singlet axial current coupling constants, as well as the baryon anomalous magnetic moments. Here we use these previously obtained results, together with known constraints on the explicit chiral symmetry breaking in baryons to calculate the Σπ N term, but find no change of Σπ N from the above successful two-flavor result. The physical significance of these results lies in the fact that they show no need for q4q ¯ components, and in particular, no need for an s s ¯ component in the nucleon, in order to explain the large "observed" Σπ N value. We also predict the kaon-nucleon σ term ΣK N that is experimentally unknown, but may be calculable in lattice QCD.

  6. Toward complete pion nucleon amplitudes

    NASA Astrophysics Data System (ADS)

    Mathieu, V.; Danilkin, I. V.; Fernández-Ramírez, C.; Pennington, M. R.; Schott, D.; Szczepaniak, Adam P.; Fox, G.

    2015-10-01

    We compare the low-energy partial-wave analyses of π N scattering with high-energy data via finite-energy sum rules. We construct a new set of amplitudes by matching the imaginary part from the low-energy analysis with the high-energy, Regge parametrization and reconstruct the real parts using dispersion relations.

  7. Toward complete pion nucleon amplitudes

    DOE PAGESBeta

    Mathieu, Vincent; Danilkin, Igor V.; Fernández-Ramírez, Cesar; Pennington, Michael R.; Schott, Diane M.; Szczepaniak, Adam P.; Fox, G.

    2015-10-05

    We compare the low-energy partial wave analyses πN scattering with a high-energy data via finite energy sum rules. We also construct a new set of amplitudes by matching the imaginary part from the low-energy analysis with the high-energy, Regge parametrization and then reconstruct the real parts using dispersion relations.

  8. The "anomalous" dynamics of decahyroisoquinoline revisited

    NASA Astrophysics Data System (ADS)

    Casalini, R.; Roland, C. M.

    2016-01-01

    Decahydroisoquinoline (DHIQ) appears to be a unique material—the only non-associated, simple liquid with dynamics deviating from density scaling. To examine whether this anomaly is real, the density, ρ, of DHIQ was measured at temperatures, T, as low as 214 K and pressures up to ˜1.2 GPa. This enabled the equation of state (EoS) to be determined, without extrapolation, over the range of thermodynamic conditions for which the relaxation times had been reported. Using this less ambiguous EoS, we find that within the precision of the available relaxation times, the latter are a function of T/ρ3.9, contrary to previous reports. Thus, the behavior of DHIQ is unexceptional; similar to every non-associated liquid tested to date, its dynamics comply with density scaling.

  9. Determination of partial-wave inelasticities for elastic pion-nucleon scattering with the aid of experimental data on π N → ππ N processes in the beam-momentum range 300 < P beam < 500 MeV/ c

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, V. A.; Sherman, S. G.

    2008-11-01

    The partial-wave inelasticity parameters of the amplitude for elastic pion-nucleon scattering are determined with the aid of the phenomenological amplitude for inelastic π N → ππ N processes in the energy range extending to the threshold for the production of two pions. The resulting inelasticity parameters are compared with their counterparts derived from modern partial-wave analyses. The largest inelastic-scattering cross section in the P11 wave is in excellent agreement with the analogous value from the analysis performed at the George Washington University in 2006. For other waves, however, the present results differ in the majority of cases from respective values given by partial-wave analyses (the distinctions are especially large for the isospin-3/2 amplitudes).

  10. Revisiting the S-Au(111) interaction: Static or Dynamic?

    SciTech Connect

    Biener, M M; Biener, J; Friend, C M

    2004-08-17

    The chemical inertness typically observed for Au does not imply a general inability to form stable bonds with non-metals but is rather a consequence of high reaction barriers. The Au-S interaction is probably the most intensively studied interaction of Au surfaces with non-metals as, for example, it plays an important role in Au ore formation, and controls the structure and dynamics of thiol-based self-assembled-monolayers (SAMs). In recent years a quite complex picture of the interaction of sulfur with Au(111) surfaces emerged, and a variety of S-induced surface structures was reported under different conditions. The majority of these structures were interpreted in terms of a static Au surface, where the positions of the Au atoms remain essentially unperturbed. Here we demonstrate that the Au(111) surface exhibits a very dynamic character upon interaction with adsorbed sulfur: low sulfur coverages modify the surface stress of the Au surface leading to lateral expansion of the surface layer; large-scale surface restructuring and incorporation of Au atoms into a growing two-dimensional AuS phase were observed with increasing sulfur coverage. These results provide new insight into the Au-S surface chemistry, and reveal the dynamic character of the Au(111) surface.

  11. Autonomic neural control of heart rate during dynamic exercise: revisited

    PubMed Central

    White, Daniel W; Raven, Peter B

    2014-01-01

    The accepted model of autonomic control of heart rate (HR) during dynamic exercise indicates that the initial increase is entirely attributable to the withdrawal of parasympathetic nervous system (PSNS) activity and that subsequent increases in HR are entirely attributable to increases in cardiac sympathetic activity. In the present review, we sought to re-evaluate the model of autonomic neural control of HR in humans during progressive increases in dynamic exercise workload. We analysed data from both new and previously published studies involving baroreflex stimulation and pharmacological blockade of the autonomic nervous system. Results indicate that the PSNS remains functionally active throughout exercise and that increases in HR from rest to maximal exercise result from an increasing workload-related transition from a 4 : 1 vagal–sympathetic balance to a 4 : 1 sympatho–vagal balance. Furthermore, the beat-to-beat autonomic reflex control of HR was found to be dependent on the ability of the PSNS to modulate the HR as it was progressively restrained by increasing workload-related sympathetic nerve activity. In conclusion: (i) increases in exercise workload-related HR are not caused by a total withdrawal of the PSNS followed by an increase in sympathetic tone; (ii) reciprocal antagonism is key to the transition from vagal to sympathetic dominance, and (iii) resetting of the arterial baroreflex causes immediate exercise-onset reflexive increases in HR, which are parasympathetically mediated, followed by slower increases in sympathetic tone as workloads are increased. PMID:24756637

  12. Revisiting the photodissociation dynamics of the phenyl radical

    SciTech Connect

    Cole-Filipiak, Neil C.; Shapero, Mark; Negru, Bogdan; Neumark, Daniel M.

    2014-09-14

    We have reinvestigated the photodissociation dynamics of the phenyl radical at 248 nm and 193 nm via photofragment translational spectroscopy under a variety of experimental conditions aimed at reducing the nascent internal energy of the phenyl radical and eliminating signal from contaminants. Under these optimized conditions, slower translational energy (P(E{sub T})) distributions for H-atom loss were seen at both wavelengths than in previously reported work. At 193 nm, the branching ratio for C{sub 2}H{sub 2} loss vs. H-atom loss was found to be 0.2 ± 0.1, a significantly lower value than was obtained previously in our laboratory. The new branching ratio agrees with calculated Rice-Ramsperger-Kassel-Marcus rate constants, suggesting that the photodissociation of the phenyl radical at 193 nm can be treated using statistical models. The effects of experimental conditions on the P(E{sub T}) distributions and product branching ratios are discussed.

  13. Benzophenone Ultrafast Triplet Population: Revisiting the Kinetic Model by Surface-Hopping Dynamics.

    PubMed

    Marazzi, Marco; Mai, Sebastian; Roca-Sanjuán, Daniel; Delcey, Mickaël G; Lindh, Roland; González, Leticia; Monari, Antonio

    2016-02-18

    The photochemistry of benzophenone, a paradigmatic organic molecule for photosensitization, was investigated by means of surface-hopping ab initio molecular dynamics. Different mechanisms were found to be relevant within the first 600 fs after excitation; the long-debated direct (S1 → T1) and indirect (S1 → T2 → T1) mechanisms for population of the low-lying triplet state are both possible, with the latter being prevalent. Moreover, we established the existence of a kinetic equilibrium between the two triplet states, never observed before. This fact implies that a significant fraction of the overall population resides in T2, eventually allowing one to revisit the usual spectroscopic assignment proposed by transient absorption spectroscopy. This finding is of particular interest for photocatalysis as well as for DNA damages studies because both T1 and T2 channels are, in principle, available for benzophenone-mediated photoinduced energy transfer toward DNA. PMID:26821061

  14. Benzophenone Ultrafast Triplet Population: Revisiting the Kinetic Model by Surface-Hopping Dynamics

    PubMed Central

    2016-01-01

    The photochemistry of benzophenone, a paradigmatic organic molecule for photosensitization, was investigated by means of surface-hopping ab initio molecular dynamics. Different mechanisms were found to be relevant within the first 600 fs after excitation; the long-debated direct (S1 → T1) and indirect (S1 → T2 → T1) mechanisms for population of the low-lying triplet state are both possible, with the latter being prevalent. Moreover, we established the existence of a kinetic equilibrium between the two triplet states, never observed before. This fact implies that a significant fraction of the overall population resides in T2, eventually allowing one to revisit the usual spectroscopic assignment proposed by transient absorption spectroscopy. This finding is of particular interest for photocatalysis as well as for DNA damages studies because both T1 and T2 channels are, in principle, available for benzophenone-mediated photoinduced energy transfer toward DNA. PMID:26821061

  15. A dynamical model for pion electroproduction on the nucleon

    SciTech Connect

    George L. Caia; Louis E. Wright; Vladimir Pascalutsa

    2005-06-01

    We develop a Lorenz- and gauge-invariant dynamical model for pion electroproduction in the resonance region. The model is based on solving of the Salpeter (instantaneous) equation for the pion-nucleon interaction with a hadron-exchange potential. We find that the one-particle-exchange kernel of the Salpeter equation for pion electroproduction develops an unphysical singularity for a finite value of Q{sup 2}. We analyze two methods of dealing with this problem. Results of our model are compared with recent single-polarization data for pion electroproduction.

  16. Quantum-mechanical picture of peripheral chiral dynamics

    SciTech Connect

    Granados, Carlos; Weiss, Christian

    2015-08-28

    The nucleon's peripheral transverse charge and magnetization densities are computed in chiral effective field theory. The densities are represented in first-quantized form, as overlap integrals of chiral light-front wave functions describing the transition of the nucleon to soft pion-nucleon intermediate states. The orbital motion of the pion causes a large left-right asymmetry in a transversely polarized nucleon. As a result, the effect attests to the relativistic nature of chiral dynamics [pion momenta k = O(Mπ)] and could be observed in form factor measurements at low momentum transfer.

  17. Adaptive Control for Linear Uncertain Systems with Unmodeled Dynamics Revisited via Optimal Control Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2013-01-01

    This paper presents the optimal control modification for linear uncertain plants. The Lyapunov analysis shows that the modification parameter has a limiting value depending on the nature of the uncertainty. The optimal control modification exhibits a linear asymptotic property that enables it to be analyzed in a linear time invariant framework for linear uncertain plants. The linear asymptotic property shows that the closed-loop plants in the limit possess a scaled input-output mapping. Using this property, we can derive an analytical closed-loop transfer function in the limit as the adaptive gain tends to infinity. The paper revisits the Rohrs counterexample problem that illustrates the nature of non-robustness of model-reference adaptive control in the presence of unmodeled dynamics. An analytical approach is developed to compute exactly the modification parameter for the optimal control modification that stabilizes the plant in the Rohrs counterexample. The linear asymptotic property is also used to address output feedback adaptive control for non-minimum phase plants with a relative degree 1.

  18. Structure and Dynamics of the Instantaneous Water/Vapor Interface Revisited by Path-Integral and Ab Initio Molecular Dynamics Simulations.

    PubMed

    Kessler, Jan; Elgabarty, Hossam; Spura, Thomas; Karhan, Kristof; Partovi-Azar, Pouya; Hassanali, Ali A; Kühne, Thomas D

    2015-08-01

    The structure and dynamics of the water/vapor interface is revisited by means of path-integral and second-generation Car-Parrinello ab initio molecular dynamics simulations in conjunction with an instantaneous surface definition [Willard, A. P.; Chandler, D. J. Phys. Chem. B 2010, 114, 1954]. In agreement with previous studies, we find that one of the OH bonds of the water molecules in the topmost layer is pointing out of the water into the vapor phase, while the orientation of the underlying layer is reversed. Therebetween, an additional water layer is detected, where the molecules are aligned parallel to the instantaneous water surface. PMID:26174102

  19. Modelling crystal plasticity by 3D dislocation dynamics and the finite element method: The Discrete-Continuous Model revisited

    NASA Astrophysics Data System (ADS)

    Vattré, A.; Devincre, B.; Feyel, F.; Gatti, R.; Groh, S.; Jamond, O.; Roos, A.

    2014-02-01

    A unified model coupling 3D dislocation dynamics (DD) simulations with the finite element (FE) method is revisited. The so-called Discrete-Continuous Model (DCM) aims to predict plastic flow at the (sub-)micron length scale of materials with complex boundary conditions. The evolution of the dislocation microstructure and the short-range dislocation-dislocation interactions are calculated with a DD code. The long-range mechanical fields due to the dislocations are calculated by a FE code, taking into account the boundary conditions. The coupling procedure is based on eigenstrain theory, and the precise manner in which the plastic slip, i.e. the dislocation glide as calculated by the DD code, is transferred to the integration points of the FE mesh is described in full detail. Several test cases are presented, and the DCM is applied to plastic flow in a single-crystal Nickel-based superalloy.

  20. Hall-petch law revisited in terms of collective dislocation dynamics.

    PubMed

    Louchet, François; Weiss, Jérôme; Richeton, Thiebaud

    2006-08-18

    The Hall-Petch (HP) law, that accounts for the effect of grain size on the plastic yield stress of polycrystals, is revisited in terms of the collective motion of interacting dislocations. Sudden relaxation of incompatibility stresses in a grain triggers aftershocks in the neighboring ones. The HP law results from a scaling argument based on the conservation of the elastic energy during such transfers. The Hall-Petch law breakdown for nanometric sized grains is shown to stem from the loss of such a collective behavior as grains start deforming by successive motion of individual dislocations. PMID:17026245

  1. The pion nucleon scattering lengths from pionic hydrogen and deuterium

    NASA Astrophysics Data System (ADS)

    Schröder, H.-Ch.; Badertscher, A.; Goudsmit, P. F. A.; Janousch, M.; Leisi, H. J.; Matsinos, E.; Sigg, D.; Zhao, Z. G.; Chatellard, D.; Egger, J.-P.; Gabathuler, K.; Hauser, P.; Simons, L. M.; Rusi El Hassani, A. J.

    2001-07-01

    This is the final publication of the ETH Zurich Neuchâtel PSI collaboration on the pionic hydrogen and deuterium precision X-ray experiments. We describe the recent hydrogen 3 p 1 s measurement, report on the determination of the Doppler effect correction to the transition line width, analyze the deuterium shift measurement and discuss implications of the combined hydrogen and deuterium results. From the pionic hydrogen 3 p 1 s transition experiments we obtain the strong-interaction energy level shift \\varepsilon_{1s} = -7.108±0.013 (stat.)±0.034 (syst.) eV and the total decay width Γ_{1s} = 0.868±0.040 (stat.)±0.038 (syst.) eV of the 1s state. Taking into account the electromagnetic corrections we find the hadronic π N s-wave scattering amplitude a_{π-prightarrowπ-p} = 0.0883±0.0008 m_{π}^{-1} for elastic scattering and a_{π-prightarrowπ0n} = -0.128±0.006 m_{π} ^{-1} for single charge exchange, respectively. We then combine the pionic hydrogen results with the 1 s level shift measurement on pionic deuterium and test isospin symmetry of the strong interaction: our data are still compatible with isospin symmetry. The isoscalar and isovector π N scattering lengths (within the framework of isospin symmetry) are found to be b_0 = -0.0001^{+0.0009}_{-0.0021} m_{π}^{-1} and b1 = -0.0885^{+0.0010}_{-0.0021} m_{π} ^{-1}, respectively. Using the GMO sum rule, we obtain from b_1 a new value of the π N coupling constant (g_{π N} = 13.21_{-0.05}^{+0.11}) from which follows the Goldberger Treiman discrepancy Δ_{{GT}} =0.027_{-0.008}^{+0.012}. The new values of b_0 and g_{π N} imply an increase of the nucleon sigma term by at least 9 MeV.

  2. Delta: the First Pion Nucleon Resonance - Its Discovery and Applications

    DOE R&D Accomplishments Database

    Nagle, D. E.

    1984-07-01

    It is attempted to recapture some of the fun and excitement of the pion-scattering work that led to the discovery of what is now called the delta particle. How significant this discovery was became apparent only gradually. That the delta is alive today and thriving at Los Alamos (as well as other places) is described.

  3. Delta: the first pion nucleon resonance - its discovery and applications

    SciTech Connect

    Nagle, D.E.

    1984-07-01

    It is attempted to recapture some of the fun and excitement of the pion-scattering work that led to the discovery of what is now called the delta particle. How significant this discovery was became apparent only gradually. That the delta is alive today and thriving at Los Alamos (as well as other places) is described.

  4. Revisiting the body-schema concept in the context of whole-body postural-focal dynamics.

    PubMed

    Morasso, Pietro; Casadio, Maura; Mohan, Vishwanathan; Rea, Francesco; Zenzeri, Jacopo

    2015-01-01

    The body-schema concept is revisited in the context of embodied cognition, further developing the theory formulated by Marc Jeannerod that the motor system is part of a simulation network related to action, whose function is not only to shape the motor system for preparing an action (either overt or covert) but also to provide the self with information on the feasibility and the meaning of potential actions. The proposed computational formulation is based on a dynamical system approach, which is linked to an extension of the equilibrium-point hypothesis, called Passive Motor Paradigm: this dynamical system generates goal-oriented, spatio-temporal, sensorimotor patterns, integrating a direct and inverse internal model in a multi-referential framework. The purpose of such computational model is to operate at the same time as a general synergy formation machinery for planning whole-body actions in humanoid robots and/or for predicting coordinated sensory-motor patterns in human movements. In order to illustrate the computational approach, the integration of simultaneous, even partially conflicting tasks will be analyzed in some detail with regard to postural-focal dynamics, which can be defined as the fusion of a focal task, namely reaching a target with the whole-body, and a postural task, namely maintaining overall stability. PMID:25741274

  5. Revisiting the Body-Schema Concept in the Context of Whole-Body Postural-Focal Dynamics

    PubMed Central

    Morasso, Pietro; Casadio, Maura; Mohan, Vishwanathan; Rea, Francesco; Zenzeri, Jacopo

    2015-01-01

    The body-schema concept is revisited in the context of embodied cognition, further developing the theory formulated by Marc Jeannerod that the motor system is part of a simulation network related to action, whose function is not only to shape the motor system for preparing an action (either overt or covert) but also to provide the self with information on the feasibility and the meaning of potential actions. The proposed computational formulation is based on a dynamical system approach, which is linked to an extension of the equilibrium-point hypothesis, called Passive Motor Paradigm: this dynamical system generates goal-oriented, spatio-temporal, sensorimotor patterns, integrating a direct and inverse internal model in a multi-referential framework. The purpose of such computational model is to operate at the same time as a general synergy formation machinery for planning whole-body actions in humanoid robots and/or for predicting coordinated sensory–motor patterns in human movements. In order to illustrate the computational approach, the integration of simultaneous, even partially conflicting tasks will be analyzed in some detail with regard to postural-focal dynamics, which can be defined as the fusion of a focal task, namely reaching a target with the whole-body, and a postural task, namely maintaining overall stability. PMID:25741274

  6. Delta-nucleus dynamics: proceedings of symposium

    SciTech Connect

    Lee, T.S.H.; Geesaman, D.F.; Schiffer, J.P.

    1983-10-01

    The appreciation of the role in nuclear physics of the first excited state of the nucleon, the delta ..delta..(1232), has grown rapidly in the past decade. The delta resonance dominates nuclear reactions induced by intermediate energy pions, nucleons, and electromagnetic probes. It is also the most important non-nucleonic degree of freedom needed to resolve many fundamental problems encountered in the study of low-energy nuclear phenomena. Clearly, a new phase of nuclear physics has emerged and conventional thinking must be extended to account for this new dimension of nuclear dynamics. The most challenging problem we are facing is how a unified theory can be developed to describe ..delta..-nucleus dynamics at all energies. In exploring this new direction, it is important to have direct discussions among researchers with different viewpoints. Separate entries were prepared for the 49 papers presented. (WHK)

  7. Revisiting geometrical shock dynamics for blast wave propagation in complex environment

    NASA Astrophysics Data System (ADS)

    Ridoux, J.; Lardjane, N.; Gomez, T.; Coulouvrat, F.

    2015-10-01

    A new fast-running model for blast wave propagation in air is described. This model is an extension of Whitham's Geometrical Shock Dynamics with specific closure to non sustained shock waves. The numerical procedure relies on a Cartesian fast-marching like algorithm with immersed boundary method for complex boundaries. Comparison to academic results underline the capacity of this model.

  8. Chemical Kinetics, Heat Transfer, and Sensor Dynamics Revisited in a Simple Experiment

    ERIC Educational Resources Information Center

    Sad, Maria E.; Sad, Mario R.; Castro, Alberto A.; Garetto, Teresita F.

    2008-01-01

    A simple experiment about thermal effects in chemical reactors is described, which can be used to illustrate chemical reactor models, the determination and validation of their parameters, and some simple principles of heat transfer and sensor dynamics. It is based in the exothermic reaction between aqueous solutions of sodium thiosulfate and…

  9. Revisiting nonlinearity in meandering river planform dynamics using Gradual Wavelet Reconstruc­­tion

    NASA Astrophysics Data System (ADS)

    Schwenk, J.; Foufoula-Georgiou, E.; Lanzoni, S.

    2014-12-01

    Characterizing the intrinsic nonlinearity in meandering river dynamics is important because it dictates river evolution response to perturbations such as bank armoring or channel straightening. Meandering river dynamics have been described in terms of chaos or self-organized criticality—characterizations predicated on the presence of nonlinearity—yet recent studies have found only limited evidence for its existence. Standard nonlinearity tests are performed by generating a number of linearized surrogate series from a signal of interest. Inherent nonlinearities in the original signal are destroyed in the surrogates via phase randomization in the Fourier domain. Nonlinearity is inferred if a significant difference exists between the original and the surrogates in an appropriately determined phase space. These tests detect the presence or absence of nonlinearity but cannot identify which scales and locations are contributing most to the signal's nonlinearity. A new surrogate generation method called Gradual Wavelet Reconstruction (GWR) has two key advantages over the standard methodology. First, GWR quantifies the degree of nonlinearity rather than simply detecting its presence or absence, providing a basis for comparisons between river planforms and models of meander migration. Second, because the GWR methodology relies on localized transformations, it can determine the scales and locations primarily contributing to the observed complexity. As a result of those advantages too, GWR has been shown to detect the presence of nonlinearity in signals where standard tests have failed. We apply GWR methodology to time series of channel sinuosity predicted by two established models of long-time meander migration: a HIPS-type model and that of Zolezzi and Seminara (2001). Although the former model has been shown to capture first-order meander dynamics, it fails to fully couple sediment and flow dynamics; nor does it account for the resonance phenomenon. Using GWR, we show

  10. Euclidean Dynamical Triangulation revisited: is the phase transition really 1st order?

    NASA Astrophysics Data System (ADS)

    Rindlisbacher, Tobias; de Forcrand, Philippe

    2015-05-01

    The transition between the two phases of 4D Euclidean Dynamical Triangulation [1] was long believed to be of second order until in 1996 first order behavior was found for sufficiently large systems [5, 9]. However, one may wonder if this finding was affected by the numerical methods used: to control volume fluctuations, in both studies [5, 9] an artificial harmonic potential was added to the action and in [9] measurements were taken after a fixed number of accepted instead of attempted moves which introduces an additional error. Finally the simulations suffer from strong critical slowing down which may have been underestimated.

  11. The structure and dynamics of the AC114 galaxy cluster revisited

    NASA Astrophysics Data System (ADS)

    Proust, Dominique; Yegorova, Irina; Saviane, Ivo; Ivanov, Valentin D.; Bresolin, Fabio; Salzer, John J.; Capelato, Hugo V.

    2015-10-01

    We present a dynamical analysis of the galaxy cluster AC114 based on a catalogue of 524 velocities. Of these, 169 (32 per cent) are newly obtained at European Southern Observatory (Chile) with the Very Large Telescope and the VIsible MultiObject spectrograph. Data on individual galaxies are presented and the accuracy of the measured velocities is discussed. Dynamical properties of the cluster are derived. We obtain an improved mean redshift value z = 0.31665 ± 0.0008 and velocity dispersion σ = 1893^{+73}_{-82} km s^{-1}. A large velocity dispersion within the core radius and the shape of the infall pattern suggests that this part of the cluster is in a radial phase of relaxation with a very elongated radial filament spanning 12 000 km s-1. A radial foreground structure is detected within the central 0.5 h-1 Mpc radius, recognizable as a redshift group at the same central redshift value. We analyse the colour distribution for this archetype Butcher-Oemler galaxy cluster and identify the separate red and blue galaxy sequences. The latter subset contains 44 per cent of confirmed members of the cluster, reaching magnitudes as faint as Rf= 21.1 (1.0 mag fainter than previous studies). We derive a mass M200 = (4.3 ± 0.7) × 1015 M⊙ h-1. In a subsequent paper, we will utilize the spectral data presented here to explore the mass-metallicity relation for this intermediate redshift cluster.

