Sample records for pioneer oil burner

  1. Oil burner nozzle

    DOEpatents

    Wright, Donald G. (Rockville Center, NY)

    1982-01-01

    An oil burner nozzle for use with liquid fuels and solid-containing liquid fuels. The nozzle comprises a fuel-carrying pipe, a barrel concentrically disposed about the pipe, and an outer sleeve retaining member for the barrel. An atomizing vapor passes along an axial passageway in the barrel, through a bore in the barrel and then along the outer surface of the front portion of the barrel. The atomizing vapor is directed by the outer sleeve across the path of the fuel as it emerges from the barrel. The fuel is atomized and may then be ignited.

  2. OIL BURNER EMISSIONS: COTTONSEED OIL VERSUS DIESEL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cottonseed oil has been used as a fuel source, either as a blend with diesel in varying proportions, or undiluted (100%), in numerous studies evaluating its potential use in internal combustion engines. However, limited research is available on the use of cottonseed oil as a fuel source in a multi-f...

  3. SMALL OIL BURNER CONCEPTS BASED ON LOW PRESSURE AIR ATOMIZATION

    SciTech Connect

    BUTCHER,T.; CELEBI,Y.; WEI,G.; KAMATH,B.

    2000-03-16

    The development of several novel oil burner applications based on low pressure air atomization is described. The atomizer used is a prefilming, airblast nozzle of the type commonly used in gas turbine combustion. The air pressure used can be as low as 1,300 Pa and such pressure can be easily achieved with a fan. Advantages over conventional, pressure-atomized nozzles include ability to operate at low input rates without very small passages and much lower fuel pressure requirements. The development of three specific applications is presented. The first two are domestic heating burners covering a capacity range 10 to 26 kW. The third application presented involves the use of this burner in an oil-fired thermophotovoltaic power generator system. Here the design firing rate is 2.9 kW and the system produces 500 watts of electric power.

  4. Flame quality monitor system for fixed firing rate oil burners

    DOEpatents

    Butcher, Thomas A. (Pt. Jefferson, NY); Cerniglia, Philip (Moriches, NY)

    1992-01-01

    A method and apparatus for determining and indicating the flame quality, or efficiency of the air-fuel ratio, in a fixed firing rate heating unit, such as an oil burning furnace, is provided. When the flame brightness falls outside a preset range, the flame quality, or excess air, has changed to the point that the unit should be serviced. The flame quality indicator output is in the form of lights mounted on the front of the unit. A green light indicates that the flame is about in the same condition as when the burner was last serviced. A red light indicates a flame which is either too rich or too lean, and that servicing of the burner is required. At the end of each firing cycle, the flame quality indicator goes into a hold mode which is in effect during the period that the burner remains off. A yellow or amber light indicates that the burner is in the hold mode. In this mode, the flame quality lights indicate the flame condition immediately before the burner turned off. Thus the unit can be viewed when it is off, and the flame condition at the end of the previous firing cycle can be observed.

  5. VARIABLE FIRING RATE OIL BURNER USING PULSE FUEL FLOW CONTROL.

    SciTech Connect

    KRISHNA,C.R.; BUTCHER,T.A.; KAMATH,B.R.

    2004-10-01

    The residential oil burner market is currently dominated by the pressure-atomized retention head burner, which has an excellent reputation for reliability and efficiency. In this burner, oil is delivered to a fuel nozzle at pressures from 100 to 150 psi. In addition, to atomizing the fuel, the small, carefully controlled size of the nozzle exit orifice serves to control the burner firing rate. Burners of this type are currently available at firing rates of more than 0.5 gallons-per-hour (70,000 Btu/hr). Nozzles have been made for lower firing rates, but experience has shown that such nozzles suffer rapid fouling of the necessarily small passages, leading to bad spray patterns and poor combustion performance. Also, traditionally burners and the nozzles are oversized to exceed the maximum demand. Typically, this is figured as follows. The heating load of the house on the coldest day for the location is considered to define the maximum heat load. The contractor or installer adds to this to provide a safety margin and for future expansion of the house. If the unit is a boiler that provides domestic hot water through the use of a tankless heating coil, the burner capacity is further increased. On the contrary, for a majority of the time, the heating system is satisfying a much smaller load, as only rarely do all these demands add up. Consequently, the average output of the heating system has to be much less than the design capacity and this is accomplished by start and stop cycling operation of the system so that the time-averaged output equals the demand. However, this has been demonstrated to lead to overall efficiencies lower than the steady-state efficiency. Therefore, the two main reasons for the current practice of using oil burners much larger than necessary for space heating are the unavailability of reliable low firing rate oil burners and the desire to assure adequate input rate for short duration, high draw domestic hot water loads. One approach to solve this problem is to develop a burner, which can operate at two firing rates, with the lower rate being significantly lower than 0.5 gallons per hour. This paper describes the initial results of adopting this approach through a pulsed flow nozzle. It has been shown that the concept of flow modulation with a small solenoid valve is feasible. Especially in the second configuration tested, where the Lee valve was integrated with the nozzle, reasonable modulation in flow of the order of 1.7 could be achieved. For this first prototype, the combustion performance is still not quite satisfactory. Improvements in operation, for example by providing a sharp and positive shut-off so that there is no flow under low pressures with consequent poor atomization could lead to better combustion performance. This could be achieved by using nozzles that have shut off or check valves for example. It is recommended that more work in cooperation with the valve manufacturer could produce a technically viable system. Marketability is of course a far more complex problem to be addressed once a technically viable product is available.

  6. DEVELOPMENT OF A LOW PRESSURE, AIR ATOMIZED OIL BURNER WITH HIGH ATOMIZER AIR FLOW

    SciTech Connect

    BUTCHER,T.A.

    1998-01-01

    This report describes technical advances made to the concept of a low pressure, air atomized oil burner for home heating applications. Currently all oil burners on the market are of the pressure atomized, retention head type. These burners have a lower firing rate limit of about 0.5 gallons per hour of oil, due to reliability problems related to small flow passage sizes. High pressure air atomized burners have been shown to be one route to avoid this problem but air compressor cost and reliability have practically eliminated this approach. With the low pressure air atomized burner the air required for atomization can be provided by a fan at 5--8 inches of water pressure. A burner using this concept, termed the Fan-Atomized Burner or FAB has been developed and is currently being commercialized. In the head of the FAB, the combustion air is divided into three parts, much like a conventional retention head burner. This report describes development work on a new concept in which 100% of the air from the fan goes through the atomizer. The primary advantage of this approach is a great simplification of the head design. A nozzle specifically sized for this concept was built and is described in the report. Basic flow pressure tests, cold air velocity profiles, and atomization performance have been measured. A burner head/flame tube has been developed which promotes a torroidal recirculation zone near the nozzle for flame stability. The burner head has been tested in several furnace and boiler applications over the tiring rate range 0.2 to 0.28 gallons per hour. In all cases the burner can operate with very low excess air levels (under 10%) without producing smoke. Flue gas NO{sub x} concentration varied from 42 to 62 ppm at 3% 0{sub 2}. The concept is seen as having significant potential and planned development efforts are discussed.

  7. The effects of changes in fuel quality and burner technology on oil furnace performance

    Microsoft Academic Search

    S. W. Lee; A. C. S. Hayden

    1990-01-01

    Heating oil quality is changing in the marketplace due to varying crude sources, attempts to maximize the use of the crude oil barrel, along with significant growth in other middle distillate uses such as diesels and jet aircraft. Maximum efficiency can only be attained from a combustion system by optimizing fuel quality and burner technology, as well as the heating

  8. PERFORMANCE AND AIR POLLUTANT EMISSIONS OF AN EXPERIMENTAL WATER/RESIDUAL OIL EMULSION BURNER IN A COMMERCIAL BOILER

    EPA Science Inventory

    The paper presents the performance and air pollutant emissions of an experimental water/oil emulsion burner. The burner was fired with two residual oils at selected emulsion water fractions. In addition, various stoichiometric ratios and two load conditions were used to determine...

  9. Development, Application and Performance of Venturi Register L. E. A. Burner System for Firing Oil and Gas Fuels

    E-print Network

    Cawte, A. D.

    1979-01-01

    DEVELOPMENT, APPLICATION AND PERFORMANCE OF VENTURI REGISTER L. E. A. BURNER SYSTEM FOR FIRING OIL AND GAS FUELS A. D. Cawte CEA Combustion, Inc. Stamford, Connecticut INTRODUCTION The effect of reducing excess air as a means of curtailing..., extensive investigation work was undertaken us ing the water analog model techniques developed by Associated British Combustion for burner design. The development work resulted in the burner design known today as the Venturi Register, LEA (low excess air...

  10. 46 CFR 56.50-65 - Burner fuel-oil service systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...burners shall be located so as to be readily observable, and all bolted flange joints shall be provided with a wrap around deflector to deflect spray in case of a leak. The relief valve located at the pump and the relief valves fitted to the fuel oil...

  11. ENVIRONMENTAL ASSESSMENT OF AN ENHANCED OIL RECOVERY STEAM GENERATOR EQUIPPED WITH A LOW-NOX BURNER. VOLUME 1. TECHNICAL RESULTS

    EPA Science Inventory

    The report discusses results from sampling flue gas from an enhanced oil recovery steam generator (EOR steamer) equipped with an MHI PM low-NOx burner. The tests included burner performance/emission mapping tests, comparative testing of an identical steamer equipped with a conven...

  12. BURNER CRITERIA FOR NOX CONTROL. VOLUME 3. HEAVY-OIL AND COAL-FIRED FURNACES AND FURTHER FURNACE INVESTIGATIONS

    EPA Science Inventory

    The report describes the third phase of a research program with the overall objective of specifying burner design criteria for minimum pollutant emissions from both pulverized-coal- and residual-fuel-oil-fired combustors. A distributed mixing burner was developed, and its potenti...

  13. Development of a Low Pressure, Air Atomized Oil Burner with High Atomizer Air Flow: Progress Report FY 1997

    SciTech Connect

    Butcher, T.A.

    1998-01-01

    This report describes technical advances made to the concept of a low pressure, air atomized oil burner for home heating applications. Currently all oil burners on the market are of the pressure atomized, retention head type. These burners have a lower firing rate limit of about 0.5 gallons per hour of oil, due to reliability problems related to small flow passage sizes. High pressure air atomized burners have been shown to be one route to avoid this problem but air compressor cost and reliability have practically eliminated this approach. With the low pressure air atomized burner the air required for atomization can be provided by a fan at 5-8 inches of water pressure. A burner using this concept, termed the Fan-Atomized Burner or ''FAB'' has been developed and is currently being commercialized. In the head of the FAB, the combustion air is divided into three parts, much like a conventional retention head burner. This report describes development work on a new concept in which 100% of the air from the fan goes through the atomizer. The primary advantage of this approach is a great simplification of the head design. A nozzle specifically sized for this concept was built and is described in the report. Basic flow pressure tests, cold air velocity profiles, and atomization performance have been measured. A burner head/flame tube has been developed which promotes a toroidal recirculation zone near the nozzle for flame stability. The burner head has been tested in several furnace and boiler applications over the firing rate range 0.2 to 0.28 gallons per hour. In all cases the burner can operate with very low excess air levels (under 10%) without producing smoke. Flue gas NO{sub x} concentration varied from 42 to 62 ppm at 3% O{sub 2}. The concept is seen as having significant potential and planned development efforts are discussed.

  14. ENVIRONMENTAL ASSESSMENT OF AN ENHANCED OIL RECOVERY STEAM GENERATOR EQUIPPED WITH A LOW-NOX BURNER. VOLUME 2. DATA SUPPLEMENT

    EPA Science Inventory

    The report is a compendium of detailed test sampling and analysis data obtained in field tests of an enhanced oil recovery steam generator (EOR steamer) equipped with a MHI PM low-NOx crude oil burner. Test data included in the report include equipment calibration records, steame...

  15. Simplified Configuration for the Combustor of an oil Burner using a low Pressure, high flow air-atomizing Nozzle

    SciTech Connect

    Butcher, Thomas; Celebi, Yusuf; Fisher, Leonard

    1998-09-28

    The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion oil resulting in a minimum emission of pollutants. The inventors have devised a fuel burner that uses a low pressure air atomizing nozzle. The improved fuel burner does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design.

  16. DESIGN AND FIELD DEMONSTRATION OF A LOW-NOX BURNER FOR TEOR (THERMALLY ENHANCED OIL RECOVERY) STEAMERS

    EPA Science Inventory

    The paper discusses a program that addresses the need for advanced NOx control technology for thermally enhanced oil recovery (TEOR) steam generators. A full-scale (60 million Btu/hr) burner system has been developed and tested, the concept for which was based on fundamental stud...

  17. Simplified configuration for the combustor of an oil burner using a low pressure, high flow air-atomizing nozzle

    DOEpatents

    Butcher, Thomas A. (Port Jefferson, NY); Celebi, Yusuf (Middle Island, NY); Fisher, Leonard (Colrain, MA)

    2000-09-15

    The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion of oil resulting in a minimum emission of pollutants. The improved fuel burner uses a low pressure air atomizing nozzle that does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design. Inventors:

  18. Micronized coal burner facility

    NASA Technical Reports Server (NTRS)

    Calfo, F. D.; Lupton, M. W. (inventors)

    1984-01-01

    A combustor or burner system in which the ash resulting from burning a coal in oil mixture is of submicron particle size is described. The burner system comprises a burner section, a flame exit nozzle, a fuel nozzle section, and an air tube by which preheated air is directed into the burner section. Regulated air pressure is delivered to a fuel nozzle. Means are provided for directing a mixture of coal particles and oil from a drum to a nozzle at a desired rate and pressure while means returns excess fuel to the fuel drum. Means provide for stable fuel pressure supply from the fuel pump to the fuel nozzle.

  19. DEVELOPMENT OF SELF-TUNING RESIDENTIAL OIL/BURNER - OXYGEN SENSOR ASSESSMENT AND EARLY PROTOTYPE SYSTEM OPERATING EXPERIENCE

    SciTech Connect

    MCDONALD,R.J.; BUTCHER,T.A.; KRAJEWSKI,R.F.

    1998-09-01

    This document is the first topical report dealing with a new project leading towards the development of a self-tuning residential oil burner. It was initiated under the Statement of Work for the Oil Heat Research and Development Program, for Fiscal Year 1997 as defined in the Combustion Equipment Technology Program, under the management of Brookhaven National Laboratory (BNL). In part, this work is based on research reported by BNL in 1990, suggesting various options for developing control strategies in oil heat technology leading to the enhanced efficiency of oil-fired heating systems. BNL has been addressing these concepts in order of priority and technology readiness. The research described in this report is part of an ongoing project and additional work is planned for the future assuming adequate program funding is made available.

  20. Development of self-tuning residential oil-burner. Oxygen sensor assessment and early prototype system operating experience

    SciTech Connect

    McDonald, R.J.; Butcher, T.A.; Krajewski, R.F.

    1998-09-01

    This document is the first topical report dealing with a new project leading towards the development of a self-tuning residential oil burner. It was initiated under the Statement of Work for the Oil Heat Research and Development Program, for Fiscal Year 1997 as defined in the Combustion Equipment Technology Program, under the management of Brookhaven National Laboratory (BNL). In part, this work is based on research reported by BNL in 1990, suggesting various options for developing control strategies in oil heat technology leading to the enhanced efficiency of oil-fired heating systems. BNL has been addressing these concepts in order of priority and technology readiness. The research described in this report is part of an ongoing project and additional work is planned for the future assuming adequate program funding is made available. BNL has continued to investigate all types of sensor technologies associated with combustion systems including all forms of oxygen measurement techniques. In these studies the development of zirconium oxide oxygen sensors has been considered over the last decade. The development of these sensors for the automotive industry has allowed for cost reductions based on quantity of production that might not have occurred otherwise. This report relates BNL`s experience in testing various zirconium oxide sensors, and the results of tests intended to provide evaluation of the various designs with regard to performance in oil-fired systems. These tests included accuracy when installed on oil-fired heating appliances and response time in cyclic operating mode. An evaluation based on performance criteria and cost factors was performed. Cost factors in the oil heat industry are one of the most critical issues in introducing new technology.

  1. Pulverized coal burner

    DOEpatents

    Sivy, Jennifer L. (Alliance, OH); Rodgers, Larry W. (Canton, OH); Koslosy, John V. (Akron, OH); LaRue, Albert D. (Uniontown, OH); Kaufman, Keith C. (Canton, OH); Sarv, Hamid (Canton, OH)

    1998-01-01

    A burner having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO.sub.x burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO.sub.x back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing.

  2. An experimental program for evaluation of fuel quality effects on oil burner performance

    Microsoft Academic Search

    S. W. Lee; A. C. S. Hayden

    1986-01-01

    This paper gives a detailed description of the experimental facilities and procedures developed for a combustion program on middle distillate fuel oil quality. Oils from various feedstocks and with wide ranges of properties are evaluated using these facilities to help establish a quality\\/performance index system. Test fuels include furnace oil from conventional as well as synthetic crudes, light gas oils,

  3. Chemical and toxicological characterization of residential oil burner emissions: I. Yields and chemical characterization of extractables from combustion of No. 2 fuel oil at different Bacharach Smoke Numbers and firing cycles.

    PubMed Central

    Leary, J A; Biemann, K; Lafleur, A L; Kruzel, E L; Prado, G P; Longwell, J P; Peters, W A

    1987-01-01

    Particulates and complex organic mixtures were sampled from the exhaust of a flame retention head residential oil burner combusting No. 2 fuel oil at three firing conditions: continuous at Bacharach Smoke No. 1, and cyclic (5 min on, 10 min off) at Smoke Nos. 1 and 5. The complex mixtures were recovered by successive Soxhlet extraction of filtered particulates and XAD-2 sorbent resin with methylene chloride (DCM) and then methanol (MeOH). Bacterial mutagenicity [see Paper II (8)] was found in the DCM extractables. Samples of DCM extracts from the two cyclic firing conditions and of the raw fuel were separated by gravity column chromatography on alumina. The resulting fractions were further characterized by a range of instrumental methods. Average yields of both unextracted particulates and of DCM extractables, normalized to a basis of per unit weight of fuel fired, were lower for continuous firing than for cyclic firing. For cyclic firing, decreasing the smoke number lowered the particulates emissions but only slightly reduced the average yield of DCM extractables. These and similar observations, here reported for two other oil burners, show that adjusting the burner to a lower smoke number has little effect on, or may actually increase, emissions of organic extractables of potential public health interest. Modifications of the burner firing cycle aimed at approaching continuous operation offer promise for reducing the amount of complex organic emissions. Unburned fuel accounted for roughly half of the DCM extractables from cyclic firing of the flame retention head burner at high and low smoke number. Large (i.e., greater than 3 ring) polycyclic aromatic hydrocarbons (PAH) were not observed in the DCM extractables from cyclic firing. However, nitroaromatics, typified by alkylated nitronaphthalenes, alkyl-nitrobiphenyls, and alkyl-nitrophenanthrenes were found in a minor subfraction containing a significant portion of the total mutagenic activity of the cyclic low smoke samples (8). Oxygen-containing PAH, typified by phenalene-1-one and its alkyl derivatives, are important mutagens from cyclic firing at high smoke conditions. Thus, oil burner effluents differ markedly from those of several other combustors, including the automotive diesel engine, where multiring PAH, typified by fluoranthene and alkylated phenanthrenes, account for a significant portion of the effluent mutagenicity. Implications for combustion and emissions source identification are discussed. PMID:3665865

  4. Proceedings of the 1998 oil heat technology conference

    SciTech Connect

    McDonald, R.J.

    1998-04-01

    The 1998 Oil Heat Technology Conference was held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting was held in cooperation with the Petroleum Marketers Association of America (PMAA). Fourteen technical presentations was made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Canada, including: integrated oil heat appliance system development in Canada; a miniature heat-actuated air conditioner for distributed space conditioning; high-flow fan atomized oil burner (HFAB) development; progress in the development of self tuning oil burners; application of HFAB technology to the development of a 500 watt; thermophotovoltaic (TPV) power system; field tests of the Heat Wise Pioneer oil burner and Insight Technologies AFQI; expanded use of residential oil burners to reduce ambient ozone and particulate levels by conversion of electric heated homes to oilheat; PMAA`s Oil Heat Technician`s Manual (third edition); direct venting concept development; evolution of the chimney; combating fuel related problems; the effects of red dye and metal contamination on fuel oil stability; new standard for above ground and basement residential fuel oil storage; plastic and steel composite secondary contained tanks; and money left on the table: an economic analysis of tank cleaning.

  5. Evaluation and demonstration of low NOx burner systems for TEOR steam generators. Test report: preliminary evaluation of commercial prototype burner

    Microsoft Academic Search

    G. England; Y. Kwan; R. Payne

    1983-01-01

    The report documents preliminary testing of a 16 MW low-NOx burner for retrofit application to thermally enhanced, oil recovery steam generators. The burner is designed to achieve NOx emissions below 85 ppm (at 3 percent O2) while burning heavy fuel oil containing more than 0.6 weight percent bound nitrogen. The design of this burner (documented in a companion report) is

  6. Burner systems

    DOEpatents

    Doherty, Brian J. (Marblehead, MA)

    1984-07-10

    A burner system particularly useful for downhole deployment includes a tubular combustion chamber unit housed within a tubular coolant jacket assembly. The combustion chamber unit includes a monolithic tube of refractory material whose inner surface defines the combustion zone. A metal reinforcing sleeve surrounds and extends the length of the refractory tube. The inner surface of the coolant jacket assembly and outer surface of the combustion chamber unit are dimensioned so that those surfaces are close to one another in standby condition so that the combustion chamber unit has limited freedom to expand with that expansion being stabilized by the coolant jacket assembly so that compression forces in the refractory tube do not exceed about one-half the safe compressive stress of the material; and the materials of the combustion chamber unit are selected to establish thermal gradient parameters across the combustion chamber unit to maintain the refractory tube in compression during combustion system start up and cool down sequences.

  7. EVALUATION AND DEMONSTRATION OF LOW NOX BURNER SYSTEMS FOR TEOR STEAM GENERATORS. TEST REPORT: PRELIMINARY EVALUATION OF COMMERCIAL PROTOTYPE BURNER

    EPA Science Inventory

    The report documents preliminary testing of a 16 MW low-NOx burner for retrofit application to thermally enhanced, oil recovery steam generators. The burner is designed to achieve NOx emissions below 85 ppm (at 3 percent O2) while burning heavy fuel oil containing more than 0.6 w...

  8. Rotary Burner Demonstration

    SciTech Connect

    Paul Flanagan

    2003-04-30

    The subject technology, the Calcpos Rotary Burner (CRB), is a burner that is proposed to reduce energy consumption and emission levels in comparison to currently available technology. burners are used throughout industry to produce the heat that is required during the refining process. Refineries seek to minimize the use of energy in refining while still meeting EPA regulations for emissions.

  9. Coal/water mixtures get commercial tryouts at oil-designed burners in Sweden and the US

    SciTech Connect

    Not Available

    1984-08-13

    Commercial applications of coal/liquid slurry fuels, initiated in January for the coal/oil mixtures, could accelerate this year as two manufacturers introduce commercial coal/water slurries. Svenska Fluidcarbon AB of Malmoe, Sweden, plans startup of a full-scale production plant for its coal/water mixture (CWM) in October. Primary sales of the slurry will be to the city of Lund, for a steam-generating utility boiler. In the US, the Standard Havens Research Corporation of Kansas City, Missouri, plans sales of its CWM technology to hot-mix asphalt plants. The effort in Sweden is relatively standard for the fledgling slurry-fuel industry. The effort by Standard Havens points to a contrasting focus. Standard Havens plans to sell its slurry-fuel technology to small and medium size asphalt plants. Aqua Black is a complete slurry production and combustion system, designed to permit the industrial user to produce fuel for his own operations. In addition, the plant owner may expand the slurry-fuel system and produce fuel for other businesses in his region.

  10. Rock Pioneers

    NSDL National Science Digital Library

    Lawrence Hall of Science

    1981-01-01

    In this outdoor activity/field trip, learners investigate organisms that live along the ocean's rocky coast. Learners add bare rocks to an intertidal zone, and over the course of 6-8 weeks observe what plant and animals colonize (come to live) on the new rocks. The intertidal zone, covered by water during high tides and uncovered at low tides, is usually densely covered with marine organisms such as seaweeds, mussels, barnacles, snails, limpets, anemones and sea stars. Learners may not only discover pioneer organisms (first colonizers) of their new rocks, but other organisms that replace the first arrivals in the process of succession. This activity calls for multiple, weekly return visits to the intertidal zone.

  11. Atmospheric gas burner assembly

    SciTech Connect

    Abalos, M.

    1993-08-31

    An atmospheric gas burner assembly is described adapted for use in a domestic water heater comprising a venturi tube having an open venturi inlet end for aspirating primary air there into and in admixture with a pressurized gas fuel stream introduced axially into said tube inlet end, said venturi tube having an open outlet end communicating in air tight manner with a burner chamber portion of a gas-air burner unit, and a turbulator member comprising a metal band disposed transversely of said venturi tube adjacent said outlet end thereof and extending diametrically there across and an elongated fixed non-rotating cylindrical pointed pin member located centrally of said band and extending axially within said venturi tube with its pointed end facing upstream toward the open inlet end thereof for creating a turbulence of the gas-air mixture within and at the outlet end of said tube to minimize noise during burner operation.

  12. Design and analysis of the federal aviation administration next generation fire test burner

    NASA Astrophysics Data System (ADS)

    Ochs, Robert Ian

    The United States Federal Aviation Administration makes use of threat-based fire test methods for the certification of aircraft cabin materials to enhance the level of safety in the event of an in-flight or post-crash fire on a transport airplane. The global nature of the aviation industry results in these test methods being performed at hundreds of laboratories around the world; in some cases testing identical materials at multiple labs but yielding different results. Maintenance of this standard for an elevated level of safety requires that the test methods be as well defined as possible, necessitating a comprehensive understanding of critical test method parameters. The tests have evolved from simple Bunsen burner material tests to larger, more complicated apparatuses, requiring greater understanding of the device for proper application. The FAA specifies a modified home heating oil burner to simulate the effects of large, intense fires for testing of aircraft seat cushions, cargo compartment liners, power plant components, and thermal acoustic insulation. Recently, the FAA has developed a Next Generation (NexGen) Fire Test burner to replace the original oil burner that has become commercially unavailable. The NexGen burner design is based on the original oil burner but with more precise control of the air and fuel flow rates with the addition of a sonic nozzle and a pressurized fuel system. Knowledge of the fundamental flow properties created by various burner configurations is desired to develop an updated and standardized burner configuration for use around the world for aircraft materials fire testing and airplane certification. To that end, the NexGen fire test burner was analyzed with Particle Image Velocimetry (PIV) to resolve the non-reacting exit flow field and determine the influence of the configuration of burner components. The correlation between the measured flow fields and the standard burner performance metrics of flame temperature and burnthrough time was studied. Potential design improvements were also evaluated that could simplify burner set up and operation.

  13. High efficiency gas burner

    SciTech Connect

    Schuetz, M.A.

    1983-12-06

    A burner assembly is disclosed, which provides for 100% premixing of fuel and air by drawing the air into at least one high velocity stream of fuel without power assist. Specifically, the nozzle assembly for injecting the fuel into a throat comprises a plurality of nozzles in a generally circular array. Preferably, swirl is imparted to the air/fuel mixture by angling the nozzles. The diffuser comprises a conical primary diffuser followed by a cusp diffuser.

  14. 14 CFR 31.47 - Burners.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...burner system (including the burner unit, controls, fuel lines, fuel cells, regulators, control valves, and other related...burner must include: (i) Five hours at the maximum fuel pressure for which approval is sought, with a...

  15. Pressurized burner test facility

    SciTech Connect

    Maloney, D.J.; Norton, T.S.; Hadley, M.A.

    1993-09-01

    The US Department of Energy`s METC has recently completed construction and commissioning of a new high-pressure combustion research facility. Utilities servicing the facility enable combustion tests at scales up to 3 MW (10 MM Btu/h) and pressures in excess of 3000 kPa (30 atm). These include a preheated, high-pressure air supply that can deliver up to 1.7 kg/s (3.7 lbs/s) of combustion air, and a high-pressure, natural gas compressor that can deliver 0.8 kg/s (.19 lbs/s). In the summer of 1994 METC`s syngas generator is scheduled to come on line, at which time combustion tests on a range of fuel gases from low to medium to high heating values will be possible. The syngas generator will simulate a range of fuel gas compositions characteristic of coal gasification product streams. As part of the combustion facility, a high-pressure burner test facility is currently being constructed to support the development of gas turbine combustion systems fired on natural gas and coal-derived gaseous fuels containing fuel-bound nitrogen. The facility, illustrated in Figure 1, is a 61-centimeter (24-inch) diameter, refractory-lined vessel of modular construction, offering the flexibility to test a variety of NO{sub x} control concepts. Burner test modules are sandwiched between gas inlet and sampling plenums with a maximum combustion test zone of 2.2 m (90 inches) in length. Modules are custom designed for specific burners.

  16. Solid-fuel burner

    SciTech Connect

    Schroder, U.

    1983-12-27

    A burner for solid fuel in pulverulent form has a central conduit for primary combustion air, a fuel conduit surrounding the central conduit for admission of the pulverulent fuel, and one (or two concentric) secondary-air outer conduits. The annular space between the fuel conduit and the single (or the innermost) outer conduit is subdivided into two annular channels by an intermediate conduit. An inlet arrangement is provided for feeding combustion air into one of these channels, and another arrangement permits the selective feeding of either only combustion air, or of a mixture of such air with pulverulent fuel, into the other of the annular channels.

  17. Smokeless flare gas burner

    SciTech Connect

    Bozai, M.Z.

    1987-02-17

    A flare gas burner is described for combustible waste gas comprising: a waste gas delivery pipe; deflector means disposed externally about the upper end of the waste gas delivery pipe the deflector means approximating the shape of a half Venturi with the throat uppermost; an annular manifold disposed on the exterior of the lower end of the deflector means; means for supporting the deflector in fixed spaced apart relationship with the upper end of the waste gas delivery pipe; means for supplying high pressure motive fluid to the manifold; and means for discharging the motive fluid from the manifold into the passage defined by the interior of the deflector means and the exterior of the waste gas delivery pipe.

  18. The Pioneer Anomaly

    Microsoft Academic Search

    Jose A. de Diego; Darío Núñez

    2008-01-01

    Analysis of the radio-metric data from Pioneer 10 and 11 spacecrafts has\\u000aindicated the presence of an unmodeled acceleration starting at 20 AU, which\\u000ahas become known as the Pioneer anomaly. The nature of this acceleration is\\u000auncertain. In this paper we give a description of the effect and review some\\u000arelevant mechanisms proposed to explain the observed anomaly. We

  19. Update on Pioneer 10

    NASA Astrophysics Data System (ADS)

    Van Allen, J. A.

    About a year ago NASA announced the formal termination of the extended mission of Pioneer 10 as of March 31, 1997. On March 3, 1997, the 25th anniversary of the launching of Pioneer 10 was celebrated in Washington, D.C., at NASA headquarters and at the National Air and Space Museum. I was among those who gave eulogies for the truly pioneering achievements of this Ames Research Center spacecraft to Jupiter and the outer heliosphere.The services of the outside contractor for Pioneer 10 operations at the Ames Research Center were, in fact, terminated on March 31, 1997. But, by virtue of informal support by the Deep Space Network and the Ames Research Center, Pioneer 10 has continued to yield valuable data on cosmic-ray intensity in the outer heliosphere throughout 1997 and is expected to do so through at least early summer of 1998. The r.f. telemetry link margin, at 16 bits per second, is still satisfactory, and the on-board electrical power from the four radioisotope thermoelectric generators (RTGs) is adequate to operate all essential spacecraft systems plus the University of Iowa's cosmic-ray instrument. A precession maneuver to adjust the pointing of the axis of the spacecraft's parabolic antenna was successfully executed on February 3, 1998.

  20. Are low NOx burners really low NOx?

    SciTech Connect

    Blankinship, S.

    2005-08-01

    All low NOx burners are susceptible to system changes and upsets. Segregation of coal and air into what has been termed 'coal ropes' is one such condition. Coal roping in the burner fuel piping creates areas of very high air/fuel ratios allowing premature ignition inside the burner or at the very burner tip. The ability of any burner to lower thermal NOx is diminished in these clean fuel areas. The Sure Alloy Steel Corp. has developed a blender to install just after the last elbow or connection leading to the burner pipes to overcome the problem. 2 figs.

  1. Burner ignition system

    DOEpatents

    Carignan, Forest J. (Bedford, MA)

    1986-01-21

    An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.

  2. Space Pioneers and Where They Are Now.

    ERIC Educational Resources Information Center

    Montoya, Earl J.; Fimmel, Richard O.

    This booklet describes the Pioneer Program and its role in exploring the solar system. Sections include: (1) "Pioneers in Space to Understand Our Earth" (describing the background of the program); (2) "First Pioneers"; (3) "The Interplanetary Pioneers"; (4) "Planetary Pioneers"; (5) "Outer Solar System Pioneers"; (6) "The Pioneers Now and In the…

  3. Controller for pulverized coal burner

    NASA Astrophysics Data System (ADS)

    Wojcik, Waldemar; Golec, Tomasz; Kotyra, Andrzej; Smolarz, Andrzej; Komada, Pawel; Kalita, Mariusz

    2004-09-01

    Burning pulverized coal in power boilers causes considerable emission of atmospheric pollution. In order to decrease it the combustion process itself has been modified, however at cost of side effects like: increased level of unburned coal particles in the ashes. There are tens of burners in a single power boiler and emission level measurements are made in flue gas duct, so the control based on such averaged and heavily delayed values often results ineffective. The neural controller of the pulverized coal burner attempts to resolve these problems. The clue is utilization of fiber-optic system for monitoring of chosen zone of flame developed in Department of Electronics of Technical University of Lublin. The article contains description of controlled system and optical fiber measurement system, an idea of the controller as well as some results obtained for experimental burner.

  4. Pioneer F Plaque Symbology

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Pioneer F spacecraft, destined to be the first man made object to escape from the solar system into interstellar space, carries this pictorial plaque. It is designed to show scientifically educated inhabitants of some other star system, who might intercept it millions of years from now, when Pioneer was launched, from where, and by what kind of beings. (With the hope that they would not invade Earth.) The design is etched into a 6 inch by 9 inch gold-anodized aluminum plate, attached to the spacecraft's attenna support struts in a position to help shield it from erosion by interstellar dust. The radiating lines at left represents the positions of 14 pulsars, a cosmic source of radio energy, arranged to indicate our sun as the home star of our civilization. The '1-' symbols at the ends of the lines are binary numbers that represent the frequencies of these pulsars at the time of launch of Pioneer F relative of that to the hydrogen atom shown at the upper left with a '1' unity symbol. The hydrogen atom is thus used as a 'universal clock,' and the regular decrease in the frequencies of the pulsars will enable another civilization to determine the time that has elapsed since Pioneer F was launched. The hydrogen is also used as a 'universal yardstick' for sizing the human figures and outline of the spacecraft shown on the right. The hydrogen wavelength, about 8 inches, multiplied by the binary number representing '8' shown next to the woman gives her height, 64 inches. The figures represent the type of creature that created Pioneer. The man's hand is raised in a gesture of good will. Across the bottom are the planets, ranging outward from the Sun, with the spacecraft trajectory arching away from Earth, passing Mars, and swinging by Jupiter.

  5. Pioneering through chaos.

    PubMed

    Warshawsky, Nora E; Joseph, M Lindell; Fowler, Debra L; Edmonson, Cole; Nelson-Brantley, Heather V; Kowalski, Karren

    2015-03-01

    The 2014 International Nursing Administration Research Conference, "Pioneering Through Chaos: Leadership for a Changing World," was held at the Texas Woman's University in Dallas, Texas, in the fall of 2014. The program drew more than 100 attendees from 4 countries. The conference informed attendees from both academe and practice about the role of nursing administration in navigating the dynamic healthcare climate. This article will report on the insights from the conference presenters. PMID:25689497

  6. FLOOD WARNING SYSTEM PIONEER RIVER

    E-print Network

    Greenslade, Diana

    FLOOD WARNING SYSTEM for the PIONEER RIVER This brochure describes the flood warning system River. It includes reference information which will be useful for understanding Flood Warnings and River. Pioneer River at Mirani Contained in this document is information about: (Last updated April 2014) Flood

  7. Porous burners for lean-burn applications

    Microsoft Academic Search

    Susie Wood; Andrew T. Harris

    2008-01-01

    We review research on lean methane combustion in porous burners, with an emphasis on practical aspects of burner design and operation and the application of the technology to real-world problems. In particular we focus on ‘ultra-lean’ combustion, where the methane concentration is actually at or below the lean flammability limit for a free flame (5% methane by volume in air).

  8. Diesel fuel burner for diesel emissions control system

    DOEpatents

    Webb, Cynthia C.; Mathis, Jeffrey A.

    2006-04-25

    A burner for use in the emissions system of a lean burn internal combustion engine. The burner has a special burner head that enhances atomization of the burner fuel. Its combustion chamber is designed to be submersed in the engine exhaust line so that engine exhaust flows over the outer surface of the combustion chamber, thereby providing efficient heat transfer.

  9. James E. Keeler Pioneer Astrophysicist.

    ERIC Educational Resources Information Center

    Osterbrock, Donald E.

    1979-01-01

    Gives a short biography of James E. Keeler, and describes some of his outstanding discoveries, and his pioneering work in observational research where he applied physical methods to the analysis of planets, stars and nebulae. (GA)

  10. Last birthday for Pioneer 10?

    NASA Astrophysics Data System (ADS)

    Pioneer 10 celebrated its tenth year in space on March 2, but it may not be sending back data to scientists on earth on its eleventh birthday. Although scientists, such as James A. Van Allen, AGU President-elect, await current spacecraft findings ‘with intense excitement,’ Pioneer 10 may fall victim to the budget ax wielded by the Reagan administration. National Aeronautics and Space Administrator James Beggs said that communications to the spacecraft may be cut off beginning in fiscal 1983 [Eos, February 23, p. 169].Having survived the ravages of its 6.6 billion km trip, Pioneer continues to function well, NASA reports, and is currently attempting to define the extent and behavior of the sun's atmosphere or heliosphere. By April 1983, Pioneer will be farther from the sun than Pluto, and by June it will pass Neptune.

  11. 11. Pioneer venus experiment descriptions

    Microsoft Academic Search

    L. Colin; D. M. Hunten

    1977-01-01

    This concluding paper of a special issue of Space Science Reviews, devoted to the exploration of Venus and the Pioneer Venus Program, contains brief engineering descriptions of the experiments to be integrated into the Orbiter and Multiprobe scientific payloads.

  12. Pioneer Venus Orbiter Fluxgate Magnetometer

    Microsoft Academic Search

    C. T. Russell; R. C. Snare; J. D. Means; R. C. Elphic

    1980-01-01

    The fluxgate magnetometer on the Pioneer Venus orbiter spacecraft is described. Special features include gradiometer operation, on board despinning, a floating point processor and variable Nyquist filters. Initial operations have been entirely successful.

  13. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME II. SECOND GENERATION LOW-NOX BURNERS

    EPA Science Inventory

    The report describes tests to evaluate the performance characteristics of three Second Generation Low-NOx burner designs: the Dual Register burner (DRB), the Babcock-Hitachi NOx Reducing (HNR) burner, and the XCL burner. The three represent a progression in development based on t...

  14. Development of the Radiation Stabilized Distributed Flux Burner. Phase 1, final report

    SciTech Connect

    Sullivan, J.D.; Duret, M.J.

    1997-06-01

    The RSB was first developed for Thermally Enhanced Oil Recovery steamers which fire with a single 60 MMBtu/hr burner; the California Energy Commission and Chevron USA were involved in the burner development. The burner has also since found applications in refinery and chemical plant process heaters. All Phase I goals were successfully met: the RSB achieved sub-9 ppM NOx and sub-50 ppM CO emissions using high excess air, external flue gas recirculation (FGR), and fuel staging in the 3 MMBtu/hr laboratory watertube boiler. In a test in a 50,000 lb/hr oil field steamer with fuel staging, it consistently achieved sub-20 ppM NOx and as low as 10 ppM NOx. With high CO{sub 2} casing gas in this steamer, simulating external FGR, sub-20 ppM NOx and as low as 5 ppM NOx were achieved. Burner material cost was reduced by 25% on a per Btu basis by increasing the effective surface firing rate at the burner; further reductions will occur in Phase II. The market for 30 ppM and 9 ppM low NOx burners has been identified as package boilers in the 50,000 to 250,000 lb/hr size range (the 30 ppM is for retrofit, the 9 ppM for the new boiler market). Alzeta and Babcock & Wilcox have teamed to sell both boiler retrofits and new boilers; they have identified boiler designs which use the compact flame shape of the RSB and can increase steam capacity while maintaining the same boiler footprint. Alzeta, Chevron, and B & W have teamed to identify sites to demonstrate the RSB in Phases II and III. In Phase II, the RSB will be demonstrated in a 100,000 lb/hr industrial watertube boiler.

  15. Advanced Petrochemical Process Heating with the Pyrocore Burner

    E-print Network

    Krill, W. V.; Minden, A. C.; Donaldson, L. W. Jr.

    and its hot incandescent surface. This surface transfera most of the burner's heat input directly to the opposing heat sink by thermal radiation. The Pyrocore burner, a ceramic fiber burner, is a subtype of infrared burner. As shown con ceptually...ADVANCED PETROCHEMICAL PROCESS HEATING WITH THE PYROCORE BURNER WAYNE V. KRILL ANDREW C. MINDEN LESLIE W. DONALDSON, JR. Vice President Project Engineer Manager, Process Systems Research Alzeta Corporation Alzeta Corporation Gas Research...

  16. Catalytic reactor with improved burner

    DOEpatents

    Faitani, Joseph J. (Hartford, CT); Austin, George W. (Glastonbury, CT); Chase, Terry J. (Somers, CT); Suljak, George T. (Vernon, CT); Misage, Robert J. (Manchester,all of, CT)

    1981-01-01

    To more uniformly distribute heat to the plurality of catalyst tubes in a catalytic reaction furnace, the burner disposed in the furnace above the tops of the tubes includes concentric primary and secondary annular fuel and air outlets. The fuel-air mixture from the primary outlet is directed towards the tubes adjacent the furnace wall, and the burning secondary fuel-air mixture is directed horizontally from the secondary outlet and a portion thereof is deflected downwardly by a slotted baffle toward the tubes in the center of the furnace while the remaining portion passes through the slotted baffle to another baffle disposed radially outwardly therefrom which deflects it downwardly in the vicinity of the tubes between those in the center and those near the wall of the furnace.

  17. Alzeta porous radiant burner. CRADA final report

    SciTech Connect

    NONE

    1995-12-01

    An Alzeta Pyrocore porous radiant burner was tested for the first time at elevated pressures and mass flows. Mapping of the burner`s stability limits (flashback, blowoff, and lean extinction limits) in an outward fired configuration and hot wall environment was carried out at pressures up to 18 atm, firing rates up to 180 kW, and excess air rates up to 100%. A central composite experimental design for parametric testing within the stability limits produced statistically sound correlations of dimensionless burner temperature and NO{sub x} emissions as functions of equivalence ratio, dimensionless firing rate, and reciprocal Reynolds number. The NO{sub x} emissions were below 4 ppmvd at 15% O{sub 2} for all conditions tested, and the CO and unburned hydrocarbon levels were simultaneously low. As a direct result of this cooperative research effort between METC and Alzeta, Solar Turbines has already expressed a strong interest in this novel technology.

