Science.gov

Sample records for pioneer oil burner

  1. OIL BURNER EMISSIONS: COTTONSEED OIL VERSUS DIESEL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cottonseed oil has been used as a fuel source, either as a blend with diesel in varying proportions, or undiluted (100%), in numerous studies evaluating its potential use in internal combustion engines. However, limited research is available on the use of cottonseed oil as a fuel source in a multi-f...

  2. Prospects for residential oil burners with reduced emissions

    SciTech Connect

    Butcher, T.A.; Krajewski, R.F.; Celebi, Y.; McDonald, R.J. ); Batey, J. )

    1992-04-01

    In considering the emissions characteristics of residential oil heating equipment it is important to consider the magnitude of these emissions relative to all other sources. Laboratory and field test data show that home oil burners produce very low levels of pollutants when compared to all other combustion sources in the US. Home oil burners are relatively clean burning and produce less air pollution than the average combustion source in the US. This is especially true for carbon monoxide, particulates, and hydrocarbons, which are a small fraction of the average emission of other combustion equipment. In this paper results are presented of emission tests done with a number of oil burners selected as being representative of modern equipment or representing a recent development trend or a novel approach. The primary purpose of this work was to provide a benchmark of what oil equipment can do today and what the effects of some of these alternative designs are on emissions.

  3. 41 CFR 101-26.602-3 - Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2012-07-01 true Procurement of gasoline, fuel oil (diesel and burner), kerosene...101-26.602-3 Procurement of gasoline, fuel oil (diesel and burner), kerosene...Minimum annual requirement (gallons) Gasoline 10,000 Burner fuel oil...

  4. 41 CFR 101-26.602-3 - Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2007-07-01 true Procurement of gasoline, fuel oil (diesel and burner), kerosene...101-26.602-3 Procurement of gasoline, fuel oil (diesel and burner), kerosene...Minimum annual requirement (gallons) Gasoline 10,000 Burner fuel oil...

  5. 41 CFR 101-26.602-3 - Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 true Procurement of gasoline, fuel oil (diesel and burner), kerosene...101-26.602-3 Procurement of gasoline, fuel oil (diesel and burner), kerosene...Minimum annual requirement (gallons) Gasoline 10,000 Burner fuel oil...

  6. 41 CFR 101-26.602-3 - Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 false Procurement of gasoline, fuel oil (diesel and burner), kerosene...101-26.602-3 Procurement of gasoline, fuel oil (diesel and burner), kerosene...Minimum annual requirement (gallons) Gasoline 10,000 Burner fuel oil...

  7. Burners

    MedlinePLUS

    ... will last. When can I return to my sport? You shouldn't go back to playing if you have pain, numbness or tingling. Also ... medicines that will treat burners? Are there side effects? Source The "Burner": A Common Nerve Injury in Contact Sports by GS Kuhlman, DB McKreag (American Family Physician ...

  8. COMMERCIAL FEASIBILITY OF AN OPTIMUM RESIDENTIAL OIL BURNER HEAD

    EPA Science Inventory

    The report gives results of a study of the feasibility of commercializing optimum oil burner head technology developed earlier for EPA. The study included: selecting the best commercial method for fabricating optimum heads; determining that prototype simulated-production heads co...

  9. Flame quality monitor system for fixed firing rate oil burners

    DOEpatents

    Butcher, Thomas A. (Pt. Jefferson, NY); Cerniglia, Philip (Moriches, NY)

    1992-01-01

    A method and apparatus for determining and indicating the flame quality, or efficiency of the air-fuel ratio, in a fixed firing rate heating unit, such as an oil burning furnace, is provided. When the flame brightness falls outside a preset range, the flame quality, or excess air, has changed to the point that the unit should be serviced. The flame quality indicator output is in the form of lights mounted on the front of the unit. A green light indicates that the flame is about in the same condition as when the burner was last serviced. A red light indicates a flame which is either too rich or too lean, and that servicing of the burner is required. At the end of each firing cycle, the flame quality indicator goes into a hold mode which is in effect during the period that the burner remains off. A yellow or amber light indicates that the burner is in the hold mode. In this mode, the flame quality lights indicate the flame condition immediately before the burner turned off. Thus the unit can be viewed when it is off, and the flame condition at the end of the previous firing cycle can be observed.

  10. 41 CFR 101-26.602-3 - Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...602-3 Procurement of gasoline, fuel oil (diesel and burner...annual requirement (gallons) Gasoline 10,000 Burner fuel oil...200-7,500 gallons). Tank car Full carload (8,000-12...submission of requirements for motor gasoline, fuel oil (diesel and...

  11. PERFORMANCE AND AIR POLLUTANT EMISSIONS OF AN EXPERIMENTAL WATER/RESIDUAL OIL EMULSION BURNER IN A COMMERCIAL BOILER

    EPA Science Inventory

    The paper presents the performance and air pollutant emissions of an experimental water/oil emulsion burner. The burner was fired with two residual oils at selected emulsion water fractions. In addition, various stoichiometric ratios and two load conditions were used to determine...

  12. 46 CFR 56.50-65 - Burner fuel-oil service systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 104.1.2 of ASME B31.1 (incorporated by reference; see 46 CFR 56.01-2), the thickness must be greater... tubing may be used between the fuel oil burner front header manifold and the atomizer head to provide...) Unions shall not be used for pipe diameters of 1 inch and above. (f) Boiler header valves of the...

  13. 46 CFR 56.50-65 - Burner fuel-oil service systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 104.1.2 of ASME B31.1 (incorporated by reference; see 46 CFR 56.01-2), the thickness must be greater... 46 Shipping 2 2010-10-01 2010-10-01 false Burner fuel-oil service systems. 56.50-65 Section 56.50-65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING...

  14. ENVIRONMENTAL ASSESSMENT OF AN ENHANCED OIL RECOVERY STEAM GENERATOR EQUIPPED WITH A LOW-NOX BURNER. VOLUME 1. TECHNICAL RESULTS

    EPA Science Inventory

    The report discusses results from sampling flue gas from an enhanced oil recovery steam generator (EOR steamer) equipped with an MHI PM low-NOx burner. The tests included burner performance/emission mapping tests, comparative testing of an identical steamer equipped with a conven...

  15. BURNER CRITERIA FOR NOX CONTROL. VOLUME 3. HEAVY-OIL AND COAL-FIRED FURNACES AND FURTHER FURNACE INVESTIGATIONS

    EPA Science Inventory

    The report describes the third phase of a research program with the overall objective of specifying burner design criteria for minimum pollutant emissions from both pulverized-coal- and residual-fuel-oil-fired combustors. A distributed mixing burner was developed, and its potenti...

  16. Development of a Low Pressure, Air Atomized Oil Burner with High Atomizer Air Flow: Progress Report FY 1997

    SciTech Connect

    Butcher, T.A.

    1998-01-01

    This report describes technical advances made to the concept of a low pressure, air atomized oil burner for home heating applications. Currently all oil burners on the market are of the pressure atomized, retention head type. These burners have a lower firing rate limit of about 0.5 gallons per hour of oil, due to reliability problems related to small flow passage sizes. High pressure air atomized burners have been shown to be one route to avoid this problem but air compressor cost and reliability have practically eliminated this approach. With the low pressure air atomized burner the air required for atomization can be provided by a fan at 5-8 inches of water pressure. A burner using this concept, termed the Fan-Atomized Burner or ''FAB'' has been developed and is currently being commercialized. In the head of the FAB, the combustion air is divided into three parts, much like a conventional retention head burner. This report describes development work on a new concept in which 100% of the air from the fan goes through the atomizer. The primary advantage of this approach is a great simplification of the head design. A nozzle specifically sized for this concept was built and is described in the report. Basic flow pressure tests, cold air velocity profiles, and atomization performance have been measured. A burner head/flame tube has been developed which promotes a toroidal recirculation zone near the nozzle for flame stability. The burner head has been tested in several furnace and boiler applications over the firing rate range 0.2 to 0.28 gallons per hour. In all cases the burner can operate with very low excess air levels (under 10%) without producing smoke. Flue gas NO{sub x} concentration varied from 42 to 62 ppm at 3% O{sub 2}. The concept is seen as having significant potential and planned development efforts are discussed.

  17. ENVIRONMENTAL ASSESSMENT OF AN ENHANCED OIL RECOVERY STEAM GENERATOR EQUIPPED WITH A LOW-NOX BURNER. VOLUME 2. DATA SUPPLEMENT

    EPA Science Inventory

    The report is a compendium of detailed test sampling and analysis data obtained in field tests of an enhanced oil recovery steam generator (EOR steamer) equipped with a MHI PM low-NOx crude oil burner. Test data included in the report include equipment calibration records, steame...

  18. Simplified Configuration for the Combustor of an oil Burner using a low Pressure, high flow air-atomizing Nozzle

    SciTech Connect

    Butcher, Thomas; Celebi, Yusuf; Fisher, Leonard

    1998-09-28

    The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion oil resulting in a minimum emission of pollutants. The inventors have devised a fuel burner that uses a low pressure air atomizing nozzle. The improved fuel burner does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design.

  19. Simplified configuration for the combustor of an oil burner using a low pressure, high flow air-atomizing nozzle

    DOEpatents

    Butcher, Thomas A. (Port Jefferson, NY); Celebi, Yusuf (Middle Island, NY); Fisher, Leonard (Colrain, MA)

    2000-09-15

    The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion of oil resulting in a minimum emission of pollutants. The improved fuel burner uses a low pressure air atomizing nozzle that does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design. Inventors:

  20. Coal dust burner

    SciTech Connect

    Benninghoven, E.

    1984-08-14

    A burner is disclosed for alternatively burning coal dust or oil. An annular housing includes a blower at one end thereof for directing a rotating air stream through the housing. A chamber located downstream from the blower has a plurality of outlet pipes extending downstream therefrom in an annular configuration about an atomizing nozzle and an eddy plate. An adjustable burner head is mounted on the end of each of the outlet pipes, the burner heads being arranged for optimum mixture of coal dust and air, fed from the chamber through the outlet pipes to the burner heads, with the rotating air stream passing about and through a hole in the eddy plate to insure optimum combustion. An oil ignition auxiliary burner having a nozzle between the eddy plate and the outlet end of the chamber serves to ignite the coal dust and air mixture. An atomizing nozzle for feeding atomized oil into the burner is provided as an alternative fuel source.

  1. Material response from Mach 0.3 burner rig combustion of a coal-oil mixture

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Calfo, F. D.; Kohl, F. J.

    1981-01-01

    Wedge shaped specimens were exposed to the combustion gases of a Mach 0.3 burner rig fueled with a mixture of 40 weight percent micron size coal particles dispersed in No. 2 fuel oil. Exposure temperature was about 900 C and the test duration was about 44 one hour cycles. The alloys tested were the nickel base superalloys, IN-100, U-700 and IN-792, and the cobalt base superalloy, Mar-M509. The deposits on the specimens were analyzed and the extent of corrosion/erosion was measured. The chemical compositions of the deposits were compared with the predictions from an equilibrium thermodynamic analysis. The experimental results were in very good agreement with the predictions.

  2. Micronized coal burner facility

    NASA Technical Reports Server (NTRS)

    Calfo, F. D.; Lupton, M. W. (inventors)

    1984-01-01

    A combustor or burner system in which the ash resulting from burning a coal in oil mixture is of submicron particle size is described. The burner system comprises a burner section, a flame exit nozzle, a fuel nozzle section, and an air tube by which preheated air is directed into the burner section. Regulated air pressure is delivered to a fuel nozzle. Means are provided for directing a mixture of coal particles and oil from a drum to a nozzle at a desired rate and pressure while means returns excess fuel to the fuel drum. Means provide for stable fuel pressure supply from the fuel pump to the fuel nozzle.

  3. DEVELOPMENT OF SELF-TUNING RESIDENTIAL OIL/BURNER - OXYGEN SENSOR ASSESSMENT AND EARLY PROTOTYPE SYSTEM OPERATING EXPERIENCE

    SciTech Connect

    MCDONALD,R.J.; BUTCHER,T.A.; KRAJEWSKI,R.F.

    1998-09-01

    This document is the first topical report dealing with a new project leading towards the development of a self-tuning residential oil burner. It was initiated under the Statement of Work for the Oil Heat Research and Development Program, for Fiscal Year 1997 as defined in the Combustion Equipment Technology Program, under the management of Brookhaven National Laboratory (BNL). In part, this work is based on research reported by BNL in 1990, suggesting various options for developing control strategies in oil heat technology leading to the enhanced efficiency of oil-fired heating systems. BNL has been addressing these concepts in order of priority and technology readiness. The research described in this report is part of an ongoing project and additional work is planned for the future assuming adequate program funding is made available.

  4. LOW NOX BURNER DEVELOPMENT

    SciTech Connect

    KRISHNA,C.R.; BUTCHER,T.

    2004-09-30

    The objective of the task is to develop concepts for ultra low NOx burners. One approach that has been tested previously uses internal recirculation of hot gases and the objective was to how to implement variable recirculation rates during burner operation. The second approach was to use fuel oil aerosolization (vaporization) and combustion in a porous medium in a manner similar to gas-fired radiant burners. This task is trying the second approach with the use of a somewhat novel, prototype system for aerosolization of the liquid fuel.

  5. Burner (Stinger)

    MedlinePLUS

    ... How Should You Treat a Burner? As a football player, James saw plenty of his teammates get ... the nerves against a bone. Contact sports, particularly football and wrestling, are common causes of burners. In ...

  6. BURNER CRITERIA FOR NOX CONTROL. VOLUME 2. HEAVY-OIL AND COAL-FIRED FURNACES AND THE EVALUATION OF RADIATIVE HEAT TRANSFER MODELS

    EPA Science Inventory

    The report describes Phase II of a research program, the overall objective of which was to specify burner design criteria for minimum pollutant emissions from both pulverized-coal- and residual-fuel-oil-fired combustors. Phase II included both furnace investigations and the evalu...

  7. DURABILITY OF VERY LOW CAPACITY PRESSURE ATOMIZED FUEL NOZZLES USED WITH LOW FIRING RATE RESIDENTIAL OIL BURNERS.

    SciTech Connect

    MCDONALD,R.J.

    2007-05-01

    Brookhaven National Laboratory (BNL), working for the United States Department of Energy (DOE), has conducted a preliminary evaluation of the potential of very low fuel input capacity Simplex type pressure atomizing nozzles for use with oil burners designed for residential boilers, furnaces and water heaters. These nozzles under suitable conditions can be sufficiently reliable to enable new heating system designs. This would allow for the design of heating appliances that match the smaller load demands of energy efficient homes built with modern components and architectural systems designed to minimize energy use. When heating systems are installed with excessive capacity, oversized by three to four times the load, the result is a loss of up to ten percent as compared to the rated appliance efficiency. The use of low capacity nozzles in systems designed to closely match the load can thereby result in significant energy savings. BNL investigated the limitations of low flow rate nozzles and designed long-term experiments to see if ways could be determined that would be beneficial to long-term operation at low input capacities without failures. In order to maximize the potential for success the best possible industry practices available were employed. Low flow rate nozzles primarily fail by blockage or partial blockage of internal fuel flow passages inside the nozzle. To prevent any contaminants from entering the nozzle BNL investigated the geometry and critical dimensions and the current sate of the art of fuel filter design. Based on this investigation it was concluded that the best available filters should be more than capable of filtering contaminants from the fuel prior to entering the oil burner itself. This position was indeed validated based on the long-term trials conducted under this study no evidence resulted to change our position. It is highly recommended that these filters rated at 10 microns and with large filter capacity (surface area), should be used with all oil burner installations. The other possible failure mode had been attributed to fuel degradation and this became the main focus of the evaluation. The degradation of fuel usually occurs faster under higher temperature conditions. To preclude this as much as possible controls that provided for a post-purge of combustion airflow after burner shut down were selected. This provided a short period of time where the burner's combustion air blower continues to operate after the flame has gone out. This tends to cool the nozzle and in turn the fuel inside the small flow pathways inside the nozzle components. This study concludes that the use of low capacity nozzles is possible but only when the temperature and thermal mass environment of the combustion chamber result in a relatively ''cool'' condition. This was accomplished in one long-term experiment that essentially operated for a full heating season equivalent with no evidence of nozzle plugging or failure. The nozzle body surface temperature was kept at or below 150 F during the duration of the trial. On the other hand, a second system was studied that ended in a partial nozzle blockage and a system failure. In this ''hot environment'' system the nozzle body temperature reached 210 F. This occurred at close to a full heating season equivalent, yet it still would have resulted in a no-heat complaint by the homeowner.

  8. Pulverized coal burner

    DOEpatents

    Sivy, Jennifer L. (Alliance, OH); Rodgers, Larry W. (Canton, OH); Koslosy, John V. (Akron, OH); LaRue, Albert D. (Uniontown, OH); Kaufman, Keith C. (Canton, OH); Sarv, Hamid (Canton, OH)

    1998-01-01

    A burner having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO.sub.x burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO.sub.x back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing.

  9. Pulverized coal burner

    DOEpatents

    Sivy, J.L.; Rodgers, L.W.; Koslosy, J.V.; LaRue, A.D.; Kaufman, K.C.; Sarv, H.

    1998-11-03

    A burner is described having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO{sub x} burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO{sub x} back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing. 8 figs.

  10. Development of self-tuning residential oil-burner. Oxygen sensor assessment and early prototype system operating experience

    SciTech Connect

    McDonald, R.J.; Butcher, T.A.; Krajewski, R.F.

    1998-09-01

    This document is the first topical report dealing with a new project leading towards the development of a self-tuning residential oil burner. It was initiated under the Statement of Work for the Oil Heat Research and Development Program, for Fiscal Year 1997 as defined in the Combustion Equipment Technology Program, under the management of Brookhaven National Laboratory (BNL). In part, this work is based on research reported by BNL in 1990, suggesting various options for developing control strategies in oil heat technology leading to the enhanced efficiency of oil-fired heating systems. BNL has been addressing these concepts in order of priority and technology readiness. The research described in this report is part of an ongoing project and additional work is planned for the future assuming adequate program funding is made available. BNL has continued to investigate all types of sensor technologies associated with combustion systems including all forms of oxygen measurement techniques. In these studies the development of zirconium oxide oxygen sensors has been considered over the last decade. The development of these sensors for the automotive industry has allowed for cost reductions based on quantity of production that might not have occurred otherwise. This report relates BNL`s experience in testing various zirconium oxide sensors, and the results of tests intended to provide evaluation of the various designs with regard to performance in oil-fired systems. These tests included accuracy when installed on oil-fired heating appliances and response time in cyclic operating mode. An evaluation based on performance criteria and cost factors was performed. Cost factors in the oil heat industry are one of the most critical issues in introducing new technology.

  11. Ceramic burner

    SciTech Connect

    Laux, W.; Hebel, R.; Artelt, P.; Esfeld, G.; Jacob, A.

    1981-03-31

    Improvements in the mixing body and supporting structure of a molded-ceramic-brick burner enable the burner to withstand the vibrations induced during its operation. Designed for the combustion chambers of air heaters, the burner has a mixing body composed of layers of shaped ceramic bricks that interlock and are held together vertically by a ceramic holding bar. The mixing body is shaped like a mushroom - the upper layers have a larger radius than the lower ones.

  12. 46 CFR 56.50-65 - Burner fuel-oil service systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 104.1.2 of ASME B31.1 (incorporated by reference; see 46 CFR 56.01-2), the thickness must be greater... oils of low viscosity need not be equipped with fuel oil heaters, provided acceptable evidence...

  13. 46 CFR 56.50-65 - Burner fuel-oil service systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 104.1.2 of ASME B31.1 (incorporated by reference; see 46 CFR 56.01-2), the thickness must be greater... oils of low viscosity need not be equipped with fuel oil heaters, provided acceptable evidence...

  14. Gas burner

    SciTech Connect

    Tanaka, E.; Ishibashi, N.

    1982-02-16

    Capable of automatic fuel shutoff at preset combustion-air oxygen levels, this gas-fired water-heater burner incorporates a Smithell's pilot burner consisting of inner and outer tubes formed with an auxiliary air port. The tube sizes and the air port's diameter and position cause the inner flame cone at the mouth of the inner tube to be blown out when the oxygen content of the air supply drops to a predetermined point. A sensor detects the blowout and signals a valve to close the gas supply pipe to avoid incomplete combustion and hazardous carbon monoxide accumulations. The pilot burner can accommodate gases of different calorific values.

  15. Material response from Mach 0. 3 burner rig combustion of a coal-oil mixture. [40 wt % micron size coal in No. 2 fuel oil

    SciTech Connect

    Santoro, G.J.; Calfo, F.D.; Kohl, F.J.

    1981-06-01

    Wedge-shaped specimens were exposed to the combustion gases of a Mach 0.3 burner rig fueled with a mixture of 40 weight percent micron-size coal particles dispersed in No. 2 fuel oil. Exposure temperature was about 900/sup 0/C and the test duration was about 44 one-hour cycles. The alloys tested were the nickel-base superalloys, IN-100, U-700 and IN-792, and the cobalt-base superalloy, Mar-M509. The deposits on the specimens were analyzed and the extent of corrosion/erosion was measured. The chemical compositions of the deposits were compared with the predictions from an equilibrium thermodynamic analysis. The experimental results were in very good agreement with the predictions.

  16. Micronized-Coal Burner Facility

    NASA Technical Reports Server (NTRS)

    Calfo, F. D.; Lupton, M. W.

    1986-01-01

    Micronized-coal (coal-in-oil mix) burner facility developed to fulfill need to generate erosion/corrosion data on series of superalloy specimens. In order to successfully operate gas turbine using COM, two primary conditions must be met. First, there must be adequate atomization of COM and second, minimization of coking of burner. Meeting these conditions will be achieved only by clean burning and flame stability.

  17. Burner apparatus

    SciTech Connect

    Ximpara, N.; Moriya, Y.; Xaneko, H.

    1984-01-31

    The present invention improves a conventional Bunsen burner by providing it with a primary combustion chamber which covers the primary flame forming portion of the Bunsen burner and which has a secondary flame hole immediately above the primary flame forming portion. The burner apparatus of the present invention produces reduced NO /SUB x/ since the overall combustion is divided into primary flame combustion and secondary flame combustion. Further according to the invention, an indication of incomplete combustion due to oxygen deficiency in the ambient air or blockade of the primary air passage can be dependably detected for cessation of combustion by providing a flame rod and measuring the impedance (or ion current) of the rod.

  18. Chemical and toxicological characterization of residential oil burner emissions: I. Yields and chemical characterization of extractables from combustion of No. 2 fuel oil at different Bacharach Smoke Numbers and firing cycles.

    PubMed Central

    Leary, J A; Biemann, K; Lafleur, A L; Kruzel, E L; Prado, G P; Longwell, J P; Peters, W A

    1987-01-01

    Particulates and complex organic mixtures were sampled from the exhaust of a flame retention head residential oil burner combusting No. 2 fuel oil at three firing conditions: continuous at Bacharach Smoke No. 1, and cyclic (5 min on, 10 min off) at Smoke Nos. 1 and 5. The complex mixtures were recovered by successive Soxhlet extraction of filtered particulates and XAD-2 sorbent resin with methylene chloride (DCM) and then methanol (MeOH). Bacterial mutagenicity [see Paper II (8)] was found in the DCM extractables. Samples of DCM extracts from the two cyclic firing conditions and of the raw fuel were separated by gravity column chromatography on alumina. The resulting fractions were further characterized by a range of instrumental methods. Average yields of both unextracted particulates and of DCM extractables, normalized to a basis of per unit weight of fuel fired, were lower for continuous firing than for cyclic firing. For cyclic firing, decreasing the smoke number lowered the particulates emissions but only slightly reduced the average yield of DCM extractables. These and similar observations, here reported for two other oil burners, show that adjusting the burner to a lower smoke number has little effect on, or may actually increase, emissions of organic extractables of potential public health interest. Modifications of the burner firing cycle aimed at approaching continuous operation offer promise for reducing the amount of complex organic emissions. Unburned fuel accounted for roughly half of the DCM extractables from cyclic firing of the flame retention head burner at high and low smoke number. Large (i.e., greater than 3 ring) polycyclic aromatic hydrocarbons (PAH) were not observed in the DCM extractables from cyclic firing. However, nitroaromatics, typified by alkylated nitronaphthalenes, alkyl-nitrobiphenyls, and alkyl-nitrophenanthrenes were found in a minor subfraction containing a significant portion of the total mutagenic activity of the cyclic low smoke samples (8). Oxygen-containing PAH, typified by phenalene-1-one and its alkyl derivatives, are important mutagens from cyclic firing at high smoke conditions. Thus, oil burner effluents differ markedly from those of several other combustors, including the automotive diesel engine, where multiring PAH, typified by fluoranthene and alkylated phenanthrenes, account for a significant portion of the effluent mutagenicity. Implications for combustion and emissions source identification are discussed. PMID:3665865

  19. DESIGN REPORT LOW-NOX BURNERS FOR PACKAGE BOILERS

    EPA Science Inventory

    The report describes a low-NOx burner design, presented for residual-oil-fired industrial boilers and boilers cofiring conventional fuels and nitrated hazardous wastes. The burner offers lower NOx emission levels for these applications than conventional commercial burners. The bu...

  20. DESIGN REPORT: LOW-NOX BURNERS FOR PACKAGE BOILERS

    EPA Science Inventory

    The report describes a low-NOx burner design, presented for residual-oil-fired industrial boilers and boilers cofiring conventional fuels and nitrated hazardous wastes. The burner offers lower NOx emission levels for these applications than conventional commercial burners. The bu...

  1. Burner systems

    DOEpatents

    Doherty, Brian J. (Marblehead, MA)

    1984-07-10

    A burner system particularly useful for downhole deployment includes a tubular combustion chamber unit housed within a tubular coolant jacket assembly. The combustion chamber unit includes a monolithic tube of refractory material whose inner surface defines the combustion zone. A metal reinforcing sleeve surrounds and extends the length of the refractory tube. The inner surface of the coolant jacket assembly and outer surface of the combustion chamber unit are dimensioned so that those surfaces are close to one another in standby condition so that the combustion chamber unit has limited freedom to expand with that expansion being stabilized by the coolant jacket assembly so that compression forces in the refractory tube do not exceed about one-half the safe compressive stress of the material; and the materials of the combustion chamber unit are selected to establish thermal gradient parameters across the combustion chamber unit to maintain the refractory tube in compression during combustion system start up and cool down sequences.

  2. Proceedings of the 1998 oil heat technology conference

    SciTech Connect

    McDonald, R.J.

    1998-04-01

    The 1998 Oil Heat Technology Conference was held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting was held in cooperation with the Petroleum Marketers Association of America (PMAA). Fourteen technical presentations was made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Canada, including: integrated oil heat appliance system development in Canada; a miniature heat-actuated air conditioner for distributed space conditioning; high-flow fan atomized oil burner (HFAB) development; progress in the development of self tuning oil burners; application of HFAB technology to the development of a 500 watt; thermophotovoltaic (TPV) power system; field tests of the Heat Wise Pioneer oil burner and Insight Technologies AFQI; expanded use of residential oil burners to reduce ambient ozone and particulate levels by conversion of electric heated homes to oilheat; PMAA`s Oil Heat Technician`s Manual (third edition); direct venting concept development; evolution of the chimney; combating fuel related problems; the effects of red dye and metal contamination on fuel oil stability; new standard for above ground and basement residential fuel oil storage; plastic and steel composite secondary contained tanks; and money left on the table: an economic analysis of tank cleaning.

  3. Rotary Burner Demonstration

    SciTech Connect

    Paul Flanagan

    2003-04-30

    The subject technology, the Calcpos Rotary Burner (CRB), is a burner that is proposed to reduce energy consumption and emission levels in comparison to currently available technology. burners are used throughout industry to produce the heat that is required during the refining process. Refineries seek to minimize the use of energy in refining while still meeting EPA regulations for emissions.

  4. Industrial burner and process efficiency program

    NASA Astrophysics Data System (ADS)

    Huebner, S. R.; Prakash, S. N.

    1981-03-01

    A laboratory prototype burner which is compatible with a FM (frequency modulation) combustion control system where temperature control is accomplished by regulating the ratio of burner on-time to burner off-time was developed. This multifuel (natural gas and No. 2 fuel oil) high velocity burner is capable of repeated pulse ignition at maximum rated capability (1 million Btu-hour) with preheated air (from ambient to 1100F). A digital control in the FM mode was developed. Experimental data from tests in a laboratory furnace indicated that when applied to a batch type thermal process where appreciable turndown is presently obtained by excess air operation, the FM combustion system provides improvements in process fuel efficiency and gains in productivity.

  5. Wood fuel in suspension burners

    SciTech Connect

    Wolle, P.C.

    1982-01-01

    Experience and criteria for solid fuel suspension burning is presented based on more than ten years of actual experience with commercially installed projects. Fuel types discussed range from dried wood with less than 15% moisture content, wet basis, to exotic biomass material such as brewed tea leaves and processed coffee grounds. Single burner inputs range from 1,465 kW (5,000 Mbh) to 13,771 kW (47,000 Mbh) as well as multiple burner applications with support burning using fuel oil and/or natural gas. General requirements for self-sustaining combustion will be reviewed as applied to suspension solid fuel burning, together with results of what can happen if these requirements are not met. Solid fuel preparation, sizing, transport, storage, and metering control is essential for proper feed. Combustion chamber volume, combustion air requirements, excess air, and products of combustion are reviewed, together with induced draft fan sizing. (Refs. 7).

  6. Selecting industrial burner controls

    SciTech Connect

    McCarthy, T.; Sundberg, S. )

    1994-08-01

    Burner controls -- those electromechanical devices so familiar to plant engineers -- are changing. They are being placed by microprocessor-based devices that provide more features and greater benefits. These state-of-the-art controls help reduce service costs and downtime, provide central-station communications, allow equipment to operate efficiently, and offer choices in fault notification alarms. Selecting the best burner control for the application requires an understanding of industry trends, compatibility issues, and equipment features. The paper discusses the evaluation of burner controls, reviews advanced features (networking, flexibility, ease of installation, enhanced diagnostics, and alarming), and describes how to determine control needs and how to apply burner controls.

  7. Combustor burner vanelets

    DOEpatents

    Lacy, Benjamin (Greer, SC); Varatharajan, Balachandar (Loveland, OH); Kraemer, Gilbert Otto (Greer, SC); Yilmaz, Ertan (Albany, NY); Zuo, Baifang (Simpsonville, SC)

    2012-02-14

    The present application provides a burner for use with a combustor of a gas turbine engine. The burner may include a center hub, a shroud, a pair of fuel vanes extending from the center hub to the shroud, and a vanelet extending from the center hub and/or the shroud and positioned between the pair of fuel vanes.

  8. Energy from true in-situ processing of Antrim shale: methane burner ignition system

    SciTech Connect

    VanDerPloeg, M.L.; Pihlaja, R.K.

    1980-08-01

    A rugged yet simple burner that can be easily ignited and reignited is a necessity if in situ thermal methods of energy extraction are to be feasible. During extraction trials at the Dow Chemical Company's oil shale site at Peck, Michigan such a burner was utilized. The performance of the TOR Development burner and ignitor system proved to be reliable and practical under field conditions. However, some recently discovered measures are crucial in protecting the burner and associated downhole hardware. With such precautions burner life was extended by a factor of 15. In the first trial burner life was two days and in the second trial the burner remained intact at least thirty days. Also described is a system which monitored burner performance by continuously analyzing burner exhaust gases. A slip stream sampling technique utilized the high well pressure to transport, at nearly Mach I, a sample of burner exhaust gas to the analytical trailer. There the sample was analyzed for CO, CO/sub 2/, unburned hydrocarbons, and O/sub 2/ by a bank of high speed process gas analyzers. Burner flameouts could be detected in less than 2 minutes. Also the system allowed burner (air/fuel) ratios to be determined on a real time basis. These ratios were used for (1) setting the proper air-fuel mixtures for ignition and steady state operation, (2) leak detection, (3) estimation of burner deterioration after extended use, and (4) study of the burner's steady state and transient response characteristics.

  9. Advanced Petrochemical Process Heating with the Pyrocore Burner 

    E-print Network

    Krill, W. V.; Minden, A. C.; Donaldson, L. W. Jr.

    1987-01-01

    , California Santa Clara, California Chicago, Illinois ABSTRACT Alzeta Corporation has developed various process heating applications using the Pyrocore burner. Applications to immersion fluid heating have been in use for several years. An advanced... combustion noise associated with conventional flame burners. This paper describes these two applications: 1) firetube immersion heaters and 2) an advanced process heater to be installed at an oil reprocessing facil?ity in Newark, California...

  10. Ultralean low swirl burner

    DOEpatents

    Cheng, Robert K. (Kensington, CA)

    1998-01-01

    A novel burner and burner method has been invented which burns an ultra lean premixed fuel-air mixture with a stable flame. The inventive burning method results in efficient burning and much lower emissions of pollutants such as oxides of nitrogen than previous burners and burning methods. The inventive method imparts weak swirl (swirl numbers of between about 0.01 to 3.0) on a fuel-air flow stream. The swirl, too small to cause recirculation, causes an annulus region immediately inside the perimeter of the fuel-air flow to rotate in a plane normal to the axial flow. The rotation in turn causes the diameter of the fuel-air flow to increase with concomitant decrease in axial flow velocity. The flame stabilizes where the fuel-air mixture velocity equals the rate of burning resulting in a stable, turbulent flame.

  11. Ultralean low swirl burner

    DOEpatents

    Cheng, R.K.

    1998-04-07

    A novel burner and burner method has been invented which burns an ultra lean premixed fuel-air mixture with a stable flame. The inventive burning method results in efficient burning and much lower emissions of pollutants such as oxides of nitrogen than previous burners and burning methods. The inventive method imparts weak swirl (swirl numbers of between about 0.01 to 3.0) on a fuel-air flow stream. The swirl, too small to cause recirculation, causes an annulus region immediately inside the perimeter of the fuel-air flow to rotate in a plane normal to the axial flow. The rotation in turn causes the diameter of the fuel-air flow to increase with concomitant decrease in axial flow velocity. The flame stabilizes where the fuel-air mixture velocity equals the rate of burning resulting in a stable, turbulent flame. 11 figs.

  12. Design and analysis of the federal aviation administration next generation fire test burner

    NASA Astrophysics Data System (ADS)

    Ochs, Robert Ian

    The United States Federal Aviation Administration makes use of threat-based fire test methods for the certification of aircraft cabin materials to enhance the level of safety in the event of an in-flight or post-crash fire on a transport airplane. The global nature of the aviation industry results in these test methods being performed at hundreds of laboratories around the world; in some cases testing identical materials at multiple labs but yielding different results. Maintenance of this standard for an elevated level of safety requires that the test methods be as well defined as possible, necessitating a comprehensive understanding of critical test method parameters. The tests have evolved from simple Bunsen burner material tests to larger, more complicated apparatuses, requiring greater understanding of the device for proper application. The FAA specifies a modified home heating oil burner to simulate the effects of large, intense fires for testing of aircraft seat cushions, cargo compartment liners, power plant components, and thermal acoustic insulation. Recently, the FAA has developed a Next Generation (NexGen) Fire Test burner to replace the original oil burner that has become commercially unavailable. The NexGen burner design is based on the original oil burner but with more precise control of the air and fuel flow rates with the addition of a sonic nozzle and a pressurized fuel system. Knowledge of the fundamental flow properties created by various burner configurations is desired to develop an updated and standardized burner configuration for use around the world for aircraft materials fire testing and airplane certification. To that end, the NexGen fire test burner was analyzed with Particle Image Velocimetry (PIV) to resolve the non-reacting exit flow field and determine the influence of the configuration of burner components. The correlation between the measured flow fields and the standard burner performance metrics of flame temperature and burnthrough time was studied. Potential design improvements were also evaluated that could simplify burner set up and operation.

  13. Dark Matter Burners

    SciTech Connect

    Moskalenko, Igor V.; Wai, Lawrence L.; /SLAC

    2007-02-28

    We show that a star orbiting close enough to an adiabatically grown supermassive black hole (SMBH) can capture weakly interacting massive particles (WIMPs) at an extremely high rate. The stellar luminosity due to annihilation of captured WIMPs in the stellar core may be comparable to or even exceed the luminosity of the star due to thermonuclear burning. The model thus predicts the existence of unusual stars, essentially WIMP burners, in the vicinity of a SMBH. We find that the most efficient WIMP burners are stars with degenerate electron cores, e.g. white dwarfs (WDs); such WDs may have a very high surface temperature. If found, such stars would provide evidence for the existence of particle dark matter and can possibly be used to establish its density profile. On the other hand, the lack of such unusual stars may provide constraints on the WIMP density near the SMBH, as well as the WIMP-nucleus scattering and pair annihilation cross-sections.

  14. High efficiency gas burner

    DOEpatents

    Schuetz, Mark A. (Belmont, MA)

    1983-01-01

    A burner assembly provides for 100% premixing of fuel and air by drawing the air into at least one high velocity stream of fuel without power assist. Specifically, the nozzle assembly for injecting the fuel into a throat comprises a plurality of nozzles in a generally circular array. Preferably, swirl is imparted to the air/fuel mixture by angling the nozzles. The diffuser comprises a conical primary diffuser followed by a cusp diffuser.

  15. The Pioneer Missions

    NASA Technical Reports Server (NTRS)

    Lasher, Larry E.; Hogan, Robert (Technical Monitor)

    1999-01-01

    This article describes the major achievements of the Pioneer Missions and gives information about mission objectives, spacecraft, and launches of the Pioneers. Pioneer was the United States' longest running space program. The Pioneer Missions began forty years ago. Pioneer 1 was launched shortly after Sputnik startled the world in 1957 as Earth's first artificial satellite at the start of the space age. The Pioneer Missions can be broken down into four distinct groups: Pioneer (PN's) 1 through 5, which comprise the first group - the "First Pioneers" - were launched from 1958 through 1960. These Pioneers made the first thrusts into space toward the Moon and into interplanetary orbit. The next group - the "Interplanetary Pioneers" - consists of PN's 6 through 9, with the initial launch being in 1965 (through 1968); this group explored inward and outward from Earth's orbit and travel in a heliocentric orbit around the Sun just as the Earth. The Pioneer group consisting of 10 and 11 - the "Outer Solar System Pioneers" - blazed a trail through the asteroid belt and was the first to explore Jupiter, Saturn and the outer Solar System and is seeking the borders of the heliosphere and will ultimately journey to the distant stars. The final group of Pioneer 12 and 13 the "Planetary Pioneers" - traveled to Earth's mysterious twin, Venus, to study this planet.

  16. Development of advanced low NOx and high turndown burner for pulverized coal combustion

    SciTech Connect

    Kimoto, Masayoshi; Ikeda, Michitaka; Makino, Hisao; Kiga, Takashi

    1999-07-01

    Coal will become the most important energy source for the thermal power generation. In pulverized coal fired power plants, it is necessary to develop combustion technologies which can greatly reduce pollutants, especially NOx emission for the environmental protection, and enhance the turn-down ability according to the power demand for the reduction of operating costs. To suppress the NOx emission, an advanced low NOx burner which can reduce 30% of NOx in comparison with a conventional burner under the same the unburned carbon concentration in fly ash (Uc), had been developed. Further, a method of increasing the local coal concentration by placing a streamlined ring inside this burner was invented to improve the combustion stability at low loads. It had already been confirmed that the minimum load of the burner equipped the ring was reduced to 20% as like an oil burner by the investigation with a small-scale burner whose coal combustion capacity is 0.12t/h. For the application of this burner to utility boilers, it is necessary to clarify the performance of a large-scale burner. In this paper, the low load combustion stability and the emission characteristics of NOx and Uc were investigated with a nearly full-scale class burner whose coal combustion capacity was 1.5 t/h. The local coal concentration at the exit of burner rose 1.5 times of the mean coal concentration by placing the ring inside the burner. With this arrangement, the minimum load of the burner achieved 20% as same as the small-scale burner. At the standard load, this burner had identical concentrations of NOx and Uc as the advanced low NOx burner without the ring. When running at low loads by using this burner, Uc was lower than that by using the advanced low NOx burner without the ring, although NOx concentration was almost equal. The improvement of the combustion stability at low loads was effective in the reduction of Uc. In comparison with small-scale burner, the scale-up of burner capacity reduced concentrations of both NOx and Uc at all load.

  17. Evaluation of coal water slurry fuel burners and technology. Final report

    SciTech Connect

    Ramachandran, P.; Tsai, C.Y.; Schanche, G.W.

    1992-11-01

    The US Army has been tasked to reduce its dependence on and consumption of petroleum fuels. Coal water slurry fuel (CWSF) is considered a feasible alternative to the heavy fuel oil currently used as a boiler fuel. At the core of CWSF technology is the burner, which is a hybrid between a pulverized coal burner and a No. 6 fuel oil burner. Private enterprise has invested heavily in burner development with the objective of achieving a design that performs as well as conventional pulverized coal burners. The study evaluates industrial research and development efforts on CWSF technology, particularly burner technology, to identify the burner systems most promising for Army CWSF conversions. Performance targets developed for the Electric Power Research Institute (EPRI) were compared with burner performance data reported by the manufacturers. This evaluation found that burners manufactured by the Babcock and Wilcox Company (B and W) and Combustion Engineering Inc. (CE) should receive additional consideration and laboratory testing for use in the Army's central heating plants and package fire-tube boilers.

  18. Radial lean direct injection burner

    DOEpatents

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  19. Catalyzed Ceramic Burner Material

    SciTech Connect

    Barnes, Amy S., Dr.

    2012-06-29

    Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant period in accomplishing these objectives. Our work in the area of Pd-based, methane oxidation catalysts has led to the development of highly active catalysts with relatively low loadings of Pd metal using proprietary coating methods. The thermal stability of these Pd-based catalysts were characterized using SEM and BET analyses, further demonstrating that certain catalyst supports offer enhanced stability toward both PdO decomposition and/or thermal sintering/growth of Pd particles. When applied to commercially available fiber mesh substrates (both metallic and ceramic) and tested in an open-air burner, these catalyst-support chemistries showed modest improvements in the NOx emissions and radiant output compared to uncatalyzed substrates. More significant, though, was the performance of the catalyst-support chemistries on novel media substrates. These substrates were developed to overcome the limitations that are present with commercially available substrate designs and increase the gas-catalyst contact time. When catalyzed, these substrates demonstrated a 65-75% reduction in NOx emissions across the firing range when tested in an open air burner. In testing in a residential boiler, this translated into NOx emissions of <15 ppm over the 15-150 kBtu/hr firing range.

  20. Pioneer Saturn Encounter. [Pioneer 11 space probe

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Pioneer Saturn Spacecraft, which began its journey as Pioneer 11, provided the first close view of the rings of Saturn as well as its system of moons. Its payload of 11 operating instruments obtained or confirmed data about the mass, temperature, composition, radiation belts, and atmosphere of the planet and its larger satellite, Titan. It made photometric and polarization measurements of lapetus, Rhea, Dione, and Tethys, as well as discovered additional rings. Scientific highlights of the mission are summarized. Color imagery provided by the photopolarimeter is included along with illustrations of the planet's magnetic field and radiation belts.

  1. Burner ignition system

    DOEpatents

    Carignan, Forest J. (Bedford, MA)

    1986-01-21

    An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.

  2. Control system for gas burners

    SciTech Connect

    Lee, D.A.

    1993-08-31

    A gas burner system is described for a gas cooking range including a gas burner, a gas supply, an electric igniter for said burner, a valve for controlling the flow of combustible gas from said gas supply to said burner, said valve having a rotatable valve shaft, a control system for said gas valve and said igniter comprising a motor mechanically coupled to rotate said shaft, a microcomputer connected to control said motor, a shaft position encoder coupled to said shaft and connected to said microcomputer to supply a digital signal to said microcomputer indicating the angular position of said shaft, first and second operator controllable switches coupled to said microcomputer, said microcomputer comprising means responsive to operation of said first switch for energizing said motor to turn said shaft in a first direction and means responsive to operation of said second switch for energizing said motor to turn said shaft in a second direction opposite said first direction, a third operator controllable switch operable to energize said motor to rotate said shaft to a maximum flow position of said valve and to energize said igniter, and means responsive to operation of any of said first, second and third switches to deenergize said igniter.

  3. Uniform-burning matrix burner

    DOEpatents

    Bohn, Mark S. (Golden, CO); Anselmo, Mark (Arvada, CO)

    2001-01-01

    Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.

  4. TURBINE BURNERS: Engine Performance Improvements;

    E-print Network

    Heydari, Payam

    the expansion through the turbine for turbojet , turbofan , and stationary - power gas - turbine engines. StudyTURBINE BURNERS: Engine Performance Improvements; Mixing, Ignition, and Flame-Holding in High Acceleration Flows Presented by William A. Sirignano Mechanical and Aerospace Engineering University

  5. Space Pioneers and Where They Are Now.

    ERIC Educational Resources Information Center

    Montoya, Earl J.; Fimmel, Richard O.