  12. Dispositional envy revisited: unraveling the motivational dynamics of benign and malicious envy.

    PubMed

    Lange, Jens; Crusius, Jan

    2015-02-01

    Previous research has conceptualized dispositional envy as a unitary construct. Recently however, episodic envy has been shown to emerge in two qualitatively different forms. Benign envy is related to the motivation to move upward, whereas malicious envy is related to pulling superior others down. In four studies (N = 1,094)--using the newly developed Benign and Malicious Envy Scale (BeMaS)--we show that dispositional envy is also characterized by two independent dimensions related to distinct motivational dynamics and behavioral consequences. Dispositional benign and malicious envy uniquely predict envious responding following upward social comparisons. Furthermore, they are differentially connected to hope for success and fear of failure. Corresponding to these links, dispositional benign envy predicted faster race performance of marathon runners mediated via higher goal setting. In contrast, dispositional malicious envy predicted race goal disengagement. The findings highlight that disentangling the two sides of envy opens up numerous research avenues. PMID:25534243

  13. Revisiting Molecular Dynamics on a CPU/GPU system: Water Kernel and SHAKE Parallelization.

    PubMed

    Ruymgaart, A Peter; Elber, Ron

    2012-11-13

    We report Graphics Processing Unit (GPU) and Open-MP parallel implementations of water-specific force calculations and of bond constraints for use in Molecular Dynamics simulations. We focus on a typical laboratory computing-environment in which a CPU with a few cores is attached to a GPU. We discuss in detail the design of the code and we illustrate performance comparable to highly optimized codes such as GROMACS. Beside speed our code shows excellent energy conservation. Utilization of water-specific lists allows the efficient calculations of non-bonded interactions that include water molecules and results in a speed-up factor of more than 40 on the GPU compared to code optimized on a single CPU core for systems larger than 20,000 atoms. This is up four-fold from a factor of 10 reported in our initial GPU implementation that did not include a water-specific code. Another optimization is the implementation of constrained dynamics entirely on the GPU. The routine, which enforces constraints of all bonds, runs in parallel on multiple Open-MP cores or entirely on the GPU. It is based on Conjugate Gradient solution of the Lagrange multipliers (CG SHAKE). The GPU implementation is partially in double precision and requires no communication with the CPU during the execution of the SHAKE algorithm. The (parallel) implementation of SHAKE allows an increase of the time step to 2.0fs while maintaining excellent energy conservation. Interestingly, CG SHAKE is faster than the usual bond relaxation algorithm even on a single core if high accuracy is expected. The significant speedup of the optimized components transfers the computational bottleneck of the MD calculation to the reciprocal part of Particle Mesh Ewald (PME). PMID:23264758

  14. Revisiting Molecular Dynamics on a CPU/GPU system: Water Kernel and SHAKE Parallelization

    PubMed Central

    Ruymgaart, A. Peter; Elber, Ron

    2012-01-01

    We report Graphics Processing Unit (GPU) and Open-MP parallel implementations of water-specific force calculations and of bond constraints for use in Molecular Dynamics simulations. We focus on a typical laboratory computing-environment in which a CPU with a few cores is attached to a GPU. We discuss in detail the design of the code and we illustrate performance comparable to highly optimized codes such as GROMACS. Beside speed our code shows excellent energy conservation. Utilization of water-specific lists allows the efficient calculations of non-bonded interactions that include water molecules and results in a speed-up factor of more than 40 on the GPU compared to code optimized on a single CPU core for systems larger than 20,000 atoms. This is up four-fold from a factor of 10 reported in our initial GPU implementation that did not include a water-specific code. Another optimization is the implementation of constrained dynamics entirely on the GPU. The routine, which enforces constraints of all bonds, runs in parallel on multiple Open-MP cores or entirely on the GPU. It is based on Conjugate Gradient solution of the Lagrange multipliers (CG SHAKE). The GPU implementation is partially in double precision and requires no communication with the CPU during the execution of the SHAKE algorithm. The (parallel) implementation of SHAKE allows an increase of the time step to 2.0fs while maintaining excellent energy conservation. Interestingly, CG SHAKE is faster than the usual bond relaxation algorithm even on a single core if high accuracy is expected. The significant speedup of the optimized components transfers the computational bottleneck of the MD calculation to the reciprocal part of Particle Mesh Ewald (PME). PMID:23264758

  15. Lakatos Revisited.

    ERIC Educational Resources Information Center

    Court, Deborah

    1999-01-01

    Revisits and reviews Imre Lakatos' ideas on "Falsification and the Methodology of Scientific Research Programmes." Suggests that Lakatos' framework offers an insightful way of looking at the relationship between theory and research that is relevant not only for evaluating research programs in theoretical physics, but in the social sciences as…

  16. Infrared Spectroscopy of N-Methylacetamide Revisited by ab Initio Molecular Dynamics Simulations.

    PubMed

    Gaigeot, M P; Vuilleumier, R; Sprik, M; Borgis, D

    2005-09-01

    The density functional theory based molecular dynamics simulation method ("Car-Parrinello") was applied in a numerical study of the electronic properties, hydrogen bonding, and infrared spectroscopy of the trans and cis isomer of N-methylacetamide in aqueous solution. A detailed analysis of the electronic structure of the solvated molecules, in terms of localized Wannier functions and Born atomic charges, is presented. Two schemes for the computation of the solute infrared absorption spectrum are investigated:  In the first method the spectrum is determined by Fourier transforming the time correlation function of the solute dipole as determined from the Wannier function analysis. The second method uses instead the molecular current-current correlation function computed from the Born charges and atomic velocities. The resulting spectral properties of trans- and cis-NMA are carefully compared to each other and to experimental results. We find that the two solvated isomers can be clearly distinguished by their infrared spectral profile in the 1000-2000 cm(-)(1) range. PMID:26641894

  17. Revisiting the glass transition and dynamics of supercooled benzene by calorimetric studies

    NASA Astrophysics Data System (ADS)

    Tu, Wenkang; Chen, Zeming; Li, Xiangqian; Gao, Yanqin; Liu, Riping; Wang, Li-Min

    2015-10-01

    The glass transition and dynamics of benzene are studied in binary mixtures of benzene with five glass forming liquids, which can be divided into three groups: (a) o-terphenyl and m-xylene, (b) N-butyl methacrylate, and (c) N,N-dimethylpropionamide and N,N-diethylformamide to represent the weak, moderate, and strong interactions with benzene. The enthalpies of mixing, ΔHmix, for the benzene mixtures are measured to show positive or negative signs, with which the validity of the extrapolations of the glass transition temperature Tg to the benzene-rich regions is examined. The extrapolations for the Tg data in the mixtures are found to converge around the point of 142 K, producing Tg of pure benzene. The fragility m of benzene is also evaluated by extrapolating the results of the mixtures, and a fragility m ˜ 80 is yielded. The obtained Tg and m values for benzene allow for the construction of the activation plot in the deeply supercooled region. The poor glass formability of benzene is found to result from the high melting point, which in turn leads to low viscosity in the supercooled liquid.

  18. Energy corrugation in atomic-scale friction on graphite revisited by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Yu; Qi, Yi-Zhou; Ouyang, Wengen; Feng, Xi-Qiao; Li, Qunyang

    2015-12-01

    Although atomic stick-slip friction has been extensively studied since its first demonstration on graphite, the physical understanding of this dissipation-dominated phenomenon is still very limited. In this work, we perform molecular dynamics (MD) simulations to study the frictional behavior of a diamond tip sliding over a graphite surface. In contrast to the common wisdom, our MD results suggest that the energy barrier associated lateral sliding (known as energy corrugation) comes not only from interaction between the tip and the top layer of graphite but also from interactions among the deformed atomic layers of graphite. Due to the competition of these two subentries, friction on graphite can be tuned by controlling the relative adhesion of different interfaces. For relatively low tip-graphite adhesion, friction behaves normally and increases with increasing normal load. However, for relatively high tip-graphite adhesion, friction increases unusually with decreasing normal load leading to an effectively negative coefficient of friction, which is consistent with the recent experimental observations on chemically modified graphite. Our results provide a new insight into the physical origins of energy corrugation in atomic scale friction.

  19. Molecular dynamics of polymer crystallization revisited: Crystallization from the melt and the glass in longer polyethylene

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takashi

    2013-08-01

    Molecular mechanisms of the steady-state growth of the chain folded lamella and the cold crystallization across the glass transition temperature Tg are investigated by molecular dynamics simulation for a system of long polyethylene (PE)-like polymers made of 512 united atoms C512. The present paper aims to reconsider results of our previous simulations for short PE-like polymers C100 by carrying out very long simulations up to 1 μs for more realistic systems of much longer chains, thereby to establish the firm molecular image of chain-folded crystallization and clarify the specific molecular process of cold crystallization. We observe that the chain-folded lamella shows fast thickening-growth keeping marked tapered growth front. Despite the fast growth in much longer chains, the fold-surface is found to be predominantly of adjacent-reentry. Detailed inspections of the molecular pathway give an insightful image that can explain the apparently contradicting results. In addition, the fold-structure with specific spatial heterogeneity is found to give rise to heterogeneous mobility within the crystalline region. On the other hand, investigations of the cold crystallization during slow heating of the glassy film across Tg is found to give a granular texture made of small crystallites. The crystallites are found to nucleate preferentially near the free surfaces having lower Tg, and to be dominantly edge-on showing a definite tendency to orient their chain axes parallel to the free surface.

  20. Revisit of Rotational Dynamics of Asteroid 4179 Toutatis from Chang'e-2's flyby

    NASA Astrophysics Data System (ADS)

    Zhao, Yuhui; Hu, Shoucun; Ji, Jianghui

    2015-08-01

    In this work we investigate the rotational dynamics of Toutatis based on the derived results from Chang'e-2's close flyby to the asteroid (Huang et al. 2013). Toutatis' non-principal axis rotation (NPA) was revealed by radar observations captured from its Earth approaches in the past two decades. Matrix of inertia calculated from radar derived shape model are inconsistent with observations, which may indicate an uneven density distribution of the asteroid. We perform numerical simulations of rotational evolution of Toutatis and figure out the relative rotational parameters of Euler angles, rotational velocities and matrix of inertia. According to the major morphological feature of the ginger-shaped asteroid, we suggest a density ratio of the two lobes. On the basis of these results, we will evaluate the magnitude of the bias of mass center and figure center, which may have slight effects in the momentum variation calculation. These results are in good agreements with the previous radar observation derived results (Takahashi et al. 2013).

  1. On the Characterization of Revisitation Patterns in Complex Human Dynamics - A Data Science Approach

    NASA Astrophysics Data System (ADS)

    Barbosa Filho, Hugo Serrano

    When it comes to visitation patterns, humans beings are extremely regular and predictable, with recurrent activities responsible for most of our movements. In recent years, we have seen scientists attempt to model and explain human dynamics and in particular human movement. Akin to other human behaviors, traveling patterns evolve from the convolution between internal and external factors. A better understanding on the mechanisms responsible for transforming and incorporating individual events into regular patterns is of fundamental importance. Many aspects of our complex lives are affected by human movements such as disease spread and epidemics modeling, city planning, wireless network development, and disaster relief, to name a few. Given the myriad of applications, it is clear that a complete understanding of how people move in space can lead to considerable benefits to our society. In most of the recent works, scientists have focused on the idea that people movements are biased towards frequently-visited locations. According to them, human movement is based on a exploration/exploitation dichotomy in which individuals choose new locations (exploration) or return to frequently-visited locations (exploitation). In this dissertation we present some of our contributions to the field, such as the presence of a recency effect in human mobility and Web browsing behaviors as well as the Returner vs. Explorers dichotomy in Web browsing trajectories.

  2. Revisiting the Role of M31 in the Dynamical History of the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Kallivayalil, Nitya; Besla, Gurtina; Sanderson, Robyn; Alcock, Charles

    2009-08-01

    We study the dynamics of the Magellanic Clouds in a model for the Local Group whose mass is constrained using the timing argument/two-body limit of the action principle. The goal is to evaluate the role of M31 in generating the high angular momentum orbit of the Clouds, a puzzle that has only been exacerbated by the latest Hubble Space Telescope proper motion measurements. We study the effects of varying the total Local Group mass, the relative mass of the Milky Way (MW) and M31, the proper motion of M31, and the proper motion of the Large Magellanic Cloud (LMC) on this problem. Over a large part of this parameter space, we find that tides from M31 are insignificant. For a range of LMC proper motions approximately 3σ higher than the mean and total Local Group mass >3.5 × 1012 M sun, M31 can provide a significant torque to the LMC orbit. However, if the LMC is bound to the MW, then M31 is found to have negligible effect on its motion, and the origin of the high angular momentum of the system remains a puzzle. Finally, we use the timing argument to calculate the total mass of the MW-LMC system based on the assumption that they are encountering each other for the first time, their previous perigalacticon being a Hubble time ago, obtaining M MW + M LMC = (8.7 ± 0.8) × 1011 M sun.

  3. Direct Monte Carlo and multifluid modeling of the circumnuclear dust coma. Spherical grain dynamics revisited

    NASA Astrophysics Data System (ADS)

    Crifo, J.-F.; Loukianov, G. A.; Rodionov, A. V.; Zakharov, V. V.

    2005-07-01

    This paper describes the first computations of dust distributions in the vicinity of an active cometary nucleus, using a multidimensional Direct Simulation Monte Carlo Method (DSMC). The physical model is simplistic: spherical grains of a broad range of sizes are liberated by H 2O sublimation from a selection of nonrotating sunlit spherical nuclei, and submitted to the nucleus gravity, the gas drag, and the solar radiation pressure. The results are compared to those obtained by the previously described Dust Multi-Fluid Method (DMF) and demonstrate an excellent agreement in the regions where the DMF is usable. Most importantly, the DSMC allows the discovery of hitherto unsuspected dust coma properties in those cases which cannot be treated by the DMF. This leads to a thorough reconsideration of the properties of the near-nucleus dust dynamics. In particular, the results show that (1) none of the three forces considered here can be neglected a priori, in particular not the radiation pressure; (2) hitherto unsuspected new families of grain trajectories exist, for instance trajectories leading from the nightside surface to the dayside coma; (3) a wealth of balistic-like trajectories leading from one point of the surface to another point exist; on the dayside, such trajectories lead to the formation of "mini-volcanoes." The present model and results are discussed carefully. It is shown that (1) the neglected forces (inertia associated with a nucleus rotation, solar tidal force) are, in general, not negligible everywhere, and (2) when allowing for these additional forces, a time-dependent model will, in general, have to be used. The future steps of development of the model are outlined.

  4. Dynamic reciprocity revisited.

    PubMed

    Kaul, Himanshu; Ventikos, Yiannis

    2015-04-01

    The cellular microenvironment - which includes the cells, extracellular matrix (ECM), and local transport processes - affects the cell which in turn responds by synthetic or degradative processes causing the composition and the structure of ECM, and the local transport processes, to change which in a coupled manner influence the cell, and so forth. PMID:25636494

  5. Pion scattering and nuclear dynamics

    SciTech Connect

    Johnson, M.B.

    1988-01-01

    A phenomenological optical-model analysis of pion elastic scattering and single- and double-charge-exchange scattering to isobaric-analog states is reviewed. Interpretation of the optical-model parameters is briefly discussed, and several applications and extensions are considered. The applications include the study of various nuclear properties, including neutron deformation and surface-fluctuation contributions to the density. One promising extension for the near future would be to develop a microscopic approach based on powerful momentum-space methods brought to existence over the last decade. In this, the lowest-order optical potential as well as specific higher-order pieces would be worked out in terms of microscopic pion-nucleon and delta-nucleon interactions that can be determined within modern meson-theoretical frameworks. A second extension, of a more phenomenological nature, would use coupled-channel methods and shell-model wave functions to study dynamical nuclear correlations in pion double charge exchange. 35 refs., 11 figs., 1 tab.

  6. Influence of velocity effects on the shape of N2 (and air) broadened H2O lines revisited with classical molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ngo, N. H.; Tran, H.; Gamache, R. R.; Bermejo, D.; Domenech, J.-L.

    2012-08-01

    The modeling of the shape of H2O lines perturbed by N2 (and air) using the Keilson-Storer (KS) kernel for collision-induced velocity changes is revisited with classical molecular dynamics simulations (CMDS). The latter have been performed for a large number of molecules starting from intermolecular-potential surfaces. Contrary to the assumption made in a previous study [H. Tran, D. Bermejo, J.-L. Domenech, P. Joubert, R. R. Gamache, and J.-M. Hartmann, J. Quant. Spectrosc. Radiat. Transf. 108, 126 (2007)], 10.1016/j.jqsrt.2007.03.009, the results of these CMDS show that the velocity-orientation and -modulus changes statistically occur at the same time scale. This validates the use of a single memory parameter in the Keilson-Storer kernel to describe both the velocity-orientation and -modulus changes. The CMDS results also show that velocity- and rotational state-changing collisions are statistically partially correlated. A partially correlated speed-dependent Keilson-Storer model has thus been used to describe the line-shape. For this, the velocity changes KS kernel parameters have been directly determined from CMDS, while the speed-dependent broadening and shifting coefficients have been calculated with a semi-classical approach. Comparisons between calculated spectra and measurements of several lines of H2O broadened by N2 (and air) in the ν3 and 2ν1 + ν2 + ν3 bands for a wide range of pressure show very satisfactory agreement. The evolution of non-Voigt effects from Doppler to collisional regimes is also presented and discussed.

  7. Cats protecting birds revisited.

    PubMed

    Fan, Meng; Kuang, Yang; Feng, Zhilan

    2005-09-01

    In this paper, we revisit the dynamical interaction among prey (bird), mesopredator (rat), and superpredator (cat) discussed in [Courchamp, F., Langlais, M., Sugihara, G., 1999. Cats protecting birds: modelling the mesopredator release effect. Journal of Animal Ecology 68, 282-292]. First, we develop a prey-mesopredator-superpredator (i.e., bird-rat-cat, briefly, BRC) model, where the predator's functional responses are derived based on the classical Holling's time budget arguments. Our BRC model overcomes several model construction problems in Courchamp et al. (1999), and admits richer, reasonable and realistic dynamics. We explore the possible control strategies to save or restore the bird by controlling or eliminating the rat or the cat when the bird is endangered. We establish the existence of two types of mesopredator release phenomena: severe mesopredator release, where once superpredators are suppressed, a burst of mesopredators follows which leads their shared prey to extinction; and mild mesopredator release, where the mesopredator release could assert more negative impact on the endemic prey but does not lead the endemic prey to extinction. A sharp sufficient criterion is established for the occurrence of severe mesopredator release. We also show that, in a prey-mesopredator-superpredator trophic food web, eradication of introduced superpredators such as feral domestic cats in the BRC model, is not always the best solution to protect endemic insular prey. The presence of a superpredator may have a beneficial effect in such systems. PMID:15998496

  8. Revisiting structure and dynamics of Ag+ in 18.6% aqueous ammonia: An ab initio quantum mechanical charge field simulation

    NASA Astrophysics Data System (ADS)

    Prasetyo, Niko; Armunanto, Ria

    2016-05-01

    Structures and dynamics of Ag+ in 18.6% aqueous ammonia have been studied using Quantum Mechanical Charge Field Molecular Dynamics (QMCF-MD) simulation at the Hartree-Fock (HF) level theory employing LANL2DZ ECP basis set for Ag+ and Dunning DZP for solvent molecules. Structural properties are in excellent agreement with previous QM/MM and experiments studies. [Ag(NH3)2(H2O)3]+ was found as dominant species during simulation time. For 20 ps of simulation time, a labile first solvation shell was observed with both fast ammonia and water ligands exchanges. QMCF-MD framework describes first solvation shell more labile than conventional QM/MM MD simulation.

  9. H-infinity optimization of a variant design of the dynamic vibration absorber—Revisited and new results

    NASA Astrophysics Data System (ADS)

    Cheung, Y. L.; Wong, W. O.

    2011-08-01

    The H∞ optimum parameters of a dynamic vibration absorber (DVA) with ground-support are derived to minimize the resonant vibration amplitude of a single degree-of-freedom (sdof) system under harmonic force excitation. The optimum parameters which are derived based on the classical fixed-points theory and reported in literature for this non-traditional DVA are shown to be not leading to the minimum resonant vibration amplitude of the controlled mass. A new procedure is proposed for the H∞ optimization of such a dynamic vibration absorber. A new set of optimum tuning frequency and damping of the absorber is derived, thereby resulting in lower maximum amplitude responses than those reported in the literature. The proposed optimized variant DVA is also compared to a ground-hooked damper of the same damping capacity of the damper in the DVA. It is proved that the proposed optimized DVA has better suppression of the resonant vibration amplitude of the controlled system than both the traditional DVA and also the ground-hooked damper if the proposed design procedure of the variant DVA is followed.

  10. Revisiting dynamics near a liquid-liquid phase transition in Si and Ga: The fragile-to-strong transition

    SciTech Connect

    Cajahuaringa, Samuel; Koning, Maurice de Antonelli, Alex

    2013-12-14

    Using molecular dynamics simulations we analyze the dynamics of two atomic liquids that display a liquid-liquid phase transition (LLPT): Si described by the Stillinger-Weber potential and Ga as modeled by the modified embedded-atom model. In particular, our objective is to investigate the extent to which the presence of a dip in the self-intermediate scattering function is a manifestation of an excess of vibrational states at low frequencies and may be associated with a fragile-to-strong transition (FTST) across the LLPT, as suggested recently. Our results suggest a somewhat different picture. First, in the case of Ga we observe the appearance of an excess of vibrational states at low frequencies, even in the absence of the appearance of a dip in the self-intermediate scattering function across the LLPT. Second, studying the behavior of the shear viscosities traversing the LLPTs we find that both substances are fragile in character above and below their respective LLPT temperatures. Instead of a FTST in an absolute sense these findings are more in line with a view in which the LLPTs are accompanied by a transition from a more fragile to a less fragile liquid. Furthermore, we do not find this transition to correlate with the presence of a dip in the intermediate scattering function.

  11. Revisiting the concept of the (a)synchronicity of diels-alder reactions based on the dynamics of quasiclassical trajectories.

    PubMed

    de Souza, Miguel A F; Ventura, Elizete; do Monte, Silmar A; Riveros, José M; Longo, Ricardo L

    2016-03-30

    A number of model Diels-Alder (D-A) cycloaddition reactions (H2 CCH2  + cyclopentadiene and H2 CCHX + 1,3-butadiene, with X = H, F, CH3 , OH, CN, NH2 , and NO) were studied by static (transition state - TS and IRC) and dynamics (quasiclassical trajectories) approaches to establish the (a)synchronous character of the concerted mechanism. The use of static criteria, such as the asymmetry of the TS geometry, for classifying and quantifying the (a)synchronicity of the concerted D-A reaction mechanism is shown to be severely limited and to provide contradictory results and conclusions when compared to the dynamics approach. The time elapsed between the events is shown to be a more reliable and unbiased criterion and all the studied D-A reactions, except for the case of H2 CCHNO, are classified as synchronous, despite the gradual and quite distinct degrees of (a)symmetry of the TS structures. © 2015 Wiley Periodicals, Inc. PMID:26575321

  12. A 3D hp-Discontinuous Galerkin Method: Revisiting the M7.3 Landers Earthquake Dynamics

    NASA Astrophysics Data System (ADS)

    Tago, J.; Cruz-Atienza, V. M.; Virieux, J.; Etienne, V.; Sanchez-Sesma, F. J.

    2011-12-01

    Reliable dynamic source models should account of both fault geometry and heterogeneities in the surrounding medium. In this work we introduce a novel numerical method for modeling the dynamic rupture based on a 3D hp-Discontinuous Galerkin (DG) scheme. Our method is derived from the scheme proposed by Benjemaa et al. (2009), which is based on a Finite Volume (FV) approach. Migrating from such approach to the hp-Discontinuous Galerkin philosophy is somehow straightforward since the FV method can be seen as the DG method with its lowest order or approximation (i.e. P0 element). We present a novel approach for treating dynamic rupture boundary conditions using an hp-Discontinuous Galerkin method for unstructured tetrahedral meshes. Although the theory we have developed holds for fault elements with arbitrary order, we show that second order (P2) elements yield a very good convergence. Since the DG method does not impose continuity between elements, our strategy consists in the way we compute the fluxes across the fault elements. During rupture propagation, the fluxes in the elements where the shear traction overcomes the fault strength are such that continuity of every wavefield is imposed except for the tangential fault velocities, while in the unbroken elements tangential continuity is also imposed. Because the fault nodes of a given element are coupled through the Mass and Flux matrices, when a fault node breaks we impose the shear traction on that node and need to recompute the values throughout the rest, to avoid any violation of the friction law throughout the element. This procedure repeats itself iteratively following a predictor-corrector scheme for a given time step until the element solutions stabilize. We point out that our scheme for the fault fluxes in the case of P0 elements is exactly the same as the one proposed by Benjemaa et al. who compute them through energy balance considerations. To verify our mathematical and computational model we have solved

  13. Stretching of single poly-ubiquitin molecules revisited: Dynamic disorder in the non-exponential unfolding kinetics

    NASA Astrophysics Data System (ADS)

    Zheng, Yue; Bian, Yukun; Zhao, Nanrong; Hou, Zhonghuai

    2014-03-01

    A theoretical framework based on a generalized Langevin equation (GLE) with fractional Gaussian noise (fGn) and a power-law memory kernel is presented to describe the non-exponential kinetics of the unfolding of a single poly-ubiquitin molecule under a constant force [T.-L. Kuo, S. Garcia-Manyes, J. Li, I. Barel, H. Lu, B. J. Berne, M. Urbakh, J. Klafter, and J. M. Fernández, Proc. Natl. Acad. Sci. U.S.A. 107, 11336 (2010)]. Such a GLE-fGn strategy is made on the basis that the pulling coordinate variable x undergoes subdiffusion, usually resulting from conformational fluctuations, over a one-dimensional force-modified free-energy surface U(x, F). By using the Kramers' rate theory, we have obtained analytical formulae for the time-dependent rate coefficient k(t, F), the survival probability S(t, F) as well as the waiting time distribution function f(t, F) as functions of time t and force F. We find that our results can fit the experimental data of f(t, F) perfectly in the whole time range with a power-law exponent γ = 1/2, the characteristic of typical anomalous subdiffusion. In addition, the fitting of the survival probabilities for different forces facilitates us to reach rather reasonable estimations for intrinsic properties of the system, such as the free-energy barrier and the distance between the native conformation and the transition state conformation along the reaction coordinate, which are in good agreements with molecular dynamics simulations in the literatures. Although static disorder has been implicated in the original work of Kuo et al., our work suggests a sound and plausible alternative interpretation for the non-exponential kinetics in the stretching of poly-ubiquitin molecules, associated with dynamic disorder.

  14. Revisiting kinetic boundary conditions at the surface of fuel droplet hydrocarbons: An atomistic computational fluid dynamics simulation.

    PubMed

    Nasiri, Rasoul

    2016-01-01

    The role of boundary conditions at the interface for both Boltzmann equation and the set of Navier-Stokes equations have been suggested to be important for studying of multiphase flows such as evaporation/condensation process which doesn't always obey the equilibrium conditions. Here we present aspects of transition-state theory (TST) alongside with kinetic gas theory (KGT) relevant to the study of quasi-equilibrium interfacial phenomena and the equilibrium gas phase processes, respectively. A two-state mathematical model for long-chain hydrocarbons which have multi-structural specifications is introduced to clarify how kinetics and thermodynamics affect evaporation/condensation process at the surface of fuel droplet, liquid and gas phases and then show how experimental observations for a number of n-alkane may be reproduced using a hybrid framework TST and KGT with physically reasonable parameters controlling the interface, gas and liquid phases. The importance of internal activation dynamics at the surface of n-alkane droplets is established during the evaporation/condensation process. PMID:27215897

  15. Revisiting kinetic boundary conditions at the surface of fuel droplet hydrocarbons: An atomistic computational fluid dynamics simulation

    NASA Astrophysics Data System (ADS)

    Nasiri, Rasoul

    2016-05-01

    The role of boundary conditions at the interface for both Boltzmann equation and the set of Navier-Stokes equations have been suggested to be important for studying of multiphase flows such as evaporation/condensation process which doesn’t always obey the equilibrium conditions. Here we present aspects of transition-state theory (TST) alongside with kinetic gas theory (KGT) relevant to the study of quasi-equilibrium interfacial phenomena and the equilibrium gas phase processes, respectively. A two-state mathematical model for long-chain hydrocarbons which have multi-structural specifications is introduced to clarify how kinetics and thermodynamics affect evaporation/condensation process at the surface of fuel droplet, liquid and gas phases and then show how experimental observations for a number of n-alkane may be reproduced using a hybrid framework TST and KGT with physically reasonable parameters controlling the interface, gas and liquid phases. The importance of internal activation dynamics at the surface of n-alkane droplets is established during the evaporation/condensation process.