  18. Combustion characteristics and NOx emissions of two kinds of swirl burners in a 300-MWe wall-fired pulverized-coal utility boiler

    SciTech Connect

    Li, Z.Q.; Jing, J.P.; Chen, Z.C.; Ren, F.; Xu, B.; Wei, H.D.; Ge, Z.H. [Harbin Institute for Technology, Harbin (China). School for Energy Science & Engineering

    2008-07-01

    Measurements were performed in a 300-MWe wall-fired pulverized-coal utility boiler. Enhanced ignition-dual register (EI-DR) burners and centrally fuel rich (CFR) swirl coal combustion burners were installed in the bottom row of the furnace during experiments. Local mean concentrations of O{sub 2}, CO, CO{sub 2} and NOx gas species, gas temperatures, and char burnout were determined in the region of the two types of burners. For centrally fuel rich swirl coal combustion burners, local mean CO concentrations, gas temperatures and the temperature gradient are higher and mean concentrations of O{sub 2} and NOx along the jet flow direction in the burner region are lower than for the enhanced ignition-dual register burners. Moreover, the mean O{sub 2} concentration is higher and the gas temperature and mean CO concentration are lower in the side wall region. For centrally fuel rich swirl coal combustion burners in the bottom row, the combustion efficiency of the boiler increases from 96.73% to 97.09%, and NOx emission decreases from 411.5 to 355 ppm at 6% O{sub 2} compared to enhanced ignition-dual register burners and the boiler operates stably at 110 MWe without auxiliary fuel oil.

  19. Coal distribution cone or pulverized coal burners

    SciTech Connect

    Nitz, M.G.; Taylor, R.S.

    1990-06-19

    This paper describes a pulverized fuel distribution cone for use in a pulverized fuel burner having a tubular burner pipe with flanged inlet and furance ends and an elbow connector having a flanged end for connection thereof to the flanged end of the pipe. It comprises: an open base section; a planar flange extending outwardly the open base section and being retained between the flanged ends of the elbow connector and pipe; and an open outlet end portion extending into the pipe.

  20. Accurate burner air flow measurement for low NO{sub x} burners

    SciTech Connect

    Earley, D.; Penterson, C.

    1998-07-01

    In 1990, Congress enacted an amendment to the Clean Air Act that required reductions in NO{sub x} emissions through the application of low NO{sub x} burner systems on fossil fueled utility steam generators. For most of the existing steam generator population, the original burning equipment incorporated highly turbulent burners that created significant in-furnace flame interaction. Thus, the measurement and control of air flow to the individual burners was much less critical than in recent years with low NO{sub x} combustion systems. With low NO{sub x} systems, the reduction of NO{sub x} emissions, as well as minimizing flyash unburned carbon levels, is very much dependent on the ability to control the relative ratios of air and fuel on a per-burner basis and their rate of mixing, particularly in the near burner zones. Air Monitor Corporation (AMC) and DB Riley, Inc. (DBR), and a large Midwestern electric utility have successfully developed and applied AMC's equipment to low NO{sub x} coal burners in order to enhance NO{sub x} control combustion systems. The results have improved burner optimization and provided real time continuous air flow balancing capability and the control of individual burner stoichiometries. To date, these enhancements have been applied to wall-fired low NO{sub x} systems for balancing individual burner air flows in a common windbox and to staged combustion systems. Most recently, calibration testing in a wind tunnel facility of AMC's individual burner air measurement (IBAM{trademark}) probes installed in DB Riley's low NO{sub x} CCV{reg{underscore}sign} burners has demonstrated the ability to produce reproducible and consistent air flow measurement accurate to within 5%. This paper will summarize this product development and quantify the benefits of its application to low NO{sub x} combustion systems.

  1. Burners and combustion apparatus for carbon nanomaterial production

    DOEpatents

    Alford, J. Michael; Diener, Michael D; Nabity, James; Karpuk, Michael

    2013-02-05

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  2. Burners and combustion apparatus for carbon nanomaterial production

    DOEpatents

    Alford, J. Michael (Lakewood, CO); Diener, Michael D. (Denver, CO); Nabity, James (Arvada, CO); Karpuk, Michael (Boulder, CO)

    2007-10-09

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  3. Performance test reports and comparison of emission characteristics of prototype liquid multifuel burners developed for US military field cooking applications

    SciTech Connect

    Litzke, W.; Celebi, Y.; McDonald, R.

    1994-08-01

    The objective of this project is to provide data to the U.S. Army Natick RD&E Center on the performance of three prototype burners, which have the capability of firing with multiple types of fuels (diesel and JP-8), and the conventional gasoline-fired M-2 burner. The prototype burners are intended to replace the M-2 unit currently used in food cooking appliances in the Army. The burners supplied to Brookhaven National Laboratory (BNL) for the purpose of testing under this project included one M-2 unit, one M-3 prototype unit designed by Natick, one Babington prototype unit designed by Babington Engineering, and one ITR prototype designed by International Thermal Research Ltd. It should be noted, however, that after the project began, Babington Engineering provided an upgraded prototype unit for testing which replaced the unit initially provided by the Natick Center. The M-3 unit replaced the Karcher unit listed in the contract. The test procedures which were described in a Test Method Report allowed for the measurement of the concentrations of specific compounds emitted from the burners. These compounds included oxygen (O{sub 2}), carbon monoxide (CO), oxides of nitrogen (NOx), formaldehyde, and particulate emissions. The level of smoke produced was also measured by using a Bacharach Smoke Number system (ASTM Standard D2156). A separate Performance Test Report for each burner was prepared as part of this project, and is attached as part of this report. In those reports details of the measurement techniques, instrumentation, test operating conditions, and data for each burner were included. This paper provides a summary and a comparison of the results for all burners. A brief discussion of emissions from other similar small oil combustion systems is also part of this document to provide perspective on the type of contaminants and levels expected from these systems.

  4. Infopower at Northland Pioneer College.

    ERIC Educational Resources Information Center

    Rothlisberg, Allen P.

    This paper considers various ways in which InfoPower, the recently instituted library/media technology program at Northland Pioneer College in Arizona, can assist in the training of professional librarians and paraprofessional library staff, particularly those in rural, isolated areas who may not be able to attend traditional classes. The need for…

  5. Pioneer Venus radar mapper experiment

    USGS Publications Warehouse

    Pettengill, G.H.; Ford, P.G.; Brown, W.E.; Kaula, W.M.; Keller, C.H.; Masursky, H.; McGill, G.E.

    1979-01-01

    Altimetry and radar scattering data for Venus, obtained from 10 of the first 13 orbits of the Pioneer Venus orbiter, have disclosed what appears to be a rift valley having vertical relief of up to 7 kilometers, as well as a neighboring, gently rolling plain. Planetary oblateness appears unlikely to exceed 112500 and may be substantially smaller. Copyright ?? 1979 AAAS.

  6. Pioneering Research Powering Clinical Outcomes

    E-print Network

    New Mexico, University of

    Pioneering Research Powering Clinical Outcomes AnnuAl RepoRt of ContRACts And GRAnts, 2011 #12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 Letter from Richard Larson, MD, PhD, Vice Chancellor for Research, UNM Health Sciences Center, Senior Associate Dean for Research, School of Medicine

  7. ESTABLISHMENT OF DESIGN CRITERIA FOR OPTIMUM BURNERS FOR APPLICATION TO HEAVY FUEL FIRED PACKAGE BOILERS. VOLUME 2. PILOT SCALE TESTS

    EPA Science Inventory

    The report gives results of a research program to develop low-NOx heavy oil burners for application to industrial package boilers. Volume I documents Phase 1 of the program, bench scale studies which defined optimum conditions for two-stage combustion. The information led to a co...

  8. ESTABLISHMENT OF DESIGN CRITERIA FOR OPTIMUM BURNERS FOR APPLICATION TO HEAVY FUEL FIRED PACKAGE BOILERS. VOLUME 1. LABORATORY SCALE TESTS

    EPA Science Inventory

    The report gives results of a research program to develop low-NOx heavy oil burners for application to industrial package boilers. Volume I documents Phase 1 of the program, bench scale studies which defined optimum conditions for two-stage combustion. The information led to a co...

  9. Sealed, nozzle-mix burners for silica deposition

    DOEpatents

    Adler, Meryle D. M.; Brown, John T.; Misra, Mahendra K.

    2003-07-08

    Burners (40) for producing fused silica boules are provided. The burners employ a tube-in-tube (301-306) design with flats (56, 50) on some of the tubes (305, 301) being used to limit the cross-sectional area of certain passages (206, 202) within the burner and/or to atomize a silicon-containing, liquid source material, such as OMCTS. To avoid the possibility of flashback, the burner has separate passages for fuel (205) and oxygen (204, 206), i.e., the burner employs nozzle mixing, rather than premixing, of the fuel and oxygen. The burners are installed in burner holes (26) formed in the crown (20) of a furnace and form a seal with those holes so that ambient air cannot be entrained into the furnace through the holes. An external air cooled jacket (60) can be used to hold the temperature of the burner below a prescribed upper limit, e.g., 400.degree. C.

  10. Coal gasifying burner with rotating grill

    SciTech Connect

    Ozaltay, H.C.

    1981-06-23

    A coal gasifying burner characterized by a rotating grill which is composed of grill disks arranged on two pipes with a narrow gap between the grills and which rotates very slowly inwards when viewed from the top sloped side walls made of metal sheet having a sloper compatible with coal flow, a cylindrical jacket placed around the periphery of the nozzle which delivers combustion air to the burner, gasification of a quantity of coal located on the sloping side walls around a narrow area where coal combustion takes place, and combustion of the generated coal gas outside of the burner by secondary air which cools the system and gets heated itself by the coal cooking process.

  11. 40 CFR 49.127 - Rule for woodwaste burners.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 false Rule for woodwaste burners. 49.127 Section 49.127 Protection...Region 10 § 49.127 Rule for woodwaste burners. (a) What is the purpose of this...section phases out the operation of woodwaste burners (commonly known as wigwam or...

  12. Pioneer Launch on Delta Vehicle

    NASA Technical Reports Server (NTRS)

    1969-01-01

    NASA launches the last in the series of interplanetary Pioneer spacecraft, Pioneer 10 from Cape Kennedy, Florida. The long-tank Delta launch vehicle placed the spacecraft in a solar orbit along the path of Earth's orbit. The spacecraft then passed inside and outside Earth's orbit, alternately speeding up and slowing down relative to Earth. The Delta launch vehicle family started development in 1959. The Delta was composed of parts from the Thor, an intermediate-range ballistic missile, as its first stage, and the Vanguard as its second. The first Delta was launched from Cape Canaveral on May 13, 1960 and was powerful enough to deliver a 100-pound spacecraft into geostationary transfer orbit. Delta has been used to launch civil, commercial, and military satellites into orbit. For more information about Delta, please see Chapter 3 in Roger Launius and Dennis Jenkins' book To Reach the High Frontier published by The University Press of Kentucky in 2002.

  13. Pioneer Saturn celestial mechanics experiment

    NASA Technical Reports Server (NTRS)

    Anderson, J. D.; Null, G. W.; Biller, E. D.; Wong, S. K.; Hubbard, W. B.; Macfarlane, J. J.

    1980-01-01

    The paper investigates a continuous round-trip radio link at S band (2.2 GHz) that was maintained during the Pioneer Saturn encounter between stations of the Deep Space Network and the spacecraft. From an analysis of the Doppler shift in the radio carrier frequency, a number of gravitational effects on the trajectory were determined. Gravitational moments for Saturn were found from a preliminary analysis, as well as mass values for the Saturn satellites Rhea, Iapetus, and Titan. It was determined that the densities of all three satellites are low and consistent with the compositions of ices. Theoretical calculations for the Saturn interior are described which use the latest observational data, including Pioneer Saturn and state-of-the-art physics for the internal composition.

  14. Redox Pioneer: Professor Helmut Sies

    PubMed Central

    Radi, Rafael

    2014-01-01

    Abstract Professor Helmut Sies Dr. Helmut Sies (MD, 1967) is recognized as a Redox Pioneer, because he authored five articles on oxidative stress, lycopene, and glutathione, each of which has been cited more than 1000 times, and coauthored an article on hydroperoxide metabolism in mammalian systems cited more than 5000 times (Google Scholar). He obtained preclinical education at the University of Tübingen and the University of Munich, clinical training at Munich (MD, 1967) and Paris, and completed Habilitation at Munich (Physiological Chemistry and Physical Biochemistry, 1972). In early research, he first identified hydrogen peroxide (H2O2) as a normal aerobic metabolite and devised a method to quantify H2O2 concentration and turnover in cells. He quantified central redox systems for energy metabolism (NAD, NADP systems) and antioxidant GSH in subcellular compartments. He first described ebselen, a selenoorganic compound, as a glutathione peroxidase mimic. He contributed a fundamental discovery to the physiology of GSH, selenium nutrition, singlet oxygen biochemistry, and health benefits of dietary lycopene and cocoa flavonoids. He has published more than 600 articles, 134 of which are cited at least 100 times, and edited 28 books. His h-index is 115. During the last quarter of the 20th century and well into the 21st, he has served as a scout, trailblazer, and pioneer in redox biology. His formulation of the concept of oxidative stress stimulated and guided research in oxidants and antioxidants; his pioneering research on carotenoids and flavonoids informed nutritional strategies against cancer, cardiovascular disease, and aging; and his quantitative approach to redox biochemistry provides a foundation for modern redox systems biology. Helmut Sies is a true Redox Pioneer. Antioxid. Redox Signal. 21, 2459–2468. The joy of exploring the unknown and finding something novel and noteworthy: what a privilege! —Prof. Helmut Sies PMID:25178739

  15. Emissions from gas fired agricultural burners

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because of the Federal Clean Air Act, the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) began defining Best Available Control Technology (BACT) for NOx emissions from cotton gin drying system gas fired burners in its jurisdiction. The NOx emission levels of conventionally used...

  16. Oil

    NSDL National Science Digital Library

    Brieske, Joel A.

    2002-01-01

    The first site, offered by the Institute of Petroleum, is called Fossils into Fuel (1). It describes how oil and gas are formed and processed, as well as offering short quizzes on each section. The second site (2) is maintained by the Department of Energy. Visitors can learn about the history of oil use, how itâ??s found and extracted, and more. The next site, called Picture an Oil Well (3), is a one-page illustration and description of the workings of an oil well, offered by the California Department of Conservation. The fourth site, hosted by the Minerals Management Service, is called Stacey Visits an Offshore Oil Rig (4). It tells the story of a girl taking a field trip on an offshore oil rig and what she finds when sheâ??s there. The Especially for Kids Web site (5) is presented by NOAA and explores facts about the effects of oil spills. Kids can do experiments, get help writing a report, find further information on the provided additional links, and more. From the Environmental Protection Agency, the sixth site is called Oil Spill Program (6), and it also delves into the topic of oil spills. It provides information about the EPA's program for preventing, preparing for, and responding to oil spills that occur in and around inland waters of the United States. The next site, offered by How Stuff Works.com, is called How Oil Refining Works (7). Descriptions of crude oil, fractional distillation, chemical processing, and more is presented in a succinct but informative way. The last site is from The Center for Subsurface Modeling (CSM) of the Texas Institute for Computational and Applied Mathematics and is called CSMâ??s Picture Gallery (8). After clicking the Gallery link, visitors will find animations and images that represent CSMâ??s work such as oil spill simulations, discontinuous galerkin, the tyranny of scale, contaminant remediation, etc.

  17. Eugen Sänger: Eminent space pioneer

    NASA Astrophysics Data System (ADS)

    Kerstein, Aleksander; Matko, Drago

    2007-12-01

    In international literature on astronautics, three main space pioneers are mentioned: Konstantin E. Tsiolkovsky, Robert H. Goddard and Hermann Oberth. There are other two space pioneers that are very rarely mentioned: Robert Esnault-Pelterie and Eugen Sänger. Pelterie is known particularly in Europe, and Sänger is mentioned in the second half of the 20th century normally only in connection with space shuttle flights. Taking a look at Sänger's work and heritage, it is obvious that he greatly influenced the development of astronautics in terms of purely theoretical dissertations on achievable limits of space research as well as in terms of technical approaches to achieving the short- and long-term goals of astronautics, and in terms of setting tasks for organizing mankind to achieve these goals. Sänger's book "The Technology of Rocket Flight" was the first study based not only on basic research, but also on the applied research that he conducted and the findings of which he published in various papers. Sänger was clearly connected with and influenced the development of two experimental research groups in the US in the 1930s, which resulted in two of the most significant companies in the US in the 1950s that manufactured liquid propellant rocket engines. Basic and applied research in the field of space planes resulted in construction of rocket planes such as the US space shuttle and Soviet Buran shuttle. Sänger's research on subsonic and supersonic ramjets in combination with a turbojet engine provided a basis for developing this promising propulsion for use in subsequent space planes designed for flights into low Earth orbits. His pioneering work on the photon rocket represents human achievements in reaching almost unimaginable limits of space research. By striving for a peaceful international approach to space research, Sänger participated in establishing the non-governmental organization IAF (International Astronautical Federation) and realized his idea that space research is a concern for all mankind. He was therefore appointed the first president of the IAF. The paper presents how Sänger influenced the development of rocket technology and astronautics, which definitely ranks him with the first three space pioneers.

  18. Earth Flyby and Pioneer Anomalies

    E-print Network

    Gerrard, M B

    2008-01-01

    Applying Newtonian dynamics in five dimensions rather than four, to a universe that is closed, isotropic and expanding, suggests that under certain circumstances an additional and previously unidentified acceleration can arise affecting the four dimensional motion of spacecraft. The reported acceleration anomalies from several Earth flybys and from the Pioneer spacecrafts are in reasonable agreement with the predicted values of this additional acceleration. Equations governing this additional acceleration have been derived from first principles, without the introduction of free parameters or new constants and without amendment to the law of gravity.

  19. Fuel burner and combustor assembly for a gas turbine engine

    DOEpatents

    Leto, Anthony (Franklin Lakes, NJ)

    1983-01-01

    A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

  20. Operations of tube furnaces with type GBP burners on coke oven gas

    Microsoft Academic Search

    B. I. Bykhalo; Z. V. Ostrovskii

    1982-01-01

    Coking using coke oven gas in tube furnaces with GBP burners is hampered by unstable burner operation, flash back into the burner and distribution chamber and deterioration of insulation and ceramic packing and finally destruction of burner housing. Causes of these problems and possible solutions are reported herein: Three GBP burners (GBP 85, 140, 280) were evaluated using purified coke

  1. Pioneer saturn celestial mechanics experiment.

    PubMed

    Anderson, J D; Null, G W; Biller, E D; Wong, S K; Hubbard, W B; Macfarlane, J J

    1980-01-25

    During the Pioneer Saturn encounter, a continuous round-trip radio link at S band ( approximately 2.2 gigahertz) was maintained between stations of the Deep Space Network and the spacecraft. From an analysis of the Doppler shift in the radio carrier frequency, it was possible to determine a number of gravitational effects on the trajectory. Gravitational moments ( J(2) and J(4)) for Saturn have been determined from preliminary analysis, and preliminary mass values have been determined for the Saturn satellites Rhea, Iapetus, and Titan. For all three satellites the densities are low, consistent with the compositions of ices. The rings have not been detected in the Doppler data, and hence the best preliminary estimate of their total mass is zero with a standard error of 3 x 10(-6) Saturn mass. New theoretical calculations for the Saturn interior are described which use the latest observational data, including Pioneer Saturn, and state-of-the-art physics for the internal composition. Probably liquid H(2)O and possibly NH(3) and CH(4) are primarily confined in Saturn to the vicinity of a core of approximately 15 to 20 Earth masses. There is a slight indication that helium may likewise be fractionated to the central regions. PMID:17833560

  2. PULSE DRYING EXPERIMENT AND BURNER CONSTRUCTION

    SciTech Connect

    Robert States

    2006-07-15

    Non steady impingement heat transfer is measured. Impingement heating consumes 130 T-BTU/Yr in paper drying, but is only 25% thermally efficient. Pulse impingement is experimentally shown to enhance heat transfer by 2.8, and may deliver thermal efficiencies near 85%. Experimental results uncovered heat transfer deviations from steady theory and from previous investigators, indicating the need for further study and a better theoretical framework. The pulse burner is described, and its roll in pulse impingement is analyzed.

  3. 40 CFR 266.108 - Small quantity on-site burner exemption.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 false Small quantity on-site burner exemption. 266.108 Section 266...266.108 Small quantity on-site burner exemption. (a) Exempt quantities... Exempt Quantities for Small Quantity Burner Exemption Terrain-adjusted...

  4. Industrial burner modeling: Final report for the CIEE

    SciTech Connect

    Cloutman, L.D.

    1994-12-01

    The COYOTE computer program was used as basis for a comprehensive numerical model of industrial burners. This program is based on the full multicomponent Navier-Stokes equations and includes a subgrid-scale turbulence model. The model was used to simulate the flows in a laboratory-scale burner being studied experimentally at UC-Irvine. We summarize what has been learned in the last 3 years from simulations of this burner. This model provides detailed information about the flow field in the furnace, making it a useful tool for studying the physics of burners.

  5. Numerical and experimental investigation of a mild combustion burner

    SciTech Connect

    Galletti, Chiara; Parente, Alessandro; Tognotti, Leonardo [Department of Chemical Engineering, Industrial Chemistry and Materials Science, University of Pisa, via Diotisalvi 2, 56126 Pisa (Italy)

    2007-12-15

    An industrial burner operating in the MILD combustion regime through internal recirculation of exhaust gases has been characterized numerically. To develop a self-sufficient numerical model of the burner, two subroutines are coupled to the CFD solver to model the air preheater section and heat losses from the burner through radiation. The resulting model is validated against experimental data on species concentration and temperature. A 3-dimensional CFD model of the burner is compared to an axisymmetric model, which allows considerable computational saving, but neglects some important burner features such as the presence of recirculation windows. Errors associated with the axisymmetric model are evaluated and discussed, as well as possible simplified procedures for engineering purposes. Modifications of the burner geometry are investigated numerically and suggested in order to enhance its performances. Such modifications are aimed at improving exhaust gases recirculation which is driven by the inlet air jet momentum. The burner is found to produce only 30 ppm{sub v} of NO when operating in MILD combustion mode. For the same air preheating the NO emissions would be of approximately 1000 ppm{sub v} in flame combustion mode. It is also shown that the burner ensures more homogeneous temperature distribution in the outer surfaces with respect to flame operation, and this is attractive for burners used in furnaces devoted to materials' thermal treatment processes. The effect of air excess on the combustion regime is also discussed. (author)

  6. Does The Pioneer Anomalous Acceleration Really Exist?

    E-print Network

    Walter Petry

    2005-09-21

    The analysis of the Pioneer 10 and 11 data demonstrated the presence of an anomalous Doppler frequency blue-shift drift which is interpreted as an anomalous acceleration. The Doppler frequency dirft follows by considering the motions of the Pioneers in the universe, i.e. it is of cosmological origin. There is no anomalous acceleration.

  7. Pathfinding by Peripheral Pioneer Neurons in Grasshoppers

    Microsoft Academic Search

    David Bentley; Haig Keshishian

    1982-01-01

    Grasshopper neurons accurately project axons across long distances between peripheral structures and the central nervous system. Nerve-trunk pathways followed by these axons are established early in embryogenesis by pioneer neurons. Growth cones from the first pioneers navigate along a chain of cells to the CNS. The placement of these cells may constitute the initial guidance mechanism underlying long-distance pathfinding.

  8. A Model for the Pioneer Anomaly

    E-print Network

    Ivan G. Avramidi; Guglielmo Fucci

    2008-11-10

    In a previous work we showed that massive test particles exhibit a non-geodesic acceleration in a modified theory of gravity obtained by a non-commutative deformation of General Relativity (so-called Matrix Gravity). We propose that this non-geodesic acceleration might be the origin of the anomalous acceleration experienced by the Pioneer 10 and Pioneer 11 spacecrafts.

  9. Waste oil heater

    SciTech Connect

    Kutrieb, W.A.

    1983-09-06

    An improved waste oil heater is disclosed that includes a vaporizer pan having a mounting ring, a replaceable aluminum foil piece mounted on the ring to form the bottom of the pan and a member mounted on the ring to provide threads, a tool threadingly engageable with the threaded ring member for breaking the pan loose from the bottom wall of a burner pot and removing the ring with caked residue thereon for purposes of cleaning, the burner pot having a novel arrangement of apertures for flow of air into the pot, and solid state electronic control apparatus to control the feed of waste oil that automatically compensates for variations in viscosities and caloric values found in a variety of used oils and automatically discontinues the feed in the event the flame in the burner pot goes out. A thermocouple in the exhaust gas stream in the heater or in the stack senses the exhaust gas temperature and the control circuit operates the motor of the pump to feed oil to the pan at a fast or slow rate as determined by a room thermostat and the sensed stack gas temperature. The feeding of oil by the pump is controlled by the thermostat which alters the effect of the thermocouple by requiring a higher thermocouple voltage to produce slow feeding when the thermostat calls for more heat to be produced.

  10. Burning anthracite at B and W downshot unit and burner upgrading

    SciTech Connect

    Zhou, J. [Babcock and Wilcox, Barberton, OH (United States)

    1998-12-31

    Low volatile matter (VM) coals have difficulty on ignition, flame stability and burnout. A conventional utility boiler can`t successfully utilize such coals. The applications of enhancing ignition steps, proper burner type and its arrangement plus staging combustion as well as a suitable furnace configuration, along or in combination, may burn such low VM coals with high efficiency. B&W downshot units in Shang An Power Plant (S-Plant) in China applies a downshot firing with a W-shape flame plus primary air exchange burner (PAX) and staging combustion in a combination which achieved a great success in burning the design coal. The design coal is a blended coal (25% Yangquan (YQ) anthracite and 75% Shuyang lean) resulting a 13.95% VMdmf ranking as a semi-anthracite per ASTM-D338. In 1995, all 20 burner registers of Unit 1 had been upgraded. S-Plant and B and W decided to conduct a high anthracite blending coal (75% anthracite) combustion tests. The unit had demonstrated a great fuel flexibility. Based on the achievements, the all burner and staging ports of Unit 2 has been upgraded in 1997. In order to further demonstrate the great enhancing ignition feature, B and W had entrusted Chinese TPRI to conduct 100% YQ anthracite burn tests in May 1998. These tests reveal that with 100% anthracite firing, the ignition was fast and on time; the flame and combustion were very stable. Three days (58 continuous hours) 100% anthracite firing was carried out with the load range from the full (350 MW) to half (170--175 MW). The minimum load of 170--175 MW (48--50% MCR) without oil support was easy to maintain. Due to the plant policy, they don`t allow further reduction of the minimum load lower than 50% MCR. These tests have greatly demonstrated the capability of these units burning 100% anthracite.

  11. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    Microsoft Academic Search

    Jost O. L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Caner Yurteri

    2001-01-01

    The proposed research is directed at evaluating the effect of flame aerodynamics on NOâ emissions from coal fired burners in a systematic manner. This fundamental research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NOâ burners

  12. Turbine Burners: Flameholding in Accelerating Flow W. A. Sirignano1

    E-print Network

    Liu, Feng

    1 Turbine Burners: Flameholding in Accelerating Flow W. A. Sirignano1 , D. Dunn-Rankin2 , F. Liu3 B, Irvine Abstract A review of turbine-burner research and some relevant background issues is presented. Previous work on thermal cycle analysis for augmentative combustion in the passages of the turbine

  13. One layer porous radiant burners : experimental and numerical study

    Microsoft Academic Search

    S. Gauthier; E. Lebas; D. Baillis

    2007-01-01

    Porous radiant burners show numerous advantages over traditional systems such as improved efficiency and low pollutants emissions. Combustion is stabilized within a solid matrix but depending on operating conditions, can move outside. The results depend on the solid matrix characteristics. In order to inquire into the solid matrix properties effects, experimental tests have been performed on an opened burner made

  14. EVALUATION OF THE RILEY STOKER CORPORATION DISTRIBUTED MIXING BURNER

    EPA Science Inventory

    The report gives results of an evaluation of the NOx performance and sulfur capture potential of a Riley Stoker Corporation low-NOx distributed mixing burner. The performance of the full-scale single burner was verified over typical boiler operating ranges of load and excess air....

  15. Earth Flyby and Pioneer Anomalies

    E-print Network

    M. B. Gerrard; T. J. Sumner

    2010-04-09

    Applying Newtonian dynamics in five dimensions rather than four, to a universe that is closed, isotropic and expanding,suggests that under certain circumstances an additional and previously unidentified acceleration, a_A, can arise affecting the four dimensional motion of spacecraft. The two cases of this acceleration being either real or virtual are considered. In the real case, simple estimates of a_A are shown to be in partial agreement with reported acceleration anomalies from several Earth flybys and from the Pioneer spacecraft. However, these estimates do not fully reconcile with radio Doppler tracking data. The virtual case, by contrast, appears to overcome these and other difficulties with the real case, and is discussed in an addendum. Furthermore, the virtual case has an altitude dependence which makes detection of any anomaly unlikely above ~2000 km. Equations governing this additional acceleration have been derived from first principles, without the introduction of free parameters or new constants and without amendment to the law of gravity.

  16. Periodontal plastic pioneering procedures revisited

    PubMed Central

    Singhal, Rameshwari; Agarwal, Vipin; Khattak, B.P.; Sharma, Anamika; Agarwal, Vivek; Rastogi, Pavitra

    2013-01-01

    Background Various periodontal plastic procedures are available for treatment of localized gingival recessions. However, in the mirage of newer techniques and materials available, it is difficult for clinicians to decide on the treatment modality. Pioneering techniques provide a cost effective and effective means of maintaining esthetics in recession cases. Materials and methods Twenty-two subjects with localized gingival recessions were divided in equal groups and treated with lateral pedicle graft (Group A) and Free mucosal graft (Group B). Clinical parameters of length and width of recession and apico coronal length of keratinized gingiva (ACKG) was measured at baseline, 30 and 90 days. Root coverage percentage was calculated. Results Both groups were effective in recession coverage and gain in ACKG. Root coverage gained in Group A was 65.0 ± 25.2% and for Group B was 61.6 ± 20.5%. Conclusion Lateral pedicle graft and Free mucosal graft provide not only effective means of gaining in root coverage of localized gingival recession cases but also result in gain of ACKG. These techniques remain an important part of periodontal plastic surgery. PMID:25737884

  17. Pioneers of eye movement research

    PubMed Central

    Wade, Nicholas J

    2010-01-01

    Recent advances in the technology affording eye movement recordings carry the risk of neglecting past achievements. Without the assistance of this modern armoury, great strides were made in describing the ways the eyes move. For Aristotle the fundamental features of eye movements were binocular, and he described the combined functions of the eyes. This was later given support using simple procedures like placing a finger over the eyelid of the closed eye and culminated in Hering's law of equal innervation. However, the overriding concern in the 19th century was with eye position rather than eye movements. Appreciating discontinuities of eye movements arose from studies of vertigo. The characteristics of nystagmus were recorded before those of saccades and fixations. Eye movements during reading were described by Hering and by Lamare in 1879; both used similar techniques of listening to sounds made during contractions of the extraocular muscles. Photographic records of eye movements during reading were made by Dodge early in the 20th century, and this stimulated research using a wider array of patterns. In the mid-20th century attention shifted to the stability of the eyes during fixation, with the emphasis on involuntary movements. The contributions of pioneers from Aristotle to Yarbus are outlined. PMID:23396982

  18. ANALYSIS OF EMISSIONS FROM RESIDENTIAL OIL FURNACES

    EPA Science Inventory

    The paper gives results of a series of emission tests on a residential oil furnace to determine emissions from two types of burners. umber of analyses were performed on the emissions, including total mass, filterable particulate, total oil furnaces tested by the EPA in Roanoke, V...

  19. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS. VOLUME I. DISTRIBUTED MIXING BURNER EVALUATION

    EPA Science Inventory

    The report gives results of a study in which NOx emissions and general combustion performance characteristics of four burners were evaluated under experimental furnace conditions. Of primary interest was the performance of a low NOx Distributed Mixing Burner (DMB), which was test...

  20. The Interplanetary Pioneers. Volume 3: Operations

    NASA Technical Reports Server (NTRS)

    Corliss, W. R.

    1972-01-01

    The operational aspects of the Pioneer program are described. The phases of the program discussed include: prelaunch operations, launch to DSS acquisition, near-earth operations, nominal and extended cruise, and scientific results.

  1. The Anomalous Acceleration of the Pioneer Spacecrafts

    NASA Astrophysics Data System (ADS)

    de Diego, J. A.

    2008-12-01

    Radiometric data from the Pioneer 10 and 11 spacecrafts have revealed an unexplained constant acceleration of a_A = (8.74+/-1.33)×10^{-10}m s^{-2} towards the Sun, also known as the Pioneer anomaly. Different groups have analyzed the Pioneer data and have got the same results, which rules out computer programming and data handling errors. Attempts to explain this phenomenon arguing intrinsic causes on-board the spacecrafts failed or have led to inconclusive results. Therefore, the Pioneer anomalous acceleration has motivated the interest of researchers to find explanations that could bring insight upon the forces acting in the outer Solar Systems or a hint to discover new natural laws.

  2. Approach guidance for outer planet pioneer missions

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.

    1975-01-01

    Onboard optical approach guidance measurements for spin-stabilized Pioneer-type spacecraft are discussed. Approach guidance measurement accuracy requirements are outlined. The application concept and operation principle of the V-slit star tracker are discussed within the context of approach guidance measurements and measurables. It is shown that the accuracy of onboard optical approach guidance measurements is inherently coupled to the stability characteristics of the spacecraft spin axis. Geometrical and physical measurement parameters are presented for Pioneer entry probe missions to Uranus via Jupiter or Saturn flyby. The impact of these parameters on both sensor instrumentation and measurement system design is discussed. The need for sensing extended objects is shown. The feasibility of implementing an onboard approach guidance measurement system for Pioneer-type spacecraft is indicated. Two Pioneer 10 onboard measurement experiments performed in May-June 1974 are described.

  3. The two pioneers anomalies and universal rotation

    NASA Astrophysics Data System (ADS)

    Berman, Marcelo Samuel

    2011-12-01

    We show how to prove the two Pioneers Anomalies by means of the Godlowski et al. (arXiv:astro-ph/0404329, 2004) idea for a rotating General Relativistic Universe. The so-called clock effect is calculated.

  4. Advanced burner technology for low volatile coal and anthracite

    SciTech Connect

    Tigges, K.D.; Streffing, M.; Lisauskas, R.; Ake, T.

    1997-12-31

    Today China is one of the countries with the highest coal production. Approximately three quarters of the produced coal is high-volatile and medium-volatile hard coal and only about 20% is anthracite. However the actual portion of the anthracite used in power plants is even lower. The reason for this is not due to the low amount available, but to the difficulty of ensuring stable and reliable ignition and combustion of anthracite. Up to now, the so-called Downshot firing system has been used to fire difficult anthracite coals. The experience gained with this type of firing system is, however, far from satisfactory. The numerous difficulties in the plants of all manufactures have shown that attempts should be made to develop efficient burners to be able to use the simple, service-proved and reliable opposed-burner system. Deutsche Babcock started this work in the early 1980`s and developed a second generation low-NOx burner -- the DS burner -- which is also well suited for the combustion of anthracite. The development is based on state-of-the-art advanced computer simulation and full-scale combustion tests on a wide range of coals. Performance has been evaluated on coals with volatile matter content ranging from 50% down to as low as 5%. DS burners are characterized by extremely reliable and stable ignition which allows operation at low part loads even when firing difficult coal. The excellent flame stability of this burner is the reason why the complex Downshot firing system with its numerous disadvantages is no longer necessary and opposed burner system may be applied even for firing anthracite. The paper describes the development of the burner for difficult coals and explains the full scale combustion tests, the laboratory tests of the ignitability and compares these results with the computer simulation of the DS burner flame.

  5. Advanced Burners and Combustion Controls for Industrial Heat Recovery Systems 

    E-print Network

    Ferri, J. L.

    1988-01-01

    and internal damage. Ratio control systems which operate properly are complicated and economically unjustifiable. This paper details the development and operation of the GTE ceramic burners and an inexpensive ratio control device for preheated air systems...

  6. 33. LOOKING EAST AT SPARE BUTTERFLY VALVE FOR BURNER CONNECTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. LOOKING EAST AT SPARE BUTTERFLY VALVE FOR BURNER CONNECTION ON HOT BLAST STOVES. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  7. Comet Halley: The view from Pioneer Venus

    SciTech Connect

    Not Available

    1989-01-01

    The plans to scan Halley's Comet at close range using the Pioneer Venus Orbiter are discussed. The composition of comets, their paths through space, and the history of comet encounters are examined. An ultraviolet spectrometer aboard the spacecraft will determine the composition of the gaseous coma and will measure the total gas production during its passage. The Pioneer Venus Orbiter will observe the comet for five weeks before solar interference with communications occurs as Venus passes on the far side of the Sun from Earth. Diagrams of the solar system and the relationship of the comet to the planets and the Sun are provided.

  8. Advanced burner test reactor preconceptual design report.

    SciTech Connect

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an advanced fuel cycle; (2) To qualify the transuranics-containing fuels and advanced structural materials needed for a full-scale ABR; and (3) To support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. The ABTR should also address the following additional objectives: (1) To incorporate and demonstrate innovative design concepts and features that may lead to significant improvements in cost, safety, efficiency, reliability, or other favorable characteristics that could promote public acceptance and future private sector investment in ABRs; (2) To demonstrate improved technologies for safeguards and security; and (3) To support development of the U.S. infrastructure for design, fabrication and construction, testing and deployment of systems, structures and components for the ABRs. Based on these objectives, a pre-conceptual design of a 250 MWt ABTR has been developed; it is documented in this report. In addition to meeting the primary and additional objectives listed above, the lessons learned from fast reactor programs in the U.S. and worldwide and the operating experience of more than a dozen fast reactors around the world, in particular the Experimental Breeder Reactor-II have been incorporated into the design of the ABTR to the extent possible.

  9. Programs of 1993 Winning Teams: Pioneering Partners.

    ERIC Educational Resources Information Center

    1993

    Pioneering Partners for Educational Technology was created to enhance learning in K-12 classrooms by accelerating the use of educational technology. This document outlines the projects of the 1993 winning teams. The Illinois programs are: "A Travel Log Via Computer"; "Weatherization Audit Training for Teachers and Students"; and "Technology for…

  10. Pioneer transcription factors in cell reprogramming

    PubMed Central

    Iwafuchi-Doi, Makiko

    2014-01-01

    A subset of eukaryotic transcription factors possesses the remarkable ability to reprogram one type of cell into another. The transcription factors that reprogram cell fate are invariably those that are crucial for the initial cell programming in embryonic development. To elicit cell programming or reprogramming, transcription factors must be able to engage genes that are developmentally silenced and inappropriate for expression in the original cell. Developmentally silenced genes are typically embedded in “closed” chromatin that is covered by nucleosomes and not hypersensitive to nuclease probes such as DNase I. Biochemical and genomic studies have shown that transcription factors with the highest reprogramming activity often have the special ability to engage their target sites on nucleosomal DNA, thus behaving as “pioneer factors” to initiate events in closed chromatin. Other reprogramming factors appear dependent on pioneer factors for engaging nucleosomes and closed chromatin. However, certain genomic domains in which nucleosomes are occluded by higher-order chromatin structures, such as in heterochromatin, are resistant to pioneer factor binding. Understanding the means by which pioneer factors can engage closed chromatin and how heterochromatin can prevent such binding promises to advance our ability to reprogram cell fates at will and is the topic of this review. PMID:25512556

  11. Eugen Rosenstock-Huessy--An Andragogical Pioneer

    ERIC Educational Resources Information Center

    Loeng, Svein

    2013-01-01

    Eugen Rosenstock-Huessy's work related to andragogy is insufficiently discussed in adult pedagogical literature, although most of his work deals with this field, if we employ his own definition of andragogy. This paper makes visible his role as an andragogical pioneer, and clarifies his understanding of andragogy and basic perspectives in his…

  12. Pioneer medical missions in colonial Africa

    Microsoft Academic Search

    Charles M. Good

    1991-01-01

    Protestant and Roman Catholic missions pioneered Western medicine and public health in much of Africa decades in advance of health services provided by colonial governments. A century later church-based hospitals and health care programs continue to account for 25% to 50% of available services in most African countries. In view of the important historical and continuing role of medical missions

  13. Scalar potential model of the Pioneer Anomaly

    E-print Network

    Hodge, J C

    2006-01-01

    The unexplained sunward acceleration $a_\\mathrm{P}$ of the Pioneer 10 (P10) and the Pioneer 11 (P11) spacecraft remains a mystery. A scalar potential model (SPM) that derived from considerations of galaxy clusters, of redshift, and of H{\\scriptsize{I}} rotation curves of spiral galaxies is applied to the Pioneer Anomaly. Matter is posited to warp the scalar potential $\\rho$ field. The gradient of the $\\rho$ field produces a force on matter and light. The changing $\\rho$ along the light path causes the Pioneer Anomaly. The SPM is consistent with the general value of $a_\\mathrm{P}$, with the annual periodicity, with the differing $a_\\mathrm{P}$ between the spacecraft, with the slowly declining $a_\\mathrm{P}$, with the low value of $a_\\mathrm{P}$ immediately before the P11's Saturn encounter, with the high uncertainty in the value of $a_\\mathrm{P}$ obtained during and after the P11's Saturn encounter, and with the cosmological connection suggested by $a_\\mathrm{P} \\approx cH_\\mathrm{o}$. The effect of the $\\rho$...

  14. Pioneer 10: Beyond the Known Planets.

    ERIC Educational Resources Information Center

    Waller, Peter

    1983-01-01

    On June 13, 1983, the U.S. unmanned spacecraft, "Pioneer 10," will cross the orbit of Neptune. This first flight beyond the planets is being celebrated by the National Aeronautics and Space Administration and other groups. Discusses what the spacecraft will observe and types of data it will collect. (JN)

  15. A Pioneer of Collegiate Women's Sports

    ERIC Educational Resources Information Center

    Lum, Lydia

    2008-01-01

    This article features North Carolina State University's Kay Yow, a pioneer of collegiate women's sports. An Olympic gold medal champion whose entire coaching career has been spent in her home state of North Carolina, Yow has amassed a remarkable lifetime win-loss record of 729-337. She is one of only six coaches to have won at least 700 career…

  16. Northland Pioneer College Manpower Planning Resource Document.

    ERIC Educational Resources Information Center

    Northland Pioneer Coll., Holbrook, AZ.

    Alternatives for occupational curricula at Northland Pioneer College are discussed in relation to Navaho County economic resources. Approximately 85 percent of the occupations in Navaho County do not require the baccalaureate degree and thus fall within the realm of community college educational responsibility. Because of the sparse population,…

  17. Argonne nuclear pioneers: Chicago Pile 1

    ScienceCinema

    Agnew, Harold; Nyer, Warren

    2013-04-19

    On December 2, 1942, 49 scientists, led by Enrico Fermi, made history when Chicago Pile 1 (CP-1) went critical and produced the world's first self-sustaining, controlled nuclear chain reaction. Seventy years later, two of the last surviving CP-1 pioneers, Harold Agnew and Warren Nyer, recall that historic day.

  18. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...true Are duct burners and waste heat recovery units covered by subpart YYYY...6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam...

  19. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...false Are duct burners and waste heat recovery units covered by subpart YYYY...6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam...

  20. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...false Are duct burners and waste heat recovery units covered by subpart YYYY...6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam...

  1. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for economic evaluation and commercial application. During the project performance period, Alstom performed computational fluid dynamics (CFD) modeling and large pilot scale combustion testing in its Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut in support of these objectives. The NOx reduction approach was to optimize near-field combustion to ensure that minimum NOx emissions are achieved with minimal impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down. Several iterations of CFD and combustion testing on a Midwest coal led to an optimized design, which was extensively combustion tested on a range of coals. The data from these tests were then used to validate system costs and benefits versus SCR. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive subbituminous coal to a moderately reactive Western bituminous coal to a much less reactive Midwest bituminous coal. Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis. Bench-scale characterization of the three test coals showed that both NOx emissions and combustion performance are a strong function of coal properties. The more reactive coals evolved more of their fuel bound nitrogen in the substoichiometric main burner zone than less reactive coal, resulting in the potential for lower NOx emissions. From a combustion point of view, the more reactive coals also showed lower carbon in ash and CO values than the less reactive coal at any given main burner zone stoichiometry. According to bench-scale results, the subbituminous coal was found to be the most amenable to both low NOx, and acceptably low combustibles in the flue gas, in an air staged low NOx system. The Midwest bituminous coal, by contrast, was predicted to be the most challenging of the three coals, with the Western bituminous coal predicted to beh

  2. Venturi burner nozzle for pulverized coal

    SciTech Connect

    Itse, D.C.; Penterson, C.A.