    This booklet describes the Pioneer Program and its role in exploring the solar system. Sections include: (1) "Pioneers in Space to Understand Our Earth" (describing the background of the program); (2) "First Pioneers"; (3) "The Interplanetary Pioneers"; (4) "Planetary Pioneers"; (5) "Outer Solar System Pioneers"; (6) "The Pioneers Now and In the…

  6. The New Pioneers

    ERIC Educational Resources Information Center

    Farrace, Bob

    2012-01-01

    The 2012 National Association of Secondary School Principals (NASSP) Digital Principals are pioneers in digital technology and social media in the principalship. In this question and answer session, these principals share their philosophies and practices. Patrick Larkin discusses what else a principal must invest time and resources in for tech…

  7. Pioneer F Plaque Location

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Pioneer F spacecraft, destined to be the first man made object to escape from the solar system into interstellar space, carries this pictorial plaque. It is designed to show scientifically educated inhabitants of some other star system, who might intercept it millions of years from now, when Pioneer was launched, from where, and by what kind of beings. (Hopefully, any aliens reading the plaque will not use this knowledge to immediately invade Earth.) The design is etched into a 6 inch by 9 inch gold-anodized aluminum plate, attached to the spacecraft's attenna support struts in a position to help shield it from erosion by interstellar dust. The radiating lines at left represents the positions of 14 pulsars, a cosmic source of radio energy, arranged to indicate our sun as the home star of our civilization. The '1-' symbols at the ends of the lines are binary numbers that represent the frequencies of these pulsars at the time of launch of Pioneer F relative of that to the hydrogen atom shown at the upper left with a '1' unity symbol. The hydrogen atom is thus used as a 'universal clock,' and the regular decrease in the frequencies of the pulsars will enable another civilization to determine the time that has elapsed since Pioneer F was launched. The hydrogen is also used as a 'universal yardstick' for sizing the human figures and outline of the spacecraft shown on the right. The hydrogen wavelength, about 8 inches, multiplied by the binary number representing '8' shown next to the woman gives her height, 64 inches. The figures represent the type of creature that created Pioneer. The man's hand is raised in a gesture of good will. Across the bottom are the planets, ranging outward from the Sun, with the spacecraft trajectory arching away from Earth, passing Mars, and swinging by Jupiter.

  8. Demonstration of B and W 100-MBtu/h burner for coal-water slurry. Final report

    SciTech Connect

    Farthing, G.A.; Markert, D.H.

    1986-09-01

    The Babcock and Wilcox Co. (B and W), under contract to the Electric Power Research Institute, has completed performance testing of its 100-MBtu/h coal-water-slurry-fuel (CWSF) burner. The objective of the testing was to demonstrate that full-scale CWSF burners are commercially available for CWSF boiler retrofits. The 100-MBtu/h, multiple-fuel (CWSF, oil, and gas) burner tested was a direct scale-up of a 40-MBtu/h burner developed by B and W through extensive combustion trials in an oil- and gas-designed package boiler. The CWSF was produced from a high-volatile, eastern bituminous coal (containing 70% and 4% by weight, respectively, of coal and ash) and had a higher heating value of 10,270 Btu/lb. Approximately 500 tons of CWSF were consumed during the tests. Burner performance was good during combustion trials with all three main fuels. Full-load CWSF tests indicated that 99%+ carbon conversion efficiency could be achieved with 15% excess air, 300/sup 0/F combustion air preheat, steam atomization (0.15 pound of steam per pound of CWSF), and a burner draft loss of 6 inches (water column). Nitric oxide emissions under these conditions were a very low 233 ppM (at 3% oxygen). With 600/sup 0/F combustion air preheat, the burner could be turned down 4:1 with air atomization and 3:1 with steam atomization. A 12:1 turndown ratio was achieved during firing of No. 6 fuel oil using the CWSF burner and atomizer. Results indicate that the burner is ready for commercial application. 14 refs., 27 figs., 10 tabs.

  9. Coleman Two Burner Stove The Coleman Matchlight 2-Burner Propane Stove is especially designed for outdoor

    E-print Network

    Walker, Lawrence R.

    Coleman Two Burner Stove The Coleman Matchlight 2-Burner Propane Stove is especially designed-burner propane stove has a high-pressure regulator that ensures a constant flame regardless of weather propane stove has a removable nickel-chrome-plated grate that makes for easy cleaning. The aluminized

  10. Pioneer Venus Data Analysis

    NASA Technical Reports Server (NTRS)

    Jones, Douglas E.

    1996-01-01

    Analysis and interpretation of data from the Orbiter Retarding Potential Analyzer (ORPA) onboard the Pioneer Venus Orbiter is reported. By comparing ORPA data to proton data from the Orbiter Plasma Analyzer (OPA), it was found that the ORPA suprathermal electron densities taken outside the Venusian ionopause represent solar wind electron densities, thus allowing the high resolution study of Venus bow shocks using both magnetic field and solar wind electron data. A preliminary analysis of 366 bow shock penetrations was completed using the solar wind electron data as determined from ORPA suprathermal electron densities and temperatures, resulting in an estimate of the extent to which mass loading pickup of O+ (UV ionized O atoms flowing out of the Venus atmosphere) upstream of the Venus obstacle occurred. The pickup of O+ averaged 9.95%, ranging from 0.78% to 23.63%. Detailed results are reported in two attached theses: (1) Comparison of ORPA Suprathermal Electron and OPA Solar Wind Proton Data from the Pioneer Venus Orbiter and (2) Pioneer Venus Orbiter Retarding Potential Analyzer Observations of the Electron Component of the Solar Wind, and of the Venus Bow Shock and Magnetosheath.

  11. Porous radiant burners having increased radiant output

    DOEpatents

    Tong, Timothy W. (Tempe, AZ); Sathe, Sanjeev B. (Tempe, AZ); Peck, Robert E. (Tempe, AZ)

    1990-01-01

    Means and methods for enhancing the output of radiant energy from a porous radiant burner by minimizing the scattering and increasing the adsorption, and thus emission of such energy by the use of randomly dispersed ceramic fibers of sub-micron diameter in the fabrication of ceramic fiber matrix burners and for use therein.

  12. Safety Topic: Bunsen Burners and Hotplates

    E-print Network

    Cohen, Robert E.

    Kinley #12;Bunsen Burners · Produces open flame used for heating, sterilization, and combustion · Utilizes.med.cornell.edu/ehs/updates/bunsen_burner_safety.htm #12;Hot Plate Procedures · Use only heat-resistant, borosilicate glassware, and check for cracks before heating on a hot plate. Do not place thick-walled glassware, such as filter flasks, or soft

  13. 40 CFR 279.64 - Used oil storage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for Energy Recovery § 279.64 Used oil storage. Used oil burners are subject to all applicable Spill Prevention, Control and Countermeasures (40 CFR part 112) in addition to the requirements of this subpart. Used oil burners are also subject to the Underground Storage Tank (40 CFR part 280) standards for...

  14. 40 CFR 279.64 - Used oil storage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for Energy Recovery § 279.64 Used oil storage. Used oil burners are subject to all applicable Spill Prevention, Control and Countermeasures (40 CFR part 112) in addition to the requirements of this subpart. Used oil burners are also subject to the Underground Storage Tank (40 CFR part 280) standards for...

  15. 40 CFR 279.64 - Used oil storage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for Energy Recovery § 279.64 Used oil storage. Used oil burners are subject to all applicable Spill Prevention, Control and Countermeasures (40 CFR part 112) in addition to the requirements of this subpart. Used oil burners are also subject to the Underground Storage Tank (40 CFR part 280) standards for...

  16. 40 CFR 279.64 - Used oil storage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for Energy Recovery § 279.64 Used oil storage. Used oil burners are subject to all applicable Spill Prevention, Control and Countermeasures (40 CFR part 112) in addition to the requirements of this subpart. Used oil burners are also subject to the Underground Storage Tank (40 CFR part 280) standards for...

  17. 40 CFR 279.64 - Used oil storage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for Energy Recovery § 279.64 Used oil storage. Used oil burners are subject to all applicable Spill Prevention, Control and Countermeasures (40 CFR part 112) in addition to the requirements of this subpart. Used oil burners are also subject to the Underground Storage Tank (40 CFR part 280) standards for...

  18. Industrial burner and process efficiency program

    NASA Astrophysics Data System (ADS)

    Huebner, S. R.; Prakash, S. N.; Hersh, D. B.

    1982-10-01

    There is an acute need for a burner that does not use excess air to provide the required thermal turndown and internal recirculation of furnace gases in direct fired batch type furnaces. Such a burner would improve fuel efficiency and product temperature uniformity. A high velocity burner has been developed which is capable of multi-fuel, preheated air, staged combustion. This burner is operated by a microprocessor to fire in a discrete pulse mode using Frequency Modulation (FM) for furnace temperature control by regulating the pulse duration. A flame safety system has been designed to monitor the pulse firing burners using Factory Mutual approved components. The FM combustion system has been applied to an industrial batch hardening furnace (1800 F maximum temperature, 2500 lbs load capacity).

  19. Development of a wood pellet fired burner for space heating applications in the range 5 kW--300 kW

    SciTech Connect

    Whitfield, J.

    1999-07-01

    A compact burner has been developed, fired by wood pellets, which can compete with fossil fuel burners for space heating applications in terms of efficiency, emissions, load following capability, economics, and physical size. Greenhouse gas emissions (CO{sub 2}) are reduced by 80% or more when used to displace fossil fuel fired appliances. This includes consideration of energy use in the pelleting process. The pellet fired burner is a stand-alone hot gas generator that can be externally mounted on an existing hot water boiler, directly replacing an oil or gas fired burner. The boiler thermostat directly controls the burner. Alternatively, the burner can be integrated into a forced air furnace or a dedicated boiler for OEM applications. The burner has been scaled from 20 kW for residential use up to more than 300 kw for commercial applications. The burner incorporates a fuel metering and delivery system, an insulated refractory firebox, an agitated grate system, preheated forced air combustion, and an open loop electronic control. Pellets are delivered from a separate storage bin, and the burner exhausts not gases in excess of 1,000 C from the burner tube. Excess air for combustion is controlled below 30% and emissions, CO and NO, are less than 100 ppm. the burner can be operated at these conditions as low as 30% rated power output. Upon heat demand from the thermostat control, pellets are fed to the grate, they ignite within 2--3 minutes using an electric resistance cartridge heater, and 90% rated power output is reached within 6--8 minutes of ignition. The burner can cycle 2--3 times per hour following the load demand.

  20. Diesel fuel burner for diesel emissions control system

    DOEpatents

    Webb, Cynthia C.; Mathis, Jeffrey A.

    2006-04-25

    A burner for use in the emissions system of a lean burn internal combustion engine. The burner has a special burner head that enhances atomization of the burner fuel. Its combustion chamber is designed to be submersed in the engine exhaust line so that engine exhaust flows over the outer surface of the combustion chamber, thereby providing efficient heat transfer.

  1. The interplanetary pioneers. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Corliss, W. R.

    1972-01-01

    The Pioneer Space Probe Project is explained to document the events which occurred during the project. The subjects discussed are: (1) origin and history of interplanetary Pioneer program, (2) Pioneer system development and design, (3) Pioneer flight operations, and (4) Pioneer scientific results. Line drawings, circuit diagrams, illustrations, and photographs are included to augment the written material.

  2. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME II. SECOND GENERATION LOW-NOX BURNERS

    EPA Science Inventory

    The report describes tests to evaluate the performance characteristics of three Second Generation Low-NOx burner designs: the Dual Register burner (DRB), the Babcock-Hitachi NOx Reducing (HNR) burner, and the XCL burner. The three represent a progression in development based on t...

  3. Update on ABB C-E's RSFC{trademark} low NO{sub x} wall burner technology

    SciTech Connect

    LaFlesh, R.; Briggs, O.; Barlow, D.; Wessel, G.

    1999-07-01

    ABB C-E Services Inc. describes the RSFC{trademark} (Radically Stratified Flame Core) burner as an innovative low NO{sub x} solution for application to utility and industrial power boilers. A brief development history is reviewed, from the burner concept origin and fundamental research at M.I.T.'s Combustion Laboratory through full scale field demonstration of the technology in natural gas, oil, and pulverized coal applications. Current commercial status of the burner is covered in review of active projects where the RSFC{trademark} burner has been retrofit to non-OEM boiler designs. A discussion is offered outlining hardware design, site specific erection requirements, and emissions and operating performance characteristics of several commercial installations. Unique solutions to site specific customer requirements are also presented.

  4. Reverberatory screen for a radiant burner

    DOEpatents

    Gray, Paul E. (North East, MD)

    1999-01-01

    The present invention relates to porous mat gas fired radiant burner panels utilizing improved reverberatory screens. The purpose of these screens is to boost the overall radiant output of the burner relative to a burner using no screen and the same fuel-air flow rates. In one embodiment, the reverberatory screen is fabricated from ceramic composite material, which can withstand higher operating temperatures than its metallic equivalent. In another embodiment the reverberatory screen is corrugated. The corrugations add stiffness which helps to resist creep and thermally induced distortions due to temperature or thermal expansion coefficient differences. As an added benefit, it has been unexpectedly discovered that the corrugations further increase the radiant efficiency of the burner. In a preferred embodiment, the reverberatory screen is both corrugated and made from ceramic composite material.

  5. Alzeta porous radiant burner. CRADA final report

    SciTech Connect

    1995-12-01

    An Alzeta Pyrocore porous radiant burner was tested for the first time at elevated pressures and mass flows. Mapping of the burner`s stability limits (flashback, blowoff, and lean extinction limits) in an outward fired configuration and hot wall environment was carried out at pressures up to 18 atm, firing rates up to 180 kW, and excess air rates up to 100%. A central composite experimental design for parametric testing within the stability limits produced statistically sound correlations of dimensionless burner temperature and NO{sub x} emissions as functions of equivalence ratio, dimensionless firing rate, and reciprocal Reynolds number. The NO{sub x} emissions were below 4 ppmvd at 15% O{sub 2} for all conditions tested, and the CO and unburned hydrocarbon levels were simultaneously low. As a direct result of this cooperative research effort between METC and Alzeta, Solar Turbines has already expressed a strong interest in this novel technology.

  6. Silane-propane ignitor/burner

    DOEpatents

    Hill, Richard W. (Livermore, CA); Skinner, Dewey F. (Livermore, CA); Thorsness, Charles B. (Livermore, CA)

    1985-01-01

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  7. Silane-propane ignitor/burner

    DOEpatents

    Hill, R.W.; Skinner, D.F. Jr.; Thorsness, C.B.

    1983-05-26

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  8. Multi-fuel low-NOx burner development, phase 2

    NASA Astrophysics Data System (ADS)

    Abbasi, H. A.; Khinkis, M. J.; Waibel, R. T.

    1982-05-01

    The development of high efficiency, low nitrogen-oxides producing multi-fuel industrial burners with flame and heat transfer characteristics suitable for specific industrial processes was investigated. Burners for three industrial processes were designed to achieve a reduction in NOx emissions compared with currently used standard burners: (1) a high excess air burner used in direct air dryers for applications in the food processing industry; (2) a hot air burner with high convective heat transfer for direct fired metal processing furnaces; and (3) a hot air burner with a long, luminous flame for direct fired process furnaces in the steel, aluminum, and glass industries. The high convective, hot air burner achieved NOx emission reduction of up to 50%. NOx emissions from the hot air burner with a long, luminous flame were 45 to 60% lower than the standard burner.

  9. Burners and combustion apparatus for carbon nanomaterial production

    DOEpatents

    Alford, J. Michael; Diener, Michael D; Nabity, James; Karpuk, Michael

    2013-02-05

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  10. Burners and combustion apparatus for carbon nanomaterial production

    DOEpatents

    Alford, J. Michael (Lakewood, CO); Diener, Michael D. (Denver, CO); Nabity, James (Arvada, CO); Karpuk, Michael (Boulder, CO)

    2007-10-09

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  11. Pioneering offshore excellence

    SciTech Connect

    Kent, R.P.; Grattan, L.

    1996-11-01

    Hibernia Management and Development Company Ltd. (HMDC) was formed in 1990 by a consortium of oil companies to develop their interests in the Hibernia and Avalon reservoirs offshore Newfoundland in a safe and environmentally responsible manner. The reservoirs are located 315km ESE of St. John`s in the North Atlantic. The water depth is about 80m. The entire Hibernia field is estimated to contain more than three billion barrels of oil in place and the owners development plan area is estimated to contain two billion barrels. Recoverable reserves are estimated to be approximately 615 million barrels. The Hibernia reservoir, the principle reservoir, is located at an average depth of 3,700m. HMDC is building a large concrete gravity based structure (GBS) that which will support the platform drilling and processing facilities and living quarters for 280 personnel. In 1997 the platform will be towed to the production site and production will commence late 1997. Oil will be exported by a 2 km long pipeline to an offshore loading system. Dynamically positioned tankers will then take the oil to market. Average daily production is expected to plateau between 125,000 and 135,000 BOPD. It will be the first major development on the east coast of Canada and is located in an area that is prone to pack ice and icebergs.

  12. Pioneer 11's New Saturn.

    ERIC Educational Resources Information Center

    Science News, 1979

    1979-01-01

    New findings about the planet, Saturn and its environs, as collected by Pioneer 11 are detailed. Topics discussed include: the composition of the planet's interior, the search for new satellites, and the planet's magnetic field. (BT)

  13. James E. Keeler Pioneer Astrophysicist.

    ERIC Educational Resources Information Center

    Osterbrock, Donald E.

    1979-01-01

    Gives a short biography of James E. Keeler, and describes some of his outstanding discoveries, and his pioneering work in observational research where he applied physical methods to the analysis of planets, stars and nebulae. (GA)

  14. CHP Integrated with Burners for Packaged Boilers

    SciTech Connect

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a division of Sempra Energy. These match funds were provided via concurrent contracts and investments available via CMCE, Altex, and Leva Energy The project attained all its objectives and is considered a success. CMCE secured the support of GI&E from Italy to supply 100 kW Turbec T-100 microturbines for the project. One was purchased by the project’s subcontractor, Altex, and a second spare was purchased by CMCE under this project. The microturbines were then modified to convert from their original recuperated design to a simple cycle configuration. Replacement low-NOx silo combustors were designed and bench tested in order to achieve compliance with the California Air Resources Board (CARB) 2007 emission limits for NOx and CO when in CHP operation. The converted microturbine was then mated with a low NOx burner provided by Altex via an integration section that allowed flow control and heat recovery to minimize combustion blower requirements; manage burner turndown; and recover waste heat. A new fully integrated control system was designed and developed that allowed one-touch system operation in all three available modes of operation: (1) CHP with both microturbine and burner firing for boiler heat input greater than 2 MMBtu/hr; (2) burner head only (BHO) when the microturbine is under service; and (3) microturbine only when boiler heat input requirements fall below 2 MMBtu/hr. This capability resulted in a burner turndown performance of nearly 10/1, a key advantage for this technology over conventional low NOx burners. Key components were then assembled into a cabinet with additional support systems for generator cooling and fuel supply. System checkout and performance tests were performed in the laboratory. The assembled system and its support equipment were then shipped and installed at a host facility where final performance tests were conducted following efforts to secure fabrication, air, and operating permits. The installed power burner is now in commercial operation and has achieved all the performance goals.

  15. Low oxygen burner applied to the boiler furnace in a repowering combined system

    SciTech Connect

    Takeno, Keiji; Ichinose, Toshimitsu; Kaneko, Shozo; Araki, Takeo; Hoshi, Takeshi

    1999-07-01

    Attention has lately been drawn to the combined cycle that is the combination of an existing boiler with a steam turbine and repowering gas turbine or diesel engine, as an effective power generation system capable of increasing power output as well as improving plant efficiency. For the burner applied to the boiler furnace in this system, the following technical problems must be overcome: (1) Stable ignition and firing must be realized, using the exhaust gas (O{sub 2}=11{approximately}15vol% in a wet state) from the gas turbine or diesel engine as the air for combustion. (2) Nitrogen oxides and unburned carbon contained in the exhaust gas from the gas turbine or diesel should be greatly reduced through the boiler furnace. (3) The boiler must be capable of being operated alone, independent of the combined system. In the latter case, since fresh air is used as combustion air, the total gas flow rate through the burner is decreased by approximately half. Over the last decade, research and development work has been conducted on the original burner for low O{sub 2} exhaust gas, and various types of burners for gas or oil fuel have been developed. The main topic of the present report is the research and development of circular and angular burners for gas-firing. Stable ignition and flaming could be realized for low oxygen air of 11.5{approximately}12vol% in a wet state by installing a large diameter diffuser cone as the flame stabilizer. Furthermore, the greater reduction rate for NOx assumed to be carried over from gas turbine or diesel engine, was greater than 30%. The circular type burner for gas-firing was applied to Chubu Electric Power Co., Inc. Chita units No. 1(375MW) and No. 2(375MW).

  16. Sealed, nozzle-mix burners for silica deposition

    DOEpatents

    Adler, Meryle D. M.; Brown, John T.; Misra, Mahendra K.

    2003-07-08

    Burners (40) for producing fused silica boules are provided. The burners employ a tube-in-tube (301-306) design with flats (56, 50) on some of the tubes (305, 301) being used to limit the cross-sectional area of certain passages (206, 202) within the burner and/or to atomize a silicon-containing, liquid source material, such as OMCTS. To avoid the possibility of flashback, the burner has separate passages for fuel (205) and oxygen (204, 206), i.e., the burner employs nozzle mixing, rather than premixing, of the fuel and oxygen. The burners are installed in burner holes (26) formed in the crown (20) of a furnace and form a seal with those holes so that ambient air cannot be entrained into the furnace through the holes. An external air cooled jacket (60) can be used to hold the temperature of the burner below a prescribed upper limit, e.g., 400.degree. C.

  17. Industrial Energy Conservation, Forced Internal Recirculation Burner

    SciTech Connect

    Joseph Rabovitser

    2003-06-19

    The overall objective of this research project is to develop and evaluate an industrial low NOx burner for existing and new gas-fired combustion systems for intermediate temperature (1400 degree to 2000 degree F) industrial heating devices such as watertube boilers and process fluid heaters. A multi-phase effort is being pursued with decision points to determine advisability of continuance. The current contract over Phases II and III of this work. The objectives of each phase are as follows. Phase II - to design, fabricate, and evaluate prototype burners based on the Forced Internal Recirculation (FIR) concept. Phase III - to evaluate the performance of an FIR burner under actual operating conditions in a full-scale field test and establish the performance necessary for subsequent commercialization

  18. Low NO.sub.x burner system

    DOEpatents

    Kitto, Jr., John B. (North Canton, OH); Kleisley, Roger J. (Plain Twp., Stark County, OH); LaRue, Albert D. (Summit, OH); Latham, Chris E. (Knox Twp., Columbiana County, OH); Laursen, Thomas A. (Canton, OH)

    1993-01-01

    A low NO.sub.x burner system for a furnace having spaced apart front and rear walls, comprises a double row of cell burners on each of the front and rear walls. Each cell burner is either of the inverted type with a secondary air nozzle spaced vertically below a coal nozzle, or the non-inverted type where the coal nozzle is below the secondary air port. The inverted and non-inverted cells alternate or are provided in other specified patterns at least in the lower row of cells. A small percentage of the total air can be also provided through the hopper or hopper throat forming the bottom of the furnace, or through the boiler hopper side walls. A shallow angle impeller design also advances the purpose of the invention which is to reduce CO and H.sub.2 S admissions while maintaining low NO.sub.x generation.

  19. ESTABLISHMENT OF DESIGN CRITERIA FOR OPTIMUM BURNERS FOR APPLICATION TO HEAVY FUEL FIRED PACKAGE BOILERS. VOLUME 2. PILOT SCALE TESTS

    EPA Science Inventory

    The report gives results of a research program to develop low-NOx heavy oil burners for application to industrial package boilers. Volume I documents Phase 1 of the program, bench scale studies which defined optimum conditions for two-stage combustion. The information led to a co...

  20. ESTABLISHMENT OF DESIGN CRITERIA FOR OPTIMUM BURNERS FOR APPLICATION TO HEAVY FUEL FIRED PACKAGE BOILERS. VOLUME 1. LABORATORY SCALE TESTS

    EPA Science Inventory

    The report gives results of a research program to develop low-NOx heavy oil burners for application to industrial package boilers. Volume I documents Phase 1 of the program, bench scale studies which defined optimum conditions for two-stage combustion. The information led to a co...

  1. Automatic gas burner block for thermal units

    SciTech Connect

    Kryzhanovskii, K.S.; Senatov, V.I.

    1987-01-01

    The authors describe a new computerized control system and gas burner configuration for natural gas furnaces used for the heat treatment of ceramics and porcelain which is designed to control and monitor combustion and temperature regimes in the furnace and optimize fuel efficiency. The system permits simultaneous operation and thermal load control of up to 12 burners, automatic maintenance of the desired fuel-air ratio over the entire temperature range, and protection of the furnace against overload by the use of a fuel cutoff switch. Specifications on productivity and efficiency and results of performance evaluations are listed.

  2. Improvement of cyclic operation on pulverized coal fired boilers by applying wide range burners

    SciTech Connect

    Yamada, Toshihiko; Watanabe, Shinji; Kiga, Takashi; Koyata, Kazuo

    1999-07-01

    There are recently urgent requirements to operate pulverized coal fired power plants as well as oil fired units cyclically or at low loads. In order to cope with this, wide range burners (WRB) were jointly developed to obtain a high turndown operation by the Central Research Institute of Electric Power Industry (CRIEPI) and Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI). In accordance with the results of various fundamental researches, including combustion tests with a tunnel furnace of 12 MW[thermal], it was confirmed the stability of the flame and the combustion characteristics at low loads as well as that of ordinary burners. The WRB have been applied to the new actual boilers that are Saijo Power Station NO. 2 unit of Sikoku Electric Power Co., Inc., Nanao-Ota Power Station NO. 2 unit of Hokuriku Electric Power Co., Inc. and Miike Power Station NO. 1 unit of Miike Thermal Power Co., Ltd.. The results of the trial operation have shown that the minimum burner load was below half of that of conventional burners, and accordingly the pulverized coal firing minimum load could be reduced. This paper explains about the cyclic operation of their boilers and the improvement effect by applying WRBs.

  3. Emissions from gas fired agricultural burners

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because of the Federal Clean Air Act, the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) began defining Best Available Control Technology (BACT) for NOx emissions from cotton gin drying system gas fired burners in its jurisdiction. The NOx emission levels of conventionally used...

  4. A numerical model for the Rijke burner

    SciTech Connect

    Raun, R.L.; Beckstead, M.W.

    1987-01-01

    Combustion instability often adversely effects the performance of solid rocket motors. Particulate suppressants have been added to rocket propellants to damp oscillations, but choice of suppressants is more of an art than a science. A basic theory for how suppressants function needs to be developed. A Rijke burner is being developed for studying the effects of distributed particle combustion on acoustic koscillations. The ultimate goal is to develop a tool for screening acoustic suppressants for use in solid propellant rocket motors. A mathematical model for the Rijke burner is being developed to aid in interpretation of experimental data. Varying temperature in the hot (burned gas) section and particle interactions are included in this model. Past models for the Rijke burner and related devices have ignored heat loss in the hot gas section. Without heat loss, the temperature in the hot section is constant. The ability to apply the constant temperature assumption is enticing. An analytical solution to the governing equations is possible when this assumption is valid. Neglect of heat loss makes a small impact on predicted frequency (generally less than 10 percent). Based on frequency alone, constant temperature appears to be a valid assumption. However, it will be shown that this assumption is not valid for the Rijke burner. Application of this assumption can lead to serious error in acoustic growth rate predictions.

  5. Consider PLCs as platforms for burner management

    SciTech Connect

    Anzlovar, R.; Sterle, L.

    1994-07-01

    This article compares the performance of programmable logic controllers (PLC) to that of distributed control systems for retrofitting of burner-management systems (BMSs) with microprocessor based systems. The benefits and operation of each are reviewed. The author concludes that for their application to BMS the performance of the PLC provides more value.

  6. Registration Form Florida's Certified Pile Burner Program

    E-print Network

    Ma, Lena

    ! ! 1. Opening Comments and Introduction ! ! ! ! ! 08:30 ­ 09:10! ! 2. Fire Weather!! ! ! ! ! ! ! ! 09 importantly, it could save a life. Also, when the weather is dry, certified pile burners will receive priority? A: Yes, the test is 20 questions and open-book. You must receive a score of at least 70% to pass. !Q

  7. Foods of the Pioneer Family.

    ERIC Educational Resources Information Center

    Shelton, Lois G.

    As fourth and fifth grade students study this unit in conjunction with their Indiana or U.S. history texts, they see how the Indiana pioneers ate and survived. Many of the foods taken for granted today were eaten by Indians in one of the Americas thousands of years ago. Students learn that the Native Americans had developed agricultural…

  8. Pioneer 11 Encounter. [with Jupiter

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Pioneer 11's encounter with Jupiter is discussed in detail. The scientific experiments carried out on the probe are described along with the instruments used. Tables are included which provide data on the times of experiments, encounters, and the distances from Jupiter. Educational study projects are also given.

  9. Stefan Meyer: Pioneer of Radioactivity

    NASA Astrophysics Data System (ADS)

    Reiter, Wolfgang L.

    2001-03-01

    Stefan Meyer was one of the pioneers in radioactivity research and director of the Vienna Radium Institute, the first institution in the world devoted exclusively to radioactivity. I give here a biographical sketch of Meyer and of some of his colleagues and an overview of the research activities at the Radium Institute.

  10. Pioneer Venus radar mapper experiment

    USGS Publications Warehouse

    Pettengill, G.H.; Ford, P.G.; Brown, W.E.; Kaula, W.M.; Keller, C.H.; Masursky, H.; McGill, G.E.

    1979-01-01

    Altimetry and radar scattering data for Venus, obtained from 10 of the first 13 orbits of the Pioneer Venus orbiter, have disclosed what appears to be a rift valley having vertical relief of up to 7 kilometers, as well as a neighboring, gently rolling plain. Planetary oblateness appears unlikely to exceed 112500 and may be substantially smaller. Copyright ?? 1979 AAAS.

  11. building on a pioneering past

    E-print Network

    Salama, Khaled

    #12;building on a pioneering past to reimagine the future #12;tackling the big picture questions vastly improved the human condition. Whether building bridges, planning cities, or exploring outer space technological school in the country and the most modern school of technology in the U.S." --PRINCETON REVIEW #12

  12. Honoring Pioneers in Breast Cancer Research

    MedlinePLUS

    ... Home Current Issue Past Issues Honoring Pioneers in Breast Cancer Research Past Issues / Spring 2007 Table of Contents ... the Distinguished Medical Service Award for their pioneering breast cancer research. Photo courtesy of Bill Branson, NIH In ...

  13. Refinery burner simulation design architecture summary.

    SciTech Connect

    Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

    2011-10-01

    This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

  14. PULSE DRYING EXPERIMENT AND BURNER CONSTRUCTION

    SciTech Connect

    Robert States

    2006-07-15

    Non steady impingement heat transfer is measured. Impingement heating consumes 130 T-BTU/Yr in paper drying, but is only 25% thermally efficient. Pulse impingement is experimentally shown to enhance heat transfer by 2.8, and may deliver thermal efficiencies near 85%. Experimental results uncovered heat transfer deviations from steady theory and from previous investigators, indicating the need for further study and a better theoretical framework. The pulse burner is described, and its roll in pulse impingement is analyzed.

  15. Coal-water mixture fuel burner

    DOEpatents

    Brown, T.D.; Reehl, D.P.; Walbert, G.F.

    1985-04-29

    The present invention represents an improvement over the prior art by providing a rotating cup burner arrangement for use with a coal-water mixture fuel which applies a thin, uniform sheet of fuel onto the inner surface of the rotating cup, inhibits the collection of unburned fuel on the inner surface of the cup, reduces the slurry to a collection of fine particles upon discharge from the rotating cup, and further atomizes the fuel as it enters the combustion chamber by subjecting it to the high shear force of a high velocity air flow. Accordingly, it is an object of the present invention to provide for improved combustion of a coal-water mixture fuel. It is another object of the present invention to provide an arrangement for introducing a coal-water mixture fuel into a combustion chamber in a manner which provides improved flame control and stability, more efficient combustion of the hydrocarbon fuel, and continuous, reliable burner operation. Yet another object of the present invention is to provide for the continuous, sustained combustion of a coal-water mixture fuel without the need for a secondary combustion source such as natural gas or a liquid hydrocarbon fuel. Still another object of the present invention is to provide a burner arrangement capable of accommodating a coal-water mixture fuel having a wide range of rheological and combustion characteristics in providing for its efficient combustion. 7 figs.

  16. Pioneer Mars 1979 mission options

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Hartmann, W. K.; Niehoff, J. C.

    1974-01-01

    A preliminary investigation of lower cost Mars missions which perform useful exploration objectives after the Viking/75 mission was conducted. As a study guideline, it was assumed that significant cost savings would be realized by utilizing Pioneer hardware currently being developed for a pair of 1978 Venus missions. This in turn led to the additional constraint of a 1979 launch with the Atlas/Centaur launch vehicle which has been designated for the Pioneer Venus missions. Two concepts, using an orbiter bus platform, were identified which have both good science potential and mission simplicity indicative of lower cost. These are: (1) an aeronomy/geology orbiter, and (2) a remote sensing orbiter with a number of deployable surface penetrometers.

  17. Redox Pioneer: Professor Helmut Sies

    PubMed Central

    Radi, Rafael

    2014-01-01

    Abstract Professor Helmut Sies Dr. Helmut Sies (MD, 1967) is recognized as a Redox Pioneer, because he authored five articles on oxidative stress, lycopene, and glutathione, each of which has been cited more than 1000 times, and coauthored an article on hydroperoxide metabolism in mammalian systems cited more than 5000 times (Google Scholar). He obtained preclinical education at the University of Tübingen and the University of Munich, clinical training at Munich (MD, 1967) and Paris, and completed Habilitation at Munich (Physiological Chemistry and Physical Biochemistry, 1972). In early research, he first identified hydrogen peroxide (H2O2) as a normal aerobic metabolite and devised a method to quantify H2O2 concentration and turnover in cells. He quantified central redox systems for energy metabolism (NAD, NADP systems) and antioxidant GSH in subcellular compartments. He first described ebselen, a selenoorganic compound, as a glutathione peroxidase mimic. He contributed a fundamental discovery to the physiology of GSH, selenium nutrition, singlet oxygen biochemistry, and health benefits of dietary lycopene and cocoa flavonoids. He has published more than 600 articles, 134 of which are cited at least 100 times, and edited 28 books. His h-index is 115. During the last quarter of the 20th century and well into the 21st, he has served as a scout, trailblazer, and pioneer in redox biology. His formulation of the concept of oxidative stress stimulated and guided research in oxidants and antioxidants; his pioneering research on carotenoids and flavonoids informed nutritional strategies against cancer, cardiovascular disease, and aging; and his quantitative approach to redox biochemistry provides a foundation for modern redox systems biology. Helmut Sies is a true Redox Pioneer. Antioxid. Redox Signal. 21, 2459–2468. The joy of exploring the unknown and finding something novel and noteworthy: what a privilege! —Prof. Helmut Sies PMID:25178739

  18. Redox pioneer: professor Helmut Sies.

    PubMed

    Jones, Dean P; Radi, Rafael

    2014-12-20

    Dr. Helmut Sies (MD, 1967) is recognized as a Redox Pioneer, because he authored five articles on oxidative stress, lycopene, and glutathione, each of which has been cited more than 1000 times, and coauthored an article on hydroperoxide metabolism in mammalian systems cited more than 5000 times (Google Scholar). He obtained preclinical education at the University of Tübingen and the University of Munich, clinical training at Munich (MD, 1967) and Paris, and completed Habilitation at Munich (Physiological Chemistry and Physical Biochemistry, 1972). In early research, he first identified hydrogen peroxide (H2O2) as a normal aerobic metabolite and devised a method to quantify H2O2 concentration and turnover in cells. He quantified central redox systems for energy metabolism (NAD, NADP systems) and antioxidant GSH in subcellular compartments. He first described ebselen, a selenoorganic compound, as a glutathione peroxidase mimic. He contributed a fundamental discovery to the physiology of GSH, selenium nutrition, singlet oxygen biochemistry, and health benefits of dietary lycopene and cocoa flavonoids. He has published more than 600 articles, 134 of which are cited at least 100 times, and edited 28 books. His h-index is 115. During the last quarter of the 20th century and well into the 21st, he has served as a scout, trailblazer, and pioneer in redox biology. His formulation of the concept of oxidative stress stimulated and guided research in oxidants and antioxidants; his pioneering research on carotenoids and flavonoids informed nutritional strategies against cancer, cardiovascular disease, and aging; and his quantitative approach to redox biochemistry provides a foundation for modern redox systems biology. Helmut Sies is a true Redox Pioneer. PMID:25178739

  19. Microcomputer fuel burner control having safety interlock means

    SciTech Connect

    Adams, W.L.; Kidder, K.B.; Landis, W.R.

    1989-05-30

    A microcomputer fuel burner control system is described having a nonvolatile memory to retain programmed information in a memory within the control system, including: base means with the base means having electrical connection means; the electrical connection means adapted to connect the base means to fuel burner means to be controlled, and to electrical source means; fuel burner control means including a microcomputer control system adapted to control the fuel burner means; the control means further including a battery backup system that recognized when the control means has been removed from the control system the fuel burner control means including electrical connection means for electrical interconnection to the base means electrical connection means; and interlock means responsive to the disconnection and subsequent re-connection of the fuel burner control means to avoid an unsafe condition.

  20. Industrial burner modeling: Final report for the CIEE

    SciTech Connect

    Cloutman, L.D.

    1994-12-01

    The COYOTE computer program was used as basis for a comprehensive numerical model of industrial burners. This program is based on the full multicomponent Navier-Stokes equations and includes a subgrid-scale turbulence model. The model was used to simulate the flows in a laboratory-scale burner being studied experimentally at UC-Irvine. We summarize what has been learned in the last 3 years from simulations of this burner. This model provides detailed information about the flow field in the furnace, making it a useful tool for studying the physics of burners.

  1. Heat transfer characteristics of a heat-recirculating ceramic burner

    SciTech Connect

    Tanaka, Ryo; Shinoda, Masahisa; Arai, Norio

    1999-07-01

    A new type of heat-recirculating ceramic burner has been constructed and its thermal characteristics during steady very-low-heating-value-gas/air combustion were investigated. Longitudinal temperature distribution of air and burned gas flowing in the passes of the burner were determined by means of both experimental measurements and numerical simulations. Using the heat recirculation rate and the thermal efficiency as criteria for the heat transfer performance of the burner, the optimal design of the burner was examined in terms of a chemical parameter (the equivalence ratio), a fluid-mechanical parameter (the Reynolds number) and a geometrical parameter (the number of passes).

  2. Numerical and experimental investigation of a mild combustion burner

    SciTech Connect

    Galletti, Chiara; Parente, Alessandro; Tognotti, Leonardo

    2007-12-15

    An industrial burner operating in the MILD combustion regime through internal recirculation of exhaust gases has been characterized numerically. To develop a self-sufficient numerical model of the burner, two subroutines are coupled to the CFD solver to model the air preheater section and heat losses from the burner through radiation. The resulting model is validated against experimental data on species concentration and temperature. A 3-dimensional CFD model of the burner is compared to an axisymmetric model, which allows considerable computational saving, but neglects some important burner features such as the presence of recirculation windows. Errors associated with the axisymmetric model are evaluated and discussed, as well as possible simplified procedures for engineering purposes. Modifications of the burner geometry are investigated numerically and suggested in order to enhance its performances. Such modifications are aimed at improving exhaust gases recirculation which is driven by the inlet air jet momentum. The burner is found to produce only 30 ppm{sub v} of NO when operating in MILD combustion mode. For the same air preheating the NO emissions would be of approximately 1000 ppm{sub v} in flame combustion mode. It is also shown that the burner ensures more homogeneous temperature distribution in the outer surfaces with respect to flame operation, and this is attractive for burners used in furnaces devoted to materials' thermal treatment processes. The effect of air excess on the combustion regime is also discussed. (author)

  3. 40 CFR 279.64 - Used oil storage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...26 2010-07-01 2010-07-01 false Used oil storage. 279.64 Section 279.64 Protection...CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Burners Who Burn Off-Specification Used Oil for...

  4. 40 CFR 279.64 - Used oil storage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...27 2014-07-01 2014-07-01 false Used oil storage. 279.64 Section 279.64 Protection...CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Burners Who Burn Off-Specification Used Oil for...

  5. 40 CFR 279.64 - Used oil storage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...28 2012-07-01 2012-07-01 false Used oil storage. 279.64 Section 279.64 Protection...CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Burners Who Burn Off-Specification Used Oil for...

  6. 40 CFR 279.64 - Used oil storage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...28 2013-07-01 2013-07-01 false Used oil storage. 279.64 Section 279.64 Protection...CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Burners Who Burn Off-Specification Used Oil for...

  7. 40 CFR 279.64 - Used oil storage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...27 2011-07-01 2011-07-01 false Used oil storage. 279.64 Section 279.64 Protection...CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Burners Who Burn Off-Specification Used Oil for...

  8. KINETIC STUDIES RELATED TO THE LIMB (LIMESTONE INJECTION MULTISTAGE BURNER) BURNER

    EPA Science Inventory

    The report gives results of theoretical and experimental studies of subjects related to the limestone injection multistage burner (LIMB). The main findings include data on the rate of evolution of H2S from different coals and on the dependence of the rate of evolution on the dist...

  9. Low NO{sub x} combustion of pulverized coal using the radially stratified flame core burner

    SciTech Connect

    Barta, L.E.; Lewis, P.F.; Beer, J.M.

    1999-07-01

    Results are presented of a theoretical-experimental study aimed at determining the characteristics of pulverized coal flames produced with the Low NO{sub x} Radially Stratified Flame Core (RSFC) Burner. Following earlier studies with this burner in which very low pollutant emissions were attained with natural gas and heavy fuel oil, the present investigation turned to the combustion of pulverized coal. In particular, the fulfillment of the conditions required for staged combustion, i.e., maintenance of a fuel-rich flame core at high temperature and for an extended period of time by the stratification of the flow, have been investigated. The criterion for radial stratification of the flow was theoretically developed from the equations of motion, by balancing the rate of generation of turbulence and the rate of turbulence damping; the latter being due to a combination of steep radial density gradients and swirling flow. The optimal radial stratification was obtained in forced vortex flow, when the radial profiles of the axial and tangential components of the air flow at the burner exit were adjusted to satisfy the condition along the flame front: 1 {partial{underscore}derivative}{bar {rho}}/{bar {rho}} {partial{underscore}derivative}r = P{sub T} ({alpha}/{beta}){sup 2} 1/r where {rho} is density, r is the radial distance of the flame front, P{sub T} is the turbulent Prandtl number, and {alpha} and {beta} are the first radial derivatives of the axial and the tangential velocity, respectively, evaluated at the radial distance r. A parametric combustion study carried out by burning a high volatile bituminous coal at a thermal input of 1.5 MW has shown that by setting a ratio {alpha}/{beta} = 0.76 at the burner, a stratified flame was created, and the NO{sub x} emission was reduced from an uncontrolled range of 700--900 ppm to 217 ppm. Further reduction to 70 ppm was achieved by external air staging. For this latter condition, however, the RSFC burner was operated to produce a well stirred, high temperature, fuel-rich flame with overfire air injected at some distance downstream of the burner. Both flame types were highly stable with 99.5% and 99.3% carbon conversion, respectively.

  10. Low NOx gas burner apparatus and methods

    SciTech Connect

    Schwartz, R.E.; Napier, S.O.; Jones, A.P.

    1993-08-24

    An improved gas burner apparatus is described for discharging a mixture of fuel gas and air into a furnace space wherein said mixture is burned and flue gases having low NO[sub x] content are formed therefrom comprising: a housing having an open end attached to said furnace space; means for introducing a controlled flow rate of said air into said housing attached thereto; a refractory burner tile attached to the open end of said housing having a base portion, an opening formed in said base portion for allowing air to pass there through and having a wall portion surrounding said opening which extends into said furnace space, the exterior sides of said wall portion being slanted towards said opening and the interior sides thereof being spaced from the periphery of said opening whereby a ledge is provided within the interior of said wall portion; at least one passage formed in said burner tile for conducting primary fuel gas and flue gases from the exterior of said wall portion to the interior thereof; means for forming a fuel gas jet in said passage and drawing flue gases there through adapted to be connected to a source of fuel gas and positioned with respect to said passage whereby a mixture of primary fuel gas and flue gases from said furnace space is discharged from said passage to within the interior of said wall portion; and at least one nozzle adapted to be connected to a source of fuel gas positioned outside said wall portion of said burner tile adjacent the intersection of an exterior slanted side of said wall portion with the surface of said base portion for discharging secondary fuel gas adjacent said external slanted side of said wall portion whereby said secondary fuel gas mixes with flue gases and air in said furnace space. A method is also described for discharging a mixture of fuel gas and air into a furnace space wherein said mixture is burned and flue gases having low NO[sub x] content are formed therefrom.

  11. DEMONSTRATION BULLETIN: CELLO PULSE COMBUSTION BURNER SYSTEM/SONOTECH INC.

    EPA Science Inventory

    Sonotech, Inc. (Sonotech), of Atlanta, GA, the developer of the Cello® pulse combustion burner, claims that its burner system can be beneficial to a variety of combustion processes. The system incorporates a combustor that can be tuned to induce large amplitude sonic pulsation...

  12. 30 CFR 56.7803 - Lighting the burner.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 2012-07-01 false Lighting the burner. 56.7803 Section 56... Rotary Jet Piercing § 56.7803 Lighting the burner. A suitable means of protection...shall be provided for the employee when lighting the...

  13. 30 CFR 57.7803 - Lighting the burner.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 2012-07-01 false Lighting the burner. 57.7803 Section 57...Piercing-Surface Only § 57.7803 Lighting the burner. A suitable means of protection...shall be provided for the employee when lighting the...

  14. 30 CFR 56.7803 - Lighting the burner.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Lighting the burner. 56.7803 Section 56... Rotary Jet Piercing § 56.7803 Lighting the burner. A suitable means of protection...shall be provided for the employee when lighting the...