  16. Revisiting kinetic boundary conditions at the surface of fuel droplet hydrocarbons: An atomistic computational fluid dynamics simulation

    PubMed Central

    Nasiri, Rasoul

    2016-01-01

    The role of boundary conditions at the interface for both Boltzmann equation and the set of Navier-Stokes equations have been suggested to be important for studying of multiphase flows such as evaporation/condensation process which doesn’t always obey the equilibrium conditions. Here we present aspects of transition-state theory (TST) alongside with kinetic gas theory (KGT) relevant to the study of quasi-equilibrium interfacial phenomena and the equilibrium gas phase processes, respectively. A two-state mathematical model for long-chain hydrocarbons which have multi-structural specifications is introduced to clarify how kinetics and thermodynamics affect evaporation/condensation process at the surface of fuel droplet, liquid and gas phases and then show how experimental observations for a number of n-alkane may be reproduced using a hybrid framework TST and KGT with physically reasonable parameters controlling the interface, gas and liquid phases. The importance of internal activation dynamics at the surface of n-alkane droplets is established during the evaporation/condensation process. PMID:27215897

  17. Ethylene glycol revisited: Molecular dynamics simulations and visualization of the liquid and its hydrogen-bond network☆

    PubMed Central

    Kaiser, Alexander; Ismailova, Oksana; Koskela, Antti; Huber, Stefan E.; Ritter, Marcel; Cosenza, Biagio; Benger, Werner; Nazmutdinov, Renat; Probst, Michael

    2014-01-01

    Molecular dynamics simulations of liquid ethylene glycol described by the OPLS-AA force field were performed to gain insight into its hydrogen-bond structure. We use the population correlation function as a statistical measure for the hydrogen-bond lifetime. In an attempt to understand the complicated hydrogen-bonding, we developed new molecular visualization tools within the Vish Visualization shell and used it to visualize the life of each individual hydrogen-bond. With this tool hydrogen-bond formation and breaking as well as clustering and chain formation in hydrogen-bonded liquids can be observed directly. Liquid ethylene glycol at room temperature does not show significant clustering or chain building. The hydrogen-bonds break often due to the rotational and vibrational motions of the molecules leading to an H-bond half-life time of approximately 1.5 ps. However, most of the H-bonds are reformed again so that after 50 ps only 40% of these H-bonds are irreversibly broken due to diffusional motion. This hydrogen-bond half-life time due to diffusional motion is 80.3 ps. The work was preceded by a careful check of various OPLS-based force fields used in the literature. It was found that they lead to quite different angular and H-bond distributions. PMID:24748697

  18. New Aspects of Experimental Study of the Pion-Nucleon Interaction in the Resonance Region

    SciTech Connect

    Sumachev, V.V.

    2005-06-01

    New experimental data that were obtained by the PNPI-ITEP Collaboration have resolved some discrete ambiguities in the partial-wave analysis (PWA). These results were used in the new FA02 PWA performed at George Washington University. At the same time, the FA02 PWA has revealed considerable fewer N* and {delta} resonances than those listed in the RPP tables. This circumstance aggravated the known problem of so-called missing resonances. The program for further measurements of the spin rotation parameters in elastic {pi}N scattering that are required to eliminate the remaining discrete PWA ambiguities is discussed.

  19. Dynamics of dolphin porpoising revisited.

    PubMed

    Weihs, D

    2002-11-01

    Porpoising is the popular name for the high-speed surface piercing motion of dolphins and other species, in which long, ballistic jumps are alternated with sections of swimming close to the surface. The first analysis of this behavior (Au and Weihs, 1980) showed that above a certain "crossover" speed this behavior is energetically advantageous, as the reduction in drag due to movement in the air becomes greater than the added cost of leaping.Since that publication several studies documented porpoising behavior at high speeds. The observations indicated that the behavior was more complex than previously assumed. The leaps were interspersed with relatively long swimming bouts, of about twice the leap length. In the present paper, the possibility of dolphins using a combination of leaping and burst and coast swimming is examined. A three-phase model is proposed, in which the dolphin leaps out of the water at a speed U(f), which is the final speed obtained at the end of the burst phase of burst and coast swimming. The leap is at constant speed and so the animal returns to the water at U(f), goes to a shallow depth and starts horizontal coasting while losing speed, till it reaches U(i). At that point it starts active swimming, accelerating to U(f). It then starts the next leap. Ranges of speeds for which this three-stage swimming is advantageous are calculated as a function of animal and physical parameters.NotationC-Constant defined in equation (12)C(D)-Coasting drag coefficientD-Dragg-Gravitational accelerationH-Height of jumpJ-Energy required for jumpk-Ratio of swim length to jump lengthl-DistanceL-Total distance (eq. 28)m-Added massM-Animal massM(1)-Total massr-Coefficient defined in eq. (22)R-Ratio of energies, for three-phase swimmingR(2)-Ratio of energies, for burst and coast swimmingt-TimeT-ThrustU-SpeedV-Body volumeW-Weightα-Emergence (=return) angleβ-Swim / coast drag penalty ratioγ-Surface effects drag ratioρ-Density of seawater and cetacean.Subscriptsa-airav-Averageb-Burst phasec-Coast phasee-Reference (maximal) thrustf-Final, at end of bursti-Initial, at start of burstj-Jump phasen-Nominal reference thrusto-Optimals-Surface swimmingw-Water. PMID:21680390

  20. Light-front representation of chiral dynamics in peripheral transverse densities

    DOE PAGESBeta

    Granados, Carlos G.; Weiss, Christian

    2015-07-31

    The nucleon's electromagnetic form factors are expressed in terms of the transverse densities of charge and magnetization at fixed light-front time. At peripheral transverse distances b = O(M_pi^{-1}) the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). We represent the leading-order chiral EFT results for the peripheral transverse densities as overlap integrals of chiral light-front wave functions, describing the transition of the initial nucleon to soft pion-nucleon intermediate states and back. The new representation (a) explains the parametric order of the peripheral transverse densities; (b) establishes an inequality between the spin-independentmore » and -dependent densities; (c) exposes the role of pion orbital angular momentum in chiral dynamics; (d) reveals a large left-right asymmetry of the current in a transversely polarized nucleon and suggests a simple interpretation. The light-front representation enables a first-quantized, quantum-mechanical view of chiral dynamics that is fully relativistic and exactly equivalent to the second-quantized, field-theoretical formulation. It relates the charge and magnetization densities measured in low-energy elastic scattering to the generalized parton distributions probed in peripheral high-energy scattering processes. The method can be applied to nucleon form factors of other operators, e.g. the energy-momentum tensor.« less

  1. Light-front representation of chiral dynamics in peripheral transverse densities

    SciTech Connect

    Granados, Carlos G.; Weiss, Christian

    2015-07-31

    The nucleon's electromagnetic form factors are expressed in terms of the transverse densities of charge and magnetization at fixed light-front time. At peripheral transverse distances b = O(M_pi^{-1}) the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). We represent the leading-order chiral EFT results for the peripheral transverse densities as overlap integrals of chiral light-front wave functions, describing the transition of the initial nucleon to soft pion-nucleon intermediate states and back. The new representation (a) explains the parametric order of the peripheral transverse densities; (b) establishes an inequality between the spin-independent and -dependent densities; (c) exposes the role of pion orbital angular momentum in chiral dynamics; (d) reveals a large left-right asymmetry of the current in a transversely polarized nucleon and suggests a simple interpretation. The light-front representation enables a first-quantized, quantum-mechanical view of chiral dynamics that is fully relativistic and exactly equivalent to the second-quantized, field-theoretical formulation. It relates the charge and magnetization densities measured in low-energy elastic scattering to the generalized parton distributions probed in peripheral high-energy scattering processes. The method can be applied to nucleon form factors of other operators, e.g. the energy-momentum tensor.

  2. Nuclear chiral dynamics and thermodynamics

    NASA Astrophysics Data System (ADS)

    Holt, Jeremy W.; Kaiser, Norbert; Weise, Wolfram

    2013-11-01

    This presentation reviews an approach to nuclear many-body systems based on the spontaneously broken chiral symmetry of low-energy QCD. In the low-energy limit, for energies and momenta small compared to a characteristic symmetry breaking scale of order 1 GeV, QCD is realized as an effective field theory of Goldstone bosons (pions) coupled to heavy fermionic sources (nucleons). Nuclear forces at long and intermediate distance scales result from a systematic hierarchy of one- and two-pion exchange processes in combination with Pauli blocking effects in the nuclear medium. Short distance dynamics, not resolved at the wavelengths corresponding to typical nuclear Fermi momenta, are introduced as contact interactions between nucleons. Apart from a set of low-energy constants associated with these contact terms, the parameters of this theory are entirely determined by pion properties and low-energy pion-nucleon scattering observables. This framework (in-medium chiral perturbation theory) can provide a realistic description of both isospin-symmetric nuclear matter and neutron matter, with emphasis on the isospin-dependence determined by the underlying chiral NN interaction. The importance of three-body forces is emphasized, and the role of explicit Δ(1232)-isobar degrees of freedom is investigated in detail. Nuclear chiral thermodynamics is developed and a calculation of the nuclear phase diagram is performed. This includes a successful description of the first-order phase transition from a nuclear Fermi liquid to an interacting Fermi gas and the coexistence of these phases below a critical temperature Tc. Density functional methods for finite nuclei based on this approach are also discussed. Effective interactions, their density dependence and connections to Landau Fermi liquid theory are outlined. Finally, the density and temperature dependences of the chiral (quark) condensate are investigated.

  3. Swedish Successful Schools Revisited

    ERIC Educational Resources Information Center

    Hoog, Jonas; Johansson, Olof; Olofsson, Anders

    2009-01-01

    Purpose: The purpose of this paper is to describe the results of a follow-up study of two Swedish schools in which, five years previously, the principals had been successful leaders. Had this success been maintained? Design/methodology/approach: Two schools were revisited to enable the authors to interview principals and teachers as well as…

  4. The Linguistic Repertoire Revisited

    ERIC Educational Resources Information Center

    Busch, Brigitta

    2012-01-01

    This article argues for the relevance of poststructuralist approaches to the notion of a linguistic repertoire and introduces the notion of language portraits as a basis for empirical study of the way in which speakers conceive and represent their heteroglossic repertoires. The first part of the article revisits Gumperz's notion of a linguistic…

  5. A Hydrostatic Paradox Revisited

    ERIC Educational Resources Information Center

    Ganci, Salvatore

    2012-01-01

    This paper revisits a well-known hydrostatic paradox, observed when turning upside down a glass partially filled with water and covered with a sheet of light material. The phenomenon is studied in its most general form by including the mass of the cover. A historical survey of this experiment shows that a common misunderstanding of the phenomenon…

  6. Revisiting Bioaccumulation Criteria

    EPA Science Inventory

    The objective of workgroup 5 was to revisit the B(ioaccumulation) criteria that are currently being used to identify POPs under the Stockholm Convention and PBTs under CEPA, TSCA, REACh and other programs. Despite the lack of a recognized definition for a B substance, we defined ...

  7. Colloquial Hebrew Imperatives Revisited

    ERIC Educational Resources Information Center

    Bolozky, Shmuel

    2009-01-01

    In revisiting Bolozky's [Bolozky, Shmuel, 1979. "On the new imperative in colloquial Hebrew." "Hebrew Annual Review" 3, 17-24] and Bat-El's [Bat-El, Outi, 2002. "True truncation in colloquial Hebrew imperatives." "Language" 78(4), 651-683] analyses of colloquial Hebrew imperatives, the article argues for restricting Imperative Truncation to the…

  8. Revisiting Curriculum Potential

    ERIC Educational Resources Information Center

    Deng, Zongyi

    2011-01-01

    This article analyzes the notion of curriculum potential by revisiting the ideas of Miriam Ben-Peretz and Joseph Schwab. Invoking the German "Didaktik" tradition and by way of a curriculum-making framework, the paper argues that interpreting curriculum materials for curriculum potential requires a careful analysis and unpacking of the meanings and…

  9. Anodic Polarization Curves Revisited

    ERIC Educational Resources Information Center

    Liu, Yue; Drew, Michael G. B.; Liu, Ying; Liu, Lin

    2013-01-01

    An experiment published in this "Journal" has been revisited and it is found that the curve pattern of the anodic polarization curve for iron repeats itself successively when the potential scan is repeated. It is surprising that this observation has not been reported previously in the literature because it immediately brings into…

  10. Revisiting the Rhetorical Curriculum

    ERIC Educational Resources Information Center

    Rutten, Kris; Soetaert, Ronald

    2012-01-01

    The aim of the special strand on "Revisiting the rhetorical curriculum" is to explore the educational potential of a new rhetorical perspective, specifically in relation to different traditions within educational and rhetorical studies. This implies that we do not only look at education "in" rhetoric, but that we position education also "as" a…

  11. A Multi-Level Model of Moral Functioning Revisited

    ERIC Educational Resources Information Center

    Reed, Don Collins

    2009-01-01

    The model of moral functioning scaffolded in the 2008 "JME" Special Issue is here revisited in response to three papers criticising that volume. As guest editor of that Special Issue I have formulated the main body of this response, concerning the dynamic systems approach to moral development, the problem of moral relativism and the role of…

  12. Revisiting Dialogues and Monologues

    ERIC Educational Resources Information Center

    Kvernbekk, Tone

    2012-01-01

    In educational discourse dialogue tends to be viewed as being (morally) superior to monologue. When we look at them as basic forms of communication, we find that dialogue is a two-way, one-to-one form and monologue is a one-way, one-to-many form. In this paper I revisit the alleged (moral) superiority of dialogue. First, I problematize certain…

  13. Time functions revisited

    NASA Astrophysics Data System (ADS)

    Fathi, Albert

    2015-07-01

    In this paper we revisit our joint work with Antonio Siconolfi on time functions. We will give a brief introduction to the subject. We will then show how to construct a Lipschitz time function in a simplified setting. We will end with a new result showing that the Aubry set is not an artifact of our proof of existence of time functions for stably causal manifolds.

  14. Dynamic change in the expression of developmental genes in the ascidian central nervous system: revisit to the tripartite model and the origin of the midbrain-hindbrain boundary region.

    PubMed

    Ikuta, Tetsuro; Saiga, Hidetoshi

    2007-12-15

    Comparative studies on expression patterns of developmental genes along the anterior-posterior axis of the embryonic central nervous system (CNS) between vertebrates and ascidians led to the notion of "tripartite organization," a common ground plan of the CNS, consisting of the anterior, central and posterior regions expressing Otx, Pax2/5/8 and Hox genes, respectively. In ascidians, however, descriptions and interpretations about expression of the developmental genes regarded as region specific have become not necessarily consistent. To address this issue, we examined detailed expression of key developmental genes for the ascidian CNS, including Otx, Pax2/5/8a, En, Fgf8/17/18, Dmbx, Lhx3 and Hox genes, in the CNS around the junction of the trunk and tail of three different tailbud-stage embryos of Ciona intestinalis, employing double-fluorescence in situ hybridization, followed by staining with DAPI to precisely locate expressing cells for each gene. Based on these observations, we have constructed detailed gene expression maps of the region at the tailbud stages. Our analysis shows that expression of several genes regarded as markers for specific domains in the ascidian CNS changes dynamically within a relatively short period. This motivates us to revisit to the tripartite ground plan and the origin of the midbrain-hindbrain boundary (MHB) region. PMID:17996862

  15. Reframing in dentistry: revisited.

    PubMed

    Nuvvula, Sivakumar; Kamatham, Rekalakshmi; Challa, Ramasubbareddy; Asokan, Sharath

    2013-01-01

    The successful practice of dentistry involves a good combination of technical skills and soft skills. Soft skills or communication skills are not taught extensively in dental schools and it can be challenging to learn and at times in treating dental patients. Guiding the child's behavior in the dental operatory is one of the preliminary steps to be taken by the pediatric dentist and one who can successfully modify the behavior can definitely pave the way for a life time comprehensive oral care. This article is an attempt to revisit a simple behavior guidance technique, reframing and explain the possible psychological perspectives behind it for better use in the clinical practice. PMID:24021326

  16. Bottomonium spectrum revisited

    NASA Astrophysics Data System (ADS)

    Segovia, Jorge; Ortega, Pablo G.; Entem, David R.; Fernández, Francisco

    2016-04-01

    We revisit the bottomonium spectrum motivated by the recently exciting experimental progress in the observation of new bottomonium states, both conventional and unconventional. Our framework is a nonrelativistic constituent quark model which has been applied to a wide range of hadronic observables from the light to the heavy quark sector, and thus the model parameters are completely constrained. Beyond the spectrum, we provide a large number of electromagnetic, strong and hadronic decays in order to discuss the quark content of the bottomonium states and give more insights about a better way to determine their properties experimentally.

  17. The generalized Langevin equation revisited: Analytical expressions for the persistence dynamics of a viscous fluid under a time dependent external force

    NASA Astrophysics Data System (ADS)

    Olivares-Rivas, Wilmer; Colmenares, Pedro J.

    2016-09-01

    The non-static generalized Langevin equation and its corresponding Fokker-Planck equation for the position of a viscous fluid particle were solved in closed form for a time dependent external force. Its solution for a constant external force was obtained analytically. The non-Markovian stochastic differential equation, associated to the dynamics of the position under a colored noise, was then applied to the description of the dynamics and persistence time of particles constrained within absorbing barriers. Comparisons with molecular dynamics were very satisfactory.

  18. The formulation of dynamical contact problems with friction in the case of systems of rigid bodies and general discrete mechanical systems—Painlevé and Kane paradoxes revisited

    NASA Astrophysics Data System (ADS)

    Charles, Alexandre; Ballard, Patrick

    2016-08-01

    The dynamics of mechanical systems with a finite number of degrees of freedom (discrete mechanical systems) is governed by the Lagrange equation which is a second-order differential equation on a Riemannian manifold (the configuration manifold). The handling of perfect (frictionless) unilateral constraints in this framework (that of Lagrange's analytical dynamics) was undertaken by Schatzman and Moreau at the beginning of the 1980s. A mathematically sound and consistent evolution problem was obtained, paving the road for many subsequent theoretical investigations. In this general evolution problem, the only reaction force which is involved is a generalized reaction force, consistently with the virtual power philosophy of Lagrange. Surprisingly, such a general formulation was never derived in the case of frictional unilateral multibody dynamics. Instead, the paradigm of the Coulomb law applying to reaction forces in the real world is generally invoked. So far, this paradigm has only enabled to obtain a consistent evolution problem in only some very few specific examples and to suggest numerical algorithms to produce computational examples (numerical modeling). In particular, it is not clear what is the evolution problem underlying the computational examples. Moreover, some of the few specific cases in which this paradigm enables to write down a precise evolution problem are known to show paradoxes: the Painlevé paradox (indeterminacy) and the Kane paradox (increase in kinetic energy due to friction). In this paper, we follow Lagrange's philosophy and formulate the frictional unilateral multibody dynamics in terms of the generalized reaction force and not in terms of the real-world reaction force. A general evolution problem that governs the dynamics is obtained for the first time. We prove that all the solutions are dissipative; that is, this new formulation is free of Kane paradox. We also prove that some indeterminacy of the Painlevé paradox is fixed in this

  19. Satellite failures revisited

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-12-01

    In January 1994, the two geostationary satellites known as Anik-E1 and Anik-E2, operated by Telesat Canada, failed one after the other within 9 hours, leaving many northern Canadian communities without television and data services. The outage, which shut down much of the country's broadcast television for hours and cost Telesat Canada more than $15 million, generated significant media attention. Lam et al. used publicly available records to revisit the event; they looked at failure details, media coverage, recovery effort, and cost. They also used satellite and ground data to determine the precise causes of those satellite failures. The researchers traced the entire space weather event from conditions on the Sun through the interplanetary medium to the particle environment in geostationary orbit.

  20. Anonymous Signatures Revisited

    NASA Astrophysics Data System (ADS)

    Saraswat, Vishal; Yun, Aaram

    We revisit the notion of the anonymous signature, first formalized by Yang, Wong, Deng and Wang [10], and then further developed by Fischlin [4] and Zhang and Imai [11]. We present a new formalism of anonymous signature, where instead of the message, a part of the signature is withheld to maintain anonymity. We introduce the notion unpretendability to guarantee infeasibility for someone other than the correct signer to pretend authorship of the message and signature. Our definition retains applicability for all previous applications of the anonymous signature, provides stronger security, and is conceptually simpler. We give a generic construction from any ordinary signature scheme, and also show that the short signature scheme by Boneh and Boyen [2] can be naturally regarded as such a secure anonymous signature scheme according to our formalism.

  1. Revisiting Lambert's problem

    NASA Astrophysics Data System (ADS)

    Izzo, Dario

    2015-01-01

    The orbital boundary value problem, also known as Lambert problem, is revisited. Building upon Lancaster and Blanchard approach, new relations are revealed and a new variable representing all problem classes, under L-similarity, is used to express the time of flight equation. In the new variable, the time of flight curves have two oblique asymptotes and they mostly appear to be conveniently approximated by piecewise continuous lines. We use and invert such a simple approximation to provide an efficient initial guess to an Householder iterative method that is then able to converge, for the single revolution case, in only two iterations. The resulting algorithm is compared, for single and multiple revolutions, to Gooding's procedure revealing to be numerically as accurate, while having a significantly smaller computational complexity.

  2. Quantum duel revisited

    NASA Astrophysics Data System (ADS)

    Schmidt, Alexandre G. M.; Paiva, Milena M.

    2012-03-01

    We revisit the quantum two-person duel. In this problem, both Alice and Bob each possess a spin-1/2 particle which models dead and alive states for each player. We review the Abbott and Flitney result—now considering non-zero α1 and α2 in order to decide if it is better for Alice to shoot or not the second time—and we also consider a duel where players do not necessarily start alive. This simple assumption allows us to explore several interesting special cases, namely how a dead player can win the duel shooting just once, or how can Bob revive Alice after one shot, and the better strategy for Alice—being either alive or in a superposition of alive and dead states—fighting a dead opponent.

  3. Flow-Induced New Channels of Energy Exchange in Multi-Scale Plasma DynamicsRevisiting Perturbative Hybrid Kinetic-MHD Theory

    PubMed Central

    Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go

    2016-01-01

    It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle’s Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas. PMID:27160346

  4. Flow-Induced New Channels of Energy Exchange in Multi-Scale Plasma DynamicsRevisiting Perturbative Hybrid Kinetic-MHD Theory

    NASA Astrophysics Data System (ADS)

    Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go

    2016-05-01

    It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle’s Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas.

  5. Flow-Induced New Channels of Energy Exchange in Multi-Scale Plasma Dynamics - Revisiting Perturbative Hybrid Kinetic-MHD Theory.

    PubMed

    Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go

    2016-01-01

    It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle's Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas. PMID:27160346

  6. Theoretical study of N (4S, 2D)+CH3 (2A2″) reaction mechanisms revisited: The importance of spin-forbidden and roaming dynamics processes

    NASA Astrophysics Data System (ADS)

    Chiba, Sachie; Yoshida, Fuka; Takayanagi, Toshiyuki

    2014-03-01

    Extensive electronic structure calculations have been performed to understand the reaction mechanisms of the N(4S, 2D) + CH3 reaction using ab initio multi-configurational methods. We have located a total of seven structures for the minimum on the seam of singlet/triplet potential energy crossing. According to our computational results, we conclude that triplet/singlet spin-forbidden processes are playing an essential role in this reaction in high contrast with previous theoretical studies. In addition, it is likely that singlet HCN + H2 products are formed through so-called ‘roaming' dynamics.

  7. Revisiting the frequency domain: the multiple and partial coherence of cerebral blood flow velocity in the assessment of dynamic cerebral autoregulation.

    PubMed

    Katsogridakis, Emmanuel; Simpson, David M; Bush, Glen; Fan, Lingke; Birch, Anthony A; Allen, Robert; Potter, John F; Panerai, Ronney B

    2016-07-01

    Despite advances in modelling dynamic autoregulation, only part of the variability of cerebral blood flow velocity (CBFV) in the low frequency range has been explained. We investigate whether a multivariate representation can be used for this purpose. Pseudorandom sequences were used to inflate thigh cuffs and to administer 5% CO2. Multiple and partial coherence were estimated, using arterial blood pressure (ABP), end-tidal CO2 (EtCO2) and resistance area product as input and CBFV as output variables. The inclusion of second and third input variables increased the amount of CBFV variability that can be accounted for (p  <  10(-4) in both cases). Partial coherence estimates in the low frequency range (<0.07 Hz) were not influenced by the use of thigh cuffs, but CO2 administration had a statistically significant effect (p  <  10(-4) in all cases). We conclude that the inclusion of additional inputs of a priori known physiological significance can help account for a greater amount of CBFV variability and may represent a viable alternative to more conventional non-linear modelling. The results of partial coherence analysis suggest that dynamic autoregulation and CO2 reactivity are likely to be the result of different physiological mechanisms. PMID:27244196

  8. Revisiting a magneto-elastic strange attractor

    NASA Astrophysics Data System (ADS)

    Tam, Jee Ian; Holmes, Philip

    2014-03-01

    We revisit an early example of a nonlinear oscillator that exhibits chaotic motions when subjected to periodic excitation: the magneto-elastically buckled beam. In the paper of Moons and Holmes (1980) [1] magnetic field calculations were outlined but not carried through; instead the nonlinear forces responsible for creation of a two-well potential and buckling were fitted to a polynomial function after reduction to a single mode model. In the present paper we compute the full magnetic field and use it to approximate the forces acting on the beam, also using a single mode reduction. This provides a complete model that accurately predicts equilibria, bifurcations, and free oscillation frequencies of an experimental device. We also compare some periodic, transient and chaotic motions with those obtained by numerical simulations of the single mode model, further illustrating the rich dynamical behavior of this simple electromechanical system.