    1984-10-30

    A new and improved burner for pulverized coal comprises a tubular nozzle for containing a primary, flowing stream of coal/air mixture having an outlet for discharging the stream into a combustion zone of a furnace. A venturi is mounted in the nozzle having a convergent section, a throat, and divergent flow section adjacent the outlet. The convergent section concentrates the pulverized coal toward a central portion of the flowing stream in the throat of the venturi. A conical flow spreader is mounted in the divergent section and includes a hollow, open outer end. The spreader cone and the divergent flow section of the venturi form an annular, expanding, flow pattern of coal/air mixture for discharge into the combustion zone and a plurality of swirl vanes between the spreader cone and wall of the divergent section impart swirl to stabilize an annular discharge of the primary coal/air stream from the nozzle to form a high temperature reducing zone wherein a portion of the hot combustion products are recirculated back toward the open end of the flow spreader so that volatiles in the coal are driven off rapidly and burned in a fuel-rich, reducing atmosphere, minimizing the formation of NO /SUB x/ . A stream of secondary air is introduced by vanes to swirl around the primary coal/air stream discharged from the outlet forming a long stable flame pattern providing a relatively slow combustion rate.

  3. Ceramic burner having high turndown ratio

    SciTech Connect

    Newman, R.L.

    1987-05-26

    A gas burner is described comprising a gas inlet tube comprising a tubular casting of a castable insulating ceramic material and having a tapered forward end; a ceramic body spaced from, and surrounding, the gas inlet tube, the space therebetween defining a chamber. The ceramic body has a tapered forward end. A hole in the ceramic body serves as an inlet for preheated combustion air into the chamber. The forward ends of the gas inlet tube and the ceramic body taper in the same direction. The space between the tapered forward ends is an annular venturi. The path of the venturi intersects the axis of the gas inlet tube forward of the gas inlet tube so that mixing of the preheated combustion air and the gas occurs forward of the gas inlet tube. The relationship between the cross sectional area of the venturi and the cross sectional area of the gas inlet tube through which the gas flows is such as to provide a high turndown ratio.

  4. Dual-water mixture fuel burner

    DOEpatents

    Brown, Thomas D. (Finleyville, PA); Reehl, Douglas P. (Pittsburgh, PA); Walbert, Gary F. (Library, PA)

    1986-08-05

    A coal-water mixture (CWM) burner includes a conically shaped rotating cup into which fuel comprised of coal particles suspended in a slurry is introduced via a first, elongated inner tube coupled to a narrow first end portion of the cup. A second, elongated outer tube is coaxially positioned about the first tube and delivers steam to the narrow first end of the cup. The fuel delivery end of the inner first tube is provided with a helical slot on its lateral surface for directing the CWM onto the inner surface of the rotating cup in the form of a uniform, thin sheet which, under the influence of the cup's centrifugal force, flows toward a second, open, expanded end portion of the rotating cup positioned immediately adjacent to a combustion chamber. The steam delivered to the rotating cup wets its inner surface and inhibits the coal within the CWM from adhering to the rotating cup. A primary air source directs a high velocity air flow coaxially about the expanded discharge end of the rotating cup for applying a shear force to the CWM in atomizing the fuel mixture for improved combustion. A secondary air source directs secondary air into the combustion chamber adjacent to the outlet of the rotating cup at a desired pitch angle relative to the fuel mixture/steam flow to promote recirculation of hot combustion gases within the ignition zone for increased flame stability.

  5. Fusion-Fission Burner for Transuranic Actinides

    NASA Astrophysics Data System (ADS)

    Choi, Chan

    2013-10-01

    The 14-MeV DT fusion neutron spectrum from mirror confinement fusion can provide a unique capability to transmute the transuranic isotopes from light water reactors (LWR). The transuranic (TRU) actinides, high-level radioactive wastes, from spent LWR fuel pose serious worldwide problem with long-term decay heat and radiotoxicity. However, ``transmuted'' TRU actinides can not only reduce the inventory of the TRU in the spent fuel repository but also generate additional energy. Typical commercial LWR fuel assemblies for BWR (boiling water reactor) and PWR (pressurized water reactor) measure its assembly lengths with 4.470 m and 4.059 m, respectively, while its corresponding fuel rod lengths are 4.064 m and 3.851 m. Mirror-based fusion reactor has inherently simple geometry for transmutation blanket with steady-state reactor operation. Recent development of gas-dynamic mirror configuration has additional attractive feature with reduced size in central plasma chamber, thus providing a unique capability for incorporating the spent fuel assemblies into transmutation blanket designs. The system parameters for the gas-dynamic mirror-based hybrid burner will be discussed.

  6. Cross sections for actinide burner reactors

    SciTech Connect

    Difilippo, F.C.

    1991-01-01

    Recent studies have shown the feasibility of burning higher actinides (i.e., transuranium (TRU) elements excluding plutonium) in ad hoc designed reactors (Actinide Burner Reactors: ABR) which, because of their hard neutron spectra, enhance the fission of TRU. The transmutation of long-lived radionuclides into stable or short-lived isotopes reduces considerably the burden of handling high-level waste from either LWR or Fast Breeder Reactors (FBR) fuels. Because of the large concentrations of higher actinides in these novel reactor designs the Doppler effect due to TRU materials is the most important temperature coefficient from the point of view of reactor safety. Here we report calculations of energy group-averaged capture and fission cross sections as function of temperature and dilution for higher actinides in the resolved and unresolved resonance regions. The calculations were done with the codes SAMMY in the resolved region and URR in the unresolved regions and compared with an independent calculation. 4 refs., 2 figs., 2 tabs.

  7. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    SciTech Connect

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

    2001-09-04

    It is well understood that the stability of axial diffusion flames is dependent on the mixing behavior of the fuel and combustion air streams. Combustion aerodynamic texts typically describe flame stability and transitions from laminar diffusion flames to fully developed turbulent flames as a function of increasing jet velocity. Turbulent diffusion flame stability is greatly influenced by recirculation eddies that transport hot combustion gases back to the burner nozzle. This recirculation enhances mixing and heats the incoming gas streams. Models describing these recirculation eddies utilize conservation of momentum and mass assumptions. Increasing the mass flow rate of either fuel or combustion air increases both the jet velocity and momentum for a fixed burner configuration. Thus, differentiating between gas velocity and momentum is important when evaluating flame stability under various operating conditions. The research efforts described herein are part of an ongoing project directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners. Experimental studies include both cold-and hot-flow evaluations of the following parameters: primary and secondary inlet air velocity, coal concentration in the primary air, coal particle size distribution and flame holder geometry. Hot-flow experiments will also evaluate the effect of wall temperature on burner performance.

  8. Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels

    SciTech Connect

    Agrawal, Ajay; Taylor, Robert

    2013-09-30

    This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a path forward to utilize both fossil and alternative liquid fuels in the same combustion system. In particular, experiments show that straight VO can be cleanly combusted without the need for chemical processing or preheating steps, which can result in significant economic and environmental benefits. Next, low-emission combustion of glycerol/methane was achieved by utilizing FB injector to yield fine droplets of highly viscous glycerol. Heat released from methane combustion further improves glycerol pre-vaporization and thus its clean combustion. Methane addition results in an intensified reaction zone with locally high temperatures near the injector exit. Reduction in methane flow rate elongates the reaction zone, which leads to higher CO emissions and lower NOx emissions. Similarly, higher air to liquid (ALR) mass ratio improves atomization and fuel pre-vaporization and shifts the flame closer to the injector exit. In spite of these internal variations, all fuel mixes of glycerol with methane produced similar CO and NOx emissions at the combustor exit. Results show that FB concept provides low emissions with the flexibility to utilize gaseous and highly viscous liquid fuels, straight VO and glycerol, without preheating or preprocessing the fuels. Following these initial experiments in quartz combustor, we demonstrated that glycerol combustion can be stably sustained in a metal combustor. Phase Doppler Particle Analyzer (PDPA) measurements in glycerol/methane flames resulted in flow-weighted Sauter Mean Diameter (SMD) of 35 to 40 ?m, depending upon the methane percentage. This study verified that lab-scale dual-fuel burner using FB injector can successfully atomize and combust glycerol and presumably other highly viscous liquid fuels at relatively low HRR (<10 kW). For industrial applications, a scaled-up glycerol burner design thus seemed feasible.

  9. High Efficiency Burners by Retrofit - A Simple Inexpensive Way to Improve Combustion Efficiency 

    E-print Network

    Rogers, W. T.

    1980-01-01

    Existing direct fired process heaters and steam boilers can have their efficiencies remarkably improved, and thus cut the fuel bill, by conversion from conventional type natural draft burners to high intensity, "forced draft" type burners...

  10. Combustion tests of beneficiated and micronized coal-water fuels: use of internal-mix atomizer and rotary-cup burner

    Microsoft Academic Search

    Y. C. Fu; G. T. Bellas; T. D. Brown; J. I. Joubert; G. F. Walbert

    1985-01-01

    Combustion tests were conducted in an oil-designed 100-hp firetube boiler using a burner with an internal-mix atomizer to determine the effect of coal beneficiation and coal particle size-consist on combustion properties of coal-water fuels (CWF). Samples of Eastern Kentucky bituminous coal, beneficiated to ash levels of 2.5%, 7.8%, and 10.3%, were used to prepare CWF's containing approx. 90% (by weight)

  11. Advanced Burner Reactor Preliminary NEPA Data Study.

    SciTech Connect

    Briggs, L. L.; Cahalan, J. E.; Deitrich, L. W.; Fanning, T. H.; Grandy, C.; Kellogg, R.; Kim, T. K.; Yang, W. S.; Nuclear Engineering Division

    2007-10-15

    The Global Nuclear Energy Partnership (GNEP) is a new nuclear fuel cycle paradigm with the goals of expanding the use of nuclear power both domestically and internationally, addressing nuclear waste management concerns, and promoting nonproliferation. A key aspect of this program is fast reactor transmutation, in which transuranics recovered from light water reactor spent fuel are to be recycled to create fast reactor transmutation fuels. The benefits of these fuels are to be demonstrated in an Advanced Burner Reactor (ABR), which will provide a representative environment for recycle fuel testing, safety testing, and modern fast reactor design and safeguard features. Because the GNEP programs will require facilities which may have an impact upon the environment within the meaning of the National Environmental Policy Act of 1969 (NEPA), preparation of a Programmatic Environmental Impact Statement (PEIS) for GNEP is being undertaken by Tetra Tech, Inc. The PEIS will include a section on the ABR. In support of the PEIS, the Nuclear Engineering Division of Argonne National Laboratory has been asked to provide a description of the ABR alternative, including graphics, plus estimates of construction and operations data for an ABR plant. The compilation of this information is presented in the remainder of this report. Currently, DOE has started the process of engaging industry on the design of an Advanced Burner Reactor. Therefore, there is no specific, current, vendor-produced ABR design that could be used for this PEIS datacall package. In addition, candidate sites for the ABR vary widely as to available water, geography, etc. Therefore, ANL has based its estimates for construction and operations data largely on generalization of available information from existing plants and from the environmental report assembled for the Clinch River Breeder Reactor Plant (CRBRP) design [CRBRP, 1977]. The CRBRP environmental report was chosen as a resource because it thoroughly documents the extensive evaluation which was performed on the anticipated environmental impacts of that plant. This source can be referenced in the open literature and is publicly available. The CRBRP design was also of a commercial demonstration plant size - 975 MWth - which falls in the middle of the range of ABR plant sizes being considered (250 MWth to 2000 MWth). At the time the project was cancelled, the CRBRP had progressed to the point of having completed the licensing application to the Nuclear Regulatory Commission (NRC) and was in the process of receiving NRC approval. Therefore, it was felt that [CRBRP, 1977] provides some of the best available data and information as input to the GNEP PEIS work. CRBRP was not the source of all the information in this document. It is also expected that the CRBRP data will be bounding from the standpoint of commodity usage because fast reactor vendors will develop designs which will focus on commodity and footprint reduction to reduce the overall cost per kilowatt electric compared with the CRBR plant. Other sources used for this datacall information package are explained throughout this document and in Appendix A. In particular, see Table A.1 for a summary of the data sources used to generate the datacall information.

  12. Optimization of venturi-cascade enveloped burners

    SciTech Connect

    Qubbaj, A.R.; Gollahalli, S.R. [Univ. of Oklahoma, Norman, OK (United States). School of Aerospace and Mechanical Engineering

    1998-12-31

    An experimental study to control CO, NO and soot emissions of a propane diffusion flame by modifying the air infusion into the flame is presented. The modification was achieved by installing a cascade of venturis around the burning gas jet through which the air inflow was enhanced into the combustion zone. Propane jet diffusion flame at three Reynolds numbers (3600, 5100 and 6500) corresponding to burner-rim-attached, transition from attached to lifted, and fully lifted configurations were examined with different venturi sizes and spacing distributions. Temperature, CO{sub 2}, O{sub 2} and pollutant emissions (CO and NO) in the exhaust combustion products were measured before and after the modification and optimal conditions were obtained. The influence of venturi size was stronger than that of the spacing distribution. The optimal venturi diameter was between D/d = 27.5 and D/d = 3.5 which corresponded to an approximate clearance of 3 to 10 mm between the venturi throat and the burning jet (and most likely near the upper limit). The optimal configuration was the equal spacing in which the venturis were distributed equally over the flame length. The best effect of venturis was observed on the flame in transition from attached to lifted configurations. The Cascading technique at its optimal conditions compared to the baseline case of this study has shown the following: (1) visible flame length increases approximately by 18%; (2) CO{sub 2} concentration increases by 174%; and (3) CO and NO emission indices decrease by 87% and 33% respectively.

  13. Gravity tests and the Pioneer anomaly

    E-print Network

    Marc-Thierry Jaekel; Serge Reynaud

    2005-11-04

    Experimental tests of gravity performed in the solar system show a good agreement with general relativity. The latter is however challenged by the Pioneer anomaly which might be pointing at some modification of gravity law at ranges of the order of the size of the solar system. We introduce a metric extension of general relativity which, while preserving the equivalence principle, modifies the coupling between curvature and stress tensors and, therefore, the metric solution in the solar system. The ``post-Einsteinian extension'' replaces Newton gravitation constant by two running coupling constants, which depend on the scale and differ in the sectors of traceless and traced tensors, so that the metric solution is characterized by two gravitation potentials. The extended theory has the capability to preserve compatibility with gravity tests while accounting for the Pioneer anomaly. It can also be tested by new experiments or, maybe, by having a new look at data of already performed experiments.

  14. Pioneer 10 and 11 RTG performance update

    NASA Astrophysics Data System (ADS)

    Skrabek, E. A.; McGrew, John W.

    The long term reliability of radioisotope thermoelectric generators (RTGs) has been amply demonstrated by the Pioneer 10 and 11 spacecraft. Each spacecraft is powered by 4 SNAP-19 RTGs. The generators were fueled over 15 years ago (1971). The SNAP-19/Pioneer RTGs are made up to 3 major subsystems: the heat source, the thermopile and the housing and radiator. The heat source consists of a radioisotope fuel, plutonium 238, contained in a multilayer capsule, which is supported by Zr rings in a graphite heat shield. The thermoelectric converter consists of 6 modules, each of which bears upon a flat face of the heat shield. The exemplary performance of these spacecraft under demanding thermal and radiation exposure conditions has proven the reliability, adaptability, and efficiency of the SNAP-19 generator design.

  15. Pioneer Venus large probe neutral mass spectrometer

    NASA Technical Reports Server (NTRS)

    Hoffman, J.

    1982-01-01

    The deuterium hydrogen abundance ratio in the Venus atmosphere was measured while the inlets to the Pioneer Venus large probe mass spectrometer were coated with sulfuric acid from Venus' clouds. The ratio is (1.6 + or - 0.2) x 10 to the minus two power. It was found that the 100 fold enrichment of deuterium means that Venus outgassed at least 0.3% of a terrestrial ocean and possibly more.

  16. The Pioneer Venus Orbiter Plasma Analyzer Experiment

    Microsoft Academic Search

    D. S. Intriligator; J. H. Wolfe; J. D. Mihalov

    1980-01-01

    The plasma analyzer experiment on the Pioneer Venus Orbiter was designed to determine the basic characteristics of the plasma environment of Venus and the nature of the solar wind interaction at Venus. The plasma analyzer experiment is an electrostatic energy-per-unit charge (E\\/Q) spectrometer which measures ions and electrons. There is a curved plate electrostatic analyzer system with multiple collectors. The

  17. The Pioneer Venus Orbiter plasma wave investigation

    Microsoft Academic Search

    F. L. Scarf; W. W. L. Taylor; P. F. Virobik

    1980-01-01

    The Pioneer Venus plasma wave instrument has a self-contained balanced electric dipole (effective length = 0.75 m) and a 4-channel spectrum analyzer (30% bandwidth filters with center frequencies at 100 Hz, 730 Hz, and 30 kHz). The channels are continuously active and the highest Orbiter telemetry rate (2048 bits\\/sec) yields 4 spectral scans\\/sec. The total mass of 0.55 kg includes

  18. The Pioneer Venus Orbiter Plasma Wave Investigation

    Microsoft Academic Search

    F. L. Scarf; W. W. L. Taylor; P. F. Virobik

    1980-01-01

    The Pioneer Venus plasma wave instrument has a selfcontained balanced electric dipole (effective length = 0.75 m) and a 4-channel spectrum analyzer (30-percent bandwidth filters with center frequencies at 100 Hz, 730 Hz, 5.4 kHz, and 30 kHz). The channels are continuously active and the highest Orbiter telemetry rate (2048 bps) yields 4 spectral scans\\/s. The total mass of 0.55

  19. Slurry burner for mixture of carbonaceous material and water

    DOEpatents

    Nodd, D.G.; Walker, R.J.

    1985-11-05

    The present invention is intended to overcome the limitations of the prior art by providing a fuel burner particularly adapted for the combustion of carbonaceous material-water slurries which includes a stationary high pressure tip-emulsion atomizer which directs a uniform fuel into a shearing air flow as the carbonaceous material-water slurry is directed into a combustion chamber, inhibits the collection of unburned fuel upon and within the atomizer, reduces the slurry to a collection of fine particles upon discharge into the combustion chamber, and regulates the operating temperature of the burner as well as primary air flow about the burner and into the combustion chamber for improved combustion efficiency, no atomizer plugging and enhanced flame stability.

  20. Materials evaluations with the pulsed black liquor burner test facility

    SciTech Connect

    Stein, A. [Stone and Webster Engineering Co., Boston, MA (United States)

    1997-08-01

    A pulsed burner was designed to provide sufficient heat to convert a fluidized bed of black Kraft liquor into combustible gas which would be used to produce process steam. The pulsed burner design provides a significant increase in the heat transfer capability and consequently significantly increases the efficiency of the conversion process. High temperature corrosion tests were performed in a fluidized bed of black Kraft liquor using a pulsed burner process to determine the optimum materials for use in a commercial application. The materials tested included three different austenitic stainless steels, Type 446 martensitic stainless steel, a high temperature carbon steel, 153MA, and four nickel base alloys. All materials performed well with no corrosion attributed to the environment created by the decomposition of a black Kraft liquor. This behavior was contrary to what was expected due to the high concentration of H{sub 2}S present in the high temperature, 562 C, atmosphere.

  1. EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON INDUSTRIAL BOILERS. VOLUME 2. APPENDICES

    EPA Science Inventory

    The report gives results of a field evaluation of the Distributed Mixing Burner (DMB) on a 98 kg/hr (215,000 lb/hr) steaming capacity, four-burner, front-wall-fired boiler. Following DMB installation, the boiler was operated and tested with the new burners for 17 months. Under ro...

  2. EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON INDUSTRIAL BOILERS. VOLUME 3. GUIDELINE MANUAL

    EPA Science Inventory

    The report gives results of a field evaluation of the Distributed Mixing Burner (DMB) on a 98 kg/hr (215,000 lb/hr) steaming capacity, four-burner, front-wall-fired boiler. Following DMB installation, the boiler was operated and tested with the new burners for 17 months. Under ro...

  3. EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON INDUSTRIAL BOILERS. VOLUME 1. TECHNICAL REPORT

    EPA Science Inventory

    The report gives results of a field evaluation of the Distributed Mixing Burner (DMB) on a 98 kg/hr (215,000 lb/hr) steaming capacity, four-burner, front-wall-fired boiler. Following DMB installation, the boiler was operated and tested with the new burners for 17 months. Under ro...

  4. Pollutant Emission Rates from a Radiant Fiber-Matrix Gas Burner

    Microsoft Academic Search

    Michael G. Apte; Gregory W. Traynor

    1993-01-01

    Previous studies have quantified the emissions of trace constituents from unvented gas and kerosene space heaters, including CO, NO, NO[sub 2], formaldehyde, and respirable particles. The emission rates of these vary with heater technology such as burner design and operating conditions. Recent advances in infrared radiant gas burner technology have led to the development of a radiant fiber-matrix gas burner

  5. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS; VOLUME III. FIELD EVALUATION

    EPA Science Inventory

    The report gives results of field tests conducted to determine the emission characteristics of a Babcock and Wilcox Circular burner and Dual Register burner (DRB). The field tests were performed at two utility boilers, generally comparable in design and size except for the burner...

  6. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME III. FIELD EVALUATIONS

    EPA Science Inventory

    The report gives results of field tests conducted to determine the emission characteristics of a Babcock and Wilcox Circular burner and Dual Register burner (DRB). The field tests were performed at two utility boilers, generally comparable in design and size except for the burner...

  7. Identifying Dark Matter Burners in the Galactic Center

    SciTech Connect

    Moskalenko, Igor V.; Wai, Lawrence L.

    2007-04-16

    If the supermassive black hole (SMBH) at the center of our Galaxy grew adiabatically, then a dense ''spike'' of dark matter is expected to have formed around it. Assuming that dark matter is composed primarily of weakly interacting massive particles (WIMPs), a star orbiting close enough to the SMBH can capture WIMPs at an extremely high rate. The stellar luminosity due to annihilation of captured WIMPs in the stellar core may be comparable to or even exceed the luminosity of the star due to thermonuclear burning. The model thus predicts the existence of unusual stars, i.e. ''WIMP burners'', in the vicinity of an adiabatically grown SMBH. We find that the most efficient WIMP burners are stars with degenerate electron cores, e.g. white dwarfs (WD) or degenerate cores with envelopes. If found, such stars would provide evidence for the existence of particle dark matter and could possibly be used to establish its density profile. In our previous paper we computed the luminosity from WIMP burning for a range of dark matter spike density profiles, degenerate core masses, and distances from the SMBH. Here we compare our results with the observed stars closest to the Galactic center and find that they could be consistent with WIMP burners in the form of degenerate cores with envelopes. We also cross-check the WIMP burner hypothesis with the EGRET observed flux of gamma-rays from the Galactic center, which imposes a constraint on the dark matter spike density profile and annihilation cross-section. We find that the EGRET data is consistent with the WIMP burner hypothesis. New high precision measurements by GLAST will confirm or set stringent limits on a dark matter spike at the Galactic center, which will in turn support or set stringent limits on the existence of WIMP burners at the Galactic center.

  8. Burner rig hot corrosion of silicon carbide and silicon nitride

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Smialek, James L.

    1990-01-01

    A number of commercially available SiC and Si3N4 materials were exposed to 1000 C for 40 h in a high-velocity, pressurized burner rig as a simulation of an aircraft turbine environment. Na impurities (2 ppm) added to the burner flame resulted in molten Na2SO4 deposition, attack of the SiC and Si3N4, and formation of substantial Na2O+x(SiO2) corrosion product. Room-temperature strength of the materials decreased as a result of the formation of corrosion pits in SiC and grain-boundary dissolution and pitting in Si3N4.

  9. The far reaches of the solar wind - Pioneer 10 and Pioneer 11 plasma results

    NASA Technical Reports Server (NTRS)

    Kayser, S. E.; Barnes, A.; Mihalov, J. D.

    1984-01-01

    Selected plasma parameters observed by Pioneer 10 and Pioneer 11 between launch (1972 and 1973) and the end of 1979 are used to find the large-scale radial structure of the solar wind. Comparison of data from the two spacecraft is used to separate temporal from spatial variations. The average bulk speed is found to remain constant at about 430 km/s, with stream structure still evident, though of diminished amplitude, at 20.5 AU (Pioneer 10's distance by the end of 1979). Proton density, flux, pressure, and kinetic energy flux are found to have radial profiles consistent with 1/R-squared. Proton temperatures decrease as R to the -0.6 power, too slowly for an adiabatic expansion.

  10. Solar wind data from the MIT plasma experiments on Pioneer 6 and Pioneer 7

    NASA Technical Reports Server (NTRS)

    Lazarus, A. J.; Heinemann, M. A.; Mckinnis, R. W.; Bridge, H. S.

    1973-01-01

    Hourly averages are presented of solar wind proton parameters obtained from experiments on the Pioneer 6 and Pioneer 7 spacecraft during the period December 16, 1965 to August 1971. The number of data points available on a given day depends upon the spacecraft-earth distance, the telemetry bit rate, and the ground tracking time allotted to each spacecraft. Thus, the data obtained earlier in the life of each spacecraft are more complete. The solar wind parameters are given in the form of plots and listings. Trajectory information is also given along with a detailed description of the analysis procedures used to extract plasma parameters from the measured data.

  11. FIELD EVALUATION OF LOW-EMISSIONS COAL BURNER TECHNOLOGY ON UTILITY BOILERS; VOLUME II. SECOND GENERATION LOW-NOX BOILERS

    EPA Science Inventory

    The report describes tests to evaluate the performance characteristics of three Second Generation Low-NOx burner designs: the Dual Register burner (DRB), the Babcock-Hitachi NOx Reducing (HNR) burner, and the XCL burner. The three represent a progression in development based on t...

  12. DEMONSTRATION BULLETIN: THE PYRETRON OXYGEN BURNER, AMERICAN COMBUSTION TECHNOLOGIES, INC.

    EPA Science Inventory

    The Pyretron is a burner which is designed to allow for the injection of oxygen into the combustion air stream for the purpose of increasing the efficiency of a hazardous waste incinerator. The SITE demonstration of the Pyretron took place at the U.S. EPA's Combustion Re...

  13. Demonstration test of burner liner strain measuring system

    NASA Technical Reports Server (NTRS)

    Stetson, K. A.

    1984-01-01

    A demonstration test was conducted for two systems of static strain measurement that had been shown to have potential for application jet engine combustors. A modified JT12D combustor was operated in a jet burner test stand while subjected simultaneously to both systems of instrumentation, i.e., Kanthal A-1 wire strain gages and laser speckle photography. A section of the burner was removed for installation and calibration of the wire gages, and welded back into the burner. The burner test rig was modified to provide a viewing port for the laser speckle photography such that the instrumented section could be observed during operation. Six out of ten wire gages survived testing and showed excellent repeatability. The extensive precalibration procedures were shown to be effective in compensating for the large apparent strains associated with these gages. Although all portions of the speckle photography system operated satisfactorily, a problem was encountered in the form of optical inhomogeneities in the hot, high-pressure gas flowing by the combustor case which generate large and random apparent strain distributions.

  14. OPERATING CONDITIONS EFFECT ON A GAS TURBINE DLN BURNER STABILITY

    Microsoft Academic Search

    G. Riccio; L. Schoepflin; F. Martelli; L. Carrai; S. Sigali

    In the area of stationary power generation with gas turbine exists a growing interest in understanding the possibility to foreseen and control the combustion instability. This study reports the results of a detailed experimental activity on an industrial DLN burner for gas turbine, fired by natural gas. Combustion tests at full-pressure condition were performed at the ENEL experimental area located

  15. Feasibility Study of Regenerative Burners in Aluminum Holding Furnaces

    NASA Astrophysics Data System (ADS)

    Hassan, Mohamed I.; Al Kindi, Rashid

    2014-09-01

    Gas-fired aluminum holding reverberatory furnaces are currently considered to be the lowest efficiency fossil fuel system. A considerable volume of gas is consumed to hold the molten metal at temperature that is much lower than the flame temperature. This will lead to more effort and energy consumption to capture the excessive production of the CO2. The concern of this study is to investigate the feasibility of the regenerative-burners' furnaces to increase the furnace efficiency to reduce gas consumption per production and hence result in less CO2 production. Energy assessments for metal holding furnaces are considered at different operation conditions. Onsite measurements, supervisory control and data acquisition data, and thermodynamics analysis are performed to provide feasible information about the gas consumption and CO2 production as well as area of improvements. In this study, onsite measurements are used with thermodynamics modeling to assess a 130 MT rectangular furnace with two regenerative burners and one cold-air holding burner. The assessment showed that the regenerative burner furnaces are not profitable in saving energy, in addition to the negative impact on the furnace life. However, reducing the holding and door opening time would significantly increase the operation efficiency and hence gain the benefit of the regenerative technology.

  16. Camping Burner-Based Flame Emission Spectrometer for Classroom Demonstrations

    ERIC Educational Resources Information Center

    Ne´el, Bastien; Crespo, Gasto´n A.; Perret, Didier; Cherubini, Thomas; Bakker, Eric

    2014-01-01

    A flame emission spectrometer was built in-house for the purpose of introducing this analytical technique to students at the high school level. The aqueous sample is sprayed through a homemade nebulizer into the air inlet of a consumer-grade propane camping burner. The resulting flame is analyzed by a commercial array spectrometer for the visible…

  17. Finding the Origin of the Pioneer Anomaly

    Microsoft Academic Search

    Michael Martin Nieto; Slava G. Turyshev

    2003-01-01

    Analysis of radio-metric tracking data from the Pioneer 10\\/11 spacecraft at\\u000adistances between 20 - 70 astronomical units (AU) from the Sun has consistently\\u000aindicated the presence of an anomalous, small, constant Doppler frequency\\u000adrift. The drift can be interpreted as being due to a constant acceleration of\\u000aa_P= (8.74 \\\\pm 1.33) x 10^{-8} cm\\/s^2 directed towards the Sun. Although

  18. NASA's Fortieth Anniversary: Pioneering The Future

    NSDL National Science Digital Library

    Since its inception on October 1, 1958, the National Aeronautics and Space Administration (NASA) has been a forerunner in many areas of advanced scientific research, especially in the fields of space exploration and aeronautics. NASA celebrates forty years of "Pioneering the Future" with a site that chronicles its illustrious history by providing access to numerous publications, including detailed biographies of influential people and declassified government documents. Together, the texts detail the scientific origins, objectives, and achievements of NASA. Audio and video clips of the Apollo missions and archived photographs from the dawn of the space age complement the rich textual history offered at the site.

  19. BURNER CRITERIA FOR NOX CONTROL. VOLUME I. INFLUENCE OF BURNER VARIABLES ON NOX IN PULVERIZED COAL FLAMES

    EPA Science Inventory

    The report gives results of the first phase of an investigation to specify burner design criteria to control NOx in natural gas and pulverized coal flames. The two parameters found to have major influence on NO formation were the method of fuel injection and the degree of swirl. ...

  20. Pioneer Anomaly: What Can We Learn from LISA?

    Microsoft Academic Search

    Denis Defrère; Andreas Rathke

    2008-01-01

    \\u000a The Doppler tracking data from two deep-space spacecraft, Pioneer 10 and 11, show an anomalous blueshift, which has been dubbed\\u000a the “Pioneer anomaly”. The effect is most commonly interpreted as a real deceleration of the spacecraft – an interpretation\\u000a that faces serious challenges from planetary ephemerides. The Pioneer anomaly could as well indicate an unknown effect on\\u000a the radio signal

  1. Pioneer medical missions in colonial Africa.

    PubMed

    Good, C M

    1991-01-01

    Protestant and Roman Catholic missions pioneered Western medicine and public health in much of Africa decades in advance of health services provided by colonial governments. A century later church-based hospitals and health care programs continue to account for 25% to 50% of available services in most African countries. In view of the important historical and continuing role of medical missions it is remarkable that there have been no systematic scholarly studies of the impacts of these pioneer institutions on the geography of health and social change in colonial Africa. How, for example, was the health of African populations and the areas they inhabited changed by the activities of medical missions? And how did Africans respond to Western medicine and its alien institutional social and technological structures and relations? This paper develops the historical context and conceptual framework for investigating such topics. It presents a detailed research agenda organized around nine themes, each of which suggests a series of interrelated questions. The methodology employs the techniques of medical and historical geography, and is based on comparative, longitudinal case-studies of medical missions at the local level coupled with archival study. PMID:2008614

  2. General relativity and quintessence explain the Pioneer anomaly

    E-print Network

    Mbelek, J P

    2004-01-01

    The anomalous time depending blueshift, the so-called "Pioneer anomaly", that was detected in the radio-metric data from Pioneer 10/11, Ulysses and Galileo spacecraft may not result from a real change of velocity. Rather, the Pioneer anomaly may be understood within the framework of general relativity as a time depending gravitational frequency shift accounting for the time dependence of the density of the dark energy when the latter is identified with quintessence. Thus, instead of being in conflict with Einstein equivalence principle, the main Pioneer anomaly appears merely as a new validation of general relativity in the weak field and low velocity limit.

  3. General relativity and quintessence explain the Pioneer anomaly

    E-print Network

    J. P. Mbelek

    2004-07-06

    The anomalous time depending blueshift, the so-called "Pioneer anomaly", that was detected in the radio-metric data from Pioneer 10/11, Ulysses and Galileo spacecraft may not result from a real change of velocity. Rather, the Pioneer anomaly may be understood within the framework of general relativity as a time depending gravitational frequency shift accounting for the time dependence of the density of the dark energy when the latter is identified with quintessence. Thus, instead of being in conflict with Einstein equivalence principle, the main Pioneer anomaly appears merely as a new validation of general relativity in the weak field and low velocity limit.

  4. Pioneer Anomaly and the Kuiper Belt mass distribution

    E-print Network

    O. Bertolami; P. Vieira

    2006-06-18

    Pioneer 10 and 11 were the first probes sent to study the outer planets of the Solar System and Pioneer 10 was the first spacecraft to leave the Solar System. Besides their already epic journeys, Pioneer 10 and 11 spacecraft were subjected to an unaccounted effect interpreted as a constant acceleration toward the Sun, the so-called Pioneer anomaly. One of the possibilities put forward for explaining the Pioneer anomaly is the gravitational acceleration of the Kuiper Belt. In this work we examine this hypothesis for various models for the Kuiper Belt mass distribution. We find that the gravitational effect due to the Kuiper Belt cannot account for the Pioneer anomaly. Furthermore, we have also studied the hypothesis that drag forces can explain the the Pioneer anomaly; however we conclude that the density required for producing the Pioneer anomaly is many orders of magnitude greater than those of interplanetary and interstellar dust. Our conclusions suggest that only through a mission, the Pioneer anomaly can be confirmed and further investigated. If a mission with these aims is ever sent to space, it turns out, on account of our results, that it will be also a quite interesting probe to study the mass distribution of the Kuiper Belt.

  5. Characterization of Noise and Instability in a Commercial Burner

    NASA Astrophysics Data System (ADS)

    Carpenter, Stewart; Agrawal, Ajay

    2013-11-01

    A range of combustion applications produce noise as a significant and undesirable output. Concurrently, efforts to reduce emissions through lean premixed combustion have shown this process to be prone to developing instabilities. In this study a commercial-style combustor was investigated to characterize combustion noise and instabilities. Knowledge in this area is intended for future research involving the application of porous inert media (PIM) in industrial burners. Porous media has been used to passively suppress both combustion noise and instabilities in a laboratory setting, but has yet to be implemented in a commercial burner. Combustion experiments were conducted in an industrial-scale lean premixed burner using natural gas while varying equivalence ratio and reactant flow rate. Acoustic data was acquired using a microphone probe placed in the plane of the combustor exit. Measurements were analyzed in the frequency spectrum to quantify noise spectra and detect the development of instabilities. Results have indicated the occurrence of strong combustion instability at certain conditions. Additionally, research has supported the general relationship of increased noise production with increasing equivalence ratio and heat release rate. Adverse effects of combustion instability were accompanied with flashback and downstream acoustic excitation. A range of combustion applications produce noise as a significant and undesirable output. Concurrently, efforts to reduce emissions through lean premixed combustion have shown this process to be prone to developing instabilities. In this study a commercial-style combustor was investigated to characterize combustion noise and instabilities. Knowledge in this area is intended for future research involving the application of porous inert media (PIM) in industrial burners. Porous media has been used to passively suppress both combustion noise and instabilities in a laboratory setting, but has yet to be implemented in a commercial burner. Combustion experiments were conducted in an industrial-scale lean premixed burner using natural gas while varying equivalence ratio and reactant flow rate. Acoustic data was acquired using a microphone probe placed in the plane of the combustor exit. Measurements were analyzed in the frequency spectrum to quantify noise spectra and detect the development of instabilities. Results have indicated the occurrence of strong combustion instability at certain conditions. Additionally, research has supported the general relationship of increased noise production with increasing equivalence ratio and heat release rate. Adverse effects of combustion instability were accompanied with flashback and downstream acoustic excitation. Funding for this research provided by NSF REU grant 1062611.

  6. Sir Victor Horsley: pioneer craniopharyngioma surgeon.

    PubMed

    Pascual, José M; Prieto, Ruth; Mazzarello, Paolo

    2015-07-01

    Sir Victor Horsley (1857-1916) is considered to be the pioneer of pituitary surgery. He is known to have performed the first surgical operation on the pituitary gland in 1889, and in 1906 he stated that he had operated on 10 patients with pituitary tumors. He did not publish the details of these procedures nor did he provide evidence of the pathology of the pituitary lesions operated on. Four of the patients underwent surgery at the National Hospital for Neurology and Neurosurgery (Queen Square, London), and the records of those cases were recently retrieved and analyzed by members of the hospital staff. The remaining cases corresponded to private operations whose records were presumably kept in Horsley's personal notebooks, most of which have been lost. In this paper, the authors have investigated the only scientific monograph providing a complete account of the pituitary surgeries that Horsley performed in his private practice, La Patologia Chirurgica dell'Ipofisi (Surgical Pathology of the Hypophysis), written in 1911 by Giovanni Verga, Italian assistant professor of anatomy at the University of Pavia. They have traced the life and work of this little-known physician who contributed to the preservation of Horsley's legacy in pituitary surgery. Within Verga's pituitary treatise, a full transcription of Horsley's notes is provided for 10 pituitary cases, including the patients' clinical symptoms, surgical techniques employed, intraoperative findings, and the outcome of surgery. The descriptions of the topographical and macroscopic features of two of the lesions correspond unmistakably to the features of craniopharyngiomas, one of the squamous-papillary type and one of the adamantinomatous type. The former lesion was found on necropsy after the patient's sudden death following a temporal osteoplastic craniectomy. Surgical removal of the lesion in the latter case, with the assumed nature of an adamantinomatous craniopharyngioma, was successful. According to the evidence provided in Giovanni Verga's monograph, it can be claimed that Sir Victor Horsley was not only the pioneer of pituitary gland surgery but also the pioneer of craniopharyngioma surgery. PMID:25699409

  7. Pioneer probe mission with orbiter option

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A spacecraft is described which is based on Pioneer 10 and 11, and existing propulsion technology; it can transport and release a probe for entry into Jupiter's atmosphere, and subsequently maneuver to place the spacecraft in orbit about Jupiter. Orbital operations last 3 years and include maneuvers to provide multiple close satellite encounters which allow the orbit to be significantly changed to explore different parts of the magnetosphere. A mission summary, a guide to related documents, and background information about Jupiter are presented along with mission analysis over the complete mission profile. Other topics discussed include the launch, interplanetary flight, probe release and orbit deflection, probe entry, orbit selection, orbit insertion, periapsis raising, spacecraft description, and the effects of Jupiter's radiation belt on both orbiter and the probe.

  8. Plasma analyzer for the Pioneer Jupiter missions

    NASA Technical Reports Server (NTRS)

    Mckibbin, D. D.; Wolfe, J. H.; Collard, H. R.; Savage, H. F.; Molari, R.

    1977-01-01

    A description is given of the NASA/Ames Research Center Plasma Probe on board the Jupiter Missions of the Pioneer 10 and 11 spacecraft. The instrument has two quadrispherical electrostatic analyzer units; one has high sensitivity and resolution and the other is capable of measuring large fluxes of solar wind particles. The two analyzer units measure particle energy-to-charge ratio, flux, and direction of flow for positive ions and electrons over the wide range of particle densities found in the solar wind during the Jupiter missions. Data formats in space and ground data processing, the NASA/Ames Research Center plasma probe calibration facility, and the instrument response functions are also described.

  9. Pioneer Venus probe models instrumented prop tests

    NASA Technical Reports Server (NTRS)

    Muirhead, V. U.

    1978-01-01

    Models of both the small and large Pioneer Venus probes were dropped from a helicopter to simulate the conditions of Mach and Reynolds numbers to be encountered by the probes upon entry into the Venus atmosphere. The models were dropped at an average Mach number of .10 and at an average Reynolds number of 2.84 million for the small probe and 2.90 million for the large probe. After the large amplitude launching oscillations were damped, the small probe oscillations in angle of attack and in sideslip were generally less than 2 degrees. The large probe oscillations were generally less than 10 degrees. Both exhibited distinct frequencies. The motion of the small probe in a place perpendicular to the z axis was random while the large probe rotated (corkscrewed) at 1.1 cycles per second about the z axis. The average drag coefficients of the probe models were .714 for the small probe and .663 for the large probe.

  10. Modeling Jupiter's current disc - Pioneer 10 outbound

    NASA Technical Reports Server (NTRS)

    Jones, D. E.; Melville, J. G., II; Blake, M. L.

    1980-01-01

    A model of the magnetic field of the Jovian current disk is presented. The model uses Euler functions and the Biot-Savart law applied to a series of concentric, but not necessarily coplanar current rings. It was found that the best fit to the Pioneer 10 outbound perturbation magnetic field data is obtained if the current disk is twisted, and also bent to tend toward parallelism with the Jovigraphic equator. The inner and outer radii of the disk appear to be about 7 and 150 Jovian radii, respectively; because of the observed current disk penetrations, the bent disk also requires a deformation in the form of a bump or wrinkle whose axis tends to exhibit spiraling. Modeling of the azimuthal field shows that it is due to a thin radial current sheet, but it may actually be due in large part to penetration of a tail current sheet as suggested by Voyager observations.

  11. Diagnostics for Pioneer I imploding plasma experiments

    SciTech Connect

    Lee, P.H.Y.; Benjamin, R.F.; Brownell, J.H.; Erickson, D.J.; Goforth, J.H.; Greene, A.E.; McGurn, J.S.; Pecos, J.F.; Price, R.H.; Oona, H.

    1985-01-01

    The Pioneer I series of imploding plasma experiments are aimed at collapsing a thin aluminum foil with a multimegampere, submicrosecond electrical pulse produced by an explosive flux compression generator and fast plasma compression opening switch. Anticipated experimental conditions are bounded by implosion velocities of 2 x 10/sup 7/ cm/s and maximum plasma temperatures of 100 eV. A comprehensive array of diagnostics have been deployed to measure implosion symmetry (gated microchannel plate array and other time-resolved imaging), temperature of the imploding plasma (visible/uv spectroscopy), stagnation geometry (x-ray pinhole imaging), radiation emission characteristics at pinch (XRD's, fast bolometry), and electrical drive history (Rogowski loops, Faraday rotation current detectors, and capacitive voltage probes). Diagnostic performance is discussed and preliminary results are presented.