  15. 30 CFR 56.7803 - Lighting the burner.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2013-07-01 false Lighting the burner. 56.7803 Section 56... Rotary Jet Piercing § 56.7803 Lighting the burner. A suitable means of protection...shall be provided for the employee when lighting the...

  16. 30 CFR 57.7803 - Lighting the burner.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2013-07-01 false Lighting the burner. 57.7803 Section 57...Piercing-Surface Only § 57.7803 Lighting the burner. A suitable means of protection...shall be provided for the employee when lighting the...

  17. 30 CFR 57.7803 - Lighting the burner.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Lighting the burner. 57.7803 Section 57...Piercing-Surface Only § 57.7803 Lighting the burner. A suitable means of protection...shall be provided for the employee when lighting the...

  18. Combined Heat and Power Integrated with Burners for Packaged Boilers

    SciTech Connect

    2010-10-01

    This factsheet describes a project that will seamlessly integrate a gas-fired simple-cycle 100 kWe microturbine with a new ultra-low NOx gas-fired burner to develop a CHP assembly called the Boiler Burner Energy System Technology.

  19. 30 CFR 57.7803 - Lighting the burner.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Lighting the burner. 57.7803 Section 57...Piercing-Surface Only § 57.7803 Lighting the burner. A suitable means of protection...shall be provided for the employee when lighting the...

  20. 30 CFR 56.7803 - Lighting the burner.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2011-07-01 false Lighting the burner. 56.7803 Section 56... Rotary Jet Piercing § 56.7803 Lighting the burner. A suitable means of protection...shall be provided for the employee when lighting the...

  1. 30 CFR 56.7803 - Lighting the burner.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Lighting the burner. 56.7803 Section 56... Rotary Jet Piercing § 56.7803 Lighting the burner. A suitable means of protection...shall be provided for the employee when lighting the...

  2. 30 CFR 57.7803 - Lighting the burner.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2011-07-01 false Lighting the burner. 57.7803 Section 57...Piercing-Surface Only § 57.7803 Lighting the burner. A suitable means of protection...shall be provided for the employee when lighting the...

  3. Turbine Burners: Flameholding in Accelerating Flow W. A. Sirignano1

    E-print Network

    Liu, Feng

    1 Turbine Burners: Flameholding in Accelerating Flow W. A. Sirignano1 , D. Dunn-Rankin2 , F. Liu3 B, Irvine Abstract A review of turbine-burner research and some relevant background issues is presented. Previous work on thermal cycle analysis for augmentative combustion in the passages of the turbine

  4. Imaging photopolarimeter on Pioneer Saturn

    NASA Technical Reports Server (NTRS)

    Gehrels, T.; Baker, L. R.; Beshore, E.; Blenman, C.; Burke, J. J.; Castillo, N. D.; Dacosta, B.; Degewij, J.; Doose, L. R.; Coffeen, D. L.

    1980-01-01

    Results of Pioneer 11 imaging photopolarimeter observations of Saturn, its rings, and Titan are presented. The imaging photopolarimeter is a pointable telescope with an aperture of 2.5 cm and passbands of 390 to 500 to 720 nm which uses the spin of the spacecraft to scan across an object. Images of the Saturn system and of the rings are presented, and the absence of a D ring, structures in the C, B and A rings and the Cassini division and the discoveries of the F ring and the provisionally named Pioneer division separating it from the A ring are reported. A mean particle size less than 15 meters is estimated from estimates of total ring mass and the optical depth of the B ring. The discovery of the satellite 1979 S 1 at 2.53 Saturn radii is also noted. Models of the vertical aerosol structure of Saturn's atmosphere are compared with the polarization data, and it is indicated that the density of cloud particles decreases with altitude with a scale height about one fourth that of the gas, and that an optical depth of one is to be found at 750 mbar.

  5. Pioneers in Space: The Story of the Pioneer Missions (Part II).

    ERIC Educational Resources Information Center

    Montoya, Earl J.; Fimmel, Richard O.

    1988-01-01

    Discusses the Pioneer satellites' explorations of Jupiter and Saturn. Includes discussions of engineering, the messenger program, and future projects. Provides pictures, diagrams, and a description of the Pioneer "message" plaques. (YP)

  6. Combustion Characteristics of Biofuels in Porous-Media Burners

    NASA Astrophysics Data System (ADS)

    Barajas, Pablo E.; Parthasarathy, R. N.; Gollahalli, S. R.

    2010-05-01

    Biofuels, such as canola methyl ester (CME) and soy methyl ester (SME) derived from vegetable oil are alternative sources of energy that have been developed to reduce the dependence on petroleum-based fuels. In the present study, CME, SME, commercial Jet-A fuel were tested in a porous-media burner. The measured combustion characteristics at an initial equivalence ratio of 0.8 included NOx and CO emission indices, radiative fractions of heat release, and axial temperatures. The effects of fuel on the injector and porous media durability were also documented. The NOx emission index was higher for the SME and CME flames than that of the Jet-A flame. Furthermore, the axial temperature profiles were similar for all the flames. The prolonged use of CME and SME resulted in the solid-particle deposition on the metal walls of the injector and within the structure of the porous medium, thereby increasing the restriction to the fuel/air flow.

  7. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS. VOLUME I. DISTRIBUTED MIXING BURNER EVALUATION

    EPA Science Inventory

    The report gives results of a study in which NOx emissions and general combustion performance characteristics of four burners were evaluated under experimental furnace conditions. Of primary interest was the performance of a low NOx Distributed Mixing Burner (DMB), which was test...

  8. Imaging photopolarimeter on pioneer saturn.

    PubMed

    Gehrels, T; Baker, L R; Beshore, E; Blenman, C; Burke, J J; Castillo, N D; Dacosta, B; Degewij, J; Doose, L R; Fountain, J W; Gotobed, J; Kenknight, C E; Kingston, R; McLaughlin, G; McMillan, R; Murphy, R; Smith, P H; Stoll, C P; Strickland, R N; Tomasko, M G; Wijesinghe, M P; Coffeen, D L; Esposito, L

    1980-01-25

    An imaging photopolarimeter aboard Pioneer 11, including a 2.5-centimeter telescope, was used for 2 weeks continuously in August and September 1979 for imaging, photometry, and polarimetry observations of Saturn, its rings, and Titan. A new ring of optical depth < 2 x 10(-3) was discovered at 2.33 Saturn radii and is provisionally named the F ring; it is separated from the A ring by the provisionally named Pioneer division. A division between the B and C rings, a gap near the center of the Cassini division, and detail in the A, B, and C rings have been seen; the nomenclature of divisions and gaps is redefined. The width of the Encke gap is 876 +/- 35 kilometers. The intensity profile and colors are given for the light transmitted by the rings. A mean particle size less, similar 15 meters is indicated; this estimate is model-dependent. The D ring was not seen in any viewing geometry and its existence is doubtful. A satellite, 1979 S 1, was found at 2.53 +/- 0.01 Saturn radii; the same object was observed approximately 16 hours later by other experiments on Pioneer 11. The equatorial radius of Saturn is 60,000 +/- 500 kilometers, and the ratio of the polar to the equatorial radius is 0.912 +/- 0.006. A sample of polarimetric data is compared with models of the vertical structure of Saturn's atmosphere. The variation of the polarization from the center of the disk to the limb in blue light at 88 degrees phase indicates that the density of cloud particles decreases as a function of altitude with a scale height about one-fourth that of the gas. The pressure level at which an optical depth of 1 is reached in the clouds depends on the single-scattering polarizing properties of the clouds; a value similar to that found for the Jovian clouds yields an optical depth of 1 at about 750 millibars. PMID:17833555

  9. 75 FR 19880 - Safety Zone; BW PIONEER at Walker Ridge 249, Outer Continental Shelf FPSO, Gulf of Mexico

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... safety zone around the FPSO significantly reduces the threat of allisions, oil spills, and releases of... center point. The safety zone will reduce significantly the threat of allisions, oil spills, and releases... PIONEER at Walker Ridge 249, Outer Continental Shelf FPSO, Gulf of Mexico in the Federal Register (74...

  10. A Model for the Pioneer Anomaly

    E-print Network

    Ivan G. Avramidi; Guglielmo Fucci

    2008-11-10

    In a previous work we showed that massive test particles exhibit a non-geodesic acceleration in a modified theory of gravity obtained by a non-commutative deformation of General Relativity (so-called Matrix Gravity). We propose that this non-geodesic acceleration might be the origin of the anomalous acceleration experienced by the Pioneer 10 and Pioneer 11 spacecrafts.

  11. New book on oilsands pioneer John Allan offers fascinating glimpse of early Alberta

    E-print Network

    Machel, Hans

    New book on oilsands pioneer John Allan offers fascinating glimpse of early Alberta November 21 of the Leduc oil field. In their illuminating and visually fascinating new book, The Founding of AlbertaMurray, Wainwright and Peace River, as well as the coal deposits and dinosaur fossils near Drumheller. The book

  12. Development of the Radiation Stabilized Distributed Flux Burner, Phase II Final Report

    SciTech Connect

    Webb, A.; Sullivan, J.D.

    1997-06-01

    This report covers progress made during Phase 2 of a three-phase DOE-sponsored project to develop and demonstrate the Radiation Stabilized Distributed Flux burner (also referred to as the Radiation Stabilized Burner, or RSB) for use in industrial watertube boilers and process heaters. The goal of the DOE-sponsored work is to demonstrate an industrial boiler burner with NOx emissions below 9 ppm and CO emissions below 50 ppm (corrected to 3% stack oxygen). To be commercially successful, these very low levels of NOx and CO must be achievable without significantly affecting other measures of burner performance such as reliability, turndown, and thermal efficiency. Phase 1 of the project demonstrated that sub-9 ppm NOx emissions and sub-50 ppm CO emissions (corrected to 3% oxygen) could be achieved with the RSB in a 3 million Btu/Hr laboratory boiler using several methods of NOx reduction. The RSB was also tested in a 60 million Btu/hr steam generator used by Chevron for Thermally Enhanced Oil Recovery (TEOR). In the larger scale tests, fuel staging was demonstrated, with the RSB consistently achieving sub-20 ppm NOx and as low as 10 ppm NOx. Large-scale steam generator tests also demonstrated that flue gas recirculation (FGR) provided a more predictable and reliable method of achieving sub-9 ppm NOx levels. Based on the results of tests at San Francisco Thermal and Chevron, the near-term approach selected by Alzeta for achieving low NOx is to use FGR. This decision was based on a number of factors, with the most important being that FGR has proved to be an easier approach to transfer to different facilities and boiler designs. In addition, staging has proved difficult to implement in a way that allows good combustion and emissions performance in a fully modulating system. In Phase 3 of the project, the RSB will be demonstrated as a very low emissions burner product suitable for continuous operation in a commercial installation. As such, the Phase 3 field demonstration will represent the first installation in which the RSB will be operated continuously with a sub-9 ppm guarantee.

  13. Low NO[sub x] gas burner apparatus and methods

    SciTech Connect

    Schwartz, R.E.; Napier, S.O.; Jones, A.P.

    1994-01-04

    Improved gas burner apparatus and methods of burning fuel gas-air mixtures are provided whereby flue gases having low NO[sub x] contents are formed. The burner apparatus includes a refractory burner tile having an air discharge opening therein and a wall surrounding the opening which extends into the furnace space and provides a mixing zone therein. At least one passage is formed in the burner tile which opens into the mixing zone and fuel gas is jetted through the passage whereby flue gases are drawn there through and a fuel gas-flue gases mixture is discharged into the mixing zone. The fuel gas-flue gases mixture is swirled in the mixing zone and mixes with air therein, and the resulting mixture is discharged and burned in a primary reaction zone in the furnace space. 11 figs.

  14. Idealized radiation efficiency model for a porous radiant burner

    SciTech Connect

    Fu, X.; Viskanta, R.; Gore, J.P.

    1999-07-01

    A simple, highly idealized radiation efficiency model has been developed for a porous radiant burner with or without a screen to assess the thermal performance of an ideal porous burner that yields the highest radiation efficiency and against which test results and/or more realistic model predictions could be benchmarked. The model is based on thermodynamics principles (first law of thermodynamics) with idealizations made for some of the physical processes. Empirical information, where necessary, is then used to close the model equations. The maximum radiation efficiency at a given firing rate is predicted. The effects of input parameters such as the firing rate, the equivalence ratio, and the effective emittance of the burner on the radiation efficiency of the porous radiant burner are reported.

  15. Full-Scale Demonstration Low-NOx Cell Burner retrofit

    SciTech Connect

    Not Available

    1991-05-24

    The overall objective of the Full-Scale Low-NOx Cell (LNC) Burner Retrofit project is to demonstrate the cost-effective reduction of NOx generated by a large, base-loaded (70% capacity factor or greater), coal-fired utility boiler. Specific objectives include: at least 50% NOx reduction over standard two-nozzle cell burners, without degradation of boiler performance or life; acquire and evaluate emission and boiler performance data before and after the retrofit to determine NOx reduction and impact on overall boiler performance; and demonstrate that the LNC burner retrofits are the most cost-effective alternative to emerging, or commercially- available NOx control technology for units equipped with cell burners. The focus of this demonstration is to determine maximum NOx reduction capabilities without adversely impacting plant performance, operation and maintenance.

  16. Evaluating the efficacy of a minor actinide burner

    SciTech Connect

    Dobbin, K.D.; Kessler, S.F.; Nelson, J.V.; Omberg, R.P.; Wootan, D.W.

    1993-06-01

    The efficacy of a minor actinide burner can be evaluated by comparing safety and economic parameters to the support ratio. Minor actinide mass produced per unit time in this number of Light Water Reactors (LWRs) can be burned during the same time period in one burner system. The larger the support ratio for a given set of safety and economic parameters, the better. To illustrate this concept, the support ratio for selected Liquid Metal Reactor (LMR) burner core designs was compared with corresponding coolant void worths, a fundamental safety concern following the Chernobyl accident. Results can be used to evaluate the cost in reduced burning of minor actinides caused by LMR sodium void reduction efforts or to compare with other minor actinide burner systems.

  17. 33. LOOKING EAST AT SPARE BUTTERFLY VALVE FOR BURNER CONNECTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. LOOKING EAST AT SPARE BUTTERFLY VALVE FOR BURNER CONNECTION ON HOT BLAST STOVES. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  18. Pioneers of eye movement research

    PubMed Central

    Wade, Nicholas J

    2010-01-01

    Recent advances in the technology affording eye movement recordings carry the risk of neglecting past achievements. Without the assistance of this modern armoury, great strides were made in describing the ways the eyes move. For Aristotle the fundamental features of eye movements were binocular, and he described the combined functions of the eyes. This was later given support using simple procedures like placing a finger over the eyelid of the closed eye and culminated in Hering's law of equal innervation. However, the overriding concern in the 19th century was with eye position rather than eye movements. Appreciating discontinuities of eye movements arose from studies of vertigo. The characteristics of nystagmus were recorded before those of saccades and fixations. Eye movements during reading were described by Hering and by Lamare in 1879; both used similar techniques of listening to sounds made during contractions of the extraocular muscles. Photographic records of eye movements during reading were made by Dodge early in the 20th century, and this stimulated research using a wider array of patterns. In the mid-20th century attention shifted to the stability of the eyes during fixation, with the emphasis on involuntary movements. The contributions of pioneers from Aristotle to Yarbus are outlined. PMID:23396982

  19. Pioneers of eye movement research.

    PubMed

    Wade, Nicholas J

    2010-01-01

    Recent advances in the technology affording eye movement recordings carry the risk of neglecting past achievements. Without the assistance of this modern armoury, great strides were made in describing the ways the eyes move. For Aristotle the fundamental features of eye movements were binocular, and he described the combined functions of the eyes. This was later given support using simple procedures like placing a finger over the eyelid of the closed eye and culminated in Hering's law of equal innervation. However, the overriding concern in the 19th century was with eye position rather than eye movements. Appreciating discontinuities of eye movements arose from studies of vertigo. The characteristics of nystagmus were recorded before those of saccades and fixations. Eye movements during reading were described by Hering and by Lamare in 1879; both used similar techniques of listening to sounds made during contractions of the extraocular muscles. Photographic records of eye movements during reading were made by Dodge early in the 20th century, and this stimulated research using a wider array of patterns. In the mid-20th century attention shifted to the stability of the eyes during fixation, with the emphasis on involuntary movements. The contributions of pioneers from Aristotle to Yarbus are outlined. PMID:23396982

  20. Numerical predictions of burner performance during pulverized coal combustion

    SciTech Connect

    Zarnescu, V.; Pisupati, S.V.

    1999-07-01

    The performance of four burners in terms of temperature and velocity profiles, residence time and NO{sub x} emissions was predicted using numerical simulations and a two-dimensional model for pulverized coal combustion. Numerical predictions for two burners used in a pilot-scale 0.5 MM Btu/hr (146.5 kW) down-fired combustor (DFC) are presented. Two other burner configurations were evaluated and compared with the ones used with the DFC for attaining lower NO{sub x} levels. Simulations were conducted for both coal and coal-water slurry as primary fuels. A sensitivity analysis of predictions with respect to variations of the model parameters was performed. The results suggest that the higher NO{sub x} reduction with one of the burners used in the DFC is due to the improved near-burner aerodynamics and to better flame attachment. These improved conditions are influenced by a combination of geometric and flow parameters, such as burner dimensions, quart diameter, inlet velocity, inlet temperature and swirl number.

  1. Advanced burner test reactor preconceptual design report.

    SciTech Connect

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an advanced fuel cycle; (2) To qualify the transuranics-containing fuels and advanced structural materials needed for a full-scale ABR; and (3) To support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. The ABTR should also address the following additional objectives: (1) To incorporate and demonstrate innovative design concepts and features that may lead to significant improvements in cost, safety, efficiency, reliability, or other favorable characteristics that could promote public acceptance and future private sector investment in ABRs; (2) To demonstrate improved technologies for safeguards and security; and (3) To support development of the U.S. infrastructure for design, fabrication and construction, testing and deployment of systems, structures and components for the ABRs. Based on these objectives, a pre-conceptual design of a 250 MWt ABTR has been developed; it is documented in this report. In addition to meeting the primary and additional objectives listed above, the lessons learned from fast reactor programs in the U.S. and worldwide and the operating experience of more than a dozen fast reactors around the world, in particular the Experimental Breeder Reactor-II have been incorporated into the design of the ABTR to the extent possible.

  2. The Interplanetary Pioneers. Volume 3: Operations

    NASA Technical Reports Server (NTRS)

    Corliss, W. R.

    1972-01-01

    The operational aspects of the Pioneer program are described. The phases of the program discussed include: prelaunch operations, launch to DSS acquisition, near-earth operations, nominal and extended cruise, and scientific results.

  3. Approach guidance for outer planet pioneer missions

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.

    1975-01-01

    Onboard optical approach guidance measurements for spin-stabilized Pioneer-type spacecraft are discussed. Approach guidance measurement accuracy requirements are outlined. The application concept and operation principle of the V-slit star tracker are discussed within the context of approach guidance measurements and measurables. It is shown that the accuracy of onboard optical approach guidance measurements is inherently coupled to the stability characteristics of the spacecraft spin axis. Geometrical and physical measurement parameters are presented for Pioneer entry probe missions to Uranus via Jupiter or Saturn flyby. The impact of these parameters on both sensor instrumentation and measurement system design is discussed. The need for sensing extended objects is shown. The feasibility of implementing an onboard approach guidance measurement system for Pioneer-type spacecraft is indicated. Two Pioneer 10 onboard measurement experiments performed in May-June 1974 are described.

  4. Pioneer to encounter Saturn on September 1

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The encounter of the Pioneer 11 Spacecraft with Saturn, designed to provide information on the evolution of the Sun and its planets, is described. Photographs and measurements of Saturn, its rings, and several of its 10 satellites, including Titan, to be taken by Pioneer instruments, are emphasized. The encounter sequence and spacecraft trajectory are discussed. A description of Saturn and its atmosphere is included. Onboard instruments and experiments are also described.

  5. Pioneers 10 and 11 deep space missions

    NASA Technical Reports Server (NTRS)

    Dyal, Palmer

    1990-01-01

    Pioneers 10 and 11 were launched from Earth, 2 March 1972, and 5 April 1973, respectively. The Pioneers were the first spacecraft to explore the asteroid belt and the first to encounter the giant planets, Jupiter and Saturn. The Pioneer 10 spacecraft is now the most distant man-made object in our solar system and is farther from the Sun than all nine planets. It is 47 AU from the Sun and is moving in a direction opposite to that of the Sun's motion through the galaxy. Pioneer 11 is 28 AU from the Sun and is traveling in the direction opposite of Pioneer 10, in the same direction as the Sun moves in the galaxy. These two Pioneer spacecraft provided the first large-scale, in-situ measurements of the gas and dust surrounding a star, the Sun. Since launch, the Pioneers have measured large-scale properties of the heliosphere during more than one complete 11-year solar sunspot cycle, and have measured the properties of the expanding solar atmosphere, the transport of cosmic rays into the heliosphere, and the high-energy trapped radiation belts and magnetic fields associated with the planets Jupiter and Saturn. Accurate Doppler tracking of these spin-stabilized spacecraft was used to search for differential gravitational forces from a possible trans-Neptunian planet and to search for gravitational radiation. Future objectives of the Pioneer 10 and 11 missions are to continue measuring the large-scale properties of the heliosphere and to search for its boundary with interstellar space.

  6. Dual-water mixture fuel burner

    DOEpatents

    Brown, Thomas D. (Finleyville, PA); Reehl, Douglas P. (Pittsburgh, PA); Walbert, Gary F. (Library, PA)

    1986-08-05

    A coal-water mixture (CWM) burner includes a conically shaped rotating cup into which fuel comprised of coal particles suspended in a slurry is introduced via a first, elongated inner tube coupled to a narrow first end portion of the cup. A second, elongated outer tube is coaxially positioned about the first tube and delivers steam to the narrow first end of the cup. The fuel delivery end of the inner first tube is provided with a helical slot on its lateral surface for directing the CWM onto the inner surface of the rotating cup in the form of a uniform, thin sheet which, under the influence of the cup's centrifugal force, flows toward a second, open, expanded end portion of the rotating cup positioned immediately adjacent to a combustion chamber. The steam delivered to the rotating cup wets its inner surface and inhibits the coal within the CWM from adhering to the rotating cup. A primary air source directs a high velocity air flow coaxially about the expanded discharge end of the rotating cup for applying a shear force to the CWM in atomizing the fuel mixture for improved combustion. A secondary air source directs secondary air into the combustion chamber adjacent to the outlet of the rotating cup at a desired pitch angle relative to the fuel mixture/steam flow to promote recirculation of hot combustion gases within the ignition zone for increased flame stability.

  7. Venturi burner nozzle for pulverized coal

    SciTech Connect

    Itse, D.C.; Penterson, C.A.

    1984-10-30

    A new and improved burner for pulverized coal comprises a tubular nozzle for containing a primary, flowing stream of coal/air mixture having an outlet for discharging the stream into a combustion zone of a furnace. A venturi is mounted in the nozzle having a convergent section, a throat, and divergent flow section adjacent the outlet. The convergent section concentrates the pulverized coal toward a central portion of the flowing stream in the throat of the venturi. A conical flow spreader is mounted in the divergent section and includes a hollow, open outer end. The spreader cone and the divergent flow section of the venturi form an annular, expanding, flow pattern of coal/air mixture for discharge into the combustion zone and a plurality of swirl vanes between the spreader cone and wall of the divergent section impart swirl to stabilize an annular discharge of the primary coal/air stream from the nozzle to form a high temperature reducing zone wherein a portion of the hot combustion products are recirculated back toward the open end of the flow spreader so that volatiles in the coal are driven off rapidly and burned in a fuel-rich, reducing atmosphere, minimizing the formation of NO /SUB x/ . A stream of secondary air is introduced by vanes to swirl around the primary coal/air stream discharged from the outlet forming a long stable flame pattern providing a relatively slow combustion rate.

  8. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for economic evaluation and commercial application. During the project performance period, Alstom performed computational fluid dynamics (CFD) modeling and large pilot scale combustion testing in its Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut in support of these objectives. The NOx reduction approach was to optimize near-field combustion to ensure that minimum NOx emissions are achieved with minimal impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down. Several iterations of CFD and combustion testing on a Midwest coal led to an optimized design, which was extensively combustion tested on a range of coals. The data from these tests were then used to validate system costs and benefits versus SCR. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive subbituminous coal to a moderately reactive Western bituminous coal to a much less reactive Midwest bituminous coal. Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis. Bench-scale characterization of the three test coals showed that both NOx emissions and combustion performance are a strong function of coal properties. The more reactive coals evolved more of their fuel bound nitrogen in the substoichiometric main burner zone than less reactive coal, resulting in the potential for lower NOx emissions. From a combustion point of view, the more reactive coals also showed lower carbon in ash and CO values than the less reactive coal at any given main burner zone stoichiometry. According to bench-scale results, the subbituminous coal was found to be the most amenable to both low NOx, and acceptably low combustibles in the flue gas, in an air staged low NOx system. The Midwest bituminous coal, by contrast, was predicted to be the most challenging of the three coals, with the Western bituminous coal predicted to beh

  9. Fusion-Fission Burner for Transuranic Actinides

    NASA Astrophysics Data System (ADS)

    Choi, Chan

    2013-10-01

    The 14-MeV DT fusion neutron spectrum from mirror confinement fusion can provide a unique capability to transmute the transuranic isotopes from light water reactors (LWR). The transuranic (TRU) actinides, high-level radioactive wastes, from spent LWR fuel pose serious worldwide problem with long-term decay heat and radiotoxicity. However, ``transmuted'' TRU actinides can not only reduce the inventory of the TRU in the spent fuel repository but also generate additional energy. Typical commercial LWR fuel assemblies for BWR (boiling water reactor) and PWR (pressurized water reactor) measure its assembly lengths with 4.470 m and 4.059 m, respectively, while its corresponding fuel rod lengths are 4.064 m and 3.851 m. Mirror-based fusion reactor has inherently simple geometry for transmutation blanket with steady-state reactor operation. Recent development of gas-dynamic mirror configuration has additional attractive feature with reduced size in central plasma chamber, thus providing a unique capability for incorporating the spent fuel assemblies into transmutation blanket designs. The system parameters for the gas-dynamic mirror-based hybrid burner will be discussed.

  10. 16 CFR Figure 6 to Part 1633 - Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...2010-01-01 false Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame Allowing Burner...6 to Part 1633—Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame Allowing...

  11. 16 CFR Figure 6 to Part 1633 - Burner Assembly Showing Arms and Pivots (Shoulder Screws) in Relation to Portable Frame Allowing...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...2011-01-01 false Burner Assembly Showing Arms and Pivots (Shoulder Screws) in Relation to Portable Frame Allowing Burner Height...6 to Part 1633—Burner Assembly Showing Arms and Pivots (Shoulder Screws) in Relation to Portable Frame Allowing Burner...

  12. Radiation Emission Characteristics of an Open-Cellular Porous Burner

    NASA Astrophysics Data System (ADS)

    Krittacom, Bundit; Kamiuto, Kouichi

    Radiation emission characteristics of an open-cellular porous burner, where methane-air premixed combustion occurs, were investigated experimentally and theoretically. In the analysis, we assumed that the chemical kinetics of gas-phase reactions are governed by a single-step Arrhenius rate expression. The energy liberation due to combustion and the effects of radiation were considered in the energy equations for the gas and solid phases. To evaluate the radiative transports in the solid-phase energy equation, the equation of transfer for the radiation field in a porous burner was solved using Barkstrom' s finite difference method and the P1 approximation. Three kinds of Ni-Cr open-cellular porous material with different porosities and pores per inch (PPI) were examined. Radiant output from the porous burner was measured based on a two-color radiometry. Calculated results of the forward radiative heat flux and the burner surface temperature were favorably compared with experimental data: satisfactory agreement between theory and experiment was obtained, and thereby the validity of the present theoretical model for predicting the radiation from a porous burner was confirmed. Moreover, it is found that there is only a little difference between predicted results of Barkstrom' s method and these of the P1 approximation.

  13. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    SciTech Connect

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

    2001-09-04

    It is well understood that the stability of axial diffusion flames is dependent on the mixing behavior of the fuel and combustion air streams. Combustion aerodynamic texts typically describe flame stability and transitions from laminar diffusion flames to fully developed turbulent flames as a function of increasing jet velocity. Turbulent diffusion flame stability is greatly influenced by recirculation eddies that transport hot combustion gases back to the burner nozzle. This recirculation enhances mixing and heats the incoming gas streams. Models describing these recirculation eddies utilize conservation of momentum and mass assumptions. Increasing the mass flow rate of either fuel or combustion air increases both the jet velocity and momentum for a fixed burner configuration. Thus, differentiating between gas velocity and momentum is important when evaluating flame stability under various operating conditions. The research efforts described herein are part of an ongoing project directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners. Experimental studies include both cold-and hot-flow evaluations of the following parameters: primary and secondary inlet air velocity, coal concentration in the primary air, coal particle size distribution and flame holder geometry. Hot-flow experiments will also evaluate the effect of wall temperature on burner performance.

  14. Pioneer Robot Testing Program and Status

    SciTech Connect

    Herndon, J.N.

    2001-02-02

    The U.S. Department of Energy (USDOE) and Ukraine established a joint program in 1997 to address the need for remotely operated systems for unstructured environments in Ukraine such as the highly hazardous conditions inside the failed Chernobyl Nuclear Power Plant (ChNPP) Unit 4, or Shelter Object. The environment inside Shelter Object is extremely hazardous due to ionizing radiation fields, high airborne contamination, and major industrial safety issues. Although Ukrainian workers have explored and mapped much of the internals of Unit 4 in the time since the accident during the morning hours of April 26, 1986, there remain areas where humans have not entered to this date. Based on the agreement between USDOE and Ukraine, the USDOE, in cooperation with the U.S. National Aeronautics and Space Administration (NASA), developed the Pioneer Robot and has provided it to the ChNPP within the framework of international technical assistance. Pioneer is capable of mobile platform movement and manipulation under teleoperated control, 3-dimensional mapping, and environmental data collection. The Pioneer is radiation hardened for conditions like those of Shelter Object. Pioneer has been evaluated on site in Ukraine for use in both the Shelter Object environment and the more general conditions of ChNPP decommissioning. This paper summarizes the results of these testing activities and describes the status and near-term activities in support of the Pioneer Robot integration into Ukraine.

  15. Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels

    SciTech Connect

    Agrawal, Ajay; Taylor, Robert

    2013-09-30

    This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a path forward to utilize both fossil and alternative liquid fuels in the same combustion system. In particular, experiments show that straight VO can be cleanly combusted without the need for chemical processing or preheating steps, which can result in significant economic and environmental benefits. Next, low-emission combustion of glycerol/methane was achieved by utilizing FB injector to yield fine droplets of highly viscous glycerol. Heat released from methane combustion further improves glycerol pre-vaporization and thus its clean combustion. Methane addition results in an intensified reaction zone with locally high temperatures near the injector exit. Reduction in methane flow rate elongates the reaction zone, which leads to higher CO emissions and lower NOx emissions. Similarly, higher air to liquid (ALR) mass ratio improves atomization and fuel pre-vaporization and shifts the flame closer to the injector exit. In spite of these internal variations, all fuel mixes of glycerol with methane produced similar CO and NOx emissions at the combustor exit. Results show that FB concept provides low emissions with the flexibility to utilize gaseous and highly viscous liquid fuels, straight VO and glycerol, without preheating or preprocessing the fuels. Following these initial experiments in quartz combustor, we demonstrated that glycerol combustion can be stably sustained in a metal combustor. Phase Doppler Particle Analyzer (PDPA) measurements in glycerol/methane flames resulted in flow-weighted Sauter Mean Diameter (SMD) of 35 to 40 ?m, depending upon the methane percentage. This study verified that lab-scale dual-fuel burner using FB injector can successfully atomize and combust glycerol and presumably other highly viscous liquid fuels at relatively low HRR (<10 kW). For industrial applications, a scaled-up glycerol burner design thus seemed feasible.

  16. The Pioneer anomaly and new physics

    NASA Astrophysics Data System (ADS)

    Eiermann, K. E.

    2012-02-01

    The Pioneer anomaly is one of the most important problems in modern physics. The observed blueshift of the Doppler signals coming back from the space probes Pioneer 10 and 11 is interpreted as being due to an anomalous acceleration a_p = (8.74 ± 1.33) × 10-8 cm s-2 towards the Sun. In this paper the blueshift is explained by the frequency shifts of the receivers. These frequency shifts result from an increase in elementary particle masses in time, the rate of increase being tied up with the present-day Hubble parameter H_0. The result is that the seeming acceleration a_p is the product of H_0 and the velocity of light. Taking new physics into consideration, this paper presents a new explanation of the Pioneer anomaly based on the assumption that the Universe is eternal and infinite without expansion or contraction.

  17. Ludwig Boltzmann A Pioneer of Modern Physics

    E-print Network

    Flamm, D

    1997-01-01

    In two respects Ludwig Boltzmann was a pioneer of quantum mechanics. First because in his statistical interpretation of the second law of thermodynamics he introduced the theory of probability into a fundamental law of physics and thus broke with the classical prejudice, that fundamental laws have to be strictly deterministic. Even Max Planck had not been ready to accept Boltzmann's statistical methods until 1900. With Boltzmann's pioneering work the probabilistic interpretation of quantum mechanics had already a precedent. In fact in a paper in 1897 Boltzmann had already suggested to Planck to use his statistical methods for the treatment of black body radiation. The second pioneering step towards quantum mechanics was Boltzmann's introduction of discrete energy levels. Boltzmann used this method already in his 1872 paper on the H-theorem. One may ask whether Boltzmann considered this procedure only as a mathematical device or whether he attributed physical significance to it. In this connection Ostwald repo...

  18. Slurry burner for mixture of carbonaceous material and water

    DOEpatents

    Nodd, D.G.; Walker, R.J.

    1985-11-05

    The present invention is intended to overcome the limitations of the prior art by providing a fuel burner particularly adapted for the combustion of carbonaceous material-water slurries which includes a stationary high pressure tip-emulsion atomizer which directs a uniform fuel into a shearing air flow as the carbonaceous material-water slurry is directed into a combustion chamber, inhibits the collection of unburned fuel upon and within the atomizer, reduces the slurry to a collection of fine particles upon discharge into the combustion chamber, and regulates the operating temperature of the burner as well as primary air flow about the burner and into the combustion chamber for improved combustion efficiency, no atomizer plugging and enhanced flame stability.

  19. User guide to the Burner Engineering Research Laboratory

    SciTech Connect

    Fornaciari, N.; Schefer, R.; Paul, P.; Lubeck, C.; Sanford, R.; Claytor, L.

    1994-11-01

    The Burner Engineering Research Laboratory (BERL) was established with the purpose of providing a facility where manufacturers and researchers can study industrial natural gas burners using conventional and laser-based diagnostics. To achieve this goal, an octagonal furnace enclosure with variable boundary conditions and optical access that can accommodate burners with firing rates up to 2.5 MMBtu per hour was built. In addition to conventional diagnostic capabilities like input/output measurements, exhaust gas monitoring, suction pyrometry and in-furnace gas sampling, laser-based diagnostics available at BERL include planar Mie scattering, laser Doppler velocimetry and laser-induced fluorescence. This paper gives an overview of the operation of BERL and a description of the diagnostic capabilities and an estimate of the time required to complete each diagnostic for the potential user who is considering submitting a proposal.

  20. Identifying Dark Matter Burners in the Galactic Center

    SciTech Connect

    Moskalenko, Igor V.; Wai, Lawrence L.

    2007-04-16

    If the supermassive black hole (SMBH) at the center of our Galaxy grew adiabatically, then a dense ''spike'' of dark matter is expected to have formed around it. Assuming that dark matter is composed primarily of weakly interacting massive particles (WIMPs), a star orbiting close enough to the SMBH can capture WIMPs at an extremely high rate. The stellar luminosity due to annihilation of captured WIMPs in the stellar core may be comparable to or even exceed the luminosity of the star due to thermonuclear burning. The model thus predicts the existence of unusual stars, i.e. ''WIMP burners'', in the vicinity of an adiabatically grown SMBH. We find that the most efficient WIMP burners are stars with degenerate electron cores, e.g. white dwarfs (WD) or degenerate cores with envelopes. If found, such stars would provide evidence for the existence of particle dark matter and could possibly be used to establish its density profile. In our previous paper we computed the luminosity from WIMP burning for a range of dark matter spike density profiles, degenerate core masses, and distances from the SMBH. Here we compare our results with the observed stars closest to the Galactic center and find that they could be consistent with WIMP burners in the form of degenerate cores with envelopes. We also cross-check the WIMP burner hypothesis with the EGRET observed flux of gamma-rays from the Galactic center, which imposes a constraint on the dark matter spike density profile and annihilation cross-section. We find that the EGRET data is consistent with the WIMP burner hypothesis. New high precision measurements by GLAST will confirm or set stringent limits on a dark matter spike at the Galactic center, which will in turn support or set stringent limits on the existence of WIMP burners at the Galactic center.

  1. Comet Halley: The view from Pioneer Venus

    SciTech Connect

    Not Available

    1989-01-01

    The plans to scan Halley's Comet at close range using the Pioneer Venus Orbiter are discussed. The composition of comets, their paths through space, and the history of comet encounters are examined. An ultraviolet spectrometer aboard the spacecraft will determine the composition of the gaseous coma and will measure the total gas production during its passage. The Pioneer Venus Orbiter will observe the comet for five weeks before solar interference with communications occurs as Venus passes on the far side of the Sun from Earth. Diagrams of the solar system and the relationship of the comet to the planets and the Sun are provided.

  2. Relativistic Cosmology and the Pioneers Anomaly

    E-print Network

    Marcelo Samuel Berman; Fernando de Mello Gomide

    2011-07-23

    We specify the four kinds of rotational cosmologies that are avaliable in Theoretical Cosmology. NASA spacecrafts has suffered from three anomalies. The Pioneers spacecrafts were decelerated, and their spin when not disturbed, was declining. On the other hand, fly-bys for gravity assists, appeared with extra speeds, relative to infinity. The Pioneers and fly-by anomalies are given now exact general relativistic full general solutions, in a rotating expanding Universe.We cite new evidence on the rotation of the Universe. Our solution seems to be the only one that solves the three anomalies.

  3. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME III. FIELD EVALUATIONS

    EPA Science Inventory

    The report gives results of field tests conducted to determine the emission characteristics of a Babcock and Wilcox Circular burner and Dual Register burner (DRB). The field tests were performed at two utility boilers, generally comparable in design and size except for the burner...

  4. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS; VOLUME III. FIELD EVALUATION

    EPA Science Inventory

    The report gives results of field tests conducted to determine the emission characteristics of a Babcock and Wilcox Circular burner and Dual Register burner (DRB). The field tests were performed at two utility boilers, generally comparable in design and size except for the burner...

  5. Argonne nuclear pioneers: Chicago Pile 1

    SciTech Connect

    Agnew, Harold; Nyer, Warren

    2012-01-01

    On December 2, 1942, 49 scientists, led by Enrico Fermi, made history when Chicago Pile 1 (CP-1) went critical and produced the world's first self-sustaining, controlled nuclear chain reaction. Seventy years later, two of the last surviving CP-1 pioneers, Harold Agnew and Warren Nyer, recall that historic day.

  6. Pioneer 10: Beyond the Known Planets.

    ERIC Educational Resources Information Center

    Waller, Peter

    1983-01-01

    On June 13, 1983, the U.S. unmanned spacecraft, "Pioneer 10," will cross the orbit of Neptune. This first flight beyond the planets is being celebrated by the National Aeronautics and Space Administration and other groups. Discusses what the spacecraft will observe and types of data it will collect. (JN)

  7. On the anomalous acceleration of Pioneer spacecraft

    E-print Network

    Moshe Carmeli; John G. Hartnett; Firmin J. Oliveira

    2006-02-23

    The anomalous acceleration of Pioneer 10 and 11 spacecraft of (8.74 \\pm 1.33) \\times 10^{-8} cm. s^{-2} fits with a theoretical prediction of a minimal acceleration in nature of about 7.61 \\times 10^{-8} cm. s^{-2}

  8. Argonne nuclear pioneers: Chicago Pile 1

    ScienceCinema

    Agnew, Harold; Nyer, Warren

    2013-04-19

    On December 2, 1942, 49 scientists, led by Enrico Fermi, made history when Chicago Pile 1 (CP-1) went critical and produced the world's first self-sustaining, controlled nuclear chain reaction. Seventy years later, two of the last surviving CP-1 pioneers, Harold Agnew and Warren Nyer, recall that historic day.

  9. Elwood Murray: Pioneering Methodologist in Communication

    ERIC Educational Resources Information Center

    Brownell, Judi

    2014-01-01

    Elwood Murray (1897-1988) was a pioneer in communication education. Beginning in the 1930s, he applied nontraditional methods in the speech classroom to encourage students to internalize and apply what they learned, and to view knowledge holistically. Drawing on the work of Kunkel, Moreno, Lewin, and Korzybski, Murray focused on developing skills…

  10. Guido von Pirquet: Austrian pioneer of astronautics

    NASA Technical Reports Server (NTRS)

    Sykora, F.

    1977-01-01

    The works of Guido von Pirquet, Austrian pioneer of rocketry, were assessed. Major emphasis was given to Pirquet's calculation of the route to Venus which in fact was followed by the first Russian rocket to Venus. Of interest also is Pirquet's valuable construction of a space station and his analysis of interstellar space flight.

  11. Programs of 1993 Winning Teams: Pioneering Partners.

    ERIC Educational Resources Information Center

    1993

    Pioneering Partners for Educational Technology was created to enhance learning in K-12 classrooms by accelerating the use of educational technology. This document outlines the projects of the 1993 winning teams. The Illinois programs are: "A Travel Log Via Computer"; "Weatherization Audit Training for Teachers and Students"; and "Technology for…

  12. Eugen Rosenstock-Huessy--An Andragogical Pioneer

    ERIC Educational Resources Information Center

    Loeng, Svein

    2013-01-01

    Eugen Rosenstock-Huessy's work related to andragogy is insufficiently discussed in adult pedagogical literature, although most of his work deals with this field, if we employ his own definition of andragogy. This paper makes visible his role as an andragogical pioneer, and clarifies his understanding of andragogy and basic perspectives in his…

  13. Encounter with Jupiter. [Pioneer 10 space probe

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Pioneer 10 space probe's encounter with the Jupiter is discussed in detail. Tables are presented which include data on the distances during the encounter, times of crossing satellite orbits, important events in the flight near Jupiter, and time of experiments. Educational study projects are also included.

  14. Pioneers of Astrobiology Written in the Stars

    E-print Network

    Seager, Sara

    Pioneers of Astrobiology Written in the Stars Sara Seager Awakening Ifirst really saw the stars, stepping outside the tent, and looking up. I was completely stunned by what I saw. Stars--millions of them guide star was set. I rushed home to tell my father, who immediately harshly lectured that in his view

  15. Pioneer to Lynx Matt LaFary

    E-print Network

    Pioneer to Lynx Matt LaFary matt.lafary@adept.com Director of Software, Mobile Robots Adept PARTNER Adept, Lynx creation 6 Warehouse Logistics Manufacturing Semiconductor #12;YOUR INTELLIGENT on Lynx) · 2 Kinova arms · Kinect #12;YOUR INTELLIGENT ROBOTICS PARTNER Questions? 11 #12;

  16. DEMONSTRATION BULLETIN: THE PYRETRON OXYGEN BURNER, AMERICAN COMBUSTION TECHNOLOGIES, INC.

    EPA Science Inventory

    The Pyretron is a burner which is designed to allow for the injection of oxygen into the combustion air stream for the purpose of increasing the efficiency of a hazardous waste incinerator. The SITE demonstration of the Pyretron took place at the U.S. EPA's Combustion Re...

  17. NOx Emissions from a Lobed Fuel Injector/Burner

    NASA Technical Reports Server (NTRS)

    Mitchell, M. G.; Smith, L. L.; Karagozian, A. R.; Smith, O. I.

    1996-01-01

    The present experimental study examines the performance of a novel fuel injector/burner configuration with respect to reduction in nitrogen oxide NOx emissions. The lobed injector/burner is a device in which very rapid initial mixing of reactants can occur through strong streamwise vorticity generation, producing high fluid mechanical strain rates which can delay ignition and thus prevent the formation of stoichiometric diffusion flames. Further downstream of the rapid mixing region. this flowfield produces a reduced effective strain rate, thus allowing ignition to occur in a premixed mode, where it is possible for combustion to take place under locally lean conditions. potentially reducing NOx emissions from the burner. The present experiments compare NO/NO2/NOx emissions from a lobed fuel injector configuration with emissions from a straight fuel injector to determine the net effect of streamwise vorticity generation. Preliminary results show that the lobed injector geometry can produce lean premixed flame structures. while for comparable flow conditions, a straight fuel injector geometry produces much longer. sooting diffusion flames or slightly rich pre-mixed flames. NO measurements show that emissions from a lobed fuel injector/burner can be made significantly lower than from a straight fuel injector under comparable flow conditions.

  18. 40 CFR 266.103 - Interim status standards for burners.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... claim. (7) Direct transfer to the burner. If hazardous waste is directly transferred from a transport... facilities: (1) Physical stack height; (2) Good engineering practice stack height as defined by 40 CFR 51.100...) (i) and (ii) of this section. (6) Public notice requirements at precompliance. On or before August...