  9. Visser's massive graviton bimetric theory revisited

    SciTech Connect

    Roany, Alain de; Chauvineau, Bertrand; Freitas Pacheco, Jose A. de

    2011-10-15

    A massive gravity theory was proposed by Visser in the late 1990s. This theory, based on a background metric b{sub {alpha}{beta}} and on an usual dynamical metric g{sub {alpha}{beta}} has the advantage of being free of ghosts as well as discontinuities present in other massive theories proposed in the past. In the present investigation, the equations of Visser's theory are revisited with particular care on the related conservation laws. It will be shown that a multiplicative factor is missing in the graviton tensor originally derived by Visser, which has no incidence on the weak field approach but becomes important in the strong field regime when, for instance, cosmological applications are considered. In this case, contrary to some previous claims found in the literature, we conclude that a nonstatic background metric is required in order to obtain a solution able to mimic the {Lambda}CDM cosmology.

  10. Multinomial pattern matching revisited

    NASA Astrophysics Data System (ADS)

    Horvath, Matthew S.; Rigling, Brian D.

    2015-05-01

    Multinomial pattern matching (MPM) is an automatic target recognition algorithm developed for specifically radar data at Sandia National Laboratories. The algorithm is in a family of algorithms that first quantizes pixel value into Nq bins based on pixel amplitude before training and classification. This quantization step reduces the sensitivity of algorithm performance to absolute intensity variation in the data, typical of radar data where signatures exhibit high variation for even small changes in aspect angle. Our previous work has focused on performance analysis of peaky template matching, a special case of MPM where binary quantization is used (Nq = 2). Unfortunately references on these algorithms are generally difficult to locate and here we revisit the MPM algorithm and illustrate the underlying statistical model and decision rules for two algorithm interpretations: the 1-of-K vector form and the scalar. MPM can also be used as a detector and specific attention is given to algorithm tuning where "peak pixels" are chosen based on their underlying empirical probabilities according to a reward minimization strategy aimed at reducing false alarms in the detection scenario and false positives in a classification capacity. The algorithms are demonstrated using Monte Carlo simulations on the AFRL civilian vehicle dataset for variety of choices of Nq.

  11. Lorentz violation naturalness revisited

    NASA Astrophysics Data System (ADS)

    Belenchia, Alessio; Gambassi, Andrea; Liberati, Stefano

    2016-06-01

    We revisit here the naturalness problem of Lorentz invariance violations on a simple toy model of a scalar field coupled to a fermion field via a Yukawa interaction. We first review some well-known results concerning the low-energy percolation of Lorentz violation from high energies, presenting some details of the analysis not explicitly discussed in the literature and discussing some previously unnoticed subtleties. We then show how a separation between the scale of validity of the effective field theory and that one of Lorentz invariance violations can hinder this low-energy percolation. While such protection mechanism was previously considered in the literature, we provide here a simple illustration of how it works and of its general features. Finally, we consider a case in which dissipation is present, showing that the dissipative behaviour does not percolate generically to lower mass dimension operators albeit dispersion does. Moreover, we show that a scale separation can protect from unsuppressed low-energy percolation also in this case.

  12. Stacking Global Seismograms Revisited

    NASA Astrophysics Data System (ADS)

    Shearer, P. M.; Buehler, J. S.; Denolle, M.; Fan, W.; Ma, Z.; Mancinelli, N. J.; Matoza, R. S.; Wang, W.; Wang, Y.; Zhan, Z.

    2014-12-01

    Over 20 years ago, stacks of global seismograms produced direct images of the global seismic wavefield highlighting the visibility, frequency content, and polarity of known seismic phases, and also identified a host of new phases associated with reflections and phase conversions from upper-mantle discontinuities. Two different stacking methods proved particularly useful: (1) STA/LTA-filtered stacks that describe the local signal-to-noise characteristics of the major seismic phases. These serve to image the entire wavefield in a uniform way for educational purposes and to show which phases are observed most clearly as a guide to future research. These stacks also resolve SH versus SV timing differences consistent with radial anisotropy. (2) Reference-phase stacks that preserve the polarity, amplitude, and timing of traces with respect to a specified target phase. These show a large number of top-side and bottom-side reflections and phase conversions from the 410- and 660-km discontinuities that create weak phases with a characteristic "railroad track" appearance both preceding and following many of the main seismic phases. Reference-phase stacking can also be used to produce coherent surface-wave stacks at very long periods, which directly show the dispersive character of the surface waves. Here we revisit and update these stacks by exploiting the vastly increased data now available from the IRIS DMC to produce greatly improved wavefield images. We present several examples of the different stacking approaches and point out their various features, including promising targets for future research.

  13. CGL description revisited

    NASA Astrophysics Data System (ADS)

    Hunana, P.; Zank, G. P.; Goldstein, M. L.; Webb, G. M.; Adhikari, L.

    2016-03-01

    Solar wind observational studies have emphasized that the solar wind plasma data is bounded by the mirror and firehose instabilities, and it is often believed that these instabilities are of a purely kinetic nature. The simplest fluid model that generalizes magnetohydrodynamics with anisotropic temperatures is the Chew-Goldberger-Low model (CGL). Here we briefly revisit the CGL description and discuss its (otherwise well-documented) linear firehose and mirror instability thresholds; namely that the firehose instability threshold is identical to the one found from linear kinetic theory and that the mirror threshold contains a factor of 6 error. We consider a simple higher-order fluid model with time dependent heat flux equations and show that the mirror instability threshold is correctly reproduced. We also present fully nonlinear three-dimensional simulations of freely decaying turbulence for the Hall-CGL model with isothermal electrons. The spatial resolution of these simulations is 5123 and the formation of a spectral break in magnetic and velocity field spectra around the proton inertial length is found.

  14. Searle's"Dualism Revisited"

    SciTech Connect

    P., Henry

    2008-11-20

    A recent article in which John Searle claims to refute dualism is examined from a scientific perspective. John Searle begins his recent article 'Dualism Revisited' by stating his belief that the philosophical problem of consciousness has a scientific solution. He then claims to refute dualism. It is therefore appropriate to examine his arguments against dualism from a scientific perspective. Scientific physical theories contain two kinds of descriptions: (1) Descriptions of our empirical findings, expressed in an every-day language that allows us communicate to each other our sensory experiences pertaining to what we have done and what we have learned; and (2) Descriptions of a theoretical model, expressed in a mathematical language that allows us to communicate to each other certain ideas that exist in our mathematical imaginations, and that are believed to represent, within our streams of consciousness, certain aspects of reality that we deem to exist independently of their being perceived by any human observer. These two parts of our scientific description correspond to the two aspects of our general contemporary dualistic understanding of the total reality in which we are imbedded, namely the empirical-mental aspect and the theoretical-physical aspect. The duality question is whether this general dualistic understanding of ourselves should be regarded as false in some important philosophical or scientific sense.

  15. Revisiting caspases in sepsis

    PubMed Central

    Aziz, M; Jacob, A; Wang, P

    2014-01-01

    Sepsis is a life-threatening illness that occurs due to an abnormal host immune network which extends through the initial widespread and overwhelming inflammation, and culminates at the late stage of immunosupression. Recently, interest has been shifted toward therapies aimed at reversing the accompanying periods of immune suppression. Studies in experimental animals and critically ill patients have demonstrated that increased apoptosis of lymphoid organs and some parenchymal tissues contributes to this immune suppression, anergy and organ dysfunction. Immediate to the discoveries of the intracellular proteases, caspases for the induction of apoptosis and inflammation, and their striking roles in sepsis have been focused elaborately in a number of original and review articles. Here we revisited the different aspects of caspases in terms of apoptosis, pyroptosis, necroptosis and inflammation and focused their links in sepsis by reviewing several recent findings. In addition, we have documented striking perspectives which not only rewrite the pathophysiology, but also modernize our understanding for developing novel therapeutics against sepsis. PMID:25412304

  16. 42 CFR 488.30 - Revisit user fee for revisit surveys.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 5 2012-10-01 2012-10-01 false Revisit user fee for revisit surveys. 488.30 Section 488.30 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION SURVEY, CERTIFICATION, AND ENFORCEMENT PROCEDURES General Provisions § 488.30 Revisit user fee...

  17. Erratum: Interstellar Abundance Standards Revisited

    NASA Astrophysics Data System (ADS)

    Sofia, U. J.; Meyer, D. M.

    2001-09-01

    In the Letter ``Interstellar Abundance Standards Revisited'' by U. J. Sofia and D. M. Meyer (ApJ, 554, L221 [2001]), Table 2 and its footnotes contain several typographical errors. The corrected table is shown below. We note that the solar reference standard now implies a positive abundance of nitrogen in halo dust.

  18. Cultural Warping of Childbirth, Revisited

    PubMed Central

    Budin, Wendy C.

    2007-01-01

    In this column, the editor of The Journal of Perinatal Education revisits Doris Haire's classic 1972 article, “The Cultural Warping of Childbirth,” and describes the birth culture of today. The editor also describes the contents of this issue, which offer a broad range of resources, research, and inspiration for childbirth educators in their efforts to promote normal birth.

  19. The "Mushroom Cloud" Demonstration Revisited

    ERIC Educational Resources Information Center

    Panzarasa, Guido; Sparnacci, Katia

    2013-01-01

    A revisitation of the classical "mushroom cloud" demonstration is described. Instead of aniline and benzoyl peroxide, the proposed reaction involves household chemicals such as alpha-pinene (turpentine oil) and trichloroisocyanuric acid ("Trichlor") giving an impressive demonstration of oxidation and combustion reactions that…

  20. Origin of Asymmetric Solvation Effects for Ions in Water and Organic Solvents Investigated Using Molecular Dynamics Simulations: The Swain Acity-Basity Scale Revisited.

    PubMed

    Reif, Maria M; Hünenberger, Philippe H

    2016-08-25

    The asymmetric solvation of ions can be defined as the tendency of a solvent to preferentially solvate anions over cations or cations over anions, at identical ionic charge magnitudes and effective sizes. Taking water as a reference, these effects are quantified experimentally for many solvents by the relative acity (A) and basity (B) parameters of the Swain scale. The goal of the present study is to investigate the asymmetric solvation of ions using molecular dynamics simulations, and to connect the results to this empirical scale. To this purpose, the charging free energies of alkali and halide ions, and of their hypothetical oppositely charged counterparts, are calculated in a variety of solvents. In a first set of calculations, artificial solvent models are considered that present either a charge or a shape asymmetry at the molecular level. The solvation asymmetry, probed by the difference in charging free energy between the two oppositely charged ions, is found to encompass a term quadratic in the ion charge, related to the different solvation structures around the anion and cation, and a term linear in the ion charge, related to the solvation structure around the uncharged ion-sized cavity. For these simple solvent models, the two terms are systematically counteracting each other, and it is argued that only the quadratic term should be retained when comparing the results of simulations involving physical solvents to experimental data. In a second set of calculations, 16 physical solvents are considered. The theoretical estimates for the acity A are found to correlate very well with the Swain parameters, whereas the correlation for B is very poor. Based on this observation, the Swain scale is reformulated into a new scale involving an asymmetry parameter Σ, positive for acitic solvents and negative for basitic ones, and a polarity parameter Π. This revised scale has the same predictive power as the original scale, but it characterizes asymmetry in an

  1. BHQ revisited (2): Texture development

    NASA Astrophysics Data System (ADS)

    Kilian, Rüdiger; Heilbronner, Renée

    2016-04-01

    appears that grains can be unfavourably oriented for glide despite their c-axis direction falling in those positions which were used in the "classical" interpretation. Additionally, it turns out that grain-scale dispersion axes can be used to describe the kinematic behaviour in a more consistent way compared to the rotations axes obtained from intragranular misorientations in the range of 2-10°. The implications derived from the experimental data set will be compared to data obtained from natural quartz mylonites which formed in a comparable recrystallization regime. This is the companion poster to "BHQ revisited (I) looking at grain size" where the development of the dynamically recrystallized grain size is addressed. Reference cited: Heilbronner, R., and J. Tullis (2006), Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite, J. Geophys. Res., 111, B10202, doi:10.1029/2005JB004194.

  2. Light-front representation of chiral dynamics with Δ isobar and large- N c relations

    NASA Astrophysics Data System (ADS)

    Granados, C.; Weiss, C.

    2016-06-01

    Transverse densities describe the spatial distribution of electromagnetic current in the nucleon at fixed light-front time. At peripheral distances b = O( M π - 1 ) the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). Recent work has shown that the EFT results can be represented in first-quantized form, as overlap integrals of chiral light-front wave functions describing the transition of the nucleon to soft-pion-nucleon intermediate states, resulting in a quantum-mechanical picture of the peripheral transverse densities. We now extend this representation to include intermediate states with Δ isobars and implement relations based on the large- N c limit of QCD. We derive the wave function overlap formulas for the Δ contributions to the peripheral transverse densities by way of a three-dimensional reduction of relativistic chiral EFT expressions. Our procedure effectively maintains rotational invariance and avoids the ambiguities with higher-spin particles in the light-front time-ordered approach. We study the interplay of π N and πΔ intermediate states in the quantum-mechanical picture of the densities in a transversely polarized nucleon. We show that the correct N c -scaling of the charge and magnetization densities emerges as the result of the particular combination of currents generated by intermediate states with degenerate N and Δ. The off-shell behavior of the chiral EFT is summarized in contact terms and can be studied easily. The methods developed here can be applied to other peripheral densities and to moments of the nucleon's generalized parton distributions.

  3. First Grade Writers Revisit Their Work

    ERIC Educational Resources Information Center

    Hansen, Jane A.

    2007-01-01

    In this article, the author focuses on first grade readers and writers who revisit their work and describes what first-graders do when they revisit their writing about science and literature and review collections of their work. The first-graders discussed here are in Elaine O'Connor's classroom at Clark Elementary School in Charlottesville. In a…

  4. Benjamin Franklin and Mesmerism, revisited.

    PubMed

    McConkey, Kevin M; Perry, Campbell

    2002-10-01

    The authors revisit and update their previous historiographical note (McConkey & Perry, 1985) on Benjamin Franklin's involvement with and investigation of animal magnetism or mesmerism. They incorporate more recent literature and offer additional comment about Franklin's role in and views about mesmerism. Franklin had a higher degree of personal involvement with and a more detailed opinion of mesmerism than has been previously appreciated. PMID:12362950

  5. Radiolytic Cryovolcanism Revisited

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.; Cooper, P. D.; Sittler, E. C.; Wesenberg, R. P.

    2013-12-01

    Active geysers of water vapor and ice grains from the south pole of Enceladus are not yet definitively explained in terms of energy sources and processes. Other instances of hot (Io) and cold (Mars, Triton) volcanism beyond Earth are known if not fully understood. We revisit, in comparison to other models, the 'Old Faithful' theory of radiolytic gas-driven cryovolcanism first proposed by Cooper et al. [Plan. Sp. Sci. 2009]. In the energetic electron irradiation environment of Enceladus within Saturn's magnetosphere, a 10-percent duty cycle could be maintained for current geyser activity driven by gases from oxidation of ammonia to N2 and methane to CO2 in the thermal margins of a south polar sea. Much shorter duty cycles down to 0.01 percent would be required to account for thermal power output up to 16 GW, Steady accumulation of oxidant energy over four billion years could have powered all Enceladus emissions over the past four hundred thousand to four hundred million years. There could be separate energy sources driving mass flow and thermal emission over vastly different time scales. Since episodic tidal dissipation on 10 Myr time scales at 0.1 - 1 Gyr intervals [O'Neill and Nimmo, Nature 2010], and thus duty cycles 1 - 10 percent, could heat the polar sea to the current level, the radiolytic energy source could easily power and modulate the geyser mass flow on million-year time scales. Maximum thermal emission temperature 223 K [Abramov and Spencer, Icarus 2009] hints at thermal buffering in the basal and vent wall layers by a 1:1 H2O:H2O2 radiolytic eutectic, assuming deep ice crust saturation with H2O2 from long cumulative surface irradiation and downward ice convection. Due to density stratification the peroxide eutectic and salt water layers could separate, so that the denser peroxide layer (1.2 g/cc) descends to the polar sea while the lighter salt water (1.05 g/cc) rises along separate channels. Methane reservoirs could be found dissolved into the polar

  6. Granger causality revisited

    PubMed Central

    Friston, Karl J.; Bastos, André M.; Oswal, Ashwini; van Wijk, Bernadette; Richter, Craig; Litvak, Vladimir

    2014-01-01

    This technical paper offers a critical re-evaluation of (spectral) Granger causality measures in the analysis of biological timeseries. Using realistic (neural mass) models of coupled neuronal dynamics, we evaluate the robustness of parametric and nonparametric Granger causality. Starting from a broad class of generative (state-space) models of neuronal dynamics, we show how their Volterra kernels prescribe the second-order statistics of their response to random fluctuations; characterised in terms of cross-spectral density, cross-covariance, autoregressive coefficients and directed transfer functions. These quantities in turn specify Granger causality — providing a direct (analytic) link between the parameters of a generative model and the expected Granger causality. We use this link to show that Granger causality measures based upon autoregressive models can become unreliable when the underlying dynamics is dominated by slow (unstable) modes — as quantified by the principal Lyapunov exponent. However, nonparametric measures based on causal spectral factors are robust to dynamical instability. We then demonstrate how both parametric and nonparametric spectral causality measures can become unreliable in the presence of measurement noise. Finally, we show that this problem can be finessed by deriving spectral causality measures from Volterra kernels, estimated using dynamic causal modelling. PMID:25003817

  7. Recurrence plots revisited

    NASA Astrophysics Data System (ADS)

    Casdagli, M. C.

    1997-09-01

    We show that recurrence plots (RPs) give detailed characterizations of time series generated by dynamical systems driven by slowly varying external forces. For deterministic systems we show that RPs of the time series can be used to reconstruct the RP of the driving force if it varies sufficiently slowly. If the driving force is one-dimensional, its functional form can then be inferred up to an invertible coordinate transformation. The same results hold for stochastic systems if the RP of the time series is suitably averaged and transformed. These results are used to investigate the nonlinear prediction of time series generated by dynamical systems driven by slowly varying external forces. We also consider the problem of detecting a small change in the driving force, and propose a surrogate data technique for assessing statistical significance. Numerically simulated time series and a time series of respiration rates recorded from a subject with sleep apnea are used as illustrative examples.

  8. Doppler ultrasound--basics revisited.

    PubMed

    Eagle, Mary

    Palpation of pedal pulses alone is known to be an unreliable indicator for the presence of arterial disease. Using portable Doppler ultrasound to measure the resting ankle brachial pressure index is superior to palpation of peripheral pulses as an assessment of the adequacy pf the arterial supply in the lower limb. Revisiting basics, this article aims to aid the clinician to understand and perform hand-held Doppler ultrasound effectively while involving the client or patient in the process. The author describes the basics of Doppler ultrasound, how to select correct equipment for the process, and interpretation of results to further enhance clinicians' knowledge. PMID:16835512

  9. SLIM--An Early Work Revisited

    SciTech Connect

    Chao, Alex; /SLAC

    2008-07-25

    An early, but at the time illuminating, piece of work on how to deal with a general, linearly coupled accelerator lattice is revisited. This work is based on the SLIM formalism developed in 1979-1981.

  10. Rabbits killing birds revisited.

    PubMed

    Zhang, Jimin; Fan, Meng; Kuang, Yang

    2006-09-01

    We formulate and study a three-species population model consisting of an endemic prey (bird), an alien prey (rabbit) and an alien predator (cat). Our model overcomes several model construction problems in existing models. Moreover, our model generates richer, more reasonable and realistic dynamics. We explore the possible control strategies to save or restore the bird by controlling or eliminating the rabbit or the cat when the bird is endangered. We confirm the existence of the hyperpredation phenomenon, which is a big potential threat to most endemic prey. Specifically, we show that, in an endemic prey-alien prey-alien predator system, eradication of introduced predators such as the cat alone is not always the best solution to protect endemic insular prey since predator control may fail to protect the indigenous prey when the control of the introduced prey is not carried out simultaneously. PMID:16529776

  11. The Compton generator revisited

    NASA Astrophysics Data System (ADS)

    Siboni, S.

    2014-09-01

    The Compton generator, introduced in 1913 by the US physicist A H Compton as a relatively simple device to detect the Earth's rotation with respect to the distant stars, is analyzed and discussed in a general perspective. The paper introduces a generalized definition of the generator, emphasizing the special features of the original apparatus, and provides a suggestive interpretation of the way the device works. To this end, an intriguing electromagnetic analogy is developed, which turns out to be particularly useful in simplifying the calculations. Besides the more extensive description of the Compton generator in itself, the combined use of concepts and methods coming from different fields of physics, such as particle dynamics in moving references frames, continuum mechanics and electromagnetism, may be of interest to both teachers and graduate students.

  12. The Kramers Oscillator Revisited

    NASA Astrophysics Data System (ADS)

    Arnold, Ludwig; Imkeller, Peter

    In their 1993 paper [14], Schimansky-Geier and Herze1 discovered numerically that the Kramers oscillator (which is identical with the Duffing oscillator forced by additive white noise) has a positive top Lyapunov exponent in the low damping regime. In this paper, we study the Kramers oscillator from the point of view of random dynamical systems. In particular, we confirm the findings in the paper [14] about the Lyapunov exponent by performing more precise simulations, revealing that the Lyapunov exponent is positive up to a critical value of the damping, from which on it remains negative. We then show that the Kramers oscillator has a global random attractor which in the stable regime (large damping) is just a random point and in the unstable regime (small damping) has very complicated geometrical structure. In the lat-ter case the invariant measure supported by the attractor is a Sinai-Ruelle-Bowen measure with positive entropy. The Kramers oscillator hence undergoes a stochastic bifurcation at the critical value of the damping Parameter.

  13. DROMO propagator revisited

    NASA Astrophysics Data System (ADS)

    Urrutxua, Hodei; Sanjurjo-Rivo, Manuel; Peláez, Jesús

    2016-01-01

    In the year 2000 an in-house orbital propagator called DROMO (Peláez et al. in Celest Mech Dyn Astron 97:131-150, 2007. doi: 10.1007/s10569-006-9056-3) was developed by the Space Dynamics Group of the Technical University of Madrid, based in a set of redundant variables including Euler-Rodrigues parameters. An original deduction of the DROMO propagator is carried out, underlining its close relation with the ideal frame concept introduced by Hansen (Abh der Math-Phys Cl der Kon Sachs Ges der Wissensch 5:41-218, 1857). Based on the very same concept, Deprit (J Res Natl Bur Stand Sect B Math Sci 79B(1-2):1-15, 1975) proposed a formulation for orbit propagation. In this paper, similarities and differences with the theory carried out by Deprit are analyzed. Simultaneously, some improvements are introduced in the formulation, that lead to a more synthetic and better performing propagator. Also, the long-term effect of the oblateness of the primary is studied in terms of DROMO variables, and new numerical results are presented to evaluate the performance of the method.

  14. The Phantom brane revisited

    NASA Astrophysics Data System (ADS)

    Sahni, Varun

    2016-07-01

    The Phantom brane is based on the normal branch of the DGP braneworld. It possesses a phantom-like equation of state at late times, but no big-rip future singularity. In this braneworld, the cosmological constant is dynamically screened at late times. Consequently it provides a good fit to SDSS DR11 measurements of H(z) at high redshifts. We obtain a closed system of equations for scalar perturbations on the brane. Perturbations of radiation, matter and the Weyl fluid are self-consistently evolved until the present epoch. We find that the late time growth of density perturbations on the brane proceeds at a faster rate than in ΛCDM. Additionally, the gravitational potentials φ, Ψ evolve differently on the brane than in ΛCDM, for which φ = Ψ. On the Brane, by contrast, the ratio φ/Ψ exceeds unity during the late matter dominated epoch (z ≤ 50). These features emerge as smoking gun tests of phantom brane cosmology and allow predictions of this scenario to be tested against observations of galaxy clustering and large scale structure. The phantom brane also displays a pole in its equation of state, which provides a key test of this dark energy model.

  15. Multiscale Fluctuation Analysis Revisited

    NASA Astrophysics Data System (ADS)

    Struzik, Zbigniew R.; Kiyono, Ken; Yamamoto, Yoshiharu

    2007-07-01

    Ubiquitous non-Gaussianity of the probability density of (time-series) fluctuations in many real world phenomena has been known and modelled extensively in recent years. Similarly, the analysis of (multi)scaling properties of (fluctuations in) complex systems has become a standard way of addressing unknown complexity. Yet the combined analysis and modelling of multiscale behaviour of probability density — multiscale PDF analysis — has only recently been proposed for the analysis of time series arising in complex systems, such as the cardiac neuro-regulatory system, financial markets or hydrodynamic turbulence. This relatively new technique has helped significantly to expand the previously obtained insights into the phenomena addressed. In particular, it has helped to identify a novel class of scale invariant behaviour of the multiscale PDF in healthy heart rate regulation during daily activity and in a market system undergoing crash dynamics. This kind of invariance reflects invariance of the system under renormalisation and resembles behaviour at criticality of a system undergoing continuous phase transition — indeed in both phenomena, such phase transition behaviour has been revealed. While the precise mechanism underlying invariance of the PDF under system renormalisation of both systems discussed is not to date understood, there is an intimate link between the non-Gaussian PDF characteristics and the persistent invariant correlation structure emerging between fluctuations across scale and time.

  16. The bacterial nucleoid revisited.

    PubMed Central

    Robinow, C; Kellenberger, E

    1994-01-01

    This review compares the results of different methods of investigating the morphology of nucleoids of bacteria grown under conditions favoring short generation times. We consider the evidence from fixed and stained specimens, from phase-contrast and fluorescence microscopy of growing bacteria, and from electron microscopy of whole as well as thinly sectioned ones. It is concluded that the nucleoid of growing cells is in a dynamic state: part of the chromatin is "pulled out" of the bulk of the nucleoid in order to be transcribed. This activity is performed by excrescences which extend far into the cytoplasm so as to reach the maximum of available ribosomes. Different means of fixation provide markedly different views of the texture of the DNA-containing plasm of the bulk of the nucleoid. Conventional chemical fixatives stabilize the cytoplasm of bacteria but not their protein-low chromatin. Uranyl acetate does cross-link the latter well but only if the cytoplasm has first been fixed conventionally. In the interval between the two fixations, the DNA arranges itself in liquid-crystalline form, supposedly because of loss of supercoiling. In stark contrast, cryofixation preserves bacterial chromatin in a finely granular form, believed to reflect its native strongly negatively supercoiled state. In dinoflagellates the DNA of their permanently visible chromosomes (also low in histone-like protein) is natively present as a liquid crystal. The arrangement of chromatin in Epulocystis fishelsoni, one of the largest known prokaryotes, is briefly described. Images PMID:7521510

  17. The Cosmic Battery Revisited

    NASA Technical Reports Server (NTRS)

    Contopoulos, Ioannis; Kazanas, Demosthenes; Christodoulos, Dimistris M.