  12. Alyeska pioneers new pipe line technology

    Microsoft Academic Search

    McPhail

    1976-01-01

    The Trans-Alaska pipeline system is being built for one purpose--to make the almost 10-billion-barrel crude oil reserve at Prudhoe Bay available to U. S. industry and consumers. When completed, the pipeline will traverse some of the most rugged terrain in North America. The 1,287-km (800-mi.) long system will transport crude oil from Prudhoe Bay on Alaska's Arctic Ocean coast, generally

  13. NUMERICAL SIMULATION OF NATURAL GAS-SWIRL BURNER

    SciTech Connect

    Ala Qubbaj

    2005-03-01

    A numerical simulation of a turbulent natural gas jet diffusion flame at a Reynolds number of 9000 in a swirling air stream is presented. The numerical computations were carried out using the commercially available software package CFDRC. The instantaneous chemistry model was used as the reaction model. The thermal, composition, flow (velocity), as well as stream function fields for both the baseline and air-swirling flames were numerically simulated in the near-burner region, where most of the mixing and reactions occur. The results were useful to interpret the effects of swirl in enhancing the mixing rates in the combustion zone as well as in stabilizing the flame. The results showed the generation of two recirculating regimes induced by the swirling air stream, which account for such effects. The present investigation will be used as a benchmark study of swirl flow combustion analysis as a step in developing an enhanced swirl-cascade burner technology.

  14. Pioneer Mars surface penetrator mission. Mission analysis and orbiter design

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Mars Surface Penetrator mission was designed to provide a capability for multiple and diverse subsurface science measurements at a low cost. Equipment required to adapt the Pioneer Venus spacecraft for the Mars mission is described showing minor modifications to hardware. Analysis and design topics which are similar and/or identical to the Pioneer Venus program are briefly discussed.

  15. Pioneer Anomaly and the Helicity-Rotation Coupling

    E-print Network

    John D. Anderson; Bahram Mashhoon

    2003-07-15

    The modification of the Doppler effect due to the coupling of the helicity of the radiation with the rotation of the source/receiver is considered in the case of the Pioneer 10/11 spacecraft. We explain why the Pioneer anomaly is not influenced by the helicity-rotation coupling.

  16. The Pioneer anomaly in the context of the braneworld scenario

    E-print Network

    O. Bertolami; J. Páramos

    2004-06-04

    We examine the Pioneer anomaly - a reported anomalous acceleration affecting the Pioneer 10/11, Galileo and Ulysses spacecrafts - in the context of a braneworld scenario. We show that effects due to the radion field cannot account for the anomaly, but that a scalar field with an appropriate potential is able to explain the phenomena. Implications and features of our solution are analyzed.

  17. Advanced Burners and Combustion Controls for Industrial Heat Recovery Systems

    E-print Network

    Ferri, J. L.

    Institute (GRI). INTRODUCTION GTE Products Corporation began work on ceramic heat exchangers in 1973. Part of the development work was funded by two DOE contracts. The scope of the second contract was to accelerate industrial acceptance of ceramic... and Symposium on Industrial Heat Exchanger Technology, November 1985, Pittsburgh, PA. GTE B0300 CERAMIC BURNER FIGURE 1 FIGURE 2 297 ESL-IE-88-09-52 Proceedings from the Tenth Annual Industrial Energy Technology Conference, Houston, TX, September 13...

  18. Thermal analysis of a shower-head burner

    NASA Technical Reports Server (NTRS)

    Egoavil, Marco A.

    1992-01-01

    The heat transfer coefficients and convective temperatures around the spray bar of the shower-head burner in the NASA Langley Research Center High Temperature Tunnel are determined. The use of the FLUENT computer code and empirical equations in this effort is described. It is concluded that using the FLUENT code allows higher convective temperatures to be predicted than using experimental data at shutdown conditions. Empirical equations are acceptable for calculation heat-transfer coefficients.

  19. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    SciTech Connect

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

    2001-08-20

    The proposed research is directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This fundamental research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners to the kinetic emissions limit (below 0.2 lb./MMBTU). Experimental studies include both cold and hot flow evaluations of the following parameters: flame holder geometry, secondary air swirl, primary and secondary inlet air velocity, coal concentration in the primary air and coal particle size distribution. Hot flow experiments will also evaluate the effect of wall temperature on burner performance. Cold flow studies will be conducted with surrogate particles as well as pulverized coal. The cold flow furnace will be similar in size and geometry to the hot-flow furnace but will be designed to use a laser Doppler velocimeter/phase Doppler particle size analyzer. The results of these studies will be used to predict particle trajectories in the hot-flow furnace as well as to estimate the effect of flame holder geometry on furnace flow field. The hot-flow experiments will be conducted in a novel near-flame down-flow pulverized coal furnace. The furnace will be equipped with externally heated walls. Both reactors will be sized to minimize wall effects on particle flow fields. The cold-flow results will be compared with Fluent computation fluid dynamics model predictions and correlated with the hot-flow results with the overall goal of providing insight for novel low NO{sub x} burner geometry's.

  20. Acoustic Pressure Oscillations Induced in I-Burner

    NASA Astrophysics Data System (ADS)

    Matsui, Kiyoshi

    Iwama et al. invented the I-burner to investigate acoustic combustion instability in solid-propellant rockets (Proceedings of ICT Conference, 1994, pp. 26-1 26-14). Longitudinal pressure oscillations were induced in the combustion chamber of a thick-walled rocket by combustion of a stepped-perforation grain (I-burner). These oscillations were studied here experimentally. Two I-burners with an internal diameter of 80 mm and a length of 1208 mm or 2240 mm were made. The grain had stepped perforations (20 and 42 mm in diameter and 657 and 160 mm in length, respectively). Longitudinal pressure oscillations always occur in two stages when an HTPB (hydroxyl-terminated polybutadiene)/AP (ammonium perchlorate)/aluminum-powder propellant burns (54 tests; the highest average pressure in the combustion chamber was 9.5 29 MPa), but no oscillations occur when an HTPB/AP propellant burns (29 tests). The pressure oscillations are essentially linear, but dissipation adds a nonlinear nature to them. In the first stage, the amplitudes are small and the first wave group predominates. In the next stage, the amplitudes are large and many wave groups are present. The change in the grain form accompanying the combustion affects the pressure oscillations.

  1. A Superfluid Film Burner for the nEDM Experiment

    NASA Astrophysics Data System (ADS)

    Maxwell, James; nEDM Collaboration

    2013-10-01

    A planned measurement of the neutron electric dipole moment (nEDM) to 10-28 e .cm using the Golub-Lamoreaux method presents complex cryogenic challenges. One such hurdle is the injection of 3He from a polarized atomic beam source into a liquid 4He bath while maintaining the temperature gradient from the cold bath to the warm beam source and minimizing the vapor above the bath. The feasible temperature range for the experiment falls around 400 mK and is constrained from below by the achievable magnetic field gradients, and above by the spin relaxation time of 3He and rate of ultracold neutron up-scattering. The superfluid behavior of 4He below 2.1 K means superfluid film will tend to climb, or ``creep,'' up the sides of the beam tube to reach the warmer space above, creating vapor, resulting in convection and scattering of incident 3He. To stop the superfluid film creep and contain the vapor, a ``film burner'' is under development by the nEDM collaboration. We will describe the effort toward developing a suitable film burner for nEDM, and show preliminary results of a prototype film burner in operation.

  2. Simulation Modeling of an Enhanced Low-Emission Swirl-Cascade Burner

    Microsoft Academic Search

    Ala Qubbaj

    2004-01-01

    ''Cascade-burners'' is a passive technique to control the stoichiometry of the flame through changing the flow dynamics and rates of mixing in the combustion zone with a set of venturis surrounding the flame. Cascade-burners have shown advantages over other techniques; its reliability, flexibility, safety, and cost makes it more attractive and desirable. On the other hand, the application of ''Swirl-burners''

  3. Coal-water-slurry technology development. Volume 1. Burner technology. Final report

    Microsoft Academic Search

    D. A. Smith; M. J. Rini; R. C. LaFlesh; J. L. Marion

    1984-01-01

    A commercial-scale coal-water slurry (CWS) burner was developed and test fired. This atomizer and burner system was developed in three steps: (1) Atomizer development and optimization using optical measurement techniques; (2) Burner air register development using cold flow modeling, and (3) Full scale (80 MBtu\\/h) combustion testing of the atomizer and air register. Approximately 20,000 gallons of CWS were fired,

  4. Operations of tube furnaces with type GBP burners on coke oven gas

    SciTech Connect

    Bykhalo, B.I.; Ostrovskii, Z.V.

    1982-11-06

    Coking using coke oven gas in tube furnaces with GBP burners is hampered by unstable burner operation, flash back into the burner and distribution chamber and deterioration of insulation and ceramic packing and finally destruction of burner housing. Causes of these problems and possible solutions are reported herein: Three GBP burners (GBP 85, 140, 280) were evaluated using purified coke oven gas (naphthalene removed). Injection burner breakthrough is affected by heating gas composition, oxygen content, burner design, fuel-air temperature and velocity and heat stresses, none of which individually has a decisive effect on breakthrough although nozzle diameter and gas pressure are critically reflective of stability and breakthrough times. Removal of ceramics stabilized the system while removal of thermal insulation destabilized combustion under all conditions (pressure, nozzle diameter). The smaller burner (GBP 85) provides more uniform heating of ceramics, more uniform pressure in the distribution channel (+/-5 Pa vs +/-15-20 Pa in the GBP 140 and 280) due to lower nipple cross sectional area, greater stability and is therefore recommended with one modification: replacement of ceramic packing with reinforced refractory material (thermal insulation). Under production conditions using coke oven gas, deposition of naphthalene occurs in the gas feed pipes and burner nozzels leading to instability in the GBP 140, 280 due to coking and changes in gas flow. The decisive stability factor is the specific heat stress of ceramics.

  5. Grote Reber, Radio Astronomy Pioneer, Dies

    NASA Astrophysics Data System (ADS)

    2002-12-01

    Grote Reber, one of the earliest pioneers of radio astronomy, died in Tasmania on December 20, just two days shy of his 91st birthday. Reber was the first person to build a radio telescope dedicated to astronomy, opening up a whole new "window" on the Universe that eventually produced such landmark discoveries as quasars, pulsars and the remnant "afterglow" of the Big Bang. His self- financed experiments laid the foundation for today's advanced radio-astronomy facilities. Grote Reber Grote Reber NRAO/AUI photo "Radio astronomy has changed profoundly our understanding of the Universe and has earned the Nobel Prize for several major contributions. All radio astronomers who have followed him owe Grote Reber a deep debt for his pioneering work," said Dr. Fred Lo, director of the National Radio Astronomy Observatory (NRAO). "Reber was the first to systematically study the sky by observing something other than visible light. This gave astronomy a whole new view of the Universe. The continuing importance of new ways of looking at the Universe is emphasized by this year's Nobel Prizes in physics, which recognized scientists who pioneered X-ray and neutrino observations," Lo added. Reber was a radio engineer and avid amateur "ham" radio operator in Wheaton, Illinois, in the 1930s when he read about Karl Jansky's 1932 discovery of natural radio emissions coming from outer space. As an amateur operator, Reber had won awards and communicated with other amateurs around the world, and later wrote that he had concluded "there were no more worlds to conquer" in radio. Learning of Jansky's discovery gave Reber a whole new challenge that he attacked with vigor. Analyzing the problem as an engineer, Reber concluded that what he needed was a parabolic-dish antenna, something quite uncommon in the 1930s. In 1937, using his own funds, he constructed a 31.4-foot-diameter dish antenna in his back yard. The strange contraption attracted curious attention from his neighbors and became something of a minor tourist attraction, he later recalled. Using electronics he designed and built that pushed the technical capabilities of the era, Reber succeeded in detecting "cosmic static" in 1939. In 1941, Reber produced the first radio map of the sky, based on a series of systematic observations. His radio-astronomy work continued over the next several years. Though not a professional scientist, his research results were published in a number of prestigious technical journals, including Nature, the Astrophysical Journal, the Proceedings of the Institute of Radio Engineers and the Journal of Geophysical Research. Reber also received a number of honors normally reserved for scientists professionally trained in astronomy, including the American Astronomical Society's Henry Norris Russell Lectureship and the Astronomical Society of the Pacific's Bruce Medal in 1962, the National Radio Astronomy Observatory's Jansky Lectureship in 1975, and the Royal Astronomical Society's Jackson-Gwilt Medal in 1983. Reber's original dish antenna now is on display at the National Radio Astronomy Observatory's site in Green Bank, West Virginia, where Reber worked in the late 1950s. All of his scientific papers and records as well as his personal and scientific correspondence are held by the NRAO, and will be exhibited in the observatory's planned new library in Charlottesville, Virginia. Reber's amateur-radio callsign, W9GFZ, is held by the NRAO Amateur Radio Club. This callsign was used on the air for the first time since the 1930s on August 25, 2000, to mark the dedication of the Robert C. Byrd Green Bank Telescope. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  6. On the possible onset of the Pioneer anomaly

    NASA Astrophysics Data System (ADS)

    Feldman, Michael R.; Anderson, John D.

    2015-06-01

    We explore the possibility that the observed onset of the Pioneer anomaly after Saturn encounter by Pioneer 11 is not necessarily due to mismodeling of solar radiation pressure but instead reflects a physically relevant characteristic of the anomaly itself. We employ the principles of a recently proposed cosmological model termed "the theory of inertial centers" along with an understanding of the fundamental assumptions taken by the Deep Space Network (DSN) to attempt to model this sudden onset. Due to an ambiguity that arises from the difference in the DSN definition of expected light-time with light-time according to the theory of inertial centers, we are forced to adopt a seemingly arbitrary convention to relate DSN-assumed clock-rates to physical clock-rates for this model. We offer a possible reason for adopting the convention employed in our analysis; however, we remain skeptical. Nevertheless, with this convention, one finds that this theory is able to replicate the previously reported Hubble-like behavior of the "clock acceleration" for the Pioneer anomaly as well as the sudden onset of the anomalous acceleration after Pioneer 11 Saturn encounter. While oscillatory behavior with a yearly period is also predicted for the anomalous clock accelerations of both Pioneer 10 and Pioneer 11, the predicted amplitude is an order of magnitude too small when compared with that reported for Pioneer 10.

  7. [Auguste Lumière, pioneer of the modern cicatrization].

    PubMed

    Salazard, B; Casanova, D; Zuleta, J; Desouches, C; Magalon, G

    2003-06-01

    At the "Grand Café" in Paris, on december 28, 1895 Louis and Auguste Lumiere displayed the cinematograph, a technical innovation that revolutionized the nascent motion picture. It was the first public projection of a film. While Louis continues his work on pictures and invents autochrome plates for colour photography, Auguste focused his interests on biology and medicine. Since Ambroise Paré, few doctors have been interested in the healing process. Although Carrel and Lecomte Du Nouy published the first studies in the early twentieth century, Auguste Lumière was a pioneer in the modern research and treatment of wounds. He applied the principles of experimental medicine. In his research he used 44 dogs to study the healing speed and the scar quality in certain areas and under general conditions. In the winter of 1914-1915 he studied in Lyon several hundred wounds of war casualties. In 1922 he established and published in a marvellous book the principles of normal healing. In the department of Pr Leon Bérard he was shocked by the fetidness of the wards where the dried bandages were changed once a week. In 1915 he perfected a revolutionary sterilized "treatment-bandage" consisting of 2 mm stitched gauze saturated with Vaseline and Perou's balsam: the "Tulle Gras. In order to disinfect wounds, he used an iodized solution, sprayed in little droplets. The lives of Auguste and Louis Lumière were full of projects and inventions. When Auguste died in 1954 he had registered more than one hundred patents. PMID:12837641

  8. Economic foundations of permanent pioneer communities

    SciTech Connect

    Jones, E.M.

    1988-01-01

    Although pioneer settlements are often founded for political or ideological reasons distinct from short-term economic justifications, their survival and growth depend on economic factors. The settlers must be able to make a living, whether at subsistence, commercial farming, fishing, mining, manufacturing, trade, or in government service. Although most of this discussion is highly speculative, it does seem from the historical material that there are plausible ways in which an evolutionary lunar program could lead, step by step, to settlement. Once a lunar facility has achieved basic self-sufficiencies in the production of oxygen, food, and construction materials, crew rotation would become a dominant cost factor in continuing lunar operations. At such a point, establishment of a resident staff begins to make economic sense. Subsequent encouragement of private-sector economic activities through such mechanisms as resident bonuses, local purchase preferences, and transfer of responsibility of basic services and production capabilities might well reduce operating costs and significantly multiply the economic effects of the basic import capacity provided by the facility's local expenditures.

  9. First archeointensity determinations on Maya incense burners from Palenque temples, Mexico: New data to constrain the Mesoamerica secular

    E-print Network

    Demouchy, Sylvie

    First archeointensity determinations on Maya incense burners from Palenque temples, Mexico: New archeointensity data carried out on pieces of incense burners from the ancient Maya city of Palenque, Chiapas

  10. Industrial pulverized coal low-NO{sub x} burner. Phase 1, Final report

    SciTech Connect

    Not Available

    1993-12-01

    Arthur D. Little, Inc., jointly with its university partner, the Massachusetts Institute of Technology, and its industrial partner, Hauck Manufacturing Corporation, is developing a low NO{sub x} pulverized coal burner for use in industrial processes, including those which may require preheated air or oxygen enrichment. The design of the burner specifically addresses the critical performance requirements of industrial systems, namely: high heat release rates, short flames, even heat flux distribution, and high combustion efficiency. The design is applicable to furnaces, industrial boilers, and cement kilns. The development program for this burner includes a feasibility analysis, performance modelling, development of the burner prototype design, and assessment of the economic viability of the burner. The Phase 1 activities covered by this report consisted of three principal tasks: preliminary burner design; fluid flow/combustion modelling and analyses; and market evaluation. The preliminary design activities included the selection of a design coal for the Phase 1 design, preliminary design layout, and preliminary sizing of the burner components. Modelling and analysis were conducted for the coal pyrolysis zone, the rich combustion zone and the lean bumout zone. Both chemical kinetics and one-dimensional coal combustion modelling were performed. The market evaluation included a review of existing industrial coal use, identification of potential near- and long-term markets and an assessment of the optimum burner sizes.

  11. Monitoring near burner slag deposition with a hybrid neural network system

    Microsoft Academic Search

    C. K. Tan; S. J. Wilcox; J. Ward; M. Lewitt

    2003-01-01

    This paper is concerned with the development of a system to detect and monitor slag growth in the near burner region in a pulverized-fuel (pf) fired combustion rig. These slag deposits are commonly known as 'eyebrows' and can markedly affect the stability of the burner. The study thus involved a series of experiments with two different coals over a range

  12. Optimization of Coal Particle Flow Patterns in Low N0x Burners

    Microsoft Academic Search

    Caner Yurteri; Gregory E. Ogden; Jennifer Sinclair; Jost O. L. Wendt

    1998-01-01

    The proposed research is directed at evaluating the effect of flame aerodynamics on NOX emissions tlom coal fired burners in a systematic manner. This fimdamental research includes both experimental and modeling efforts being petiormed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NOX burners

  13. PROTOTYPE EVALUATION OF COMMERCIAL SECOND GENERATION LOW-NO BURNER PERFORMANCE AND SULFUR CAPTURE

    EPA Science Inventory

    The report gives results of pilot-scale combustion tests of a Riley Stoker second-generation low-NOx burner combined with dry sorbent injection for SO2 control. The burner design is based on the distributed mixing concept. Combustion tests were conducted at 100 million Btu/hr in ...

  14. Helmholtz behavior and transfer function of an industrial fuel swirl burner used in heating systems

    Microsoft Academic Search

    K. Zähringer; D. Durox; F. Lacas

    2003-01-01

    Combustion instabilities, due to dynamical phenomena in the combustion system, may lead to strong noise emissions in modern industrial and domestic heating devices. Lean premixed burners are often used in these systems helping to respect the pollutant legislations. On the other hand, these kind of burners are more sensitive to dynamical phenomena, and acoustical coupling with other system compounds may

  15. Low NOâ premixed combustion of MBtu fuels in a research burner

    Microsoft Academic Search

    K. Doebbeling; A. Eroglu; D. Winkler; T. Sattelmayer; W. Keppel

    1997-01-01

    A critical part of IGCC plants is the combustor which must burn syngas. The paper reports on the development and testing of a premix research burner for MBtu fuels. The burner has a quartz glass annular mixing section and a quartz glass flame tue to allow visualization of the flame. A central lance is used to mount modules for fuel

  16. Numerical Modelling of a Pulse Combustion Burner: Limiting Conditions of Stable

    E-print Network

    Vuik, Kees

    in the burner system. Self-sustained pulse combustion and high-intensity sound waves result if the systemNumerical Modelling of a Pulse Combustion Burner: Limiting Conditions of Stable Operation P.A. van a mathematical analysis of a simple model for thermal pulse combustion and determines conditions under which

  17. Self-induced combustion oscillations of laminar premixed flames stabilized on annular burners

    Microsoft Academic Search

    T Schuller; D Durox; S Candel

    2003-01-01

    Self-induced instabilities of laminar premixed flames stabilized over an annular burner have been studied in a set of experiments. A method was developed to determine the stability map of these systems using the response of both the burner and the flame to forced oscillations of the flow. This method is detailed for a well controlled example. The natural unstable motion

  18. Plasma-assisted combustion technology for NOx reduction in industrial burners.

    PubMed

    Lee, Dae Hoon; Kim, Kwan-Tae; Kang, Hee Seok; Song, Young-Hoon; Park, Jae Eon

    2013-10-01

    Stronger regulations on nitrogen oxide (NOx) production have recently promoted the creation of a diverse array of technologies for NOx reduction, particularly within the combustion process, where reduction is least expensive. In this paper, we discuss a new combustion technology that can reduce NOx emissions within industrial burners to single-digit parts per million levels without employing exhaust gas recirculation or other NOx reduction mechanisms. This new technology uses a simple modification of commercial burners, such that they are able to perform plasma-assisted staged combustion without altering the outer configuration of the commercial reference burner. We embedded the first-stage combustor within the head of the commercial reference burner, where it operated as a reformer that could host a partial oxidation process, producing hydrogen-rich reformate or synthesis gas product. The resulting hydrogen-rich flow then ignited and stabilized the combustion flame apart from the burner rim. Ultimately, the enhanced mixing and removal of hot spots with a widened flame area acted as the main mechanisms of NOx reduction. Because this plasma burner acted as a low NOx burner and was able to reduce NOx by more than half compared to the commercial reference burner, this methodology offers important cost-effective possibilities for NOx reduction in industrial applications. PMID:24032692

  19. Franz Ulinski, an Almost Forgotten Early Pioneer of Rocketry

    Microsoft Academic Search

    B. P. Besser

    2002-01-01

    During the early period of rocket development several pioneers originating from the former Austro-Hungarian empire contributed their ideas to the new field of rocketry. The most well known - regarded as the \\

  20. You are invited... Annual Pioneers in Endocrinology Workshop

    E-print Network

    Hey, Jody

    cannot attend but enclosed is my donation ($_________) to support more educational programs like this one luncheon donation: ________ @ $10 = _________ ________ Student poster presenter ­ no charge ____ No, I ____________________________________ Email ________________________________________________ The 7th Annual Pioneers in Endocrinology Workshop

  1. A discontinuity of the background explains the Pioneer anomaly

    E-print Network

    Frederic Henry-Couannier

    2007-03-02

    The Pioneer anomaly is explained very simply if we assume that somewhere between us and the aircraft, the scale factor has undergone a discrete jump from an expansion a(t) regime to a contraction 1/a(t) regime

  2. Operational use of the Pioneer unmanned aerial vehicle (UAV) system

    NASA Astrophysics Data System (ADS)

    Reid, Steve

    1996-11-01

    The Pioneer UAV system has seen operational use in every U.S. contingency operation since the system's original fielding in 1986. Originally procured as a non-developmental item, the Pioneer was selected for purchase after a successful fly-off competition which was conducted in late 1985. The Pioneer system is a Department of Defense joint system, having been flown by the U.S. Navy, U.S. Marine Corps, and U.S. Army. The system received extensive acclaim for outstanding performance in Operational Desert Shield and Desert Storm. Pioneers are currently being flown by the U.S. Navy from LPD class naval vessels and the U.S. Marine Corps from land based operations. Both services are currently supporting the NATO Joint Task Force in Bosnia.

  3. 10. Historic American Buildings Survey Society of California Pioneers From ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Historic American Buildings Survey Society of California Pioneers From Vischer Drawing REAR VIEW OF MISSION About 1870 - Mission San Carlos Borromeo, Rio Road & Lausen Drive, Carmel-by-the-Sea, Monterey County, CA

  4. REAL TIME FLAME MONITORING OF GASIFIER BURNER AND INJECTORS

    SciTech Connect

    James Servaites; Serguei Zelepouga; David Rue

    2003-10-01

    This report is submitted to the United States Department of Energy in partial fulfillment of the contractual requirements for Phase I of the project titled, ''Real Time Flame Monitoring of Gasifier Burner and Injectors'', under co-operative agreement number DE-FS26-02NT41585. The project is composed of three one-year budget periods. The work in each year is divided into separate Tasks to facilitate project management, orderly completion of all project objectives, budget control, and critical path application of personnel and equipment. This Topical Report presents results of the Task 1 and 2 work. The 2 D optical sensor was developed to monitor selected UV and visible wavelengths to collect accurate flame characterization information regarding mixing, flame shape, and flame rich/lean characteristic. Flame richness, for example, was determined using OH and CH intensity peaks in the 300 to 500 nanometer range of the UV and visible spectrum. The laboratory burner was operated over a wide range of air to fuel ratio conditions from fuel rich to fuel lean. The sooty oxygen enriched air flames were established to test the sensor ability to characterize flame structures with substantial presence of hot solid particles emitting strong ''black body radiation''. The knowledge gained in these experiments will be very important when the sensor is used for gasifier flame analyses. It is expected that the sensor when installed on the Global Energy gasifier will be exposed to complex radiation patterns. The measured energy will be a combination of spectra emitted by the combusting gases, hot solid particulates, and hot walls of the gasifier chamber. The ability to separate flame emissions from the ''black body emissions'' will allow the sensor to accurately determine flame location relative to the gasifier walls and the injectors, as well as to analyze the flame's structure and condition. Ultimately, this information should enable the gasification processes to be monitored and controlled and as a result increase durability and efficiency of the gasifier. To accomplish goals set for Task 2 GTI will utilize the CANMET Coal Gasification Research facility. The Entrained Coal Gasifier Burner Test Stand has been designed and is currently under construction in the CANMET Energy Technology Center (CETC), the research and technology arm of Natural Resources Canada (NRCan). This Gasifier Burner Stand (GBS) is a scaled-down mock-up of a working gasifier combustion system that can provide the flexible platform needed in the second year of the project to test the flame sensor. The GBS will be capable of simulating combustion and gasification processes occurring in commercial gasifiers, such as Texaco, Shell, and Wabash River.

  5. Effects of venturi length on combustion characteristics on inshot burners

    SciTech Connect

    Rao, A.V.; Gollahalli, S.R. [Univ. of Oklahoma, Norman, OK (United States). School of Aerospace and Mechanical Engineering

    1996-12-31

    An experimental study of the changes caused in the flame structure and pollutant emission characteristics by the modifications of the primary-air venturi of an inshot burner used in residential natural gas furnaces is presented. The venturi modification examined in this study are the shape of the venturi inlet, and the venturi length. Modified venturi with curved inlets produce higher primary-air entrainment and slightly smaller (by 5 to 10%) emission indices of NOx and CO than the standard parallel side venturi. However, the changes in the venturi length for the modified geometry do not result in significant further changes.

  6. Development of mesoscale burner arrays for gas turbine reheat

    NASA Astrophysics Data System (ADS)

    Lee, Sunyoup

    Mesoscale burner arrays allow combustion to be conducted in a distributed fashion at a millimeter (meso) scale. At this scale, diffusive processes are fast, but not yet dominant, such that numerous advantages over conventional gas turbine combustion can be achieved without giving up the possibility to use fluid inertia to advantage. Since the scale of the reaction zone follows from the scale at which the reactants are mixed, very compact flames result. This compact, distributed form of combustion can provide the opportunity of inter-turbine reheat as well as the potential for lean premixed or highly vitiated combustion to suppress NOx emissions. As a proof-of-concept, a 4x4 array with burner elements on 5-mm centers was fabricated in silicon nitride via assembly mold SDM. Each burner element was designed in a single monolithic unit with its own combination of reactant inlets, fuel plenum and injection nozzles, and swirler to induce flame stabilization. Results using methane, including pressure drop, flame stability, temperature distribution in the burnt gas, and NO emissions are reported for both fully premixed (mixing prior to injection) and nonpremixed (mixing in the array) configurations. These results demonstrate the degree to which premixed performance can be achieved with this design and pointed to ways in which the array design could be improved over this first-generation unit. Given what was learned from the 4x4 array, a next-generation 6x6 array was developed. Major design changes include addition of a bluff-body stabilizer to each burner element to improve stability and use of a multilayer architecture to enhance the degree of reactant mixing. Tests using methane in both operating conditions were performed for two stabilization configurations---with and without the bluff bodies. The results for nonpremixed operation show that nearly complete air/fuel mixing was achieved using the 6x6 design, leading to NO emission levels obtainable under fully premixed conditions. However, the results also indicate that element-to-element fuel maldistribution of the array remains significant such that additional efforts to resolve manufacturing difficulties should be made in future applications. Elimination of maldistribution will reduce NO emissions even further as well as improve stability characteristics of the array.

  7. Observatory Publishes Memoir of Pioneer Radio Astronomer

    NASA Astrophysics Data System (ADS)

    2006-07-01

    One of the pioneers of radio astronomy tells her story of the formative years of that science in a memoir published by the National Radio Astronomy Observatory. Dr. Nan Dieter Conklin's book, Two Paths to Heaven's Gate, recounts her experiences making important scientific discoveries in an era when astronomy's "vision" was first extending beyond the light discernable to human eyes. Book Cover CREDIT: NRAO/AUI/NSF Conklin's story is remarkable not only because of her impressive scientific achievements, but also "because she was a woman who nevertheless pursued and succeeded in science -- the first U.S. woman whose Ph.D. thesis was based on her own radio astronomy research and the first U.S. woman to publish original radio astronomy research in a refereed journal -- and because she lived and worked with the degenerative disease multiple sclerosis," according to Claire Hooker of the University of Toronto. In the memoir, Conklin recounts her career and life from the awakening stirred by her first astronomy course at Goucher College in Baltimore, to junior research jobs in Washington, D.C., to graduate school at Harvard and ultimately to the faculty of the University of California at Berkeley. In addition to providing an insider's view of the process of scientific discovery, Conklin also gives the reader a fascinating look at a scientific community and social structure that, though only a half-century removed from the present, was vastly different from today's. Along the way, Conklin candidly reveals the person behind the science -- the person who dealt with the joys and tragedies of life while remaining dedicated to unlocking the secrets of the Universe. "Nan was and remains an inspiration to myself and hundreds of others in the field, both for her scientific acumen and for her ability to overcome extraordinary personal challenges," said Miller Goss of the National Radio Astronomy Observatory. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  8. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 true Are duct burners and waste heat recovery units covered by subpart YYYY...63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam...

  9. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2009-07-01 true Are duct burners and waste heat recovery units covered by subpart YYYY...63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam...

  10. Testing for the Pioneer anomaly on a Pluto exploration mission

    E-print Network

    Andreas Rathke

    2004-09-15

    The Doppler-tracking data of the Pioneer 10 and 11 spacecraft show an unmodelled constant acceleration in the direction of the inner Solar System. An overview of the phenomenon, commonly dubbed the Pioneer anomaly, is given and the possibility for an experimental test of the anomaly as a secondary goal of an upcoming space mission is discussed using a putative Pluto orbiter probe as a paradigm.

  11. Could the Pioneer anomaly have a gravitational origin?

    SciTech Connect

    Tangen, Kjell [DNV, 1322 Hoevik (Norway)

    2007-08-15

    If the Pioneer anomaly has a gravitational origin, it would, according to the equivalence principle, distort the motions of the planets in the Solar System. Since no anomalous motion of the planets has been detected, it is generally believed that the Pioneer anomaly can not originate from a gravitational source in the Solar System. However, this conclusion becomes less obvious when considering models that either imply modifications to gravity over long distances or gravitational sources localized to the outer Solar System, given the uncertainty in the orbital parameters of the outer planets. Following the general assumption that the Pioneer spacecraft move geodesically in a spherically symmetric space-time metric, we derive the metric disturbance that is needed in order to account for the Pioneer anomaly. We then analyze the residual effects on the astronomical observables of the three outer planets that would arise from this metric disturbance, given an arbitrary metric theory of gravity. Providing a method for comparing the computed residuals with actual residuals, our results imply that the presence of a perturbation to the gravitational field necessary to induce the Pioneer anomaly is in conflict with available data for the planets Uranus and Pluto, but not for Neptune. We therefore conclude that the motion of the Pioneer spacecraft must be nongeodesic. Since our results are model-independent within the class of metric theories of gravity, they can be applied to rule out any model of the Pioneer anomaly that implies that the Pioneer spacecraft move geodesically in a perturbed space-time metric, regardless of the origin of this metric disturbance.

  12. Analytical screening of low emissions, high performance duct burners for supersonic cruise aircraft engines

    NASA Technical Reports Server (NTRS)

    Lohmann, R. A.; Riecke, G. T.

    1977-01-01

    An analytical screening study was conducted to identify duct burner concepts capable of providing low emissions and high performance in advanced supersonic engines. Duct burner configurations ranging from current augmenter technology to advanced concepts such as premix-prevaporized burners were defined. Aerothermal and mechanical design studies provided the basis for screening these configurations using the criteria of emissions, performance, engine compatibility, cost, weight and relative risk. Technology levels derived from recently defined experimental low emissions main burners are required to achieve both low emissions and high performance goals. A configuration based on the Vorbix (Vortex burning and mixing) combustor concept was analytically determined to meet the performance goals and is consistent with the fan duct envelope of a variable cycle engine. The duct burner configuration has a moderate risk level compatible with the schedule of anticipated experimental programs.

  13. Development of the Radiation Stabilized Distributed Flux Burner - Phase III Final Report

    SciTech Connect

    J. D. Sullivan; A. Webb

    1999-12-01

    The development and demonstration of the Radiation Stabilized Burner (RSB) was completed as a project funded by the US Department of Energy Office of Industrial Technologies. The technical goals of the project were to demonstrate burner performance that would meet or exceed emissions targets of 9 ppm NOx, 50 ppm CO, and 9 ppm unburned hydrocarbons (UHC), with all values being corrected to 3 percent stack oxygen, and incorporate the burner design into a new industrial boiler configuration that would achieve ultra-low emissions while maintaining or improving thermal efficiency, operating costs, and maintenance costs relative to current generation 30 ppm low NOx burner installations. Both the ultra-low NOx RSB and the RSB boiler-burner package are now commercially available.

  14. Operational characteristics of a parallel jet MILD combustion burner system

    SciTech Connect

    Szegoe, G.G.; Dally, B.B.; Nathan, G.J. [School of Mechanical Engineering, The University of Adelaide, South Australia, 5005 (Australia)

    2009-02-15

    This study describes the performance and stability characteristics of a parallel jet MILD (Moderate or Intense Low-oxygen Dilution) combustion burner system in a laboratory-scale furnace, in which the reactants and exhaust ports are all mounted on the same wall. Thermal field measurements are presented for cases with and without combustion air preheat, in addition to global temperature and emission measurements for a range of equivalence ratio, heat extraction, air preheat and fuel dilution levels. The present furnace/burner configuration proved to operate without the need for external air preheating, and achieved a high degree of temperature uniformity. Based on an analysis of the temperature distribution and emissions, PSR model predictions, and equilibrium calculations, the CO formation was found to be related to the mixing patterns and furnace temperature rather than reaction quenching by the heat exchanger. The critical equivalence ratio, or excess air level, which maintains low CO emissions is reported for different heat exchanger positions, and an optimum operating condition is identified. Results of CO and NO{sub x} emissions, together with visual observations and a simplified two-dimensional analysis of the furnace aerodynamics, demonstrate that fuel jet momentum controls the stability of this multiple jet system. A stability diagram showing the threshold for stable operation is reported, which is not explained by previous stability criteria. (author)

  15. Fully Premixed Low Emission, High Pressure Multi-Fuel Burner

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet (Inventor)

    2012-01-01

    A low-emissions high-pressure multi-fuel burner includes a fuel inlet, for receiving a fuel, an oxidizer inlet, for receiving an oxidizer gas, an injector plate, having a plurality of nozzles that are aligned with premix face of the injector plate, the plurality of nozzles in communication with the fuel and oxidizer inlets and each nozzle providing flow for one of the fuel and the oxidizer gas and an impingement-cooled face, parallel to the premix face of the injector plate and forming a micro-premix chamber between the impingement-cooled face and the in injector face. The fuel and the oxidizer gas are mixed in the micro-premix chamber through impingement-enhanced mixing of flows of the fuel and the oxidizer gas. The burner can be used for low-emissions fuel-lean fully-premixed, or fuel-rich fully-premixed hydrogen-air combustion, or for combustion with other gases such as methane or other hydrocarbons, or even liquid fuels.

  16. Pioneer Venus orbiter search for Venusian lightning

    SciTech Connect

    Borucki, W.J.; Dyer, J.W.; Phillips, J.R. (NASA Ames Research Center, Moffett Field, CA (USA)); Pham, P. (SETI Inst., Mountain View, CA (USA))

    1991-07-01

    During the 1988 and 1990, the star sensor aboard the Pioneer Venus orbiter (PVO) was used to search for optical pulses from lightning on the nightside of Venus. Useful data were obtained for 53 orbits in 1988 and 55 orbits in 1990. During this period, approximately 83 s of search time plus 7749 s of control data were obtained. The results again find no optical evidence for lightning activity. With the region that was observed during 1988, the results imply that the upper bound to short-duration flashes is 4 {times} 10{sup {minus}7} flashes/km{sup 2}/s for flashes that are at least 50% as bright as typical terrestrial lightning. During 1990, when the 2-Hz filter was used, the results imply an upper bound of 1 {times} 10{sup {minus}7} flashes/km{sup 2}/s for long-duration flashes at least 1.6% as bright as typical terrestrial lightning flashes or 33% as bright as the pulses observed by the Venera 9. The upper bounds to the flash rates for the 1988 and 1990 searches are twice and one half the global terrestrial rate, respectively. These two searches covered the region from 60{degrees}N latitude to 30{degrees}S latitude, 250{degrees} to 350{degrees} longitude, and the region from 45{degrees}N latitude to 55{degrees}S latitude, 155{degrees} to 300{degrees} longitude. Both searches sampled much of the nightside region from the dawn terminator to within 4 hours of the dusk terminator. These searches covered a much larger latitude range than any previous search. The results show that the Beat and Phoebe Regio areas previously identified by Russell et al. (1988) as areas with high rates of lightning activity were not active during the two seasons of the observations. When the authors assume that their upper bounds to the nightside flash rate are representative of the entire planet, the results imply that the global flash rate and energy dissipation rate derived by Krasnopol'sky (1983) from his observation of a single storm are too high.

  17. The Pioneer Anomaly: Seeking an explanation in newly recovered data

    E-print Network

    Viktor T Toth; Slava G Turyshev

    2007-03-06

    The Pioneer 10 and 11 spacecraft yielded very accurate navigation that was limited only by a small, anomalous frequency drift of their carrier signals received by the NASA Deep Space Network (DSN). This discrepancy, evident in the data for both spacecraft, was interpreted as an approximately constant acceleration and has become known as the Pioneer anomaly. The origin of this anomaly is yet unknown. Recent efforts to explain the effect included a search for independent confirmation, analyses of conventional mechanisms, even ideas rooted in new physics, and proposals for a dedicated mission. We assert that before any discussion of new physics and (or) a dedicated mission can take place, one must analyze the entire set of radiometric Doppler data received from Pioneer 10 and 11. We report on our efforts to recover and utilize the complete set of radio Doppler and telemetry records of both spacecraft. The collection of radio Doppler data for both missions is now complete; we are ready to begin its evaluation. We also made progress utilizing the recently recovered Pioneer telemetry data. We present a strategy for studying the effect of on-board generated small forces with this telemetry data, in conjunction with the analysis of the entire set of the Pioneer Doppler data. We report on the preparations for the upcoming analysis of the newly recovered data with the ultimate goal of determining the origin of the Pioneer anomaly. Finally, we discuss implications of our on-going research of the Pioneer anomaly for other missions, most notably for New Horizons, NASA's recently launched mission to Pluto.

  18. Process and apparatus for igniting a burner in an inert atmosphere

    DOEpatents

    Coolidge, Dennis W. (Katy, TX); Rinker, Franklin G. (Perrysburg, OH)

    1994-01-01

    According to this invention there is provided a process and apparatus for the ignition of a pilot burner in an inert atmosphere without substantially contaminating the inert atmosphere. The process includes the steps of providing a controlled amount of combustion air for a predetermined interval of time to the combustor then substantially simultaneously providing a controlled mixture of fuel and air to the pilot burner and to a flame generator. The controlled mixture of fuel and air to the flame generator is then periodically energized to produce a secondary flame. With the secondary flame the controlled mixture of fuel and air to the pilot burner and the combustion air is ignited to produce a pilot burner flame. The pilot burner flame is then used to ignited a mixture of main fuel and combustion air to produce a main burner flame. The main burner flame then is used to ignite a mixture of process derived fuel and combustion air to produce products of combustion for use as an inert gas in a heat treatment process.

  19. Axogenesis in the antennal nervous system of the grasshopper Schistocerca gregaria revisited: the base pioneers.

    PubMed

    Ehrhardt, Erica; Liu, Yu; Boyan, George

    2015-01-01

    The antennal nervous system of the grasshopper Schistocerca gregaria comprises two parallel pathways projecting to the brain, each pioneered early in embryogenesis by a pair of sibling cells located at the antennal tip. En route, the growth cones of pioneers from one pathway have been shown to contact a guidepost-like cell called the base pioneer. Its role in axon guidance remains unclear as do the cellular guidance cues regulating axogenesis in the other pathway supposedly without a base pioneer. Further, while the tip pioneers are known to delaminate from the antennal epithelium into the lumen, the origin of this base pioneer is unknown. Here, we use immunolabeling and immunoblocking methods to clarify these issues. Co-labeling against the neuron-specific marker horseradish peroxidase and the pioneer-specific cell surface glycoprotein Lazarillo identifies not only the tip pioneers but also a base pioneer associated with each of the developing antennal pathways. Both base pioneers co-express the mesodermal label Mes3, consistent with a lumenal origin, whereas the tip pioneers proved Mes3-negative confirming their affiliation with the ectodermal epithelium. Lazarillo antigen expression in the antennal pioneers followed a different temporal dynamic: continuous in the tip pioneers, but in the base pioneers, only at the time their filopodia and those of the tip pioneers first recognize one another. Immunoblocking of Lazarillo expression in cultured embryos disrupts this recognition resulting in misguided axogenesis in both antennal pathways. PMID:25527188

  20. Combustion Stages of a Single Heavy Oil Droplet in Microgravity

    NASA Technical Reports Server (NTRS)

    Ikegami, M.; Xu, G.; Ikeda, K.; Honma, S.; Nagaishi, H.; Dietrich, D. L.; Struk, P. M.; Takeshita, Y.

    2001-01-01

    Heavy oil is a common fuel for industrial furnaces, boilers, marines and diesel engines. Previous studies showed that the combustion of heavy oil involves not only the complete burning of volatile matters but also the burn-out of coke residues. Detailed knowledge about heavy oil combustion therefore requires an understanding of the different burning stages of heavy oil droplets in the burner. This in turn, demands knowledge about the single droplet evaporation and combustion characteristics. This study measured the temperature and size histories of heavy oil (C glass) droplets burning in microgravity to elucidate the various stages that occur during combustion. The elimination of the gravity-induced gas convection in microgravity allows the droplet combustion to be studied in greater detail. Noting that the compositions of heavy oil are various, we also tested the fuel blends of a diesel light oil (LO) and a heavy oil residue (HOR).