  19. 40 CFR 266.103 - Interim status standards for burners.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... claim. (7) Direct transfer to the burner. If hazardous waste is directly transferred from a transport... facilities: (1) Physical stack height; (2) Good engineering practice stack height as defined by 40 CFR 51.100...) (i) and (ii) of this section. (6) Public notice requirements at precompliance. On or before August...

  20. Camping Burner-Based Flame Emission Spectrometer for Classroom Demonstrations

    ERIC Educational Resources Information Center

    Ne´el, Bastien; Crespo, Gasto´n A.; Perret, Didier; Cherubini, Thomas; Bakker, Eric

    2014-01-01

    A flame emission spectrometer was built in-house for the purpose of introducing this analytical technique to students at the high school level. The aqueous sample is sprayed through a homemade nebulizer into the air inlet of a consumer-grade propane camping burner. The resulting flame is analyzed by a commercial array spectrometer for the visible…

  1. How Efficient is a Laboratory Burner in Heating Water?

    ERIC Educational Resources Information Center

    Jansen, Michael P.

    1997-01-01

    Describes an experiment in which chemistry students determine the efficiency of a laboratory burner used to heat water. The reaction is assumed to be the complete combustion of methane, CH4. The experiment is appropriate for secondary school chemistry students familiar with heats of reaction and simple calorimetry. Contains pre-laboratory and…

  2. Combustion control system for burning installation with calcining burner

    SciTech Connect

    Kawata, T.; Nakamura, N.; Tominaga, S.

    1981-11-10

    A combustion control system is disclosed for a rotary kiln with a suspension preheater including a calcining burner wherein slurries of portland cement raw materials, lime slurries, alumina, magnesia or the like are filtered into a cake, the cake is then burned in the kiln with the suspension preheater.

  3. 6. View, flare and oxygen burner pad near southwest side ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. View, flare and oxygen burner pad near southwest side of Components Test Laboratory (T-27), looking northeast. Uphill and to the left of the flare is the Oxidizer Conditioning Structure (T-28D) and the Long-Term Oxidizer Silo (T-28B). - Air Force Plant PJKS, Systems Integration Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  4. Modeling Solid Propellant Strand Burner Experiments with Catalytic Additives 

    E-print Network

    Frazier, Corey

    2012-02-14

    . The model is based on the classic Beckstead-Derr-Price (BDP) and Cohen-Strand models and contains a component that determines the pressure changes within the strand burner during a test. The model accurately predicts measured burning rates for baseline...

  5. DEVELOPMENTS IN LIMB (LIMESTONE INJECTION MULTISTAGE BURNER) TECHNOLOGY

    EPA Science Inventory

    The paper describes the most recent results from the Limestone Injection Multistage Burner (LIMB) program, results from the wall-fired demonstration. Tests were conducted to determine the efficacy of commercial calcium hydroxide--Ca(OH)2--supplied by Marblehead Lime Co. and of ca...

  6. SOX OUT ON A LIMB (LIMESTONE INJECTION MULTISTAGE BURNER)

    EPA Science Inventory

    The paper describes the most recent results from the Limestone Injection Multistage Burner (LIMB) program, covering results from the wall-fired demonstration. Tests were conducted to determine the efficacy of commercial calcium hydroxide (Ca(OH)2) and of calcium-lignosulfonate-mo...

  7. Demonstration test of burner liner strain measuring system

    NASA Technical Reports Server (NTRS)

    Stetson, K. A.

    1984-01-01

    A demonstration test was conducted for two systems of static strain measurement that had been shown to have potential for application jet engine combustors. A modified JT12D combustor was operated in a jet burner test stand while subjected simultaneously to both systems of instrumentation, i.e., Kanthal A-1 wire strain gages and laser speckle photography. A section of the burner was removed for installation and calibration of the wire gages, and welded back into the burner. The burner test rig was modified to provide a viewing port for the laser speckle photography such that the instrumented section could be observed during operation. Six out of ten wire gages survived testing and showed excellent repeatability. The extensive precalibration procedures were shown to be effective in compensating for the large apparent strains associated with these gages. Although all portions of the speckle photography system operated satisfactorily, a problem was encountered in the form of optical inhomogeneities in the hot, high-pressure gas flowing by the combustor case which generate large and random apparent strain distributions.

  8. Feasibility Study of Regenerative Burners in Aluminum Holding Furnaces

    NASA Astrophysics Data System (ADS)

    Hassan, Mohamed I.; Al Kindi, Rashid

    2014-09-01

    Gas-fired aluminum holding reverberatory furnaces are currently considered to be the lowest efficiency fossil fuel system. A considerable volume of gas is consumed to hold the molten metal at temperature that is much lower than the flame temperature. This will lead to more effort and energy consumption to capture the excessive production of the CO2. The concern of this study is to investigate the feasibility of the regenerative-burners' furnaces to increase the furnace efficiency to reduce gas consumption per production and hence result in less CO2 production. Energy assessments for metal holding furnaces are considered at different operation conditions. Onsite measurements, supervisory control and data acquisition data, and thermodynamics analysis are performed to provide feasible information about the gas consumption and CO2 production as well as area of improvements. In this study, onsite measurements are used with thermodynamics modeling to assess a 130 MT rectangular furnace with two regenerative burners and one cold-air holding burner. The assessment showed that the regenerative burner furnaces are not profitable in saving energy, in addition to the negative impact on the furnace life. However, reducing the holding and door opening time would significantly increase the operation efficiency and hence gain the benefit of the regenerative technology.

  9. 40 CFR 266.102 - Permit standards for burners.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.102 Permit standards for burners. (a) Applicability—(1) General. Owners and operators of boilers and industrial furnaces... of § 266.108. (2) Applicability of part 264 standards. Owners and operators of boilers and...

  10. 40 CFR 266.102 - Permit standards for burners.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.102 Permit standards for burners. (a) Applicability—(1) General. Owners and operators of boilers and industrial furnaces... of § 266.108. (2) Applicability of part 264 standards. Owners and operators of boilers and...

  11. 40 CFR 49.127 - Rule for woodwaste burners.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...woodwaste burner is shut down, only wood waste generated on-site may...alternative method of disposal for the wood waste other than by burning it on-site in a woodwaste...uncombined water, visible emissions, wood, and woodwaste...

  12. 40 CFR 49.127 - Rule for woodwaste burners.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...woodwaste burner is shut down, only wood waste generated on-site may...alternative method of disposal for the wood waste other than by burning it on-site in a woodwaste...uncombined water, visible emissions, wood, and woodwaste...

  13. 40 CFR 49.127 - Rule for woodwaste burners.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...woodwaste burner is shut down, only wood waste generated on-site may...alternative method of disposal for the wood waste other than by burning it on-site in a woodwaste...uncombined water, visible emissions, wood, and woodwaste...

  14. 40 CFR 49.127 - Rule for woodwaste burners.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...woodwaste burner is shut down, only wood waste generated on-site may...alternative method of disposal for the wood waste other than by burning it on-site in a woodwaste...uncombined water, visible emissions, wood, and woodwaste...

  15. 40 CFR 49.127 - Rule for woodwaste burners.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...woodwaste burner is shut down, only wood waste generated on-site may...alternative method of disposal for the wood waste other than by burning it on-site in a woodwaste...uncombined water, visible emissions, wood, and woodwaste...

  16. Study of the Effects of Ambient Conditions Upon the Performance of Fan Powered, Infrared Natural Gas Burners

    SciTech Connect

    Clark Atlanta University

    2002-12-02

    The objective of this investigation was to characterize the operation of a fan-powered, infrared burner (IR burner) at various gas compositions and ambient conditions, develop numerical model to simulate the burner performances, and provide design guidelines for appliances containing PIR burners for satisfactory performance.

  17. Burner tilting angle effect on velocity profile in 700 MW Utility Boiler

    NASA Astrophysics Data System (ADS)

    Munisamy, K. M.; Yusoff, M. Z.; Thangaraju, S. K.; Hassan, H.; Ahmad, A.

    2015-09-01

    700 MW of utility boiler is investigated with manipulation of inlet burner angle. Manipulation of burner titling angle is an operational methodology in controlling rear pass temperature in utility boilers. The rear pass temperature unbalance between right and left side is a problem caused by fouling and slagging of the ash from the coal fired boilers. This paper presents the CFD investigation on the 0° and -30° of the burner angle of the utility boiler. The results focusing on the velocity profile. The design condition of 0° burner firing angle is compared with the off-design burner angle -30° which would be the burner angle to reduce the rear pass temperature un-balance by boiler operators. It can be concluded that the -30° burner angle reduce the turbulence is fire ball mixing inside the furnace. It also shift the fire ball position in the furnace to reduce the rear pass temperature.

  18. Chameleon effect and the Pioneer anomaly

    E-print Network

    John D. Anderson; J. R. Morris

    2012-04-12

    The possibility that the apparent anomalous acceleration of the Pioneer 10 and 11 spacecraft may be due, at least in part, to a chameleon field effect is examined. A small spacecraft, with no thin shell, can have a more pronounced anomalous acceleration than a large compact body, such as a planet, having a thin shell. The chameleon effect seems to present a natural way to explain the differences seen in deviations from pure Newtonian gravity for a spacecraft and for a planet, and appears to be compatible with the basic features of the Pioneer anomaly, including the appearance of a jerk term. However, estimates of the size of the chameleon effect indicate that its contribution to the anomalous acceleration is negligible. We conclude that any inverse-square component in the anomalous acceleration is more likely caused by an unmodelled reaction force from solar-radiation pressure, rather than a chameleon field effect.

  19. General Relativistic Treatment of the Pioneers Anomaly

    E-print Network

    Marcelo Samuel Berman; Fernando de Mello Gomide

    2011-07-27

    We consider a General Relativistic generalized RW's metric,and find a field of Universal rotational global centripetal acceleration, numerically coincident with the value of the Pioneers Anomalous one.Related subjects are also treated.The rotation defined here is different from older frameworks, because we propose a Gaussian metric, whose tri-space rotates relative to the time orthogonal axis, globally.The present solution is "Machian", paralleling our previous semi-relativistic rotating solution (Berman,2007).

  20. Pioneer Venus large probe neutral mass spectrometer

    NASA Technical Reports Server (NTRS)

    Hoffman, J.

    1982-01-01

    The deuterium hydrogen abundance ratio in the Venus atmosphere was measured while the inlets to the Pioneer Venus large probe mass spectrometer were coated with sulfuric acid from Venus' clouds. The ratio is (1.6 + or - 0.2) x 10 to the minus two power. It was found that the 100 fold enrichment of deuterium means that Venus outgassed at least 0.3% of a terrestrial ocean and possibly more.

  1. NUMERICAL SIMULATION OF NATURAL GAS-SWIRL BURNER

    SciTech Connect

    Ala Qubbaj

    2005-03-01

    A numerical simulation of a turbulent natural gas jet diffusion flame at a Reynolds number of 9000 in a swirling air stream is presented. The numerical computations were carried out using the commercially available software package CFDRC. The instantaneous chemistry model was used as the reaction model. The thermal, composition, flow (velocity), as well as stream function fields for both the baseline and air-swirling flames were numerically simulated in the near-burner region, where most of the mixing and reactions occur. The results were useful to interpret the effects of swirl in enhancing the mixing rates in the combustion zone as well as in stabilizing the flame. The results showed the generation of two recirculating regimes induced by the swirling air stream, which account for such effects. The present investigation will be used as a benchmark study of swirl flow combustion analysis as a step in developing an enhanced swirl-cascade burner technology.

  2. Numerical simulation of radiative heat loss in an experimental burner

    SciTech Connect

    Cloutman, L.D.; Brookshaw, L.

    1993-09-01

    We describe the numerical algorithm used in the COYOTE two-dimensional, transient, Eulerian hydrodynamics program to allow for radiative heat losses in simulations of reactive flows. The model is intended primarily for simulations of industrial burners, but it is not confined to that application. It assumes that the fluid is optically thin and that photons created by the fluid immediately escape to free space or to the surrounding walls, depending upon the application. The use of the model is illustrated by simulations of a laboratory-scale experimental burner. We find that the radiative heat losses reduce the local temperature of the combustion products by a modest amount, typically on the order of 50 K. However, they have a significant impact on NO{sub x} production.

  3. How Efficient is a Laboratory Burner in Heating Water?

    NASA Astrophysics Data System (ADS)

    Jansen, Michael P.

    1997-02-01

    When a laboratory (or Bunsen) burner is used to heat water, all of the energy liberated by the burning fuel is not absorbed by the water. This article describes a procedure for determining the percentage efficiency of this common apparatus. This experiment is suitable for secondary school students who are familiar with stoichiometry , simple calorimetry, heats of reaction, collection of gas by downward displacement of water. Extensive pre- and post- laboratory questions (and answers) are included.

  4. Effect of cycled combustion ageing on a cordierite burner plate

    SciTech Connect

    Garcia, Eugenio

    2010-11-15

    A combination of {sup 57}Fe-Moessbauer spectroscopy and X-ray Powder Diffraction analysis has been employed to study modifications in chemical and mechanical stability occurring in a cordierite burner aged under combustion conditions which simulate the working of domestic boilers. Moessbauer study shows that Fe is distributed into the structural sites of the cordierite lattice as Fe{sup 2+} and Fe{sup 3+} ions located mostly at octahedral sites. Ferric oxide impurities, mainly hematite, are also present in the starting cordierite material accounting for {approx_equal}40% of the total iron phases. From Moessbauer and X-ray diffraction data it can be deduced that, under the combustion conditions used, new crystalline phases were formed, some of the substitutional Fe{sup 3+} ions existing in the cordierite lattice were reduced to Fe{sup 2+}, and ferric oxides underwent a sintering process which results in hematite with higher particle size. All these findings were detected in the burner zone located in the proximity of the flame and were related to possible chemical reactions which might explain the observed deterioration of the burner material. Research Highlights: {yields}Depth profile analyses used as a probe to understand changes in refractory structure. {yields}All changes take place in the uppermost surface of the burner, close to the flame. {yields}Reduction to Fe{sup 2+} of substitutional Fe{sup 3+} ions and partial cordierite decomposition. {yields}Heating-cooling cycling induces a sintering of the existing iron oxide particles. {yields}Chemical changes can explain the alterations observed in the material microstructure.

  5. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    SciTech Connect

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

    2001-08-20

    The proposed research is directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This fundamental research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners to the kinetic emissions limit (below 0.2 lb./MMBTU). Experimental studies include both cold and hot flow evaluations of the following parameters: flame holder geometry, secondary air swirl, primary and secondary inlet air velocity, coal concentration in the primary air and coal particle size distribution. Hot flow experiments will also evaluate the effect of wall temperature on burner performance. Cold flow studies will be conducted with surrogate particles as well as pulverized coal. The cold flow furnace will be similar in size and geometry to the hot-flow furnace but will be designed to use a laser Doppler velocimeter/phase Doppler particle size analyzer. The results of these studies will be used to predict particle trajectories in the hot-flow furnace as well as to estimate the effect of flame holder geometry on furnace flow field. The hot-flow experiments will be conducted in a novel near-flame down-flow pulverized coal furnace. The furnace will be equipped with externally heated walls. Both reactors will be sized to minimize wall effects on particle flow fields. The cold-flow results will be compared with Fluent computation fluid dynamics model predictions and correlated with the hot-flow results with the overall goal of providing insight for novel low NO{sub x} burner geometry's.

  6. Downhole burner systems and methods for heating subsurface formations

    DOEpatents

    Farmayan, Walter Farman (Houston, TX); Giles, Steven Paul (Damon, TX); Brignac, Jr., Joseph Phillip (Katy, TX); Munshi, Abdul Wahid (Houston, TX); Abbasi, Faraz (Sugarland, TX); Clomburg, Lloyd Anthony (Houston, TX); Anderson, Karl Gregory (Missouri City, TX); Tsai, Kuochen (Katy, TX); Siddoway, Mark Alan (Katy, TX)

    2011-05-31

    A gas burner assembly for heating a subsurface formation includes an oxidant conduit, a fuel conduit, and a plurality of oxidizers coupled to the oxidant conduit. At least one of the oxidizers includes a mix chamber for mixing fuel from the fuel conduit with oxidant from the oxidant conduit, an igniter, and a shield. The shield includes a plurality of openings in communication with the oxidant conduit. At least one flame stabilizer is coupled to the shield.

  7. Acoustic Pressure Oscillations Induced in I-Burner

    NASA Astrophysics Data System (ADS)

    Matsui, Kiyoshi

    Iwama et al. invented the I-burner to investigate acoustic combustion instability in solid-propellant rockets (Proceedings of ICT Conference, 1994, pp. 26-1 26-14). Longitudinal pressure oscillations were induced in the combustion chamber of a thick-walled rocket by combustion of a stepped-perforation grain (I-burner). These oscillations were studied here experimentally. Two I-burners with an internal diameter of 80 mm and a length of 1208 mm or 2240 mm were made. The grain had stepped perforations (20 and 42 mm in diameter and 657 and 160 mm in length, respectively). Longitudinal pressure oscillations always occur in two stages when an HTPB (hydroxyl-terminated polybutadiene)/AP (ammonium perchlorate)/aluminum-powder propellant burns (54 tests; the highest average pressure in the combustion chamber was 9.5 29 MPa), but no oscillations occur when an HTPB/AP propellant burns (29 tests). The pressure oscillations are essentially linear, but dissipation adds a nonlinear nature to them. In the first stage, the amplitudes are small and the first wave group predominates. In the next stage, the amplitudes are large and many wave groups are present. The change in the grain form accompanying the combustion affects the pressure oscillations.

  8. Solar wind data from the MIT plasma experiments on Pioneer 6 and Pioneer 7

    NASA Technical Reports Server (NTRS)

    Lazarus, A. J.; Heinemann, M. A.; Mckinnis, R. W.; Bridge, H. S.

    1973-01-01

    Hourly averages are presented of solar wind proton parameters obtained from experiments on the Pioneer 6 and Pioneer 7 spacecraft during the period December 16, 1965 to August 1971. The number of data points available on a given day depends upon the spacecraft-earth distance, the telemetry bit rate, and the ground tracking time allotted to each spacecraft. Thus, the data obtained earlier in the life of each spacecraft are more complete. The solar wind parameters are given in the form of plots and listings. Trajectory information is also given along with a detailed description of the analysis procedures used to extract plasma parameters from the measured data.

  9. High-temperature burner with heat exchanger. Annual report, March 15, 1983-March 14, 1984

    SciTech Connect

    Davies, T.; Bowers, J.

    1984-03-01

    The report describes the first year's effort in the development of radiant tube and direct fired burners which have integral regenerators for heat recovery. The work has involved the development of burners and control system including actuators, valves, and controls. Future project plans are also outlined. Prototype designs will be finalized. Host-site furnaces are being located and will prove burner performance and economics in manufacturing-plant conditions.

  10. The Quest to Understand the Pioneer Anomaly

    SciTech Connect

    Nieto, Michael

    2007-03-21

    The Pioneer 10/11 missions, launched in 1972 and 1973, and their navigation are reviewed. Beginning in about 1980 an unmodeled force of {approx} 8 x 10{sup -8} cm/s{sup 2} appeared in the tracking data, it later being verified. The cause remains unknown, although radiant heat remains a likely origin. A set of efforts to find the solution are underway: (a) analyzing in detail all available data, (b) using data from the New Horizons mission, and (c) considering an ESA dedicated mission.

  11. The Pioneer Anomaly and a Machian Universe

    E-print Network

    Marcelo Samuel Berman

    2008-08-06

    We discuss astronomical and astrophysical evidence, which we relate to the principle of zero-total energy of the Universe, that imply several relations among the mass M, the radius R and the angular momentum L of a "large" sphere representing a Machian Universe. By calculating the angular speed, we find a peculiar centripetal acceleration for the Universe. This is an ubiquituous property that relates one observer to any observable. It turns out that this is exactly the anomalous acceleration observed on the Pioneers spaceships. We have thus, shown that this anomaly is to be considered a property of the Machian Universe. We discuss several possible arguments against our proposal.

  12. The Quest to Understand the Pioneer Anomaly

    ScienceCinema

    Nieto, Michael

    2009-09-01

    The Pioneer 10/11 missions, launched in 1972 and 1973, and their navigation are reviewed. Beginning in about 1980 an unmodeled force of {approx} 8 x 10{sup -8} cm/s{sup 2} appeared in the tracking data, it later being verified. The cause remains unknown, although radiant heat remains a likely origin. A set of efforts to find the solution are underway: (a) analyzing in detail all available data, (b) using data from the New Horizons mission, and (c) considering an ESA dedicated mission.

  13. The Pioneer Anomaly and a Machian Universe

    E-print Network

    Berman, M S

    2006-01-01

    The principle of zero-total energy of the Universe implies several relations among the mass M, the radius R and the angular momentum L of a "large" sphere representing a Machian Universe. By calculating the angular speed, we find a peculiar centripetal acceleration for the Universe. This is an ubiquituous property that relates one observer to any observable. It turns out that this is exactly the anomalous acceleration observed on the Pioneers spaceships. We have thus, shown that this anomaly is to be considered a property of the Machian Universe.

  14. The Pioneer Venus Orbiter plasma wave investigation

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.; Taylor, W. W. L.; Virobik, P. F.

    1980-01-01

    The Pioneer Venus plasma wave instrument has a self-contained balanced electric dipole (effective length = 0.75 m) and a 4-channel spectrum analyzer (30% bandwidth filters with center frequencies at 100 Hz, 730 Hz, and 30 kHz). The channels are continuously active and the highest Orbiter telemetry rate (2048 bits/sec) yields 4 spectral scans/sec. The total mass of 0.55 kg includes the electronics, the antenna, and the antenna deployment mechanism. This report contains a brief description of the instrument design and a discussion of the in-flight performance.

  15. The Pioneer anomaly and a Machian universe

    NASA Astrophysics Data System (ADS)

    Berman, Marcelo Samuel

    2007-12-01

    We discuss astronomical and astrophysical evidence, which we relate to the principle of zero-total energy of the Universe, that imply several relations among the mass M, the radius R and the angular momentum L of a “large” sphere representing a Machian Universe. By calculating the angular speed, we find a peculiar centripetal acceleration for the Universe. This is an ubiquituous property that relates one observer to any observable. It turns out that this is exactly the anomalous acceleration observed on the Pioneers spaceships. We have thus shown that this anomaly is to be considered a property of the Machian Universe. We discuss several possible arguments against our proposal.

  16. The pioneer projects: Economical exploration of the solar system

    NASA Technical Reports Server (NTRS)

    Spahr, J. R.; Hall, C. F.

    1975-01-01

    The interplanetary Pioneer missions are reviewed in terms of management implications and cost control. The responsibilities, organizational structure, and management practices of the Pioneer Projects are presented. The lines of authority and areas of responsibility of the principal organizational elements supporting the Pioneer missions are identified, and the methods employed for maintaining effective and timely interactions among these elements are indicated. The technical and administrative functions of the various organizational elements of the Pioneer Project Office at Ames Research Center are described in terms of their management responsibilities and interactions with other elements of the Project Office and with external organizations having Pioneer Project responsibilities. The management and control of activities prior to and during the hardware procurement phase are described to indicate the basis for obtaining visibility of the technical progress, utilization of resources, and cost performance of the contractors and other institutions supporting the Pioneer projects.

  17. PIONEER: A Robot for Structural Assessment of the Chornobyl Shelter

    SciTech Connect

    Catalan, Michael A. ); Thompson, Bruce R.; Dan G. Cacuci

    2001-06-30

    The U.S. Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA) sponsored the design and fabrication of a radiation-hardened mobile diagnostic robot dubbed Pioneer. Pioneer was designed to operate in the most hazardous locations within the Chornobyl Shelter. Pioneer was delivered to the Ukraine in the spring of 1999. Initial system training and cold testing was performed after delivery.

  18. Pioneer Anomaly and the Kuiper Belt mass distribution

    E-print Network

    O. Bertolami; P. Vieira

    2006-06-18

    Pioneer 10 and 11 were the first probes sent to study the outer planets of the Solar System and Pioneer 10 was the first spacecraft to leave the Solar System. Besides their already epic journeys, Pioneer 10 and 11 spacecraft were subjected to an unaccounted effect interpreted as a constant acceleration toward the Sun, the so-called Pioneer anomaly. One of the possibilities put forward for explaining the Pioneer anomaly is the gravitational acceleration of the Kuiper Belt. In this work we examine this hypothesis for various models for the Kuiper Belt mass distribution. We find that the gravitational effect due to the Kuiper Belt cannot account for the Pioneer anomaly. Furthermore, we have also studied the hypothesis that drag forces can explain the the Pioneer anomaly; however we conclude that the density required for producing the Pioneer anomaly is many orders of magnitude greater than those of interplanetary and interstellar dust. Our conclusions suggest that only through a mission, the Pioneer anomaly can be confirmed and further investigated. If a mission with these aims is ever sent to space, it turns out, on account of our results, that it will be also a quite interesting probe to study the mass distribution of the Kuiper Belt.

  19. Radiation belts of Jupiter - A second look. [Pioneer 11 flyby

    NASA Technical Reports Server (NTRS)

    Fillius, R. W.; Mcilwain, C. E.; Mogro-Campero, A.

    1975-01-01

    The outbound leg of the Pioneer 11 Jupiter flyby explored a region farther from the equator than that traversed by Pioneer 10, and the new data require modification or augmentation of the magnetodisk model based on the Pioneer 10 flyby. The inner moons of Jupiter are sinks of energetic particles and sometimes sources. A large spike of particles was found near Io. Multiple peaks occurred in the particle fluxes near closest approach to the planet; this structure may be accounted for by a complex magnetic field configuration. The decrease in proton flux observed near minimum altitude on the Pioneer 10 flyby appears attributable to particle absorption by Amalthea.

  20. Slurry burner for mixture of carbonaceous material and water

    DOEpatents

    Nodd, Dennis G. (West Mifflin, PA); Walker, Richard J. (Bethel Park, PA)

    1987-01-01

    A carbonaceous material-water slurry burner includes a high pressure tip-emulsion atomizer for directing a carbonaceous material-water slurry into a combustion chamber for burning therein without requiring a support fuel or oxygen enrichment of the combustion air. Introduction of the carbonaceous material-water slurry under pressure forces it through a fixed atomizer wherein the slurry is reduced to small droplets by mixing with an atomizing air flow and directed into the combustion chamber. The atomizer includes a swirler located immediately adjacent to where the fuel slurry is introduced into the combustion chamber and which has a single center channel through which the carbonaceous material-water slurry flows into a plurality of diverging channels continuous with the center channel from which the slurry exits the swirler immediately adjacent to an aperture in the combustion chamber. The swirler includes a plurality of slots around its periphery extending the length thereof through which the atomizing air flows and by means of which the atomizing air is deflected so as to exert a maximum shear force upon the carbonaceous material-water slurry as it exits the swirler and enters the combustion chamber. A circulating coolant system or boiler feed water is provided around the periphery of the burner along the length thereof to regulate burner operating temperature, eliminate atomizer plugging, and inhibit the generation of sparklers, thus increasing combustion efficiency. A secondary air source directs heated air into the combustion chamber to promote recirculation of the hot combustion gases within the combustion chamber.

  1. On open and closed tips of bunsen burner flames

    NASA Astrophysics Data System (ADS)

    Kozlovsky, G.; Sivashinsky, G. I.

    1994-04-01

    An adiabatic, constant-density reaction-diffusion-advection model for the Bunsen burner flame tip is studied numerically. It is shown that for Lewis numbers exceeding unity the reaction rate and flame speed gradually increase toward the flame tip. For small Lewis numbers the picture is quite different. The reaction rate drops near the tip. In spite of this the flame survives and, moreover, manages to consume all the fuel supplied to the reaction zone. There is no leakage of the fuel through the front. The flame speed varies nonmonotonously along the front from gradual reduction to steep increase near the tip.

  2. Rate Controlling Factors in a Bunsen Burner Flame

    NASA Astrophysics Data System (ADS)

    Andrade-Gamboa, Julio; Corso, Hugo L.; Gennari, Fabiana C.

    2003-05-01

    Combustion and flames have been extensively investigated during past decades due to their industrial importance. The associated phenomena are both physical and chemical in nature, and the rigorous mathematical description is beyond the undergraduate teaching level. While thermodynamic calculations of temperature of a Bunsen burner flame can be made at the college level, there are not accessible chemical kinetic descriptions that can be used for instruction. In this paper we present a simple model that accounts for mass transfer, energy transfer, and kinetics of chemical reaction. From such a description, different controlling regimes can be deduced and tested with experimental data.

  3. Periodic motion of a bunsen flame tip with burner rotation

    SciTech Connect

    Gotoda, Hiroshi; Maeda, Kazuyuki; Ueda, Toshihisa; Cheng, Robert K.

    2003-09-01

    Effects of burner rotation on the shapes and dynamics of premixed Bunsen flames have been investigated experimentally in normal gravity and in microgravity. Mixtures of CH{sub 4}-air and C{sub 3}H{sub 8}-air are issued from the burner tube with mean flow velocity U = 0.6 m/s. The burner tube is rotated up to 1400 rpm (swirl number S = 1.58). An oscillating flame with large amplitude is formed between a conical-shape flame and a plateau flame under the condition of Lewis number Le > 1 mixtures (rich CH{sub 4}-air and lean C{sub 3}H{sub 8}-air mixtures). In contrast, for Le = 1 mixtures (lean CH{sub 4}-air and rich C{sub 3}H{sub 8}-air), asymmetric, eccentric flame or tilted flame is formed under the same swirl number range. Under microgravity condition, the oscillating flames are not formed, indicating that the oscillation is driven by buoyancy-induced instability associated with the unstable interface between the hot products and the ambient air. The flame tip flickering frequency {nu} is insensitive to burner rotation for S < 0.11. For S > 0.11, {nu} decreases linearly with increasing S. As S exceeds 0.11, a minimum value of axial mean velocity along the center line uj,m due to flow divergence is found and it has a linear relationship with {nu}. This result shows that uj,m has direct control of the oscillation frequency. When S approaches unity, the flame oscillation amplitude increases by a factor of 5, compared to the flickering amplitude of a conical-shape flame. This is accompanied by a hysteresis variation in the flame curvature from positive to negative and the thermo-diffusive zone thickness varying from small to large. With S > 1.3, the plateau flame has the same small flickering amplitudes as with S = 0. These results show that the competing centrifugal and buoyancy forces, and the non-unity Lewis number effect, play important roles in amplifying the flame-tip oscillation.

  4. Development of mesoscale burner arrays for gas turbine reheat

    NASA Astrophysics Data System (ADS)

    Lee, Sunyoup

    Mesoscale burner arrays allow combustion to be conducted in a distributed fashion at a millimeter (meso) scale. At this scale, diffusive processes are fast, but not yet dominant, such that numerous advantages over conventional gas turbine combustion can be achieved without giving up the possibility to use fluid inertia to advantage. Since the scale of the reaction zone follows from the scale at which the reactants are mixed, very compact flames result. This compact, distributed form of combustion can provide the opportunity of inter-turbine reheat as well as the potential for lean premixed or highly vitiated combustion to suppress NOx emissions. As a proof-of-concept, a 4x4 array with burner elements on 5-mm centers was fabricated in silicon nitride via assembly mold SDM. Each burner element was designed in a single monolithic unit with its own combination of reactant inlets, fuel plenum and injection nozzles, and swirler to induce flame stabilization. Results using methane, including pressure drop, flame stability, temperature distribution in the burnt gas, and NO emissions are reported for both fully premixed (mixing prior to injection) and nonpremixed (mixing in the array) configurations. These results demonstrate the degree to which premixed performance can be achieved with this design and pointed to ways in which the array design could be improved over this first-generation unit. Given what was learned from the 4x4 array, a next-generation 6x6 array was developed. Major design changes include addition of a bluff-body stabilizer to each burner element to improve stability and use of a multilayer architecture to enhance the degree of reactant mixing. Tests using methane in both operating conditions were performed for two stabilization configurations---with and without the bluff bodies. The results for nonpremixed operation show that nearly complete air/fuel mixing was achieved using the 6x6 design, leading to NO emission levels obtainable under fully premixed conditions. However, the results also indicate that element-to-element fuel maldistribution of the array remains significant such that additional efforts to resolve manufacturing difficulties should be made in future applications. Elimination of maldistribution will reduce NO emissions even further as well as improve stability characteristics of the array.

  5. Experimental and numerical analysis of isothermal turbulent flows in interacting low NOx burners in coal-fired furnaces 

    E-print Network

    Cvoro, Valentina

    Coal firing power stations represent the second largest source of global NOx emissions. The current practice of predicting likely exit NOx levels from multi-burner furnaces on the basis of single burner test rig data has ...

  6. Development of a Low NOx Burner System for Coal Fired Power Plants Using Coal and Biomass Blends 

    E-print Network

    Gomez, Patsky O.

    2010-01-16

    The low NOx burner (LNB) is the most cost effective technology used in coal-fired power plants to reduce NOx. Conventional (unstaged) burners use primary air for transporting particles and swirling secondary air to create recirculation of hot gases...

  7. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam... monitor emissions from the turbine and duct burner, so sources are allowed to meet the required...

  8. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam... monitor emissions from the turbine and duct burner, so sources are allowed to meet the required...

  9. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam... monitor emissions from the turbine and duct burner, so sources are allowed to meet the required...

  10. EMISSIONS FROM REFINERY PROCESS HEATERS EQUIPPED WITH LOW-NOX BURNERS

    EPA Science Inventory

    The report summarizes an investigation of the performance of commercial low-NOx burners in refinery process heaters. Refineries in Southern and Central California were surveyed to determine the number of existing or planned low-NOx burners. Tests on 10 process heaters equipped wi...

  11. 16 CFR Figure 7 to Part 1633 - Elements of Propane Flow Control for Each Burner

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Elements of Propane Flow Control for Each Burner 7 Figure 7 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS... to Part 1633—Elements of Propane Flow Control for Each Burner ER15MR06.006...

  12. 16 CFR Figure 7 to Part 1633 - Elements of Propane Flow Control for Each Burner

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Elements of Propane Flow Control for Each Burner 7 Figure 7 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS... to Part 1633—Elements of Propane Flow Control for Each Burner ER15MR06.006...

  13. 16 CFR Figure 7 to Part 1633 - Elements of Propane Flow Control for Each Burner

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Elements of Propane Flow Control for Each Burner 7 Figure 7 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS... to Part 1633—Elements of Propane Flow Control for Each Burner ER15MR06.006...

  14. 16 CFR Figure 7 to Part 1633 - Elements of Propane Flow Control for Each Burner

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Elements of Propane Flow Control for Each Burner 7 Figure 7 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS... to Part 1633—Elements of Propane Flow Control for Each Burner ER15MR06.006...

  15. 16 CFR Figure 7 to Part 1633 - Elements of Propane Flow Control for Each Burner

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Elements of Propane Flow Control for Each Burner 7 Figure 7 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS... to Part 1633—Elements of Propane Flow Control for Each Burner ER15MR06.006...

  16. 16 CFR Figure 5 to Part 1633 - Details of Burner Stand-off

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Details of Burner Stand-off 5 Figure 5 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 5 Figure 5 to Part 1633—Details of Burner Stand-off...

  17. Plasma-assisted combustion technology for NOx reduction in industrial burners.

    PubMed

    Lee, Dae Hoon; Kim, Kwan-Tae; Kang, Hee Seok; Song, Young-Hoon; Park, Jae Eon

    2013-10-01

    Stronger regulations on nitrogen oxide (NOx) production have recently promoted the creation of a diverse array of technologies for NOx reduction, particularly within the combustion process, where reduction is least expensive. In this paper, we discuss a new combustion technology that can reduce NOx emissions within industrial burners to single-digit parts per million levels without employing exhaust gas recirculation or other NOx reduction mechanisms. This new technology uses a simple modification of commercial burners, such that they are able to perform plasma-assisted staged combustion without altering the outer configuration of the commercial reference burner. We embedded the first-stage combustor within the head of the commercial reference burner, where it operated as a reformer that could host a partial oxidation process, producing hydrogen-rich reformate or synthesis gas product. The resulting hydrogen-rich flow then ignited and stabilized the combustion flame apart from the burner rim. Ultimately, the enhanced mixing and removal of hot spots with a widened flame area acted as the main mechanisms of NOx reduction. Because this plasma burner acted as a low NOx burner and was able to reduce NOx by more than half compared to the commercial reference burner, this methodology offers important cost-effective possibilities for NOx reduction in industrial applications. PMID:24032692

  18. Plasma analyzer for the Pioneer Jupiter missions

    NASA Technical Reports Server (NTRS)

    Mckibbin, D. D.; Wolfe, J. H.; Collard, H. R.; Savage, H. F.; Molari, R.

    1977-01-01

    A description is given of the NASA/Ames Research Center Plasma Probe on board the Jupiter Missions of the Pioneer 10 and 11 spacecraft. The instrument has two quadrispherical electrostatic analyzer units; one has high sensitivity and resolution and the other is capable of measuring large fluxes of solar wind particles. The two analyzer units measure particle energy-to-charge ratio, flux, and direction of flow for positive ions and electrons over the wide range of particle densities found in the solar wind during the Jupiter missions. Data formats in space and ground data processing, the NASA/Ames Research Center plasma probe calibration facility, and the instrument response functions are also described.

  19. Diagnostics for Pioneer I imploding plasma experiments

    SciTech Connect

    Lee, P.H.Y.; Benjamin, R.F.; Brownell, J.H.; Erickson, D.J.; Goforth, J.H.; Greene, A.E.; McGurn, J.S.; Pecos, J.F.; Price, R.H.; Oona, H.

    1985-01-01

    The Pioneer I series of imploding plasma experiments are aimed at collapsing a thin aluminum foil with a multimegampere, submicrosecond electrical pulse produced by an explosive flux compression generator and fast plasma compression opening switch. Anticipated experimental conditions are bounded by implosion velocities of 2 x 10/sup 7/ cm/s and maximum plasma temperatures of 100 eV. A comprehensive array of diagnostics have been deployed to measure implosion symmetry (gated microchannel plate array and other time-resolved imaging), temperature of the imploding plasma (visible/uv spectroscopy), stagnation geometry (x-ray pinhole imaging), radiation emission characteristics at pinch (XRD's, fast bolometry), and electrical drive history (Rogowski loops, Faraday rotation current detectors, and capacitive voltage probes). Diagnostic performance is discussed and preliminary results are presented.

  20. Mission design of a Pioneer Jupiter Orbiter

    NASA Technical Reports Server (NTRS)

    Friedman, L. D.; Nunamaker, R. R.

    1975-01-01

    The Mission analysis and design work performed in order to define a Pioneer mission to orbit Jupiter is described. This work arose from the interaction with a science advisory 'Mission Definition' team and led to the present mission concept. Building on the previous Jupiter Orbiter-Satellite Tour development at JPL a magnetospheric survey mission concept is developed. The geometric control of orbits which then provide extensive local time coverage of the Jovian system is analyzed and merged with the various science and program objectives. The result is a 'flower-orbit' mission design, yielding three large apoapse excursions at various local times and many interior orbits whose shape and orientation is under continual modification. This orbit design, together with a first orbit defined by delivery of an atmospheric probe, yields a mission of high scientific interest.

  1. Pioneer Venus probe models instrumented prop tests

    NASA Technical Reports Server (NTRS)

    Muirhead, V. U.

    1978-01-01

    Models of both the small and large Pioneer Venus probes were dropped from a helicopter to simulate the conditions of Mach and Reynolds numbers to be encountered by the probes upon entry into the Venus atmosphere. The models were dropped at an average Mach number of .10 and at an average Reynolds number of 2.84 million for the small probe and 2.90 million for the large probe. After the large amplitude launching oscillations were damped, the small probe oscillations in angle of attack and in sideslip were generally less than 2 degrees. The large probe oscillations were generally less than 10 degrees. Both exhibited distinct frequencies. The motion of the small probe in a place perpendicular to the z axis was random while the large probe rotated (corkscrewed) at 1.1 cycles per second about the z axis. The average drag coefficients of the probe models were .714 for the small probe and .663 for the large probe.

  2. A Study of Pioneer Venus Nightglow Spectra

    NASA Technical Reports Server (NTRS)

    Slanger, Tom G.

    1993-01-01

    The work performed during the 12-month period of this contract involved: (1) further analysis of latitudinal variations in the Venusian NO nightglow intensity from PVOUVS data; (2) corrections made to the input data for the VTGCM model, relating specifically to a factor of three increase in the three-body recombination rate coefficient of N + O; (3) consideration of limits on the rate of reaction of N-atoms with CO2; (4) consideration of the Venusian equivalent of the terrestrial hot N-atom reaction for NO production; and (5) successful location of video images of meteor trails from space, for the purpose of making a comparison with the meteor trail that we have hypothesized as an explanation of intense UV spectra observed on a particular Pioneer Venus (PV) orbit.

  3. David Lasser - An American Spaceflight Pioneer

    NASA Technical Reports Server (NTRS)

    Ciancone, Michael L.; Lasser, Amelia

    2002-01-01

    David Lasser was one of the founders of the American Interplanetary Society (later known as the American Rocket Society) and author of the first English-language book (in 1931) on the use of rockets for human spaceflight. His involvement in the fledgling spaceflight movement was short-lived as he moved on to pursue a distinguished, if turbulent, career in the labor movement. In lieu of an oral history, Mr. Lasser provided his recollections on the pioneering days of rocketry and his thoughts on mankind's destiny in space. This paper provides an overview of Mr. Lasser's life and accomplishments as an American spaceflight visionary, along with a compilation of the information that he graciously provided.

  4. The Pioneer's acceleration anomaly and Hubble's constant

    E-print Network

    J. L. Rosales

    2002-12-10

    The reported anomalous acceleration acting on the Pioneers spacecrafts could be seen as a consequence of the existence of some local curvature in light geodesics when using the coordinate speed of light in an expanding space-time. The effect is related with the non synchronous character of the underlying metric and therefore, planets closed orbits can not reveal it. It is shown that the cosmic expansion rate -the Hubble parameter H- has been indeed detected. Additionally, a relation for an existing annual term is obtained which depends on the cosine of the ecliptic latitude of the spacecraft, suggestingan heuristic analogy between the effect and Foucault's experiment - light rays playing a similar role in the expanding space than Foucault's Pendulum does while determining Earth's rotation. This statement could be seen as a benchmark for future experiments.

  5. The Pioneer Anomaly and a Rotating Gödel Universe

    E-print Network

    Thomas L. Wilson; Hans-Joachim Blome

    2009-08-27

    Based upon a simple cosmological model with no expansion, we find that the rotational terms appearing in the G/"odel universe are too small to explain the Pioneer anomaly. Although it contributes, universal rotation is not the cause of the Pioneer effect.

  6. Charles H. Gilbert, Pioneer Ichthyologist and Fishery Biologist

    E-print Network

    Charles H. Gilbert, Pioneer Ichthyologist and Fishery Biologist Charles Henry Gilbert (Fig. 1 the author's biographi cal work "Charles Henry Gilbert (1859-1928): Pioneer ichthyologist of the American of the Zoology Department, Charles Henry Gilbert. Gilbert then began a career at Stanford University which

  7. The interplanetary Pioneers. Volume 2: System design and development

    NASA Technical Reports Server (NTRS)

    Corliss, W. R.

    1972-01-01

    The Pioneer systems, subsystems, and ground support activities are described. Details are given on the launch trajectory and solar orbit plans, spacecraft design approach and evolution, scientific instrument, test and ground support equipment, Delta launch vehicle, tracking and communication, and data processing equipment. Pioneer specifications, and reliability and quality assurance are also included.

  8. Mission to Jupiter. [Pioneer 10 and 11 space probes

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Pioneer 10 and Pioneer 11 space probes and their missions to Jupiter are discussed along with the experiments and investigations which will be conducted onboard. Jupiter's atmosphere, its magnetic fields, radiation belts, the spacecraft instruments, and the Jovian system will be investigated. Educational study projects are also included.

  9. Development of the Radiation Stabilized Distributed Flux Burner - Phase III Final Report

    SciTech Connect

    J. D. Sullivan; A. Webb

    1999-12-01

    The development and demonstration of the Radiation Stabilized Burner (RSB) was completed as a project funded by the US Department of Energy Office of Industrial Technologies. The technical goals of the project were to demonstrate burner performance that would meet or exceed emissions targets of 9 ppm NOx, 50 ppm CO, and 9 ppm unburned hydrocarbons (UHC), with all values being corrected to 3 percent stack oxygen, and incorporate the burner design into a new industrial boiler configuration that would achieve ultra-low emissions while maintaining or improving thermal efficiency, operating costs, and maintenance costs relative to current generation 30 ppm low NOx burner installations. Both the ultra-low NOx RSB and the RSB boiler-burner package are now commercially available.

  10. Laboratory measurements in a turbulent, swirling flow. [measurement of soot inside a flame-tube burner

    NASA Technical Reports Server (NTRS)

    Hoult, D. P.

    1979-01-01

    Measurements of soot inside a flame-tube burner using a special water-flushed probe are discussed. The soot is measured at a series of points at each burner, and upon occasion gaseous constitutents NO, CO, hydrocarbons, etc., were also measured. Four geometries of flame-tube burners were studied, as well as a variety of different fuels. The role of upstream geometry on the downstream pollutant formation was studied. It was found that the amount of soot formed in particularly sensitive to how aerodynamically clean the configuration of the burner is upstream of the injector swirl vanes. The effect of pressure on soot formation was also studied. It was found that beyond a certain Reynolds number, the peak amount of soot formed in the burner is constant.