    2007-01-01

    We reinvestigate the generation and accumulation of magnetic flux in optically thin accretion flows around active gravitating objects. The source of the magnetic field is the azimuthal electric current associated with the Poynting-Robertson drag on the electrons of the accreting plasma. This current generates magnetic field loops which open up because of the differential rotation of the flow. We show through simple numerical simulations that what regulates the generation and accumulation of magnetic flux near the center is the value of the plasma conductivity. Although the conductivity is usually considered to be effectively infinite for the fully ionized plasmas expected near the inner edge of accretion disks, the turbulence of those plasmas may actually render them much less conducting due to the presence of anomalous resistivity. We have discovered that if the resistivity is sufficiently high throughout the turbulent disk while it is suppressed interior to its inner edge, an interesting steady-state process is established: accretion carries and accumulates magnetic flux of one polarity inside the inner edge of the disk, whereas magnetic diffusion releases magnetic flux of the opposite polarity to large distances. In this scenario, magnetic flux of one polarity grows and accumulates at a steady rate in the region inside the inner edge and up to the point of equipartition when it becomes dynamically important. We argue that this inward growth and outward expulsion of oppositely-directed magnetic fields that we propose may account for the approx. 30 min cyclic variability observed in the galactic microquasar GRS1915+105.

  18. Origin of Sex Revisited

    NASA Astrophysics Data System (ADS)

    Santos, Mauro; Zintzaras, Elias; Szathmáry, Eörs

    2003-10-01

    Why did sex ever arise in the first place? Why it does not disappear in view of the greater efficiency of asexuals? These are clearly two different questions, and we suggest here that the solution for the origin of sex does not necessarily come from theoretical considerations based on currently existing genetic systems. Thus, while we agree with a number of authors in that the emergence of sex (understood as the exchange of genetic material between genomes) is deeply rooted in the origin of life and happened during the very early stages in the transition from individual genes (`replicators') to bacteria-like cells (`reproducers'), we challenge the idea that recombinational repair was the major selective force for the emergence of sex. Taking the stochastic corrector model as a starting point, we provide arguments that question the putative costs of redundancy in primitive protocells. In addition, if genes that cause intragenomic conflict (i.e., parasites) are taken into account, it is certainly wrong to suggest that cellular fusion would be beneficial at the population level (although this strong claim needs some qualifications). However, when a continuous input of deleterious mutations that impair the fitness of the protocell as a whole is considered in the model (in the realistic range in which stable mutant distributions of quasi-species within compartments are established), there are circumstances when sex could be beneficial as a side effect of the dynamic equilibrium between cellular fusion-mutation-selection. The scenario we have explored numerically is fully consistent with the idea that the universal ancestor was not a discrete entity but an ensemble of proto-organisms that exchanged much genetic information.

  19. Collisional Cascades Revisited

    NASA Astrophysics Data System (ADS)

    Schlichting, Hilke; Pan, M.

    2013-01-01

    Collisional cascades are believed to be the primary mechanism operating in circumstellar dusty debris disks, and are thought to be important in the Kuiper and Asteroid belt. Collisional cascades transfer mass via destructive collisions from larger bodies to smaller ones. Their widespread occurrence and potential importance in understanding planet formation and planet-disk interactions have motivated detailed studies of collisional cascades. The standard theoretical treatment of collisional cascades derives a steady-state size distribution assuming a single constant velocity dispersion for all bodies regardless of size. We relax this assumption and solve self-consistently for the bodies' steady-state size and size-dependent velocity distributions. Specifically, we account for viscous stirring, dynamical friction, and collisional damping of the bodies' random velocities in addition to the mass conservation requirement typically applied to find the size distribution in a steady-state cascade. The resulting size distributions are significantly steeper than those derived without velocity evolution. For example, accounting self-consistently for the velocities can change the standard q = 3.5 power-law index of the Dohnanyi differential size spectrum to an index as large as q = 4. Similarly, for bodies held together by their own gravity, the corresponding power-law index range 2.88 < q < 3.14 of Pan & Sari (2005) can steepen to values as large as q = 3.26. These differences in the size distribution power law index are very important when estimating the total disk mass, including larger bodies, by extrapolating from the observed dust masses. Our velocity results allow quantitative predictions of the bodies' scale heights as a function of size. Together with our predictions, observations of the scale heights for different-sized bodies in, for example, extrasolar debris disks may constrain the total mass in large bodies stirring the cascade as well as the colliding bodies

  20. The climate continuum revisited

    NASA Astrophysics Data System (ADS)

    Emile-Geay, J.; Wang, J.; Partin, J. W.

    2015-12-01

    A grand challenge of climate science is to quantify the extent of natural variability on adaptation-relevant timescales (10-100y). Since the instrumental record is too short to adequately estimate the spectra of climate measures, this information must be derived from paleoclimate proxies, which may harbor a many-to-one, non-linear (e.g. thresholded) and non-stationary relationship to climate. In this talk, I will touch upon the estimation of climate scaling behavior from climate proxies. Two case studies will be presented: an investigation of scaling behavior in a reconstruction of global surface temperature using state-of- the-art data [PAGES2K Consortium, in prep] and methods [Guillot et al., 2015]. Estimating the scaling exponent β in spectra derived from this reconstruction, we find that 0 < β < 1 in most regions, suggesting long-term memory. Overall, the reconstruction-based spectra are steeper than the ones based on an instrumental dataset [HadCRUT4.2, Morice et al., 2012], and those estimated from PMIP3/CMIP5 models, suggesting the climate system is more energetic at multidecadal to centennial timescales than can be inferred from the short instrumental record or from the models developed to reproduce it [Laepple and Huybers, 2014]. an investigation of scaling behavior in speleothems records of tropical hydroclimate. We will make use of recent advances in proxy system modeling [Dee et al., 2015] and investigate how various aspects of the speleothem system (karst dynamics, age uncertainties) may conspire to bias the estimate of scaling behavior from speleothem timeseries. The results suggest that ignoring such complications leads to erroneous inferences about hydroclimate scaling. References Dee, S. G., J. Emile-Geay, M. N. Evans, Allam, A., D. M. Thompson, and E. J. Steig (2015), J. Adv. Mod. Earth Sys., 07, doi:10.1002/2015MS000447. Guillot, D., B. Rajaratnam, and J. Emile-Geay (2015), Ann. Applied. Statist., pp. 324-352, doi:10.1214/14-AOAS794. Laepple, T

  1. Secret Public Key Protocols Revisited

    NASA Astrophysics Data System (ADS)

    Lim, Hoon Wei; Paterson, Kenneth G.

    Password-based protocols are important and popular means of providing human-to-machine authentication. The concept of secret public keys was proposed more than a decade ago as a means of securing password-based authentication protocols against off-line password guessing attacks, but was later found vulnerable to various attacks. In this paper, we revisit the concept and introduce the notion of identity-based secret public keys. Our new identity-based approach allows secret public keys to be constructed in a very natural way using arbitrary random strings, eliminating the structure found in, for example, RSA or ElGamal keys. We examine identity-based secret public key protocols and give informal security analyses, indicating that they are secure against off-line password guessing and other attacks.

  2. Extended equal area criterion revisited

    SciTech Connect

    Xue, X.; Wehenkel, L.; Belhomme, R.; Rousseaux, P.; Pavella, M. ); Euxibie, E.; Heilbronn, B.; Lesigne, J.F. )

    1992-08-01

    This paper reports on a case study conducted on the EHV French power system in order to revisit the extended equal area criterion and test its suitability as a fast transient stability indicator. The assumptions underlying the method are reexamined, causes liable to invalidate them are identified, and indices are devised to automatically circumvent them. The selection of candidate critical machines is also reconsidered and an augmented criterion is proposed. The various improvements are developed and tested on about 1000 stability scenarios, covering the entire 400-kV system; the severity of the scenarios, resulting from the combination of weakened both pre- and post-fault configurations, subjects the method to particularly stringent conditions. The obtained results show that the devised tools contribute to significantly reinforce its robustness and reliability.

  3. Cretaceous eustasy revisited

    NASA Astrophysics Data System (ADS)

    Haq, Bilal U.

    2014-02-01

    Eustatic sea-level changes of the Cretaceous are reevaluated based on a synthesis of global stratigraphic data. A new terminology for local/regional or relative sea-level changes (eurybatic shifts) is proposed to distinguish them from global (eustatic) sea-level changes, with the observation that all measures of sea-level change in any given location are eurybatic, even when they include a strong global signal. Solid-earth factors that influence inherited regional topography and thus modify physical measures of amplitude of the sea-level rises and falls locally are reviewed. One of these factors, dynamic topography (surface expression of mass flow in the upper mantle on land- and seascapes), is considered most pertinent in altering local measures of amplitude of sea-level events on third-order time scales (0.5-3.0 Myr). Insights gained from these models have led to the reconciliation of variance between amplitude estimates of eurybatic shifts in any given region and global measures of eustatic changes. Global estimates of third-order events can only be guesstimated at best by averaging the eurybatic data from widely distributed time-synchronous events. Revised curves for both long-term and short-term sea-level variations are presented for the Cretaceous Period. The curve representing the long-term envelope shows that average sea levels throughout the Cretaceous remained higher than the present day mean sea level (75-250 m above PDMSL). Sea level reached a trough in mid Valanginian (~ 75 m above PDMSL), followed by two high points, the first in early Barremian (~ 160-170 m above PDMSL) and the second, the highest peak of the Cretaceous, in earliest Turonian (~ 240-250 m above PDMSL). The curve also displays two ~ 20 Myr-long periods of relatively high and stable sea levels (Aptian through early Albian and Coniacian through Campanian). The short-term curve identifies 58 third-order eustatic events in the Cretaceous, most have been documented in several basins, while

  4. 42 CFR 488.30 - Revisit user fee for revisit surveys.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICES (CONTINUED) STANDARDS AND CERTIFICATION SURVEY, CERTIFICATION, AND ENFORCEMENT PROCEDURES General... be subject to user fees unless otherwise exempted. Revisit survey means a survey performed with..., or substantiated complaint survey and that is designed to evaluate the extent to which...

  5. 42 CFR 488.30 - Revisit user fee for revisit surveys.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SERVICES (CONTINUED) STANDARDS AND CERTIFICATION SURVEY, CERTIFICATION, AND ENFORCEMENT PROCEDURES General... be subject to user fees unless otherwise exempted. Revisit survey means a survey performed with..., or substantiated complaint survey and that is designed to evaluate the extent to which...

  6. 42 CFR 488.30 - Revisit user fee for revisit surveys.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SERVICES (CONTINUED) STANDARDS AND CERTIFICATION SURVEY, CERTIFICATION, AND ENFORCEMENT PROCEDURES General... be subject to user fees unless otherwise exempted. Revisit survey means a survey performed with..., or substantiated complaint survey and that is designed to evaluate the extent to which...

  7. Revisiting Bohr's semiclassical quantum theory.

    PubMed

    Ben-Amotz, Dor

    2006-10-12

    Bohr's atomic theory is widely viewed as remarkable, both for its accuracy in predicting the observed optical transitions of one-electron atoms and for its failure to fully correspond with current electronic structure theory. What is not generally appreciated is that Bohr's original semiclassical conception differed significantly from the Bohr-Sommerfeld theory and offers an alternative semiclassical approximation scheme with remarkable attributes. More specifically, Bohr's original method did not impose action quantization constraints but rather obtained these as predictions by simply matching photon and classical orbital frequencies. In other words, the hydrogen atom was treated entirely classically and orbital quantized emerged directly from the Planck-Einstein photon quantization condition, E = h nu. Here, we revisit this early history of quantum theory and demonstrate the application of Bohr's original strategy to the three quintessential quantum systems: an electron in a box, an electron in a ring, and a dipolar harmonic oscillator. The usual energy-level spectra, and optical selection rules, emerge by solving an algebraic (quadratic) equation, rather than a Bohr-Sommerfeld integral (or Schroedinger) equation. However, the new predictions include a frozen (zero-kinetic-energy) state which in some (but not all) cases lies below the usual zero-point energy. In addition to raising provocative questions concerning the origin of quantum-chemical phenomena, the results may prove to be of pedagogical value in introducing students to quantum mechanics. PMID:17020371

  8. Revisiting and Rethinking the Reading Process.

    ERIC Educational Resources Information Center

    Kucer, Stephen B.; Tuten, Jenny

    2003-01-01

    Reports on the authors' revisiting of the reading process using proficient adult readers (advanced graduate students in a school of education) as their informants. Begins with a brief overview of the current debate concerning the nature of reading and explains how they went about investigating the issue. Discusses what they learned from their…

  9. Phenomenology of n - n ¯ oscillations revisited

    DOE PAGESBeta

    Gardner, S.; Jafari, E.

    2015-05-22

    We revisit the phenomenology of n-n¯ oscillations in the presence of external magnetic fields, highlighting the role of spin. We show, contrary to long-held belief, that the n-n¯ transition rate need not be suppressed, opening new opportunities for its empirical study.

  10. The Evil of Banality: Arendt Revisited

    ERIC Educational Resources Information Center

    Minnich, Elizabeth

    2014-01-01

    "The banality of evil" (Arendt) remains controversial and useful. Ironically, the concept is now itself a banality. To revisit and extend it, we consider the "evil of banality", the profound dangers of cliched thoughtlessness. A distinction is proposed: "intensive" versus "extensive evils". The former takes…

  11. Fine structure of the butterfly diagram revisited

    NASA Astrophysics Data System (ADS)

    Major, Balázs

    The latitudinal time distribution of sunspots (butterfly diagram) was studied by Becker (1959) and Antalová & Gnevyshev (1985). Our goal is to revisit these studies. In the first case we check whether there is a poleward migration in sunspot activity. In the second case we confirm the results, and make more quantitative statements concerning their significance and the position of the activity peaks.

  12. Revisiting the Regenerative Possibilities of Ortiz

    ERIC Educational Resources Information Center

    Duques, Matthew

    2004-01-01

    The author of this article revisits Simon Ortiz's poem, "From Sand Creek," in which the latter can in so few words convey both the horrific tragedy of conquest and colonization, while at the same time find a space for possibility, a means for recovery that is never about forgetting but always occurs as a kind of recuperative remembering. Ortiz…

  13. Revisiting separation properties of convex fuzzy sets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Separation of convex sets by hyperplanes has been extensively studied on crisp sets. In a seminal paper separability and convexity are investigated, however there is a flaw on the definition of degree of separation. We revisited separation on convex fuzzy sets that have level-wise (crisp) disjointne...

  14. The Rotating Morse-Pekeris Oscillator Revisited

    ERIC Educational Resources Information Center

    Zuniga, Jose; Bastida, Adolfo; Requena, Alberto

    2008-01-01

    The Morse-Pekeris oscillator model for the calculation of the vibration-rotation energy levels of diatomic molecules is revisited. This model is based on the realization of a second-order exponential expansion of the centrifugal term about the minimum of the vibrational Morse oscillator and the subsequent analytical resolution of the resulting…

  15. Revisiting the 1761 Transatlantic Tsunami

    NASA Astrophysics Data System (ADS)

    Baptista, Maria Ana; Wronna, Martin; Miranda, Jorge Miguel

    2016-04-01

    The tsunami catalogs of the Atlantic include two transatlantic tsunamis in the 18th century the well known 1st November 1755 and the 31st March 1761. The 31st March 1761 earthquake struck Portugal, Spain, and Morocco. The earthquake occurred around noontime in Lisbon alarming the inhabitants and throwing down ruins of the past 1st November 1755 earthquake. According to several sources, the earthquake was followed by a tsunami observed as far as Cornwall (United Kingdom), Cork (Ireland) and Barbados (Caribbean). The analysis of macroseismic information and its compatibility with tsunami travel time information led to a source area close to the Ampere Seamount with an estimated epicenter circa 34.5°N 13°W. The estimated magnitude of the earthquake was 8.5. In this study, we revisit the tsunami observations, and we include a report from Cadiz not used before. We use the results of the compilation of the multi-beam bathymetric data, that covers the area between 34°N - 38°N and 12.5°W - 5.5°W and use the recent tectonic map published for the Southwest Iberian Margin to select among possible source scenarios. Finally, we use a non-linear shallow water model that includes the discretization and explicit leap-frog finite difference scheme to solve the shallow water equations in the spherical or Cartesian coordinate to compute tsunami waveforms and tsunami inundation and check the results against the historical descriptions to infer the source of the event. This study received funding from project ASTARTE- Assessment Strategy and Risk Reduction for Tsunamis in Europe a collaborative project Grant 603839, FP7-ENV2013 6.4-3

  16. Dynamics

    NASA Astrophysics Data System (ADS)

    Ransom, Barbara

    1984-04-01

    Dynamics!” she said, as she buried her head deep in a book on tectonics. “Must be the key to explain what we see the ignorance of which seems to be chronic.”Convection below, then density flow and phase changes are not withstanding; Thermal gradient change and compositional range are things our minds should be commanding.

  17. The flow along an external corner revisited

    NASA Astrophysics Data System (ADS)

    Denier, Jim; Jewell, Nathaniel

    2013-11-01

    We revisit the problem of the flow of an almost inviscid fluid along an external corner made from the junction of two quarter infinite plates joined at an angle 0 < α < π / 2 . The structure of the boundary layer which develops along the corner is explored using a computational approach based upon a spectral element discretisation of the steady two-dimensional boundary-layer equations. We pay particular attention to the case when the angle α is small, thus approximating the semi-infinte quarter plate problem considered by Stewartson (1961) and recently revisited by Duck & Hewitt (2012). Our results, which demonstrate a thickening of the boundary-layer near the sharp corner, will be discussed in the context of the asymptotic theory developed in the aforementioned papers.

  18. Quasar X-Ray Spectra Revisited: Erratum

    NASA Astrophysics Data System (ADS)

    Shastri, P.; Wilkes, B. J.; Elvis, M.; McDowell, J.

    1994-08-01

    In the paper "Quasar X-Ray Spectra Revisited " by P. Shastri, B. J. Wilkes, M. Elvis, and J. McDowell (ApJ, 410,29 [1993]), there is an error in the flux density levels in Figures 4a and 4b. As a result of an error during rebinning of the optical spectrophotometry data, the flux density levels in those two figures are a factor of 5 lower then their actual value.

  19. Revisiting the Simplified Bernoulli Equation

    PubMed Central

    Heys, Jeffrey J; Holyoak, Nicole; Calleja, Anna M; Belohlavek, Marek; Chaliki, Hari P

    2010-01-01

    Background: The assessment of the severity of aortic valve stenosis is done by either invasive catheterization or non-invasive Doppler Echocardiography in conjunction with the simplified Bernoulli equation. The catheter measurement is generally considered more accurate, but the procedure is also more likely to have dangerous complications. Objective: The focus here is on examining computational fluid dynamics as an alternative method for analyzing the echo data and determining whether it can provide results similar to the catheter measurement. Methods: An in vitro heart model with a rigid orifice is used as a first step in comparing echocardiographic data, which uses the simplified Bernoulli equation, catheterization, and echocardiographic data, which uses computational fluid dynamics (i.e., the Navier-Stokes equations). Results: For a 0.93cm2 orifice, the maximum pressure gradient predicted by either the simplified Bernoulli equation or computational fluid dynamics was not significantly different from the experimental catheter measurement (p > 0.01). For a smaller 0.52cm2 orifice, there was a small but significant difference (p < 0.01) between the simplified Bernoulli equation and the computational fluid dynamics simulation, with the computational fluid dynamics simulation giving better agreement with experimental data for some turbulence models. Conclusion: For this simplified, in vitro system, the use of computational fluid dynamics provides an improvement over the simplified Bernoulli equation with the biggest improvement being seen at higher valvular stenosis levels. PMID:21625471

  20. 42 CFR 488.30 - Revisit user fee for revisit surveys.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SERVICES (CONTINUED) STANDARDS AND CERTIFICATION SURVEY, CERTIFICATION, AND ENFORCEMENT PROCEDURES General... subject to user fees unless otherwise exempted. Revisit survey means a survey performed with respect to a... substantiated complaint survey and that is designed to evaluate the extent to which...

  1. Orthorhombic Zr2Co11 phase revisited

    SciTech Connect

    Li, X. -Z.; Zhang, W. Y.; Sellmyer, D. J.; Zhao, X.; Nguyen, M. C.; Wang, C. Z.; Ho, K. M.

    2014-10-01

    The structure of the orthorhombic Zr2Co11 phase was revisited in the present work. Selected-area electron diffraction (SAED) and high-resolution electron microscopy (HREM) techniques were used to investigate the structure. They show the orthorhombic Zr2Co11 phase has a 1-D incommensurate modulated structure. The structure can be approximately described as a B-centered orthorhombic lattice. The lattice parameters of the orthorhombic Zr2Co11 phase have been determined by a tilt series of SAED patterns. A hexagonal network with a modulation wave has been observed in the HREM image and the hexagonal motif is considered as the basic structural unit.

  2. Sloan Digital Sky Survey Photometric Calibration Revisited

    SciTech Connect

    Marriner, John; /Fermilab

    2012-06-29

    The Sloan Digital Sky Survey calibration is revisited to obtain the most accurate photometric calibration. A small but significant error is found in the flat-fielding of the Photometric telescope used for calibration. Two SDSS star catalogs are compared and the average difference in magnitude as a function of right ascension and declination exhibits small systematic errors in relative calibration. The photometric transformation from the SDSS Photometric Telescope to the 2.5 m telescope is recomputed and compared to synthetic magnitudes computed from measured filter bandpasses.

  3. Sloan Digital Sky Survey Photometric Calibration Revisited

    NASA Astrophysics Data System (ADS)

    Marriner, J.

    2016-05-01

    The Sloan Digital Sky Survey calibration is revisited to obtain the most accurate photometric calibration. A small but significant error is found in the flat-fielding of the Photometric telescope used for calibration. Two SDSS star catalogs are compared and the average difference in magnitude as a function of right ascension and declination exhibits small systematic errors in relative calibration. The photometric transformation from the SDSS Photometric Telescope to the 2.5 m telescope is recomputed and compared to synthetic magnitudes computed from measured filter bandpasses.

  4. Revisiting the Master-Signifier, or, Mandela and Repression.

    PubMed

    Hook, Derek; Vanheule, Stijn

    2015-01-01

    The concept of the master-signifier has been subject to a variety of applications in Lacanian forms of political discourse theory and ideology critique. While there is much to be commended in literature of this sort, it often neglects salient issues pertaining to the role of master signifiers in the clinical domain of (individual) psychical economy. The popularity of the concept of the master (or "empty") signifier in political discourse analysis has thus proved a double-edged sword. On the one hand it demonstrates how crucial psychical processes are performed via the operations of the signifier, extending thus the Lacanian thesis that identification is the outcome of linguistic and symbolic as opposed to merely psychological processes. On the other, the use of the master signifier concept within the political realm to track discursive formations tends to distance the term from the dynamics of the unconscious and operation of repression. Accordingly, this paper revisits the master signifier concept, and does so within the socio-political domain, yet while paying particular attention to the functioning of unconscious processes of fantasy and repression. More specifically, it investigates how Nelson Mandela operates as a master signifier in contemporary South Africa, as a vital means of knitting together diverse elements of post-apartheid society, enabling the fantasy of the post-apartheid nation, and holding at bay a whole series of repressed and negated undercurrents. PMID:26834664

  5. Transonic Flow Around Swept Wings: Revisiting Von Karman's Similarity Rule

    NASA Astrophysics Data System (ADS)

    Kirkman, Jeffrey J.

    Modern aircraft are expected to fly faster and more efficiently than their predecessors. To improve aerodynamic efficiency, designers must carefully consider and handle shock wave formation. Presently, many designers utilize computationally heavy optimization methods to design wings. While these methods may work, they do not provide insight. This thesis aims to better understand fundamental methods that govern wing design. In order to further understand the flow in the transonic regime, this work revisits the Transonic Similarity Rule. This rule postulates an equivalent incompressible geometry to any high speed geometry in flight and postulates a "stretching" analogy. This thesis utilizes panel methods and Computational Fluid Dynamics (CFD) to show that the "stretching" analogy is incorrect, but instead the flow is transformed by a nonlinear "scaling" of the flow velocity. This work also presents data to show the discrepancies between many famous authors in deriving the accurate Critical Pressure Coefficient (Cp*) equation for both swept and unswept wing sections. The final work of the thesis aims to identify the correct predictive methods for the Critical Pressure Coefficient.