  1. Simulation Modeling of an Enhanced Low-Emission Swirl-Cascade Burner

    SciTech Connect

    Ala Qubbaj

    2004-09-01

    ''Cascade-burners'' is a passive technique to control the stoichiometry of the flame through changing the flow dynamics and rates of mixing in the combustion zone with a set of venturis surrounding the flame. Cascade-burners have shown advantages over other techniques; its reliability, flexibility, safety, and cost makes it more attractive and desirable. On the other hand, the application of ''Swirl-burners'' has shown superiority in producing a stable flame under a variety of operating conditions and fuel types. The basic idea is to impart swirl to the air or fuel stream, or both. This not only helps to stabilize the flame but also enhances mixing in the combustion zone. As a result, nonpremixed (diffusion) swirl burners have been increasingly used in industrial combustion systems such as gas turbines, boilers, and furnaces, due to their advantages of safety and stability. Despite the advantages of cascade and swirl burners, both are passive control techniques, which resulted in a moderate pollutant emissions reduction compared to SCR, SNCR and FGR (active) methods. The present investigation will study the prospects of combining both techniques in what to be named as ''an enhanced swirl-cascade burner''. Natural gas jet diffusion flames in baseline, cascade, swirl, and swirl-cascade burners were numerically modeled using CFDRC package. The thermal, composition, and flow (velocity) fields were simulated. The numerical results showed that swirl and cascade burners have a more efficient fuel/air mixing, a shorter flame, and a lower NOx emission levels, compared to the baseline case. The results also revealed that the optimal configurations of the cascaded and swirling flames have not produced an improved performance when combined together in a ''swirl-cascade burner''. The non-linearity and complexity of the system accounts for such a result, and therefore, all possible combinations, i.e. swirl numbers (SN) versus venturi diameter ratios (D/d), need to be considered.

  2. Pioneer Anomaly: What Can We Learn from LISA?

    NASA Astrophysics Data System (ADS)

    Defrère, Denis; Rathke, Andreas

    The Doppler tracking data from two deep-space spacecraft, Pioneer 10 and 11, show an anomalous blueshift, which has been dubbed the “Pioneer anomaly”. The effect is most commonly interpreted as a real deceleration of the spacecraft - an interpretation that faces serious challenges from planetary ephemerides. The Pioneer anomaly could as well indicate an unknown effect on the radio signal itself. Several authors have made suggestions how such a blueshift could be related to cosmology. We consider this interpretation of the Pioneer anomaly and study the impact of an anomalous blueshift on the Laser Interferometer Space Antenna (LISA), a planned joint ESA-NASA mission aiming at the detection of gravitational waves. The relative frequency shift (proportional to the light travel time) for the LISA arm length is estimated to 10-16, which is much bigger than the expected amplitude of gravitational waves. The anomalous blueshift enters the LISA signal in two ways, as a small term folded with the gravitational-wave signal, and as larger term at low frequencies. A detailed analysis shows that both contributions remain undetectable and do not impair the gravitational-wave detection. This suggests that the Pioneer anomaly will have to be tested in the outer solar system regardless if the effect is caused by an anomalous blueshift or by a real force.

  3. Intraguild predation in pioneer predator communities of alpine glacier forelands

    PubMed Central

    Raso, Lorna; Sint, Daniela; Mayer, Rebecca; Plangg, Simon; Recheis, Thomas; Brunner, Silvia; Kaufmann, Rüdiger; Traugott, Michael

    2014-01-01

    Pioneer communities establishing themselves in the barren terrain in front of glacier forelands consist principally of predator species such as carabid beetles and lycosid spiders. The fact that so many different predators can co-inhabit an area with no apparent primary production was initially explained by allochthonous material deposited in these forelands. However, whether these populations can be sustained on allochthonous material alone is questionable and recent studies point towards this assumption to be flawed. Intraguild predation (IGP) might play an important role in these pioneer predator assemblages, especially in the very early successional stages where other prey is scarce. Here, we investigated IGP between the main predator species and their consumption of Collembola, an important autochthonous alternative prey, within a glacier foreland in the Ötztal (Austrian Alps). Multiplex PCR and stable isotope analysis were used to characterize the trophic niches in an early and late pioneer stage over 2 years. Results showed that intraguild prey was consumed by all invertebrate predators, particularly the larger carabid species. Contrary to our initial hypothesis, the DNA detection frequency of IGP prey was not significantly higher in early than in late pioneer stage, which was corroborated by the stable isotope analysis. Collembola were the most frequently detected prey in all of the predators, and the overall prey DNA detection patterns were consistent between years. Our findings show that IGP appears as a constant in these pioneer predator communities and that it remains unaffected by successional changes. PMID:24383765

  4. Scientific results from the Pioneer Saturn encounter - Summary

    NASA Astrophysics Data System (ADS)

    Opp, A. G.

    1980-01-01

    The scientific results of the Pioneer Saturn encounter with Saturn are summarized. The Pioneer mission was designed to image the planet, its satellites and rings, and measure its particulate environment and the magnetic field and photon and charged particle radiation by means of 11 operational scientific instruments and its 2.293-GHz telemetry carrier signal. Principle results of the mission include the discovery of an additional ring and a previously unidentified satellite, the further characterization of the physical properties of Saturn and its magnetic field, and the description of the planetary magnetosphere. The successful completion of the mission demonstrated the ability of spacecraft such as Voyager 1 and 2 to survive the particle environments of Saturn's rings and trapped radiation environments, and Pioneer Saturn is expected to continue transmitting information on the interplanetary medium and the solar wind interaction with the interstellar medium until the mid-1980's.

  5. High-Pressure Gaseous Burner (HPGB) Facility Became Operational

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    2003-01-01

    A gas-fueled high-pressure combustion facility with optical access, developed over the last 3 years, is now collecting research data in a production mode. The High-Pressure Gaseous Burner (HPGB) rig at the NASA Glenn Research Center can operate at sustained pressures up to 60 atm with a variety of gaseous fuels and liquid jet fuel. The facility is unique because it is the only continuous-flow, hydrogen-capable 60-atm rig in the world with optical access. It will provide researchers with new insights into flame conditions that simulate the environment inside the ultra-high-pressure-ratio combustion chambers of tomorrow s advanced aircraft engines. The facility provides optical access to the flame zone through four fused-silica optical windows, enabling the calibration of nonintrusive optical diagnostics to measure chemical species and temperature. The data from the HPGB rig enable the validation of numerical codes that simulate gas turbine combustors.

  6. Fire Suppression in Low Gravity Using a Cup Burner

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Linteris, Gregory T.; Katta, Viswanath R.

    2004-01-01

    Longer duration missions to the moon, to Mars, and on the International Space Station increase the likelihood of accidental fires. The goal of the present investigation is to: (1) understand the physical and chemical processes of fire suppression in various gravity and O2 levels simulating spacecraft, Mars, and moon missions; (2) provide rigorous testing of numerical models, which include detailed combustion-suppression chemistry and radiation sub-models; and (3) provide basic research results useful for advances in space fire safety technology, including new fire-extinguishing agents and approaches.The structure and extinguishment of enclosed, laminar, methane-air co-flow diffusion flames formed on a cup burner have been studied experimentally and numerically using various fire-extinguishing agents (CO2, N2, He, Ar, CF3H, and Fe(CO)5). The experiments involve both 1g laboratory testing and low-g testing (in drop towers and the KC-135 aircraft). The computation uses a direct numerical simulation with detailed chemistry and radiative heat-loss models. An agent was introduced into a low-speed coflowing oxidizing stream until extinguishment occurred under a fixed minimal fuel velocity, and thus, the extinguishing agent concentrations were determined. The extinguishment of cup-burner flames, which resemble real fires, occurred via a blowoff process (in which the flame base drifted downstream) rather than the global extinction phenomenon typical of counterflow diffusion flames. The computation revealed that the peak reactivity spot (the reaction kernel) formed in the flame base was responsible for attachment and blowoff of the trailing diffusion flame. Furthermore, the buoyancy-induced flame flickering in 1g and thermal and transport properties of the agents affected the flame extinguishment limits.

  7. The Pioneer Anomaly in the Light of New Data

    E-print Network

    Slava G. Turyshev; Viktor T. Toth

    2009-06-02

    The radio-metric tracking data received from the Pioneer 10 and 11 spacecraft from the distances between 20-70 astronomical units from the Sun has consistently indicated the presence of a small, anomalous, blue-shifted Doppler frequency drift that limited the accuracy of the orbit reconstruction for these vehicles. This drift was interpreted as a sunward acceleration of a_P = (8.74+/-1.33)x10^{-10} m/s^2 for each particular spacecraft. This signal has become known as the Pioneer anomaly; the nature of this anomaly is still being investigated. Recently new Pioneer 10 and 11 radio-metric Doppler and flight telemetry data became available. The newly available Doppler data set is much larger when compared to the data used in previous investigations and is the primary source for new investigation of the anomaly. In addition, the flight telemetry files, original project documentation, and newly developed software tools are now used to reconstruct the engineering history of spacecraft. With the help of this information, a thermal model of the Pioneers was developed to study possible contribution of thermal recoil force acting on the spacecraft. The goal of the ongoing efforts is to evaluate the effect of on-board systems on the spacecrafts' trajectories and possibly identify the nature of this anomaly. Techniques developed for the investigation of the Pioneer anomaly are applicable to the New Horizons mission. Analysis shows that anisotropic thermal radiation from on-board sources will accelerate this spacecraft by ~41 x 10^{-10} m/s^2. We discuss the lessons learned from the study of the Pioneer anomaly for the New Horizons spacecraft.

  8. Five Pioneers with Scale Models of Their Missiles

    NASA Technical Reports Server (NTRS)

    1950-01-01

    Five pioneers pose with scale models of their missiles they created in the 1950s. From left to right: Dr. Ernst Stuhlinger, a member of the original German rocket team who directed the Research Projects Office, Army Ballistic Missile Agency (ABMA); Major General Holger Toftoy, who consolidated U.S. missile and rocketry development; Professor Herman Oberth, a rocket pioneer and Dr. von Braun's mentor; Dr. Wernher von Braun, Director, Development Operation Division, ABMA; and Dr. Robert Lusser, who served as assistant director for Reliability Engineering for ABMA. This photographis was taken February 1, 1956 by Hank Walker and appeared in February 27, 1956 issue of Life magazine.

  9. VISTA: Pioneering New Survey Telescope Starts Work

    NASA Astrophysics Data System (ADS)

    2009-12-01

    A new telescope - VISTA (the Visible and Infrared Survey Telescope for Astronomy) - has just started work at ESO's Paranal Observatory and has made its first release of pictures. VISTA is a survey telescope working at infrared wavelengths and is the world's largest telescope dedicated to mapping the sky. Its large mirror, wide field of view and very sensitive detectors will reveal a completely new view of the southern sky. Spectacular new images of the Flame Nebula, the centre of our Milky Way galaxy and the Fornax Galaxy Cluster show that it is working extremely well. VISTA is the latest telescope to be added to ESO's Paranal Observatory in the Atacama Desert of northern Chile. It is housed on the peak adjacent to the one hosting the ESO Very Large Telescope (VLT) and shares the same exceptional observing conditions. VISTA's main mirror is 4.1 metres across and is the most highly curved mirror of this size and quality ever made - its deviations from a perfect surface are less than a few thousandths of the thickness of a human hair - and its construction and polishing presented formidable challenges. VISTA was conceived and developed by a consortium of 18 universities in the United Kingdom [1] led by Queen Mary, University of London and became an in-kind contribution to ESO as part of the UK's accession agreement. The telescope design and construction were project-managed by the Science and Technology Facilities Council's UK Astronomy Technology Centre (STFC, UK ATC). Provisional acceptance of VISTA was formally granted by ESO at a ceremony at ESO's Headquarters in Garching, Germany, attended by representatives of Queen Mary, University of London and STFC, on 10 December 2009 and the telescope will now be operated by ESO. "VISTA is a unique addition to ESO's observatory on Cerro Paranal. It will play a pioneering role in surveying the southern sky at infrared wavelengths and will find many interesting targets for further study by the Very Large Telescope, ALMA and the future European Extremely Large Telescope," says Tim de Zeeuw, the ESO Director General. At the heart of VISTA is a 3-tonne camera containing 16 special detectors sensitive to infrared light, with a combined total of 67 million pixels. Observing at wavelengths longer than those visible with the human eye allows VISTA to study objects that are otherwise impossible to see in visible light because they are either too cool, obscured by dust clouds or because they are so far away that their light has been stretched beyond the visible range by the expansion of the Universe. To avoid swamping the faint infrared radiation coming from space, the camera has to be cooled to -200 degrees Celsius and is sealed with the largest infrared-transparent window ever made. The VISTA camera was designed and built by a consortium including the Rutherford Appleton Laboratory, the UK ATC and the University of Durham in the United Kingdom. Because VISTA is a large telescope that also has a large field of view it can both detect faint sources and also cover wide areas of sky quickly. Each VISTA image captures a section of sky covering about ten times the area of the full Moon and it will be able to detect and catalogue objects over the whole southern sky with a sensitivity that is forty times greater than that achieved with earlier infrared sky surveys such as the highly successful Two Micron All-Sky Survey. This jump in observational power - comparable to the step in sensitivity from the unaided eye to Galileo's first telescope - will reveal vast numbers of new objects and allow the creation of far more complete inventories of rare and exotic objects in the southern sky. "We're delighted to have been able to provide the astronomical community with the VISTA telescope. The exceptional quality of the scientific data is a tribute to all the scientists and engineers who were involved in this exciting and challenging project," adds Ian Robson, Head of the UK ATC. The first released image shows the Flame Nebula (NGC 2024), a spectacular star-forming cloud of gas and du

  10. THE SITE DEMONSTRATION OF THE AMERICAN COMBUSTION PYRETRON OXYGEN-ENHANCED BURNER

    EPA Science Inventory

    A demonstration of the American Combustion PyretronTM oxygen-enhanced burner ws conducted under the Superfund Innovative Technology Evaluation (SITE) program. The Demonstration was conducted at the U.S. EPA's Combustion Research Facility (CRF) in Jefferson, Arkansas....

  11. The influence of combustion liner holes on noise production by ducted burners

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Jones, J. D.

    1984-01-01

    The thermoacoustic energy conversion process in a turbulent flame is not yet sufficiently well understood to allow accurate prediction of the sound pressure field of even the simplest of laboratory burners. The present contribution is intended to be a step toward fuller understanding of this process. In particular, the possibility is explored that the source structure, in the form of the thermoacoustic efficiency spectrum, might be influenced by the acoustic response of the burner itself. Experimental results are presented which seem to establish that, at least for the gas-fueled laboratory burner studied, source activity is not affected by the addition of downstream combustion liner holes which otherwise alter the acoustic response of the burner.

  12. Measurement and analysis of heating of paper with gas-fired infrared burner 

    E-print Network

    Husain, Abdullah Nadir

    2000-01-01

    is mainly in the medium wavelength range (1. 6 to 10 tim) of the spectrum. Radiant surface burners are emerging as very desirable combustion systems owing to their energy efficiency and low pollution production levels (Kulkarni, 1996). The key...

  13. Experiments on stability of Bunsen-burner flames for turbulent flow

    NASA Technical Reports Server (NTRS)

    Bollinger, Lowell M; Williams, David T

    1947-01-01

    The results of a study of the stability of propane-air flames on Bunsen-burner tubes are presented. Fuel-air ratio, tube diameter, and Reynolds number were the primary variables. Regions of stability are outlined in plots of fuel-air ratio as a function of Reynolds number for flames seated on the burner lip and for flames suspended well above the burner. For fully developed flow, turbulent as well as laminar, the velocity gradient at the burner wall is a satisfactory variable for correlating the fuel-air ratio required for blow-off of seated flames for fuel-air ratios of less than 15 percent. For turbulent flames, wall velocity serves as a correlating variable in the same fuel-air ratio range.

  14. SITE PROGRAM EVALUATION OF THE SONOTECH PULSE COMBUSTION BURNER TECHNOLOGY - TECHNICAL RESULTS

    EPA Science Inventory

    A series of demonstration tests was performed at the Environmental Protection Agency's (EPA's) Incineration Research Facility (IRF) under the Superfund Innovative Technology Evaluation (SITE) program. These tests, twelve in all, evaluated a pulse combustion burner technology dev...

  15. Full scale demonstration of low-NO{sub x} cell burner retrofit. Public design report

    SciTech Connect

    Not Available

    1991-08-09

    The overall objective of the Full-Scale Demonstration of Low-NO{sub x} Cell Burner Retrofit project is to demonstrate the cost-effective reduction of NO{sub x} generated by a large based-loaded (70% capacity factor or greater), coal-fired utility boiler. Specific objectives include: (1) At least 50% NO{sub x} reduction over standard two-nozzle cell burners, without degradation of boiler performance or life; (2) Acquire and evaluate emission and boiler performance data before and after the retrofit to determine NO{sub x} reduction and impact on overall boiler performance; (3) Demonstrate that the retrofit of Low-NO{sub x} Cell Burners in boilers currently equipped with cell burners, is a cost-effective alternative to any other emerging, or commercially-available, NO{sub x} control technology.

  16. Full scale demonstration of low-NO sub x cell burner retrofit

    SciTech Connect

    Not Available

    1991-08-09

    The overall objective of the Full-Scale Demonstration of Low-NO{sub x} Cell Burner Retrofit project is to demonstrate the cost-effective reduction of NO{sub x} generated by a large based-loaded (70% capacity factor or greater), coal-fired utility boiler. Specific objectives include: (1) At least 50% NO{sub x} reduction over standard two-nozzle cell burners, without degradation of boiler performance or life; (2) Acquire and evaluate emission and boiler performance data before and after the retrofit to determine NO{sub x} reduction and impact on overall boiler performance; (3) Demonstrate that the retrofit of Low-NO{sub x} Cell Burners in boilers currently equipped with cell burners, is a cost-effective alternative to any other emerging, or commercially-available, NO{sub x} control technology.

  17. Variable firing rate power burner for high efficiency gas furnaces. Final report

    SciTech Connect

    Fuller, H.H.; Demler, R.L.; Poulin, E.

    1980-02-01

    One method for increasing the efficiency of residential furnaces and boilers is to retrofit a burner capable of firing rate (FR) modulation. While maximum FR is still attainable, the average FR is significantly lower, resulting in more effective heat exchanger performance. Equally important is the capability for continuous firing at a very low rate (simmering) which eliminates off-cycle loss, a heavy contributor to inefficiency. Additional performance can be gained by reducing the excess air required by a burner. Based on its previous experience, Foster-Miller Associates, Inc. has designed and tested a low excess air (about 15%) variable firing rate (VFR) burner. The theory of operation and the construction of the test burner are described. Test results are given along with a conclusion/recommendation. A Phase II plan is outlined which suggests methods and steps for fabrication and field testing of a number of prototype units.

  18. ANALYSIS OF UTILITY CONTROL STRATEGIES USING THE LIMB (LIMESTONE INJECTION MULTISTAGE BURNER) TECHNOLOGY

    EPA Science Inventory

    The report gives results of an evaluation of the impact of proposed acid rain legislation on the potential application of limestone injection multistage burner (LIMB) technology incorporating recent research and development findings. Several regulatory strategies and emission red...

  19. Lessons Learned from the Pioneers 10/11 for a Mission to Test the Pioneer Anomaly

    E-print Network

    Slava G. Turyshev; Michael Martin Nieto; John D. Anderson

    2004-09-30

    Analysis of the radio-metric tracking data from the Pioneer 10/11 spacecraft at distances between 20--70 astronomical units (AU) from the Sun has consistently indicated the presence of an anomalous, small, constant Doppler frequency drift. The drift is a blue-shift, uniformly changing with rate a_t = (2.92 +/- 0.44) x 10^(-18) s/s^2. It can also be interpreted as a constant acceleration of a_P = (8.74 +/- 1.33) x 10^(-8) cm/s^2 directed towards the Sun. Although it is suspected that there is a systematic origin to the effect, none has been found. As a result, the nature of this anomaly has become of growing interest. Here we discuss the details of our recent investigation focusing on the effects both external to and internal to the spacecraft, as well as those due to modeling and computational techniques. We review some of the mechanisms proposed to explain the anomaly and show their inability to account for the observed behavior of the anomaly. We also present lessons learned from this investigation for a potential deep-space experiment that will reveal the origin of the discovered anomaly and also will characterize its properties with an accuracy of at least two orders of magnitude below the anomaly's size. A number of critical requirements and design considerations for such a mission are outlined and addressed.

  20. The pioneer 10 and 11 lessons for a mission to test the pioneer anomaly.

    SciTech Connect

    Turyshev, S. G. (Slava G.); Nieto, Michael Martin; Anderson, J. D. (John D.)

    2004-01-01

    Analysis of the radio-metric tracking data from the Pioneer 10/11 spacecraft at distances between 20-70 astronomical units (AU) from the Sun has consistently indicated the presence of an anomalous, small, constant Doppler frequency drift. The drift is a blue-shift, uniformly changing with rate a{sub t} = (2.92 {+-} 0.44) x 10{sup -18} s/s{sup 2}. It can also be interpreted as a constant acceleration of a{sub P} = (8.74 {+-} 1.33) x 10{sup -8} cm/s{sup 2} directed towards the Sun. Although it is suspected that there is a systematic origin to the effect, none has been found. As a result, the nature of this anomaly has become of growing interest. Here we discuss the details of this investigation focusing on the effects both external to and internal to the spacecraft, as well as those due to modeling and computational techniques. We review some of the mechanisms proposed to explain the anomaly and show their inability to account for the observed behavior of the anomaly. We also present lessons learned from this investigation for a potential deep-space experiment that will reveal the origin of the discovered anomaly and also will characterize its properties with an accuracy of at least two orders of magnitude below the anomaly's size. A number of critical requirements and design considerations for such a mission are outlined and addressed.

  1. Scaling and development of low-swirl burners for low-emission furnaces and boilers

    Microsoft Academic Search

    R. K. Cheng; D. T. Yegian; M. M. Miyasato; G. S. Samuelsen; C. E. Benson; R. Pellizzari; P. Loftus

    2000-01-01

    A low-swirl burner (LSB) developed for laboratory research has been scaled to the thermal input levels of a small industrial burner. The purpose was to demonstrate its viability for commercial and industrial furnaces and boilers. The original 5.28 cm i.d. LSB using an air-jet swirler was scaled to 10.26 cm i.d. and investigated up to a firing rate of Q

  2. Experimental study of combustion of hydrogen–syngas\\/methane fuel mixtures in a porous burner

    Microsoft Academic Search

    S. K. Alavandi; A. K. Agrawal

    2008-01-01

    Lean premixed combustion of hydrogen–syngas\\/methane fuel mixtures was investigated experimentally to demonstrate fuel flexibility of a two-section porous burner. The un-insulated burner was operated at atmospheric pressure. Combustion was stabilized at the interface of silicon-carbide coated carbon foam of 26 pores per centimeter (ppcm) and 4ppcm. Methane (CH4) content in the fuel was decreased from 100% to 0% (by volume),

  3. Low No sub x /SO sub x burner retrofit for utility cyclone boilers

    SciTech Connect

    Moore, K.; Martin, L.; Smith, J.

    1991-05-01

    The Low NO{sub x}/SO{sub x} (LNS) Burner Retrofit for Utility Cyclone Boilers program consists of the retrofit and subsequent demonstration of the technology at Southern Illinois Power Cooperative's (SIPC's) 33-MW unit 1 cyclone boiler located near Marion, Illinois. The LNS Burner employs a simple innovative combustion process burning high-sulfur Illinois coal to provide substantial SO{sub 2} and NO{sub x} control within the burner. A complete series of boiler performance and characterization tests, called the baseline tests, was conducted in October 1990 on unit 1 of SIPC's Marion Station. The primary objective of the baseline test was to collect data from the existing plant that could provide a comparison of performance after the LNS Burner retrofit. These data could confirm the LNS Burner's SO{sub x} and NO{sub x} emissions control and any effect on boiler operation. Further, these tests would provide to the project experience with the operating characteristics of the host unit as well as engineering design information to minimize technical uncertainties in the application of the LNS Burner technology.

  4. Low NOx Burner Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler

    SciTech Connect

    Andrew Seltzer

    2005-05-01

    The objective of the low NOx burner design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the burner design to ensure stable ignition, to provide safe operation, and to minimize pollutant formation. The burners were designed and analyzed using the Fluent computer program. Four burner designs were developed: (1) with no over-fire gas (OFG) and 65% flue gas recycle, (2) with 20% OFG and 65% flue gas recycle, (3) with no OFG and 56% flue gas recycle and (4) with 20% OFG and 56% flue gas recycle. A 3-D Fluent simulation was made of a single wall-fired burner and horizontal portion of the furnace from the wall to the center. Without primary gas swirl, coal burnout was relatively small, due to the low oxygen content of the primary gas stream. Consequently, the burners were modified to include primary gas swirl to bring the coal particles in contact with the secondary gas. An optimal primary gas swirl was chosen to achieve sufficient burnout.

  5. Burner Rig with an Unattached Duct for Evaluating the Erosion Resistance of Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Kuczmarski, Maria A.; Zhu, Dongming

    2011-01-01

    Extensive computational fluid dynamics (CFD) modeling backed by experimental observation has demonstrated the feasibility of using an unattached duct to increase the velocity and spatial spread of erodent particles exiting from a burner rig. It was shown that gas velocity and temperature are mostly retained if the inner diameter of the unattached duct equaled the exit diameter of the burner rig nozzle. For particles having a mean diameter of 550 millimeters, the modeled velocity attained at a distance 2.0 in. (50.8 millimeters) beyond the exit of a 12 in. (305 millimeters) long duct was approximately twice as large as the velocity the same distance from the nozzle when the duct was not present. For finer particles, the relative enhancement was somewhat less approximately 1.5 times greater. CFD modeling was also used to guide the construction of a device for slowing down the velocity of the particles being injected into the burner rig. This device used a simple 45 degree fitting to slow the particle velocity in the feed line from 20 meters per second, which is in the range needed to convey the particles, to about 3 meters per second just as they are injected into the burner. This lower injection velocity would lessen the severity of the collision of large particles with the wall of the burner liner opposite the injection port, thereby reducing potential damage to the burner liner by high-velocity particles.

  6. Neutron interferometry: The pioneering contributions of Samuel A. Werner

    Microsoft Academic Search

    A. G. Klein

    2006-01-01

    In 1975, Sam Werner, while on the staff of the Scientific Laboratory of the Ford Motor Company, and his collaborators from Purdue University, Roberto Colella and Albert Overhauser, carried out one of the pioneering experiments in neutron interferometry at the 2MW University of Michigan research reactor. It was the famous COW Experiment [Colella et al., Phys. Rev. Lett. 34 (1975)

  7. Neutron interferometry: The pioneering contributions of Samuel A. Werner

    Microsoft Academic Search

    A. G. Klein

    2006-01-01

    In 1975, Sam Werner, while on the staff of the Scientific Laboratory of the Ford Motor Company, and his collaborators from Purdue University, Roberto Colella and Albert Overhauser, carried out one of the pioneering experiments in neutron interferometry at the 2 MW University of Michigan research reactor. It was the famous COW Experiment [Colella et al., Phys. Rev. Lett. 34

  8. Pioneers of Influence Propagation in Social Networks Kumar Gaurav

    E-print Network

    Paris-Sud XI, Université de

    Pioneers of Influence Propagation in Social Networks Kumar Gaurav UPMC/Inria/ENS 23 avenue d.Keeler@inria.fr ABSTRACT With the growing importance of corporate viral marketing campaigns on online social networks, the interest in studies of influence propagation through networks is higher than ever. In a viral marketing

  9. Vladimir P. Demikhov, a pioneer of organ transplantation.

    PubMed

    Langer, R M

    2011-05-01

    Vladimir P. Demikhov was born in a Russian peasant family in 1916. As a biology student at The Moscow University in 1937, he constructed a metal artificial heart and maintained the circulation of a dog for 5.5 hours. From 1946, after his military service, he worked in the Surgical Institute of The Moscow Academy of Sciences performing heterotopic heart transplantations in dogs. In 1947, he performed the first orthotopic lung transplant. Later he performed complex cardiothoracic transplantations as well as renal and hepatic transplantations. He restarted his investigations with the artificial heart and performed coronary bypass operations in dogs. In 1954 he performed a head transplantation, for which he gained worldwide infamy. Stalinist propaganda advertised this fact as the superiority of Soviet science. In fact, it was the upper body of a smaller dog to the neck of a bigger one. The two heads could eat and drink separately. But he could not overcome the problems of rejection, so the longest survival was 1 month among 20 such operations. His influence on the pioneers of transplantation is unquestionable. He was an innovative creative man, and many pioneers of transplantation highly appreciated his work. Demikhov contributed to clinical heart and lung transplantation by demonstrating the possibility of their experimental realization; furthermore, he motivated the pioneers of coronary bypass operations with his work. He died in 1998, but before that was honored with a high state award and the "Pioneer Award" of the International Society for Heart and Lung Transplantation. PMID:21620094

  10. Reinterpreting the Pioneer anomaly and its annual residual

    Microsoft Academic Search

    In addition to its long-term constancy, the Pioneer (spacecraft) anomaly appears to only exist for bodies whose mass is less than that of: planets, moons, comets, and heavy asteroids of known mass. Assuming the observational evidence is reliable and not the result of an unknown systematic effect, a violation of the Weak Principle of Equivalence is implied. This constraint is

  11. Reinterpreting the Pioneer anomaly and its annual residual

    Microsoft Academic Search

    Paul G. ten Boom

    2005-01-01

    In addition to its long-term constancy, the Pioneer (spacecraft) anomaly appears to only exist for bodies whose mass is less than that of: planets, moons, comets, and heavy asteroids of known mass. Assuming the observational evidence is reliable, and not the result of an unknown systematic effect, a violation of the Weak Principle of Equivalence is implied. To propose an

  12. "Mid-Week Pictorial": Pioneer American Photojournalism Magazine.

    ERIC Educational Resources Information Center

    Kenney, Keith

    In 1914 (22 years before the inception of "Life" magazine), the "New York Times" began publishing "Mid-Week Pictorial" to absorb a flood of war pictures pouring in from Europe. Several sociological and technological forces shaped "Mid-Week Pictorial" as a pioneer of American photojournalism magazines, including the development of the halftone…

  13. Reconstruction of the Oligocene vegetation at Pioneer, northeast Tasmania

    Microsoft Academic Search

    Robert S. Hill; Michael K. Macphail

    1983-01-01

    The Oligocene vegetation at Pioneer was closed temperate rainforest dominated by Nothofagus johnstonii Hill, which probably produced N. menziesii-type pollen. However, other angiosperms (Quintinia, Cupaniae, Ilex, Cunoniaceae, Myrtaceae, Proteaceae and Winteraceae) were also present, as well as several conifers (Athrotaxis, Phyllocladus, Podocarpus, Dacrydium, Dacrycarpus and Araucariaceae). This rainforest was floristically more complex that the modern Tasmanian Nothofagus cunninghamii rainforests but

  14. Pioneers in Public Library Service to Young Adults.

    ERIC Educational Resources Information Center

    Atkinson, Joan

    1986-01-01

    Presents biographies of four leaders in public library service to young adults: Mabel Williams, Margaret Scoggin, Jean Roos, and Margaret Edwards. They are described as pioneers who worked to obtain recognition for and establish young adult work and who can serve as inspirations for librarians today. (EM)

  15. The Pioneer Days of Scientific Computing in Switzerland

    E-print Network

    Gutknecht, Martin H.

    The Pioneer Days of Scientific Computing in Switzerland Martin H. Gutknecht Eidgenbssische Technische Hochschule CH-8092 Ziirich Abstract. Scientific computing was established in Switzerland by E science and scientific computing in Switzerland one is soon thinking of January 1948 when the Institute

  16. Oneida Cockrell: Pioneer in the Field of Early Childhood Education

    ERIC Educational Resources Information Center

    Simpson, Jean

    2012-01-01

    In this article the author profiles Oneida Cockrell, a pioneer in the field of early childhood education. She was the founder and director of the Garden Apartments Nursery School and Kindergarten, located in the prestigious Michigan Boulevard Garden Apartments building (commonly known as the Rosenwald Apartments) in Chicago's West Hyde Park…

  17. 1. Historic American Buildings Survey From Society of California Pioneers ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey From Society of California Pioneers Original: About 1790 Re- photo: January 1940 (From old drawing by Sukes, showing first church at left, second church being built near center - about 1790) - Mission San Carlos Borromeo, Rio Road & Lausen Drive, Carmel-by-the-Sea, Monterey County, CA

  18. COMPARISON OF EMISSIONS AND ORGANIC FINGERPRINTS FROM COMBUSTION OF OIL AND WOOD

    EPA Science Inventory

    The paper presents data from an Integrated Air Cancer Project (IACP) pilot study on the total carbon, organics, and particulate emissions from oil furnaces with both gun-type and retention head burners. hese data are compared to results of a similar IACP study on woodstoves condu...

  19. Performance control strategies for oil-fired domestic heating systems: Fiscal year 1987

    Microsoft Academic Search

    Butcher

    1987-01-01

    The efficiency of oil-fired domestic heating systems in homes is lower than can be achieved with the same equipment under ideal conditions. Two factors are responsible. First, when burners are serviced excess air is set high to avoid possible future soot problems. The second factor is fouling of heat exchanger surfaces over time. The goal of the work described in

  20. ANALYSIS OF EMISSIONS FROM RESIDENTIAL OIL FURNACES AND COMPARISON WITH WOODSTOVE EMISSIONS

    EPA Science Inventory

    The paper gives results of a series of emission tests on a residential oil furnace to determine emissions from two types of burners. A number of analyses were performed on the emissions, including total mass, filterable particulate, total extractable organics, and mutagenicity. r...

  1. COMBUSTION MODIFICATION EFFECTS ON NOX EMISSIONS FROM GAS-, OIL-, AND COAL-FIRED UTILITY BOILERS

    EPA Science Inventory

    The report represents the conclusion of 4 years of analysis of large quantities of emissions, operating conditions, and boiler configuration data from full-scale multiple-burner, electric-generating boilers firing natural gas, oil, and coal fuels. The overall objective of the stu...

  2. 33 CFR 147.847 - Safety Zone; BW PIONEER Floating Production, Storage, and Offloading System Safety Zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...PIONEER Floating Production, Storage, and Offloading System Safety Zone...PIONEER Floating Production, Storage, and Offloading System Safety Zone...PIONEER, a Floating Production, Storage and Offloading (FPSO) system, is in the...

  3. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    SciTech Connect

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO{sub x} in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO{sub x} emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames--particularly under low NO{sub x} conditions. A CO/H{sub 2}/O{sub 2}/N{sub 2} flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state {sup 13}C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that aims to predict the conversion of char-nitrogen to nitric oxide should allow for the conversion of char-nitrogen to HCN. The extent of the HCN conversion to NO or N{sub 2} will depend on the composition of the atmosphere surrounding the particle. A pilot-scale testing campaign was carried out to evaluate the impact of multiburner firing on NO{sub x} emissions using a three-burner vertical array. In general, the results indicated that multiburner firing yielded higher NO{sub x} emissions than single burner firing at the same fuel rate and excess air. Mismatched burner operation, due to increases in the firing rate of the middle burner, generally demonstrated an increase in NO{sub x} over uniform firing. Biased firing, operating the middle burner fuel rich with the upper and lower burners fuel lean, demonstrated an overall reduction in NO{sub x} emissions; particularly when the middle burner was operated highly fuel rich. Computational modeling indicated that operating the three burner array with the center burner swirl in a direction opposite to the other two resulted in a slight reduction in NO{sub x}.

  4. 76 FR 37767 - Pioneer Hi-Bred International, Inc.; Determination of Nonregulated Status for Corn Genetically...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ...Docket No. APHIS-2010-0041] Pioneer Hi-Bred International, Inc.; Determination...determination that a corn line developed by Pioneer Hi-Bred International, Inc., designated...evaluation of data submitted by Pioneer Hi-Bred International, Inc., in its...

  5. 75 FR 32356 - Pioneer Hi-Bred International, Inc.; Determination of Nonregulated Status for Genetically...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ...Docket No. APHIS-2007-0156] Pioneer Hi-Bred International, Inc.; Determination...that a soybean line developed by Pioneer Hi-Bred International, designated as transformation...evaluation of data submitted by Pioneer Hi-Bred International in its petition...

  6. 76 FR 83 - Pioneer Hi-Bred International, Inc.; Availability of Petition and Environmental Assessment for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ...Docket No. APHIS-2010-0041] Pioneer Hi-Bred International, Inc.; Availability...Service has received a petition from Pioneer Hi-Bred International, Inc., seeking a...Petition Number 08-338-01p) from Pioneer Hi-Bred International, Inc....

  7. 78 FR 37201 - Pioneer Hi-Bred International, Inc.; Determination of Nonregulated Status of Maize Genetically...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ...Docket No. APHIS-2012-0026] Pioneer Hi-Bred International, Inc.; Determination...determination that a maize line developed by Pioneer Hi-Bred International Inc., designated...evaluation of data submitted by Pioneer Hi-Bred International, Inc., in its...

  8. 78 FR 32231 - Pioneer Hi-Bred International, Inc.; Availability of Plant Pest Risk Assessment, Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ...Docket No. APHIS-2012-0031] Pioneer Hi-Bred International, Inc.; Availability...determination regarding a request from Pioneer Hi-Bred International, Inc., seeking a...Petition Number 11-063-01p) from Pioneer Hi-Bred International, Inc., of...

  9. Ultra clean burner for an AMTEC system suitable for hybrid electric vehicles

    SciTech Connect

    Mital, R.; Sievers, R.K.; Hunt, T.K. [Advanced Modular Power Systems, Inc., Ann Arbor, MI (United States)

    1997-12-31

    High power Alkali Metal Thermal to Electric Converter (AMTEC) systems have the potential to make the hybrid electric vehicle (HEV) program a success by meeting the challenging standards put forth by the EPA for the automobile industry. The premise of the whole concept of using AMTEC cells, as discussed by Hunt et al. (1995), for power generation in HEV`s is based on the utilization of a high efficiency external combustion system. The key requirement being a burner which will produce extremely low quantities of carbon monoxide and oxides of nitrogen, emit minimal amounts of hydrocarbon, will have high radiative and convective efficiencies and at least a 4:1 turndown ratio. This work presents one such burner which has the potential to meet all of these demands and more. After investigation of a number of burners, including, metal fiber, ported metal, ceramic fiber and ported ceramic, it is believed that cellular ceramic burners will be the best candidates for integration with AMTEC cells for a high power system suitable for hybrid electric vehicles. A detailed study which includes the operating range, radiation efficiency, total heat transfer efficiency, spectral intensity, exit gas temperature and pollutant emission indices measurement has been carried out on circular and square shaped burners. Total heat transfer efficiencies as high as 65--70% have been measured using a water calorimeter. With efficient recuperation, a burner/recuperator efficiency of 80% at peak power and 90% at peak efficiency operating points are conceivable with this burner. Establishment of combustion within the porous matrix leads to low peak temperatures and hence lower NO{sub x}. The emission indices of CO and HC are also quite low. The stability range measurements show a 6:1 turndown ratio at an equivalence ratio of 0.9.

  10. Design of "model-friendly" turbulent non-premixed jet burners for C2+ hydrocarbon fuels

    NASA Astrophysics Data System (ADS)

    Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.

    2011-07-01

    Experimental measurements in laboratory-scale turbulent burners with well-controlled boundary and flow configurations can provide valuable data for validating models of turbulence-chemistry interactions applicable to the design and analysis of practical combustors. This paper reports on the design of two canonical nonpremixed turbulent jet burners for use with undiluted gaseous and liquid hydrocarbon fuels, respectively. Previous burners of this type have only been developed for fuels composed of H2, CO, and/or methane, often with substantial dilution. While both new burners are composed of concentric tubes with annular pilot flames, the liquid-fuel burner has an additional fuel vaporization step and an electrically heated fuel vapor delivery system. The performance of these burners is demonstrated by interrogating four ethylene flames and one flame fueled by a simple JP-8 surrogate. Through visual observation, it is found that the visible flame lengths show good agreement with standard empirical correlations. Rayleigh line imaging demonstrates that the pilot flame provides a spatially homogeneous flow of hot products along the edge of the fuel jet. Planar imaging of OH laser-induced fluorescence reveals a lack of local flame extinction in the high-strain near-burner region for fuel jet Reynolds numbers (Re) less than 20 000, and increasingly common extinction events for higher jet velocities. Planar imaging of soot laser-induced incandescence shows that the soot layers in these flames are relatively thin and are entrained into vortical flow structures in fuel-rich regions inside of the flame sheet.

  11. Thermal barrier coatings - Burner rig hot corrosion test results

    NASA Technical Reports Server (NTRS)

    Hodge, P. E.; Stecura, S.; Gedwill, M. A.; Zaplatynsky, I.; Levine, S. R.

    1980-01-01

    A Mach 0.3 burner rig test program was conducted to examine the sensitivity of thermal barrier coatings to Na- and V-contaminated combustion gases simulating potential utility gas turbine environments. Coating life of the standard ZrO2-12Y2O3/Ni-16.2Cr-5.6Al-0.6Y (composition in wt %) NASA thermal barrier coating system which was developed for aircraft gas turbines was significantly reduced in such environments. Two thermal barrier coating systems, Ca2SiO4/Ni-16.2Cr-5.6Al-0.6Y and ZrO2-8Y2O3/Ni-16.4Cr-5.1Al-0.15Y and a less insulative cermet coating system, 50 vol % MgO-50 vol % Ni-19.6Cr-17.1Al-0.97Y/Ni-16.2Cr-5.6Al-0.6Y, were identified as having much improved corrosion resistance compared to the standard coating.

  12. Emissions Measurements from a Lobed Fuel Injector/Burner

    NASA Technical Reports Server (NTRS)

    Mitchell, M. G.; Smith, L. L.; Karagozian, A. R.; Smith, O. I.

    1998-01-01

    The present experimental study examines NO(x) and CO emissions associated with alternative fuel injector geometries. These injectors mix fuel and air to differing extents and thus create different local equivalence ratios upstream of flame ignition and stabilization. Two of the devices studied are lobed fuel injectors, in which mixing of reactants is associated with stream wise vorticity generation and straining of fuel-air interfaces, while the third is a non-lobed fuel injector which creates relatively little fuel-air mixing prior to ignition.Results show that one lobed injector geometry appears to produce locally lean premixed flame structures, resulting in low NO. emissions when compared with non-lobed injector emissions. The other lobed injector geometry appears to produce a local fuel-air mixture which is closer to stoichiometric conditions, with NO(x) emissions that are actually higher than for the non-lobed injector. For both lobed injector geometries examined here, CO emissions become high for over-all lean operating conditions, consistent with premixed combustion behavior. The present study demonstrates the importance of control of the local equivalence ratio in minimizing burner emissions.

  13. Gas will give oil a run for it's money

    SciTech Connect

    Freedenthal, C. (JOFREE Corp., Houston, TX (United States))

    1994-02-15

    One reason is that some states have imposed taxes on the burning of residual oil, which is shifting the balance of the optimal market to the gas side. After all, without the additional burden of a tax, end users have a good reason to stay with gas. The natural gas industry has come a long way. No longer is gas the stepchild of the black oil business. Natural gas has grown in importance to the point where it stands alone with its own marketing companies, risk-management alternatives, electronic data services, and a host of other elements that evidence its independence from crude oil. Revenues for natural gas at the wellhead grew to around $31 billion in 1993, while revenues at the burner tip are close to $70 billion. Burner tip revenues are about 1 percent of the gross national product, and roughly one-fourth of total fuels revenues for the country. Even though the United States new natural gas industry is different from world gas operations and markets, independence from crude oil is a fact in the international gas business. On the world scale, much of the natural gas business is in liquified natural gas (LNG), which makes it possible to move gas from production locations like Alaska, Africa, Indonesia, or Australia to markets in Europe, Asia, and the United States. Natural gas is providing an alternative to crude oil and oil products in many countries and lessening the importance of crude oil to world commerce.

  14. Gamma-ray burst observations by Pioneer Venus Orbiter

    NASA Technical Reports Server (NTRS)

    Evans, W. D.; Glore, J. P.; Klebesadel, R. W.; Laros, J. G.; Tech, E. R.; Spalding, R. E.