  11. Occurrence of benzo(a)pyrene in combustion effluents of kerosene and diesel burners

    SciTech Connect

    Gharaibeh, S.H.; Abuirjeie, M.A.; Hunaiti, A.A.

    1988-09-01

    Due to limited Jordanian resources, kerosene and diesel burners have been widely used for heating homes and water, warming bread, grilling meat and cooking food. Jordan annually imports and average of 204 tons of burners which corresponds to approximately 20,400 burners. Considerable amounts of combustion products are produced such as gases, aerosols and polycyclic aromatic hydrocarbons (PAH), especially benzo(a)pyrene (Bp), the well known carcinogen for man and animal. Since most Jordanians use burners more than five months a year, a considerable amount of combustion effluents accumulate indoors. Some of these materials can enter the human body via various routes, and are potential health hazards. Little information is available about the chemical nature and amount of the combustion effluents produced by these burners; therefore the present study was designed to screen for benzo(a)pyrene in the indoor-accumulated combustion effluent.

  12. Preliminary model studies of the magnetosphere of Jupiter: Pioneer 10

    NASA Technical Reports Server (NTRS)

    Jones, D. E.; Melville, J. G.

    1975-01-01

    Observations of the Jovian magnetic field and its interaction with the solar wind plasma were made while the Pioneer 10 spacecraft was within about 100 R sub j of the planet. The magnetosphere was found to be severely stretched due to the presence of an intense current sheet, which was particularly evident during the outbound passage of Pioneer 10 near the dawn terminator. Plots of the angle between the orientation of the outbound field and the radius vector from the planet to the spacecraft showed a strong tendency for the field to become radial at large distances from the planet. A similar trend has also been seen in both the inbound and outbound Pioneer 11 data. Preliminary work on a mathematical model of the magnetosphere of Jupiter is given, based upon the Pioneer 10 outbound data. Some of the implications of the radial field configuration inferred from the Pioneer 10 and 11 data are also discussed.

  13. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Are duct burners and waste heat... Stationary Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered...

  14. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Are duct burners and waste heat... Stationary Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered...

  15. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Are duct burners and waste heat... Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam generating...

  16. Multi-fuel low-NO/sub x/ burner development, Phase II. Final report Mar 79-Feb 82

    SciTech Connect

    Abbasi, H.A.; Khinkis, M.J.; Waibel, R.T.

    1982-05-01

    The objective of this program was to develop high-efficiency, low-nitrogen-oxides producing multi-fuel industrial burners having flame and heat-transfer characteristics that are suitable for specific industrial processes in cooperation with burner manufacturers for process heating applications. Burners for three industrial processes were designed to achieve a reduction in NOx emissions compared with currently used standard burners: (1) A high excess air burner used in direct air dryers for applications in the food processing industry, (2) A hot air burner having high convective heat transfer for direct fired metal processing furnaces, and (3) A hot air burner with a long, luminous flame for direct fired process furnaces in the steel, aluminum, and glass industries. Bench scale tests on catalytic combustors verified the possibility of achieving extremely low-NOx emissions from a burner designed for food drying applications. Unfortunately, the high preheat temperature required for the air/fuel mixture is impractical. The high-convective, hot air burner achieved NOx emission reduction of up to 50%. However, additional work is required to determine whether or not the burner would perform adequately in metal processing applications. NOx emissions from the hot air burner with a long, luminous flame were 45 to 60% lower than the standard burner. Although the flame characteristics were slightly different, they seemed acceptable for many industrial applications.

  17. Operational characteristics of a parallel jet MILD combustion burner system

    SciTech Connect

    Szegoe, G.G.; Dally, B.B.; Nathan, G.J.

    2009-02-15

    This study describes the performance and stability characteristics of a parallel jet MILD (Moderate or Intense Low-oxygen Dilution) combustion burner system in a laboratory-scale furnace, in which the reactants and exhaust ports are all mounted on the same wall. Thermal field measurements are presented for cases with and without combustion air preheat, in addition to global temperature and emission measurements for a range of equivalence ratio, heat extraction, air preheat and fuel dilution levels. The present furnace/burner configuration proved to operate without the need for external air preheating, and achieved a high degree of temperature uniformity. Based on an analysis of the temperature distribution and emissions, PSR model predictions, and equilibrium calculations, the CO formation was found to be related to the mixing patterns and furnace temperature rather than reaction quenching by the heat exchanger. The critical equivalence ratio, or excess air level, which maintains low CO emissions is reported for different heat exchanger positions, and an optimum operating condition is identified. Results of CO and NO{sub x} emissions, together with visual observations and a simplified two-dimensional analysis of the furnace aerodynamics, demonstrate that fuel jet momentum controls the stability of this multiple jet system. A stability diagram showing the threshold for stable operation is reported, which is not explained by previous stability criteria. (author)

  18. Fully Premixed Low Emission, High Pressure Multi-Fuel Burner

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet (Inventor)

    2012-01-01

    A low-emissions high-pressure multi-fuel burner includes a fuel inlet, for receiving a fuel, an oxidizer inlet, for receiving an oxidizer gas, an injector plate, having a plurality of nozzles that are aligned with premix face of the injector plate, the plurality of nozzles in communication with the fuel and oxidizer inlets and each nozzle providing flow for one of the fuel and the oxidizer gas and an impingement-cooled face, parallel to the premix face of the injector plate and forming a micro-premix chamber between the impingement-cooled face and the in injector face. The fuel and the oxidizer gas are mixed in the micro-premix chamber through impingement-enhanced mixing of flows of the fuel and the oxidizer gas. The burner can be used for low-emissions fuel-lean fully-premixed, or fuel-rich fully-premixed hydrogen-air combustion, or for combustion with other gases such as methane or other hydrocarbons, or even liquid fuels.

  19. Visualisation of isothermal large coherent structures in a swirl burner

    SciTech Connect

    Valera-Medina, A.; Syred, N.; Griffiths, A.

    2009-09-15

    Lean premixed combustion using swirl flame stabilisation is widespread amongst gas turbine manufacturers. The use of swirl mixing and flame stabilisation is also prevalent in many other non-premixed systems. Problems that emerge include loss of stabilisation as a function of combustor geometry and thermo-acoustic instabilities. Coherent structures and their relationship with combustion processes have been a concern for decades due to their complex nature. This paper thus adopts an experimental approach to characterise large coherent structures in swirl burners under isothermal conditions so as to reveal the effects of swirl in a number of geometries and cold flow patterns that are relevant in combustion. Aided by techniques such as Hot Wire Anemometry, High Speed Photography and Particle Image Velocimetry, the recognition of several structures was achieved in a 100 kW swirl burner model. Several varied, interacting, structures developed in the field as a consequence of the configurations used. New structures never observed before were identified, the results not only showing the existence of very well defined large structures, but also their dependency on geometrical and flow parameters. The PVC is confirmed to be a semi-helical structure, contrary to previous simulations performed on the system. The appearance of secondary recirculation zones and suppression of the vortical core as a consequence of geometrical constrictions are presented as a mechanism of flow control. The asymmetry of the Central Recirculation Zone in cold flows is observed in all the experiments, with its elongation dependent on Re and swirl number used. (author)

  20. Suppression Characteristics of Cup-Burner Flames in Low Gravity

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Linteris, Gregory T.; Katta, Viswanath R.

    2004-01-01

    The structure and suppression of laminar methane-air co-flow diffusion flames formed on a cup burner have been studied experimentally and numerically using physically acting fire-extinguishing agents (CO2, N2, He, and Ar) in normal earth (lg) and zero gravity (0g). The computation uses a direct numerical simulation with detailed chemistry and radiative heat-loss models. An initial observation of the flame without agent was also made at the NASA Glenn 2.2-Second Drop Tower. An agent was introduced into a low-speed coflowing oxidizing stream by gradually replacing the air until extinguishment occurred under a fixed minimal fuel velocity. The suppression of cup-burner flames, which resemble real fires, occurred via a blowoff process (in which the flame base drifted downstream) rather than the global extinction phenomenon typical of counterflow diffusion flames. The computation revealed that the peak reactivity spot (the reaction kernel) formed in the flame base was responsible for attachment and blowoff phenomena of the trailing diffusion flame. The thermal and transport properties of the agents affected the flame extinguishment limits.

  1. Deposition and material response from Mach 0.3 burner rig combustion of SRC 2 fuels

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Kohl, F. J.; Stearns, C. A.; Fryburg, G. C.; Johnson, J. R.

    1980-01-01

    Collectors at 1173K (900 C) were exposed to the combustion products of a Mach 0.3 burner rig fueled with various industrial turbine liquid fuels from solvent refined coals. Four fuels were employed: a naphtha, a light oil, a wash solvent and a mid-heavy distillate blend. The response of four superalloys (IN-100, U 700, IN 792 and M-509) to exposure to the combustion gases from the SRC-2 naphtha and resultant deposits was also determined. The SRC-2 fuel analysis and insights obtained during the combustion experience are discussed. Particular problems encountered were fuel instability and reactions of the fuel with hardware components. The major metallic elements which contributed to the deposits were copper, iron, chromium, calcium, aluminum, nickel, silicon, titanium, zinc, and sodium. The deposits were found to be mainly metal oxides. An equilibrium thermodynamic analysis was employed to predict the chemical composition of the deposits. The agreement between the predicted and observed compounds was excellent. No hot corrosion was observed. This was expected because the deposits contained very little sodium or potassium and consisted mainly of the unreactive oxides. However, the amounts of deposits formed indicated that fouling is a potential problem with the use of these fuels.

  2. Grote Reber, Radio Astronomy Pioneer, Dies

    NASA Astrophysics Data System (ADS)

    2002-12-01

    Grote Reber, one of the earliest pioneers of radio astronomy, died in Tasmania on December 20, just two days shy of his 91st birthday. Reber was the first person to build a radio telescope dedicated to astronomy, opening up a whole new "window" on the Universe that eventually produced such landmark discoveries as quasars, pulsars and the remnant "afterglow" of the Big Bang. His self- financed experiments laid the foundation for today's advanced radio-astronomy facilities. Grote Reber Grote Reber NRAO/AUI photo "Radio astronomy has changed profoundly our understanding of the Universe and has earned the Nobel Prize for several major contributions. All radio astronomers who have followed him owe Grote Reber a deep debt for his pioneering work," said Dr. Fred Lo, director of the National Radio Astronomy Observatory (NRAO). "Reber was the first to systematically study the sky by observing something other than visible light. This gave astronomy a whole new view of the Universe. The continuing importance of new ways of looking at the Universe is emphasized by this year's Nobel Prizes in physics, which recognized scientists who pioneered X-ray and neutrino observations," Lo added. Reber was a radio engineer and avid amateur "ham" radio operator in Wheaton, Illinois, in the 1930s when he read about Karl Jansky's 1932 discovery of natural radio emissions coming from outer space. As an amateur operator, Reber had won awards and communicated with other amateurs around the world, and later wrote that he had concluded "there were no more worlds to conquer" in radio. Learning of Jansky's discovery gave Reber a whole new challenge that he attacked with vigor. Analyzing the problem as an engineer, Reber concluded that what he needed was a parabolic-dish antenna, something quite uncommon in the 1930s. In 1937, using his own funds, he constructed a 31.4-foot-diameter dish antenna in his back yard. The strange contraption attracted curious attention from his neighbors and became something of a minor tourist attraction, he later recalled. Using electronics he designed and built that pushed the technical capabilities of the era, Reber succeeded in detecting "cosmic static" in 1939. In 1941, Reber produced the first radio map of the sky, based on a series of systematic observations. His radio-astronomy work continued over the next several years. Though not a professional scientist, his research results were published in a number of prestigious technical journals, including Nature, the Astrophysical Journal, the Proceedings of the Institute of Radio Engineers and the Journal of Geophysical Research. Reber also received a number of honors normally reserved for scientists professionally trained in astronomy, including the American Astronomical Society's Henry Norris Russell Lectureship and the Astronomical Society of the Pacific's Bruce Medal in 1962, the National Radio Astronomy Observatory's Jansky Lectureship in 1975, and the Royal Astronomical Society's Jackson-Gwilt Medal in 1983. Reber's original dish antenna now is on display at the National Radio Astronomy Observatory's site in Green Bank, West Virginia, where Reber worked in the late 1950s. All of his scientific papers and records as well as his personal and scientific correspondence are held by the NRAO, and will be exhibited in the observatory's planned new library in Charlottesville, Virginia. Reber's amateur-radio callsign, W9GFZ, is held by the NRAO Amateur Radio Club. This callsign was used on the air for the first time since the 1930s on August 25, 2000, to mark the dedication of the Robert C. Byrd Green Bank Telescope. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  3. Feasibility of burning refuse derived fuel in institutional size oil-fired boilers. Final report

    SciTech Connect

    1980-10-01

    This study investigates the feasibility of retrofitting existing oil-fired boilers of institutional size, approximately 3.63 to 36.3 Mg steam/h (8000 to 80,000 lbs steam/h) for co-firing with refuse-derived fuel (RDF). Relevant quantities describing mixtures of oil and RDF and combustion products for various levels of excess air are computed. Savings to be realized from the use of RDF are derived under several assumptions and allowable costs for a retrofit are estimated. An extensive survey of manufacturers of burners, boilers, and combustion systems showed that no hardware or proven design is yet available for such retrofit. Approaches with significant promises are outlined: the slagging burner, and a dry ash double vortex burner for low heat input from RDF. These two systems, and an evaluation of a small separate RDF dedicated combustor in support of the oil-fired boiler, are recommended as topics for future study.

  4. On the possible onset of the Pioneer anomaly

    E-print Network

    Michael R. Feldman; John D. Anderson

    2015-06-24

    We explore the possibility that the observed onset of the Pioneer anomaly after Saturn encounter by Pioneer 11 is not necessarily due to mismodeling of solar radiation pressure but instead reflects a physically relevant characteristic of the anomaly itself. We employ the principles of a recently proposed cosmological model termed "the theory of inertial centers" along with an understanding of the fundamental assumptions taken by the Deep Space Network (DSN) to attempt to model this sudden onset. Due to an ambiguity that arises from the difference in the DSN definition of expected light-time with light-time according to the theory of inertial centers, we are forced to adopt a seemingly arbitrary convention to relate DSN-assumed clock-rates to physical clock-rates for this model. We offer a possible reason for adopting the convention employed in our analysis; however, we remain skeptical. Nevertheless, with this convention, one finds that this theory is able to replicate the previously reported Hubble-like behavior of the "clock acceleration" for the Pioneer anomaly as well as the sudden onset of the anomalous acceleration after Pioneer 11 Saturn encounter. While oscillatory behavior with a yearly period is also predicted for the anomalous clock accelerations of both Pioneer 10 and Pioneer 11, the predicted amplitude is an order of magnitude too small when compared with that reported for Pioneer 10.

  5. RI-JET burner for reducing NOx emissions in tangentially fired boilers

    SciTech Connect

    Savolainen, K.; Dernjatin, P.

    1996-01-01

    A new type of low-NO{sub x} burner has been developed for NO{sub x} reduction of tangentially fired boilers. The basic idea of the RI-JET (Rapid Ignition) low-NO{sub x} burner is to create a high-temperature reducing flame near the burner tip. In order to promote rapid ignition and to form a reducing zone near the burner, the RI-JET burner is equipped with a flame stabilizer in the coal nozzle, an axial swirler in the secondary air nozzle and a guide sleeve between the secondary and tertiary air nozzles. By now, this new low-NO{sub x} combustion technology has been applied in two power stations, where the NO{sub x} reductions achieved by RI-JET burners and an over-fire air system varied between 50 and 75% and, at the same time, unburned carbon was below 5%. The flame was stable over the normal load range 50-100%, and the flame stability was independent of the burner zone stoichiometric ratio. Low NO{sub x} and UBC values were therefore achieved also when operating the boiler at low load.

  6. Characterization of lean premixed gas turbine burners as acoustic multi-ports

    NASA Astrophysics Data System (ADS)

    Paschereit, C. O.; Polifke, W.

    1997-11-01

    Thermoacoustic combustion instabilities, involving a feedback cycle between fluctuations of velocity, pressure and heat release rate, are a cause for concern in many combustion applications. To model thermoacoustic oscillations, a combustion system can be described as a network of acoustic elements, representing for example fuel and air supply, burner and flame, combustor, cooling channels, suitable terminations, etc. For most of these elements, simple analytical models provide an adequate description of their (thermo-) acoustic properties. However, the complex response of burner and flame to acoustic perturbations has - at least in a first step - to be determined by experiment. In our approach, we describe the burner as an active acoustical two port, where the state variables pressure and velocity at the inlet and the outlet are coupled via a four element transfer matrix. To determine all four coefficients, two independent test states have to be created. This is achieved by using acoustic sources upstream and downstream of the burner, respectively. In application to a full size gas turbine burner, the method's accuracy was tested in a first step without combustion and the results were compared to an analytical model for the burner's acoustic properties. Then the method was used to determine the burner transfer matrix with combustion and to investigate the influence of various parameters such as acoustic amplitude and equivalence ratio.

  7. Process and apparatus for igniting a burner in an inert atmosphere

    DOEpatents

    Coolidge, Dennis W. (Katy, TX); Rinker, Franklin G. (Perrysburg, OH)

    1994-01-01

    According to this invention there is provided a process and apparatus for the ignition of a pilot burner in an inert atmosphere without substantially contaminating the inert atmosphere. The process includes the steps of providing a controlled amount of combustion air for a predetermined interval of time to the combustor then substantially simultaneously providing a controlled mixture of fuel and air to the pilot burner and to a flame generator. The controlled mixture of fuel and air to the flame generator is then periodically energized to produce a secondary flame. With the secondary flame the controlled mixture of fuel and air to the pilot burner and the combustion air is ignited to produce a pilot burner flame. The pilot burner flame is then used to ignited a mixture of main fuel and combustion air to produce a main burner flame. The main burner flame then is used to ignite a mixture of process derived fuel and combustion air to produce products of combustion for use as an inert gas in a heat treatment process.

  8. Pioneer Venus Sounder Probe Solar Flux Radiometer

    NASA Technical Reports Server (NTRS)

    Tomasko, M. G.; Doose, L. R.; Palmer, J. M.; Holmes, A.; Wolfe, W. L.; Debell, A. G.; Brod, L. G.; Sholes, R. R.

    1980-01-01

    The Solar Flux Radiometer aboard the Pioneer Venus Sounder Probe operated successfully during its descent through the atmosphere of Venus. The instrument measured atmospheric radiance over the spectral range from 400 to 1800 nm as a function of altitude. Elevation and azimuthal measurements on the radiation field were made with five optical channels. Twelve filtered Si and Ge photovoltaic detectors were maintained near 30 C with a phase-change material. The detector output currents were processed with logarithmic transimpedance converters and digitized with an 11-bit A/D converter. Atmospheric sampling in both elevation and azimuth was done according to a Gaussian integration scheme. The serial output data averaged 20 bits/sec, including housekeeping (sync, spin period, sample timing and mode). The data were used to determine the deposition of solar energy in the atmosphere of Venus between 67 km and the surface along with upward and downward fluxes and radiances with an altitude resolution of several hundred meters. The results allow for more accurate modeling of the radiation balance of the atmosphere than previously possible.

  9. Economic foundations of permanent pioneer communities

    SciTech Connect

    Jones, E.M.

    1988-01-01

    Although pioneer settlements are often founded for political or ideological reasons distinct from short-term economic justifications, their survival and growth depend on economic factors. The settlers must be able to make a living, whether at subsistence, commercial farming, fishing, mining, manufacturing, trade, or in government service. Although most of this discussion is highly speculative, it does seem from the historical material that there are plausible ways in which an evolutionary lunar program could lead, step by step, to settlement. Once a lunar facility has achieved basic self-sufficiencies in the production of oxygen, food, and construction materials, crew rotation would become a dominant cost factor in continuing lunar operations. At such a point, establishment of a resident staff begins to make economic sense. Subsequent encouragement of private-sector economic activities through such mechanisms as resident bonuses, local purchase preferences, and transfer of responsibility of basic services and production capabilities might well reduce operating costs and significantly multiply the economic effects of the basic import capacity provided by the facility's local expenditures.

  10. Simulation Modeling of an Enhanced Low-Emission Swirl-Cascade Burner

    SciTech Connect

    Ala Qubbaj

    2004-09-01

    ''Cascade-burners'' is a passive technique to control the stoichiometry of the flame through changing the flow dynamics and rates of mixing in the combustion zone with a set of venturis surrounding the flame. Cascade-burners have shown advantages over other techniques; its reliability, flexibility, safety, and cost makes it more attractive and desirable. On the other hand, the application of ''Swirl-burners'' has shown superiority in producing a stable flame under a variety of operating conditions and fuel types. The basic idea is to impart swirl to the air or fuel stream, or both. This not only helps to stabilize the flame but also enhances mixing in the combustion zone. As a result, nonpremixed (diffusion) swirl burners have been increasingly used in industrial combustion systems such as gas turbines, boilers, and furnaces, due to their advantages of safety and stability. Despite the advantages of cascade and swirl burners, both are passive control techniques, which resulted in a moderate pollutant emissions reduction compared to SCR, SNCR and FGR (active) methods. The present investigation will study the prospects of combining both techniques in what to be named as ''an enhanced swirl-cascade burner''. Natural gas jet diffusion flames in baseline, cascade, swirl, and swirl-cascade burners were numerically modeled using CFDRC package. The thermal, composition, and flow (velocity) fields were simulated. The numerical results showed that swirl and cascade burners have a more efficient fuel/air mixing, a shorter flame, and a lower NOx emission levels, compared to the baseline case. The results also revealed that the optimal configurations of the cascaded and swirling flames have not produced an improved performance when combined together in a ''swirl-cascade burner''. The non-linearity and complexity of the system accounts for such a result, and therefore, all possible combinations, i.e. swirl numbers (SN) versus venturi diameter ratios (D/d), need to be considered.

  11. A new scaling methodology for NO(x) emissions performance of gas burners and furnaces

    NASA Astrophysics Data System (ADS)

    Hsieh, Tse-Chih

    1997-11-01

    A general burner and furnace scaling methodology is presented, together with the resulting scaling model for NOsb{x} emissions performance of a broad class of swirl-stabilized industrial gas burners. The model is based on results from a set of novel burner scaling experiments on a generic gas burner and furnace design at five different scales having near-uniform geometric, aerodynamic, and thermal similarity and uniform measurement protocols. These provide the first NOsb{x} scaling data over the range of thermal scales from 30 kW to 12 MW, including input-output measurements as well as detailed in-flame measurements of NO, NOsb{x}, CO, Osb2, unburned hydrocarbons, temperature, and velocities at each scale. The in-flame measurements allow identification of key sources of NOsb{x} production. The underlying physics of these NOsb{x} sources lead to scaling laws for their respective contributions to the overall NOsb{x} emissions performance. It is found that the relative importance of each source depends on the burner scale and operating conditions. Simple furnace residence time scaling is shown to be largely irrelevant, with NOsb{x} emissions instead being largely controlled by scaling of the near-burner region. The scalings for these NOsb{x} sources are combined in a comprehensive scaling model for NOsb{x} emission performance. Results from the scaling model show good agreement with experimental data at all burner scales and over the entire range of turndown, staging, preheat, and excess air dilution, with correlations generally exceeding 90%. The scaling model permits design trade-off assessments for a broad class of burners and furnaces, and allows performance of full industrial scale burners and furnaces of this type to be inferred from results of small scale tests.

  12. Process burner and combustion system hazards: 10 key issues that save lives.

    PubMed

    John R Puskar, P E

    2007-04-11

    Burner and combustion safety is crucial for the safe operation of fuel-fired heaters and boilers at process industry facilities. This paper discusses 10 of the most common burner and combustion system hazards that impact the safe operation of combustion equipment. The paper includes a discussion of three burner related explosion incidents that occurred at plants and how to avoid them. Strategies are also presented for training of maintenance and operations personnel on hazard recognition and avoidance. A protocol for walking down equipment prior to light offs is also presented as an extra safety step. PMID:16934399

  13. Stabilization of premixed flames on rotating Bunsen burners

    SciTech Connect

    Cha, J.M.; Sohrab, S.H.

    1996-09-01

    The effect of rotation on stabilization of methane-air premixed Bunsen flame sis experimentally investigated. Both the flame blowoff and flashback contours are determined in the fuel mole fraction versus Reynolds number plane (X{sub F}-Re) with the rotational Reynolds number Re{sub 4} as a parameter. It is found that rotation of the gas increases the flame stabilization area A{sub s} = A{sub B} {minus} A{sub F} defined as the difference between the flame blowoff A{sub B} and flashback A{sub F} areas in the (X{sub F}-Re) plane. The flame stabilization efficiency is defined as {eta}{sub s} = 1 {minus} A{sub F}/A{sub B} that approaches unity in either A{sub B} {yields} {infinity} or A{sub F} {yields} 0 limit. The experimental results suggest that rotation decreases the flame stabilization efficiency. However, rotation is found to substantially increase the flame stabilization coefficient defined as {beta}{sub s} = A{sub s}/A{sub st}, where A{sub st} is the stabilization area of the standard nonrotating burner. The parameters {eta}{sub s} and {beta}{sub s} may be useful in combustion technology for quantitative evaluation of the stabilization performance of different types of flame holders. In addition, the local hydrodynamics near the center of rotating Bunsen burner is simulated by investigating stabilization of planar laminar premixed flames on rotating porous disks with uniform surface velocity. Physical concepts concerning mechanisms of flame stabilization are discussed in terms of three important parameters namely the translational Reynolds number Re, the rotation Reynolds number Re{sub r}, and the fuel mole fraction X{sub F}. The results of the experimental findings are shown to be in accordance with prior theoretical investigation.

  14. A discontinuity of the background explains the Pioneer anomaly

    E-print Network

    Frederic Henry-Couannier

    2007-03-02

    The Pioneer anomaly is explained very simply if we assume that somewhere between us and the aircraft, the scale factor has undergone a discrete jump from an expansion a(t) regime to a contraction 1/a(t) regime

  15. Review: Pioneers of Embryology Author(s): Claudio D. Stern

    E-print Network

    Stern, Claudio

    Review: Pioneers of Embryology Author(s): Claudio D. Stern Reviewed work(s): A Conceptual History of Modern Embryology. by Scott F. Gilbert Source: Science, New Series, Vol. 256, No. 5059 (May 15, 1992), pp

  16. Operational use of the Pioneer unmanned aerial vehicle (UAV) system

    NASA Astrophysics Data System (ADS)

    Reid, Steve

    1996-11-01

    The Pioneer UAV system has seen operational use in every U.S. contingency operation since the system's original fielding in 1986. Originally procured as a non-developmental item, the Pioneer was selected for purchase after a successful fly-off competition which was conducted in late 1985. The Pioneer system is a Department of Defense joint system, having been flown by the U.S. Navy, U.S. Marine Corps, and U.S. Army. The system received extensive acclaim for outstanding performance in Operational Desert Shield and Desert Storm. Pioneers are currently being flown by the U.S. Navy from LPD class naval vessels and the U.S. Marine Corps from land based operations. Both services are currently supporting the NATO Joint Task Force in Bosnia.

  17. The Pioneer Projects - Economical exploration of the solar system

    NASA Technical Reports Server (NTRS)

    Spahr, J. R.; Hall, C. F.

    1975-01-01

    The interplanetary Pioneer missions are reviewed in terms of management implications and cost control. The responsibilities, organizational structure, and management practices of the Pioneer Projects are presented. The lines of authority and areas of responsibility of the principal organizational elements supporting the Pioneer missions are identified, and the methods employed for maintaining effective and timely interactions among these elements are indicated. The technical and administrative functions of various organizational elements of the project are described. The management and control of activities prior to and during the hardware procurement phase are described to indicate the basis for obtaining visibility of the technical progress, utilization of resources, and cost performance of the contractors and other institutions supporting the Pioneer projects.

  18. 10. Historic American Buildings Survey Society of California Pioneers From ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Historic American Buildings Survey Society of California Pioneers From Vischer Drawing REAR VIEW OF MISSION About 1870 - Mission San Carlos Borromeo, Rio Road & Lausen Drive, Carmel-by-the-Sea, Monterey County, CA

  19. The Career Development Program at Du Pont's Pioneering Research Laboratory.

    ERIC Educational Resources Information Center

    Nusbaum, H. J.

    1986-01-01

    Describes the Career Development Program, designed to help professional employees accept responsibility for their own careers, located at Du Pont's Pioneering Research Laboratory. Covers the concepts governing the program, program elements, and working with management to address program goals. (CH)

  20. Testing for the Pioneer anomaly on a Pluto exploration mission

    E-print Network

    Andreas Rathke

    2004-09-15

    The Doppler-tracking data of the Pioneer 10 and 11 spacecraft show an unmodelled constant acceleration in the direction of the inner Solar System. An overview of the phenomenon, commonly dubbed the Pioneer anomaly, is given and the possibility for an experimental test of the anomaly as a secondary goal of an upcoming space mission is discussed using a putative Pluto orbiter probe as a paradigm.

  1. Could the Pioneer anomaly have a gravitational origin?

    SciTech Connect

    Tangen, Kjell

    2007-08-15

    If the Pioneer anomaly has a gravitational origin, it would, according to the equivalence principle, distort the motions of the planets in the Solar System. Since no anomalous motion of the planets has been detected, it is generally believed that the Pioneer anomaly can not originate from a gravitational source in the Solar System. However, this conclusion becomes less obvious when considering models that either imply modifications to gravity over long distances or gravitational sources localized to the outer Solar System, given the uncertainty in the orbital parameters of the outer planets. Following the general assumption that the Pioneer spacecraft move geodesically in a spherically symmetric space-time metric, we derive the metric disturbance that is needed in order to account for the Pioneer anomaly. We then analyze the residual effects on the astronomical observables of the three outer planets that would arise from this metric disturbance, given an arbitrary metric theory of gravity. Providing a method for comparing the computed residuals with actual residuals, our results imply that the presence of a perturbation to the gravitational field necessary to induce the Pioneer anomaly is in conflict with available data for the planets Uranus and Pluto, but not for Neptune. We therefore conclude that the motion of the Pioneer spacecraft must be nongeodesic. Since our results are model-independent within the class of metric theories of gravity, they can be applied to rule out any model of the Pioneer anomaly that implies that the Pioneer spacecraft move geodesically in a perturbed space-time metric, regardless of the origin of this metric disturbance.

  2. 76 FR 83 - Pioneer Hi-Bred International, Inc.; Availability of Petition and Environmental Assessment for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... Animal and Plant Health Inspection Service Pioneer Hi-Bred International, Inc.; Availability of Petition... has received a petition from Pioneer Hi-Bred International, Inc., seeking a determination of...) from Pioneer Hi-Bred International, Inc. (Pioneer) of Johnston, IA, seeking a determination...

  3. Variable firing rate power burner for high efficiency gas furnaces. Final report

    SciTech Connect

    Fuller, H.H.; Demler, R.L.; Poulin, E.

    1980-02-01

    One method for increasing the efficiency of residential furnaces and boilers is to retrofit a burner capable of firing rate (FR) modulation. While maximum FR is still attainable, the average FR is significantly lower, resulting in more effective heat exchanger performance. Equally important is the capability for continuous firing at a very low rate (simmering) which eliminates off-cycle loss, a heavy contributor to inefficiency. Additional performance can be gained by reducing the excess air required by a burner. Based on its previous experience, Foster-Miller Associates, Inc. has designed and tested a low excess air (about 15%) variable firing rate (VFR) burner. The theory of operation and the construction of the test burner are described. Test results are given along with a conclusion/recommendation. A Phase II plan is outlined which suggests methods and steps for fabrication and field testing of a number of prototype units.

  4. EPA'S LIMB (ENVIRONMENTAL PROTECTION AGENCY'S LIMESTONE INJECTION MULTISTAGE BURNER) RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM

    EPA Science Inventory

    The paper describes and discusses key design features of the retrofit of EPA's Limestone Injection Multistage Burner (LIMB) system to an operating, wallfired utility boiler at Ohio Edison's Edgewater Station, based on the preliminary engineering design. It further describes resul...

  5. Experiments on Stability of Bunsen-Burner Flames for Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Bollinger, Lowell M; Williams, David T

    1948-01-01

    The results of a study of the stability of propane-air flames on bunsen-burner tubes are presented. Fuel-air ratio, tube diameter, and Reynolds number were the primary variables. Regions of stability are outlined in plots of fuel-air ratio as a function of Reynolds number for flames seated on the burner lip and for flames suspended well above the burner. For fully developed flow, turbulent as well as laminar, the velocity gradient at the burner wall is a satisfactory variable for correlating the fuel-air ratio required for blow-off of seated flames for fuel-air ratios of less than 15 percent. For turbulent flames, wall velocity serves as a correlating variable in the same fuel-air-ratio range. (author)

  6. Experiments on stability of Bunsen-burner flames for turbulent flow

    NASA Technical Reports Server (NTRS)

    Bollinger, Lowell M; Williams, David T

    1947-01-01

    The results of a study of the stability of propane-air flames on Bunsen-burner tubes are presented. Fuel-air ratio, tube diameter, and Reynolds number were the primary variables. Regions of stability are outlined in plots of fuel-air ratio as a function of Reynolds number for flames seated on the burner lip and for flames suspended well above the burner. For fully developed flow, turbulent as well as laminar, the velocity gradient at the burner wall is a satisfactory variable for correlating the fuel-air ratio required for blow-off of seated flames for fuel-air ratios of less than 15 percent. For turbulent flames, wall velocity serves as a correlating variable in the same fuel-air ratio range.

  7. Continuous Liquid-Sample Introduction for Bunsen Burner Atomic Emission Spectrometry.

    ERIC Educational Resources Information Center

    Smith, Gregory D.; And Others

    1995-01-01

    Describes a laboratory-constructed atomic emission spectrometer with modular instrumentation components and a simple Bunsen burner atomizer with continuous sample introduction. A schematic diagram and sample data are provided. (DDR)

  8. ANALYSIS OF UTILITY CONTROL STRATEGIES USING THE LIMB (LIMESTONE INJECTION MULTISTAGE BURNER) TECHNOLOGY

    EPA Science Inventory

    The report gives results of an evaluation of the impact of proposed acid rain legislation on the potential application of limestone injection multistage burner (LIMB) technology incorporating recent research and development findings. Several regulatory strategies and emission red...

  9. FMC Chemicals: Burner Management System Upgrade Improves Performance and Saves Energy at a Chemical Plant

    SciTech Connect

    Not Available

    2004-07-01

    FMC Chemicals Corporation increased the efficiency of two large coal-fired boilers at its soda ash mine in Green River, Wyoming, by upgrading the burner management system. The project yields annual energy savings of 250,000 MMBtu.

  10. Heat transfer and combustion characteristics of a burner with a rotary regenerative heat exchanger

    SciTech Connect

    Hirose, Yasuo; Kaji, Hitoshi; Arai, Norio

    1998-07-01

    The authors have developed a Rotary Regenerative Combustion (RRX) System, which is coupled with a compact high efficiency regenerative air heat exchanger and a combustion burner. This system contributes to saving energy of fuel firing industrial furnaces and decreases NO{sub x} emission. This technology can be considered as a solution of greenhouse problem. This paper, discusses a compact high efficiency regenerative air heat exchanger in comparison with the existing types of regenerative burners and reverse firing with high momentum fuel jet (with motive fluid) in the furnace. This burner is compact in size, with high fuel efficiency, low NOx emission, easy to operate, and reliable, based on the results of field tests and commercial operations. The authors can say that the RRX system is a regenerative burner of the second generation.

  11. Analyzing the inadaptability of uniform air distributing burner for bituminite with high slagging property

    SciTech Connect

    Sun Guojun; Gu Yizhi; Zhou Hao

    1999-07-01

    In the traditional pulverized coal tangential firing boiler design, the uniform air distributing burner is always adopted to burn bituminite with fine ignitability, a good furnace flame coefficient of fullness and coal powder burn-off rate can be obtained. But such assemblage also results in inadaptability for coal quality, furnace slagging while burning clinkering coal, and a local high temperature zone, and uniform air distribution also leads to high emission of thermal NOx and fuel NOx. Using uniform air distribution burner also results in bad flame stability at low load and the severe twisting residual at furnace exit. In this paper, a kind of combination burner system is developed by moving the upper primary air to a lower location and using a horizontal fuel-rich and lean burner. The modeling test and numerical simulation are used to prove the scheme's feasibility; the hot test illustrates that the scheme is correct.

  12. Combustion Characteristics of Oxy-fuel Burners for CO2 Capturing Boilers

    NASA Astrophysics Data System (ADS)

    Ahn, Joon; Kim, Hyouck Ju; Choi, Kyu Sung

    Oxy-fuel boilers have been developed to capture CO2 from the exhaust gas. A 50 kW class model burner has been developed and tested in a furnace type boiler. The burner has been scaled up to 0.5 and 3 MW class for fire-tube type boilers. The burners are commonly laid out in a coaxial type to effectively heat the combustion chamber of boilers. Burners are devised to support air and oxy-fuel combustion modes for the retrofitting scenario. FGR (flue gas recirculation) has been tried during the scale-up procedure. Oxy-fuel combustion yields stretched flame to uniformly heat the combustion chamber. It also provides the high CO2 concentration, which is over 90% in dry base. However, pure oxy-fuel combustion increases NO concentration, because of the reduced flow rate. The FGR can suppress the thermal NOx induced by the infiltration of the air.

  13. Initial experience in operation of furnace burners with adjustable flame parameters

    SciTech Connect

    Garzanov, A.L.; Dolmatov, V.L.; Saifullin, N.R.

    1995-07-01

    The designs of burners currently used in tube furnaces (CP, FGM, GMG, GIK, GNF, etc.) do not have any provision for adjusting the heat-transfer characteristics of the flame, since the gas and air feed systems in these burners do not allow any variation of the parameters of mixture formation, even though this process is critical in determining the length, shape, and luminosity of the flame and also the furnace operating conditions: efficiency, excess air coefficient, flue gas temperature at the bridgewall, and other indexes. In order to provide the controlling the heat-transfer characteristics of the flame, the Elektrogorsk Scientific-Research Center (ENITs), on the assignment of the Novo-Ufa Petroleum Refinery, developed a burner with diffusion regulation of the flame. The gas nozzle of the burner is made up of two coaxial gas chambers 1 and 2, with independent feed of gas from a common line through two supply lines.

  14. SITE PROGRAM EVALUATION OF THE SONOTECH PULSE COMBUSTION BURNER TECHNOLOGY - TECHNICAL RESULTS

    EPA Science Inventory

    A series of demonstration tests was performed at the Environmental Protection Agency's (EPA's) Incineration Research Facility (IRF) under the Superfund Innovative Technology Evaluation (SITE) program. These tests, twelve in all, evaluated a pulse combustion burner technology dev...

  15. High Efficiency Burners by Retrofit - A Simple Inexpensive Way to Improve Combustion Efficiency 

    E-print Network

    Rogers, W. T.

    1980-01-01

    and short, high intensity flame patterns assure reduction of stack temperature, thus increased efficiency. Conversion can be made "on-the-fly" without shutting down the fired heaters or boilers by insertion of an "installation package" of the burners...

  16. Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels

    SciTech Connect

    2010-07-01

    The University of Alabama will develop fuel-flexible, low-emissions burner technology for the metal processing industry that is capable of using biomass-derived liquid fuels, such as glycerin or fatty acids, as a substitute for natural gas. By replacing a fossil fuel with biomass fuels, this new burner will enable a reduction in energy consumption and greenhouse gas emissions and an increase in fuel flexibility.

  17. Numerical simulation of turbulent mixing and combustion near the inlet of a burner

    SciTech Connect

    Cloutman, L.D.

    1993-02-01

    The COYOTE computer program was used to simulate the flow field and turbulent mixing near the fuel and air inlets in a simplified burner that was proposed for experimental study at the Combustion Laboratory at the University of California at Irvine. Four cases are presented, with and without chemical reactions, with two different outflow boundary conditions, and with two different swirl numbers. These preliminary results demonstrate the ability of COYOTE to simulate burners, and they illustrate some limitations and requirements of such modeling.

  18. Low NOx Burner Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler

    SciTech Connect

    Andrew Seltzer

    2005-05-01

    The objective of the low NOx burner design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the burner design to ensure stable ignition, to provide safe operation, and to minimize pollutant formation. The burners were designed and analyzed using the Fluent computer program. Four burner designs were developed: (1) with no over-fire gas (OFG) and 65% flue gas recycle, (2) with 20% OFG and 65% flue gas recycle, (3) with no OFG and 56% flue gas recycle and (4) with 20% OFG and 56% flue gas recycle. A 3-D Fluent simulation was made of a single wall-fired burner and horizontal portion of the furnace from the wall to the center. Without primary gas swirl, coal burnout was relatively small, due to the low oxygen content of the primary gas stream. Consequently, the burners were modified to include primary gas swirl to bring the coal particles in contact with the secondary gas. An optimal primary gas swirl was chosen to achieve sufficient burnout.

  19. Non-uniform velocity profile mechanism for flame stabilization in a porous radiant burner

    SciTech Connect

    Catapan, R.C.; Costa, M.; Oliveira, A.A.M.

    2011-01-15

    Industrial processes where the heating of large surfaces is required lead to the possibility of using large surface porous radiant burners. This causes additional temperature uniformity problems, since it is increasingly difficult to evenly distribute the reactant mixture over a large burner surface while retaining its stability and keeping low pollutant emissions. In order to allow for larger surface area burners, a non-uniform velocity profile mechanism for flame stabilization in a porous radiant burner using a single large injection hole is proposed and analyzed for a double-layered burner operating in open and closed hot (laboratory-scale furnace, with temperature-controlled, isothermal walls) environments. In both environments, local mean temperatures within the porous medium have been measured. For lower reactant flow rate and ambient temperature the flame shape is conical and anchored at the rim of the injection hole. As the volumetric flow rate or furnace temperature is raised, the flame undergoes a transition to a plane flame stabilized near the external burner surface. However, the stability range envelope remains the same in both regimes. (author)

  20. Burner Rig with an Unattached Duct for Evaluating the Erosion Resistance of Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Kuczmarski, Maria A.; Zhu, Dongming

    2011-01-01

    Extensive computational fluid dynamics (CFD) modeling backed by experimental observation has demonstrated the feasibility of using an unattached duct to increase the velocity and spatial spread of erodent particles exiting from a burner rig. It was shown that gas velocity and temperature are mostly retained if the inner diameter of the unattached duct equaled the exit diameter of the burner rig nozzle. For particles having a mean diameter of 550 millimeters, the modeled velocity attained at a distance 2.0 in. (50.8 millimeters) beyond the exit of a 12 in. (305 millimeters) long duct was approximately twice as large as the velocity the same distance from the nozzle when the duct was not present. For finer particles, the relative enhancement was somewhat less approximately 1.5 times greater. CFD modeling was also used to guide the construction of a device for slowing down the velocity of the particles being injected into the burner rig. This device used a simple 45 degree fitting to slow the particle velocity in the feed line from 20 meters per second, which is in the range needed to convey the particles, to about 3 meters per second just as they are injected into the burner. This lower injection velocity would lessen the severity of the collision of large particles with the wall of the burner liner opposite the injection port, thereby reducing potential damage to the burner liner by high-velocity particles.

  1. Pioneer 10 and 11 Data Analysis

    NASA Technical Reports Server (NTRS)

    Fillius, Walker

    1997-01-01

    This report finishes the work of NASA Grant NAS2-153, which supported data analysis for the UCSD instruments on Pioneers 10 and 11. The data analyzed under this grant span 22 years of interplanetary measurements in the inner and outer heliosphere. The UCSD instruments made their mark in cosmic ray research based upon their high energy thresholds, directional responses, and reliable data streams. one of their primary scientific objectives concerns the size, configuration, and time behavior of the heliosphere. The size scale is inferred from the radial intensity gradient, which is measured between the two spacecraft and extrapolated to interstellar intensity levels at the cosmic ray modulation boundary. This boundary still eludes us, and its position, motion, and the best method of extrapolation are ongoing problems. Current projections place the boundary beyond 100 AU, which may be beyond the termination shock, and raises the question of possible modulation in the heliosheath. Probably our only hope of seeing this region in the immediate future rides on the possibility that the boundary will move inward. Our instruments have recorded many Forbush, or transient, decreases in the outer heliosphere. These observations led us to a model that attributes many of the decreases to solar wind stream-stream interactions, and relates the cosmic ray variations to the locally observed magnetic field magnitude. As the cosmic ray variations in this model result only from topological changes in the modulation integral, the model is a tool for studying the possibility that the 11 year cosmic ray modulation cycle can be accounted for by a superposition of Forbush decreases. The cosmic ray angular distribution function is measurable, given a good telemetry rate, by the UCSD Cerenkov detector which counts particles of energy greater than 500 MeV/n. We obtained statistically significant samples from 1 to 9 AU, at 13 AU, and at 34 AU. The anisotropy tends to be a few tenths of a per cent at all radial distances. A quasiperiodic variation in the east-west anisotropy with period of about 50 days remains unexplained.

  2. Combustion Stages of a Single Heavy Oil Droplet in Microgravity

    NASA Technical Reports Server (NTRS)

    Ikegami, M.; Xu, G.; Ikeda, K.; Honma, S.; Nagaishi, H.; Dietrich, D. L.; Struk, P. M.; Takeshita, Y.