  6. Revisiting the Master-Signifier, or, Mandela and Repression

    PubMed Central

    Hook, Derek; Vanheule, Stijn

    2016-01-01

    The concept of the master-signifier has been subject to a variety of applications in Lacanian forms of political discourse theory and ideology critique. While there is much to be commended in literature of this sort, it often neglects salient issues pertaining to the role of master signifiers in the clinical domain of (individual) psychical economy. The popularity of the concept of the master (or “empty”) signifier in political discourse analysis has thus proved a double-edged sword. On the one hand it demonstrates how crucial psychical processes are performed via the operations of the signifier, extending thus the Lacanian thesis that identification is the outcome of linguistic and symbolic as opposed to merely psychological processes. On the other, the use of the master signifier concept within the political realm to track discursive formations tends to distance the term from the dynamics of the unconscious and operation of repression. Accordingly, this paper revisits the master signifier concept, and does so within the socio-political domain, yet while paying particular attention to the functioning of unconscious processes of fantasy and repression. More specifically, it investigates how Nelson Mandela operates as a master signifier in contemporary South Africa, as a vital means of knitting together diverse elements of post-apartheid society, enabling the fantasy of the post-apartheid nation, and holding at bay a whole series of repressed and negated undercurrents. PMID:26834664

  7. The pollen tube paradigm revisited.

    PubMed

    Kroeger, Jens; Geitmann, Anja

    2012-12-01

    The polar growth process characterizing pollen tube elongation has attracted numerous modeling attempts over the past years. While initial models focused on recreating the correct cellular geometry, recent models are increasingly based on experimentally assessed cellular parameters such as the dynamics of signaling processes and the mechanical properties of the cell wall. Recent modeling attempts have therefore substantially gained in biological relevance and predictive power. Different modeling methods are explained and the power and limitations of individual models are compared. Focus is on several recent models that use closed feedback loops in order to generate limit cycles representing the oscillatory behavior observed in growing tubes. PMID:23000432

  8. Measuring Hospital Quality Using Pediatric Readmission and Revisit Rates

    PubMed Central

    Vittinghoff, Eric; Asteria-Peñaloza, Renée; Edwards, Jeffrey D.; Yazdany, Jinoos; Lee, Henry C.; Boscardin, W. John; Cabana, Michael D.; Dudley, R. Adams

    2013-01-01

    OBJECTIVE: To assess variation among hospitals on pediatric readmission and revisit rates and to determine the number of high- and low-performing hospitals. METHODS: In a retrospective analysis using the State Inpatient and Emergency Department Databases from the Healthcare Cost and Utilization Project with revisit linkages available, we identified pediatric (ages 1–20 years) visits with 1 of 7 common inpatient pediatric conditions (asthma, dehydration, pneumonia, appendicitis, skin infections, mood disorders, and epilepsy). For each condition, we calculated rates of all-cause readmissions and rates of revisits (readmission or presentation to the emergency department) within 30 and 60 days of discharge. We used mixed logistic models to estimate hospital-level risk-standardized 30-day revisit rates and to identify hospitals that had performance statistically different from the group mean. RESULTS: Thirty-day readmission rates were low (<10.0%) for all conditions. Thirty-day rates of revisit to the inpatient or emergency department setting ranged from 6.2% (appendicitis) to 11.0% (mood disorders). Study hospitals (n = 958) had low condition-specific visit volumes (37.0%–82.8% of hospitals had <25 visits). The only condition with >1% of hospitals labeled as different from the mean on 30-day risk-standardized revisit rates was mood disorders (4.2% of hospitals [n = 15], range of hospital performance 6.3%–15.9%). CONCLUSIONS: We found that when comparing hospitals’ performances to the average, few hospitals that care for children are identified as high- or low-performers for revisits, even for common pediatric diagnoses, likely due to low hospital volumes. This limits the usefulness of condition-specific readmission or revisit measures in pediatric quality measurement. PMID:23979094

  9. Fluidmechanics of semicircular canals revisited

    NASA Astrophysics Data System (ADS)

    Obrist, Dominik

    2008-05-01

    In this work we find the exact solution for the flow field in a semicircular canal which is the main sensor for angular motion in the human body. When the head is rotated the inertia of the fluid in the semicircular canal leads to a deflection of sensory hair cells which are part of a gelatinous structure called cupula. A modal expansion of the governing equation shows that the semicircular organ can be understood as a dynamic system governed by duct modes and a single cupular mode. We use this result to derive an explicit expression for the displacement of the cupula as a function of the angular motion of the head. This result shows in a mathematically and physically clean way that the semicircular canal is a transducer for angular velocity.

  10. The Mathematics of Dispatchability Revisited

    NASA Technical Reports Server (NTRS)

    Morris, Paul

    2016-01-01

    Dispatchability is an important property for the efficient execution of temporal plans where the temporal constraints are represented as a Simple Temporal Network (STN). It has been shown that every STN may be reformulated as a dispatchable STN, and dispatchability ensures that the temporal constraints need only be satisfied locally during execution. Recently it has also been shown that Simple Temporal Networks with Uncertainty, augmented with wait edges, are Dynamically Controllable provided every projection is dispatchable. Thus, the dispatchability property has both theoretical and practical interest. One thing that hampers further work in this area is the underdeveloped theory. The existing definitions are expressed in terms of algorithms, and are less suitable for mathematical proofs. In this paper, we develop a new formal theory of dispatchability in terms of execution sequences. We exploit this to prove a characterization of dispatchability involving the structural properties of the STN graph. This facilitates the potential application of the theory to uncertainty reasoning.

  11. Origins of Hot Jupiters, Revisited

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin; Bodenheimer, Peter; Laughlin, Greg

    2015-12-01

    Hot Jupiters, giant extrasolar planets with orbital periods less than ~10 days, have long been thought to form at large radial distances (a > 2AU) in protostellar disks, only to subsequently experience large-scale inward migration to the small orbital radii at which they are observed. Here, we propose that a substantial fraction of the hot Jupiter population forms in situ, with the Galactically prevalent short-period super-Earths acting as the source population. Our calculations suggest that under conditions appropriate to the inner regions of protostellar disks, rapid gas accretion can be initiated for solid cores of 10-20 Earth masses, in line with the conventional picture of core-nucleated accretion. This formation scenario leads to testable consequences, including the expectation that hot Jupiters should frequently be accompanied by additional planets, reminiscent of those observed in large numbers by NASA’s Kepler Mission and Doppler velocity surveys. However, dynamical interactions during the early stages of planetary systems' evolutionary lifetimes tend to increase the mutual inclinations of exterior, low-mass companions to hot Jupiters, making transits rare. High-precision radial velocity monitoring provides the best prospect for their detection.

  12. Astrosociological Implications of Astrobiology (Revisited)

    NASA Astrophysics Data System (ADS)

    Pass, Jim

    2010-01-01

    Supporters of astrobiology continue to organize the field around formalized associations and organizations under the guise of the so-called ``hard'' sciences (e.g., biology and the related physical/natural sciences). The so-called ``soft'' sciences-including sociology and the other social sciences, the behavioral sciences, and the humanities-remain largely separated from this dynamically growing field. However, as argued in this paper, space exploration involving the search for extraterrestrial life should be viewed as consisting of two interrelated parts (i.e., two sides of the same coin): astrobiology and astrosociology. Together, these two fields broadly combine the two major branches of science as they relate to the relationship between human life and alien life, as appropriate. Moreover, with a formalized system of collaboration, these two complimentary fields would also focus on the implications of their research to human beings as well as their cultures and social structures. By placing the astrosociological implications of astrobiology at a high enough priority, scientists interested in the search for alien life can augment their focus to include the social, cultural, and behavioral implications that were always associated with their work (yet previously overlooked or understated, and too often misunderstood). Recognition of the astrosociological implications expands our perception about alien life by creating a new emphasis on their ramifications to human life on Earth.

  13. Lower hybrid wavepacket stochasticity revisited

    SciTech Connect

    Fuchs, V.; Krlín, L.; Pánek, R.; Preinhaelter, J.; Seidl, J.; Urban, J.

    2014-02-12

    Analysis is presented in support of the explanation in Ref. [1] for the observation of relativistic electrons during Lower Hybrid (LH) operation in EC pre-heated plasma at the WEGA stellarator [1,2]. LH power from the WEGA TE11 circular waveguide, 9 cm diameter, un-phased, 2.45 GHz antenna, is radiated into a B≅0.5 T, Ðœ„n{sub e}≅5×10{sup 17} 1/m{sup 3} plasma at T{sub e}≅10 eV bulk temperature with an EC generated 50 keV component [1]. The fast electrons cycle around flux or drift surfaces with few collisions, sufficient for randomizing phases but insufficient for slowing fast electrons down, and thus repeatedly interact with the rf field close to the antenna mouth, gaining energy in the process. Our antenna calculations reveal a standing electric field pattern at the antenna mouth, with which we formulate the electron dynamics via a relativistic Hamiltonian. A simple approximation of the equations of motion leads to a relativistic generalization of the area-preserving Fermi-Ulam (F-U) map [3], allowing phase-space global stochasticity analysis. At typical WEGA plasma and antenna conditions, the F-U map predicts an LH driven current of about 230 A, at about 225 W of dissipated power, in good agreement with the measurements and analysis reported in [1].

  14. Revisiting the dynamics of early childbearing in South African townships.

    PubMed

    Mkhwanazi, Nolwazi

    2014-01-01

    In South Africa over the last two decades, births to girls under the age of 20 years of age have steadily declined. The reason for the decline has been attributed to progressive social and educational policies and more accommodating reactions from families. This paper uses ethnographic data collected in 2001-2002 and again in 2013 in order to compare young women's perceptions and experiences of early childbearing at the turn of the twenty-first century with those of young women a decade later. It makes two main contributions to the literature on early childbearing in South Africa. First, it provides insight into the changes that have occurred regarding how young women experience pregnancy and motherhood over the last decade. Second, it considers changes not only in relation to time but also in relation to the significant social and ideological changes. PMID:25005345

  15. Revisit on dynamic radiation forces induced by pulsed Gaussian beams.

    PubMed

    Wang, Li-Gang; Chai, Hai-Shui

    2011-07-18

    Motivated by the recent optical trapping experiments using ultra-short pulsed lasers [Opt. Express 18, 7554 (2010); Appl. Opt. 48, G33 (2009)], in this paper we have re-investigated the trapping effects of the pulsed radiation force (PRF), which is induced by a pulsed Gaussian beam acting on a Rayleigh dielectric sphere. Based on our previous model [Opt. Express 15, 10615 (2007)], we have considered the effects arisen from both the transverse and axial PRFs, which lead to the different behaviors of both velocities and displacements of a Rayleigh particle within a pulse duration. Our analysis shows that, for the small-sized Rayleigh particles, when the pulse has the large pulse duration, it might provide the three-dimensional optical trapping; and when the pulse has the short pulse duration, it only provides the two-dimensional optical trapping with the axial movement along the pulse propagation. When the particle is in the vacuum or in the situation with the very weak Brownian motion, the particle can always be trapped stably due to the particle's cumulative momentum transferred from the pulse, and only in this case the trapping effect is independent of pulse duration. Finally, we have predicted that for the large-sized Rayleigh particles, the pulse beam can only provide the two-dimensional optical trap (optical guiding). Our results provide the important information about the trapping mechanism of pulsed tweezers. PMID:21934801

  16. Dynamics of the Zeraoulia-Sprott Map Revisited

    NASA Astrophysics Data System (ADS)

    Chen, Guanrong; Kudryashova, Elena V.; Kuznetsov, Nikolay V.; Leonov, Gennady A.

    2016-06-01

    In the paper “Some Open Problems in Chaos Theory and Dynamics” by Zeraoulia and Sprott, the two-dimensional map (x,y)↦(‑ax(1 + y2)‑1,x + by) was considered and the problem on the analytical study of the boundedness of its attractors was formulated. In the present paper, the boundedness of its attractors is studied, the corresponding analytical estimation of absorbing set is obtained, and thus an answer to the problem is given.

  17. Radical Change Revisited: Dynamic Digital Age Books for Youth

    ERIC Educational Resources Information Center

    Dresang, Eliza T.

    2008-01-01

    Radical change, a theory described in Eliza Dresang's 1999 book, "Radical Change: Books for Youth in a Digital Age," was developed in the mid-1990s. It serves as a lens through which to examine, explain, and ultimately, use contemporary literature for youth growing up in the Digital Age. It identifies changes in forms and formats,…

  18. Revisits within 48 Hours to a Thai Emergency Department

    PubMed Central

    Nithimathachoke, Adisak; Tirrell, Gregory Philip; Surawongwattana, Sataporn; Liu, Shan Woo

    2016-01-01

    Objective. Emergency department (ED) revisits are a common ED quality measure. This study was undertaken to ascertain the contributing factors of revisits within 48 hours to a Thai ED and to explore physician-related, illness-related, and patient-related factors behind those revisits. Methods. This study was a chart review from one tertiary care, urban Thai hospital from October 1, 2009, to September 31, 2010. We identified patients who returned to the ED within 48 hours for the same or related complaints after their initial discharge. Three physicians classified revisit as physician-related, illness-related, and patient-related factors. Results. Our study included 172 ED patients' charts. 86/172 (50%) were male and the mean age was 38 ± 5.6 (SD) years. The ED revisits contributing factors were physician-related factors [86/172 (50.0%)], illness-related factors [61/172 (35.5%)], and patient-related factor [25/172 (14.5%)], respectively. Among revisits classified as physician-related factors, 40/86 (46.5%) revisits were due to misdiagnosis and 36/86 (41.9%) were due to suboptimal management. Abdominal pain [27/86 (31.4%)] was the majority of physician-related chief complaints, followed by fever [16/86 (18.6%)] and dyspnea [15/86 (17.4%)]. Conclusion. Misdiagnosis and suboptimal management contributed to half of the 48-hour repeat ED visits in this Thai hospital. PMID:27478642

  19. Electron heating in capacitively coupled plasmas revisited

    NASA Astrophysics Data System (ADS)

    Lafleur, T.; Chabert, P.; Booth, J. P.

    2014-06-01

    We revisit the problem of electron heating in capacitively coupled plasmas (CCPs), and propose a method for quantifying the level of collisionless and collisional heating in plasma simulations. The proposed procedure, based on the electron mechanical energy conservation equation, is demonstrated with particle-in-cell simulations of a number of single and multi-frequency CCPs operated in regimes of research and industrial interest. In almost all cases tested, the total electron heating is comprised of collisional (ohmic) and pressure heating parts. This latter collisionless component is in qualitative agreement with the mechanism of electron heating predicted from the recent re-evaluation of theoretical models. Finally, in very electrically asymmetric plasmas produced in multi-frequency discharges, we observe an additional collisionless heating mechanism associated with electron inertia.

  20. Seasonal dating of Sappho's 'Midnight Poem' revisited

    NASA Astrophysics Data System (ADS)

    Cuntz, Manfred; Gurdemir, Levent; George, Martin

    2016-04-01

    Sappho was a Greek lyric poet who composed a significant array of pristine poetry. Although much of it has been lost, her reputation has endured thanks to numerous surviving fragments. One of her contributions includes the so-called 'Midnight Poem', which contains a line about the Pleiades, setting sometime before midnight, and supposedly observed from the island of Lesbos. This poem also refers to the setting of the Moon. Sappho's Midnight Poem thus represents a prime example of where ancient poetry and astronomy merge, and it also offers the possibility of seasonal dating. Previously, Herschberg and Mebius (1990) estimated that the poem was composed in late winter/early spring, a time frame that is not unusual for lyrics of an amorous nature. The aim of our paper is to revisit this earlier finding by using modern-day software. Our study confirms Herschberg and Mebius' result, but also conveys further information.

  1. Linear stability of a vortex ring revisited

    NASA Astrophysics Data System (ADS)

    Fukumoto, Yasuhide; Hattori, Yuji

    We revisit the stability of an elliptically strained vortex and a thin axisymmetric vortex ring, embedded in an inviscid incompressible fluid, to three-dimensional disturbances of infinitesimal amplitude. The results of Tsai & Widnall (1976) for an elliptically strained vortex are simplified by providing an explicit expression for the disturbance flow field. A direct relation is established with the elliptical instability. For Kelvin's vortex ring, the primary perturbation to the Rankine vortex is a dipole field. We show that the dipole field causes a parametric resonance instability between axisymmetric and bending waves at intersection points of the dispersion curves. It is found that the dipole effect predominates over the straining effect for a very thin core. The mechanism is attributable to stretching of the disturbance vortex lines in the toroidal direction.

  2. The Doppler spread theory and parameterization revisited

    NASA Astrophysics Data System (ADS)

    Hines, Colin O.

    2004-07-01

    The author's earlier Doppler Spread Theory (DST) and Doppler Spread Parameterization (DSP) are revisited with a new understanding of the dichotomous roles played by nonlinearity in Eulerian and Lagrangian coordinates, respectively. An embryo Lagrangian DST is introduced and employed to assess the original DST. Earlier results near the Eulerian spectral peak are found to be reasonably valid, whereas those at greater vertical wavenumber are confirmed to have produced too much spreading. The earlier DSP is found to need little if any change, though specific values are suggested for its two most important ``fudge factors''. In a more general context, the continuing identity of a wave undergoing certain nonlinear interactions with other waves is discussed.

  3. Biofluiddynamics of balistiform and gymnotiform locomotion: Revisited

    NASA Astrophysics Data System (ADS)

    Sprinkle, Brennan; Bale, Rahul; Singh, Amneet; Chen, Nelson; Maciver, Malcom; Patankar, Neelesh

    2015-11-01

    Gymnotiform and balistiform swimmers are those which have an undulatory fin affixed to a rigid body unlike anguilliforms who undulate their entire body. Is there a mechanical advantage to gymnotiform and balistiform swimming? This question was investigated by Lighthill & Blake in a four paper series Biofluiddynamics of balistiform and gymnotiform locomotion. We revisit this work using fully resolved numerical simulations of the types of swimmers considered by Lighthill & Blake to interrogate the issue of mechanical advantage for rigid body swimmers. In doing so, we find that while there is advantage to rigid body swimming, the mechanism of `momentum enhancement,' proposed by Lighthill and Blake, is not the cause. Further, we use our results and simulations to explain why some gymnotiform and balistiform swimmers have their propulsor attached to their bodies at an angle. This work was supported in part by NSF grants CBET-0828749, CMMI-0941674 and CBET-1066575. Computational resources were provided by Northwestern University High Performance Computing System-Quest.

  4. The Species Problem in Myxomycetes Revisited.

    PubMed

    Walker, Laura M; Stephenson, Steven L

    2016-08-01

    Species identification in the myxomycetes (plasmodial slime molds or myxogastrids) poses particular challenges to researchers as a result of their morphological plasticity and frequent alteration between sexual and asexual life strategies. Traditionally, myxomycete morphology has been used as the primary method of species delimitation. However, with the increasing availability of genetic information, traditional myxomycete taxonomy is being increasingly challenged, and new hypotheses continue to emerge. Due to conflicts that sometimes occur between traditional and more modern species concepts that are based largely on molecular data, there is a pressing need to revisit the discussion surrounding the species concept used for myxomycetes. Biological diversity is being increasingly studied with molecular methods and data accumulates at ever-faster rates, making resolution of this matter urgent. In this review, currently used and potentially useful species concepts (biological, morphological, phylogenetic and ecological) are reviewed, and an integrated approach to resolve the myxomycete species problem is discussed. PMID:27351595

  5. Revisiting the R νMDM models

    NASA Astrophysics Data System (ADS)

    Cai, Yi; Schmidt, Michael A.

    2016-05-01

    Combining neutrino mass generation and a dark matter candidate in a unified model has always been intriguing. We revisit the class of R νMDM models, which incorporate minimal dark matter in radiative neutrino mass models based on the one-loop ultraviolet completions of the Weinberg operator. The possibility of an exact accidental Z 2 is completely ruled out in this scenario. We study the phenomenology of one of the models with an approximate Z 2 symmetry. In addition to the Standard Model particles, it contains two real scalar quintuplets, one vector-like quadruplet fermion and a fermionic quintuplet. The neutral component of the fermionic quintuplet serves as a good dark matter candidate which can be tested by the future direct and indirect detection experiments. The constraints from flavor physics and electroweak-scale naturalness are also discussed.

  6. The "frontal syndrome" revisited: lessons from electrostimulation mapping studies.

    PubMed

    Duffau, Hugues

    2012-01-01

    For a long time, in a localizationist view of brain functioning, a combination of symptoms called "frontal syndrome" has been interpreted as the direct result of damages involving the frontal lobe(s). The goal of this review is to challenge this view, that is, to move to a hodotopical approach to lesion mapping, on the basis of new insights provided by intraoperative electrostimulation mapping investigations in patients who underwent awake surgery for cerebral tumors. These original data reported in the last decade break with the traditional dogma of a modular and fixed organization of the central nervous system, by switching to the concepts of cerebral connectivity and plasticity - i.e., a brain organization based on dynamic interrelationships between parallel distributed networks. According to this revisited model, "frontal symptoms" can be generated by tumor or electrostimulation not only of the frontal lobes, but also of cortical and subcortical (white matter pathways/deep gray nuclei) structures outside the frontal lobes: especially, stimulation of the superior longitudinal fascicle may elicit speech production disorders, syntactic disturbances, involuntary language switching or phonemic paraphasia (arcuate fascicle), stimulation of the inferior fronto-occipital fascicle can generate semantic paraphasia or deficit of cross-modal judgment, stimulation of the subcallosal fasciculus may elicit transcortical motor aphasia, while stimulation of the striatum induces preservations. On the other hand, it is also possible to perform extensive right or left frontal lobectomy in patients who continue to have a normal familial, social and professional life, without "frontal syndrome". Therefore, this provocative approach may open the door to a renewal in the modeling of brain processing as well as in its clinical applications, especially in the fields of cerebral surgery and functional rehabilitation. These findings illustrate well the need to reinforce links between

  7. Revisiting annual mean and seasonal cycle of deep meridional overturning circulation of the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Wang, Weiqiang; Xie, Qiang; Li, Sha; Zhu, Xiuhua

    2014-05-01

    The annual mean and seasonal cycle of the deep meridional overturning circulation (MOC) of the Indian Ocean is being revisited here using GECCO synthesis. Resulting from ocean general circulation models, the annual mean deep MOC of the Indian Ocean are generally weak with inflow in the bottom layer and outflow in the intermediate and upper layer mixing with strong Indonesian Throughflow. For seasonal cycle of deep MOC, two significant and seasonal reversed counter-rotating deep cells over full depth of water column, roughly separated by 20S, are revealed during boreal summer and winter. The coincidences of the latitude 20S with where the maximum climatological wind curl for most of seasons reveals intimate relations between the deep meridional overturning and surface winds. Dynamical decompositions on annual mean and complete seasonal cycle of the meridional overturning show varying relative contribution of each dynamical component at different time scale. For annual mean deep MOC, Ekman dynamics is found to be dominant in the region of north of 25S, particularly in upper 3000m, whereas south of 25S external and vertical shear components show remarkable "seamount" features and are compensated with much larger strengths because of topo-modulated strong western boundary topography. At seasonal time scale, dominant role of Ekman dynamics and secondary role of external mode are found in the deep cell north of 20S in January and July. However in transition seasons, vertical shear is responsible for major part of meridional overturning and Ekman dynamics has comparable contribution north of Equator.

  8. Predator-prey interactions, resource depression and patch revisitation

    USGS Publications Warehouse

    Erwin, R.M.

    1989-01-01

    Generalist predators may be confronted by different types of prey in different patches: sedentary and conspicuous, cryptic (with or without refugia), conspicuous and nonsocial, or conspicuous and social. I argue that, where encounter rates with prey are of most importance, patch revisitation should be a profitable tactic where prey have short 'recovery' times (conspicuous, nonsocial prey), or where anti-predator response (e.g. shoaling) may increase conspicuousness. Predictions are made for how temporal changes in prey encounter rates should affect revisit schedules and feeding rates for the 4 different prey types.

  9. Revisiting the argument from fetal potential

    PubMed Central

    Manninen, Bertha Alvarez

    2007-01-01

    One of the most famous, and most derided, arguments against the morality of abortion is the argument from potential, which maintains that the fetus' potential to become a person and enjoy the valuable life common to persons, entails that its destruction is prima facie morally impermissible. In this paper, I will revisit and offer a defense of the argument from potential. First, I will criticize the classical arguments proffered against the importance of fetal potential, specifically the arguments put forth by philosophers Peter Singer and David Boonin, by carefully unpacking the claims made in these arguments and illustrating why they are flawed. Secondly, I will maintain that fetal potential is morally relevant when it comes to the morality of abortion, but that it must be accorded a proper place in the argument. This proper place, however, cannot be found until we first answer a very important and complex question: we must first address the issue of personal identity, and when the fetus becomes the type of being who is relevantly identical to a future person. I will illustrate why the question of fetal potential can only be meaningfully addressed after we have first answered the question of personal identity and how it relates to the human fetus. PMID:17509146

  10. No-scale ripple inflation revisited

    SciTech Connect

    Li, Tianjun; Li, Zhijin; Nanopoulos, Dimitri V. E-mail: lizhijin@physics.tamu.edu

    2014-04-01

    We revisit the no-scale ripple inflation model, where no-scale supergravity is modified by an additional term for the inflaton field in the Kähler potential. This term not only breaks one SU(N,1) symmetry explicitly, but also plays an important role for inflation. We generalize the superpotential in the no-scale ripple inflation model slightly. There exists a discrete Z{sub 2} symmetry/parity in the scalar potential in general, which can be preserved or violated by the non-canonical nomalized inflaton kinetic term. Thus, there are three inflation paths: one parity invariant path, and the left and right paths for parity violating scenario. We show that the inflations along the parity invariant path and right path are consistent with the Planck results. However, the gavitino mass for the parity invariant path is so large that the inflation results will be invalid if we consider the inflaton supersymmetry breaking soft mass term. Thus, only the inflation along the right path gives the correct and consistent results. Notably, the tensor-to-scalar ratio in such case can be large, with a value around 0.05, which may be probed by the future Planck experiment.

  11. Targeting Cancer Metabolism - Revisiting the Warburg Effects

    PubMed Central

    Tran, Quangdon; Lee, Hyunji; Park, Jisoo; Kim, Seon-Hwan; Park, Jongsun

    2016-01-01

    After more than half of century since the Warburg effect was described, this atypical metabolism has been standing true for almost every type of cancer, exhibiting higher glycolysis and lactate metabolism and defective mitochondrial ATP production. This phenomenon had attracted many scientists to the problem of elucidating the mechanism of, and reason for, this effect. Several models based on oncogenic studies have been proposed, such as the accumulation of mitochondrial gene mutations, the switch from oxidative phosphorylation respiration to glycolysis, the enhancement of lactate metabolism, and the alteration of glycolytic genes. Whether the Warburg phenomenon is the consequence of genetic dysregulation in cancer or the cause of cancer remains unknown. Moreover, the exact reasons and physiological values of this peculiar metabolism in cancer remain unclear. Although there are some pharmacological compounds, such as 2-deoxy-D-glucose, dichloroacetic acid, and 3-bromopyruvate, therapeutic strategies, including diet, have been developed based on targeting the Warburg effect. In this review, we will revisit the Warburg effect to determine how much scientists currently understand about this phenomenon and how we can treat the cancer based on targeting metabolism. PMID:27437085

  12. Carbon emission from global hydroelectric reservoirs revisited.

    PubMed

    Li, Siyue; Zhang, Quanfa

    2014-12-01

    Substantial greenhouse gas (GHG) emissions from hydropower reservoirs have been of great concerns recently, yet the significant carbon emitters of drawdown area and reservoir downstream (including spillways and turbines as well as river reaches below dams) have not been included in global carbon budget. Here, we revisit GHG emission from hydropower reservoirs by considering reservoir surface area, drawdown zone and reservoir downstream. Our estimates demonstrate around 301.3 Tg carbon dioxide (CO2)/year and 18.7 Tg methane (CH4)/year from global hydroelectric reservoirs, which are much higher than recent observations. The sum of drawdown and downstream emission, which is generally overlooked, represents 42 % CO2 and 67 % CH4 of the total emissions from hydropower reservoirs. Accordingly, the global average emissions from hydropower are estimated to be 92 g CO2/kWh and 5.7 g CH4/kWh. Nonetheless, global hydroelectricity could currently reduce approximate 2,351 Tg CO2eq/year with respect to fuel fossil plant alternative. The new findings show a substantial revision of carbon emission from the global hydropower reservoirs. PMID:24943886

  13. Revisiting Twomey's approximation for peak supersaturation

    NASA Astrophysics Data System (ADS)

    Shipway, B. J.