    1979-01-01

    The Pioneer Venus Orbiter gamma burst detector is an astrophysics experiment for monitoring cosmic gamma-ray bursts. It is included in this planetary mission to provide a long baseline for accurately locating the sources of these bursts in order to identify them with specific astronomical objects. Responses to 14 gamma-ray burst events were examined; these events were verified from data acquired by other systems. Preliminary locations are proposed for three events, based on data from the Pioneer Venus Orbiter, ISEE C, and Vela spacecraft. These locations will be improved, and additional locations will be determined by including in the analyses data from Helios B and the Russian Venera 11, Venera 12, and Prognoz 7 spacecraft.

  15. Craniofacial surgery, from past pioneers to future promise

    Microsoft Academic Search

    Derrick C. Wan; Matthew D. Kwan; Anand Kumar; James P. Bradley; Michael T. Longaker

    2009-01-01

    Objectives  As a surgical subspecialty devoted to restoration of normal facial and calvarial anatomy, craniofacial surgeons must navigate\\u000a the balance between pathologic states of bone excess and bone deficit. While current techniques employed take root in lessons\\u000a learned from the success and failure of early pioneers, craniofacial surgery continues to evolve, and novel modalities will\\u000a undoubtedly arise integrating past and present

  16. Initial Pioneer Venus magnetic field results - Dayside observations

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Elphic, R. C.; Slavin, J. A.

    1979-01-01

    Pioneer Venus magnetometer observations in the sunlit ionosphere indicate that the ionosphere is dynamic and very responsive to external solar wind conditions. Bow shock location, ionosphere location, the strength of the magnetic field just outside the ionopause, and the field strength in the ionosphere are found to be variable, and the properties of flux ropes in the ionospheric magnetic field are considered. Data on magnetic energy density and on magnetic field strength are presented.

  17. The Clifford Space Geometry Behind the Pioneer and Flyby Anomalies

    Microsoft Academic Search

    Carlos Castro

    2010-01-01

    It is rigorously shown how the extended relativity theory in Clifford spaces (C-spaces) can explain the variable radial dependence ap(r) of the Pioneer anomaly; its sign (pointing towards the Sun); why planets do not experience the anomalous acceleration and why the present day value of the Hubble scale RH appears. It is the curvature-spin coupling of the planetary motions that

  18. Reinterpreting the Pioneer anomaly and its annual residual

    Microsoft Academic Search

    Paul G. ten Boom

    2005-01-01

    In addition to its long-term constancy, the Pioneer (spacecraft) anomaly\\u000aappears to only exist for bodies whose mass is less than that of: planets,\\u000amoons, comets, and heavy asteroids of known mass. Assuming the observational\\u000aevidence is reliable, and not the result of an unknown systematic effect, a\\u000aviolation of the Weak Principle of Equivalence is implied. To propose an

  19. Gravity tests in the solar system and the Pioneer anomaly

    E-print Network

    Marc-Thierry Jaekel; Serge Reynaud

    2005-04-05

    We build up a new phenomenological framework associated with a minimal generalization of Einsteinian gravitation theory. When linearity, stationarity and isotropy are assumed, tests in the solar system are characterized by two potentials which generalize respectively the Newton potential and the parameter $\\gamma $ of parametrized post-Newtonian formalism. The new framework seems to have the capability to account for the Pioneer anomaly besides other gravity tests.

  20. Infrared radiometer for the Pioneer Venus orbiter. I - Instrument description

    NASA Technical Reports Server (NTRS)

    Taylor, F. W.; Vescelus, F. E.; Locke, J. R.; Beer, R.; Foster, G. T.; Forney, P. B.; Houghton, J. T.; Delderfield, J.; Schofield, J. T.

    1979-01-01

    A ten-channel IR radiometer for the Pioneer Venus orbiter is described. The experimental techniques used and the design of the instrumentation by which they were implemented are considered. Emphasis is placed on temperature sounding, limb sounding, limb darkening, zenith scanning, cloud top temperature, spectral albedo and water vapor measurements. Instrumentation description is also given including optics, detectors, and electronics. Attention is given to data acquisition and handling, calibration, and in-flight performance.

  1. System design of the Pioneer Venus spacecraft. Volume 2: Science

    NASA Technical Reports Server (NTRS)

    Acheson, L. K.

    1973-01-01

    The objectives of the low-cost Pioneer Venus space probe program are discussed. The space mission and science requirements are analyzed. The subjects considered are as follows: (1) the multiprobe mission, (2) the orbiter mission, (3) science payload accomodations, and (4) orbiter spacecraft experimental interface specifications. Tables of data are provided to show the science allocations for large and small probes. Illustrations of the systems and components of various probe configurations are included.

  2. New Horizons and the onset of the Pioneer anomaly

    Microsoft Academic Search

    Michael Martin Nieto

    2008-01-01

    Analysis of the radio tracking data from the Pioneer 10\\/11 spacecraft at distances between about 20–70 AU from the Sun has indicated the presence of an unmodeled, small, constant, Doppler blue shift which can be interpreted as a constant acceleration of aP=(8.74±1.33)×10?8 cm\\/s2 directed approximately towards the Sun. In addition, there is early (roughly modeled) data from as close in as

  3. Pioneer Venus radar results - Geology from images and altimetry

    Microsoft Academic Search

    Harold Masursky; Eric Eliason; P. G. Ford; G. E. McGill; G. H. Pettengill; Gerald G. Schaber; Gerald Schubert

    1980-01-01

    An unimodal distribution of relief for Venus was obtained from the Pioneer Venus altimetry measurements. The 'upland' rolling plains constituting 65% of the surface show dark circular lava-filled impact basins; highlands in the 8% of the area comprise Ishtar Terra and Aphrodite Terra; and the lowlands consist of crudely circular surfaces with low relief within the highlands. The complex ridge-and-trough

  4. Planetary magnetism. [Mariner, Venera and Pioneer probe results

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1979-01-01

    Recent data on planetary magnetism are reviewed, with attention given to information obtained by Mariner 10 at Mercury, from Venera 9 and 10 orbiting Venus, and Pioneer spacecraft flying past Jupiter. In addition, less recent magnetic measurements of Mars are reconsidered. Doubts about whether Mars has an active dynamo at present are mentioned, and further planetary magnetic assessments are suggested. In particular, the need to refine knowledge of multipole moments is stressed.

  5. System expectations for Pioneer I foil implosion experiments

    SciTech Connect

    Greene, A.E.; Brownell, J.H.; Caird, R.S.; Erickson, D.J.; Goforth, J.H.; Lindemuth, I.R.; Oliphant, T.A.; Weiss, D.L.

    1985-01-01

    Prior to the beginning of the Pioneer I shot of the Los Alamos National Laboratory TRAIL-MASTER project, numerous computational simulations were run to provide ball-park estimates for the electrical currents and voltages in the circuit, the timing of the implosion, the kinetic energy, temperature, and radiation output of the load. The purpose of these calculations was to provide guidance in setting the timings of the various switches within the circuit and to establish operating ranges for the various diagnostics.

  6. Latest developments and application of DB Riley's low NOx CCV{reg{underscore}sign} burner technology

    SciTech Connect

    Penterson, C.; Ake, T.

    1998-07-01

    Recent developments in DB Riley (DBR) low NOx burner technology and the application of this technology in coal fired utility boilers are discussed. Since the promulgation of the Clean Air Act Amendment in 1990, DBR has sold nearly 1,500 Controlled Combustion Venturi (CCV{reg{underscore}sign}) burners on pulverized coal fired utility boilers reducing NOx emissions 50--70% from uncontrolled levels. This technology has been retrofitted on boiler designs ranging in size and type from 50 MW front wall fired boilers to 1,300 MW opposed fired cell type boilers. In DBR's latest version of the CCV{reg{underscore}sign} burner, a second controlled flow air zone was added to enhance NOx control capability. Other developments included improved burner air flow measurement accuracy and several mechanical design upgrades such as new coal spreader designs for 3 year wear life. Test results of the CCV{reg{underscore}sign} dual air zone burner in DBR's 100 million Btu/hr (29 MW) coal burner test facility are presented. In the test program, coals from four utility boiler sites were fired to provide a range of coal properties. A baseline high volatile bituminous coal was also fired to provide a comparison with 1992 test data for the CCV{reg{underscore}sign} single register burner. The tests results showed that the second air zone enhanced NOx reduction capability by an additional 20% over the single register design. Computational fluid dynamic (DFD) modeling results of the CCV{reg{underscore}sign} dual air zone burner are also presented showing near field mixing patterns conducive to low NOx firing. DBR was recently awarded Phase IV of the Low Emission Boiler System (LEBS) program by the US Department of Energy to build a proof of concept facility representing the next major advancement in pulverized coal burning technology. A key part of winning that award were test results of the CCV{reg{underscore}sign} dual air zone burner with advanced air staging and coal reburning in a 100 million Btu/hr (20 MW) U-fired slagging combustor test facility. These results showed NOx emissions of less than 0.2 lb/million Btu (0.086 g/MJ) while converting the coal ash into an inert, non-leachable solid. This results is an 80% reduction in NOx emissions from currently operating U-fired slagging boilers.

  7. Redox Pioneer: Professor Joe M. McCord

    PubMed Central

    Schnell, David M.

    2014-01-01

    Abstract Dr. Joe McCord (Ph.D. 1970) is recognized here as a Redox Pioneer because he has published at least three articles on antioxidant/redox biology as first/last author that have been cited over 1000 times and has published at least 37 articles each cited over 100 times. Dr. McCord is known for the monumental discovery of the antioxidant superoxide dismutase (SOD) while a graduate student under fellow redox pioneer Irwin Fridovich and demonstrating its necessity to aerobic life. Beyond this, McCord's career is distinguished for bridging the gap from basic science to clinical relevance by showing the application of SOD and superoxide to human physiology, and characterizing the physiological functions of superoxide in inflammation, immunological chemotaxis, and ischemia–reperfusion injury, among other disease conditions. Work by McCord serves as the foundation upon which our understanding of how superoxide functions in a variety of physiological systems is built and demonstrates how superoxide is essential to aerobic life, yet, if left unchecked by SOD, toxic to a multitude of systems. These discoveries have substantial significance in a wide range of studies with applications in cardiovascular disease, cancer, neurology, and medicine, as well as general health and longevity. Dr. McCord's contributions to free radical biology have been recognized through many prestigious achievement awards, honorary titles, and conferences around the world; each serving as a testament to his status as a redox pioneer. Antioxid. Redox Signal. 20, 183–188. PMID:24117164

  8. A critical review of noise production models for turbulent, gas-fueled burners

    NASA Astrophysics Data System (ADS)

    Mahan, J. R.

    1984-06-01

    The combustion noise literature for the period between 1952 and early 1984 is critically reviewed. Primary emphasis is placed on past theoretical and semi-empirical attempts to predict or explain observed direct combustion noise characteristics of turbulent, gas-fueled burners; works involving liquid-fueled burners are reviewed only when ideas equally applicable to gas-fueled burners are pesented. The historical development of the most important contemporary direct combustion noise theories is traced, and the theories themselves are compared and criticized. While most theories explain combustion noise production by turbulent flames in terms of randomly distributed acoustic monopoles produced by turbulent mixing of products and reactants, none is able to predict the sound pressure in the acoustic farfield of a practical burner because of the lack of a proven model which relates the combustion noise source strenght at a given frequency to the design and operating parameters of the burner. Recommendations are given for establishing a benchmark-quality data base needed to support the development of such a model.

  9. LOW COST BIOHEATING OIL APPLICATION.

    SciTech Connect

    KRISHNA,C.R.

    2003-05-01

    The report describes primarily the results of combustion tests carried out with a soy methyl ester (SME) that can be considered as a biofuel that does not quite meet the ASTM D 6751-02 specifications for biodiesel. The tests were performed in a residential boiler and a commercial boiler. Blends of the SME in distillate fuel (home heating fuel or equivalently, ASTM No.2 fuel oil) were tested in both the boilers. Similar tests had been conducted in a previous project with ASTM biodiesel blends and hence provided a comparison. Blends of the SME in ASTM No.6 oil (residual oil) were also tested in the commercial boiler using a different burner. Physical properties of the blends (in both the petroleum based fuels) were also measured. It was found that the SME blends in the distillate burned, not surprisingly, similarly to biodiesel blends. Reductions in NOx with blending of the SME were the most significant finding as before with biodiesel blends. The blends in No.6 oil also showed reductions in NOx in the commercial boiler combustion tests, though levels with No.6 blends are higher than with No.2 blends as expected. A significant conclusion from the physical property tests was that even the blending of 10% SME with the No.6 oil caused a significant reduction in viscosity, which suggests a potential direction of application of such blends.

  10. The Structure of Triple Flames Stabilized on a Slot Burner RICCARDO AZZONI, STEFANO RATTI, SURESH K. AGGARWAL, and

    E-print Network

    Aggarwal, Suresh K.

    The Structure of Triple Flames Stabilized on a Slot Burner RICCARDO AZZONI, STEFANO RATTI, SURESH K, not clearly understood. Herein, laminar triple flames stabilized on a Wolfhard-Parker slot burner are investigated. The flow consists of a rich mixture of methane and air emerging from the inner slot and a lean

  11. SIMULATION MODELING OF AN ENHANCED LOW-EMISSION SWIRL-CASCADE BURNER

    SciTech Connect

    Ala Qubbaj

    2004-04-01

    Based on the physical and computational models outlined in the previous technical progress reports, Natural gas jet diffusion flames in baseline, cascade, swirl, and swirlcascade burners were numerically modeled. The thermal, composition, and flow (velocity) fields were simulated. The temperature, CO{sub 2} and O{sub 2} concentrations, as well as the axial and radial velocity profiles were computed and analyzed. The numerical results showed that swirl and cascade burners have a more efficient fuel/air mixing, a shorter flame, and a lower NOx emission levels, compared to the baseline case. The results also revealed that the optimal configurations of the cascaded and swirling flames have not produced an improved performance when combined together in a ''swirl-cascade burner''.

  12. Reconsideration of natural-gas immersion burners to melt recycled aluminum

    SciTech Connect

    Clark, John A., III; Thekdi, Arvind (E3M, Inc., North Potomac, MD); Ningileri, S. (Secat Inc, Lexington KY); Han, Q. (Oak Ridge National Laboratory)

    2005-09-01

    The best open flame reverberatory aluminum melting furnaces are approximately 45% efficient. Furnace efficiency can be increased by using immersed tube burners. Currently, recuperated tube burners with capacities to remelt aluminum are available. Tube burners would allow remelt furnaces to operate at lower temperatures, reduce dross formation, reduce particulate emissions, and provide clean flue gas to other energy intensive processes. Babcock and Wilcox, under GRI (now GTI – Gas Technology Institute) contract in the late-1980’s, demonstrated the technically feasibility of immersion melting of aluminum. However, tube reliability was problematic due to metal penetration, dross build-up, thermal shock, and mechanical failure. Also, the concept of “cold start” melting was not addressed. The Albany Research Center (U.S. DOE) is cooperating with Secat, E3M Inc., the University of Kentucky, and Oak Ridge National Laboratory in an ITP-sponsored program to combine emerging technologies in a retrofitable furnace package targeting improved remelt efficiency ranging from 55% to 75%.

  13. Full-scale demonstration Low-NO sub x Cell trademark Burner retrofit

    SciTech Connect

    Not Available

    1992-03-18

    The overall objectives of the full-Scale Low-NOx Cell{trademark} Burner (LNCB{trademark}) Retrofit project is to demonstrate the cost-effective reduction of NOx generated by a large, base-loaded (70% capacity factor or greater), coal-fired utility boiler. Specific objectives include: (1) At least 50% NOx reduction over standard two-nozzle cell burners, without degradation of boiler performance or life; (2) acquire and evaluate emission and boiler performance data before and after the retrofit to determine NOx reduction and impact on overall boiler performance; (3) demonstrate that the LNCB{trademark} retrofits are the most cost-effective alternative to emerging, or commercially-available NOx control technology for units equipped with cell burners. The focus of this demonstration is to determine maximum NOx reduction capabilities without adversely impacting plant performance, operation and maintenance.

  14. Development of lean premixed low-swirl burner for low NO{sub x} practical application

    SciTech Connect

    Yegian, D.T.; Cheng, R.K.

    1999-07-07

    Laboratory experiments have been performed to evaluate the performance of a premixed low-swirl burner (LSB) in configurations that simulate commercial heating appliances. Laser diagnostics were used to investigate changes in flame stabilization mechanism, flowfield, and flame stability when the LSB flame was confined within quartz cylinders of various diameters and end constrictions. The LSB adapted well to enclosures without generating flame oscillations and the stabilization mechanism remained unchanged. The feasibility of using the LSB as a low NO{sub x} commercial burner has also been verified in a laboratory test station that simulates the operation of a water heater. It was determined that the LSB can generate NO{sub x} emissions < 10 ppm (at 3% O{sub 2}) without significant effect on the thermal efficiency of the conventional system. The study has demonstrated that the lean premixed LSB has commercial potential for use as a simple economical and versatile burner for many low emission gas appliances.

  15. Oil Oil Everywhere

    NSDL National Science Digital Library

    2012-07-18

    This math meets ecology lesson provides hands-on experiences with mixing oil and water, provides surface area information about the 2010 oil spill in the Gulf of Mexico, and gives learners opportunities to estimate small oil spills of their own making. This lesson guide includes questions for learners, assessment options, extensions, and reflection questions.

  16. Scaling the weak-swirl burner from 15 kW to 1 MW

    SciTech Connect

    Yegian, D.T.; Cheng, R.K. [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technologies Div.; Hack, R.L.; Miyasato, M.M.; Chang, A.; Samuelsen, G.S. [Univ. of California, Irvine, CA (United States). UCI Combustion Lab.

    1998-03-01

    With the passage of SCAQMD 1146.2, low NO{sub x} regulations will be enforced for new water heaters and boilers from 22 to 585 kW starting January 1, 2000; less than two years away. This has given an added impetus to develop a burner capable of producing NO{sub x} < 30 ppm and CO < 400 ppm without substantial manufacturing costs or complexity. Developed at the Berkeley Lab, the Weak-Swirl Burner (WSB) operates in the lean premixed combustion mode over a wide firing and equivalence ratio range. This work investigated scaling issues (e.g. swirl rates and stability limits) of the WSB when fired at higher rates useful to industry. Three test configurations which varied the ratio of furnace area to burner area were utilized to understand the effects of burner chamber coupling on emissions and stability. Preliminary tests from 12 to 18 kW of a WSB in a commercial heat exchanger were undertaken at LBNL, with further testing from 18 to 105 kW completed at UCI Combustion Laboratory in an octagonal enclosure. After scaling the small (5 cm diameter) to a 10 cm WSB, the larger burner was fired from 150 to 600 kW within a 1.2 MW furnace simulator at UCICL. Test results demonstrate that NO{sub x} emissions (15 ppm at 3% O{sub 2} at equivalence ratio {phi} = 0.80) were invariant with firing rate and chamber/burner ratio. However, the data indicates that CO and UHC are dependent on system parameters, such that a minimum firing rate exists below which CO and UHC rise from lower limits of 25 ppm and 0 ppm respectively.

  17. 78 FR 13312 - Pioneer Hi-Bred International, Inc.; Availability of Petition, Plant Pest Risk Assessment, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ...Docket No. APHIS-2012-0026] Pioneer Hi-Bred International, Inc.; Availability...Service has received a petition from Pioneer Hi-Bred International, Inc., (Pioneer...Petition Number 11-244-01p) from Pioneer Hi-Bred International, Inc.,...

  18. Application of noncircular primary-air inlet geometries in the inshot burners of residential gas furnaces

    SciTech Connect

    Kolluri, P.; Kamal, A.; Gollahalli, S.R. [Univ. of Oklahoma, Norman, OK (United States). School of Aerospace and Mechanical Engineering

    1996-03-01

    Experiments with an inshot burner used in residential natural gas furnaces are presented. The concentrations of NO{sub x}, NO, and CO in the combustion products of partially aerated natural gas flames were measured in a laboratory combustion chamber. When the conventional circular venturi inlet of the inshot burner was replaced by elliptic venturi inlets, an increase of up to 30% in the primary-air entrainment and a decrease of up to 20% in the NO{sub x} emission index were observed. Temperature field measurements in the flames were in conformity with the emission index measurements.

  19. Effect of burner orientation and ambient airflow on geometry of turbulent free diffusion flames

    SciTech Connect

    Becker, H.A.; Liang, D.; Downey, C.I.

    1981-01-01

    The effects of burner orientation, cross-wind, and rotation of ambient air on the size and shape of free turbulent diffusion flames have been studied. The vertical free turbulent diffusion flame in still air is taken as the reference case. The aforesaid effects are treated as deviations from this case and are shown to be simply correlated with dimensionless parameters characterizing the disturbance of conditions - namely, the angle of inclination characterizing the tilt of the burner axis, a momentum flux ratio characterizing the intensity of the crosswind, and a rotational Reynolds ratio characterizing the circulation of the ambient air. 20 refs.

  20. Flame stabilizing NO/sub x/ reduction device for pulverized coal burner

    SciTech Connect

    LaRue, A.D.

    1987-03-31

    A burner nozzle is described comprising: an outer elongated tubular housing secured downstream of a burner elbow and having a fuel entrance and a fuel exit; an inner elongated tubular member concentrically secured within the housing having upstream and downstream openings; mixing members intermediate the inner member and the outer housing; whereby combustible fuel passing through the elbow and into the housing is divided into an outer fuel-rich stream and an inner fuel-lean stream with the outer fuel-rich stream passing around the inner tubular member.

  1. Pioneers in pediatric psychology: integrating nutrition and child development interventions.

    PubMed

    Black, Maureen M

    2015-05-01

    As part of the Pioneers in Pediatric Psychology series, this article provides a brief personal account of Maureen Black's career as a pediatric psychologist. It traces the transition of the Society of Pediatric Psychology (SPP) from a section of the Division of Clinical Psychology of the American Psychological Association (APA) to an independent division of APA, which occurred during my presidency of SPP. The article addresses three aspects of pediatric psychology that have been central to my career: pediatric nutritional problems, global child development, and the advancement of children's health and development through policy-related strategies. The article concludes with Lessons Learned and Recommendations for the future of pediatric psychology. PMID:25619198

  2. Reentry thermal protection from Pioneer F RTG insulation material

    NASA Technical Reports Server (NTRS)

    Vorreiter, J. W.

    1972-01-01

    Ablation tests were performed on the insulation material used in the Pioneer F radioisotope thermoelectric generator (RTG) in the Ames Arc-Heated Planetary-Gas Wind Tunnel. Test results indicate that the material, trade name Min-K 1301, should experience little ablation for heat transfer rates below 40 BTU/sq ft-sec. If the current design were to be changed so that the various pieces of Min-K were fastened or interlocked together the total amount of heat delivered to the RTG heat source during an earth orbital decay reentry would be reduced by at least 22.7%.

  3. Rapeseed and safflower oils as diesel fuels

    SciTech Connect

    Peterson, C.L. [Univ. of Idaho, Moscow, ID (United States); Haines, H. [Montana Bioenergy Programs, Helena, MT (United States); Chase, C. [Alaska Regional Bioenergy Program, Seattle, WA (United States)

    1993-12-31

    During the past decade the US has become increasingly dependent upon imported oil to meet our energy demands. Nearly 50 percent of our US consumption of petroleum is imported. Research has shown that agricultural crops can be used to reduce this dependence. Vegetable oil as an alternative fuel has been under study at the Univ. of Idaho since 1979. Since then the Idaho research team has pioneered the use of rapeseed oil as a diesel fuel substitute. Idaho`s interdisciplinary team includes plant breeding, plant modification, process development and scale-up, engine testing, and economics. Researchers in Montana have studied safflower oil as a potential diesel fuel replacement since 1983. This project, aimed for use of safflower oil in railroad engines, involves genetics, agronomics, economics and contract engine testing.

  4. EVALUATION OF SULFUR CAPTURE CAPABILITY OF A PROTOTYPE SCALE CONTROLLED-FLOW/SPLIT-FLAME BURNER

    EPA Science Inventory

    The report describes the sulfur capture potential during combustion of limestone copulverized with a high sulfur eastern bituminous coal, using Foster Wheeler's commercial Controlled-Flow/Split-Flame (CF/SF) low NOx, internally staged burner. Sulfur capture was optimized by using...

  5. Control of flames by tangential jet actuators in oxy-fuel burners

    SciTech Connect

    Boushaki, Toufik [CORIA UMR 6614 CNRS-Universite et INSA de ROUEN, Site Universitaire du Madrillet, 76801 Saint Etienne du Rouvray, Cedex (France); Universite de Toulouse-INPT-UPS, IMFT (Institut de Mecanique des Fluides de Toulouse), Allee Camille Soula, F-31400 Toulouse, Cedex (France); Sautet, Jean-Charles [CORIA UMR 6614 CNRS-Universite et INSA de ROUEN, Site Universitaire du Madrillet, 76801 Saint Etienne du Rouvray, Cedex (France); Labegorre, Bernard [Air Liquide, Centre de Recherche Claude-Delorme, Les Loges-en-Josas, B.P. 126 78354 Jouy-en-Josas, Cedex (France)

    2009-11-15

    The active control of oxy-fuel flames from burners with separated jets is investigated. The control system consists of four small jet actuators, placed tangential to the exit of the main jets to generate a swirling flow. These actuators are able to modify the flow structure and to act on mixing between the reactants and consequently on the flame behavior. The burner (25 kW) is composed of separated jets, one jet of natural gas and one or two jets of pure oxygen. Experiments are conducted with three burner configurations, according to the number of jets, the jet exit velocities, and the separation distance between the jets. OH chemiluminescence measurements, particle image velocimetry, and measurements of NO{sub x} emissions are used to characterize the flow and the flame structure. Results show that the small jet actuators have a significant influence on the behavior of jets and the flame characteristics, particularly in the stabilization zone. It is shown that the control leads to a decrease in lift-off heights and to better stability of the flame. The use of jet actuators induces high jet spreading and an increase in turbulence intensity, which improves the mixing between the reactants and the surrounding fluid. Pollutant measurements show important results in terms of NO{sub x} reductions (up to 60%), in particular for low swirl intensity. The burner parameters, such as the number of jets and the spacing between the jets, also impact the flame behavior and NO{sub x} formation. (author)

  6. Simulation of Nitrogen Emissions in a Premixed Hydrogen Flame Stabilized on a Low Swirl Burner

    E-print Network

    Bell, John B.

    of fuels such as pure hydrogen and hydrogen-seeded hydrocarbon mixtures. However, many hydrogen-rich fuels in the context of a laboratory-scale low swirl burner fueled with a lean hydrogen-air mixture at atmospheric of burning lean hydrogen or hydrogen-enriched lean hydrocar- bon fuels (e.g., [2­5]). For these fuels

  7. PROTOTYPE EVALUATION OF COMMERCIAL SECOND GENERATION LOW-NOX BURNER PERFORMANCE AND SULFUR DIOXIDE CAPTURE POTENTIAL

    EPA Science Inventory

    The report gives results of tests on two large-scale staged-mixing (SM) burners developed by L and L Steinmuller of West Germany. One objective was to optimize their performance for low-NOx emissions, high efficiency, and combined NOx/SO2 control with sorbent injection. The exper...

  8. GUIDELINES FOR ADJUSTMENT OF ATMOSPHERIC GAS BURNERS FOR RESIDENTIAL AND COMMERCIAL SPACE HEATING AND WATER HEATING

    EPA Science Inventory

    The guidelines contain recommended procedures for adjusting residential and commercial atmospheric gas burners used for space heating and water heating to minimize air pollution and for efficient use of fuel. They are intended for use by skilled service technicians in adjusting b...

  9. SITE DEMONSTRATION OF THE AMERICAN COMBUSTION PYRETRON OXYGEN-ENHANCED BURNER

    EPA Science Inventory

    A demonstration of the American Combustion Pyretron TM oxygen-enhanced burner was conducted under the Superfund Innovative Technology Evaluation (SITE) program. he Demonstration was conducted at the U.S. EPA's Combustion Research Facility (CRF) in Jefferson, Arkansas. n eight wee...

  10. PILOT-SCALE EVALUATION OF LIMB (LIMESTONE INJECTION MULTISTAGE BURNER) TECHNOLOGY

    EPA Science Inventory

    The report gives results of pilot-scale studies of sulfur capture in the EPA's Limestone Injection Multistage Burner (LIMB) process and the effect of LIMB on particulate properties and electrostatic precipitator (ESP) performance. The sulfur capture studies showed that hydrated l...

  11. CALCIUM-BASED SORBENTS IN THE LIMB (LIMESTONE INJECTION MULTISTAGE BURNER) PROCESS

    EPA Science Inventory

    The paper discusses EPA research on dry sorbent injection, which began in the late 1960s and early 1970s, and which will be demonstrated as the limestone injection multistage burner (LIMB) process at Ohio Edison's Edgewater plant in 1987. The effect and interrelationship of funda...

  12. Faber low NO{sub x} Venturi burners-case summaries

    SciTech Connect

    Kelly, R. [Combustion Systems, Philadelphia, PA (United States)

    1995-08-01

    Specifications and performance results for low NOx Faber Venturi burners are outlined. Two case summaries are presented. Case A is the California Institute of Technology, Pasadena, CA, boilers 1, 2, and 3. Case B is the Rhode Island Hospital, Providence, RI, boilers 3 and 4.

  13. Optimization and structure of gas jet diffusion flames in venturi-cascade burners

    SciTech Connect

    Qubbaj, A.R.

    1998-07-01

    An experimental study to control the pollutant emissions (CO, NO and soot) of diffusion flames by modifying the air infusion rate into the flame is presented. The modification was achieved by installing a cascade of venturis around a burning gas jet. A propane jet diffusion flame at burner-exit Reynolds number of 5100 was examined with different venturi sizes and spacing distributions. Temperature and the concentrations of CO{sub 2}, CO and NO in the exhaust products were measured before and after the modification and the optimal conditions were obtained. The optimal venturi diameter was between D/d=27.5 and D/d=35, where d is the burner-exit diameter and D is the venturi throat diameter. The optimal arrangement was the equal spacing configuration in which the venturis were distributed at equal intervals over the flame length. The venturi-cascading technique at its optimal conditions compared to the baseline case resulted in the following: (1) CO and NO emission indices decreased by 87% and 33% respectively; (2) the average volumetric soot concentration decreased by 24%; and (3) radiant fraction of heat release decreased by 10%. The thermal structure of the flame showed that, in the near-burner region, the venturi-cascaded flame had lower temperatures than the baseline case; however, in the mid-flame and far-burner regions it had higher temperatures.

  14. Temperature distribution in a layer of an active thermal insulation system heated by a gas burner

    Microsoft Academic Search

    Shigenao Maruyama; Naotaka Shimizu

    1993-01-01

    The temperature distribution in a layer of an active thermal insulation system was measured. A semitransparent porous layer was heated by a gas burner, and air was injected from the back face of the layer. The temperature in the layer was measured by thermocouples. The temperature distributions were compared with numerical solutions. The thermal penetration depth of the active thermal

  15. LOW-NOX BURNERS FOR PULVERIZED-COAL-FIRED BOILERS IN JAPAN

    EPA Science Inventory

    The paper describes nitrogen oxide (NOx) abatement by low-NOx burners (LNBs) and combustion modification (CM) for dry-bottom pulverized-coal-fired boilers in Japan. LNBs have been widely used in Japan as a simple way to reduce NOx emissions by 20-50%. NOx abatement by a LNB and C...

  16. SUMMARY OF U.S. LIMB (LIMESTONE INJECTION WITH MULTISTAGE BURNER) TECHNOLOGY

    EPA Science Inventory

    The paper summarizes the development of limestone injection multistage burner (LIMB) technology in the U.S. Among many control processes tested in the U.S. for conformance with New Source Performance Standards (NSPS) was the injection of limestone into the furnace region of power...

  17. TURBULENT COMBUSTION MODELING OF COAL:BIOMASS BLENDS IN A SWIRL BURNER I -PRELIMINARY RESULTS

    E-print Network

    Daripa, Prabir

    TURBULENT COMBUSTION MODELING OF COAL:BIOMASS BLENDS IN A SWIRL BURNER I - PRELIMINARY RESULTS of Mathematics Texas A&M University College Station, TX 77843 ABSTRACT A combustion model using three mixture fractions has been developed for accurate simulation of coal:manure combustion. This model treats coal

  18. Social Studies (Still) on the Back Burner: Perceptions and Practices of K-5 Social Studies Instruction

    ERIC Educational Resources Information Center

    Lintner, Timothy

    2006-01-01

    In 1995, Neil Houser concluded that social studies in Delaware was "on the back burner." Some ten years later, the same can be said concerning social studies in South Carolina. With a continued emphasis being placed on the more "pressing" fields such as math and language arts, coupled with the inclusion of social studies on South Carolina's…

  19. Measurement and analysis of heating of paper with gas-fired infrared burner

    E-print Network

    Husain, Abdullah Nadir

    2000-01-01

    . Gas-fired IR heaters produce combustion on the burner surface by ignition of a pre-mixed air and fuel streams. The combustion raises the surface temperature to ranges of 800-1,100°C to emit radiation, mainly in the medium IR range, which has a...

  20. EPA'S LIMB (ENVIRONMENTAL PROTECTION AGENCY'S LIMESTONE INJECTION WITH MULTISTAGE BURNERS) TECHNOLOGY DEVELOPMENT PROGRAM

    EPA Science Inventory

    The paper gives an overview of EPA's Limestone Injection with Multistage Burners (LIMB) program, a progam for research, development, and demonstration of cost-effective emissionscontrol technology for coal fired boilers that can reduce both sulfur oxides(SOx) and nitrogen oxides ...

  1. WALL-FIRED BOILER DESIGN CRITERIA FOR DRY SORBENT SO2 CONTROL WITH LOW NOX BURNERS

    EPA Science Inventory

    The report assesses the impact of Limestone Injection Multistage Burner (LIMB) technology on wall-fired utility boilers for both new and retrofit designs. Recent attention has focused on dry sorbent sulfur dioxide (SO2) control technology which, in conjunction with low-nitrogen-o...

  2. EVALUATIONS OF ELECTROSTATIC PRECIPITATOR PERFORMANCE AT EDGEWATER UNIT 4 LIMESTONE INJECTION MULTISTAGE BURNERS (LIMB) DEMONSTRATION

    EPA Science Inventory

    The report describes laboratory- and pilot-scale studies of the Limestone Injection Multistage Burners (LIMB) process as well as preliminary on-site tests at Ohio Edison's Edgewater Station. The effects of LIMB on electrostatic precipitation (ESP) performance are reported in term...

  3. Unsteady flame and flow field interaction of a premixed model gas turbine burner

    Microsoft Academic Search

    K.-U. Schildmacher; A. Hoffmann; L. Selle; R. Koch; C. Schulz; H.-J. Bauer; T. Poinsot; W. Krebs; B. Prade

    2007-01-01

    The NOx emissions of heavy duty gas turbines have been significantly reduced by introducing lean premixed combustion. These flames are known to be prone to combustion instabilities. In this paper, investigations of a single model gas turbine burner are presented with focus on thermo-acoustic eigenmodes of the combustor and the resulting interaction between periodic flow field oscillations and flame front

  4. Study of the anomalous acceleration of Pioneer 10 and 11

    E-print Network

    Anderson, J D; Lau, E L; Liu, A S; Nieto, Michael Martin; Turyshev, S G; Anderson, John D.; Laing, Philip A.; Lau, Eunice L.; Liu, Anthony S.; Nieto, Michael Martin; Turyshev, Slava G.

    2002-01-01

    Our previous analyses of radio Doppler and ranging data from distant spacecraft in the solar system indicated that an apparent anomalous acceleration is acting on Pioneer 10 and 11, with supporting data from the Galileo and Ulysses spacecraft. The data implied an anomalous, constant acceleration with a magnitude $a_P \\sim 8\\times 10^{-8}$ cm/s$^2$, directed towards the Sun \\cite{anderson,moriond}. Much effort has been expended looking for possible systematic origins of the residuals. Here we provide a detailed investigation of effects both external to and internal to the spacecraft, as well as those due to modeling and computational techniques. Our analyses strongly suggest that it is difficult to understand how any of these mechanisms can explain the magnitude of the observed behavior of the Pioneer anomaly. We discuss the methods, theoretical models, and experimental techniques used to detect and study small forces acting on interplanetary spacecraft. These include the methods of radio Doppler data collecti...

  5. Support for the Thermal Origin of the Pioneer Anomaly

    NASA Astrophysics Data System (ADS)

    Turyshev, Slava G.; Toth, Viktor T.; Kinsella, Gary; Lee, Siu-Chun; Lok, Shing M.; Ellis, Jordan

    2012-06-01

    We investigate the possibility that the anomalous acceleration of the Pioneer 10 and 11 spacecraft is due to the recoil force associated with an anisotropic emission of thermal radiation off the vehicles. To this end, relying on the project and spacecraft design documentation, we constructed a comprehensive finite-element thermal model of the two spacecraft. Then, we numerically solve thermal conduction and radiation equations using the actual flight telemetry as boundary conditions. We use the results of this model to evaluate the effect of the thermal recoil force on the Pioneer 10 spacecraft at various heliocentric distances. We found that the magnitude, temporal behavior, and direction of the resulting thermal acceleration are all similar to the properties of the observed anomaly. As a novel element of our investigation, we develop a parametrized model for the thermal recoil force and estimate the coefficients of this model independently from navigational Doppler data. We find no statistically significant difference between the two estimates and conclude that, once the thermal recoil force is properly accounted for, no anomalous acceleration remains.

  6. Reinterpreting the Pioneer anomaly and its annual residual

    E-print Network

    Paul G. ten Boom

    2005-05-18

    In addition to its long-term constancy, the Pioneer (spacecraft) anomaly appears to only exist for bodies whose mass is less than that of: planets, moons, comets, and heavy asteroids of known mass. Assuming the observational evidence is reliable, and not the result of an unknown systematic effect, a violation of the Weak Principle of Equivalence is implied. To propose an additional force fails to satisfy this constraint. This paper presents a new hypothesis involving additional field energy in the form of: a finite number of lunar sourced constant amplitude (Lorentz invariant) wave-like undulations upon the gravitational field. Although apparently a futile suggestion, the author's model overcomes concerns regarding wave dissipation, wave generation, and the apparent constancy of the anomaly. A shortfall in motion arises because a tiny proportion of spacecraft kinetic energy is directed into a superposition of non-translational longitudinal oscillatory components. The restriction of this effect to low mass bodies is also addressed. Additionally, the annual residual of the Pioneer anomaly may be attributed to a real 356 day Callisto-Titan wave resonance. This hypothesis may also be readily applied to other solar system anomalies including: the Earth flyby anomaly, an apparent absence of small comets, an apparent paucity of smaller bodies in the Main Belt of asteroids, and residual doubts concerning the migrating planets hypothesis that addresses the too rapid formation of the ice giants Uranus and Neptune.

  7. Low NOx combustion system for heavy oil

    SciTech Connect

    Kurata, Chikatoshi; Sasaki, Hideki

    1999-07-01

    As a result of the increasing demand for white oil as one of countermeasures for pollution control and as a fuel for motor vehicle, coupled with the increasing import of heavy crude oil, heavy oils such as asphalt and distillation residue have become surplus in Japan. It is difficult by the conventional low NOx technology to control the NOx emission from the industrial small and medium capacity boilers, which use heavy oil as their fuels. The authors have been developing and improving NOx control technologies for boilers such as low NOx burners, two-stage combustion methods and so on. They have developed a new combustion system for heavy oil, which generates less NOx and soot than conventional systems, by applying the knowledge, obtained in the course of their development of Coal Partial Combustor (CPC). The conventional low NOx combustion method for oil firing boilers has been developed based on decreasing the flame temperature and delaying the combustion reaction. In the system, however, the heavy oil shall be combusted in the intense reducing atmosphere at the high flame temperature between 1,500 C and 1,600 C, and then the combustions gas shall be cooled and oxidized by two-stage combustion air. With this system, NOx emission can be suppressed below 100ppm (converted as O{sub 2}=4%).

  8. Low No{sub x}/SO{sub x} burner retrofit for utility cyclone boilers. Baseline test report: Issue A

    SciTech Connect

    Moore, K.; Martin, L.; Smith, J.

    1991-05-01

    The Low NO{sub x}/SO{sub x} (LNS) Burner Retrofit for Utility Cyclone Boilers program consists of the retrofit and subsequent demonstration of the technology at Southern Illinois Power Cooperative`s (SIPC`s) 33-MW unit 1 cyclone boiler located near Marion, Illinois. The LNS Burner employs a simple innovative combustion process burning high-sulfur Illinois coal to provide substantial SO{sub 2} and NO{sub x} control within the burner. A complete series of boiler performance and characterization tests, called the baseline tests, was conducted in October 1990 on unit 1 of SIPC`s Marion Station. The primary objective of the baseline test was to collect data from the existing plant that could provide a comparison of performance after the LNS Burner retrofit. These data could confirm the LNS Burner`s SO{sub x} and NO{sub x} emissions control and any effect on boiler operation. Further, these tests would provide to the project experience with the operating characteristics of the host unit as well as engineering design information to minimize technical uncertainties in the application of the LNS Burner technology.

  9. Oil Oil Everywhere

    NSDL National Science Digital Library

    Lisa Cartwright

    2010-01-01

    This lesson plan makes real world connections as students explore the ability to estimate the surface area of an oil spill. The lesson provides surface area information about the 2010 oil spill in the Gulf of Mexico, and gives students opportunities to estimate small oil spills of their own making. This lesson includes two students activity sheets, one fractional amount overhead sheet, assessment and extension suggestions, and questions for reflection.

  10. CONTROL OF POLLUTANT EMISSIONS IN NATURAL GAS DIFFUSION FLAMES BY USING CASCADE BURNERS

    SciTech Connect

    Dr. Ala Qubbaj

    2001-12-30

    The goal of this exploratory research project is to control the pollutant emissions of diffusion flames by modifying the air infusion rate into the flame. The modification was achieved by installing a cascade of venturis around the burning gas jet. The basic idea behind this technique is controlling the stoichiometry of the flame through changing the flow dynamics and rates of mixing in the combustion zone with a set of venturis surrounding the flame. A natural gas jet diffusion flame at burner-exit Reynolds number of 5100 was examined with a set of venturis of specific sizes and spacing arrangement. The thermal and composition fields of the baseline and venturi-cascaded flames were numerically simulated using CFD-ACE+, an advanced computational environment software package. The instantaneous chemistry model was used as the reaction model. The concentration of NO was determined through CFD-POST, a post processing utility program for CFD-ACE+. The numerical results showed that, in the near-burner, midflame and far-burner regions, the venturi-cascaded flame had lower temperature by an average of 13%, 19% and 17%, respectively, and lower CO{sub 2} concentration by 35%, 37% and 32%, respectively, than the baseline flame. An opposite trend was noticed for O{sub 2} concentration; the cascaded flame has higher O{sub 2} concentration by 7%, 26% and 44%, in average values, in the near-burner, mid-flame and far-burner regions, respectively, than in the baseline case. The results also showed that, in the near-burner, mid-flame, and far-burner regions, the venturi-cascaded flame has lower NO concentrations by 89%, 70% and 70%, in average values, respectively, compared to the baseline case. The numerical results substantiate that venturi-cascading is a feasible method for controlling the pollutant emissions of a burning gas jet. In addition, the numerical results were useful to understand the thermo-chemical processes involved. The results showed that the prompt-NO mechanism plays an important role besides the conventional thermal-NO mechanism. The computational results of the present study need to be validated experimentally.

  11. Pioneer Venus 1978 Deep Space Network telecommunications compatibility test program status

    NASA Technical Reports Server (NTRS)

    Bryan, A. I.; Kemp, R. P.

    1978-01-01

    The Pioneer Venus 1978 flight project Deep Space Network telecommunications compatibility test program is discussed. Subsystem design tests performed during April 1977 and November 1977 are described.

  12. Utilization of computational fluid dynamics technique in low NOx burner/furnace retrofits

    SciTech Connect

    Cho, S.M.; Seltzer, A.H.; Ma, J.; Steitz, T.H.; Grusha, J.; Cole, R.W.