    2001-01-01

    Heavy oil is a common fuel for industrial furnaces, boilers, marines and diesel engines. Previous studies showed that the combustion of heavy oil involves not only the complete burning of volatile matters but also the burn-out of coke residues. Detailed knowledge about heavy oil combustion therefore requires an understanding of the different burning stages of heavy oil droplets in the burner. This in turn, demands knowledge about the single droplet evaporation and combustion characteristics. This study measured the temperature and size histories of heavy oil (C glass) droplets burning in microgravity to elucidate the various stages that occur during combustion. The elimination of the gravity-induced gas convection in microgravity allows the droplet combustion to be studied in greater detail. Noting that the compositions of heavy oil are various, we also tested the fuel blends of a diesel light oil (LO) and a heavy oil residue (HOR).

  3. The Pioneer Anomaly: Seeking an explanation in newly recovered data

    E-print Network

    Viktor T Toth; Slava G Turyshev

    2007-03-06

    The Pioneer 10 and 11 spacecraft yielded very accurate navigation that was limited only by a small, anomalous frequency drift of their carrier signals received by the NASA Deep Space Network (DSN). This discrepancy, evident in the data for both spacecraft, was interpreted as an approximately constant acceleration and has become known as the Pioneer anomaly. The origin of this anomaly is yet unknown. Recent efforts to explain the effect included a search for independent confirmation, analyses of conventional mechanisms, even ideas rooted in new physics, and proposals for a dedicated mission. We assert that before any discussion of new physics and (or) a dedicated mission can take place, one must analyze the entire set of radiometric Doppler data received from Pioneer 10 and 11. We report on our efforts to recover and utilize the complete set of radio Doppler and telemetry records of both spacecraft. The collection of radio Doppler data for both missions is now complete; we are ready to begin its evaluation. We also made progress utilizing the recently recovered Pioneer telemetry data. We present a strategy for studying the effect of on-board generated small forces with this telemetry data, in conjunction with the analysis of the entire set of the Pioneer Doppler data. We report on the preparations for the upcoming analysis of the newly recovered data with the ultimate goal of determining the origin of the Pioneer anomaly. Finally, we discuss implications of our on-going research of the Pioneer anomaly for other missions, most notably for New Horizons, NASA's recently launched mission to Pluto.

  4. Axogenesis in the antennal nervous system of the grasshopper Schistocerca gregaria revisited: the base pioneers.

    PubMed

    Ehrhardt, Erica; Liu, Yu; Boyan, George

    2015-01-01

    The antennal nervous system of the grasshopper Schistocerca gregaria comprises two parallel pathways projecting to the brain, each pioneered early in embryogenesis by a pair of sibling cells located at the antennal tip. En route, the growth cones of pioneers from one pathway have been shown to contact a guidepost-like cell called the base pioneer. Its role in axon guidance remains unclear as do the cellular guidance cues regulating axogenesis in the other pathway supposedly without a base pioneer. Further, while the tip pioneers are known to delaminate from the antennal epithelium into the lumen, the origin of this base pioneer is unknown. Here, we use immunolabeling and immunoblocking methods to clarify these issues. Co-labeling against the neuron-specific marker horseradish peroxidase and the pioneer-specific cell surface glycoprotein Lazarillo identifies not only the tip pioneers but also a base pioneer associated with each of the developing antennal pathways. Both base pioneers co-express the mesodermal label Mes3, consistent with a lumenal origin, whereas the tip pioneers proved Mes3-negative confirming their affiliation with the ectodermal epithelium. Lazarillo antigen expression in the antennal pioneers followed a different temporal dynamic: continuous in the tip pioneers, but in the base pioneers, only at the time their filopodia and those of the tip pioneers first recognize one another. Immunoblocking of Lazarillo expression in cultured embryos disrupts this recognition resulting in misguided axogenesis in both antennal pathways. PMID:25527188

  5. Pioneer Anomaly: What Can We Learn from LISA?

    NASA Astrophysics Data System (ADS)

    Defrère, Denis; Rathke, Andreas

    The Doppler tracking data from two deep-space spacecraft, Pioneer 10 and 11, show an anomalous blueshift, which has been dubbed the “Pioneer anomaly”. The effect is most commonly interpreted as a real deceleration of the spacecraft - an interpretation that faces serious challenges from planetary ephemerides. The Pioneer anomaly could as well indicate an unknown effect on the radio signal itself. Several authors have made suggestions how such a blueshift could be related to cosmology. We consider this interpretation of the Pioneer anomaly and study the impact of an anomalous blueshift on the Laser Interferometer Space Antenna (LISA), a planned joint ESA-NASA mission aiming at the detection of gravitational waves. The relative frequency shift (proportional to the light travel time) for the LISA arm length is estimated to 10-16, which is much bigger than the expected amplitude of gravitational waves. The anomalous blueshift enters the LISA signal in two ways, as a small term folded with the gravitational-wave signal, and as larger term at low frequencies. A detailed analysis shows that both contributions remain undetectable and do not impair the gravitational-wave detection. This suggests that the Pioneer anomaly will have to be tested in the outer solar system regardless if the effect is caused by an anomalous blueshift or by a real force.

  6. Intraguild predation in pioneer predator communities of alpine glacier forelands.

    PubMed

    Raso, Lorna; Sint, Daniela; Mayer, Rebecca; Plangg, Simon; Recheis, Thomas; Brunner, Silvia; Kaufmann, Rüdiger; Traugott, Michael

    2014-08-01

    Pioneer communities establishing themselves in the barren terrain in front of glacier forelands consist principally of predator species such as carabid beetles and lycosid spiders. The fact that so many different predators can co-inhabit an area with no apparent primary production was initially explained by allochthonous material deposited in these forelands. However, whether these populations can be sustained on allochthonous material alone is questionable and recent studies point towards this assumption to be flawed. Intraguild predation (IGP) might play an important role in these pioneer predator assemblages, especially in the very early successional stages where other prey is scarce. Here, we investigated IGP between the main predator species and their consumption of Collembola, an important autochthonous alternative prey, within a glacier foreland in the Ötztal (Austrian Alps). Multiplex PCR and stable isotope analysis were used to characterize the trophic niches in an early and late pioneer stage over 2 years. Results showed that intraguild prey was consumed by all invertebrate predators, particularly the larger carabid species. Contrary to our initial hypothesis, the DNA detection frequency of IGP prey was not significantly higher in early than in late pioneer stage, which was corroborated by the stable isotope analysis. Collembola were the most frequently detected prey in all of the predators, and the overall prey DNA detection patterns were consistent between years. Our findings show that IGP appears as a constant in these pioneer predator communities and that it remains unaffected by successional changes. PMID:24383765

  7. Intraguild predation in pioneer predator communities of alpine glacier forelands

    PubMed Central

    Raso, Lorna; Sint, Daniela; Mayer, Rebecca; Plangg, Simon; Recheis, Thomas; Brunner, Silvia; Kaufmann, Rüdiger; Traugott, Michael

    2014-01-01

    Pioneer communities establishing themselves in the barren terrain in front of glacier forelands consist principally of predator species such as carabid beetles and lycosid spiders. The fact that so many different predators can co-inhabit an area with no apparent primary production was initially explained by allochthonous material deposited in these forelands. However, whether these populations can be sustained on allochthonous material alone is questionable and recent studies point towards this assumption to be flawed. Intraguild predation (IGP) might play an important role in these pioneer predator assemblages, especially in the very early successional stages where other prey is scarce. Here, we investigated IGP between the main predator species and their consumption of Collembola, an important autochthonous alternative prey, within a glacier foreland in the Ötztal (Austrian Alps). Multiplex PCR and stable isotope analysis were used to characterize the trophic niches in an early and late pioneer stage over 2 years. Results showed that intraguild prey was consumed by all invertebrate predators, particularly the larger carabid species. Contrary to our initial hypothesis, the DNA detection frequency of IGP prey was not significantly higher in early than in late pioneer stage, which was corroborated by the stable isotope analysis. Collembola were the most frequently detected prey in all of the predators, and the overall prey DNA detection patterns were consistent between years. Our findings show that IGP appears as a constant in these pioneer predator communities and that it remains unaffected by successional changes. PMID:24383765

  8. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    SciTech Connect

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO{sub x} in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO{sub x} emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames--particularly under low NO{sub x} conditions. A CO/H{sub 2}/O{sub 2}/N{sub 2} flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state {sup 13}C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that aims to predict the conversion of char-nitrogen to nitric oxide should allow for the conversion of char-nitrogen to HCN. The extent of the HCN conversion to NO or N{sub 2} will depend on the composition of the atmosphere surrounding the particle. A pilot-scale testing campaign was carried out to evaluate the impact of multiburner firing on NO{sub x} emissions using a three-burner vertical array. In general, the results indicated that multiburner firing yielded higher NO{sub x} emissions than single burner firing at the same fuel rate and excess air. Mismatched burner operation, due to increases in the firing rate of the middle burner, generally demonstrated an increase in NO{sub x} over uniform firing. Biased firing, operating the middle burner fuel rich with the upper and lower burners fuel lean, demonstrated an overall reduction in NO{sub x} emissions; particularly when the middle burner was operated highly fuel rich. Computational modeling indicated that operating the three burner array with the center burner swirl in a direction opposite to the other two resulted in a slight reduction in NO{sub x}.

  9. System for utilizing oil shale fines

    DOEpatents

    Harak, Arnold E. (Laramie, WY)

    1982-01-01

    A system is provided for utilizing fines of carbonaceous materials such as particles or pieces of oil shale of about one-half inch or less diameter which are rejected for use in some conventional or prior surface retorting process, which obtains maximum utilization of the energy content of the fines and which produces a waste which is relatively inert and of a size to facilitate disposal. The system includes a cyclone retort (20) which pyrolyzes the fines in the presence of heated gaseous combustion products, the cyclone retort having a first outlet (30) through which vapors can exit that can be cooled to provide oil, and having a second outlet (32) through which spent shale fines are removed. A burner (36) connected to the spent shale outlet of the cyclone retort, burns the spent shale with air, to provide hot combustion products (24) that are carried back to the cyclone retort to supply gaseous combustion products utilized therein. The burner heats the spent shale to a temperature which forms a molten slag, and the molten slag is removed from the burner into a quencher (48) that suddenly cools the molten slag to form granules that are relatively inert and of a size that is convenient to handle for disposal in the ground or in industrial processes.

  10. Ultra clean burner for an AMTEC system suitable for hybrid electric vehicles

    SciTech Connect

    Mital, R.; Sievers, R.K.; Hunt, T.K.

    1997-12-31

    High power Alkali Metal Thermal to Electric Converter (AMTEC) systems have the potential to make the hybrid electric vehicle (HEV) program a success by meeting the challenging standards put forth by the EPA for the automobile industry. The premise of the whole concept of using AMTEC cells, as discussed by Hunt et al. (1995), for power generation in HEV`s is based on the utilization of a high efficiency external combustion system. The key requirement being a burner which will produce extremely low quantities of carbon monoxide and oxides of nitrogen, emit minimal amounts of hydrocarbon, will have high radiative and convective efficiencies and at least a 4:1 turndown ratio. This work presents one such burner which has the potential to meet all of these demands and more. After investigation of a number of burners, including, metal fiber, ported metal, ceramic fiber and ported ceramic, it is believed that cellular ceramic burners will be the best candidates for integration with AMTEC cells for a high power system suitable for hybrid electric vehicles. A detailed study which includes the operating range, radiation efficiency, total heat transfer efficiency, spectral intensity, exit gas temperature and pollutant emission indices measurement has been carried out on circular and square shaped burners. Total heat transfer efficiencies as high as 65--70% have been measured using a water calorimeter. With efficient recuperation, a burner/recuperator efficiency of 80% at peak power and 90% at peak efficiency operating points are conceivable with this burner. Establishment of combustion within the porous matrix leads to low peak temperatures and hence lower NO{sub x}. The emission indices of CO and HC are also quite low. The stability range measurements show a 6:1 turndown ratio at an equivalence ratio of 0.9.

  11. Design of "model-friendly" turbulent non-premixed jet burners for C2+ hydrocarbon fuels

    NASA Astrophysics Data System (ADS)

    Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.

    2011-07-01

    Experimental measurements in laboratory-scale turbulent burners with well-controlled boundary and flow configurations can provide valuable data for validating models of turbulence-chemistry interactions applicable to the design and analysis of practical combustors. This paper reports on the design of two canonical nonpremixed turbulent jet burners for use with undiluted gaseous and liquid hydrocarbon fuels, respectively. Previous burners of this type have only been developed for fuels composed of H2, CO, and/or methane, often with substantial dilution. While both new burners are composed of concentric tubes with annular pilot flames, the liquid-fuel burner has an additional fuel vaporization step and an electrically heated fuel vapor delivery system. The performance of these burners is demonstrated by interrogating four ethylene flames and one flame fueled by a simple JP-8 surrogate. Through visual observation, it is found that the visible flame lengths show good agreement with standard empirical correlations. Rayleigh line imaging demonstrates that the pilot flame provides a spatially homogeneous flow of hot products along the edge of the fuel jet. Planar imaging of OH laser-induced fluorescence reveals a lack of local flame extinction in the high-strain near-burner region for fuel jet Reynolds numbers (Re) less than 20 000, and increasingly common extinction events for higher jet velocities. Planar imaging of soot laser-induced incandescence shows that the soot layers in these flames are relatively thin and are entrained into vortical flow structures in fuel-rich regions inside of the flame sheet.

  12. Support for temporally varying behavior of the Pioneer anomaly from the extended Pioneer 10 and 11 Doppler data sets

    E-print Network

    Slava G. Turyshev; Viktor T. Toth; Jordan Ellis; Craig B. Markwardt

    2011-07-14

    The Pioneer anomaly is a small sunward anomalous acceleration found in the trajectory analysis of the Pioneer 10 and 11 spacecraft. As part of the investigation of the effect, analysis of recently recovered Doppler data for both spacecraft has been completed. The presence of a small anomalous acceleration is confirmed using data spans more than twice as long as those that were previously analyzed. We examine the constancy and direction of the Pioneer anomaly, and conclude that: i) the data favor a temporally decaying anomalous acceleration (~2\\times 10^{-11} m/s^2/yr) with an over 10% improvement in the residuals compared to a constant acceleration model; ii) although the direction of the acceleration remains imprecisely determined, we find no support in favor of a Sun-pointing direction over the Earth-pointing or along the spin-axis directions, and iii) support for an early "onset" of the acceleration remains weak in the pre-Saturn Pioneer 11 tracking data. We present these new findings and discuss their implications for the nature of the Pioneer anomaly.

  13. Thermal recoil force, telemetry, and the Pioneer anomaly

    SciTech Connect

    Toth, Viktor T.; Turyshev, Slava G.

    2009-02-15

    Precision navigation of spacecraft requires accurate knowledge of small forces, including the recoil force due to anisotropies of thermal radiation emitted by spacecraft systems. We develop a formalism to derive the thermal recoil force from the basic principles of radiative heat exchange and energy-momentum conservation. The thermal power emitted by the spacecraft can be computed from engineering data obtained from flight telemetry, which yields a practical approach to incorporate the thermal recoil force into precision spacecraft navigation. Alternatively, orbit determination can be used to estimate the contribution of the thermal recoil force. We apply this approach to the Pioneer anomaly using a simulated Pioneer 10 Doppler data set.

  14. On the vacuum fluctuations, Pioneer Anomaly and Modified Newtonian Dynamics

    E-print Network

    Dragan Slavkov Hajdukovic

    2011-02-08

    We argue that the so-called "Pioneer Anomaly" is related to the quantum vacuum fluctuations. Our approach is based on the hypothesis of the gravitational repulsion between matter and antimatter, what allows considering, the virtual particle-antiparticle pairs in the physical vacuum, as gravitational dipoles. Our simplified calculations indicate that the anomalous deceleration of the Pioneer spacecrafts could be a consequence of the vacuum polarization in the gravitational field of the Sun. At the large distances, the vacuum polarization by baryonic matter could mimic dark matter what opens possibility that dark matter do not exist, as advocated by the Modified Newtonian Dynamics (MOND).

  15. Five Pioneers with Scale Models of Their Missiles

    NASA Technical Reports Server (NTRS)

    1950-01-01

    Five pioneers pose with scale models of their missiles they created in the 1950s. From left to right: Dr. Ernst Stuhlinger, a member of the original German rocket team who directed the Research Projects Office, Army Ballistic Missile Agency (ABMA); Major General Holger Toftoy, who consolidated U.S. missile and rocketry development; Professor Herman Oberth, a rocket pioneer and Dr. von Braun's mentor; Dr. Wernher von Braun, Director, Development Operation Division, ABMA; and Dr. Robert Lusser, who served as assistant director for Reliability Engineering for ABMA. This photographis was taken February 1, 1956 by Hank Walker and appeared in February 27, 1956 issue of Life magazine.

  16. Temporary hydrologic changes after deforestation for pioneer homesteading

    NASA Astrophysics Data System (ADS)

    Ryckborst, Hans

    1981-09-01

    Modernday pioneering farmers, while clearing forest and brush from Central Albertan homestead lands, create a temporarily disturbed soil profile with a slightly increased effective porosity in groudwater recharge areas. The deforestation of recharge areas creates a drop in the groundwater table of 0.2-0.5 m, with a gradual recovery two years later. In contrast, groundwater levels in groundwater discharge areas rise due to a decreased effective porosity associated with mechanized deforestation. Overall, the impact of pioneering farmers on the hydrology of Central Albertan homestead lands appear to be minor and only temporary.

  17. Flaxseed oil

    MedlinePLUS

    Flaxseed is the seed from the plant Linum usitatissimum. Oil from the seed is used to make medicine. People try flaxseed oil for ... Oil, Echter Lein, Flachs, Flachssamen, Flax Oil, Flax Seed Oil, Golden Flax Oil, Graine de Lin, Huile ...

  18. VISTA: Pioneering New Survey Telescope Starts Work

    NASA Astrophysics Data System (ADS)

    2009-12-01

    A new telescope - VISTA (the Visible and Infrared Survey Telescope for Astronomy) - has just started work at ESO's Paranal Observatory and has made its first release of pictures. VISTA is a survey telescope working at infrared wavelengths and is the world's largest telescope dedicated to mapping the sky. Its large mirror, wide field of view and very sensitive detectors will reveal a completely new view of the southern sky. Spectacular new images of the Flame Nebula, the centre of our Milky Way galaxy and the Fornax Galaxy Cluster show that it is working extremely well. VISTA is the latest telescope to be added to ESO's Paranal Observatory in the Atacama Desert of northern Chile. It is housed on the peak adjacent to the one hosting the ESO Very Large Telescope (VLT) and shares the same exceptional observing conditions. VISTA's main mirror is 4.1 metres across and is the most highly curved mirror of this size and quality ever made - its deviations from a perfect surface are less than a few thousandths of the thickness of a human hair - and its construction and polishing presented formidable challenges. VISTA was conceived and developed by a consortium of 18 universities in the United Kingdom [1] led by Queen Mary, University of London and became an in-kind contribution to ESO as part of the UK's accession agreement. The telescope design and construction were project-managed by the Science and Technology Facilities Council's UK Astronomy Technology Centre (STFC, UK ATC). Provisional acceptance of VISTA was formally granted by ESO at a ceremony at ESO's Headquarters in Garching, Germany, attended by representatives of Queen Mary, University of London and STFC, on 10 December 2009 and the telescope will now be operated by ESO. "VISTA is a unique addition to ESO's observatory on Cerro Paranal. It will play a pioneering role in surveying the southern sky at infrared wavelengths and will find many interesting targets for further study by the Very Large Telescope, ALMA and the future European Extremely Large Telescope," says Tim de Zeeuw, the ESO Director General. At the heart of VISTA is a 3-tonne camera containing 16 special detectors sensitive to infrared light, with a combined total of 67 million pixels. Observing at wavelengths longer than those visible with the human eye allows VISTA to study objects that are otherwise impossible to see in visible light because they are either too cool, obscured by dust clouds or because they are so far away that their light has been stretched beyond the visible range by the expansion of the Universe. To avoid swamping the faint infrared radiation coming from space, the camera has to be cooled to -200 degrees Celsius and is sealed with the largest infrared-transparent window ever made. The VISTA camera was designed and built by a consortium including the Rutherford Appleton Laboratory, the UK ATC and the University of Durham in the United Kingdom. Because VISTA is a large telescope that also has a large field of view it can both detect faint sources and also cover wide areas of sky quickly. Each VISTA image captures a section of sky covering about ten times the area of the full Moon and it will be able to detect and catalogue objects over the whole southern sky with a sensitivity that is forty times greater than that achieved with earlier infrared sky surveys such as the highly successful Two Micron All-Sky Survey. This jump in observational power - comparable to the step in sensitivity from the unaided eye to Galileo's first telescope - will reveal vast numbers of new objects and allow the creation of far more complete inventories of rare and exotic objects in the southern sky. "We're delighted to have been able to provide the astronomical community with the VISTA telescope. The exceptional quality of the scientific data is a tribute to all the scientists and engineers who were involved in this exciting and challenging project," adds Ian Robson, Head of the UK ATC. The first released image shows the Flame Nebula (NGC 2024), a spectacular star-forming cloud of gas and du

  19. A critical review of noise production models for turbulent, gas-fueled burners

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.

    1984-01-01

    The combustion noise literature for the period between 1952 and early 1984 is critically reviewed. Primary emphasis is placed on past theoretical and semi-empirical attempts to predict or explain observed direct combustion noise characteristics of turbulent, gas-fueled burners; works involving liquid-fueled burners are reviewed only when ideas equally applicable to gas-fueled burners are pesented. The historical development of the most important contemporary direct combustion noise theories is traced, and the theories themselves are compared and criticized. While most theories explain combustion noise production by turbulent flames in terms of randomly distributed acoustic monopoles produced by turbulent mixing of products and reactants, none is able to predict the sound pressure in the acoustic farfield of a practical burner because of the lack of a proven model which relates the combustion noise source strenght at a given frequency to the design and operating parameters of the burner. Recommendations are given for establishing a benchmark-quality data base needed to support the development of such a model.

  20. COMPARISON OF EMISSIONS AND ORGANIC FINGERPRINTS FROM COMBUSTION OF OIL AND WOOD

    EPA Science Inventory

    The paper presents data from an Integrated Air Cancer Project (IACP) pilot study on the total carbon, organics, and particulate emissions from oil furnaces with both gun-type and retention head burners. hese data are compared to results of a similar IACP study on woodstoves condu...

  1. COMBUSTION MODIFICATION EFFECTS ON NOX EMISSIONS FROM GAS-, OIL-, AND COAL-FIRED UTILITY BOILERS

    EPA Science Inventory

    The report represents the conclusion of 4 years of analysis of large quantities of emissions, operating conditions, and boiler configuration data from full-scale multiple-burner, electric-generating boilers firing natural gas, oil, and coal fuels. The overall objective of the stu...

  2. Pioneer 11's encounter with Jupiter and mission to Saturn

    NASA Technical Reports Server (NTRS)

    Dyer, J. W.

    1975-01-01

    Plans for Pioneer 11's approach to Saturn are described. A flyby somewhat parallel to the ring plane is being proposed as an interim target, with a future option held for a possible high risk (or suicide) plunge through the nearly transparent space between Saturn and its rings.

  3. A British Intellectual Pioneers a New Model for College

    ERIC Educational Resources Information Center

    Labi, Aisha

    2013-01-01

    This article profiles A.C. Grayling, a British intellectual who pioneers a new model for college. In his role as founder of the New College of the Humanities, Britain's newest and most controversial institution of higher education, A.C. Grayling could have chosen among several titles. The senior academic officer at most English higher-education…

  4. Oneida Cockrell: Pioneer in the Field of Early Childhood Education

    ERIC Educational Resources Information Center

    Simpson, Jean

    2012-01-01

    In this article the author profiles Oneida Cockrell, a pioneer in the field of early childhood education. She was the founder and director of the Garden Apartments Nursery School and Kindergarten, located in the prestigious Michigan Boulevard Garden Apartments building (commonly known as the Rosenwald Apartments) in Chicago's West Hyde Park…

  5. Pioneer Women in Manitoba: Evidence of Servant-Leadership

    ERIC Educational Resources Information Center

    Crippen, Carolyn L.

    2004-01-01

    Leadership was characterized as patriarchal and hierarchical during the 19th and early 20th centuries. Pioneer women were often not credited with leadership qualities although many, including school teachers, journalists, suffragettes, healthcare workers, and social activists played an important role in the development of Manitoba communities.…

  6. Pioneer round of translation occurs during serum starvation

    SciTech Connect

    Oh, Nara; Kim, Kyoung Mi; Cho, Hana; Choe, Junho; Kim, Yoon Ki

    2007-10-12

    The pioneer round of translation plays a role in translation initiation of newly spliced and exon junction complex (EJC)-bound mRNAs. Nuclear cap-binding protein complex CBP80/20 binds to those mRNAs at the 5'-end, recruiting translation initiation complex. As a consequence of the pioneer round of translation, the bound EJCs are dissociated from mRNAs and CBP80/20 is replaced by the cytoplasmic cap-binding protein eIF4E. Steady-state translation directed by eIF4E allows for an immediate and rapid response to changes in physiological conditions. Here, we show that nonsense-mediated mRNA decay (NMD), which restricts only to the pioneer round of translation but not to steady-state translation, efficiently occurs even during serum starvation, in which steady-state translation is drastically abolished. Accordingly, CBP80 remains in the nucleus and processing bodies are unaffected in their abundance and number in serum-starved conditions. These results suggest that mRNAs enter the pioneer round of translation during serum starvation and are targeted for NMD if they contain premature termination codons.

  7. Star field attitude sensor study for the Pioneer Venus spacecraft

    NASA Technical Reports Server (NTRS)

    Rudolf, W. P.; Reed, D. R.

    1972-01-01

    The characteristics of a star field attitude sensor for use with the Pioneer Venus spacecraft are presented. The aspects of technical feasibility, system interface considerations, and cost of flight hardware development are discussed. The tradeoffs which relate to performance, design, cost, and reliability are analyzed. The configuration of the system for installation in the spacecraft is described.

  8. Pioneers in Public Library Service to Young Adults.

    ERIC Educational Resources Information Center

    Atkinson, Joan

    1986-01-01

    Presents biographies of four leaders in public library service to young adults: Mabel Williams, Margaret Scoggin, Jean Roos, and Margaret Edwards. They are described as pioneers who worked to obtain recognition for and establish young adult work and who can serve as inspirations for librarians today. (EM)

  9. Pioneering barren land: mitotic bookmarking by transcription factors.

    PubMed

    Rada-Iglesias, Alvaro

    2013-02-25

    Genome condensation during mitosis presents a chromatin landscape largely inaccessible to RNA polymerase II and most transcription factors. Caravaca et al. (2013) now report in Genes and Development that the pioneer transcription factor FOXA1 is retained at mitotic chromosomes, bookmarking the genome to enable gene expression reestablishment upon mitotic exit. PMID:23449470

  10. National Aeronautics and Space Administration Pioneering Next Steps

    E-print Network

    Rathbun, Julie A.

    partnerships while embracing new ones. And like pioneering efforts before it, the journey to Mars will foster's, and that at one time, Mars had conditions suitable for life. What we learn about the Red Planet will tell us more: · · · · Was Mars home to microbial life? Is it today? Could it be a safe home for humans one day? What can it teach

  11. 1. Historic American Buildings Survey From Society of California Pioneers ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey From Society of California Pioneers Original: About 1790 Re- photo: January 1940 (From old drawing by Sukes, showing first church at left, second church being built near center - about 1790) - Mission San Carlos Borromeo, Rio Road & Lausen Drive, Carmel-by-the-Sea, Monterey County, CA

  12. "Mid-Week Pictorial": Pioneer American Photojournalism Magazine.

    ERIC Educational Resources Information Center

    Kenney, Keith

    In 1914 (22 years before the inception of "Life" magazine), the "New York Times" began publishing "Mid-Week Pictorial" to absorb a flood of war pictures pouring in from Europe. Several sociological and technological forces shaped "Mid-Week Pictorial" as a pioneer of American photojournalism magazines, including the development of the halftone…

  13. Conventional forces can explain the anomalous acceleration of Pioneer 10

    NASA Astrophysics Data System (ADS)

    Scheffer, Louis K.

    2003-04-01

    Anderson et al. find the measured trajectories of Pioneer 10 and 11 spacecrafts deviate from the trajectories computed from known forces acting on them. This unmodeled acceleration (and the less well known, but similar, unmodeled torque) can be accounted for by non-isotropic radiation of spacecraft heat. Various forms of non-isotropic radiation were proposed by Katz, Murphy, and Scheffer, but Anderson et al. felt that none of these could explain the observed effect. This paper calculates the known effects in more detail and considers new sources of radiation, all based on spacecraft construction. These effects are then modeled over the duration of the experiment. The model reproduces the acceleration from its appearance at a heliocentric distance of 5 AU to the last measurement at 71 AU to within 10%. However, it predicts a larger decrease in acceleration between intervals I and III of the Pioneer 10 observations than is observed. This is a 2? discrepancy from the average of the three analyses (SIGMA, CHASMP, and Markwardt). A more complex (but more speculative) model provides a somewhat better fit. Radiation forces can also plausibly explain the previously unmodeled torques, including the spindown of Pioneer 10 that is directly proportional to spacecraft bus heat, and the slow but constant spin-up of Pioneer 11. In any case, by accounting for the bulk of the acceleration, the proposed mechanism makes it much more likely that the entire effect can be explained without the need for new physics.

  14. Effect of fuel volatility on performance of tail-pipe burner

    NASA Technical Reports Server (NTRS)

    Barson, Zelmar; Sargent, Arthur F , Jr

    1951-01-01

    Fuels having Reid vapor pressures of 6.3 and 1.0 pounds per square inch were investigated in a tail-pipe burner on an axial-flow-type turbojet engine at a simulated flight Mach number of 0.6 and altitudes from 20,000 to 45,000 feet. With the burner configuration used in this investigation, having a mixing length of only 8 inches between the fuel manifold and the flame holder, the low-vapor-pressure fuel gave lower combustion efficiency at a given tail-pipe fuel-air ratio. Because the exhaust-nozzle area was fixed, the lower efficiency resulted in lower thrust and higher specific fuel consumption. The maximum altitude at which the burner would operate was practically unaffected by the change in fuel volatility.

  15. Large eddy simulation on a pulverized coal combustion furnace with a complex swirl burner

    NASA Astrophysics Data System (ADS)

    Watanabe, Hiroaki; Tanno, Kenji; Kurose, Ryoichi; Komori, Satoru

    2010-11-01

    Large-eddy simulation (LES) is applied to a pulverized coal combustion field in a combustion test furnace with a complex swirl burner called the advanced low NOx burner CI-alpha, and its validity is investigated by comparing with the experiment. The motion of coal particles is calculated by the Lagrangian method with a parcel model. In the coal combustion modeling, three chemical processes are considered, namely devolatilization, char combustion and gaseous reactions. The direct closure SSFRRM (scale similarity filtered reaction rate model) is employed as a turbulent combustion model. The results shows that a swirling recirculation flow is formed in a central region close to the burner and its size and strength dynamically change with time. The predicted distributions of time-averaged and variance of particle velocity and time-averaged gaseous temperature, oxygen and NO concentrations are in general agreement with the experiment.

  16. Development of lean premixed low-swirl burner for low NO{sub x} practical application

    SciTech Connect

    Yegian, D.T.; Cheng, R.K.

    1999-07-07

    Laboratory experiments have been performed to evaluate the performance of a premixed low-swirl burner (LSB) in configurations that simulate commercial heating appliances. Laser diagnostics were used to investigate changes in flame stabilization mechanism, flowfield, and flame stability when the LSB flame was confined within quartz cylinders of various diameters and end constrictions. The LSB adapted well to enclosures without generating flame oscillations and the stabilization mechanism remained unchanged. The feasibility of using the LSB as a low NO{sub x} commercial burner has also been verified in a laboratory test station that simulates the operation of a water heater. It was determined that the LSB can generate NO{sub x} emissions < 10 ppm (at 3% O{sub 2}) without significant effect on the thermal efficiency of the conventional system. The study has demonstrated that the lean premixed LSB has commercial potential for use as a simple economical and versatile burner for many low emission gas appliances.

  17. Tracking and data system support for the Pioneer project. Volume 4: Pioneer 10, from January 1974 - January 1975 and Pioneer 11, from 1 May 1973 through Jupiter encounter period January 1975

    NASA Technical Reports Server (NTRS)

    Miller, R. B.; Barton, W. R.; Cloonan, E. A.; Nash, J. C.

    1975-01-01

    The Tracking and Data Systems support of Pioneer 10 from January 1974 through January 1975 is described along with Pioneer 11 support from May 1973 through Jupiter encounter. Topics covered include: operations in the interplanetary environment from the time of completion of the second trajectory correction to the start of Jupiter encounter; the implementation, planning, and testing that led to Jupiter encounter; and the operations during the 60-day encounter period for Pioneer 11.

  18. Canada's natural resources industries (particularly oil sands production, hard rock mining and forestry) face local challenges and opportunities

    E-print Network

    Rosen-Zvi, Michal

    Canada's natural resources industries (particularly oil sands production, hard rock mining and society. For example, oil sands production is pushing innovation in how and where oil can be produced producers can be leaders in global innovation, pioneering new ideas beyond production to include asset

  19. Aalborg Universitet Coal-firing and biomass-firing in a 150kW swirl stabilized burner flow reactor

    E-print Network

    Berning, Torsten

    Aalborg Universitet Coal-firing and biomass-firing in a 150kW swirl stabilized burner flow reactor). Coal-firing and biomass-firing in a 150kW swirl stabilized burner flow reactor. Poster session immediately and investigate your claim. Downloaded from vbn.aau.dk on: juli 05, 2015 #12;C l fi i d biCoal

  20. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Standards for Hazardous Air Pollutants for Stationary Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners...it may be difficult to separately monitor emissions from the turbine and duct burner, so sources are allowed to meet the...

  1. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Standards for Hazardous Air Pollutants for Stationary Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners...it may be difficult to separately monitor emissions from the turbine and duct burner, so sources are allowed to meet the...

  2. 75 FR 2580 - Pioneer Industrial Railway Co.-Discontinuance of Service Exemption-Line in Peoria County, IL...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-15

    ...Sub-No. 1X)] Pioneer Industrial Railway Co.--Discontinuance of Service Exemption...December 29, 2009, Pioneer Industrial Railway Co. (PIRY) and Central Illinois Railroad...operate the line in Pioneer Industrial Railway Co.--Lease and Operation...

  3. Reproductive traits of pioneer gastropod species colonizing deep-see hydrothermal vents after an eruption

    E-print Network

    Bayer, Skylar (Skylar Rae)

    2011-01-01

    The colonization dynamics and life histories of pioneer species are vital components in understanding the early succession of nascent hydrothermal vents. The reproductive ecology of pioneer species at deep-sea hydrothermal ...

  4. Scaling the weak-swirl burner from 15 kW to 1 MW

    SciTech Connect

    Yegian, D.T.; Cheng, R.K.; Hack, R.L.; Miyasato, M.M.; Chang, A.; Samuelsen, G.S.

    1998-03-01

    With the passage of SCAQMD 1146.2, low NO{sub x} regulations will be enforced for new water heaters and boilers from 22 to 585 kW starting January 1, 2000; less than two years away. This has given an added impetus to develop a burner capable of producing NO{sub x} < 30 ppm and CO < 400 ppm without substantial manufacturing costs or complexity. Developed at the Berkeley Lab, the Weak-Swirl Burner (WSB) operates in the lean premixed combustion mode over a wide firing and equivalence ratio range. This work investigated scaling issues (e.g. swirl rates and stability limits) of the WSB when fired at higher rates useful to industry. Three test configurations which varied the ratio of furnace area to burner area were utilized to understand the effects of burner chamber coupling on emissions and stability. Preliminary tests from 12 to 18 kW of a WSB in a commercial heat exchanger were undertaken at LBNL, with further testing from 18 to 105 kW completed at UCI Combustion Laboratory in an octagonal enclosure. After scaling the small (5 cm diameter) to a 10 cm WSB, the larger burner was fired from 150 to 600 kW within a 1.2 MW furnace simulator at UCICL. Test results demonstrate that NO{sub x} emissions (15 ppm at 3% O{sub 2} at equivalence ratio {phi} = 0.80) were invariant with firing rate and chamber/burner ratio. However, the data indicates that CO and UHC are dependent on system parameters, such that a minimum firing rate exists below which CO and UHC rise from lower limits of 25 ppm and 0 ppm respectively.

  5. Pollutant emissions reduction and performance optimization of an industrial radiant tube burner

    SciTech Connect

    Scribano, Gianfranco; Solero, Giulio; Coghe, Aldo

    2006-07-15

    This paper presents the results of an experimental investigation performed upon a single-ended self-recuperative radiant tube burner fuelled by natural gas in the non-premixed mode, which is used in the steel industry for surface treatment. The main goal of the research activity was a systematic investigation of the burner aimed to find the best operating conditions in terms of optimum equivalence ratio, thermal power and lower pollutant emissions. The analysis, which focused on the main parameters influencing the thermal efficiency and pollutant emissions at the exhaust (NO{sub x} and CO), has been carried out for different operating conditions of the burner: input thermal powers from 12.8 up to 18kW and equivalence ratio from 0.5 (very lean flame) to 0.95 (quasi-stoichiometric condition). To significantly reduce pollutant emissions ensuring at the same time the thermal requirements of the heating process, it has been developed a new burner configuration, in which a fraction of the exhaust gases recirculates in the main combustion region through a variable gap between the burner efflux and the inner flame tube. This internal recirculation mechanism (exhaust gases recirculation, EGR) has been favoured through the addition of a pre-combustion chamber terminated by a converging nozzle acting as a mixing/ejector to promote exhaust gas entrainment into the flame tube. The most important result of this solution was a decrease of NO{sub x} emissions at the exhaust of the order of 50% with respect to the original burner geometry, for a wide range of thermal power and equivalence ratio. (author)

  6. An evolution of nozzle design: The low NOx burner experience at the Baldwin Power Station

    SciTech Connect

    Forney, D.W.; Murray, D.G.; Beal, P.R.

    1996-01-01

    Illinois Power Company (IPC) installed low NO{sub x} burners on Baldwin Unit 3 in the Spring of 1994. Although the NO{sub x} reduction performance of these burners has been outstanding, IPC suffered catastrophic nozzle failure in the first 8 weeks of operation. The nozzles were then modified and later, replaced. Within 1 week of operation, 2 of the new nozzles also failed. This paper traces the development of the original nozzle, the influences-of other nozzle failures on its design, the determination of the cause of the original and subsequent failures, and the current state of the nozzles.

  7. COST-EFFECTIVE CONTROL OF NOx WITH INTEGRATED ULTRA LOW-NOx BURNERS AND SNCR

    SciTech Connect

    Hamid Farzan; Jennifer Sivy; Alan Sayre; John Boyle

    2003-07-01

    Under sponsorship of the Department of Energy's National Energy Technology Laboratory (NETL), McDermott Technology, Inc. (MTI), the Babcock & Wilcox Company (B&W), and Fuel Tech teamed together to investigate an integrated solution for NOx control. The system was comprised of B&W's DRB-4Z{trademark} low-NO{sub x} pulverized coal (PC) burner technology and Fuel Tech's NO{sub x}OUT{reg_sign}, a urea-based selective non-catalytic reduction (SNCR) technology. The technology's emission target is achieving 0.15 lb NO{sub x}/10{sup 6} Btu for full-scale boilers. Development of the low-NOx burner technology has been a focus in B&W's combustion program. The DRB-4Z{trademark} burner (see Figure 1.1) is B&W's newest low-NO{sub x} burner capable of achieving very low NO{sub x}. The burner is designed to reduce NO{sub x} by diverting air away from the core of the flame, which reduces local stoichiometry during coal devolatilization and, thereby, reduces initial NO{sub x} formation. Figure 1.2 shows the historical NO{sub x} emission levels from different B&W burners. Figure 1.2 shows that based on three large-scale commercial installations of the DRB-4Z{trademark} burners in combination with OFA ports, using Western subbituminous coal, the NO{sub x} emissions ranged from 0.16 to 0.18 lb/10{sup 6} Btu. It appears that with continuing research and development the Ozone Transport Rule (OTR) emission level of 0.15 lb NO{sub x}/10{sup 6} Btu is within the reach of combustion modification techniques for boilers using western U.S. subbituminous coals. Although NO{sub x} emissions from the DRB-4Z{trademark} burner are nearing OTR emission level with subbituminous coals, the utility boiler owners that use bituminous coals can still benefit from the addition of an SNCR and/or SCR system in order to comply with the stringent NO{sub x} emission levels facing them.

  8. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Coal-Fired Utility Units With Group 1 or Cell Burner Boilers A Appendix A to Part...Coal-Fired Utility Units With Group 1 or Cell Burner Boilers Table 1—Phase I Tangentially...Arch-fired boiler. Table 3—Phase I Cell Burner Technology Units State...

  9. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Coal-Fired Utility Units With Group 1 or Cell Burner Boilers A Appendix A to Part...Coal-Fired Utility Units With Group 1 or Cell Burner Boilers Table 1—Phase I Tangentially...Arch-fired boiler. Table 3—Phase I Cell Burner Technology Units State...

  10. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Coal-Fired Utility Units With Group 1 or Cell Burner Boilers A Appendix A to Part...Coal-Fired Utility Units With Group 1 or Cell Burner Boilers Table 1—Phase I Tangentially...Arch-fired boiler. Table 3—Phase I Cell Burner Technology Units State...

  11. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Coal-Fired Utility Units With Group 1 or Cell Burner Boilers A Appendix A to Part...Coal-Fired Utility Units With Group 1 or Cell Burner Boilers Table 1—Phase I Tangentially...Arch-fired boiler. Table 3—Phase I Cell Burner Technology Units State...

  12. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Coal-Fired Utility Units With Group 1 or Cell Burner Boilers A Appendix A to Part...Coal-Fired Utility Units With Group 1 or Cell Burner Boilers Table 1—Phase I Tangentially...Arch-fired boiler. Table 3—Phase I Cell Burner Technology Units State...

  13. 76 FR 29249 - Medicare Program; Pioneer Accountable Care Organization Model: Request for Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... SERVICES Centers for Medicare & Medicaid Services Medicare Program; Pioneer Accountable Care Organization... the Pioneer Accountable Care Organization Model for a period beginning in 2011 and ending December....gov/areas-of-focus/seamless-and-coordinated-care-models/pioneer-aco . Application Submission...

  14. 78 FR 62014 - Pioneer Wind Park I, LLC; Notice of Petition for Declaratory Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-11

    ... Energy Regulatory Commission Pioneer Wind Park I, LLC; Notice of Petition for Declaratory Order Take...'s (Commission) Rules of Practice and Procedure, 18 CFR 385.207(a)(2), Pioneer Wind Park I, LLC (Pioneer Wind) filed a petition for declaratory order requesting the ] Commission to issue an order...

  15. Celebrating 400 Years of Pioneer Spirit: From Jamestown to the Wild West

    ERIC Educational Resources Information Center

    Curriculum Review, 2007

    2007-01-01

    In this questions and answer interview with Rachel Dickinson, author of "Great Pioneer Projects You Can Build Yourself", the writer discusses her interest in the American pioneer movement, her research, and her goals in introducing readers to the day-to-day life of an American pioneer. Dickinson's book offers a hands-on look at what life was like…

  16. 76 FR 37767 - Pioneer Hi-Bred International, Inc.; Determination of Nonregulated Status for Corn Genetically...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ..., 2011 (76 FR 83-84, Docket No. APHIS-2010-0041), APHIS announced the availability of the Pioneer... Animal and Plant Health Inspection Service Pioneer Hi-Bred International, Inc.; Determination of... determination that a corn line developed by Pioneer Hi-Bred International, Inc., designated as event...

  17. 75 FR 2592 - Pioneer Industrial Railway Co.-Trackage Rights Exemption-Central Illinois Railroad Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-15

    ... Surface Transportation Board Pioneer Industrial Railway Co.--Trackage Rights Exemption-- Central Illinois...) has agreed to grant non-exclusive local trackage rights to Pioneer Industrial Railway Co. (PIRY) over... Kellar Branch. See STB Docket No. AB-1056X, Pioneer Industrial Railway Co.--Discontinuance of...

  18. Performance Differences in Year 1 of Pioneer Accountable Care Organizations

    PubMed Central

    McWilliams, J. Michael; Chernew, Michael E.; Landon, Bruce E.; Schwartz, Aaron L.

    2015-01-01

    BACKGROUND In 2012, a total of 32 organizations entered the Pioneer accountable care organization (ACO) program, in which providers can share savings with Medicare if spending falls below a financial benchmark. Performance differences associated with characteristics of Pioneer ACOs have not been well described. METHODS In a difference-in-differences analysis of Medicare fee-for-service claims, we compared Medicare spending for beneficiaries attributed to Pioneer ACOs (ACO group) with other beneficiaries (control group) before (2009 through 2011) and after (2012) the start of Pioneer ACO contracts, with adjustment for geographic area and beneficiaries’ sociodemographic and clinical characteristics. We estimated differential changes in spending for several subgroups of ACOs: those with and those without clear financial integration between hospitals and physician groups, those with higher and those with lower baseline spending, and the 13 ACOs that withdrew from the Pioneer program after 2012 and the 19 that did not. RESULTS Adjusted Medicare spending and spending trends were similar in the ACO group and the control group during the precontract period. In 2012, the total adjusted per-beneficiary spending differentially changed in the ACO group as compared with the control group (?$29.2 per quarter, P = 0.007), consistent with a 1.2% savings. Savings were significantly greater for ACOs with baseline spending above the local average, as compared with those with baseline spending below the local average (P = 0.05 for interaction), and for those serving high-spending areas, as compared with those serving low-spending areas (P = 0.04). Savings were similar in ACOs with financial integration between hospitals and physician groups and those without, as well as in ACOs that withdrew from the program and those that did not. CONCLUSIONS Year 1 of the Pioneer ACO program was associated with modest reductions in Medicare spending. Savings were greater for ACOs with higher baseline spending than for those with lower baseline spending and were unrelated to withdrawal from the program. (Funded by the National Institute on Aging and others.) PMID:25875195

  19. LOW COST BIOHEATING OIL APPLICATION.

    SciTech Connect

    KRISHNA,C.R.