    2015-04-01

    Twomey's seminal 1959 paper provided lower and upper bound approximations to the estimation of peak supersaturation within an updraft and thus provides the first closed expression for the number of nucleated cloud droplets. The form of this approximation is simple, but provides a surprisingly good estimate and has subsequently been employed in more sophisticated treatments of nucleation parametrization. In the current paper, we revisit the lower bound approximation of Twomey and make a small adjustment that can be used to obtain a more accurate calculation of peak supersaturation under all potential aerosol loadings and thermodynamic conditions. In order to make full use of this improved approximation, the underlying integro-differential equation for supersaturation evolution and the condition for calculating peak supersaturation are examined. A simple rearrangement of the algebra allows for an expression to be written down that can then be solved with a single lookup table with only one independent variable for an underlying lognormal aerosol population. While multimodal aerosol with N different dispersion characteristics requires 2N+1 inputs to calculate the activation fraction, only N of these one-dimensional lookup tables are needed. No additional information is required in the lookup table to deal with additional chemical, physical or thermodynamic properties. The resulting implementation provides a relatively simple, yet computationally cheap, physically based parametrization of droplet nucleation for use in climate and Numerical Weather Prediction models.

  14. Nursing knowledge, theory and method revisited.

    PubMed

    Booth, K; Kenrick, M; Woods, S

    1997-10-01

    With the approach of the 21st century, nursing is having to respond to diverse influences which are remoulding the professional landscape. Not least of these is the changing status of western economies which underpins a drive towards evidence-based practice and an increased emphasis on multidisciplinary approaches to health care delivery. Certainty in health care is now a thing of the past. Central to the way the nursing profession embraces the future is its underlying philosophy: that which articulates professional values and shapes practice, research, education and management. In a time of change it is therefore essential to revisit the philosophical framework which underpins nursing. The debate in nursing research and theory appears to have stressed the polarization of viewpoints. It may be the case that feminist writers, ethnographers, positivist researchers and nursing theorists, in defending their own points of view, diminish rather than enhance professional dialogue. This paper reviews the nature of this debate within nursing and considers the implications that a dichotomous position may have for knowledge, theory and research method within the current context of health care. It then suggests a philosophical framework which could be relevant and accessible across the whole spectrum of nursing activity. In so doing, the paper aims to contribute to the discussion around epistemology and method in a way which encompasses the diversity found within the broad church of nursing. PMID:9354995

  15. Targeting Cancer Metabolism - Revisiting the Warburg Effects.

    PubMed

    Tran, Quangdon; Lee, Hyunji; Park, Jisoo; Kim, Seon-Hwan; Park, Jongsun

    2016-07-01

    After more than half of century since the Warburg effect was described, this atypical metabolism has been standing true for almost every type of cancer, exhibiting higher glycolysis and lactate metabolism and defective mitochondrial ATP production. This phenomenon had attracted many scientists to the problem of elucidating the mechanism of, and reason for, this effect. Several models based on oncogenic studies have been proposed, such as the accumulation of mitochondrial gene mutations, the switch from oxidative phosphorylation respiration to glycolysis, the enhancement of lactate metabolism, and the alteration of glycolytic genes. Whether the Warburg phenomenon is the consequence of genetic dysregulation in cancer or the cause of cancer remains unknown. Moreover, the exact reasons and physiological values of this peculiar metabolism in cancer remain unclear. Although there are some pharmacological compounds, such as 2-deoxy-D-glucose, dichloroacetic acid, and 3-bromopyruvate, therapeutic strategies, including diet, have been developed based on targeting the Warburg effect. In this review, we will revisit the Warburg effect to determine how much scientists currently understand about this phenomenon and how we can treat the cancer based on targeting metabolism. PMID:27437085

  16. Role of iron in synthetic tetrahedrites revisited

    NASA Astrophysics Data System (ADS)

    Nasonova, Daria I.; Presniakov, Igor A.; Sobolev, Alexei V.; Verchenko, Valeriy Yu.; Tsirlin, Alexander A.; Wei, Zheng; Dikarev, Evgeny V.; Shevelkov, Andrei V.

    2016-03-01

    The valence state of iron in Cu12-xFexSb4S13 tetrahedrites have been revisited by the combination of the crystallographic results, Mössbauer spectroscopy, and magnetization measurements. The crystal structure solution for Cu11.0Fe1.0Sb4S13 (space group I 4 bar 3m, a=10.3253(12), z=2, R=0.011) proved that iron substitutes for copper only in the Cu1 position. At the iron content of x=0.8, 1.0, and 1.2, the presence of two nonequivalent and non-interacting Fe3+ cations was inferred from Mössbauer spectra. At higher levels of substitution (x=1.5 and 2.0), room-temperature Mössbauer spectra indicate the electron hopping between part of Fe3+ and Fe2+ centers, whereas the rest of iron atoms exists as valence-localized Fe3+ and Fe2+ cations. Electron transfer is frozen out at 77 K, where a combination of two Fe3+ sites and one high-spin Fe2+ site is observed. Paramagnetic effective moments extracted from the magnetic susceptibility data point at the Fe3+ state of iron at x=0.8, while a mixture of Fe2+ and Fe3+ is presumed in the samples with higher Fe content.

  17. The Sakharov Experiment Revisited for Granular Materials

    NASA Astrophysics Data System (ADS)

    Vogler, Tracy

    2013-06-01

    Sakharov and co-workers in 1965 proposed an experiment in which a sinusoidal perturbation in a planar wave evolves as it travels through a material. More recent, Liu and co-workers utilized gas gun techniques rather than explosives to drive the shock wave, resulting in a better defined input. The technique has been applied to liquids such as water and mercury as well as solids such as aluminum. All analyses of the experiments conducted to date have utilized a viscous fluid approach, even for the solids. Here, the concept of the decay of a perturbation in a shock wave is revisited and applied to granular materials. Simulations utilizing continuum models for the granular materials as well as mesoscale models in which individual particles are resolved are utilized. It is found that the perturbation decay is influenced by the strength (deviatoric behavior) used in the continuum model. In the mesocale calculations, the simulation parameters as well as the computational approach influence the results. Finally, initial experimental results for the technique using granular tungsten carbide are presented. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Revisiting the phase diagram of hard ellipsoids.

    PubMed

    Odriozola, Gerardo

    2012-04-01

    In this work, the well-known Frenkel-Mulder phase diagram of hard ellipsoids of revolution [D. Frenkel and B. M. Mulder, Mol. Phys. 55, 1171 (1985)] is revisited by means of replica exchange Monte Carlo simulations. The method provides good sampling of dense systems and so, solid phases can be accessed without the need of imposing a given structure. At high densities, we found plastic solids and fcc-like crystals for semi-spherical ellipsoids (prolates and oblates), and SM2 structures [P. Pfleiderer and T. Schilling, Phys. Rev. E 75, 020402 (2007)] for x : 1-prolates and 1 : x-oblates with x ≥ 3. The revised fluid-crystal and isotropic-nematic transitions reasonably agree with those presented in the Frenkel-Mulder diagram. An interesting result is that, for small system sizes (100 particles), we obtained 2:1- and 1.5:1-prolate equations of state without transitions, while some order is developed at large densities. Furthermore, the symmetric oblate cases are also reluctant to form ordered phases. PMID:22482570

  19. Charge symmetry breaking in Λ hypernuclei revisited

    NASA Astrophysics Data System (ADS)

    Gal, Avraham

    2015-05-01

    The large charge symmetry breaking (CSB) implied by the Λ binding energy difference Δ BΛ4 (0g.s.+) ≡BΛ (He4Λ) -BΛ (H4Λ) = 0.35 ± 0.06 MeV of the A = 4 mirror hypernuclei ground states, determined from emulsion studies, has defied theoretical attempts to reproduce it in terms of CSB in hyperon masses and in hyperon-nucleon interactions, including one pion exchange arising from Λ-Σ0 mixing. Using a schematic strong-interaction ΛN ↔ ΣN coupling model developed by Akaishi and collaborators for s-shell Λ hypernuclei, we revisit the evaluation of CSB in the A = 4 Λ hypernuclei and extend it to p-shell mirror Λ hypernuclei. The model yields values of Δ BΛ4 (0g.s.+) ∼ 0.25 MeV. Smaller size and mostly negative p-shell binding energy differences are calculated for the A = 7- 10 mirror hypernuclei, in rough agreement with the few available data. CSB is found to reduce by almost 30 keV the 110 keV B10Λ g.s. doublet splitting anticipated from the hyperon-nucleon strong-interaction spin dependence, thereby explaining the persistent experimental failure to observe the 2exc- → 1g.s.- γ-ray transition.

  20. Scaling Relationships for Spherical Polymer Brushes Revisited.

    PubMed

    Chen, Guang; Li, Hao; Das, Siddhartha

    2016-06-16

    In this short paper, we revisit the scaling relationships for spherical polymer brushes (SPBs), i.e., polymer brushes grafted to rigid, spherical particles. Considering that the brushes can be described to be encased in a series of hypothetical spherical blobs, we identify significant physical discrepancies in the model of Daoud and Cotton (Journal of Physics, 1982), which is considered to be the state of the art in scaling modeling of SPBs. We establish that the "brush" configuration of the polymer molecules forming the SPBs is possible only if the swelling ratio (which is the ratio of the end-to-end length of the blob-encased polymer segment to the corresponding coil-like polymer segment) is always less than unity-a notion that has been erroneously overlooked in the model of Daoud and Cotton. We also provide new scaling arguments that (a) establish this swelling (or more appropriately shrinking) ratio as a constant (less than unity) for the case of "good" solvent, (b) recover the scaling predictions for blob dimension and monomer number and monomer concentration distributions within the blob, and PMID:27232497

  1. Revisiting the phase diagram of hard ellipsoids

    NASA Astrophysics Data System (ADS)

    Odriozola, Gerardo

    2012-04-01

    In this work, the well-known Frenkel-Mulder phase diagram of hard ellipsoids of revolution [D. Frenkel and B. M. Mulder, Mol. Phys. 55, 1171 (1985), 10.1080/00268978500101971] is revisited by means of replica exchange Monte Carlo simulations. The method provides good sampling of dense systems and so, solid phases can be accessed without the need of imposing a given structure. At high densities, we found plastic solids and fcc-like crystals for semi-spherical ellipsoids (prolates and oblates), and SM2 structures [P. Pfleiderer and T. Schilling, Phys. Rev. E 75, 020402 (2007)] for x : 1-prolates and 1 : x-oblates with x ≥ 3. The revised fluid-crystal and isotropic-nematic transitions reasonably agree with those presented in the Frenkel-Mulder diagram. An interesting result is that, for small system sizes (100 particles), we obtained 2:1- and 1.5:1-prolate equations of state without transitions, while some order is developed at large densities. Furthermore, the symmetric oblate cases are also reluctant to form ordered phases.

  2. Revisiting scalar quark hidden sector in light of 750-GeV diphoton resonance

    NASA Astrophysics Data System (ADS)

    Chiang, Cheng-Wei; Ibe, Masahiro; Yanagida, Tsutomu T.

    2016-05-01

    We revisit the model of a CP -even singlet scalar resonance proposed in arXiv:1507.02483 , where the resonance appears as the lightest composite state made of scalar quarks participating in hidden strong dynamics. We show that the model can consistently explain the excess of diphoton events with an invariant mass around 750 GeV reported by both the ATLAS and CMS experiments. We also discuss the nature of the charged composite states in the TeV range which accompany to the neutral scalar. Due to inseparability of the dynamical scale and the mass of the resonance, the model also predicts signatures associated with the hidden dynamics such as leptons, jets along with multiple photons at future collider experiments. We also associate the TeV-scale dynamics behind the resonance with an explanation of dark matter.

  3. Revisiting the Role of Communication in Adolescent Intimate Partner Violence

    ERIC Educational Resources Information Center

    Messinger, Adam M.; Rickert, Vaughn I.; Fry, Deborah A.; Lessel, Harriet; Davidson, Leslie L.

    2012-01-01

    A growing literature suggests that communication strategies can promote or inhibit intimate partner violence (IPV). Research on communication is still needed on a group ripe for early IPV intervention: high school-aged adolescents. This article revisits our previous analyses of young female reproductive clinic patients (Messinger, Davidson, &…

  4. Revisiting the Trust Effect in Urban Elementary Schools

    ERIC Educational Resources Information Center

    Adams, Curt M.; Forsyth, Patrick B.

    2013-01-01

    More than a decade after Goddard, Tschannen-Moran, and Hoy (2001) found that collective faculty trust in clients predicts student achievement in urban elementary schools, we sought to identify a plausible link for this relationship. Our purpose in revisiting the trust effect was twofold: (1) to test the main effect of collective faculty trust on…

  5. The Importance of Being a Complement: CED Effects Revisited

    ERIC Educational Resources Information Center

    Jurka, Johannes

    2010-01-01

    This dissertation revisits subject island effects (Ross 1967, Chomsky 1973) cross-linguistically. Controlled acceptability judgment studies in German, English, Japanese and Serbian show that extraction out of specifiers is consistently degraded compared to extraction out of complements, indicating that the Condition on Extraction domains (CED,…

  6. Educational Administration and the Management of Knowledge: 1980 Revisited

    ERIC Educational Resources Information Center

    Bates, Richard

    2013-01-01

    This paper revisits the thesis of a 1980 paper that suggested a new approach to educational administration based upon the New Sociology of Education. In particular it updates answers to the six key questions asked by that paper: what counts as knowledge; how is what counts as knowledge organised; how is what counts as knowledge transmitted; how is…

  7. Revisiting the Role of Organizational Effectiveness in Educational Evaluation.

    ERIC Educational Resources Information Center

    Lotto, Linda S.

    Organizational effectiveness ought to play a role in educational evaluation, and the development of alternative perspectives for viewing organizations could be a starting point for revisiting organizational evaluation in education. Five possible perspectives and criteria for evaluating organizations have been developed. If an organization is…

  8. Threshold Concepts and Student Engagement: Revisiting Pedagogical Content Knowledge

    ERIC Educational Resources Information Center

    Zepke, Nick

    2013-01-01

    This article revisits the notion that to facilitate quality learning requires teachers in higher education to have pedagogical content knowledge. It constructs pedagogical content knowledge as a teaching and learning space that brings content and pedagogy together. On the content knowledge side, it suggests that threshold concepts, akin to a…

  9. Language Transmission Revisited: Family Type, Linguistic Environment and Language Attitudes

    ERIC Educational Resources Information Center

    Schupbach, Doris

    2009-01-01

    This article revisits factors in intergenerational language maintenance and shift within the family. It does so through an in-depth analysis of what 14 migrants to Australia from German-speaking Switzerland reported in written life stories and subsequent life story interviews. The participants represent four family types and a wide age range, and…

  10. Facilitating Grade Acceleration: Revisiting the Wisdom of John Feldhusen

    ERIC Educational Resources Information Center

    Culross, Rita R.; Jolly, Jennifer L.; Winkler, Daniel

    2013-01-01

    This article revisits the 1986 Feldhusen, Proctor, and Black recommendations on grade skipping. These recommendations originally appeared as 12 guidelines. In this article, the guidelines are grouped into three general categories: how to screen accelerant candidates, how to engage with the adults in the acceleration process (e.g., teachers,…

  11. Bohr’s ‘Light and Life’ revisited

    NASA Astrophysics Data System (ADS)

    Nussenzveig, H. M.

    2015-11-01

    I revisit Niels Bohr’s famous 1932 ‘Light and Life’ lecture, confronting it with current knowledge. Topics covered include: life origin and evolution, quantum mechanics and life, brain and mind, consciousness and free will, and light as a tool for biology, with special emphasis on optical tweezers and their contributions to biophysics. Specialized knowledge of biology is not assumed.

  12. Antidote for Zero Tolerance: Revisiting a "Reclaiming" School.

    ERIC Educational Resources Information Center

    Farner, Conrad D.

    2002-01-01

    Reports on a revisit to the Frank Lloyd Wright Middle School, which implemented strategies to deal with disciplinary problems. The school continues to progress towards creating the type of reclaiming environment necessary to ensure the needs of all students. Strategies used include alternatives to zero tolerance policy; smaller teams of students;…

  13. Revisiting Constructivist Teaching Methods in Ontario Colleges Preparing for Accreditation

    ERIC Educational Resources Information Center

    Schultz, Rachel A.

    2015-01-01

    At the time of writing, the first community colleges in Ontario were preparing for transition to an accreditation model from an audit system. This paper revisits constructivist literature, arguing that a more pragmatic definition of constructivism effectively blends positivist and interactionist philosophies to achieve both student centred…

  14. WAC Revisited: You Get What You Pay for

    ERIC Educational Resources Information Center

    Perelman, Les

    2011-01-01

    In 1982, the author wrote an essay for the second issue of "The Writing Instructor," "Approaches to Comprehensive Writing: Integrating Writing into the College Curriculum," reviewing the early stages of the modern Writing Across the Curriculum (WAC)/Writing in the Disciplines (WID) movement. In this article, the author revisits his essay and…

  15. Revisiting Jack Goody to Rethink Determinisms in Literacy Studies

    ERIC Educational Resources Information Center

    Collin, Ross

    2013-01-01

    This article revisits Goody's arguments about literacy's influence on social arrangements, culture, cognition, economics, and other domains of existence. Whereas some of his arguments tend toward technological determinism (i.e., literacy causes change in the world), other of his arguments construe literacy as a force that shapes and is shaped by…

  16. Closing Achievement Gaps: Revisiting Benjamin S. Bloom's "Learning for Mastery"

    ERIC Educational Resources Information Center

    Guskey, Thomas R.

    2007-01-01

    The problem of achievement gaps among different subgroups of students has been evident in education for many years. This manuscript revisits the work of renowned educator Benjamin S. Bloom, who saw reducing gaps in the achievement of various groups of students as a simple problem of reducing variation in student learning outcomes. Bloom observed…

  17. Moral Judgment Development across Cultures: Revisiting Kohlberg's Universality Claims

    ERIC Educational Resources Information Center

    Gibbs, John C.; Basinger, Karen S.; Grime, Rebecca L.; Snarey, John R.

    2007-01-01

    This article revisits Kohlberg's cognitive developmental claims that stages of moral judgment, facilitative processes of social perspective-taking, and moral values are commonly identifiable across cultures. Snarey [Snarey, J. (1985). "The cross-cultural universality of social-moral development: A critical review of Kohlbergian research."…

  18. Revisiting the Continua of Biliteracy: International and Critical Perspectives.

    ERIC Educational Resources Information Center

    Hornberger, Nancy H.; Skilton-Sylvester, Ellen

    2000-01-01

    The continua model of biliteracy offers a framework to situate research, teaching, and language planning in linguistically diverse settings. The continua model is revisited from the perspective of international cases of educational policy and practice in linguistically diverse settings, and from a critical perspective that seeks to make explicit…

  19. High Resolution Rapid Revisits Insar Monitoring of Surface Deformation

    NASA Astrophysics Data System (ADS)

    Singhroy, V.; Li, J.; Charbonneau, F.

    2014-12-01

    Monitoring surface deformation on strategic energy and transportation corridors requires high resolution spatial and temporal InSAR images for mitigation and safety purposes. High resolution air photos, lidar and other satellite images are very useful in areas where the landslides can be fatal. Recently, radar interferometry (InSAR) techniques using more rapid revisit images from several radar satellites are increasingly being used in active deformation monitoring. The Canadian RADARSAT Constellation (RCM) is a three-satellite mission that will provide rapid revisits of four days interferometric (InSAR) capabilities that will be very useful for complex deformation monitoring. For instance, the monitoring of surface deformation due to permafrost activity, complex rock slide motion and steam assisted oil extraction will benefit from this new rapid revisit capability. This paper provide examples of how the high resolution (1-3 m) rapid revisit InSAR capabilities will improve our monitoring of surface deformation and provide insights in understanding triggering mechanisms. We analysed over a hundred high resolution InSAR images over a two year period on three geologically different sites with various configurations of topography, geomorphology, and geology conditions. We show from our analysis that the more frequent InSAR acquisitions are providing more information in understanding the rates of movement and failure process of permafrost triggered retrogressive thaw flows; the complex motion of an asymmetrical wedge failure of an active rock slide and the identification of over pressure zones related to oil extraction using steam injection. Keywords: High resolution, InSAR, rapid revisits, triggering mechanisms, oil extraction.

  20. A Revisit of the Masuda Flare

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Xu, Yan; Wang, Haimin

    2011-03-01

    We revisit the flare that occurred on 13 January 1992, which is now universally termed the “Masuda flare”. The new analysis is motivated not just by its uniqueness despite the increasing number of coronal observations in hard X-rays, but also by the improvement of Yohkoh hard X-ray image processing, which was achieved after the intensive investigations on this celebrated event. Using an uncertainty analysis, we show that the hard X-ray coronal source is located closer to the soft X-ray loop by about 5000 km (or 7 arcsec) in the re-calibrated Hard X-ray Telescope (HXT) images than in the original ones. Specifically, the centroid of the M1-band (23 - 33 keV) coronal source is above the maximum brightness of the Soft X-ray Telescope (SXT) loop by 5000±1000 km (9600 km in the original data) and above the apex of the SXT loop represented by the 30% brightness contour by 2000±1000 km (˜ 7000 km in the original data). The change is obviously significant, because most coronal sources are above the thermal loop by less than 6 arcsec. We suggest that this change may account for the discrepancy in the literature, i.e., the spectrum of the coronal emission was reported to be extremely hard below ˜ 20 keV in the pre-calibration investigations, whereas it was reported to be considerably softer in the literature after the re-calibration done by Sato, Kosugi, and Makishima ( Pub. Astron. Soc. Japan 51, 127, 1999). Still, the coronal spectrum is flatter at lower energies than at higher energies, due to the lack of a similar, co-spatial source in the L-band (14 - 23 keV), for which a convincing explanation is absent.

  1. Active Nuclear Import of Membrane Proteins Revisited

    PubMed Central

    Laba, Justyna K.; Steen, Anton; Popken, Petra; Chernova, Alina; Poolman, Bert; Veenhoff, Liesbeth M.

    2015-01-01

    It is poorly understood how membrane proteins destined for the inner nuclear membrane pass the crowded environment of the Nuclear Pore Complex (NPC). For the Saccharomyces cerevisiae proteins Src1/Heh1 and Heh2, a transport mechanism was proposed where the transmembrane domains diffuse through the membrane while the extralumenal domains encoding a nuclear localization signal (NLS) and intrinsically disordered linker (L) are accompanied by transport factors and travel through the NPC. Here, we validate the proposed mechanism and explore and discuss alternative interpretations of the data. First, to disprove an interpretation where the membrane proteins become membrane embedded only after nuclear import, we present biochemical and localization data to support that the previously used, as well as newly designed reporter proteins are membrane-embedded irrespective of the presence of the sorting signals, the specific transmembrane domain (multipass or tail anchored), independent of GET, and also under conditions that the proteins are trapped in the NPC. Second, using the recently established size limit for passive diffusion of membrane proteins in yeast, and using an improved assay, we confirm active import of polytopic membrane protein with extralumenal soluble domains larger than those that can pass by diffusion on similar timescales. This reinforces that NLS-L dependent active transport is distinct from passive diffusion. Thirdly, we revisit the proposed route through the center of the NPC and conclude that the previously used trapping assay is, unfortunately, poorly suited to address the route through the NPC, and the route thus remains unresolved. Apart from the uncertainty about the route through the NPC, the data confirm active, transport factor dependent, nuclear transport of membrane-embedded mono- and polytopic membrane proteins in baker’s yeast. PMID:26473931

  2. Machining as a mechanical property test revisited

    NASA Astrophysics Data System (ADS)

    Smith, David L.

    There is much need for data on mechanical behavior of metals at high strains and strain rates. This need is dictated by modeling of processes like forming and machining, wherein the material in the deformation zone is subjected to severe deformation conditions atypical of conventional material property tests such as tension and torsion. Accurate flow stress data is an essential input for robust prediction of process outputs. Similar requirements arise from applications in high speed ballistic penetration and design of materials for armor. Since the deformation zone in cutting of metals is characterized by unique and extreme combinations of strain, strain rate and temperature, an opportunity exists for using plane-strain cutting as a mechanical property test for measuring flow properties of metals. The feasibility of using plane-strain cutting to measure flow properties of metals is revisited in the light of recent data showing controllability of the deformation conditions in chip formation by systematic variation of process input parameters. A method is outlined as to how the deformation conditions can be varied by changing the process parameters. The method is applied to cutting of commercially pure copper (FCC), iron (BCC) and zinc (HCP). Forces and chip geometries are measured, in conjunction with particle image velocimetry characterization of the deformation using high speed image sequences. The flow stresses are estimated from these measurements. The measured flow stress and its dependence on strain are shown to agree well with prior measurements of these parameters using conventional tests, and flow stress inferred from hardness characterization. The method is also demonstrated to be able to measure properties of metals that recrystallize at room temperature (zinc), wherein quasi-static tests predict much lower strength. Sources of variability and uncertainty in the application of this measurement technique are discussed. Future work in the context of further

  3. Active Nuclear Import of Membrane Proteins Revisited.

    PubMed

    Laba, Justyna K; Steen, Anton; Popken, Petra; Chernova, Alina; Poolman, Bert; Veenhoff, Liesbeth M

    2015-01-01

    It is poorly understood how membrane proteins destined for the inner nuclear membrane pass the crowded environment of the Nuclear Pore Complex (NPC). For the Saccharomyces cerevisiae proteins Src1/Heh1 and Heh2, a transport mechanism was proposed where the transmembrane domains diffuse through the membrane while the extralumenal domains encoding a nuclear localization signal (NLS) and intrinsically disordered linker (L) are accompanied by transport factors and travel through the NPC. Here, we validate the proposed mechanism and explore and discuss alternative interpretations of the data. First, to disprove an interpretation where the membrane proteins become membrane embedded only after nuclear import, we present biochemical and localization data to support that the previously used, as well as newly designed reporter proteins are membrane-embedded irrespective of the presence of the sorting signals, the specific transmembrane domain (multipass or tail anchored), independent of GET, and also under conditions that the proteins are trapped in the NPC. Second, using the recently established size limit for passive diffusion of membrane proteins in yeast, and using an improved assay, we confirm active import of polytopic membrane protein with extralumenal soluble domains larger than those that can pass by diffusion on similar timescales. This reinforces that NLS-L dependent active transport is distinct from passive diffusion. Thirdly, we revisit the proposed route through the center of the NPC and conclude that the previously used trapping assay is, unfortunately, poorly suited to address the route through the NPC, and the route thus remains unresolved. Apart from the uncertainty about the route through the NPC, the data confirm active, transport factor dependent, nuclear transport of membrane-embedded mono- and polytopic membrane proteins in baker's yeast. PMID:26473931

  4. Consensus Paper: Revisiting the Symptoms and Signs of Cerebellar Syndrome.

    PubMed

    Bodranghien, Florian; Bastian, Amy; Casali, Carlo; Hallett, Mark; Louis, Elan D; Manto, Mario; Mariën, Peter; Nowak, Dennis A; Schmahmann, Jeremy D; Serrao, Mariano; Steiner, Katharina Marie; Strupp, Michael; Tilikete, Caroline; Timmann, Dagmar; van Dun, Kim

    2016-06-01

    The cerebellum is involved in sensorimotor operations, cognitive tasks and affective processes. Here, we revisit the concept of the cerebellar syndrome in the light of recent advances in our understanding of cerebellar operations. The key symptoms and signs of cerebellar dysfunction, often grouped under the generic term of ataxia, are discussed. Vertigo, dizziness, and imbalance are associated with lesions of the vestibulo-cerebellar, vestibulo-spinal, or cerebellar ocular motor systems. The cerebellum plays a major role in the online to long-term control of eye movements (control of calibration, reduction of eye instability, maintenance of ocular alignment). Ocular instability, nystagmus, saccadic intrusions, impaired smooth pursuit, impaired vestibulo-ocular reflex (VOR), and ocular misalignment are at the core of oculomotor cerebellar deficits. As a motor speech disorder, ataxic dysarthria is highly suggestive of cerebellar pathology. Regarding motor control of limbs, hypotonia, a- or dysdiadochokinesia, dysmetria, grasping deficits and various tremor phenomenologies are observed in cerebellar disorders to varying degrees. There is clear evidence that the cerebellum participates in force perception and proprioceptive sense during active movements. Gait is staggering with a wide base, and tandem gait is very often impaired in cerebellar disorders. In terms of cognitive and affective operations, impairments are found in executive functions, visual-spatial processing, linguistic function, and affective regulation (Schmahmann's syndrome). Nonmotor linguistic deficits including disruption of articulatory and graphomotor planning, language dynamics, verbal fluency, phonological, and semantic word retrieval, expressive and receptive syntax, and various aspects of reading and writing may be impaired after cerebellar damage. The cerebellum is organized into (a) a primary sensorimotor region in the anterior lobe and adjacent part of lobule VI, (b) a second sensorimotor

  5. REVISITING SCALING RELATIONS FOR GIANT RADIO HALOS IN GALAXY CLUSTERS

    SciTech Connect

    Cassano, R.; Brunetti, G.; Venturi, T.; Kale, R.; Pratt, G. W.; Markevitch, M.