    1999-07-01

    A computational fluid dynamics (CFD) technique has been utilized to provide design guidance for retrofitting low NOx combustion systems and incorporating associated furnace modifications into existing utility boilers. The CFD program utilized is FW-FIRES (Fossil fuel, Water-walled Furnace Integrated Reaction and Emission Simulation) which simulates furnace combustion, heat transfer and pollutant formation based on fundamental principals of mass, momentum and energy conservations. The program models the gas flow field as a three-dimensional turbulent reacting continuum and the particle flow as a series of discrete particle trajectories through the gas continuum. Chemical reaction, heat transfer, and pollutant formation mechanisms are incorporated in the program. FW-FIRES furnace simulation of low NOx combustion system retrofits has been performed for various furnace configurations including front wall-fired, front and real wall-fired, and tangentially-fired furnaces, to determine the effects of burner/furnace modifications on the NOx emission, furnace exit gas temperature, furnace heat absorption, unburned carbon, and furnace wall corrosion. For front wall-fired, and front and real wall-fired furnaces, the NOx emission requirement is met by the use of Foster Wheeler lox NOx burners and overfire air (OFA) staging. Studies of burner and OFA quantify and spacing are conducted to limit NOx emission and unburned carbon to acceptable levels. A major concern in once-through supercritical units with OFA is furnace wall corrosion which is caused by high furnace wall metal temperature and corrosive hydrogen sulfide (H{sub 2}S) created in a reducing atmosphere from part of coal sulfur. The FW-FIRES code is used to minimize this corrosion potential by selecting the proper location and quantity of boundary air. A simulation of tangentially-fired unit, which has been retrofitted with low NOx burners, is used to study the effect of the burner tilt on the furnace exit gas temperature. This paper details the basis and results of several CFD analyses conducted for potential retrofit programs.

  13. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect

    Not Available

    1990-01-01

    The objective of this project is to demonstrate the LNS Burner as retrofitted to the host cyclone boiler for effective low-cost control of NO{sub x} and SO{sub x} emissions while firing a bituminous coal. The LNS Burner employs a simple, innovative combustion process to burn pulverized coal at high temperatures and provides effective, low-cost control of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions. The coal ash contains sulfur and is removed in the form of molten slag and flyash. Cyclone-fired boiler units are typically older units firing high-sulfur bituminous coals at very high temperatures which results in very high NO{sub x} and SO{sub x} emissions. The addition of conventional emission control equipment, such as wet scrubbers, to these older cyclone units in order to meet current and future environmental regulations is generally not economic. Further, the units are generally not compatible with low sulfur coal switching for S0{sub 2} control or selective catalytic reduction technologies for NO{sub x} control. Because the LNS Burner operates at the same very high temperatures as a typical cyclone boiler and produces a similar slag product, it may offer a viable retrofit option for cyclone boiler emission control. This was confirmed by the Cyclone Boiler Retrofit Feasibility Study carried out by TransAlta and an Operating Committee formed of cyclone boiler owners in 1989. An existing utility cyclone boiler, was then selected for the evaluation of the cost and performance study. It was concluded that the LNS Burner retrofit would be a cost-effective option for control of cyclone boiler emissions. A full-scale demonstration of the LNS Burner retrofit was selected in October 1988 as part of the DOE's Clean Coal Technology Program Round II.

  14. Occidental vertical modified in situ process for the recovery of oil from oil shale. Phase II. Quarterly progress report, September 1, 1980-November 30, 1980

    SciTech Connect

    Not Available

    1981-01-01

    The major activities at OOSI's Logan Wash site during the quarter were: mining the voids at all levels for Retorts 7 and 8; blasthole drilling; tracer testing MR4; conducting the start-up and burner tests on MR3; continuing the surface facility construction; and conducting Retorts 7 and 8 related Rock Fragmentation tests. Environmental monitoring continued during the quarter, and the data and analyses are discussed. Sandia National Laboratory and Laramie Energy Technology Center (LETC) personnel were active in the DOE support of the MR3 burner and start-up tests. In the last section of this report the final oil inventory for Retort 6 production is detailed. The total oil produced by Retort 6 was 55,696 barrels.

  15. DEVELOPMENT AND DEMONSTRATION OF NOVEL LOW-NOx BURNERS IN THE STEEL INDUSTRY

    SciTech Connect

    Cygan, David

    2006-12-28

    Gas Technology Institute (GTI), together with Hamworthy Peabody Combustion Incorporated (formerly Peabody Engineering Corporation), the University of Utah, and Far West Electrochemical have developed and demonstrated an innovative combustion system suitable for natural gas and coke-oven gas firing within the steel industry. The combustion system is a simple, low-cost, energy-efficient burner that can reduce NOx by more than 75%. The U.S. steel industry needs to address NOx control at its steelmaking facilities. A significant part of NOx emissions comes from gas-fired boilers. In steel plants, byproduct gases – blast furnace gas (BFG) and coke-oven gas (COG) – are widely used together with natural gas to fire furnaces and boilers. In steel plants, natural gas can be fired together with BFG and COG, but, typically, the addition of natural gas raises NOx emissions, which can already be high because of residual fuel-bound nitrogen in COG. The Project Team has applied its expertise in low-NOx burners to lower NOx levels for these applications by combining advanced burner geometry and combustion staging with control strategies tailored to mixtures of natural gas and byproduct fuel gases. These methods reduce all varieties of NOx – thermal NOx produced by high flame temperatures, prompt NOx produced by complex chain reactions involving radical hydrocarbon species and NOx from fuel-bound nitrogen compounds such as ammonia found in COG. The Project Team has expanded GTI’s highly successful low-NOx forced internal recirculation (FIR) burner, previously developed for natural gas-fired boilers, into facilities that utilize BFG and COG. For natural gas firing, these burners have been shown to reduce NOx emissions from typical uncontrolled levels of 80-100 vppm to single-digit levels (9 vppm). This is done without the energy efficiency penalties incurred by alternative NOx control methods, such as external flue gas recirculation (FGR), water injection, and selective non-catalytic reduction. The FIR burner was previously demonstrated on firetube and watertube boilers, and these units are still operating at several industrial and commercial boiler sites in sizes ranging from 2.5 to 60 million Btu/h. This report covers the development of an innovative combustion system suitable for natural gas or coke-oven gas firing within the steel industry. The prototype FIR burner was evaluated on a 20 million Btu/h watertube boiler. Acceptable burner performance was obtained when firing natural gas and simulated coke-oven gas doped with ammonia. The laboratory data reveals a direct relationship between NOx formation and the ammonia concentration in the fuel. In addition, NOx formation increases as the primary stoichiometric ratio (PSR) increases. Representative ammonia concentrations, as documented in the steel industry, ranged from 200 to 500 vppm. When the laboratory burner/boiler was operated with 500 vppm ammonia in the fuel, NOx emissions ranged from 50 to 75 vppm. This, conservatively, is 75% less than state-of-the-art burner performance. When the burner is operated with 200 vppm ammonia in the fuel, the corresponding NOx emissions would range from 30 to 45 vppm, 84% less than present burner technology. During field evaluation on a 174 million Btu/h industrial prototype burner both natural gas and actual COG from on-site generation were tested. Despite the elevated hydrogen cyanide and ammonia content in the COG throughout the test program, the FIR burner showed an improvement over baseline emissions. At full load; 167 million Btu/h, NOx emissions were relatively low at 169 vppm. This represents a 30% reduction compared to baseline emissions not accounting for the higher hydrogen cyanide content in the COG. CO emissions remained below 20 vppm and were stable across the firing range. This represents a 68% reduction compared to baseline CO emissions. When firing natural gas, emissions were stable as firing rate increased over the range. At low fire; 45 million Btu/h, NOx emissions where 33 vppm and increased at full load; 144 million Btu

  16. Frequency synchronization of blue whale calls near Pioneer Seamount.

    PubMed

    Hoffman, Michael D; Garfield, Newell; Bland, Roger W

    2010-07-01

    Vocalizations of blue whales were recorded with a cabled hydrophone array at Pioneer Seamount, 50 miles off the California coast. Most calls occurred in repeated sequences of two-call pairs (A, then B). The B call is a frequency-modulated tone highly repeatable in form and pitch. A model of this sound is described which permits detecting very small frequency shifts. B calls are found to be aligned in frequency to about one part in 180. This requires very fine pitch discrimination and control over calling frequency, and suggests that synchronizing to a common frequency pattern carries some adaptive advantage. Some possibilities for acoustic sensing by whales requiring this fine frequency resolution are discussed. PMID:20649243

  17. A primitive cyanobacterium as pioneer microorganism for terraforming Mars.

    PubMed

    Friedmann, E I; Ocampo-Friedmann, R

    1995-03-01

    The primitive characteristics of the cyanobacterium Chroococcidiopsis suggest that it represents a very ancient type of the group. Its morphology is simple but shows a wide range of variability, and it resembles certain Proterozoic microfossils. Chroococcidiopsis is probably the most desiccation-resistant cyanobacterium, the sole photosynthetic organism in extreme arid habitats. It is also present in a wide range of other extreme environments, from Antarctic rocks to thermal springs and hypersaline habitats, but it is unable to compete with more specialized organisms. Genetic evidence suggests that all forms belong to a single species. Its remarkable tolerance of environmental extremes makes Chroococcidiopsis a prime candidate for use as a pioneer photosynthetic microorganism for terraforming of Mars. The hypolithic microbial growth form (which lives under stones of a desert pavement) could be used as a model for development of technologies for large-scale Martian farming. PMID:11539232

  18. New Horizons and the Onset of the Pioneer Anomaly

    E-print Network

    Nieto, Michael Martin

    2008-01-01

    Analysis of the radio tracking data from the Pioneer 10/11 spacecraft at distances between about 20 - 70 AU from the Sun has indicated the presence of an unmodeled, small, constant, Doppler blue shift which can be interpreted as a constant acceleration of a_P= (8.74 \\pm 1.33) \\times 10^{-8} cm/s^2 directed approximately {\\it towards} the Sun. In addition, there is early (roughly modeled) data from as close in as 5 AU which indicates there may have been an onset of the anomaly near Saturn. We observe that the data now arriving from the New Horizons mission to Pluto and the Kuiper Belt could allow a relatively easy, direct experimental test of whether this onset is associated with distance from the Sun (being, for example, an effect of drag on dark matter). We strongly urge that this test be done.

  19. New Horizons and the Onset of the Pioneer Anomaly

    E-print Network

    Michael Martin Nieto

    2008-01-05

    Analysis of the radio tracking data from the Pioneer 10/11 spacecraft at distances between about 20 - 70 AU from the Sun has indicated the presence of an unmodeled, small, constant, Doppler blue shift which can be interpreted as a constant acceleration of a_P= (8.74 \\pm 1.33) \\times 10^{-8} cm/s^2 directed approximately towards the Sun. In addition, there is early (roughly modeled) data from as close in as 5 AU which indicates there may have been an onset of the anomaly near Saturn. We observe that the data now arriving from the New Horizons mission to Pluto and the Kuiper Belt could allow a relatively easy, direct experimental test of whether this onset is associated with distance from the Sun (being, for example, an effect of drag on dark matter). We strongly urge that this test be done.

  20. Reinterpreting the Pioneer anomaly and its annual residual

    E-print Network

    Boom, P G

    2005-01-01

    In addition to its long-term constancy, the Pioneer spacecraft anomaly appears to only exist for bodies whose mass is less than that of: planets, moons, comets, and heavy asteroids of known mass. Assuming the observational evidence is reliable, and not the result of an unknown systematic effect, a violation of the Weak Principle of Equivalence is implied. To propose an additional force fails to satisfy this constraint. This paper presents a new hypothesis involving additional field energy in the form of: a finite number of lunar sourced constant amplitude (Lorentz invariant) wave-like undulations upon the gravitational field. Although apparently a futile suggestion, the author's model overcomes concerns regarding wave dissipation, wave generation, and the apparent constancy of the anomaly. A shortfall in motion arises because a tiny proportion of spacecraft kinetic energy is directed into a superposition of non-translational longitudinal oscillatory components. The restriction of this effect to low mass bodie...

  1. Pioneers of laser propulsion: Saenger, Marx, Moeckel, and Kantrowitz

    NASA Astrophysics Data System (ADS)

    Michaelis, Max M.; Hey, John D.

    2002-09-01

    The strength of empires and civilizations has often depended on novel forms of transportation: the Viking long boat, the Roman road, Iberian galleons, French and British steam ships, Indian trains, the car of the early twentieth century, the plane of the middle and the rocket of late. But Space has now come up against a barrier: the enormous and barely affordable expense of putting things into orbit and the unaffordable energy required to travel to the stars. The recent advent of very energetic lasers may reduce the cost. The pioneering ideas of the mid sixties appear less fanciful. Laser space propulsion is about to become such an important topic that its scientific origin and engineering roots need to be investigated. This is by no means an exhaustive survey. We review here the laser propulsion work of four eminent experts: Eugen Saenger, George Marx, Wolfgang Moeckel and Arthur Kantrowitz.

  2. An Anzatz about Gravity, Cosmology, and the Pioneer Anomaly

    SciTech Connect

    Murad, Paul [Morningstar Applied Physics Inc., LLC, Vienna, VA 22182 (Austria)

    2010-01-28

    The Pulsar 1913+16 binary system may represent a 'young' binary system where previously it is claimed that the dynamics are due to either a third body or a gravitational vortex. Usually a binary system's trajectory could reside in a single ellipse or circular orbit; the double ellipse implies that the 1913+16 system may be starting to degenerate into a single elliptical trajectory. This could be validated only after a considerably long time period. In a majority of binary star systems, the weights of both stars are claimed by analysis to be the same. It may be feasible that the trajectory of the primary spinning star could demonstrate repulsive gravitational effects where the neutron star's high spin rate induces a repulsive gravitational source term that compensates for inertia. If true, then it provides evidence that angular momentum may be translated into linear momentum as a repulsive source that has propulsion implications. This also suggests mass differences may dictate the neutron star's spin rate as an artifact of a natural gravitational process. Moreover, the reduced matter required by the 'dark' mass hypothesis may not exist but these effects could be due to repulsive gravity residing in rotating celestial bodies.The Pioneer anomaly observed on five different deep-space spacecraft, is the appearance of a constant gravitational force directed toward the sun. Pioneer spacecraft data reveals that a vortex-like magnetic field exists emanating from the sun. The spiral arms of the Sun's magnetic vortex field may be causal to this constant acceleration. This may profoundly provide a possible experimental verification on a cosmic scale of Gertsenshtein's principle relating gravity to electromagnetism. Furthermore, the anomalous acceleration may disappear once the spacecraft passes out into a magnetic spiral furrow, which is something that needs to be observed in the future. Other effects offer an explanation from space-time geometry to the Yarkovsky thermal effects are discussed.

  3. An Array of Photodiodes for Monitoring Hydrocarbons Combustions Burners

    NASA Astrophysics Data System (ADS)

    Arias, P. Luis; Torres, I. Sergio; Sbárbaro, H. Daniel; Farías, F. Oscar

    2008-04-01

    A non-intrusive method for monitoring hydrocarbons, gas and oil flames, is introduced in this paper. The method is based in a radiometry measurement of the flame, which is implemented by using an array of silicon photodiodes with interference optical filters. The array is designed to cover wavelengths for evaluating the formation and behaviour of excited CH* and C2* radicals. These radicals CH* and C2* can be detected at centre wavelengths of 432 nm and 516 nm respectively. The radiometry analysis for monitoring non-confined oil flames was checked by a radiometer, using crosscorrelation data. These radicals are also measured for gas flames in the reaction region for a confined flame. Simple and low cost electronic was designed to drive the array of silicon photodiodes and they were set in an optical system and in a data acquisition system. The tests reported demonstrate that the flame condition can be adequately monitored for different air excess, different axial position as well as for different firing rate. Indeed, experimental test were taken for two power level: low and high firing rate. The fast response, the non-intrusive character and the instantaneous measurement of information make the proposed optical sensor a key to develop advances control strategies, which can be used successfully in combustion processes.

  4. Environmental significance of biocatalytic conversion of low grade oils

    SciTech Connect

    Lin, M.S.; Premuzic, E.T.; Lian, H.; Zhou, W.M.; Yablon, J.

    1996-09-01

    Studies dealing with the interactions between extremophilic microorganisms and crude oils have led to the identification of biocatalysts which through multiple biochemical reactions catalyze desulfurization, denitrogenation, and demetalation reactions in oils. Concurrently, the oils are also converted to lighter oils. These complex biochemical reactions have served as models in the development of the crude oil bioconversion technology to be applied prior to the treatment of oils by conventional chemical processes. In practical terms, this means that the efficiency of the existing technology is being enhanced. For example, the recently introduced additional regulation for the emission of nitrogen oxides in some states restricts further the kinds of oils that may be used in burners. The biocatalysts being developed in this laboratory selectively interact with nitrogen compounds, i.e. basic and neutral types present in the oil and, hence, affect the fuel NOx production. This, in turn, has a cost-efficient influence on the processed oils and their consumption. In this paper, these cost-efficient and beneficial effects will be discussed in terms of produced oils, the lowering of sulfur and nitrogen contents, and the effect on products, as well as the longevity of catalysts due to the removal of heteroatoms and metal containing compounds found in crudes.

  5. The Pioneer anomaly in a bimetric theory of gravity on the brane

    E-print Network

    Bertolami, O

    2003-01-01

    We examine the Pioneer anomaly - a reported anomalous acceleration affecting the Pioneer 10/11, Galileo and Ulysses spacecrafts - in the context of a braneworld and a new bimetric theory of gravity. Implications and the range of such anomaly within this framework are analysed.

  6. Atani Maze-learning Robot Pioneer3DX robot controlled by a

    E-print Network

    Portegys, Thomas E.

    Atani Maze-learning Robot Pioneer3DX robot controlled by a Mona neural network #12;Pioneer3DX robot Simulated with Microsoft Robotics #12;T-maze #12;Robot dashboard Sensors: · Laser range finder : left: · Success (solve maze) · Reward (see reward) Reward: Program behaviors that can be rewarded Controls

  7. Results of the infrared radiometer experiment on Pioneers 10 and 11

    Microsoft Academic Search

    A. P. Ingersoll; G. Muench; G. Neugebauer; G. S. Orton

    1976-01-01

    The infrared radiometers on the Pioneer 10 and 11 spacecraft have mapped Jupiter in two broad spectral channels centered at wavelengths of 20 and 45 microns. Comparison of Pioneer 10 and 11 data and the results of in-flight and laboratory calibrations indicate an absolute accuracy of + or - 8% in the measured intensities. The relative accuracy for comparing different

  8. Controversy in Video Game Invention: The Infallible Pioneer Patents Graham Morgan, Jeffrey K. Lee, Esq

    E-print Network

    Newcastle upon Tyne, University of

    COMPUTING SCIENCE Controversy in Video Game Invention: The Infallible Pioneer Patents Graham Morgan-TR-1173 October, 2009 Controversy in Video Game Invention: The Infallible Pioneer Patents G. Morgan, J. K Patents" associated with the Magnavox Odyssey ­ the first video game console -- have resulted in arguably

  9. Systems design study of the Pioneer Venus spacecraft. Volume 3. Specifications

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Pioneer Venus spacecraft performance requirements are presented. The specifications include: (1) Design criteria and performance requirements for the Pioneer Venus spacecraft systems and subsystems for a 1978 multiprobe mission and a 1978 orbiter mission, spacecraft system interface, and scientific instrument integration.

  10. The "Pioneer effect" as a manifestation of the cosmic expansion in the solar system

    E-print Network

    Jose-Luis Rosales; Jose-Luis Sanchez-Gomez

    1999-05-24

    It is proposed that the recently reported anomalous acceleration acting on the Pioneers spacecrafts should be a consequence of the existence of some local curvature in light geodesics when using the coordinate speed of light in an expanding spacetime. This suggests taht this "Pioneer effect" is nothing else but the detection of cosmological expansion in the solar system.

  11. Results of Pioneer 10 and 11 Meteoroid Experiments: Interplanetary and Near-Saturn

    Microsoft Academic Search

    D. H. Humes

    1980-01-01

    The meteoroid penetration detectors on Pioneer 10 (channel 0) recorded 95 penetrations through the 25-tm stainless steel test material while the spacecraft was between 1 and 18 AU. The spatial density of 10-9g meteoroids is found to be essentially constant between 1 and 18 AU. The meteoroid penetration detectors on Pioneer 11 recorded 87 penetrations (55 on channel 0 and

  12. Spatial and temporal variations of Venus haze properties obtained from Pioneer Venus Orbiter polarimetry

    E-print Network

    Spatial and temporal variations of Venus haze properties obtained from Pioneer Venus Orbiter. [1] The spatial and temporal variations of the polarization of light scattered by Venus, as observed by the Pioneer Venus Orbiter between 1978 and 1990, is analyzed in terms of spatial and temporal variations

  13. Full-scale demonstration of low-NO{sub x} cell{trademark} burner retrofit. Final report

    SciTech Connect

    Eckhart, C.F.; Kitto, J.B.; Kleisley, R.J. [and others

    1994-07-01

    The objective of the Low-NO{sub x} Cell{trademark}Burner (LNCB{trademark}) demonstration is to evaluate the applicability of this technology for reducing NO{sub x} emissions in full-scale, cell burner-equipped boilers. More precisely, the program objectives are to: (1) Achieve at least a 50% reduction in NO{sub x} emissions. (2) Reduce NO{sub x} with no degradation to boiler performance or life of the unit. (3) Demonstrate a technically and economically feasible retrofit technology. Cell burner equipped boilers comprise 13% of the Pre-New Source Performance Standards (NSPS) coal-fired generating capacity. This relates to 34 operating units generating 23,639 MWe, 29 of which are opposed wall fired with two rows of two-nozzle cell burners on each wall. The host site was one of these 29. Dayton Power & Light offered use of J.M. Stuart Station`s Unit No. 4 as the host site. It was equipped with 24, two-nozzle cell burners arranged in an opposed wall configuration. To reduce NO{sub x} emissions, the LNCB{trademark} has been designed to delay the mixing of the fuel and combustion air. The delayed mixing, or staged combustion, reduces the high temperatures normally generated in the flame of a standard cell burner. A key design criterion for the burner was accomplishing delayed fuel-air mixing with no pressure part modifications to facilitate a {open_quotes}plug-in{close_quotes} design. The plug-in design reduces material costs and outage time required to complete the retrofit, compared to installing conventional, internally staged low-NO{sub x} burners.

  14. Computational investigation on two-phase flow in a low NO{sub x} burner

    SciTech Connect

    Xia Zhenhai; Zhang Xinyu; Fan Jianren

    2000-07-01

    Computational investigation on the two-phase turbulent flow in a newly developed rich/lean pulverized coal burner interior is presented in the paper. A stochastic particle dispersion model and a model of particle-wall collision are employed in numerical simulation. Various cases of different particle diameters, positions of the baffle-board and the diaphragm are investigated numerically. The flow characteristics in the burner, such as flow equilibrium between the two sides of the diaphragm, particle distribution, rich/lean concentration ratio and characteristic of resistance are discussed. The paper analyzes the mechanism in the separation process of pulverized coal, and the results not only show agreement with the experimental data, but also have practical value.

  15. Effects of venturi mounting height on combustion characteristics of inshot burners

    SciTech Connect

    Rao, A.V.; Gollahalli, S.R. [Univ. of Oklahoma, Norman, OK (United States). School of Aerospace and Mechanical Engineering

    1998-12-31

    An experimental study of the effects of the height at which the primary-air venturi is mounted relative to the fuel jet in a partially-premixed flame burner used in residential natural gas furnaces (inshot burner) on its flame structure and pollutant emission characteristics is presented. Measurements include primary-air entrainment rate, emission indices of CO and NOx, and in-flame radial profiles of temperature and local concentrations of CO and NOx. An increase in venturi mounting height above the manufacturer-specified standard value increases primary air entrainment by as much as 20%, although the variation was not continuous. The effects of venturi mounting height on the emission indices of NO and NOx is small (5--10%) and again is not systematic. The CO emission index, however shows a continuous increase (up to 10%) with the increase of venturi mounting height.

  16. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect

    Not Available

    1991-09-01

    This Public Design Report provides available nonproprietary design information on the Low NO{sub x}SO{sub x} Burner Retrofit of Utility Cyclone Boilers project. In addition to the design aspects, the history of the project, the organization of the project, and the role of the funding parties are discussed. An overview of the Low NO{sub x}SO{sub x} (LNS) Burner, the cyclone boiler and the Southern Illinois Power Cooperative host site is presented. A detailed nonproprietary description of the individual process steps, plant systems, and resulting performance then follows. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions and requirements are given for each unit. The plant demonstration program and start up provisions, the environmental considerations and control, monitoring and safety factors that are considered are also addressed.

  17. Evaluation of Fluid Conduction and Mixing within a Subassembly of the Actinide Burner Test Reactor

    SciTech Connect

    Cliff B. Davis

    2007-09-01

    The RELAP5-3D code is being considered as a thermal-hydraulic system code to support the development of the sodium-cooled Actinide Burner Test Reactor as part of the Global Nuclear Energy Partnership. An evaluation was performed to determine whether the control system could be used to simulate the effects of non-convective mechanisms of heat transport in the fluid, including axial and radial heat conduction and subchannel mixing, that are not currently represented with internal code models. The evaluation also determined the relative importance of axial and radial heat conduction and fluid mixing on peak cladding temperature for a wide range of steady conditions and during a representative loss-of-flow transient. The evaluation was performed using a RELAP5-3D model of a subassembly in the Experimental Breeder Reactor-II, which was used as a surrogate for the Actinide Burner Test Reactor.

  18. Removal of Tritium from JET Tiles by a Oxygen-Gas Burner

    NASA Astrophysics Data System (ADS)

    Gentile, C. A.; Skinner, C. H.; Langish, S. W.; Ciebiera, L.; Perevezentsev, A.; Efda-JET Workprogramme Contributors Collaboration

    2003-10-01

    An effective method for removing tritium from surface co-deposition layers and in the bulk of JET graphite tiles is required in anticipation of the safe future decommissioning of the JET vacuum vessel, including associated internal components. A technique using an Oxygen-Gas burner for tritium removal is being investigated at PPPL for the UKAEA. The burner is capable of rapidly heating the tile to ˜800^oC and appears to be an efficient and economical method of liberating tritium from co-deposited surfaces and within the bulk. It is expected that this method of tritium removal will remove > 99% of the tritium from the tile. This paper will discuss empirical data collected from these proof of principal experiments.

  19. Performance of laser glazed Zr02 TBCs in cyclic oxidation and corrosion burner test rigs

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1982-01-01

    The performance of laser glazed zirconia thermal barrier coatings (TBCs) was evaluated in cyclic oxidation and cyclic corrosion tests. Plasma sprayed zirconia coatings of two thicknesses were partially melted with a CO2 laser. The power density of the focused laser beam was varied from 35 to 75 W/sq mm, while the scanning speed was about 80 cm per minute. In cyclic oxidation tests, the specimens were heated in a burner rig for 6 minutes and cooled for 3 minutes. It is indicated that the laser treated samples have the same life as the untreated ones. However, in corrosion tests, in which the burner rig flame contained 100 PPM sodium fuel equivalent, the laser treated samples exhibit nearly a fourfold life improvement over that of the reference samples vary. In both tests, the lives of the samples inversely with the thickness of the laser melted layer of zirconia.

  20. Results of initial operation of the Jupiter Oxygen Corporation oxy- fuel 15 MWth burner test facility

    Microsoft Academic Search

    Thomas Ochs; Danylo Oryshchyn; Rigel Woodside; Cathy Summers; Brian Patrick; Dietrich Gross; Mark Schoenfield; Thomas Weber; Dan O’Brien

    2009-01-01

    Jupiter Oxygen Corporation (JOC), in cooperation with the National Energy Technology Laboratory (NETL), constructed a 15 MWth oxy-fuel burner test facility with Integrated Pollutant Removal (IPRTM) to test high flame temperature oxy-fuel combustion and advanced carbon capture. Combustion protocols include baseline air firing with natural gas, oxygen and natural gas firing with and without flue gas recirculation, and oxygen and pulverized

  1. Advanced heat-pipe heat exchanger and microprocessor-based modulating burner controls development

    Microsoft Academic Search

    A. Lowenstein; B. Cohen; S. Feldman; M. Spatz; E. Smith

    1986-01-01

    The development of a novel condensing heat exchanger, a modulating gas burner, and a zone-controlled residential warm-air heating system is described. The condensing heat exchanger uses ten thermosyphons which are manifolded at both the condenser and evaporator ends to achieve a compact low-cost design. Initial tests have demonstrated a + 92 percent steady-state efficiency for a conventional clamshell furnace operating

  2. Coal Particle Flow Patterns for O2 Enriched, Low NOx Burners

    SciTech Connect

    Jennifer Sinclair Curtis

    2005-08-01

    This project involved a systematic investigation examining the effect of near-flame burner aerodynamics on standoff distance and stability of turbulent diffusion flames and the resultant NO{sub x} emissions from actual pulverized coal diffusion flames. Specifically, the scope of the project was to understand how changes in near-flame aerodynamics and transport air oxygen partial pressure can influence flame attachment and coal ignition, two properties essential to proper operation of low NO{sub x} burners. Results from this investigation utilized a new 2M tall, 0.5m in diameter combustor designed to evaluate near-flame combustion aerodynamics in terms of transport air oxygen partial pressure (Po{sub 2}), coal fines content, primary fuel and secondary air velocities, and furnace wall temperature furnish insight into fundamental processes that occur during combustion of pulverized coal in practical systems. Complementary cold flow studies were conducted in a geometrically similar chamber to analyze the detailed motion of the gas and particles using laser Doppler velocimetry. This final technical report summarizes the key findings from our investigation into coal particle flow patterns in burners. Specifically, we focused on the effects of oxygen enrichment, the effect of fines, and the effect of the nozzle velocity ratio on the resulting flow patterns. In the cold flow studies, detailed measurements using laser Doppler velocimetry (LDV) were made to determine the details of the flow. In the hot flow studies, observations of flame stability and measurements of NO{sub x} were made to determine the effects of the flow patterns on burner operation.

  3. The SITE Demonstration of the American Combustion Pyretron Oxygen-enhanced Burner

    Microsoft Academic Search

    Laurel J. Staley; Robert E. Mournighan

    1989-01-01

    A demonstration of the American Combustion Pyretron ™ oxygen-enhanced burner was conducted under the Superfund Innovative Technology Evaluation (SITE) program. The Demonstration was conducted at the U.S. EPA’s Combustion Research Facility (CRF) in Jefferson, Arkansas. An eight week test series was conducted which involved burning a mixture of listed waste KO87 with contaminated soil from the Stringfellow Acid Pits under

  4. Cup-burner flame extinguishment by CF 3Br and Br 2

    Microsoft Academic Search

    Gregory T. Linteris; Fumiaki Takahashi; Viswanath R. Katta

    2007-01-01

    Experiments and calculations have been performed for a methane–air coflow diffusion flame, in the cup-burner configuration, with CF3Br or Br2 added to the air stream. The time-dependent, two-dimensional numerical code, which includes a detailed kinetic model and diffusive transport, has predicted the flame extinction within 4 or 8% for each. Analysis of the flame structure has allowed the mechanisms of

  5. Preliminary core design studies for the advanced burner reactor over a wide range of conversion ratios

    Microsoft Academic Search

    E. A. Hoffman; W. S. Yang; R. N. Hill

    2008-01-01

    A consistent set of designs for 1000 MWt commercial-scale sodium-cooled Advance Burner Reactors (ABR) have been developed for both metal and oxide-fueled cores with conversion ratios from breakeven (CR=1.0) to fertile-free (CR=0.0). These designs are expected to satisfy thermal and irradiation damage limits based on the currently available data. The very low conversion ratio designs require fuel that is beyond

  6. Optimization of Coal Particle Flow Patterns in Low N0x Burners

    SciTech Connect

    Caner Yurteri; Gregory E. Ogden; Jennifer Sinclair; Jost O.L. Wendt

    1998-03-06

    The proposed research is directed at evaluating the effect of flame aerodynamics on NOX emissions tlom coal fired burners in a systematic manner. This fimdamental research includes both experimental and modeling efforts being petiormed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NOX burners to the kinetic emissions limit (below 0.2 lb./MMBTU). Experimental studies include both cold and hot flow evaluations of the following parameters: flame holder geometry, secondary air swirl, primary and secondary inlet air velocity, coal concentration in the primary air and coal particle size distribution. Hot flow experiments will also evaluate the effect of wall temperature on burner performance. Cold flow studies will be conducted with surrogate particles as well as pulverized coal. The cold flow furnace will be similar in size and geometry to the hot-flow furnace but will be designed to use a laser Doppler velocimeter/phase Doppler particle size analyzer. The results of these studies will be used to predict particle trajectories in the hot-flow fhrnace as well as to estimate the effect of flame holder geometry on furnace flow field. The hot-flow experiments will be conducted in a novel near-flame down-flow pulverized coal furnace. The fhrnace will be equipped with externally heated walls. Both reactors will be sized to minimize wall effects on particle flow fields. The cold-flow results will be compared with Fluent computation fluid dynamics model predictions and correlated with the hot-flow results with the overall goal of providing insight for novel low NOX burner geometry's.

  7. Numerical simulation of self-excited combustion oscillations in a non-premixed burner

    Microsoft Academic Search

    C.-C. Hantschk; D. Vortmeyer

    2002-01-01

    Self-excited combustion oscillations or instabilities in combustion chambers are generated by periodical and feedback interactions between flow, acoustics, and the heat released by combustion. As a consequence, pressure pulsation with high amplitudes may arise, leading to substantial noise and, sometimes, to mechanical and\\/or thermal damage for the combustion system concerned. Self-excited oscillations in a nonpremixed burner were numerically simulated, based

  8. Central recirculation zone analysis in an unconfined tangential swirl burner with varying degrees of premixing

    Microsoft Academic Search

    A. Valera-Medina; N. Syred; P. Kay; A. Griffiths

    2011-01-01

    Swirl-stabilised combustion is one of the most widely used techniques for flame stabilisation, uses ranging from gas turbine\\u000a combustors to pulverised coal-fired power stations. In gas turbines, lean premixed systems are of especial importance, giving\\u000a the ability to produce low NOx systems coupled with wide stability limits. The common element is the swirl burner, which depends\\u000a on the generation of

  9. Advancement of Cellular Ceramics Made of Silicon Carbide for Burner Applications

    Microsoft Academic Search

    Alexander Fuessel; Hagen Klemm; Daniela Boettge; Felix Marschallek; Joerg Adler; Alexander Michaelis

    2011-01-01

    Lower emissions of CO and NOx as well as a higher power density were observed in combustion processes performed in porous media like ceramic foams. Only a few materials are applicable for porous burners. Open-celled ceramic foams made of silicon carbide are of particular interest because of their outstanding properties. Two different SiC materials have been investigated, silicon-infiltrated silicon carbide

  10. Burning rates of two cast nitramine explosives using a hybrid closed bomb-strand burner

    Microsoft Academic Search

    W. C. Tao; M. S. Costantino; D. L. Ornellas

    1989-01-01

    The burn rate of two HMX-based cast explosives, RX-08-EL and RX-40-AP, is measured to pressures above 650 MPa using a hybrid closed bomb-strand burner. The hybrid design allows the simultaneous measurement of pressure and regression rate, in each experiment, over a large range of pressures. RX-08-EL is a high performance extrusion cast explosive with low sensitivity, and RX-40-AP is a

  11. Measurements of non-reacting and reacting flow fields of a liquid swirl flame burner

    NASA Astrophysics Data System (ADS)

    Chong, Cheng Tung; Hochgreb, Simone

    2015-03-01

    The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device. Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a 2-D particle imaging velocimetry(PIV) system. The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions, i.e., with and without the combustor wall. The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions. The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume. The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow. Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet, where the radial velocity components increase for both open and confined environment. Under reacting condition, the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity. The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants. The flow field data can be used as validation target for swirl combustion modelling.

  12. Numerical investigation of premixed combustion in a porous burner with integrated heat exchanger

    NASA Astrophysics Data System (ADS)

    Farzaneh, Meisam; Shafiey, Mohammad; Ebrahimi, Reza; Shams, Mehrzad

    2012-07-01

    In this paper, we perform a numerical analysis of a two-dimensional axisymmetric problem arising in premixed combustion in a porous burner with integrated heat exchanger. The physical domain consists of two zones, porous and heat exchanger zones. Two dimensional Navier-Stokes equations, gas and solid energy equations, and chemical species transport equations are solved and heat release is described by a multistep kinetics mechanism. The solid matrix is modeled as a gray medium, and the finite volume method is used to solve the radiative transfer equation to calculate the local radiation source/sink in the solid phase energy equation. Special attention is given to model heat transfer between the hot gas and the heat exchanger tube. Thus, the corresponding terms are added to the energy equations of the flow and the solid matrix. Gas and solid temperature profiles and species mole fractions on the burner centerline, predicted 2D temperature fields, species concentrations and streamlines are presented. Calculated results for temperature profiles are compared to experimental data. It is shown that there is good agreement between the numerical solutions and the experimental data and it is concluded that the developed numerical program is an excellent tool to investigate combustion in porous burner.

  13. Large eddy simulation of forced ignition of an annular bluff-body burner

    SciTech Connect

    Subramanian, V.; Domingo, P.; Vervisch, L. [CORIA-CNRS and INSA de Rouen, Technopole du Madrillet, BP 8, 76801 Saint-Etienne-du-Rouvray (France)

    2010-03-15

    The optimization of the ignition process is a crucial issue in the design of many combustion systems. Large eddy simulation (LES) of a conical shaped bluff-body turbulent nonpremixed burner has been performed to study the impact of spark location on ignition success. This burner was experimentally investigated by Ahmed et al. [Combust. Flame 151 (2007) 366-385]. The present work focuses on the case without swirl, for which detailed measurements are available. First, cold-flow measurements of velocities and mixture fractions are compared with their LES counterparts, to assess the prediction capabilities of simulations in terms of flow and turbulent mixing. Time histories of velocities and mixture fractions are recorded at selected spots, to probe the resolved probability density function (pdf) of flow variables, in an attempt to reproduce, from the knowledge of LES-resolved instantaneous flow conditions, the experimentally observed reasons for success or failure of spark ignition. A flammability map is also constructed from the resolved mixture fraction pdf and compared with its experimental counterpart. LES of forced ignition is then performed using flamelet fully detailed tabulated chemistry combined with presumed pdfs. Various scenarios of flame kernel development are analyzed and correlated with typical flow conditions observed in this burner. The correlations between, velocities and mixture fraction values at the sparking time and the success or failure of ignition, are then further discussed and analyzed. (author)

  14. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    SciTech Connect

    None

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NO, reduction (70VO) could be achieved. Sponsors of the project included the U.S. Depatiment of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was petformed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado bituminous, low-sulfur coal. It had a baseline NO, emission level of 0.73 lb/1 OG Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50Y0. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NO, in the flue gas by staged fuel combustion. This technology involves the introduction of' natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NO, emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 18%. The performance goal of 70/40 reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18%.

  15. Hermann Karsten, pioneer of geologic mapping in northwestern South America

    NASA Astrophysics Data System (ADS)

    Aalto, K. R.

    2015-06-01

    In the late 19th century, a regional map of Nueva Granada (present-day Colombia, Panama and parts of Venezuela and Ecuador) was published by German botanist and geologist Hermann Karsten (1817-1908). Karsten's work was incorporated by Agustín Codazzi (1793-1859), an Italian who emigrated to Venezuela and Colombia to serve as a government cartographer and geographer, in his popular Atlas geográfico e histórico de la Republica de Colombia (1889). Geologic mapping and most observations provided in this 1889 atlas were taken from Karsten's Géologie de l'ancienne Colombie bolivarienne: Vénézuela, Nouvelle-Grenade et Ecuador (1886), as cited by Manual Paz and/or Felipe Pérez, who edited this edition of the atlas. Karsten defined four epochs in Earth history: Primera - without life - primary crystalline rocks, Segunda - with only marine life - chiefly sedimentary rocks, Tercera - with terrestrial quadrupeds and fresh water life forms life - chiefly sedimentary rocks, and Cuarta - mankind appears, includes diluvial (glacigenic) and post-diluvial terranes. He noted that Colombia is composed of chiefly of Quaternary, Tertiary and Cretaceous plutonic, volcanic and sedimentary rocks, and that Earth's internal heat (calor central) accounted, by escape of inner gases, for volcanism, seismicity and uplift of mountains. Karsten's regional mapping and interpretation thus constitutes the primary source and ultimate pioneering geologic research.

  16. Noel T. Keen--pioneer leader in molecular plant pathology.

    PubMed

    Collmer, Alan; Gold, Scott

    2007-01-01

    Noel T. Keen (1940-2002) made pioneering contributions to molecular plant pathology during a period when the study of disease mechanisms was transformed by the new tools of molecular genetics. His primary contributions involved race-specific elicitors of plant defenses and bacterial pectic enzymes. In collaboration with Brian J. Staskawicz and Frances Jurnak, respectively, Noel cloned the first avirulence gene and determined that pectate lyase C possessed a novel structural motif, known as the parallel beta-helix. Noel received his B.S. and M.S. from Iowa State University in Ames and his Ph.D. from the Department of Plant Pathology at the University of Wisconsin in Madison in 1968. He joined the faculty of the Department of Plant Pathology at the University of California at Riverside the same year and remained there his entire career. He served as Chair of the department from 1983 to 1989 and in 1997 assumed the William and Sue Johnson Endowed Chair in Molecular Plant Pathology. He became a Fellow of the American Phytopathological Society in 1991, a Fellow of the American Association for the Advancement of Science in 1996, a Fellow of the American Academy of Microbiology in 1997, and a member of the National Academy of Sciences in 1997. He was serving as President of the American Phytopathological Society (2001-2002) at the time of his death. PMID:17459000

  17. Ira Maximilian Altshuler: psychiatrist and pioneer music therapist.

    PubMed

    Davis, William B

    2003-01-01

    The purpose of this study was to examine the life of Ira Maximilian Altshuler, psychiatrist and pioneer music therapist. In 1938, Dr. Altshuler initiated one of the first large-scale music therapy programs for mentally ill persons in the country at Detroit's Eloise Hospital. His innovative programs combined psychoanalytic techniques and music therapy methods specifically designed for use with large groups of clients. He later trained some of the first music therapy interns in the country, including Carol Collins, who served for many years as Professor of Music Therapy at Wayne State University, and Esther Goetz Gilliland, who later became President of NAMT. Dr. Altshuler promoted the practice and profession tirelessly, speaking to numerous audiences over the years and writing 19 articles about music therapy. Altshuler participated in the National Association for Music Therapy (NAMT) organizational meeting held in New York City in 1950. An active member of the organization for many years, he served on the Research Committee and hosted the 1955 national NAMT conference in Detroit. Even after Altshuler's retirement from Eloise Hospital in 1963, he remained active in numerous civic, music, and music therapy activities until his death 5 year later. Ira Altshuler should be remembered along with other music therapists from the time-Willem Van de Wall, Harriet Ayer Seymour and others-who vigorously embraced and advanced the status of the profession. PMID:14567731

  18. The monopropellant hydrazine propulsion subsystem for the Pioneer Venus spacecraft

    NASA Technical Reports Server (NTRS)

    Barker, F. C.

    1979-01-01

    The Pioneer Venus Orbiter and the Multiprobe spacecraft propulsion subsystems and their performance are presented. Monopropellant hydrazine subsystems on each spacecraft provided the capability to spin up the spacecraft after separation and perform all spin rate, velocity, and attitude changes required by the control subsystem to satisfy mission objectives. The propulsion subsystem provides thrust on demand by supplying anhydrous hydrazine from the propellant tanks through manifolds, filters and valves to the thrust chamber assemblies where the hydrazine is catalytically decomposed and expanded in a conical nozzle. The subsystems consist of seven 1 lbf thrusters for the Orbiter and six 1 lbf thrusters for the multiprobe which are isolated by two latch valves from the two propellant tanks so that two redundant thruster clusters are provided to ensure mission completion in the event of a single point failure. The propellant feed system is of all-welded construction to minimize weight and leakage and titanium is used as the primary material of construction. The multiprobe burned up on entering the Venus atmosphere with enough propellant left for the mission and the Orbiter was inserted into Venus orbit with enough propellant remaining for more than 2 earth years of orbital operations.