    2003-05-01

    The report describes primarily the results of combustion tests carried out with a soy methyl ester (SME) that can be considered as a biofuel that does not quite meet the ASTM D 6751-02 specifications for biodiesel. The tests were performed in a residential boiler and a commercial boiler. Blends of the SME in distillate fuel (home heating fuel or equivalently, ASTM No.2 fuel oil) were tested in both the boilers. Similar tests had been conducted in a previous project with ASTM biodiesel blends and hence provided a comparison. Blends of the SME in ASTM No.6 oil (residual oil) were also tested in the commercial boiler using a different burner. Physical properties of the blends (in both the petroleum based fuels) were also measured. It was found that the SME blends in the distillate burned, not surprisingly, similarly to biodiesel blends. Reductions in NOx with blending of the SME were the most significant finding as before with biodiesel blends. The blends in No.6 oil also showed reductions in NOx in the commercial boiler combustion tests, though levels with No.6 blends are higher than with No.2 blends as expected. A significant conclusion from the physical property tests was that even the blending of 10% SME with the No.6 oil caused a significant reduction in viscosity, which suggests a potential direction of application of such blends.

  20. Pioneer 11 encounter - Preliminary results from the Ames Research Center plasma analyzer experiment

    NASA Technical Reports Server (NTRS)

    Mihalov, J. D.; Collard, H. R.; Mckibbin, D. D.; Wolfe, J. H.; Intriligator, D. S.

    1975-01-01

    Pioneer 11 observations of the interaction of Jupiter's magnetosphere with the distant solar wind have confirmed the earlier Pioneer 10 observations of the great size and extreme variability of the outer magnetosphere. The nature of the plasma transitions across Jupiter's bow shock and magnetopause as observed on Pioneer 10 have also been confirmed on Pioneer 11. However, the northward direction of the Pioneer 11 outbound trajectory and the distance of the final magnetopause crossing (80 Jupiter radii) now suggest that Jupiter's magnetosphere is extremely broad with a half-thickness (normal to the ecliptic plane in the noon meridian) which is comparable to or greater than the sunward distance to the nose.

  1. The Pioneer Anomaly and a Rotating Godel Universe

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas; Blome, Hans-Joachim

    2008-01-01

    The Pioneer Anomaly represents an intriguing problem for fundamental physics whose scope still seems to baffle the best of explanations. It involves one of the most precise fine-scale acceleration measurements possible in the space age as the Pioneer 10/11 spacecraft reached distances of 20-70 AU from the Sun. An anomalous acceleration directed back toward the Sun of approx. 8x10(exp -10) m/sq s was discovered. The problem will be summarized and an up-to-date overview of possible explanations for this surprising result will be given. It may even be possible that our cosmic environment such as expansion dynamics and/or dark energy could be influencing the behavior of planets and spacecrafts within our local solar system. Then a new possibility, that of a rotating Godel Universe, will be introduced and examined.

  2. Results from the GSFC fluxgate magnetometer on Pioneer 11

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Ness, N. F.

    1976-01-01

    A high-field triaxial fluxgate magnetometer was mounted on Pioneer 11 to measure the main magnetic field of Jupiter. It is found that this planetary magnetic field is more complex than that indicated by the results of the Pioneer 10 vector helium magnetometer. At distances less than 3 Jupiter radii, the magnetic field is observed to increase more rapidly than an inverse-cubed distance law associated with any simple dipole model. Contributions from higher-order multipoles are significant, with the quadrupole and octupole being 24 and 21 percent of the dipole moment, respectively. Implications of the results for the study of trapped particles, planetary radio emission, and planetary interiors are discussed. Major conclusions are that the deviation of the main planetary magnetic field from a simple dipole leads to distortion of the L shells of the charged particles and to warping of the magnetic equator. Enhanced absorption effects associated with Amalthea and Io are predicted.

  3. SITE DEMONSTRATION OF THE AMERICAN COMBUSTION PYRETRON OXYGEN-ENHANCED BURNER

    EPA Science Inventory

    A demonstration of the American Combustion Pyretron TM oxygen-enhanced burner was conducted under the Superfund Innovative Technology Evaluation (SITE) program. he Demonstration was conducted at the U.S. EPA's Combustion Research Facility (CRF) in Jefferson, Arkansas. n eight wee...

  4. THE SITE DEMONSTRATION OF THE AMERICAN COMBUSTION PYRETRON OXYGEN-ENHANCED BURNER

    EPA Science Inventory

    A demonstration of the American Combustion PyretronTM oxygen-enhanced burner ws conducted under the Superfund Innovative Technology Evaluation (SITE) program. The Demonstration was conducted at the U.S. EPA's Combustion Research Facility (CRF) in Jefferson, Arkansas....

  5. A Novel Integrated TPV Power Generation System Based on a Cascaded Radiant Burner

    NASA Astrophysics Data System (ADS)

    Qiu, K.; Hayden, A. C. S.

    2004-11-01

    A cascaded radiant burner has been developed and based on this burner, a novel integrated TPV system has been built. In this system, low bandgap GaSb cells and silicon concentrator solar cells are employed integratedly. The unique cascaded radiant burner consists of two different radiators which cascade-emit two streams of radiation with different spectra. The two different radiators are arranged in tandem, with their surface temperatures being different as well. Two streams of radiation output are matched, respectively, to the bandgaps of silicon cells and GaSb cells. Thus, one stream of radiation output illuminates silicon concentrator solar cells while the other drives low bandgap GaSb cells in the integrated system. In this work, the combustion performance of the cascaded radiant burner was investigated at varying degrees of exhaust heat recuperation. The electrical output characteristics of both silicon concentrator solar cells and GaSb cells in the gas combustion-driven TPV system were measured under various operating conditions. It is shown that this innovative design considerably increases the TPV system efficiency, due to the cascaded utilization of heat released during natural gas combustion and the optimized thermal management.

  6. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect

    Not Available

    1990-01-01

    Cyclone furnaces operate with high excess air and at high temperature. The heat release during combustion is very high and as a result the boiler volume is much smaller than would be found in a conventional pc-fired system. The Marion Unit 1 boiler, at the level of the cyclone entry, has a small cross-section; about 5-feet in depth and about 20-feet in width. A boiler schematic showing the LNS Burner and relative location of the superheater region and overfire air ports is shown in Figure 1. The LNS Burner's combustion process is fundamentally different from that of the cyclone, and the combustion products are also different. The LNS Burner products enter the boiler as hot, fuel-rich gases. Additional overfire air must be added to complete this combustion step with care taken to avoid the formation of thermal NO{sub x}. If done correctly, S0{sub 2} is controlled and significant NO{sub x} reductions are achieved. Because of the small boiler volume, flow modelling was found to be necessary to insure that adequate mixing of LNS Burner combustion products with air can be accomplished to achieve NO{sub x} emissions goals. Design requirements for the air injection system for the Marion boiler were developed using FLUENT, a commercially available computational fluid dynamics (CFD) code. A series of runs were made to obtain a design for final air injection that met the process design goals as closely as possible.

  7. Simulation of Nitrogen Emissions in a Premixed Hydrogen Flame Stabilized on a Low Swirl Burner

    E-print Network

    Bell, John B.

    Simulation of Nitrogen Emissions in a Premixed Hydrogen Flame Stabilized on a Low Swirl Burner J. B Abstract There is considerable interest in developing fuel-flexible, low emissions turbines for power on the net emissions of a flame is influenced by the global flame stabilization mechanisms and by local

  8. EVALUATION OF SULFUR CAPTURE CAPABILITY OF A PROTOTYPE SCALE CONTROLLED-FLOW/SPLIT-FLAME BURNER

    EPA Science Inventory

    The report describes the sulfur capture potential during combustion of limestone copulverized with a high sulfur eastern bituminous coal, using Foster Wheeler's commercial Controlled-Flow/Split-Flame (CF/SF) low NOx, internally staged burner. Sulfur capture was optimized by using...

  9. Establishing criteria for the design of a combination parallel and cross-flaming covered burner 

    E-print Network

    Stark, Christopher Charles

    2003-01-01

    was directed parallel to the crop row. Using uniquely designed vanes to divert heated air, the apparatus was designed to re-circulate a portion of heat emitted from the burners for increased fuel efficiency. The apparatus was evaluated by comparing...

  10. ASU nitrogen sweep gas in hydrogen separation membrane for production of HRSG duct burner fuel

    DOEpatents

    Panuccio, Gregory J.; Raybold, Troy M.; Jamal, Agil; Drnevich, Raymond Francis

    2013-04-02

    The present invention relates to the use of low pressure N2 from an air separation unit (ASU) for use as a sweep gas in a hydrogen transport membrane (HTM) to increase syngas H2 recovery and make a near-atmospheric pressure (less than or equal to about 25 psia) fuel for supplemental firing in the heat recovery steam generator (HRSG) duct burner.

  11. 16 CFR Figure 9 to Part 1633 - Burner Placements on Mattress/Foundation

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Burner Placements on Mattress/Foundation 9 Figure 9 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633, Fig. 9 Figure 9 to Part...

  12. 16 CFR Figure 4 to Part 1633 - Details of Vertical Burner Head

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Details of Vertical Burner Head 4 Figure 4 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 4 Figure 4 to Part...

  13. 16 CFR Figure 9 to Part 1633 - Burner Placements on Mattress/Foundation

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Burner Placements on Mattress/Foundation 9 Figure 9 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633, Fig. 9 Figure 9 to Part...

  14. 16 CFR Figure 4 to Part 1633 - Details of Vertical Burner Head

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Details of Vertical Burner Head 4 Figure 4 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633, Fig. 4 Figure 4 to Part...

  15. 16 CFR Figure 5 to Part 1633 - Details of Burner Stand-off

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Details of Burner Stand-off 5 Figure 5 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 5 Figure 5 to Part...

  16. 16 CFR Figure 3 to Part 1633 - Details of Horizontal Burner Head

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Details of Horizontal Burner Head 3 Figure 3 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 3 Figure 3 to Part...

  17. 16 CFR Figure 9 to Part 1633 - Burner Placements on Mattress/Foundation

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Burner Placements on Mattress/Foundation 9 Figure 9 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 9 Figure 9 to Part...

  18. 16 CFR Figure 9 to Part 1633 - Burner Placements on Mattress/Foundation

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Burner Placements on Mattress/Foundation 9 Figure 9 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 9 Figure 9 to Part...

  19. 16 CFR Figure 3 to Part 1633 - Details of Horizontal Burner Head

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Details of Horizontal Burner Head 3 Figure 3 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633, Fig. 3 Figure 3 to Part...

  20. 16 CFR Figure 4 to Part 1633 - Details of Vertical Burner Head

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Details of Vertical Burner Head 4 Figure 4 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 4 Figure 4 to Part...

  1. 16 CFR Figure 5 to Part 1633 - Details of Burner Stand-off

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Details of Burner Stand-off 5 Figure 5 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633, Fig. 5 Figure 5 to Part...

  2. 16 CFR Figure 4 to Part 1633 - Details of Vertical Burner Head

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Details of Vertical Burner Head 4 Figure 4 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633, Fig. 4 Figure 4 to Part...

  3. 16 CFR Figure 3 to Part 1633 - Details of Horizontal Burner Head

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Details of Horizontal Burner Head 3 Figure 3 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633, Fig. 3 Figure 3 to Part...

  4. 16 CFR Figure 3 to Part 1633 - Details of Horizontal Burner Head

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Details of Horizontal Burner Head 3 Figure 3 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 3 Figure 3 to Part...

  5. 16 CFR Figure 5 to Part 1633 - Details of Burner Stand-off

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Details of Burner Stand-off 5 Figure 5 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633, Fig. 5 Figure 5 to Part...

  6. 16 CFR Figure 3 to Part 1633 - Details of Horizontal Burner Head

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Details of Horizontal Burner Head 3 Figure 3 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 3 Figure 3 to Part...

  7. 16 CFR Figure 4 to Part 1633 - Details of Vertical Burner Head

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Details of Vertical Burner Head 4 Figure 4 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 4 Figure 4 to Part...

  8. 16 CFR Figure 5 to Part 1633 - Details of Burner Stand-off

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Details of Burner Stand-off 5 Figure 5 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 5 Figure 5 to Part...

  9. 16 CFR Figure 9 to Part 1633 - Burner Placements on Mattress/Foundation

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Burner Placements on Mattress/Foundation 9 Figure 9 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 9 Figure 9 to Part...

  10. Numerical Modelling of a Pulse Combustion Burner: Limiting Conditions of Stable

    E-print Network

    Vuik, Kees

    a mathematical analysis of a simple model for thermal pulse combustion and determines conditions under which analysis. 2 Thermal Pulse Combustion: A Mathematical Model Richards et al. [3] introduced a mathematicalNumerical Modelling of a Pulse Combustion Burner: Limiting Conditions of Stable Operation P.A. van

  11. On the Similitude Between Lifted and Burner-Stabilized Triple Flames: A Numerical and Experimental Investigation

    E-print Network

    Aggarwal, Suresh K.

    . In the lifted flame, the velocity field diverges upstream of the flame, causing the velocity to reach a minimum with the propagation speed for stoichiometric methane­air flame), whereas the velocity upstream of the triple pointOn the Similitude Between Lifted and Burner-Stabilized Triple Flames: A Numerical and Experimental

  12. EPA'S LIMB (ENVIRONMENTAL PROTECTION AGENCY'S LIMESTONE INJECTION MULTISTAGE BURNER) DEVELOPMENT AND DEMONSTRATION PROGRAM

    EPA Science Inventory

    The paper describes and discusses key design features of the retrofit of EPA's Limestone Injection Multistage Burner (LIMB) system to an operating, wall-fired utility boiler at Ohio Edison's Edgewater Station, based on the preliminary engineering design. The full-scale demonstrat...

  13. EVALUATIONS OF ELECTROSTATIC PRECIPITATOR PERFORMANCE AT EDGEWATER UNIT 4 LIMESTONE INJECTION MULTISTAGE BURNERS (LIMB) DEMONSTRATION

    EPA Science Inventory

    The report describes laboratory- and pilot-scale studies of the Limestone Injection Multistage Burners (LIMB) process as well as preliminary on-site tests at Ohio Edison's Edgewater Station. The effects of LIMB on electrostatic precipitation (ESP) performance are reported in term...

  14. Control of flames by tangential jet actuators in oxy-fuel burners

    SciTech Connect

    Boushaki, Toufik; Sautet, Jean-Charles; Labegorre, Bernard

    2009-11-15

    The active control of oxy-fuel flames from burners with separated jets is investigated. The control system consists of four small jet actuators, placed tangential to the exit of the main jets to generate a swirling flow. These actuators are able to modify the flow structure and to act on mixing between the reactants and consequently on the flame behavior. The burner (25 kW) is composed of separated jets, one jet of natural gas and one or two jets of pure oxygen. Experiments are conducted with three burner configurations, according to the number of jets, the jet exit velocities, and the separation distance between the jets. OH chemiluminescence measurements, particle image velocimetry, and measurements of NO{sub x} emissions are used to characterize the flow and the flame structure. Results show that the small jet actuators have a significant influence on the behavior of jets and the flame characteristics, particularly in the stabilization zone. It is shown that the control leads to a decrease in lift-off heights and to better stability of the flame. The use of jet actuators induces high jet spreading and an increase in turbulence intensity, which improves the mixing between the reactants and the surrounding fluid. Pollutant measurements show important results in terms of NO{sub x} reductions (up to 60%), in particular for low swirl intensity. The burner parameters, such as the number of jets and the spacing between the jets, also impact the flame behavior and NO{sub x} formation. (author)

  15. SONOTECH, INC. FREQUENCY-TUNABLE PULSE COMBUSTION SYSTEM (CELLO PULSE BURNER) - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    Sonotech, Inc. (Sonotech) of Atlanta, Georgia, has developed a pulse combustion burner technology that claims to offer benefits when applied in a variety of combustion processes. The technology incorporates a combustor that can be tuned to induce large-amplitude acoustic or soni...

  16. Confronting the "Bra-Burners": Teaching Radical Feminism with a Case Study

    ERIC Educational Resources Information Center

    Kreydatus, Beth

    2008-01-01

    In many of the U.S. History courses the author has taught, she has encountered students who refer to the second-wave feminists of the 1960s and 1970s as "bra-burners." Unsurprisingly, these students know very little about the origin of this epithet, and frequently, they know even less about the women's movement generally. Second-wave feminism, and…

  17. Potential of vegetable oils as a domestic heating fuel

    SciTech Connect

    Hayden, A.C.S.; Begin, E.; Palmer, C.E.

    1982-06-01

    The dependence on imported oil for domestic heating has led to the examination of other potential fuel substitutes. One potential fuel is some form of vegetable oil, which could be a yearly-renewable fuel. In Western Canada, canola has become a major oilseed crop; in Eastern Canada, sunflowers increasingly are becoming a source for a similar oil; for this reason, the Canadian Combustion Research Laboratory (CCRL) has chosen these oils for experimentation. Trials have been conducted in a conventional warm air oil furnace, fitted with a flame retention head burner. Performance has been measured with pure vegetable oils as well as a series of blends with conventional No. 2 oil. The effects of increased fuel pressure and fuel preheating are established. Emissions of carbon monoxide, nitrogen oxides, unburned hydrocarbons and particulates are given for both steady state and cyclic operation. Canola oil cannot be fired in cyclic operation above 50:50 blends with No. 2 oil. At any level above a 10% blend, canola is difficult to burn, even with significant increased pressure and temperature. Sunflower oil is much easier to burn and can be fired as a pure fuel, but with high emissions of incomplete combustion products. An optimum blend of 50:50 sunflower in No. 2 oil yields emissions and performance similar to No. 2 oil. This blend offers potential as a means of reducing demand of imported crude oil for domestic heating systems.

  18. Planetary magnetism. [Mariner, Venera and Pioneer probe results

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1979-01-01

    Recent data on planetary magnetism are reviewed, with attention given to information obtained by Mariner 10 at Mercury, from Venera 9 and 10 orbiting Venus, and Pioneer spacecraft flying past Jupiter. In addition, less recent magnetic measurements of Mars are reconsidered. Doubts about whether Mars has an active dynamo at present are mentioned, and further planetary magnetic assessments are suggested. In particular, the need to refine knowledge of multipole moments is stressed.

  19. Impact of saturn ring particles on pioneer 11.

    PubMed

    Humes, D H; O'neal, R L; Kinard, W H; Alvarez, J M

    1980-01-25

    The particle flux measured by the meteoroid detectors on Pioneer 11 increased greatly while the spacecraft was near the rings of Saturn. The data suggest that the particles were associated with the rings and were not interplanetary meteoroids concentrated near the planet by gravitational focusing. The data also suggest that the E ring may be 1800 kilometers thick with an optical thickness greater than 10(-8). PMID:17833557

  20. System design of the Pioneer Venus spacecraft. Volume 2: Science

    NASA Technical Reports Server (NTRS)

    Acheson, L. K.

    1973-01-01

    The objectives of the low-cost Pioneer Venus space probe program are discussed. The space mission and science requirements are analyzed. The subjects considered are as follows: (1) the multiprobe mission, (2) the orbiter mission, (3) science payload accomodations, and (4) orbiter spacecraft experimental interface specifications. Tables of data are provided to show the science allocations for large and small probes. Illustrations of the systems and components of various probe configurations are included.

  1. Pioneer Venus data analysis for the retarding potential analyzer

    NASA Technical Reports Server (NTRS)

    Knudsen, William C.

    1993-01-01

    This report describes the data analysis and archiving activities, analysis results, and instrument performance of the orbiter retarding potential analyzer (ORPA) flown on the Pioneer Venus Orbiter spacecraft during the period, Aug. 1, 1988 to Sept. 30, 1993. During this period, the periapsis altitude of the Orbiter spacecraft descended slowly from 1900 km altitude, at which altitude the spacecraft was outside the Venus ionosphere, to approximately 130 km altitude in Oct. 1992 at which time communication with the spacecraft ceased as a result of entry of the spacecraft into the Venus atmosphere. The quantity of ORPA data returned during this reporting period was greatly reduced over that recovered in the previous years of the mission because of the reduced power capability of the spacecraft, loss of half of the onboard data storage, and partial failure of the ORPA. Despite the reduction in available data, especially ionospheric data, important scientific discoveries resulted from this extended period of the Pioneer Venus mission. The most significant discovery was that of a strong solar cycle change in the size of the dayside ionosphere and the resulting shutoff of flow of dayside ions into the nightside hemisphere. The large, topside O+ F2 ionospheric layer observed during the first three years of the Pioneer Venus mission, a period of solar cycle maximum activity, is absent during the solar cycle minimum activity period.

  2. Pioneering Objectives and Activities on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Toups, Larry; Hoffman, Stephen J.

    2015-01-01

    Human Mars missions have been a topic of sustained interest within NASA, which continues to use its resources to examine many different mission objectives, trajectories, vehicles, and technologies, the combinations of which are often referred to as reference missions or architectures. The current investigative effort, known as the Evolvable Mars Campaign (EMC), is examining alternatives that can pioneer an extended human presence on Mars that is Earth independent. These alternatives involve combinations of all the factors just mentioned. This paper is focused on the subset of these factors involved with objectives and activities that take place on the surface of Mars. "Pioneering" is a useful phrase to encapsulate the current approach being used to address this situation - one of its primary definitions is "a person or group that originates or helps open up a new line of thought or activity or a new method or technical development". Thus, in this scenario, NASA would be embarking on a path to "pioneer" a suite of technologies and operations that will result in an Earth independent, extended stay capability for humans on Mars. This paper will describe (a) the concept of operation determined to be best suited for the initial emplacement, (b) the functional capabilities determined to be necessary for this emplacement, with representative examples of systems that could carry out these functional capabilities and one implementation example (i.e., delivery sequence) at a representative landing site, and will (c) discuss possible capabilities and operations during subsequent surface missions.

  3. Niches, rather than neutrality, structure a grassland pioneer guild.

    PubMed

    Turnbull, Lindsay A; Manley, Liz; Rees, Mark

    2005-07-01

    Pioneer species are fast-growing, short-lived gap exploiters. They are prime candidates for neutral dynamics because they contain ecologically similar species whose low adult density is likely to cause widespread recruitment limitation, which slows competitive dynamics. However, many pioneer guilds appear to be differentiated according to seed size. In this paper, we compare predictions from a neutral model of community structure with three niche-based models in which trade-offs involving seed size form the basis of niche differentiation. We test these predictions using sowing experiments with a guild of seven pioneer species from chalk grassland. We find strong evidence for niche structure based on seed size: specifically large-seeded species produce fewer seeds but have a greater chance of establishing on a per-seed basis. Their advantage in establishment arises because there are more microsites suitable for their germination and early establishment and not directly through competition with other seedlings. In fact, seedling densities of all species were equally suppressed by the addition of competitors' seeds. By the adult stage, despite using very high sowing densities, there were no detectable effects of interspecific competition on any species. The lack of interspecific effects indicates that niche differentiation, rather than neutrality, prevails. PMID:16006328

  4. Niches, rather than neutrality, structure a grassland pioneer guild

    PubMed Central

    Turnbull, Lindsay A; Manley, Liz; Rees, Mark

    2005-01-01

    Pioneer species are fast-growing, short-lived gap exploiters. They are prime candidates for neutral dynamics because they contain ecologically similar species whose low adult density is likely to cause widespread recruitment limitation, which slows competitive dynamics. However, many pioneer guilds appear to be differentiated according to seed size. In this paper, we compare predictions from a neutral model of community structure with three niche-based models in which trade-offs involving seed size form the basis of niche differentiation. We test these predictions using sowing experiments with a guild of seven pioneer species from chalk grassland. We find strong evidence for niche structure based on seed size: specifically large-seeded species produce fewer seeds but have a greater chance of establishing on a per-seed basis. Their advantage in establishment arises because there are more microsites suitable for their germination and early establishment and not directly through competition with other seedlings. In fact, seedling densities of all species were equally suppressed by the addition of competitors' seeds. By the adult stage, despite using very high sowing densities, there were no detectable effects of interspecific competition on any species. The lack of interspecific effects indicates that niche differentiation, rather than neutrality, prevails. PMID:16006328

  5. Pioneer 10 and 11 (Jupiter and Saturn) magnetic field experiments

    NASA Technical Reports Server (NTRS)

    Jones, D. E.

    1986-01-01

    Magnet field data obtained by the vector helium magnetometer (VHM) during the encounters of Jupiter (Pioneer 10 and 11) and Saturn (Pioneer 11) was analyzed and interpreted. The puzzling characteristics of the Jovian and Saturnian magnetospheric magnetic fields were studied. An apparent substorm (including thinning of the dayside tail current sheet) was observed at Jupiter, as well as evidence suggesting that at the magnetopause the cusp is at an abnormally low latitude. The characteristics of Saturn's ring current as observed by Pioneer 11 were dramatically different from those suggested by the Voyager observations. Most importantly, very strong perturbations in the azimuthal ring current magnetic field suggest that the plane of the ring was not in the dipole equatorial plane, being tilted 5 to 10 deg. relative to the dipole and undergoing significant changes during the encounter. When these changing currents were corrected for, an improved planetary field determination was obtained. In addition, the ring and azimuthal currents at Saturn displayed significantly different time dependences.

  6. Independent Confirmation of the Pioneer 10 Anomalous Acceleration

    NASA Technical Reports Server (NTRS)

    Markwardt, Craig B.

    2002-01-01

    I perform an independent analysis of radio Doppler tracking data from the Pioneer 10 spacecraft for the time period 1987-1994. All of the tracking data were taken from public archive sources, and the analysis tools were developed independently by myself. I confirm that an apparent anomalous acceleration is acting on the Pioneer 10 spacecraft, which is not accounted for by present physical models of spacecraft navigation. My best fit value for the acceleration, including corrections for systematic biases and uncertainties, is (8.60 plus or minus 1.34) x 10(exp -8) centimeters per second, directed towards the Sun. This value compares favorably to previous results. I examine the robustness of my result to various perturbations of the analysis method, and find agreement to within plus or minus 5%. The anomalous acceleration is reasonably constant with time, with a characteristic variation time scale of greater than 70 yr. Such a variation timescale is still too short to rule out on-board thermal radiation effects, based on this particular Pioneer 10 data set.

  7. Redox pioneer: Professor Joe M. McCord.

    PubMed

    Schnell, David M; St Clair, Daret

    2014-01-01

    Dr. Joe McCord (Ph.D. 1970) is recognized here as a Redox Pioneer because he has published at least three articles on antioxidant/redox biology as first/last author that have been cited over 1000 times and has published at least 37 articles each cited over 100 times. Dr. McCord is known for the monumental discovery of the antioxidant superoxide dismutase (SOD) while a graduate student under fellow redox pioneer Irwin Fridovich and demonstrating its necessity to aerobic life. Beyond this, McCord's career is distinguished for bridging the gap from basic science to clinical relevance by showing the application of SOD and superoxide to human physiology, and characterizing the physiological functions of superoxide in inflammation, immunological chemotaxis, and ischemia-reperfusion injury, among other disease conditions. Work by McCord serves as the foundation upon which our understanding of how superoxide functions in a variety of physiological systems is built and demonstrates how superoxide is essential to aerobic life, yet, if left unchecked by SOD, toxic to a multitude of systems. These discoveries have substantial significance in a wide range of studies with applications in cardiovascular disease, cancer, neurology, and medicine, as well as general health and longevity. Dr. McCord's contributions to free radical biology have been recognized through many prestigious achievement awards, honorary titles, and conferences around the world; each serving as a testament to his status as a redox pioneer. PMID:24117164

  8. George Feher: a pioneer in reaction center research.

    PubMed

    Okamura, Melvin

    2014-05-01

    Our understanding of photosynthesis has been greatly advanced by the elucidation of the structure and function of the reaction center (RC), the membrane protein responsible for the initial light-induced charge separation in photosynthetic bacteria and green plants. Although today we know a great deal about the details of the primary processes in photosynthesis, little was known in the early days. George Feher made pioneering contributions to photosynthesis research in characterizing RCs from photosynthetic bacteria following the ground-breaking work of Lou Duysens and Rod Clayton (see articles in this issue by van Gorkom and Wraight). The work in his laboratory at the University of California, San Diego, started in the late 1960s and continued for over 30 years. He isolated a pure RC protein and used magnetic resonance spectroscopy to study the primary reactants. Following this pioneering work, Feher studied the detailed structure of the RC and the basic electron and proton transfer functions that it performs using a wide variety of biophysical and biochemical techniques. These studies, together with work from many other researchers, have led to our present detailed understanding of these proteins and their function in photosynthesis. The present article is a brief historical account of his pioneering contributions to photosynthesis research. A more detailed description of his work can be found in an earlier biographical paper (Feher in Photosynth Res 55:1-40, 1998a). PMID:24104959

  9. Preliminary Results from the Space Probe Pioneer V

    NASA Technical Reports Server (NTRS)

    Fan, C. Y.; Meyer, P.; Simpson, J. A.

    1960-01-01

    The space probe Pioneer V was launched March 11, 1960, into an orbit around the sun and inside the orbit of earth. The scientific apparatus included instruments identical with the University of Chicago apparatus used on Explorer VI [Fan, Meyer, and Simpson, 1960b], namely, energetic particle detectors which measure fluxes of protons with energies greater than 75 Mev, electrons with energies greater than 15 Mev, and the bremsstrahlung from electrons and y rays of lower energy. Simultaneously with the measurements in Pioneer V a series of four neutron monitor piles were recording the changes in cosmic radiation intensity at the earth. We report here on some preliminary results obtained from the Chicago experiments during the time within which Pioneer V traveled to a distance of approximately 8 x 10 km from earth. Beginning on March 20, solar activity rapidly increased with many solar flares, radio noise bursts, etc., over a period of 10 days. Most of our results relate to this period. The preliminary data are given in Figures 1 and 2.

  10. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect

    Not Available

    1990-01-01

    The objective of this project is to demonstrate the LNS Burner as retrofitted to the host cyclone boiler for effective low-cost control of NO{sub x} and SO{sub x} emissions while firing a bituminous coal. The LNS Burner employs a simple, innovative combustion process to burn pulverized coal at high temperatures and provides effective, low-cost control of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions. The coal ash contains sulfur and is removed in the form of molten slag and flyash. Cyclone-fired boiler units are typically older units firing high-sulfur bituminous coals at very high temperatures which results in very high NO{sub x} and SO{sub x} emissions. The addition of conventional emission control equipment, such as wet scrubbers, to these older cyclone units in order to meet current and future environmental regulations is generally not economic. Further, the units are generally not compatible with low sulfur coal switching for S0{sub 2} control or selective catalytic reduction technologies for NO{sub x} control. Because the LNS Burner operates at the same very high temperatures as a typical cyclone boiler and produces a similar slag product, it may offer a viable retrofit option for cyclone boiler emission control. This was confirmed by the Cyclone Boiler Retrofit Feasibility Study carried out by TransAlta and an Operating Committee formed of cyclone boiler owners in 1989. An existing utility cyclone boiler, was then selected for the evaluation of the cost and performance study. It was concluded that the LNS Burner retrofit would be a cost-effective option for control of cyclone boiler emissions. A full-scale demonstration of the LNS Burner retrofit was selected in October 1988 as part of the DOE's Clean Coal Technology Program Round II.

  11. Cosmic Ray Telescope Experiment (CRT), Pioneer 10/11 Program

    NASA Technical Reports Server (NTRS)

    McDonald, Frank B.

    1999-01-01

    In May 1996 the electrical power on Pioneer 10 was no longer adequate to support the Cosmic Ray Telescope Experiment (CRT). In March 1997 ground based operations for the mission were terminated. The 25 years of Pioneer 10 were a remarkable voyage of discovery as it ventured into a vast new unexplored region of space. These observations by the Pioneer experiments led in the development of a new discipline of space science - heliospheric physics. For cosmic ray studies it was an incredible era, leading to the identification of new energetic particle populations and processes and initiating the study of the dynamics and large-scale structure and began the study of the dynamics and large-scale structure of the outer heliosphere. A summary of some of the principal scientific findings of the CRT experiment over this period is given in the next section. Even with the cessation of data from the Pioneer 10/11 mission there remained a great deal of scientific analysis and data archiving that required on the order of an additional three years of effort on the part of the CRT team. We have tried to select those tasks where the P10/11 CRT data have an important role to play. Special emphasis is placed on long-term synoptic studies that make use of the extended temporal and spatial coverage of the missions and the full capabilities of the CRT experiment. The major scientific objectives of this study are: (1) A phenomenological study of the modulation process in the heliosphere, thereby laying the foundation for developing a unified model of cosmic ray modulation over a complete 22 year heliomagnetic cycle; (2) These modulation studies and the temporal changes in the cosmic ray intensities also provide information on the large-scale structure and dynamics of the outer heliosphere; (3) use the galactic and anomalous cosmic ray data from Pioneer 10 to obtain a more accurate estimate of the distance to the modulation boundary and to the termination shock; (4) Use the results from (2) and from temporal variations to determine whether significant modulation occurs in the region of the heliosphere; (5)study the acceleration and transport of low energy solar interplanetary energetic particles and their relation to solar activity and interplanetary phenomena.

  12. A high-pressure premixed flat-flame burner for chemical process studies. [of pollutant formation in hydrocarbon flames

    NASA Technical Reports Server (NTRS)

    Miller, I. M.

    1978-01-01

    A premixed flat-flame burner was designed and tested with methane-air mixtures at pressures from 1.1 to 20 atm and equivalence ratios from 0.7 to 1.1. Reactant velocity in the burner mixing chamber was used to characterize the range of stable flames at each pressure-equivalence-ratio condition. Color photographs of the flames were used to determine flame zone thickness and flame height. The results show that this burner can be used for chemical process studies in premixed high pressure methane-air flames up to 20 atm.

  13. Optimization of the Number of Burner Nozzles in a Hot Blast Stove by the Way of Simulation

    NASA Astrophysics Data System (ADS)

    Guo, Hongwei; Yan, Bingji; Zhang, Jianliang; Liu, Feng; Pei, Yi

    2014-07-01

    The structure of the burner nozzles in a blast furnace hot stove including their number, location, and angle has a vital effect on the flow field, temperature distribution, combustion efficiency, etc. In this article, simulation models were established for the hot stove located at Shougang Qianan. The model, eddy dissipation model, and P-1 model were used for the modeling of turbulence, combustion, and radiative heat transfer, respectively. The effect of different number of burner nozzles on the flow field and temperature distribution in the combustion chamber was investigated. The results indicated that 19 or 21 burner nozzles were preferred to obtain the optimum flow field and temperature distribution.

  14. Results of initial operation of the Jupiter Oxygen Corporation oxy-fuel 15 MWth burner test facility

    SciTech Connect

    Thomas Ochs, Danylo Oryshchyn, Rigel Woodside, Cathy Summers, Brian Patrick, Dietrich Gross, Mark Schoenfield, Thomas Weber and Dan O'Brien

    2009-04-01

    Jupiter Oxygen Corporation (JOC), in cooperation with the National Energy Technology Laboratory (NETL), constructed a 15 MWth oxy-fuel burner test facility with Integrated Pollutant Removal (IPRTM) to test high flame temperature oxy-fuel combustion and advanced carbon capture. Combustion protocols include baseline air firing with natural gas, oxygen and natural gas firing with and without flue gas recirculation, and oxygen and pulverized coal firing with flue gas recirculation. Testing focuses on characterizing burner performance, determining heat transfer characteristics, optimizing CO2 capture, and maximizing heat recovery, with an emphasis on data traceability to address retrofit of existing boilers by directly transforming burner systems to oxy-fuel firing.

  15. DEVELOPMENT AND DEMONSTRATION OF NOVEL LOW-NOx BURNERS IN THE STEEL INDUSTRY

    SciTech Connect

    Cygan, David

    2006-12-28

    Gas Technology Institute (GTI), together with Hamworthy Peabody Combustion Incorporated (formerly Peabody Engineering Corporation), the University of Utah, and Far West Electrochemical have developed and demonstrated an innovative combustion system suitable for natural gas and coke-oven gas firing within the steel industry. The combustion system is a simple, low-cost, energy-efficient burner that can reduce NOx by more than 75%. The U.S. steel industry needs to address NOx control at its steelmaking facilities. A significant part of NOx emissions comes from gas-fired boilers. In steel plants, byproduct gases – blast furnace gas (BFG) and coke-oven gas (COG) – are widely used together with natural gas to fire furnaces and boilers. In steel plants, natural gas can be fired together with BFG and COG, but, typically, the addition of natural gas raises NOx emissions, which can already be high because of residual fuel-bound nitrogen in COG. The Project Team has applied its expertise in low-NOx burners to lower NOx levels for these applications by combining advanced burner geometry and combustion staging with control strategies tailored to mixtures of natural gas and byproduct fuel gases. These methods reduce all varieties of NOx – thermal NOx produced by high flame temperatures, prompt NOx produced by complex chain reactions involving radical hydrocarbon species and NOx from fuel-bound nitrogen compounds such as ammonia found in COG. The Project Team has expanded GTI’s highly successful low-NOx forced internal recirculation (FIR) burner, previously developed for natural gas-fired boilers, into facilities that utilize BFG and COG. For natural gas firing, these burners have been shown to reduce NOx emissions from typical uncontrolled levels of 80-100 vppm to single-digit levels (9 vppm). This is done without the energy efficiency penalties incurred by alternative NOx control methods, such as external flue gas recirculation (FGR), water injection, and selective non-catalytic reduction. The FIR burner was previously demonstrated on firetube and watertube boilers, and these units are still operating at several industrial and commercial boiler sites in sizes ranging from 2.5 to 60 million Btu/h. This report covers the development of an innovative combustion system suitable for natural gas or coke-oven gas firing within the steel industry. The prototype FIR burner was evaluated on a 20 million Btu/h watertube boiler. Acceptable burner performance was obtained when firing natural gas and simulated coke-oven gas doped with ammonia. The laboratory data reveals a direct relationship between NOx formation and the ammonia concentration in the fuel. In addition, NOx formation increases as the primary stoichiometric ratio (PSR) increases. Representative ammonia concentrations, as documented in the steel industry, ranged from 200 to 500 vppm. When the laboratory burner/boiler was operated with 500 vppm ammonia in the fuel, NOx emissions ranged from 50 to 75 vppm. This, conservatively, is 75% less than state-of-the-art burner performance. When the burner is operated with 200 vppm ammonia in the fuel, the corresponding NOx emissions would range from 30 to 45 vppm, 84% less than present burner technology. During field evaluation on a 174 million Btu/h industrial prototype burner both natural gas and actual COG from on-site generation were tested. Despite the elevated hydrogen cyanide and ammonia content in the COG throughout the test program, the FIR burner showed an improvement over baseline emissions. At full load; 167 million Btu/h, NOx emissions were relatively low at 169 vppm. This represents a 30% reduction compared to baseline emissions not accounting for the higher hydrogen cyanide content in the COG. CO emissions remained below 20 vppm and were stable across the firing range. This represents a 68% reduction compared to baseline CO emissions. When firing natural gas, emissions were stable as firing rate increased over the range. At low fire; 45 million Btu/h, NOx emissions where 33 vppm and increased at full load; 144 million Btu

  16. Ensemble Diffraction Measurements of Spray Combustion in a Novel Vitiated Coflow Turbulent Jet Flame Burner

    NASA Technical Reports Server (NTRS)

    Cabra, R.; Hamano, Y.; Chen, J. Y.; Dibble, R. W.; Acosta, F.; Holve, D.

    2000-01-01

    An experimental investigation is presented of a novel vitiated coflow spray flame burner. The vitiated coflow emulates the recirculation region of most combustors, such as gas turbines or furnaces; additionally, since the vitiated gases are coflowing, the burner allows exploration of the chemistry of recirculation without the corresponding fluid mechanics of recirculation. As such, this burner allows for chemical kinetic model development without obscurations caused by fluid mechanics. The burner consists of a central fuel jet (droplet or gaseous) surrounded by the oxygen rich combustion products of a lean premixed flame that is stabilized on a perforated, brass plate. The design presented allows for the reacting coflow to span a large range of temperatures and oxygen concentrations. Several experiments measuring the relationships between mixture stoichiometry and flame temperature are used to map out the operating ranges of the coflow burner. These include temperatures as low 300 C to stoichiometric and oxygen concentrations from 18 percent to zero. This is achieved by stabilizing hydrogen-air premixed flames on a perforated plate. Furthermore, all of the CO2 generated is from the jet combustion. Thus, a probe sample of NO(sub X) and CO2 yields uniquely an emission index, as is commonly done in gas turbine engine exhaust research. The ability to adjust the oxygen content of the coflow allows us to steadily increase the coflow temperature surrounding the jet. At some temperature, the jet ignites far downstream from the injector tube. Further increases in the coflow temperature results in autoignition occurring closer to the nozzle. Examples are given of methane jetting into a coflow that is lean, stoichiometric, and even rich. Furthermore, an air jet with a rich coflow produced a normal looking flame that is actually 'inverted' (air on the inside, surrounded by fuel). In the special case of spray injection, we demonstrate the efficacy of this novel burner with a methanol spray in a vitiated coflow. As a proof of concept, an ensemble light diffraction (ELD) optical instrument was used to conduct preliminary measurements of droplet size distribution and liquid volume fraction.

  17. Rapeseed and safflower oils as diesel fuels

    SciTech Connect

    Peterson, C.L.; Haines, H.; Chase, C.

    1993-12-31

    During the past decade the US has become increasingly dependent upon imported oil to meet our energy demands. Nearly 50 percent of our US consumption of petroleum is imported. Research has shown that agricultural crops can be used to reduce this dependence. Vegetable oil as an alternative fuel has been under study at the Univ. of Idaho since 1979. Since then the Idaho research team has pioneered the use of rapeseed oil as a diesel fuel substitute. Idaho`s interdisciplinary team includes plant breeding, plant modification, process development and scale-up, engine testing, and economics. Researchers in Montana have studied safflower oil as a potential diesel fuel replacement since 1983. This project, aimed for use of safflower oil in railroad engines, involves genetics, agronomics, economics and contract engine testing.

  18. 16 CFR Figure 10 to Part 1633 - Jig for Setting Burners at Proper Distances From Mattress/Foundation

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633, Fig. 10 Figure 10 to Part 1633—Jig for Setting Burners at Proper Distances From Mattress/Foundation...

  19. EPA'S (ENVIRONMENTAL PROTECTION AGENCY'S) PROGRAM FOR EVALUATION AND DEMONSTRATION OF LOW-COST RETROFIT LIMB (LIMESTONE INJECTION MULTISTAGE BURNER) TECHNOLOGY

    EPA Science Inventory

    The paper discusses program objectives, approaches, current status and results, future activities, and schedules for EPA's program for research and development, field evaluation, and demonstration of Limestone Injection Multistage Burner (LIMB) technology. Primary emphasis is on:...

  20. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Air Pollutants for Stationary Combustion Turbines What This Subpart Covers § 63.6092...waste heat recovery units are considered steam generating units and are not covered...separately monitor emissions from the turbine and duct burner, so sources are...

  1. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Air Pollutants for Stationary Combustion Turbines What This Subpart Covers § 63.6092...waste heat recovery units are considered steam generating units and are not covered...separately monitor emissions from the turbine and duct burner, so sources are...

  2. Pioneer Venus gas chromatography of the lower atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Oyama, V. I.; Carle, G. C.; Woeller, F.; Pollack, J. B.; Reynolds, R. T.; Craig, R. A.

    1980-01-01

    A gas chromatograph mounted in the Pioneer Venus sounder probe measured the chemical composition of the atmosphere of Venus at three altitudes. Ne, N2, O2, Ar, CO, H2O, SO2, and CO2 were measured, and upper limits set for H2, COS, H2S, CH4, Kr, N2O, C2H4, C2H6, and C3H8. Simulation studies have provided indirect evidence for sulfuric acid-like droplets and support the possibility of water vapor at altitudes of 42 and 24 km. The paper discusses the implications of these results for the origin, evolution, and present state of Venus' atmosphere.

  3. Jovian magnetic fields is complex, Pioneer 11 shows

    NASA Technical Reports Server (NTRS)

    Panagakos, N.; Waller, P.

    1975-01-01

    An analysis of the magnetic field of the planet Jupiter is presented. The data are based on the information returned by Pioneer 11 space probe. It was determined that the magnetic field stretches across 9 million miles of space at some times and shrinks in volume by three-fourths or more at other times. It was also determined that electrons trapped in the magnetic field of Jupiter are 10,000 times more intense than those in the Van Allen radiation belts which circle the earth. Additional data were obtained on the polar regions, atmospheric circulation, and the nature of the moons.

  4. Pioneer anomaly? Gravitational pull due to the Kuiper belt

    E-print Network

    Jose A. de Diego; Dario Nunez; Jesus Zavala

    2006-01-09

    In this work we study the gravitational influence of the material extending from Uranus orbit to the Kuiper belt and beyond on objects moving within these regions. We conclude that a density distribution given by $\\rho(r)=\\frac{1}{r}$ (for $r\\geq 20 UA$) generates a constant acceleration towards the Sun on those objects, which, with the proper amount of mass, accounts for the blue shift detected on the Pioneers space crafts. We also discuss the effect of this gravitational pull on Neptune, and comment on the possible origin of such a matter distribution.