    2013-11-10

    Many galaxy clusters host megaparsec-scale radio halos, generated by ultrarelativistic electrons in the magnetized intracluster medium. Correlations between the synchrotron power of radio halos and the thermal properties of the hosting clusters were established in the last decade, including the connection between the presence of a halo and cluster mergers. The X-ray luminosity and redshift-limited Extended GMRT Radio Halo Survey provides a rich and unique dataset for statistical studies of the halos. We uniformly analyze the radio and X-ray data for the GMRT cluster sample, and use the new Planck Sunyaev-Zel'dovich (SZ) catalog to revisit the correlations between the power of radio halos and the thermal properties of galaxy clusters. We find that the radio power at 1.4 GHz scales with the cluster X-ray (0.1-2.4 keV) luminosity computed within R{sub 500} as P{sub 1.4}∼L{sup 2.1±0.2}{sub 500}. Our bigger and more homogenous sample confirms that the X-ray luminous (L{sub 500} > 5 × 10{sup 44} erg s{sup –1}) clusters branch into two populations—radio halos lie on the correlation, while clusters without radio halos have their radio upper limits well below that correlation. This bimodality remains if we excise cool cores from the X-ray luminosities. We also find that P{sub 1.4} scales with the cluster integrated SZ signal within R{sub 500}, measured by Planck, as P{sub 1.4}∼Y{sup 2.05±0.28}{sub 500}, in line with previous findings. However, contrary to previous studies that were limited by incompleteness and small sample size, we find that 'SZ-luminous' Y{sub 500} > 6 × 10{sup –5} Mpc{sup 2} clusters show a bimodal behavior for the presence of radio halos, similar to that in the radio-X-ray diagram. Bimodality of both correlations can be traced to clusters dynamics, with radio halos found exclusively in merging clusters. These results confirm the key role of mergers for the origin of giant radio halos, suggesting that they trigger the relativistic particle

  6. Revisiting Scaling Relations for Giant Radio Halos in Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Cassano, R.; Ettori, S.; Brunetti, G.; Giacintucci, S.; Pratt, G. W.; Venturi, T.; Kale, R.; Dolag, K.; Markevitch, Maxim L.

    2013-01-01

    Many galaxy clusters host megaparsec-scale radio halos, generated by ultrarelativistic electrons in the magnetized intracluster medium. Correlations between the synchrotron power of radio halos and the thermal properties of the hosting clusters were established in the last decade, including the connection between the presence of a halo and cluster mergers. The X-ray luminosity and redshift-limited Extended GMRT Radio Halo Survey provides a rich and unique dataset for statistical studies of the halos. We uniformly analyze the radio and X-ray data for the GMRT cluster sample, and use the new Planck Sunyaev-Zel'dovich (SZ) catalog to revisit the correlations between the power of radio halos and the thermal properties of galaxy clusters. We find that the radio power at 1.4 GHz scales with the cluster X-ray (0.1-2.4 keV) luminosity computed within R(sub 500) as P(sub 1.4) approx. L(2.1+/-0.2) - 500). Our bigger and more homogenous sample confirms that the X-ray luminous (L(sub 500) > 5 × 10(exp 44) erg/s)) clusters branch into two populations-radio halos lie on the correlation, while clusters without radio halos have their radio upper limits well below that correlation. This bimodality remains if we excise cool cores from the X-ray luminosities. We also find that P(sub 1.4) scales with the cluster integrated SZ signal within R(sub 500), measured by Planck, as P(sub 1.4) approx. Y(2.05+/-0.28) - 500), in line with previous findings. However, contrary to previous studies that were limited by incompleteness and small sample size, we find that "SZ-luminous" Y(sub 500) > 6×10(exp -5) Mpc(exp 2) clusters show a bimodal behavior for the presence of radio halos, similar to that in the radio-X-ray diagram. Bimodality of both correlations can be traced to clusters dynamics, with radio halos found exclusively in merging clusters. These results confirm the key role of mergers for the origin of giant radio halos, suggesting that they trigger the relativistic particle acceleration.

  7. Finite frequency tomography: the checkerboard test revisited

    NASA Astrophysics Data System (ADS)

    Mercerat, E. D.; Zaroli, C.; Nolet, G.

    2011-12-01

    We address some consequences of the application of finite frequency theory for seismic tomography by revisiting the classical checkerboard test. We use a simple borehole-to-borehole experiment set-up in order to have complete control of the situation and to avoid complicating factors such as crustal corrections that still hamper global tomography. We are particularly interested in the feasibility of using ray-based finite frequency kernels in the inversion of travel time perturbations measured by crosscorrelation, in the cross-dependence between S wave velocity perturbations and the measured P travel times, and in the benefits of using finite-frequency theory on one or multiple frequency bands. We have done a 3D checkerboard test to assess the influence of these issues. Full-waveform synthetic seismograms are calculated using the spectral elements method up to 2 kHz maximum frequency. The computational domain extends 200 m x 120 m x 120 m and the target velocity model is a checkerboard with 12 m x 12 m x 12 m blocks of velocities 5% slower and faster than the background (homogeneous, Vp=6 km/s) model. First, we make a comparison between finite-frequency kernels calculated by ray theory with those based on the spectral elements method (adjoint technique), in terms of resolution, accuracy, but also computational cost. From synthetic seismograms calculated for the 3D checkerboard model as well as for the homogeneous model, we measure crosscorrelation travel times at different frequency bands and invert them with classical ray theory as well as with finite frequency theory. Several interesting features are highlighted in our multi-band data set, such as the wavefront healing effect. For instance, we observe that the delay times, in absolute value, are usually larger at short (0.5 ms) than long (4 ms) periods. This can be explained by the presence of the "doughnut hole" along the geometrical ray path in the sensitivity kernels, whose diameter is proportional to the

  8. Five years on: Revisiting GSN data quality

    NASA Astrophysics Data System (ADS)

    Gee, L. S.; Nettles, M.; Ekstrom, G.; Davis, J. P.; Ringler, A. T.; Storm, T. L.; Wilson, D.; Anderson, K. R.

    2014-12-01

    In 2010, the Lamont Waveform Quality Center (WQC) conducted an in-depth review of ten stations in the Global Seismographic Network (GSN). IU stations (CASY, DAV, KIP, KONO, WCI), IC stations (SSE, XAN), and II stations (ALE, DGAR, RPN) were analyzed using a scaling analysis based on data-synthetic comparisons, evaluation of noise levels, assessment of inter-sensor coherence, and polarization analysis. These reports (available from http://www.ldeo.columbia.edu/~ekstrom/Projects/WQC.html) highlighted a number of significant problems in GSN data quality, including the frequency-dependent loss of gain in the STS-1 seismometer (Ekström et al., 2006) that has been attributed to the presence of humidity in the electronics, cables, and connectors (Yuki and Ishihara, 2002; Hutt and Ringler, 2011). The reports from the WQC spurred a number of changes in the operation of the GSN, including the adoption of the policy of annual calibrations and the development of new tools and metrics to monitor, evaluate, and communicate data quality. In parallel, the USGS' Albuquerque Seismological Laboratory (ASL) and UCSD's Project IDA worked with the IRIS Consortium to upgrade GSN stations with new data acquisition systems, to refurbish the STS-1 seismometers with new electronics, and to expand the deployment of secondary broadband sensors. We revisit the 2010 reports, using the tools of the WQC as well as a number of newly developed tools such as the USGS' Data Quality Analyzer and IRIS' MUSTANG, and provide an update on GSN data quality. Our initial focus is on CASY and KIP, the first two stations reviewed by the WQC. Our goal is to evaluate progress in the last five years and assess our ability to quantify data quality as well as to identify potential problems that could compromise data quality in the future. Ekström, G., C. A. Dalton, and M. Nettles (2006). Observations of time-dependent errors in long-period instrument gain at global seismic stations. Seismological Research Letters

  9. Unwarranted Return: A Response to McVee, Dunsmore, and Gavelek's (2005) "Schema Theory Revisited"

    ERIC Educational Resources Information Center

    Krasny, Karen A.; Sadoski, Mark; Paivio, Allan

    2007-01-01

    This article presents the authors' response to McVee, Dunsmore, and Gavelek's "Schema Theory Revisited." In "Schema Theory Revisited," McVee, Dunsmore, and Gavelek (2005) proposed a rearticulation of schema theory intended to encompass the ideas that schemata and other cognitive processes are embodied, that knowledge is situated in the transaction…

  10. Enthalpy-Entropy Compensation (EEC) Effect: A Revisit.

    PubMed

    Pan, Animesh; Biswas, Tapas; Rakshit, Animesh K; Moulik, Satya P

    2015-12-31

    A short account of the developments and perspectives of IKR (iso-kinetic relation) and EEC (enthalpy (H) - entropy (S) compensation) has been presented. The IKR and EEC are known to be extra thermodynamic or empirical correlations though linear H-S correlation can be thermodynamically deduced. Attempt has also been made to explain the phenomena in terms of statistical thermodynamics. In this study, we have briefly revisited the fundamentals of both IKR and EEC from kinetic and thermodynamic grounds. A detailed revisit of the EEC phenomenon on varied kinetic and equilibrium processes has been also presented. Possible correlations among the free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) changes of different similar and nonsimilar chemical processes under varied conditions have been discussed with possible future projections. PMID:26641279

  11. Topological Twisted Sigma Model with H-flux Revisited

    SciTech Connect

    Chuang, Wu-yen

    2006-08-18

    In this paper we revisit the topological twisted sigma model with H-flux. We explicitly expand and then twist the worldsheet Lagrangian for bi-Hermitian geometry. we show that the resulting action consists of a BRST exact term and pullback terms, which only depend on one of the two generalized complex structures and the B-field. We then discuss the topological feature of the model.

  12. (Pseudo)issue of the conformal frame revisited

    SciTech Connect

    Faraoni, Valerio; Nadeau, Shahn

    2007-01-15

    The issue of the equivalence between Jordan and Einstein conformal frames in scalar-tensor gravity is revisited, with the emphasis on implementing running units in the latter. The lack of affine parametrization for timelike worldlines and the cosmological constant problem in the Einstein frame are clarified, and a paradox in the literature about cosmological singularities appearing only in one frame is solved. While, classically, the two conformal frames are physically equivalent, they seem to be inequivalent at the quantum level.

  13. Non linear evolution: revisiting the solution in the saturation region

    NASA Astrophysics Data System (ADS)

    Contreras, Carlos; Levin, Eugene; Meneses, Rodrigo

    2014-10-01

    In this paper we revisit the problem of the solution to Balitsky-Kovchegov equation deeply in the saturation domain. We find that solution has the form given in ref. [23] but it depends on variable and the value of Const is calculated in this paper. We propose the solution for full BFKL kernel at large in the entire kinematic region that satisfies the McLerran-Venugopalan-type [3-7] initial condition.

  14. Discussion of "Computational Electrocardiography: Revisiting Holter ECG Monitoring".

    PubMed

    Baumgartner, Christian; Caiani, Enrico G; Dickhaus, Hartmut; Kulikowski, Casimir A; Schiecke, Karin; van Bemmel, Jan H; Witte, Herbert

    2016-08-01

    This article is part of a For-Discussion-Section of Methods of Information in Medicine about the paper "Computational Electrocardiography: Revisiting Holter ECG Monitoring" written by Thomas M. Deserno and Nikolaus Marx. It is introduced by an editorial. This article contains the combined commentaries invited to independently comment on the paper of Deserno and Marx. In subsequent issues the discussion can continue through letters to the editor. PMID:27406570

  15. The Transverse Momentum Dependent Statistical Parton Distributions Revisited

    NASA Astrophysics Data System (ADS)

    Bourrely, Claude; Buccella, Franco; Soffer, Jacques

    2013-04-01

    The extension of the statistical parton distributions to include their transverse momentum dependence (TMD) is revisited by considering that the proton target has a finite longitudinal momentum. The TMD will be generated by means of a transverse energy sum rule. The new results are mainly relevant for electron-proton inelastic collisions in the low Q2 region. We take into account the effects of the Melosh-Wigner rotation for the helicity distributions.

  16. Indoor air and human health revisited: A recent IAQ symposium

    SciTech Connect

    Gammage, R.B.

    1994-12-31

    Indoor Air and Human Health Revisited was a speciality symposium examining the scientific underpinnings of sensory and sensitivity effects, allergy and respiratory disease, neurotoxicity and cancer. An organizing committee selected four persons to chain the sessions and invite experts to give state-of-the-art presentations that will be published as a book. A summary of the presentations is made and some critical issues identified.

  17. Soft two-pion-exchange nucleon-nucleon potentials

    SciTech Connect

    Rijken, Th.A. )

    1991-06-01

    Two-pion-exchange nucleon-nucleon potentials are derived for the pseudo-vector pion-nucleon interaction, assuming strong dynamical pair-suppression. At the pion-nucleon vertices the authors include Gaussian form factors, which are incorporated into the relativistic two-body framework by using a dispersion representation for the one-pion-exchange amplitude. The Fourier transformations are performed using a factorization technique for the energy denominators. This leads to analytic expressions for the TPE-potentials containing at most one-dimensional integrals. The TPE-potentials are calculated up to orders {line integral}{sup 4} and (m/M){line integral}{sup 4}. The terms of order {line integral}{sup 4} come from the adiabatic contributions of the parallel and crossed three-dimensional momentum-space TPE-diagrams, and from the non-adiabatic contributions of the OPE-iteration. The (m/M)-corrections are due to the 1/M-terms in the non-adiabatic expansion of the nucleon energies in the intermediate states, and the 1/M-terms in the pion-nucleon vertices. The latter are typical for the PV-coupling and would be absent for the PS-coupling. The Gaussian form factors lead to soft TPE-potentials. These potentials can readily be exploited in NN-calculations in combination with, e.g., the Nijmegen soft-core OBE-model, and in nuclear (matter) calculations.

  18. Conditional dynamics driving financial markets

    NASA Astrophysics Data System (ADS)

    Boguñá, M.; Masoliver, J.

    2004-08-01

    We revisit the problem of daily correlations in speculative prices and report empirical evidences on the existence of what we term a conditional or dual dynamics driving the evolution of financial assets. This dynamics is detected in several markets around the world and for different historical periods. In particular, we have analyzed the DJIA database from 1900 to 2002 as well as 65 companies trading in the LIFFE market of futures and 12 of the major European and American treasury bonds. In all cases, we find a twofold dynamics driving the financial evolution depending on whether the previous price went up or down. We conjecture that this effect is universal and intrinsic to all markets.

  19. Mindless reading revisited: an analysis based on the SWIFT model of eye-movement control.

    PubMed

    Nuthmann, Antje; Engbert, Ralf

    2009-02-01

    In this article, we revisit the mindless reading paradigm from the perspective of computational modeling. In the standard version of the paradigm, participants read sentences in both their normal version as well as the transformed (or mindless) version where each letter is replaced with a z. z-String scanning shares the oculomotor requirements with reading but none of the higher-level lexical and semantic processes. Here we use the z-string scanning task to validate the SWIFT model of saccade generation [Engbert, R., Nuthmann, A., Richter, E., & Kliegl, R. (2005). SWIFT: A dynamical model of saccade generation during reading. Psychological Review, 112(4), 777-813] as an example for an advanced theory of eye-movement control in reading. We test the central assumption of spatially distributed processing across an attentional gradient proposed by the SWIFT model. Key experimental results like prolonged average fixation durations in z-string scanning compared to normal reading and the existence of a string-length effect on fixation durations and probabilities were reproduced by the model, which lends support to the model's assumptions on visual processing. Moreover, simulation results for patterns of regressive saccades in z-string scanning confirm SWIFT's concept of activation field dynamics for the selection of saccade targets. PMID:19026673

  20. Revisit on Proper Orthogonal Decomposition Method

    NASA Astrophysics Data System (ADS)

    Hosseinali, Mahdi; Hall, Joseph

    2015-11-01

    Understanding the underlying mechanisms of seemingly random movements in turbulent flows is the most challenging ongoing area of fluid dynamics. Structures with characteristic length scale comparable to the geometry of the flow, so called coherent structures, are assumed to be responsible for the major characteristic behaviors of the flow. These structures then break down to smaller structures and so on until they get damped on viscose level. Identification of coherent structures thus is of paramount importance in fluid dynamics. Among numerous methods POD seems to be the most successful approach to breaks the sophisticated turbulent field into a series of unbiased modes. Since its introduction to fluid dynamic community by Lumley the only major improvement was method of snapshots by Sirovich which is used today on PIV measurements. This talk is aimed to look at different forms of POD kernels which are mostly based on a physical point of view rather than pure mathematics.

  1. Revisiting a Problem of Two Freezers

    ERIC Educational Resources Information Center

    Easton, Don

    2014-01-01

    The January 2013 Physics Challenge for Teachers and Students has some features that are surprising and worth a closer look. The problem concerns a Carnot-cycle refrigeration unit operating inside a tent. It achieves dynamic equilibrium with a freezer ("cold") compartment temperature of T[subscript C] = 13°C, tent temperature of…

  2. Revisiting the Gulf Coast after Katrina

    ERIC Educational Resources Information Center

    Principal, 2009

    2009-01-01

    In August 2005, the world witnessed one of the most destructive natural disasters on America's mainland. Hurricane Katrina, followed a month later by Hurricane Rita, brought more than broken levees, flooded streets and homes, and destroyed businesses. It caused changes in the dynamics and the demographic and cultural makeup of the region. One of…

  3. Topological entropy of catalytic sets: Hypercycles revisited

    NASA Astrophysics Data System (ADS)

    Sardanyés, Josep; Duarte, Jorge; Januário, Cristina; Martins, Nuno

    2012-02-01

    The dynamics of catalytic networks have been widely studied over the last decades because of their implications in several fields like prebiotic evolution, virology, neural networks, immunology or ecology. One of the most studied mathematical bodies for catalytic networks was initially formulated in the context of prebiotic evolution, by means of the hypercycle theory. The hypercycle is a set of self-replicating species able to catalyze other replicator species within a cyclic architecture. Hypercyclic organization might arise from a quasispecies as a way to increase the informational containt surpassing the so-called error threshold. The catalytic coupling between replicators makes all the species to behave like a single and coherent evolutionary multimolecular unit. The inherent nonlinearities of catalytic interactions are responsible for the emergence of several types of dynamics, among them, chaos. In this article we begin with a brief review of the hypercycle theory focusing on its evolutionary implications as well as on different dynamics associated to different types of small catalytic networks. Then we study the properties of chaotic hypercycles with error-prone replication with symbolic dynamics theory, characterizing, by means of the theory of topological Markov chains, the topological entropy and the periods of the orbits of unimodal-like iterated maps obtained from the strange attractor. We will focus our study on some key parameters responsible for the structure of the catalytic network: mutation rates, autocatalytic and cross-catalytic interactions.

  4. Liberal Arts Catch-Up Revisited

    ERIC Educational Resources Information Center

    Goyder, John

    2014-01-01

    This paper replicates the work of Giles and Drewes from the 1990s. They showed a catch-up effect whereby graduates of liberal arts undergraduate programs, although at an early-career disadvantage compared with graduates of applied programs, had higher incomes by mid-career. Working with the Panel 5 Survey of Labour and Income Dynamics (2005-2010),…

  5. Charitable Giving by Married Couples Revisited

    ERIC Educational Resources Information Center

    Yoruk, Baris K.

    2010-01-01

    This paper investigates the effect of gender differences and household bargaining on charitable giving. I replicate the study of Andreoni, Brown, and Rischall (2003) using a different data set--the recently available Panel Study of Income Dynamics (PSID) supplement on charitable giving--and test the sensitivity of their results to inclusion of…

  6. Mathematical analysis of a multiple strain, multi-locus-allele system for antigenically variable infectious diseases revisited.

    PubMed

    Cherif, Alhaji

    2015-09-01

    Many important pathogens such as HIV/AIDS, influenza, malaria, dengue and meningitis generally exist in phenotypically distinct serotypes that compete for hosts. Models used to study these diseases appear as meta-population systems. Herein, we revisit one of the multiple strain models that have been used to investigate the dynamics of infectious diseases with co-circulating serotypes or strains, and provide analytical results underlying the numerical investigations. In particular, we establish the necessary conditions for the local asymptotic stability of the steady states and for the existence of oscillatory behaviors via Hopf bifurcation. In addition, we show that the existence of discrete antigenic forms among pathogens can either fully or partially self-organize, where (i) strains exhibit no strain structures and coexist or (ii) antigenic variants sort into non-overlapping or minimally overlapping clusters that either undergo the principle of competitive exclusion exhibiting discrete strain structures, or co-exist cyclically. PMID:26116427

  7. Hadronic event generation for hadron cascade calculations and detector simulation, Part IV: The application of the intranuclear cascade model to reactions of pions, nucleons, kaons, and their antiparticles with nuclei below 6 GeV/c

    SciTech Connect

    Haenbssgen, K.

    1987-02-01

    An extension of the intranuclear cascade model is described. The primary hadrons may be pions, kaons, nucleons, and their antiparticles. Secondary particles produced include hyperons or antihyperons. A large amount of experimental data is described by the model. The model is constructed via the Monte Carlo generation of complete events, based on a model of the nucleus structure and the hadron/nucleon interaction inside the nucleus. Calculated average multiplicities and single and double differential cross sections are compared with experimental data.

  8. A practical method of predicting client revisit intention in a hospital setting.

    PubMed

    Lee, Kyun Jick

    2005-01-01

    Data mining (DM) models are an alternative to traditional statistical methods for examining whether higher customer satisfaction leads to higher revisit intention. This study used a total of 906 outpatients' satisfaction data collected from a nationwide survey interviews conducted by professional interviewers on a face-to-face basis in South Korea, 1998. Analyses showed that the relationship between overall satisfaction with hospital services and outpatients' revisit intention, along with word-of-mouth recommendation as intermediate variables, developed into a nonlinear relationship. The five strongest predictors of revisit intention were overall satisfaction, intention to recommend to others, awareness of hospital promotion, satisfaction with physician's kindness, and satisfaction with treatment level. PMID:15923917

  9. Nonlinear time-series analysis revisited

    NASA Astrophysics Data System (ADS)

    Bradley, Elizabeth; Kantz, Holger

    2015-09-01

    In 1980 and 1981, two pioneering papers laid the foundation for what became known as nonlinear time-series analysis: the analysis of observed data—typically univariate—via dynamical systems theory. Based on the concept of state-space reconstruction, this set of methods allows us to compute characteristic quantities such as Lyapunov exponents and fractal dimensions, to predict the future course of the time series, and even to reconstruct the equations of motion in some cases. In practice, however, there are a number of issues that restrict the power of this approach: whether the signal accurately and thoroughly samples the dynamics, for instance, and whether it contains noise. Moreover, the numerical algorithms that we use to instantiate these ideas are not perfect; they involve approximations, scale parameters, and finite-precision arithmetic, among other things. Even so, nonlinear time-series analysis has been used to great advantage on thousands of real and synthetic data sets from a wide variety of systems ranging from roulette wheels to lasers to the human heart. Even in cases where the data do not meet the mathematical or algorithmic requirements to assure full topological conjugacy, the results of nonlinear time-series analysis can be helpful in understanding, characterizing, and predicting dynamical systems.

  10. Nonlinear time-series analysis revisited.

    PubMed

    Bradley, Elizabeth; Kantz, Holger

    2015-09-01

    In 1980 and 1981, two pioneering papers laid the foundation for what became known as nonlinear time-series analysis: the analysis of observed data-typically univariate-via dynamical systems theory. Based on the concept of state-space reconstruction, this set of methods allows us to compute characteristic quantities such as Lyapunov exponents and fractal dimensions, to predict the future course of the time series, and even to reconstruct the equations of motion in some cases. In practice, however, there are a number of issues that restrict the power of this approach: whether the signal accurately and thoroughly samples the dynamics, for instance, and whether it contains noise. Moreover, the numerical algorithms that we use to instantiate these ideas are not perfect; they involve approximations, scale parameters, and finite-precision arithmetic, among other things. Even so, nonlinear time-series analysis has been used to great advantage on thousands of real and synthetic data sets from a wide variety of systems ranging from roulette wheels to lasers to the human heart. Even in cases where the data do not meet the mathematical or algorithmic requirements to assure full topological conjugacy, the results of nonlinear time-series analysis can be helpful in understanding, characterizing, and predicting dynamical systems. PMID:26428563