  5. Pioneer Anomaly? Gravitational Pull due to the Kuiper Belt

    NASA Astrophysics Data System (ADS)

    de Diego, José A.; Núñez, Darío; Zavala, Jesús

    In this work, we study the gravitational influence of the material extending from Uranus orbit to the Kuiper belt and beyond on objects moving within these regions. We conclude that a density distribution given by ? (r)=(1)/(r)\\ (for\\ r >= 20\\ AU) generates a constant acceleration towards the Sun on those objects, which, with the proper amount of mass, accounts for the blue shift detected on the Pioneers space crafts. We also discuss the effect of this gravitational pull on Neptune, and comment on the possible origin of such a matter distribution.

  6. The Tibeto-Burman Group of Languages, and Its Pioneers

    E-print Network

    Sprigg, R. K.

    PIONEERS -R. K. SPRIGG In an age in which centenarie~ aye increasingly celebrated, it must be a SOUTce of sorrow to the student of Tibetan and allied languages that the centenary of the hrst me of the term ribeto-Burman (and Burma­ Tibetan... 's strictures the term Tibeto-Burman was sufficiently well established by 1909 to give its name to Part III of the Linsuistic SUlVo/ oj India; and it is a matter of pride to me that I should, even though indirectly, be as so ~iated with that volume, through...

  7. Health Coaching Education: A Conversation With Pioneers in the Field

    PubMed Central

    Snyder, Suzanne

    2013-01-01

    In February 2013, Global Advances in Health and Medicine (GAHMJ) interviewed eight pioneers in the field of health coaching education: Michael Arloski, PhD, PCC; Linda Bark, PhD, RN, MCC, NC-BC; Georgianna Donadio, PhD; Meg Jordan, PhD, RN; Sam Magill, MBA, MCC; Margaret Moore, MBA; Linda Smith, PA-C, MA; and Cheryl Walker, ML, MCC. This article features biographies of the participants and their perspectives on the evolution and value of health coaching education and the keys to its success. PMID:24416669

  8. Reentry thermal protection from Pioneer F RTG insulation material

    NASA Technical Reports Server (NTRS)

    Vorreiter, J. W.

    1972-01-01

    Ablation tests were performed on the insulation material used in the Pioneer F radioisotope thermoelectric generator (RTG) in the Ames Arc-Heated Planetary-Gas Wind Tunnel. Test results indicate that the material, trade name Min-K 1301, should experience little ablation for heat transfer rates below 40 BTU/sq ft-sec. If the current design were to be changed so that the various pieces of Min-K were fastened or interlocked together the total amount of heat delivered to the RTG heat source during an earth orbital decay reentry would be reduced by at least 22.7%.

  9. Outer planet Pioneer imaging communications system study. [data compression

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The effects of different types of imaging data compression on the elements of the Pioneer end-to-end data system were studied for three imaging transmission methods. These were: no data compression, moderate data compression, and the advanced imaging communications system. It is concluded that: (1) the value of data compression is inversely related to the downlink telemetry bit rate; (2) the rolling characteristics of the spacecraft limit the selection of data compression ratios; and (3) data compression might be used to perform acceptable outer planet mission at reduced downlink telemetry bit rates.

  10. Pioneer 11 observations of energetic particles in the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Van Allen, J. A.; Randall, B. A.; Baker, D. N.; Goertz, C. K.; Sentman, D. D.; Thomsen, M. F.; Flindt, H. R.

    1975-01-01

    A preliminary report is presented of energetic electrons and protons observed with the University of Iowa instrument on Pioneer 11. A graph shows absolute, spin-averaged unidirectional intensities of electrons and protons as a function of time during traversal of the central magnetosphere. Another graph shows the effects of the Jovian satellites Io and Amalthea on particle intensities. It is pointed out that a full analysis of satellite effects is the most promising technique for understanding the physical dynamics of the magnetosphere of Jupiter.

  11. Health coaching education: a conversation with pioneers in the field.

    PubMed

    Snyder, Suzanne

    2013-05-01

    In February 2013, Global Advances in Health and Medicine (GAHMJ) interviewed eight pioneers in the field of health coaching education: Michael Arloski, PhD, PCC; Linda Bark, PhD, RN, MCC, NC-BC; Georgianna Donadio, PhD; Meg Jordan, PhD, RN; Sam Magill, MBA, MCC; Margaret Moore, MBA; Linda Smith, PA-C, MA; and Cheryl Walker, ML, MCC. This article features biographies of the participants and their perspectives on the evolution and value of health coaching education and the keys to its success. PMID:24416669

  12. Pioneering government-sponsored drug repositioning collaborations: progress and learning.

    PubMed

    Frail, Donald E; Brady, Madeleine; Escott, K Jane; Holt, Alison; Sanganee, Hitesh J; Pangalos, Menelas N; Watkins, Chris; Wegner, Craig D

    2015-12-01

    A new model for translational research and drug repositioning has recently been established based on three-way partnerships between public funders, the pharmaceutical industry and academic investigators. Through two pioneering initiatives - one involving the Medical Research Council in the United Kingdom and one involving the National Center for Advancing Translational Sciences of the National Institutes of Health in the United States - new investigations of highly characterized investigational compounds have been funded and are leading to the exploration of known mechanisms in new disease areas. This model has been extended beyond these first two initiatives. Here, we discuss the progress to date and the unique requirements and challenges for this model. PMID:26585533

  13. A century of influence: Part 1. Orthodontic pioneers.

    PubMed

    Burke, Chris

    2015-05-01

    The story of orthodontics during the first 100 years of Journal publication can be told through the people who lived it. As part of the American Journal of Orthodontics and Dentofacial Orthopedics' Centennial Celebration, we present 100 people who most influenced the specialty during the last 100 years. Part 1 describes the orthodontic pioneers who were born in the 1800 s. They were broadly educated in the sciences, and most studied orthodontics with Angle, Dewey, or Lischer. They were innovators and inventors, and they laid the foundation of the specialty during the early years of the 20th century. PMID:25925639

  14. Low NOx combustion system for heavy oil

    SciTech Connect

    Kurata, Chikatoshi; Sasaki, Hideki

    1999-07-01

    As a result of the increasing demand for white oil as one of countermeasures for pollution control and as a fuel for motor vehicle, coupled with the increasing import of heavy crude oil, heavy oils such as asphalt and distillation residue have become surplus in Japan. It is difficult by the conventional low NOx technology to control the NOx emission from the industrial small and medium capacity boilers, which use heavy oil as their fuels. The authors have been developing and improving NOx control technologies for boilers such as low NOx burners, two-stage combustion methods and so on. They have developed a new combustion system for heavy oil, which generates less NOx and soot than conventional systems, by applying the knowledge, obtained in the course of their development of Coal Partial Combustor (CPC). The conventional low NOx combustion method for oil firing boilers has been developed based on decreasing the flame temperature and delaying the combustion reaction. In the system, however, the heavy oil shall be combusted in the intense reducing atmosphere at the high flame temperature between 1,500 C and 1,600 C, and then the combustions gas shall be cooled and oxidized by two-stage combustion air. With this system, NOx emission can be suppressed below 100ppm (converted as O{sub 2}=4%).

  15. Corn oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn oil is a popular vegetable oil in the US and in many other countries. Because of its pleasant nutty flavor, its good stability, and its popularity for making margarines, corn oil has long been considered a premium vegetable oil. Among all of the vegetable oils, corn oil ranks tenth in terms of ...

  16. Effect of Reynolds Number in Turbulent-Flow Range on Flame Speeds of Bunsen Burner Flames

    NASA Technical Reports Server (NTRS)

    Bollinger, Lowell M; Williams, David T

    1949-01-01

    The effect of flow conditions on the geometry of the turbulent Bunsen flame was investigated. Turbulent flame speed is defined in terms of flame geometry and data are presented showing the effect of Reynolds number of flow in the range of 3000 to 35,000 on flame speed for burner diameters from 1/4 to 1 1/8 inches and three fuels -- acetylene, ethylene, and propane. The normal flame speed of an explosive mixture was shown to be an important factor in determining its turbulent flame speed, and it was deduced from the data that turbulent flame speed is a function of both the Reynolds number of the turbulent flow in the burner tube and of the tube diameter.

  17. Performance of laser glazed Zr02 TBCs in cyclic oxidation and corrosion burner test rigs

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1982-01-01

    The performance of laser glazed zirconia thermal barrier coatings (TBCs) was evaluated in cyclic oxidation and cyclic corrosion tests. Plasma sprayed zirconia coatings of two thicknesses were partially melted with a CO2 laser. The power density of the focused laser beam was varied from 35 to 75 W/sq mm, while the scanning speed was about 80 cm per minute. In cyclic oxidation tests, the specimens were heated in a burner rig for 6 minutes and cooled for 3 minutes. It is indicated that the laser treated samples have the same life as the untreated ones. However, in corrosion tests, in which the burner rig flame contained 100 PPM sodium fuel equivalent, the laser treated samples exhibit nearly a fourfold life improvement over that of the reference samples vary. In both tests, the lives of the samples inversely with the thickness of the laser melted layer of zirconia.

  18. Burner rig corrosion of SiC at 1000 deg C

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.; Stearns, C. A.; Smialek, J. L.

    1985-01-01

    Sintered alpha-SiC was examined in both oxidation and hot corrosion with a burner rig at 400 kPa (4 atm) and 1000 C with a flow velocity of 310 ft/sec. Oxidation tests for times to 46 hr produced virtually no attack, whereas tests with 4 ppm Na produced extensive corrosion in 13-1/2 hr. Thick glassy layers composed primarily of sodium silicate formed in the salt corrosion tests. This corrosion attack caused severe pitting of the silicon carbide substrate which led to a 32 percent strength decrease below the as-received material. Parallel furnace tests of Na2SO4/air induced attacked yielded basically similar results with some slight product composition differences. The differences are explained in terms of the continuous sulfate deposition which occurs in a burner rig.

  19. Method for reducing NOx during combustion of coal in a burner

    DOEpatents

    Zhou, Bing (Cranbury, NJ); Parasher, Sukesh (Lawrenceville, NJ); Hare, Jeffrey J. (Provo, UT); Harding, N. Stanley (North Salt Lake, UT); Black, Stephanie E. (Sandy, UT); Johnson, Kenneth R. (Highland, UT)

    2008-04-15

    An organically complexed nanocatalyst composition is applied to or mixed with coal prior to or upon introducing the coal into a coal burner in order to catalyze the removal of coal nitrogen from the coal and its conversion into nitrogen gas prior to combustion of the coal. This process leads to reduced NOx production during coal combustion. The nanocatalyst compositions include a nanoparticle catalyst that is made using a dispersing agent that can bond with the catalyst atoms. The dispersing agent forms stable, dispersed, nano-sized catalyst particles. The catalyst composition can be formed as a stable suspension to facilitate storage, transportation and application of the catalyst nanoparticles to a coal material. The catalyst composition can be applied before or after pulverizing the coal material or it may be injected directly into the coal burner together with pulverized coal.

  20. Computational Fluid Dynamics Based Investigation of Sensitivity of Furnace Operational Conditions to Burner Flow Controls

    SciTech Connect

    Marc Cremer; Dave Wang; Connie Senior; Andrew Chiodo; Steven Hardy; Paul Wolff

    2005-07-01

    This is the Final Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project was to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. The focus of this project was to quantify the potential impacts of ''fine level'' controls rather than that of ''coarse level'' controls (i.e. combustion tuning). Although it is well accepted that combustion tuning will generally improve efficiency and emissions of an ''out of tune'' boiler, it is not as well understood what benefits can be derived through active multiburner measurement and control systems in boiler that has coarse level controls. The approach used here was to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner air and fuel flow rates. The Electric Power Research Institute (EPRI) provided co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center have been active participants in this project. CFD simulations were completed for five coal fired boilers as planned: (1) 150 MW wall fired, (2) 500 MW opposed wall fired, (3) 600 MW T-Fired, (4) 330 MW cyclone-fired, and (5) 200 MW T-Fired Twin Furnace. In all cases, the unit selections were made in order to represent units that were descriptive of the utility industry as a whole. For each unit, between 25 and 44 furnace simulations were completed in order to evaluate impacts of burner to burner variations in: (1) coal and primary air flow rate, and (2) secondary air flow rate. The parametric matrices of cases that were completed were defined in order to accommodate sensitivity analyses of the results. The sensitivity analyses provide a strategy for quantifying the rate of change of NOx or unburned carbon in the fly ash to a rate of change in secondary air or fuel or stoichiometric ratio for individual burners or groups of burners in order to assess the value associated with individual burner flow control. In addition, the sensitivity coefficients that were produced provide a basis for quantifying the differences in sensitivities for the different boiler types. In a ranking of the sensitivity of NOx emissions to variations in secondary air flow between the burners at a fixed lower furnace stoichiometric ratio in order of least sensitive to most sensitive, the results were: (1) 600 MW T-Fired Unit; (2) 500 MW Opposed Wall-Fired Unit; (3) 150 MW Wall-Fired Unit; (4) 100 MW T-Fired Unit; and (5) 330 MW Cyclone-Fired Unit.

  1. COMPUTATIONAL FLUID DYNAMICS BASED INVESTIGATION OF SENSITIVITY OF FURNACE OPERATIONAL CONDITIONS TO BURNER FLOW CONTROLS

    SciTech Connect

    Marc Cremer; Zumao Chen; Dave Wang; Paul Wolff

    2004-06-01

    This is the extended second Semiannual Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project is to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. Our approach is to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner flow controls. The Electric Power Research Institute (EPRI) is providing co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center are active participants in this project. This program contains multiple tasks and good progress is being made on all fronts.

  2. Coal Particle Flow Patterns for O2 Enriched, Low NOx Burners

    SciTech Connect

    Jennifer Sinclair Curtis

    2005-08-01

    This project involved a systematic investigation examining the effect of near-flame burner aerodynamics on standoff distance and stability of turbulent diffusion flames and the resultant NO{sub x} emissions from actual pulverized coal diffusion flames. Specifically, the scope of the project was to understand how changes in near-flame aerodynamics and transport air oxygen partial pressure can influence flame attachment and coal ignition, two properties essential to proper operation of low NO{sub x} burners. Results from this investigation utilized a new 2M tall, 0.5m in diameter combustor designed to evaluate near-flame combustion aerodynamics in terms of transport air oxygen partial pressure (Po{sub 2}), coal fines content, primary fuel and secondary air velocities, and furnace wall temperature furnish insight into fundamental processes that occur during combustion of pulverized coal in practical systems. Complementary cold flow studies were conducted in a geometrically similar chamber to analyze the detailed motion of the gas and particles using laser Doppler velocimetry. This final technical report summarizes the key findings from our investigation into coal particle flow patterns in burners. Specifically, we focused on the effects of oxygen enrichment, the effect of fines, and the effect of the nozzle velocity ratio on the resulting flow patterns. In the cold flow studies, detailed measurements using laser Doppler velocimetry (LDV) were made to determine the details of the flow. In the hot flow studies, observations of flame stability and measurements of NO{sub x} were made to determine the effects of the flow patterns on burner operation.

  3. Numerical simulation of the laminar diffusion flame in a simplified burner

    SciTech Connect

    Cloutman, L.D.

    1995-11-08

    The laminar ethylene-air diffusion fame in a simple laboratory burner was simulated with the COYOTE reactive flow program. This program predicts the flow field, transport, and chemistry for the purposes of code validation and providing physical understanding of the processes occurring in the flame. We show the results of numerical experiments to test the importance of several physical effects, including gravity, radiation, and differential diffusion. The computational results compare favorably with the experimental measurements.

  4. Pollutant Exposures from Natural Gas Cooking Burners: A Simulation-Based Assessment for Southern California

    SciTech Connect

    Logue, Jennifer M.; Klepeis, Neil E.; Lobscheid, Agnes B.; Singer, Brett C.

    2014-06-01

    Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants and they are typically used without venting. The objective of this study is to quantify pollutant concentrations and occupant exposures resulting from NGCB use in California homes. A mass balance model was applied to estimate time-dependent pollutant concentrations throughout homes and the "exposure concentrations" experienced by individual occupants. The model was applied to estimate nitrogen dioxide (NO{sub 2}), carbon monoxide (CO), and formaldehyde (HCHO) concentrations for one week each in summer and winter for a representative sample of Southern California homes. The model simulated pollutant emissions from NGCBs, NO{sub 2} and CO entry from outdoors, dilution throughout the home, and removal by ventilation and deposition. Residence characteristics and outdoor concentrations of CO and NO{sub 2} were obtained from available databases. Ventilation rates, occupancy patterns, and burner use were inferred from household characteristics. Proximity to the burner(s) and the benefits of using venting range hoods were also explored. Replicate model executions using independently generated sets of stochastic variable values yielded estimated pollutant concentration distributions with geometric means varying less than 10%. The simulation model estimates that in homes using NGCBs without coincident use of venting range hoods, 62%, 9%, and 53% of occupants are routinely exposed to NO{sub 2}, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3000, and 20 ppb for NO{sub 2}, CO, and HCHO, respectively. Reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health-based standards.

  5. A neo-Newtonian explanation of the Pioneer anomaly

    NASA Astrophysics Data System (ADS)

    Greaves, E. D.

    2009-05-01

    For over 20 years NASA has struggled to find an explanation for the Pioneer anomaly, an unmodelled weak acceleration towards the sun (? 8.5×10^{-10} m s^{-2}), observed in deep space probes Pioneer 10, 11, Galileo and Ulysses (Anderson et al. 1998, 1999; Katz 1999). No consensus explanation has been given since the anomaly was first announced, suggesting that new physics is involved. The riddle may be solved if we assume that c, the speed of light, is not a universal constant. Newtonian mechanics, together with the hypothesis by Céspedes-Curé (2002) that the index of refraction is a function of the gravitational energy density of space, leads to values of c slightly higher for interstellar space dominated by the primordial energy density ?_{*}^{} due to galaxies and far away stars, far from the gravitational influence of Earth, Moon, and Sun. The value derived for the index of refraction of space (n' < 1), implies a Doppler shift of the radio signal received from the probes which results in a decrease of the frequency received at Earth and interpreted as a weak acceleration towards the Sun.

  6. Measurements of premixed-flame turbulence generation and modification in a Taylor-Couette burner

    SciTech Connect

    Arjomand-Kermani, Amir M.; Aldredge, Ralph C.

    2007-10-15

    Turbulent, premixed lean methane-air flames were studied experimentally in a Taylor-Couette burner, extending the previous work of non-reacting turbulent-flow measurements. A laser-Doppler velocimetry system is employed to measure velocity fluctuations in the circumferential direction at the center of the annulus where mean velocities are nearly zero. Turbulence parameters such as the intensities, approximated integral and micro-time and length scales and one-dimensional frequency spectra are obtained for the flow-field ahead and behind the flame front. The frequency spectra exhibit a -5/3 slope reaffirming isotropic characteristics. It is found that there is an increase in intensity, turbulence Reynolds number and energy across a broad range of frequencies behind the flame along with a shift toward larger scales. However, there appears to be a decrease in amplification of the intensities and turbulence Reynolds number with increasing pre-ignition turbulence in the burner (generated by counter-rotation of the cylinder walls). Results suggest that the presence of flame-generated turbulence in the TC burner is sensitive to both pre-ignition turbulence and equivalence ratio. (author)

  7. The effects of chemical kinetics and wall temperature on performance of porous media burners

    NASA Astrophysics Data System (ADS)

    mohammadi, Iman; Hossainpour, Siamak

    2013-06-01

    This paper reports a two-dimensional numerical prediction of premixed methane-air combustion in inert porous media burner by using of four multi-step mechanisms: GRI-3.0 mechanism, GRI-2.11 mechanism and the skeletal and 17 Species mechanisms. The effects of these models on temperature, chemical species and pollutant emissions are studied. A two-dimensional axisymmetric model for premixed methane-air combustion in porous media burner has developed. The finite volume method has used to solve the governing equations of methane-air combustion in inert porous media burner. The results indicate that the present four models have the same accuracy in predicting temperature profiles and the difference between these profiles is not more than 2 %. In addition, the Gri-3.0 mechanism shows the best prediction of NO emission in comparison with experimental data. The 17 Species mechanism shows good agreement in prediction of temperature and pollutant emissions with GRI-3.0, GRI-2.11 and the skeletal mechanisms. Also the effects of wall temperature on the gas temperature and mass fraction of species such as NO and CH4 are studied.

  8. Measurements of non-reacting and reacting flow fields of a liquid swirl flame burner

    NASA Astrophysics Data System (ADS)

    Chong, Cheng Tung; Hochgreb, Simone

    2015-03-01

    The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device. Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a 2-D particle imaging velocimetry(PIV) system. The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions, i.e., with and without the combustor wall. The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions. The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume. The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow. Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet, where the radial velocity components increase for both open and confined environment. Under reacting condition, the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity. The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants. The flow field data can be used as validation target for swirl combustion modelling.

  9. Numerical simulation of cold flow patterns and turbulent mixing in a simplified burner

    SciTech Connect

    Cloutman, L.D.

    1994-10-01

    The COYOTE computer program was used to simulate the flow field and turbulent mixing near the fuel and air inlets in a simplified burner. The authors report the results of four cold flow calculations that illustrate several interesting phenomena in addition to demonstrating the capabilities of the basic hydrodynamics model and the turbulence model. They also demonstrate some interesting facets of the hydrodynamics of burners. They summarize their findings as follows: (1) two different grids gave vastly different answers, underscoring the importance of assuring grid-independence in numerical solutions; (2) cold flow patterns are much different than reactive flow fields, making it unwise to apply conclusions from the former to the latter; (3) the problem is elliptic, and it is necessary to include the whole furnace in the calculations; (4) the flow patterns exhibited weakly unstable, almost metastable, modes that make it difficult to ascertain when steady conditions have been obtained. The long range goals of this study are to identify parameters that affect the production of NO{sub x} and to discover methods of reducing emissions while maintaining or improving burner efficiency.

  10. TPV Power Generation System Using a High Temperature Metal Radiant Burner

    NASA Astrophysics Data System (ADS)

    Qiu, K.; Hayden, A. C. S.; Entchev, E.

    2007-02-01

    Interest has grown in micro-combined heat and power (micro-CHP). Thermophotovoltaic (TPV) generation of electricity in fuel-fired furnaces is one of the micro-CHP technologies that are attracting technical attention. Previous investigations have shown that a radiant burner that can efficiently convert fuel chemical energy into radiation energy is crucial to realize a practical TPV power system. In this work, we developed a TPV power generation system using a gas-fired metal radiant burner. The burner consists of a high temperature alloy emitter, which could have an increased emissivity at short wavelengths and low emissivity at long wavelengths. The metal emitter is capable of bearing high temperatures of interest to fuel-fired TPV power conversion. GaSb TPV cells were tested in the combustion-driven radiant source. Electric output characteristics of the TPV cells were investigated at various operating conditions. The electric power output of the TPV cells was demonstrated to be promising. At an emitter temperature of 1185°C, an electric power density of 0.476 W/cm2 was generated by the GaSb cells. It is shown that the metal emitter is attractive and could be applied to practical fuel-fired TPV power systems.

  11. Occidental vertical modified in situ process for the recovery of oil from oil shale. Phase II. Quarterly progress report, September 1, 1980-November 30, 1980

    SciTech Connect

    Not Available

    1981-01-01

    The major activities at OOSI's Logan Wash site during the quarter were: mining the voids at all levels for Retorts 7 and 8; blasthole drilling; tracer testing MR4; conducting the start-up and burner tests on MR3; continuing the surface facility construction; and conducting Retorts 7 and 8 related Rock Fragmentation tests. Environmental monitoring continued during the quarter, and the data and analyses are discussed. Sandia National Laboratory and Laramie Energy Technology Center (LETC) personnel were active in the DOE support of the MR3 burner and start-up tests. In the last section of this report the final oil inventory for Retort 6 production is detailed. The total oil produced by Retort 6 was 55,696 barrels.

  12. Propagation of a large Forbush decrease in cosmic-ray intensity past the earth, Pioneer 11 at 34 AU and Pioneer 10 at 53 AU

    NASA Technical Reports Server (NTRS)

    Van Allen, James A.; Fillius, R. W.

    1992-01-01

    Observations of a large Forbush decrease in cosmic-ray intensity at the earth, Pioneer II and Pioneer 10 are reported. The Pioneer 10 data show a large impulsive decrease in cosmic-ray intensity at the greatest distance from the sun observed to date. The apparent radial speed of propagation of the Forbush decrease was about 820 km/s, independent of the radial distance. The observations reported here and similar previous observations provide the basis for a new quantitative model of the propagation of Forbush decreases in the outer heliosphere.

  13. All About Oils

    MedlinePLUS

    ... canola oil, corn oil, cottonseed oil, olive oil, safflower oil, soybean oil, and sunflower oil. Some oils ... oils (such as canola, corn, cottonseed, olive, peanut, safflower, soybean, and sunflower) 1 Tbsp 3 tsp/14 ...

  14. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    SciTech Connect

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NO, reduction (70VO) could be achieved. Sponsors of the project included the U.S. Depatiment of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was petformed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado bituminous, low-sulfur coal. It had a baseline NO, emission level of 0.73 lb/1 OG Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50Y0. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NO, in the flue gas by staged fuel combustion. This technology involves the introduction of' natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NO, emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 18%. The performance goal of 70/40 reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18%.

  15. Environmental significance of biocatalytic conversion of low grade oils

    SciTech Connect

    Lin, M.S.; Premuzic, E.T.; Lian, H.; Zhou, W.M.; Yablon, J.

    1996-09-01

    Studies dealing with the interactions between extremophilic microorganisms and crude oils have led to the identification of biocatalysts which through multiple biochemical reactions catalyze desulfurization, denitrogenation, and demetalation reactions in oils. Concurrently, the oils are also converted to lighter oils. These complex biochemical reactions have served as models in the development of the crude oil bioconversion technology to be applied prior to the treatment of oils by conventional chemical processes. In practical terms, this means that the efficiency of the existing technology is being enhanced. For example, the recently introduced additional regulation for the emission of nitrogen oxides in some states restricts further the kinds of oils that may be used in burners. The biocatalysts being developed in this laboratory selectively interact with nitrogen compounds, i.e. basic and neutral types present in the oil and, hence, affect the fuel NOx production. This, in turn, has a cost-efficient influence on the processed oils and their consumption. In this paper, these cost-efficient and beneficial effects will be discussed in terms of produced oils, the lowering of sulfur and nitrogen contents, and the effect on products, as well as the longevity of catalysts due to the removal of heteroatoms and metal containing compounds found in crudes.

  16. Qiu Ti’s Contributions to Juelanshe and the Intersection of Modernist Ideology, Public Receptivity, and Personal Identity for a Woman Oil Painter in Early Twentieth-Century China

    E-print Network

    Wright, Amanda Sue

    2011-12-31

    Despite her pioneering actions as one of the first female oil painters in China, Qiu Ti (1906-1958) remains on the periphery of China's modernist art movement. This dissertation repositions her to the center of a lively ...

  17. Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Bai, Tiejun

    1995-04-01

    The objective of this investigation is to characterize the operation of fan powered infrared (PIR) burner at various barometric pressures (operating altitude) and gas compositions and develop design guidelines for appliances containing PIR burners for satisfactory performance. In this program, the theoretical basis for the behavior of PIR burners will be established through analysis of the combustion, heat and mass transfer, and other related processes that determine the performance of PIR burners. Based on the results of this study, a burner performance model for radiant output will be developed. The model will be applied to predict the performance of the selected burner and will also be modified and improved through comparison with experimental results. During this period, laboratory facilities that are necessary for conducting this research are completed. The student research assistants have started working in the laboratory. The selection of the test burner has completed. The preparation and instrumentation of this test burner is underway. The theoretical analysis and modeling of the fundamental combustion process of the PIR burner is progressing well. A study of the existing models are being conducted, which will yield specific direction and recommendations for the new model to be developed.

  18. Pioneer 10 observations of the solar wind interaction with Jupiter

    NASA Technical Reports Server (NTRS)

    Wolfe, J. H.; Mihalov, J. D.; Collard, H. R.; Mckibbin, D. D.; Frank, L. A.; Intriligator, D. S.

    1974-01-01

    Detailed analysis of the Pioneer 10 plasma analyzer experiment flight data during the Jupiter flyby in late November and early December 1973 has been performed. The observations show that the interaction of Jupiter's magnetic field with the solar wind is similar in many ways to that at earth, but the scale size is over 100 times larger. Jupiter is found to have a detached standing bow shock wave of high Alfven Mach number. Like the earth, Jupiter has a prominent magnetopause that deflects the magnetosheath plasma and excludes its direct entry into the Jovian magnetosphere. Unlike that of the earth, the sunward hemisphere of Jupiter's outer magnetosphere is found to be highly inflated with thermal plasma and a high-beta region that is highly responsive to changes in solar wind dynamic pressure.

  19. Pioneer 10 observations of the solar wind interation with Jupiter

    NASA Technical Reports Server (NTRS)

    Wolfe, J. H.; Mihalov, J. D.; Collard, H. R.; Mckibbin, D. D.; Frank, L. A.; Intriligator, D. S.

    1974-01-01

    Pioneer 10 Plasma Analyzer experiment flight data during the Jupiter flyby are presented. The observations show that the interaction of Jupiter's magnetic field with the solar wind is similar in many ways to that at earth, but the scale size is over 100 times larger. Jupiter is found to have a detached standing bow shock wave of high Alfven Mach number. Jupiter has a prominent magnetopause which deflects the magnetosheath plasma and excludes its direct entry into the Jovian magnetosphere. The sunward hemisphere of Jupiter's outer magnetosphere is found to be highly inflated with thermal plasma and a high beta region which is highly responsive to changes in solar wind dynamic pressure. Observational arguments are presented which tend to discount a thin disklike magnetosphere but, rather, favor a Jovian magnetosphere, albeit probabily considerably flattened as compared to the earth's magnetosphere, yet still with reasonable thickness. Results concerning the shock jump conditions, the magnetosheath flow field and inferred internal magnetospheric plasma are presented.

  20. Franz von Leydig (1821-1908), pioneer of comparative histology.

    PubMed

    Schneider, Marlon R

    2012-05-01

    Franz von Leydig, a German histologist and zoologist, is known to every student of human or animal anatomy because of the testicular testosterone-producing cells carrying his name. However, he made many contributions to our knowledge of the fine structure of animal tissues, including more than 200 scientific articles and several books. His most important work, the book Lehrbuch der Histologie des Menschen und der Thiere, established him as a pioneer if not the founder of comparative histology. Leydig taught at three different universities (Würzburg, Tübingen and Bonn) and received many honours from scientific organizations worldwide, including the Royal Society. He died in Rothenburg ob der Tauber, the town of his birth, aged 86 years. PMID:22791874

  1. A tribute to Oscar Buneman -- Pioneer of plasma simulation

    SciTech Connect

    Buneman, R.; Barker, R.J. ); Peratt, A.L. ); Brecht, S.H. ); Langdon, A.B. . X-Division); Lewis, H.R. . Dept. of Physics and Astronomy)

    1994-02-01

    Highlights are presented from among the many contributions made by Oscar Buneman to the science, engineering, and mathematics communities. Emphasis is placed not only on ''what'' this pioneer of computational plasma physics contributed but, of equal importance, on ''how'' he made his contributions. Therein lies the difference between technical competence and scientific greatness. The picture which emerges illustrates the open-mindedness, enthusiasm, intellectual/physical stamina, imagination, intellectual integrity, interdisciplinary curiosity, and deep humanity that made this individual unique. As a gentleman and a scholar, he had mastered the art of making cold technical facts ''come to life.'' Oscar Buneman died peacefully at his home near Stanford University on Sunday, January 24th, 1993. The profound influence he has had on many of his colleagues guarantees his immortality.

  2. Impact of Saturn ring particles on Pioneer 11

    NASA Technical Reports Server (NTRS)

    Humes, D. H.; Oneal, R. L.; Kinard, W. H.; Alvarez, J. M.

    1980-01-01

    The detection of particles near the rings of Saturn by the meteoroid detection instrument on board Pioneer 11 is discussed. The instrument consists of 234 penetration detectors, distributed between two independent data channels each of which is designed to become inhibited for a period of 77 min after the registration of a penetration event in that channel. At least four particles penetrated the detectors in the 4.5 h period around Saturn periapsis at radial distances between 1.36 and 3.1 Saturn radii, a radial distribution inconsistent with the gravitational focusing of meteoroids. The detection of particles which may have been part of the E ring before the crossing of the ring plane suggests that this ring may be 1800 km thick, with an optical thickness greater than 10 to the -8th.

  3. Mission Planning for Pioneer Saturn/Uranus Atmospheric Probe Missions

    NASA Technical Reports Server (NTRS)

    Swenson, B. L.; Tindle, E. L.; Manning, L. A.

    1973-01-01

    Mission planning for a series of atmospheric probe missions to Saturn and Uranus using a modified Pioneer spacecraft launched in 1979 and 1980 was examined. The operational options and the associated systems requirements consistent with the major scientific goals and spacecraft constraints of the missions is summarized. It is feasible to obtain in-situ atmospheric measurements in the atmosphere of Saturn and Uranus down to a pressure level of 10 bars using a common probe and spacecraft design. Spacecraft can be launched to both objectives with an adequate launch window in 1979 and 1980 using a Titan/Centaur launch vehicle with a TE-364-4 upper stage. Other scientific objectives can be accomplished by the flyby spacecraft. Encounters with the satellite Titan and RF occultations of Saturn, the ring system of Saturn, and Uranus can be obtained.

  4. Cloud morphology and motions from Pioneer Venus images

    NASA Technical Reports Server (NTRS)

    Rossow, W. B.; Del Genio, A. D.; Limaye, S. S.; Travis, L. D.; Stone, P. H.

    1980-01-01

    The horizontal and vertical cloud structures, atmospheric waves, and wind velocities at the cloud top level were determined by the Pioneer Venus photopolarimeter images in the UV from January through March 1979. The images indicate long-term evolution of cloud characteristics, the atmospheric dynamics, and rapid small changes in cloud morphology. The clouds show a globally coordinated oscillation relative to latitude circles; retrograde zonal winds of 100 m/s near the equator are determined from the tracking of small-scale cloud properties, but two hemispheres show important variations. The zonal wind velocity in the southern hemisphere is reduced toward the poles at a rate similar to solid body rotation; the midlatitude jet stream noted by Mariner 10 is not observed.

  5. Reinterpretation of the Pioneer 6 bow shock crossing.

    NASA Technical Reports Server (NTRS)

    Mariani, F.; Chao, J. K.; Ness, N. F.

    1972-01-01

    This paper re-examines and reinterprets the interesting bow shock crossing of Pioneer 6 on December 16, 1965, by combining the high-resolution data for the magnetic field measurements with all the available plasma data. It is shown that, although a small correction of the magnetic field data improves the validity test of the MHD Rankine-Hugoniot (R-H) conditions, it is the plasma density measurements that are the principal source of the remaining inconsistencies. With the exception of the densities, the best agreement between the measurements and the R-H relations is obtained when the specific heat ratio is slightly less than the classical value of 5/3 expected for a magnetized plasma in the magnetosheath. A more accurate shock normal determination has been made, and it is found that the shock itself is possibly in motion with respect to the earth and that locally it may be approximated as a normal shock.

  6. Magnetic coordinates for the Pioneer 10 Jupiter encounter

    NASA Technical Reports Server (NTRS)

    Mead, G. D.

    1974-01-01

    The magnetic coordinates of the Pioneer 10 spacecraft and the five innermost satellites are reported for the Jupiter encounter. The D sub 2 offset is used to make the calculations. Magnetic coordinates are needed for the interpretation of the trapped particle measurements, including the absorption effects of the satellites. Contours of constant field magnitude and magnetic latitude are given at the surface of Jupiter for the D sub 2 model. The system 3 longitude of a spacecraft at Jupiter is derived, and formulas given for the relationships between system 1, 2, and 3 longitudes. The longitude of the magnetic dipole increases by about 3 deg per year, due to the inaccurate rotation rate used to define system 3 longitude.

  7. Future exploration of Venus (post-Pioneer Venus 1978)

    NASA Technical Reports Server (NTRS)

    Colin, L.; Evans, L. C.; Greeley, R.; Quaide, W. L.; Schaupp, R. W.; Seiff, A.; Young, R. E.

    1976-01-01

    A comprehensive study was performed to determine the major scientific unknowns about the planet Venus to be expected in the post-Pioneer Venus 1978 time frame. Based on those results the desirability of future orbiters, atmospheric entry probes, balloons, and landers as vehicles to address the remaining scientific questions were studied. The recommended mission scenario includes a high resolution surface mapping radar orbiter mission for the 1981 launch opportunity, a multiple-lander mission for 1985 and either an atmospheric entry probe or balloon mission in 1988. All the proposed missions can be performed using proposed space shuttle upper stage boosters. Significant amounts of long-lead time supporting research and technology developments are required to be initiated in the near future to permit the recommended launch dates.

  8. A primitive cyanobacterium as pioneer microorganism for terraforming Mars.

    PubMed

    Friedmann, E I; Ocampo-Friedmann, R

    1995-03-01

    The primitive characteristics of the cyanobacterium Chroococcidiopsis suggest that it represents a very ancient type of the group. Its morphology is simple but shows a wide range of variability, and it resembles certain Proterozoic microfossils. Chroococcidiopsis is probably the most desiccation-resistant cyanobacterium, the sole photosynthetic organism in extreme arid habitats. It is also present in a wide range of other extreme environments, from Antarctic rocks to thermal springs and hypersaline habitats, but it is unable to compete with more specialized organisms. Genetic evidence suggests that all forms belong to a single species. Its remarkable tolerance of environmental extremes makes Chroococcidiopsis a prime candidate for use as a pioneer photosynthetic microorganism for terraforming of Mars. The hypolithic microbial growth form (which lives under stones of a desert pavement) could be used as a model for development of technologies for large-scale Martian farming. PMID:11539232

  9. History of pancreaticoduodenectomy: early misconceptions, initial milestones and the pioneers

    PubMed Central

    Are, Chandrakanth; Dhir, Mashaal; Ravipati, Lavanya

    2011-01-01

    Pancreaticoduodenectomy is one of the most challenging surgical procedures which requires the highest level of surgical expertise. This procedure has constantly evolved over the years through the meticulous efforts of a number of surgeons before reaching its current state. This review navigates through some of the early limitations and misconceptions and highlights the initial milestones which laid the foundation of this procedure. The current review also provides a few excerpts from the lives and illuminates on some of the seminal contributions of the three great surgeons: William Stewart Halsted, Walther Carl Eduard Kausch and Allen Oldfather Whipple. These surgeons pioneered the nascent stages of this procedure and paved the way for the modern day pancreaticoduodenectomy. PMID:21609369

  10. Pioneer 11 observations of trapped particle absorption by Amalthea

    NASA Technical Reports Server (NTRS)

    Mckibben, R. B.; Pyle, K. R.; Simpson, J. A.

    1983-01-01

    The discovery of a microsignatury of trapped radiation in the Amalthea orbit as detected by Pioneer 11 in a flyby of Juptier in 1974 is reported and its implications for the radial diffusion coefficient in Jupiter's inner magnetosphere are discussed. A low energy telescope registered the absorption of low-energy protons as a function of the magnetic L shell durig inbound and outbound trajectories. Drift velocities of the 1 MeV particles were calculated. No correspondingly heightened effects were observed from high-energy electrons or heavier nuclei. Further analysis of the 0.5-8.7 MeV protons showed data to be consistent erosion of the particle drift shadows by a diffusion process. A limit was calculated for the highest diffusion coefficient value for the 1 MeV protons at the Amalthea orbit. The results indicate that the diffusion is driven by fluctuating electric or magnetic fields.

  11. Marietta Blau: Pioneer of Photographic Nuclear Emulsions and Particle Physics

    NASA Astrophysics Data System (ADS)

    Sime, Ruth Lewin

    2013-03-01

    During the 1920s and 1930s, Viennese physicist Marietta Blau (1894-1970) pioneered the use of photographic methods for imaging high-energy nuclear particles and events. In 1937 she and Hertha Wambacher discovered "disintegration stars" - the tracks of massive nuclear disintegrations - in emulsions exposed to cosmic radiation. This discovery launched the field of particle physics, but Blau's contributions were underrecognized and she herself was nearly forgotten. I trace Blau's career at the Institut für Radiumforschung in Vienna and the causes of this "forgetting," including her forced emigration from Austria in 1938, the behavior of her colleagues in Vienna during and after the National Socialist period, and the flawed Nobel decision process that excluded her from a Nobel Prize.

  12. Spatial and temporal variations of Venus haze properties obtained from Pioneer Venus Orbiter polarimetry

    E-print Network

    Spatial and temporal variations of Venus haze properties obtained from Pioneer Venus Orbiter. [1] The spatial and temporal variations of the polarization of light scattered by Venus, as observed by the Pioneer Venus Orbiter between 1978 and 1990, is analyzed in terms of spatial and temporal variations

  13. Looking for (and Finding) Modern Day Pioneers in Kinesiology and Physical Education in Higher Education

    ERIC Educational Resources Information Center

    Metzler, Mike

    2007-01-01

    For most people, the word "pioneer" conjures up romantic visions of sturdy, courageous people who crossed physical frontiers of land and/or water alone, or who took their families, communities, and cultures with them into those uncharted territories. Once settled, their pioneering efforts shifted to starting new societies with new laws and new…

  14. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Pioneer FLOOD WARNING SYSTEM

    E-print Network

    Greenslade, Diana

    FLOOD WARNING SYSTEM for the PIONEER RIVER This brochure describes the flood warning system operated reference information which will be useful for understanding Flood Warnings and River Height Bulletins issued by the Bureau's Flood Warning Centre during periods of high rainfall and flooding. Pioneer River

  15. The "Pioneer effect" as a manifestation of the cosmic expansion in the solar system

    E-print Network

    Jose-Luis Rosales; Jose-Luis Sanchez-Gomez

    1999-05-24

    It is proposed that the recently reported anomalous acceleration acting on the Pioneers spacecrafts should be a consequence of the existence of some local curvature in light geodesics when using the coordinate speed of light in an expanding spacetime. This suggests taht this "Pioneer effect" is nothing else but the detection of cosmological expansion in the solar system.

  16. The Quilt-Block History of Pioneer Days: With Projects Kids Can Make.

    ERIC Educational Resources Information Center

    Cobb, Mary

    The uses and techniques of quilt making are presented in this book which focuses on the quilt patterns as allegory for pioneer history. Pioneer experiences are described and linked visually with appropriate quilt patterns. An activity accompanies each pattern presentation. The work is organized into 10 chapters: (1) "Quilts and History: A Simple…

  17. 77 FR 41364 - Pioneer Hi-Bred International, Inc.; Availability of Petition for Determination of Nonregulated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... determination of nonregulated status. On March 6, 2012, we published in the Federal Register (77 FR 13258-13260... Animal and Plant Health Inspection Service Pioneer Hi-Bred International, Inc.; Availability of Petition... Hi-Bred ] International, Inc., (Pioneer) seeking a determination of nonregulated status of...

  18. 78 FR 37201 - Pioneer Hi-Bred International, Inc.; Determination of Nonregulated Status of Maize Genetically...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ... Register on February 27, 2013 (78 FR 13312-13313, Docket No. APHIS-2012-0026), APHIS announced the... Animal and Plant Health Inspection Service Pioneer Hi-Bred International, Inc.; Determination of... determination that a maize line developed by Pioneer Hi-Bred International Inc., designated as maize event...

  19. Systems design study of the Pioneer Venus spacecraft. Volume 3. Specifications

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Pioneer Venus spacecraft performance requirements are presented. The specifications include: (1) Design criteria and performance requirements for the Pioneer Venus spacecraft systems and subsystems for a 1978 multiprobe mission and a 1978 orbiter mission, spacecraft system interface, and scientific instrument integration.

  20. An Anzatz about Gravity, Cosmology, and the Pioneer Anomaly

    NASA Astrophysics Data System (ADS)

    Murad, Paul

    2010-01-01

    The Pulsar 1913+16 binary system may represent a `young' binary system where previously it is claimed that the dynamics are due to either a third body or a gravitational vortex. Usually a binary system's trajectory could reside in a single ellipse or circular orbit; the double ellipse implies that the 1913+16 system may be starting to degenerate into a single elliptical trajectory. This could be validated only after a considerably long time period. In a majority of binary star systems, the weights of both stars are claimed by analysis to be the same. It may be feasible that the trajectory of the primary spinning star could demonstrate repulsive gravitational effects where the neutron star's high spin rate induces a repulsive gravitational source term that compensates for inertia. If true, then it provides evidence that angular momentum may be translated into linear momentum as a repulsive source that has propulsion implications. This also suggests mass differences may dictate the neutron star's spin rate as an artifact of a natural gravitational process. Moreover, the reduced matter required by the `dark' mass hypothesis may not exist but these effects could be due to repulsive gravity residing in rotating celestial bodies. The Pioneer anomaly observed on five different deep-space spacecraft, is the appearance of a constant gravitational force directed toward the sun. Pioneer spacecraft data reveals that a vortex-like magnetic field exists emanating from the sun. The spiral arms of the Sun's magnetic vortex field may be causal to this constant acceleration. This may profoundly provide a possible experimental verification on a cosmic scale of Gertsenshtein's principle relating gravity to electromagnetism. Furthermore, the anomalous acceleration may disappear once the spacecraft passes out into a magnetic spiral furrow, which is something that needs to be observed in the future. Other effects offer an explanation from space-time geometry to the Yarkovsky thermal effects are discussed.