  19. Oil Spill!

    ERIC Educational Resources Information Center

    Ansberry, Karen Rohrich; Morgan, Emily

    2005-01-01

    An oil spill occurs somewhere in the world almost every day of the year, and the consequences can be devastating. In this month's column, students explore the effects of oil spills on plants, animals, and the environment and investigate oil spill clean-up methods through a simulated oil spill. The activities described in this article give students…

  20. Oil Spills

    MedlinePLUS

    ... Deepwater Horizon/BP oil spill in 2010. (NOAA) Oil Spills During an oil spill in coastal waters, OR&R 's role is to ... Students and teachers can find a variety of oil spill-related educational resources in our Education section . For ...

  1. Theodor Meyer--Lost pioneer of gas dynamics Gary S. Settles a,, Egon Krause b

    E-print Network

    Settles, Gary S.

    , dissertation, World War I combat service and long career as an engineer and a teacher of math and physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 4. World War I and the Gas Pioneers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 6. After World War I

  2. TRANSCRIPTION. Recruitment of RNA polymerase II by the pioneer transcription factor PHA-4.

    PubMed

    Hsu, H-T; Chen, H-M; Yang, Z; Wang, J; Lee, N K; Burger, A; Zaret, K; Liu, T; Levine, E; Mango, S E

    2015-06-19

    Pioneer transcription factors initiate cell-fate changes by binding to silent target genes. They are among the first factors to bind key regulatory sites and facilitate chromatin opening. Here, we identify an additional role for pioneer factors. In early Caenorhabditis elegans foregut development, the pioneer factor PHA-4/FoxA binds promoters and recruits RNA polymerase II (Pol II), often in a poised configuration in which Pol II accumulates near transcription start sites. At a later developmental stage, PHA-4 promotes chromatin opening. We found many more genes with poised RNA polymerase than had been observed previously in unstaged embryos, revealing that early embryos accumulate poised Pol II and that poising is dynamic. Our results suggest that Pol II recruitment, in addition to chromatin opening, is an important feature of PHA-4 pioneer factor activity. PMID:26089518

  3. Nuclear Medicine at Berkeley Lab: From Pioneering Beginnings to Today (LBNL Summer Lecture Series)

    SciTech Connect

    Budinger, Thomas [LBNL, Center for Functional Imaging

    2006-07-05

    Summer Lecture Series 2006: Thomas Budinger, head of Berkeley Lab's Center for Functional Imaging, discusses Berkeley Lab's rich history pioneering the field of nuclear medicine, from radioisotopes to medical imaging.

  4. R-Cadherin Is a Pax6-Regulated, Growth-Promoting Cue for Pioneer Axons

    PubMed Central

    Andrews, Gracie L.; Mastick, Grant S.

    2007-01-01

    The transcription factor Pax6 has been implicated in two processes that may be related in brain development: establishment of regional cell adhesion properties and axon guidance. In Pax6 mutant mouse embryos, forebrain pioneer axons make pathfinding errors. These errors occur in a region of the ventral thalamus in which the expression of the cell adhesion molecule R-cadherin (Cdh4) is lost in Pax6 mutants. In vitro, an R-cadherin substrate promoted pioneer axon outgrowth. Furthermore, pioneer axon outgrowth was rescued in vivo by selective replacement of R-cadherin by electroporation into cultured Pax6 mutant embryos. Thus, these studies implicate Pax6 as an early brain patterning gene that establishes regional adhesive codes to guide pioneer axons. PMID:14586016

  5. Modified Gravitational Theory and the Pioneer 10 and 11 Spacecraft Anomalous Acceleration

    Microsoft Academic Search

    J. W. Moffat

    2004-01-01

    The nonsymmetric gravitational theory leads to a modified acceleration law\\u000athat can at intermediate distance ranges account for the anomalous acceleration\\u000aexperienced by the Pioneer 10 and 11 spacecraft.

  6. Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming.

    PubMed

    Soufi, Abdenour; Garcia, Meilin Fernandez; Jaroszewicz, Artur; Osman, Nebiyu; Pellegrini, Matteo; Zaret, Kenneth S

    2015-04-23

    Pioneer transcription factors (TFs) access silent chromatin and initiate cell-fate changes, using diverse types of DNA binding domains (DBDs). FoxA, the paradigm pioneer TF, has a winged helix DBD that resembles linker histone and thereby binds its target sites on nucleosomes and in compacted chromatin. Herein, we compare the nucleosome and chromatin targeting activities of Oct4 (POU DBD), Sox2 (HMG box DBD), Klf4 (zinc finger DBD), and c-Myc (bHLH DBD), which together reprogram somatic cells to pluripotency. Purified Oct4, Sox2, and Klf4 proteins can bind nucleosomes in vitro, and in vivo they preferentially target silent sites enriched for nucleosomes. Pioneer activity relates simply to the ability of a given DBD to target partial motifs displayed on the nucleosome surface. Such partial motif recognition can occur by coordinate binding between factors. Our findings provide insight into how pioneer factors can target naive chromatin sites. PMID:25892221

  7. A mission to test the Pioneer anomaly: estimating the main systematic effects

    E-print Network

    O. Bertolami; J. Paramos

    2007-06-20

    We estimate the main systematic effects relevant in a mission to test and characterize the Pioneer anomaly through the flight formation concept, by launching probing spheres from a mother spacecraft and tracking their motion via laser ranging.

  8. March 2010 Volume IV, Issue 6The Pioneer Newsletter is brought to you by the students,

    E-print Network

    Weitz, Joshua S.

    -Health Professions 3333 Arthritis Simulation Gloves Aid Design Of Easy-To-Use Products 4444 Interning in Ireland Zach professors, and eager students, we have a culture. The Pioneer not only strives to communi- cate this culture

  9. Karl Kleist (1879-1960)- a pioneer of neuropsychiatry.

    PubMed

    Neumärker, Klaus-Jürgen; Bartsch, Andreas Joachim

    2003-12-01

    Karl Kleist (1879-1960) was instrumental in pioneering German neuropsychiatry and neuropsychology, including the description of frontal, constructional, limb-kinetic (innervatory) and psychomotor apraxias, frontal akinesia and aspontaneity, as well as object and form blindness. Besides isolating episodic twilight states, involutional paranoia and symptomatic (especially influenza) psychoses, he was particularly involved in applying Wernicke's syndromatic and Kraepelin's prognostic and aetiological principles to classify "neurogenous" psychoses by refuting the assumption of mixed entities whenever possible. Thus, has phasophrenias denoted manic-depressive illness, unipolar affective disorders and marginal, i.e., atypical psychoses. The rather benign cycloid psychoses form the most prominent examples of the latter. Schizophrenias, on the other hand, were limited to poor long-term catamnestic outcomes. Kleist conceptualized the core group of schizophrenic illness as psychic system diseases-hence the origin of the term "systematic schizophrenias" within the Wernicke-Kleist-Leonhard School. Kleist was mainly influenced by Wernicke and his psychic reflex arc, but Ernst Mach's empiriocriticism, Theodor Meynert's cerebral connectionism, and associationism also shaped his outlook. Kleist's localization of cerebral functions by lesion analyses was indeed the best available at the time and continues to reveal insights to the interested reader. From his Frankfurt School, which may have been the last of a completely unified neuropsychiatry, came sound representatives of psychiatry, neurology and neurosurgery. His technical mastery and achievements seem indisputable, but his balancing acts during the Third Reich may today be questioned. Despite joining the National Socialist German Workers' Party (NSDAP) and the local Court of Genealogical Health (Erbgesundheitsgericht), Kleist was, however, one of the few German physicians who continued to treat Jewish patients, to employ Jewish colleagues and to voice evident criticism of the policies of "eugenics" and "euthanasia". This paper attempts to illuminate Kleist's biography and life's work in the relevant historical context. PMID:14740633

  10. Research on combustion processes relevant to burners in hvac systems. Annual report, July 1, 1991-June 30, 1992

    SciTech Connect

    Gollahalli, S.R.

    1992-10-15

    An experimental investigation of the application of noncircular fuel nozzles and primary-air venturis in the inshot burners of residential natural gas heating systems is presented. Experiments were conducted in a laboratory combustion chamber and a full-scale furnace from an HVAC unit. The effects of using noncircular geometries for fuel-nozzles and venturi-inlets on primary-air entrainment have been studied. Emission indices of NOx, NO, and CO of the burners fitted with elliptic and rectangular nozzles and elliptic primary-air venturi inlets are compared with the emission indices of a standard burner having a circular nozzle and a circular venturi inlet. An increase up to 30% in primary air entrainment, a decrease up to 20% in the NOx emission index, and a decrease up to 40% in the CO emission index were noted when noncircular nozzles and venturis were used in a standard burner. The results do not show a systematic dependence on variables such as aspect ratio, primary-air port area, and venturi mounting height. The emission indices measured in the full-scale furnace with a standard burner agree well with the previously reported results. Further testing in a full-scale furnace is in progress.

  11. Quantitative measurement of soot particle size distribution in premixed flames - The burner-stabilized stagnation flame approach

    SciTech Connect

    Abid, Aamir D.; Camacho, Joaquin; Sheen, David A.; Wang, Hai [Aerospace and Mechanical Engineering Department, University of Southern California, Los Angeles, CA 90089 (United States)

    2009-10-15

    A burner-stabilized, stagnation flame technique is introduced. In this technique, a previously developed sampling probe is combined with a water-cooled circular plate such that the combination simultaneously acts as a flow stagnation surface and soot sample probe for mobility particle sizing. The technique allows for a rigorous definition of the boundary conditions of the flame with probe intrusion and enables less ambiguous comparison between experiment and model. Tests on a 16.3% ethylene-23.7% oxygen-argon flame at atmospheric pressure show that with the boundary temperatures of the burner and stagnation surfaces accurately determined, the entire temperature field may be reproduced by pseudo one-dimensional stagnation reacting flow simulation using these temperature values as the input boundary conditions. Soot particle size distribution functions were determined for the burner-stabilized, stagnation flame at several burner-to-stagnation surface separations. It was found that the tubular probe developed earlier perturbs the flow and flame temperature in a way which is better described by a one-dimensional stagnation reacting flow than by a burner-stabilized flame free of probe intrusion. (author)

  12. Flow field and thermal characteristics in a model of a tangentially fired furnace under different conditions of burner tripping

    NASA Astrophysics Data System (ADS)

    Habib, M. A.; Ben-Mansour, R.; Antar, M. A.

    2005-08-01

    Tangentially fired furnaces are vortex-combustion units and are widely used in steam generators of industrial plants. The present study provides a numerical investigation of the problem of turbulent reacting flows in a model furnace of a tangentially fired boiler. The importance of this problem is mainly due to its relation to large boiler furnaces used in thermal power plants. In the present work, calculation of the flow field, temperature and species concentration-contour maps in a tangentially-fired model furnace are provided. The safety of these furnaces requires that the burner be tripped (its fuel is cut off) if the flame is extinguished. Therefore, the present work provides an investigation of the influence of number of tripped burners on the characteristics of the flow and thermal fields. The details of the flow, thermal and combustion fields are obtained from the solution of the conservation equations of mass, momentum and energy and transport equations for scalar variables in addition to the equations of the turbulence model. Available experimental measurements were used for validating the calculation procedure. The results show that the vortex created due to pressure gradient at the furnace center only influenced by tripping at least two burners. However, the temperature distributions are significantly distorted by tripping any of the burners. Regions of very high temperature close to the furnace walls appear as a result of tripping the fuel in one or two of the burners. Calculated heat flux along the furnace walls are presented.

  13. Can the Pioneer anomaly be of gravita- tional origin? A phenomenological answer

    Microsoft Academic Search

    Lorenzo Iorio

    In order to satisfy the equivalence principle, any non-conventional mechanism proposed to gravitationally explain the Pioneer anomaly, in the form in which it is presently known from the so-far analyzed Pioneer 10\\/11 data, cannot leave out of consideration its impact on the motion of the planets of the Solar System as well, especially those orbiting in the regions in which

  14. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    SciTech Connect

    None

    1998-09-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, especially NOX. The project involved operating gas reburning technology combined with low NO, burner technology (GR-LNB) on a coal-fired utility boiler. Low NOX burners are designed to create less NOX than conventional burners. However, the NO, control achieved is in the range of 30-60-40, and typically 50%. At the higher NO, reduction levels, CO emissions tend to be higher than acceptable standards. Gas Reburning (GR) is designed to reduce the level of NO. in the flue gas by staged fuel combustion. When combined, GR and LNBs work in harmony to both minimize NOX emissions and maintain an acceptable level of CO emissions. The demonstration was performed at Public Service Company of Colorado's (PSCO) Cherokee Unit 3, located in Denver, Colorado. This unit is a 172 MW. wall-fired boiler that uses Colorado bituminous, low-sulfur coal and had a pre GR-LNB baseline NOX emission of 0.73 lb/1 Oe Btu. The target for the project was a reduction of 70 percent in NOX emissions. Project sponsors included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation (EER). EER conducted a comprehensive test demonstration program over a wide range of boiler conditions. Over 4,000 hours of operation were achieved. Intensive measurements were taken to quantify the reductions in NOX emissions, the impact on boiler equipment and operability, and all factors influencing costs. The results showed that GR-LNB technology achieved excellent emission reductions. Although the performance of the low NOX burners (supplied by others) was somewhat less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 180A. The performance goal of 70% reduction was met on many test runs, but at higher gas heat inputs. The impact on boiler equipment was determined to be very minimal. Toward the end of the testing, the flue gas recirculation (used to enhance gas penetration into the furnace) system was removed and new high pressure gas injectors were installed. Further, the low NOX burners were modified and gave better NO. reduction performance. These modifications resulted in a similar NO, reduction performance (64%) at a reduced level of gas heat input (-13Yo). In addition, the OFA injectors were re-designed to provide for better control of CO emissions. Although not a part of this project, the use of natural gas as the primary fuel with gas reburning was also tested. The gas/gas reburning tests demonstrated a reduction in NOX emissions of 43% (0.30 lb/1 OG Btu reduced to 0.17 lb/1 OG Btu) using 7% gas heat input. Economics are a key issue affecting technology development. Application of GR-LNB requires modifications to existing power plant equipment and as a result, the capital and operating costs depend largely on site-specific factors such as: gas availability at the site, gas to coal delivered price differential, sulfur dioxide removal requirements, windbox pressure, existing burner throat diameters, and reburn zone residence time available. Based on the results of this CCT project, EER expects that most GR-LNB installations will achieve at least 60% NOX control when firing 10-15% gas. The capital cost estimate for installing a GR-LNB system on a 300 MW, unit is approximately $25/kW. plus the cost of a gas pipeline (if required). Operating costs are almost entirely related to the differential cost of the natural gas compared to coal.

  15. Central recirculation zone analysis in an unconfined tangential swirl burner with varying degrees of premixing

    NASA Astrophysics Data System (ADS)

    Valera-Medina, A.; Syred, N.; Kay, P.; Griffiths, A.

    2011-06-01

    Swirl-stabilised combustion is one of the most widely used techniques for flame stabilisation, uses ranging from gas turbine combustors to pulverised coal-fired power stations. In gas turbines, lean premixed systems are of especial importance, giving the ability to produce low NOx systems coupled with wide stability limits. The common element is the swirl burner, which depends on the generation of an aerodynamically formed central recirculation zone (CRZ) and which serves to recycle heat and active chemical species to the root of the flame as well as providing low-velocity regions where the flame speed can match the local flow velocity. Enhanced mixing in and around the CRZ is another beneficial feature. The structure of the CRZ and hence that of the associated flames, stabilisation and mixing processes have shown to be extremely complex, three-dimensional and time dependent. The characteristics of the CRZ depend very strongly on the level of swirl (swirl number), burner configuration, type of flow expansion, Reynolds number (i.e. flowrate) and equivalence ratio. Although numerical methods have had some success when compared to experimental results, the models still have difficulties at medium to high swirl levels, with complex geometries and varied equivalence ratios. This study thus focuses on experimental results obtained to characterise the CRZ formed under varied combustion conditions with different geometries and some variation of swirl number in a generic swirl burner. CRZ behaviour has similarities to the equivalent isothermal state, but is strongly dependent on equivalence ratio, with interesting effects occurring with a high-velocity fuel injector. Partial premixing and combustion cause more substantive changes to the CRZ than pure diffusive combustion.

  16. Concept of application of signals from fiber optic system for flame monitoring to control separate pulverized coal burner

    NASA Astrophysics Data System (ADS)

    Wojcik, Waldemar; Golec, Tomasz; Kotyra, Andrzej; Smolarz, Andrzej; Komada, Pawel; Kalita, M.

    2004-07-01

    Burning pulverized coal in power boilers causes considerable emission of atmospheric pollution. In order to decrease it the combustion process itself has been modified, however at cost of side effects like: increased level of unburned coal particles in the ashes. There are tens of burners in a single power boiler and emission level measurements are made in flue gas duct, so the control based on such averaged and heavily delayed values often results ineffective. The neural controller of the pulverized coal burner attempts to resolve these problems. The clue is utilization of fiber-optic system for monitoring of chosen zone of flame developed in Department of Electronics of Technical University of Lublin. The article contains description of controlled system and optical fiber measurement system, an idea of the controller as well as some results obtained for experimental burner.

  17. COAL PARTICLE FLOW PATTERNS FOR O2 ENRICHED, LOW NOx BURNERS

    SciTech Connect

    Jennifer L. Sinclair

    2001-09-30

    Over the past year, the hot flow studies have focused on the validation of a novel 2M near-flame combustion furnace. The 2M furnace was specifically designed to investigate burner aerodynamics and flame stability phenomena. Key accomplishments include completion of coal & oxygen mass balance calculations and derivation of emission conversion equations, upgrade of furnace equipment and flame safety systems, shakedown testing and partial completion of a parametric flame stability study. These activities are described in detail below along with a description of the 2M furnace and support systems.

  18. Some Effects of Small-scale Flow Disturbance on Nozzle-burner Flames

    NASA Technical Reports Server (NTRS)

    Wong, Edgar L

    1956-01-01

    Laminar-like and brush-like propane-air flames were obtained when wire grids were used as turbulence generators in a 1/2-inch nozzle burner. The laminar-like flames for grid-disturbed flow had a slightly higher burning velocity than "true" laminar flames (no grid used). The brush-like flames were similar to those obtained with pipe turbulent flow. Their burning-velocity dependence on a "flow disturbance" Reynolds number compared favorably with that obtained for pipe turbulent flames. Hot-wire-anemometer equipment was used to measure the flow disturbance intensity in the cold flow with and without the grids in place.

  19. Phenomenological study of the behavior of some silica formers in a high velocity jet fuel burner

    NASA Technical Reports Server (NTRS)

    Cawley, J. D.; Handschuh, R. F.

    1985-01-01

    Samples of four silica formers: single crystal SiC, sintered alpha-SiC, reaction sintered Si3N4 and polycrystalline MoSi2, were subjected to a Mach 1 jet fuel burner for 1 hr, at a sample temperature of 1375 deg C (2500 deg F). Two phenomena were identified which may be deleterious to a gas turbine application of these materials. The glass layer formed on the MoSi2 deformed appreciably under the aerodynamic load. A scale developed on the samples of the other materials which consisted of particular matter from the gas stream entrapped in a SiO2 matrix.

  20. Evaluation of oxidation resistant nonmetallic materials at 1204 C (2200 F) in a Mach 1 burner

    NASA Technical Reports Server (NTRS)

    Sanders, W. A.; Probst, H. B.

    1972-01-01

    Specimens of 23 oxidation resistant, nonmetallic, refractory materials were systematically exposed in a high gas velocity burner to simulate a turbine engine environment. Isothermal and cyclic tests were conducted at a specimen temperature of 2200F which resulted from exposure to Mach 1 or Mach 0.5 hot gas streams. Specimen behavior was judged on the basis of failure mode, appearance, and weight change. SiC and Si3N4 exhibited the most promising behavior surviving all exposures including Mach 1 for 120 cycles (10 hr). Major failure modes identified for other materials were thermal shock, thermal fatigue, and mechanical failure due to gas loading.

  1. A Summary of Preliminary Investigations into the Characteristics of Combustion Screech in Ducted Burners

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Increasing demands for higher afterburner performance have required operation at progressively higher fuel-air ratios, which has increased the occurrence and intensity of screeching combustion. The onset of screech may be followed by rapid destruction of the combustor shell and other combustor parts. Because of its destructive characteristics, considerable effort has been expended to understand and eliminate screech. NACA work on the screeching combustion problem prior to 1954 is summarized herein. These studies showed that resonant acoustic oscillations are a primary component of the screech mechanism in the burners thus far investigated

  2. Computational Fluid Dynamics Based Investigation of Sensitivity of Furnace Operational Conditions to Burner Flow Controls

    SciTech Connect

    Marc Cremer; Kirsi St. Marie; Dave Wang

    2003-04-30

    This is the first Semiannual Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project is to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. Our approach is to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner flow controls. The Electric Power Research Institute (EPRI) is providing co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center are active participants in this project. This program contains multiple tasks and good progress is being made on all fronts. A project kickoff meeting was held in conjunction with NETL's 2002 Sensors and Control Program Portfolio Review and Roadmapping Workshop, in Pittsburgh, PA during October 15-16, 2002. Dr. Marc Cremer, REI, and Dr. Paul Wolff, EPRI I&C, both attended and met with the project COR, Susan Maley. Following the review of REI's database of wall-fired coal units, the project team selected a front wall fired 150 MW unit with a Riley Low NOx firing system including overfire air for evaluation. In addition, a test matrix outlining approximately 25 simulations involving variations in burner secondary air flows, and coal and primary air flows was constructed. During the reporting period, twenty-two simulations have been completed, summarized, and tabulated for sensitivity analysis. Based on these results, the team is developing a suitable approach for quantifying the sensitivity coefficients associated with the parametric tests. Some of the results of the CFD simulations of the single wall fired unit were presented in a technical paper entitled, ''CFD Investigation of the Sensitivity of Furnace Operational Conditions to Burner Flow Controls,'' presented at the 28th International Technical Conference on Coal Utilization and Fuel Systems in Clearwater, FL March 9-14, 2003. In addition to the work completed on the single wall fired unit, the project team made the selection of a 580 MW opposed wall fired unit to be the subject of evaluation in this program. Work is in progress to update the baseline model of this unit so that the parametric simulations can be initiated.

  3. Oxidation of a Silica-Containing Material in a Mach 0.3 Burner Rig

    NASA Technical Reports Server (NTRS)

    Nguyen, QuynhGiao N.; Cuy, Michael D.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    A primarily silica-containing material with traces of organic compounds, as well as aluminum and calcium additions, was exposed to a Mach 0.3 burner rig at atmospheric pressure using jet fuel. The sample was exposed for 5 continuous hours at 1370 C. Post exposure x-ray diffraction analyses indicate formation of cristobalite, quartz, NiO and Spinel (Al(Ni)CR2O4). The rig hardware is composed of a nickel-based superalloy with traces of Fe. These elements are indicated in the energy dispersive spectroscopy (EDS) results. This material was studied as a candidate for high temperature applications under an engine technology program.

  4. Estimation of chosen combustion parameters of an individual pulverized coal burner based on optical signals

    NASA Astrophysics Data System (ADS)

    Wojcik, Waldemar; Golec, Tomasz; Kotyra, A.; Smolarz, A.; Komada, Pawel; Kalita, M.

    2005-02-01

    There are several tens of burners operating in a power boiler and their control based on averaged and delayed measurements (e.g. gas analyzers located inside the chimney) is often not enough effective. The article describes attempts to obtain information about levels of emission of nitrogen oxides and carbon monoxide from the signals of the fiber-optic flame monitoring system developed in the Department of Electronics of the Technical University of Lublin. Artificial neural networks are used for estimation of emission. The article contains description of an object and the measurement system as well as results of research of nitrogen oxides and carbon monoxide modeling.

  5. OPEC in the Epoch of Globalization: An Event Study of Global Oil Prices

    Microsoft Academic Search

    Cyrus Bina; Minh Vo

    2007-01-01

    This article confirms that OPEC is neither a cartel nor exhibits any sign of market domination, market control, or monopoly. This confirmation is also in accord with the pioneering account of the competitive differential oil rents formed across the global industry since the crises of the 1970s. The methodology utilized in this study is known as the event-study, an innovative

  6. Oil Types

    MedlinePLUS

    ... figure at right shows the weathering processes affecting oil spills: Adsorption (sedimentation): The process by which one substance ... Response Tools for Spills NOAA's Key Questions During Oil Spills Keeping Microplastics out of the Ocean Deepwater Horizon ...

  7. Research on drilling fluids and cement slurries at Standard Oil Production Company: an internship report

    E-print Network

    Flipse, Eugene Charles, 1956-

    2013-03-13

    . An experienced mud engineer can judge the quality of an oil mud by looking at the sheen on the surface of the mud. The smell can reveal decomposition of water wet emulsifiers and viscosifiers. The ability of the oil mud to wet the skin gives another... attended a solids separation technology seminar presented by Geolograph Pioneer. They presented the most common methods for separating drill solids from the drilling mud. These methods included hydrocyclones, centrifuges and seive screens. Methods...

  8. Acute liver failure caused by 'fat burners' and dietary supplements: a case report and literature review.

    PubMed

    Yellapu, Radha K; Mittal, Vivek; Grewal, Priya; Fiel, Mariaisabel; Schiano, Thomas

    2011-03-01

    Globally, people are struggling with obesity. Many effective, nonconventional methods of weight reduction, such as herbal and natural dietary supplements, are increasingly being sought. Fat burners are believed to raise metabolism, burn more calories and hasten fat loss. Despite patient perceptions that herbal remedies are free of adverse effects, some supplements are associated with severe hepatotoxicity. The present report describes a young healthy woman who presented with fulminant hepatic failure requiring emergent liver transplantation caused by a dietary supplement and fat burner containing usnic acid, green tea and guggul tree extracts. Thorough investigation, including histopathological examination, revealed no other cause of hepatotoxicity. The present case adds to the increasing number of reports of hepatotoxicity associated with dietary supplements containing usnic acid, and highlights that herbal extracts from green tea or guggul tree may not be free of adverse effects. Until these products are more closely regulated and their advertising better scrutinized, physicians and patients should become more familiar with herbal products that are commonly used as weight loss supplements and recognize those that are potentially harmful. PMID:21499580

  9. Effects of inclined jets on turbulent oxy-flame characteristics in a triple jet burner

    SciTech Connect

    Boushaki, T.; Mergheni, M.A.; Sautet, J.C. [CORIA UMR 6614 CNRS-Universite et INSA de ROUEN, Avenue de l'Universite, 76 801 Saint Etienne du Rouvray, Cedex (France); Labegorre, B. [Air Liquide CRCD, Les Loges en Josas, BP 126, 78350 Jouy en Josas (France)

    2008-07-15

    The reactants are generally injected into the industrial furnaces by jets. An effective method to act on combustion in such systems is to control the way injection jets. The present study concerns the control of turbulent flames by the jets deflection in a natural gas-oxygen burner with separated jets. The burner of 25 kW power is constituted with three aligned jets, one central natural gas jet surrounded by two oxygen jets. The principal idea is to confine the fuel jet by oxygen jets to favour the mixing in order to improve the flame stability and consequently to reduce the pollutant emissions like NO{sub x}. The flame stability and its structural properties are analyzed by the OH chemiluminescence. The Particle Image Velocimetry technique has been used to characterize the dynamic field. Results show that the control by inclined jets has a considerable effect on the dynamic behaviour and flame topology. Indeed, the control by incline of oxygen jets towards fuel jet showed a double interest: a better stabilization of flame and a significant reduction of nitrogen oxides. Measurements showed that the deflection favours the mixing and accelerates the fusion of jets allowing the flame stabilization. (author)

  10. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    DOEpatents

    Tuthill, Richard Sterling (Bolton, CT); Bechtel, II, William Theodore (Scotia, NY); Benoit, Jeffrey Arthur (Scotia, NY); Black, Stephen Hugh (Duanesburg, NY); Bland, Robert James (Clifton Park, NY); DeLeonardo, Guy Wayne (Scotia, NY); Meyer, Stefan Martin (Troy, NY); Taura, Joseph Charles (Clifton Park, NY); Battaglioli, John Luigi (Glenville, NY)

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  11. Characterization of Liquid Fuel Evaporation of a Lifted Methanol Spray Flame in a Vitiated Coflow Burner

    NASA Technical Reports Server (NTRS)

    Cabra, Ricardo; Dibble, Robert W.; Chen, Jyh-Yuan

    2002-01-01

    An experimental investigation of lifted spray flames in a coflow of hot, vitiated gases is presented. The vitiated coflow burner is a spray flame that issues into a coaxial flow of hot combustion products from a lean, premixed H2/Air flame. The spray flame in a vitiated coflow emulates the combustion that occurs in many advanced combustors without the detailed fluid mechanics. Two commercially available laser diagnostic systems are used to characterize the spray flame and to demonstrate the vitiated coflow burner's amenability to optical investigation. The Ensemble Particle Concentration and Size (EPCS) system is used to measure the path-average droplet size distribution and liquid volume fraction at several axial locations while an extractive probe instrument named the Real-time Fuel-air Analyzer (RFA) is used to measure the air to fuel ratio downstream of the spray nozzle with high temporal and spatial resolution. The effect of coflow conditions (stoichiometry) and dilution of the fuel with water was studied with the EPCS optical system. As expected, results show that water retards the evaporation and combustion of fuels. Measurements obtained by the RFA extractive probe show that while the Delavan manufactured nozzle does distribute the fuel over the manufacturer specified spray angle, it unfortunately does not distribute the fuel uniformly, providing conditions that may result in the production of unwanted NOx. Despite some limitations due to the inherent nature of the experimental techniques, the two diagnostics can be readily applied to spray flames in the vitiated coflow environment.

  12. Optimization and structure of gas jet diffusion flames in venturi-cascade burners

    SciTech Connect

    Qubbaj, A.R. [Univ. of Oklahoma, Norman, OK (United States)

    1998-04-01

    An experimental study to control the pollutant emissions (CO, NO and soot) of diffusion flames by modifying the air infusion rate into the flame is presented. The modification was achieved by installing a cascade of venturis around a burning gas jet. A propane jet diffusion flame at burner-exit Reynolds D number of 5100 was examined with different venturi sizes and spacing distributions. Temperature and the concentrations of CO{sub 2}, CO and NO in the exhaust products were measured before and after the modification and the optimal conditions were obtained. The optimal venturi diameter was between D/d=27.5 and D/d=35, where d is the burner-exit diameter and D is the venturi throat diameter. The optimal arrangement was the equal spacing configuration in which the venturis were distributed at equal intervals over the flame length The venturi-cascading technique at its optimal conditions compared to the baseline case resulted in the following: (i) CO and NO emission indices decreased by 87% and 33% respectively; (ii) the average volumetric soot concentration decreased by 24%; and (vi) radiant fraction of heat release decreased by 10%.

  13. Preliminary study of a gas burner-driven and ground-coupled heat pump system

    SciTech Connect

    Hsu, P.F. [Florida Inst. of Technology, Melbourne, FL (United States). Mechanical and Aerospace Engineering Programs

    1995-12-31

    To address the concerns for higher energy efficiency and the immediate phase out of the chlorofluorocarbons (CFCs), a new gas burner-driven, ground-coupled heat pump (GBGCHP) system is proposed for study. The new system is energy efficient and pose no environmental problem. There are three unique features in the proposed system: (1) a patented gas burner-driven compressor with a floating diaphragm piston-cylinder for energy efficiency and accommodating variable load, (2) the ground coupled water-to-air heat exchangers for high coefficient of performance (COPs), and (3) the new refrigerants based on fluoroiodocarbons (FICS) with very little ozone depletion and global warming potential. A preliminary analysis of a prototype heat pump with 3 ton (10.55 kW) heating capacity is presented. The thermodynamics analysis of the system shows that the steady state COP rating higher than 7 is possible with the system operating in heating mode. Additional research work for the GBGCHP system, especially the FICs` thermodynamic properties in the superheated region, is also described.

  14. Effect of hydrogen injection stability and emissions of an experimental premixed prevaporized propane burner

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1975-01-01

    Hydrogen in quantities up to 5 percent by weight of the total fuel flow was injected into a premixed propane burner. The hydrogen was either premixed with the propane and air upstream of the burner or introduced as a torch at the flameholder. Emissions of total nitrogen oxides, carbon monoxide, and unburned hydrocarbon are reported as are combustion efficiencies and lean blowout limits. To maintain at least 99 percent combustion efficiency at a 700 K inlet mixture temperature with no hydrogen added, it was necessary to burn with a propane equivalence ratio of 0.525. When 4 percent hydrogen was premixed with the propane and air, a combustion efficiency greater than 99 percent was recorded at a propane equivalence ratio of 0.425. The total nitrogen oxides (NOx) emissions corresponding to these two conditions were 0.8 g NO2/kg equivalent propane and 0.44 g NO2/kg equivalent propane, respectively. The hydrogen torch did not reduce NOx emissions.

  15. Multi-ported, internally recuperated burners for direct flame impingement heating applications

    DOEpatents

    Abbasi, Hamid A. (Naperville, IL); Kurek, Harry (Dyer, IN); Chudnovsky, Yaroslav (Skokie, IL); Lisienko, Vladimir G. (Ekaterinburg, RU); Malikov, German K. (Ekaterinburg, RU)

    2010-08-03

    A direct flame impingement method and apparatus employing at least one multi-ported, internally recuperated burner. The burner includes an innermost coaxial conduit having a first fluid inlet end and a first fluid outlet end, an outermost coaxial conduit disposed around the innermost coaxial conduit and having a combustion products outlet end proximate the first fluid inlet end of the innermost coaxial conduit and a combustion products inlet end proximate the first fluid outlet end of the innermost coaxial conduit, and a coaxial intermediate conduit disposed between the innermost coaxial conduit and the outermost coaxial conduit, whereby a second fluid annular region is formed between the innermost coaxial conduit and the intermediate coaxial conduit and a combustion products annular region is formed between the intermediate coaxial conduit and the outermost coaxial conduit. The intermediate coaxial conduit has a second fluid inlet end proximate the first fluid inlet end of the innermost coaxial conduit and a second fluid outlet end proximate the combustion products inlet end of the outermost coaxial conduit.

  16. A Metal Fuel Core Concept for 1000 MWt Advanced Burner Reactor

    SciTech Connect

    Yang, W.S.; Kim, T.K.; Grandy, C. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne IL 60439 (United States)

    2007-07-01

    This paper describes the core design and performance characteristics of a metal fuel core concept for a 1000 MWt Advanced Burner Reactor. A ternary metal fuel form of U-TRU-Zr was assumed with weapons grade plutonium feed for the startup core and TRU recovered from LWR spent fuel for the recycled equilibrium core. A compact burner core was developed by trade-off between the burnup reactivity loss and TRU conversion ratio, with a fixed cycle length of one-year. In the startup core, the average TRU enrichment is 15.5%, the TRU conversion ratio is 0.81, and the burnup reactivity loss over a cycle is 3.6% {delta}k. The heavy metal and TRU inventories are 13.1 and 2.0 metric tons, respectively. The average discharge burnup is 93 MWd/kg, and the TRU consumption rate is 55.5 kg/year. For the recycled equilibrium core, the average TRU enrichment is 22.1 %, the TRU conversion ratio is 0.73, and the burnup reactivity loss is 2.2% {delta}k. The TRU inventory and consumption rate are 2.9 metric tons and 81.6 kg/year, respectively. The evaluated reactivity coefficients provide sufficient negative feedbacks. The control systems provide shutdown margins that are more than adequate. The integral reactivity parameters for quasi-static reactivity balance analysis indicate favorable passive safety features, although detailed safety analyses are required to verify passive safety behavior. (authors)

  17. A New Method to Measure Temperature and Burner Pattern Factor Sensing for Active Engine Control

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    1999-01-01

    The determination of the temperatures of extended surfaces which exhibit non-uniform temperature variation is very important for a number of applications including the "Burner Pattern Factor" (BPF) of turbine engines. Exploratory work has shown that use of BPF to control engine functions can result in many benefits, among them reduction in engine weight, reduction in operating cost, increase in engine life, while attaining maximum engine efficiency. Advanced engines are expected to operate at very high temperature to achieve high efficiency. Brief exposure of engine components to higher than design temperatures due to non-uniformity in engine burner pattern can reduce engine life. The engine BPF is a measure of engine temperature uniformity. Attainment of maximum temperature uniformity and high temperatures is key to maximum efficiency and long life. A new approach to determine through the measurement of just one radiation spectrum by a multiwavelength pyrometer is possible. This paper discusses a new temperature sensing approach and its application to determine the BPF.

  18. Dynamic States of Heavy Hydrocarbon-Oxygen Premixed Flames on an Annular Burner

    NASA Astrophysics Data System (ADS)

    Gorman, Michael; Brockman, Robert

    2009-01-01

    The spatial and temporal characteristics of dynamic states of premixed flames on an annular burner are found to be significantly different from the characteristics of the dynamic states observed on a circular burner. At increasingly larger values of a control parameter of heavy hydrocarbon-oxygen mixtures, the steady, uniform, annular front is replaced by a sequence of time-dependent states in which bright spots, highly localized regions of optical emission, move rapidly around the annulus. These particle-like objects appear spontaneously, individually, or in counterpropagating pairs, move in either direction, collide, and annihilate. A high speed camera equipped with a microchannel plate image intensifier is used to record this >35 Hz motion. Video sequences of these states are embedded in this presentation in order to demonstrate how the nonperiodic nature of this dynamics evolves at increasing values of the driving parameter. Our results are compared with the findings of numerical studies by Bayliss and Matkowsky on solid fuel combustion in an annular geometry.

  19. Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion

    SciTech Connect

    Choudhuri, Ahsan

    2013-05-30

    Oxy-fuel combustion has been used previously in a wide range of industrial applications. Oxy- combustion is carried out by burning a hydrocarbon fuel with oxygen instead of air. Flames burning in this configuration achieve higher flame temperatures which present opportunities for significant efficiency improvements and direct capture of CO{sub 2} from the exhaust stream. In an effort to better understand and characterize the fundamental flame characteristics of oxy-fuel combustion this research presents the experimental measurements of flame stability of various oxyfuel flames. Effects of H{sub 2} concentration, fuel composition, exhaust gas recirculation ratio, firing inputs, and burner diameters on the flame stability of these fuels are discussed. Effects of exhaust gas recirculation i.e. CO{sub 2} and H{sub 2}O (steam) acting as diluents on burner operability are also presented. The roles of firing input on flame stability are then analyzed. For this study it was observed that many oxy-flames did not stabilize without exhaust gas recirculation due to their higher burning velocities. In addition, the stability regime of all compositions was observed to decrease as the burner diameter increased. A flashback model is also presented, using the critical velocity gradient g{sub F}) values for CH{sub 4}-O{sub 2}-CO{sub 2} flames. The scaling relation (𝐠{sub F} = 𝐜 𝐒{sub 𝐋}{sup 2}/𝛂) for different burner diameters was obtained for various diameter burners. The report shows that results correlated linearly with a scaling value of c =0.0174. The second part of the study focuses on the experimental measurements of the flow field characteristics of premixed CH{sub 4}/21%O{sub 2}/79%N{sub 2} and CH{sub 4}/38%O{sub 2}/72%CO{sub 2} mixtures at constant firing input of 7.5 kW, constant, equivalence ratio of 0.8, constant swirl number of 0.92 and constant Reynolds Numbers. These measurements were taken in a swirl stabilized combustor at atmospheric pressure. The flow field visualization using Particle Imaging Velocimetry (PIV) technique is implemented to make a better understanding of the turbulence characteristics of CH{sub 4}/air and CH{sub 4}/38%O{sub 2}/72%CO{sub 2} combustion. The velocity fluctuations, turbulence intensities and local propagation velocities along the combustion chamber have been determined. The turbulent intensities increase as we move away from the combustor axis. CH{sub 4}-38%O{sub 2}-72%CO{sub 2} flames have low radial velocity and turbulent intensity distributions at different axial distances when compared with CH{sub 4}-Air flames.

  20. The Z3 model of Saturns magnetic field and the Pioneer 11 vector helium magnetometer observations

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Acuna, M. H.; Ness, N. F.

    1984-01-01

    Magnetic field observations obtained by the Pioneer 11 vector helium magnetometer are compared with the Z(sub 3) model magnetic field. These Pioneer 11 observations, obtained at close-in radial distances, constitute an important and independent test of the Z(sub 3) zonal harmonic model, which was derived from Voyager 1 and Voyager 2 fluxgate magnetometer observations. Differences between the Pioneer 11 magnetometer and the Z(sub 3) model field are found to be small (approximately 1%) and quantitatively consistent with the expected instrumental accuracy. A detailed examination of these differences in spacecraft payload coordinates shows that they are uniquely associated with the instrument frame of reference and operation. A much improved fit to the Pioneer 11 observations is obtained by rotation of the instrument coordinate system about the spacecraft spin axis by 1.4 degree. With this adjustment, possibly associated with an instrumental phase lag or roll attitude error, the Pioneer 11 vector helium magnetometer observations are fully consistent with the Voyager Z(sub 3) model.

  1. Contrasting the morphology, anatomy and fungal colonization of new pioneer and fibrous roots.

    PubMed

    Zadworny, Marcin; Eissenstat, David M

    2011-04-01

    Not all roots born as first-order branches are the same and this has important consequences for overall function. We hypothesized that, compared with fibrous roots, pioneer roots are built to live longer at the expense of absorptive capacity. We tested this hypothesis by investigating pioneer and fibrous roots in their first 14 d of life in the arbuscular mycorrhizal tree species: Acer negundo, Acer saccharum, Juglans nigra, Liriodendron tulipifera and Populus tremuloides. Root observations were made with root-access boxes that allowed roots to be sampled at known ages in field-grown trees. Compared to fibrous roots, pioneer roots had larger diameter, lower specific root length, greater average length and a lack of mycorrhizal or nonmycorrhizal fungal colonization. Pioneer roots < 14 d old had more layers of hypodermis with a lower percentage of putative passage cells and more protoxylem groups than similar age fibrous roots. Our results suggest that pioneer roots are constructed for defense against biotic and abiotic challenges, exploration of soil distal to the stem, high fibrous root branching and secondary development with high axial hydraulic conductivity at the expense of mycorrhizal colonization and high absorptive capacity for water and nutrients. PMID:21210817

  2. Pax6 Guides a Relay of Pioneer Longitudinal Axons in the Embryonic Mouse Forebrain

    PubMed Central

    NURAL, HIKMET F.; MASTICK, GRANT S.

    2007-01-01

    We have characterized a system of early neurons that establish the first two major longitudinal tracts in the embryonic mouse forebrain. Axon tracers and antibody labels were used to map the axon projections in the thalamus from embryonic days 9.0–12, revealing several distinct neuron populations that contributed to the first tracts. Each of the early axon populations first grew independently, pioneering a short segment of new tract. However, each axon population soon merged with other axons to form one of only two shared longitudinal tracts, both descending: the tract of the postoptic commissure (TPOC), and, in parallel, the stria medullaris. Thus, the forebrain longitudinal tracts are pioneered by a relay of axons, with distinct axon populations pioneering successive segments of these pathways. The extensive merging of tracts suggests that axon–axon interactions are a major guidance mechanism for longitudinal axons. Several axon populations express tyrosine hydroxylase, identifying the TPOC as a major pathway for forebrain dopaminergic projections. To start a genetic analysis of pioneer axon guidance, we have identified the transcription factor Pax6 as critical for tract formation. In Pax6 mutants, both longitudinal tracts failed to form due to errors by every population of early longitudinal axons. Taken together, these results have identified potentially important interactions between series of pioneer axons and the Pax6 gene as a general regulator of longitudinal tract formation in the forebrain. PMID:15514979

  3. Franz Ulinski, an Almost Forgotten Early Pioneer of Rocketry

    NASA Astrophysics Data System (ADS)

    Besser, B. P.

    2002-01-01

    During the early period of rocket development several pioneers originating from the former Austro-Hungarian empire contributed their ideas to the new field of rocketry. The most well known - regarded as the "father of rocketry" in Western Europe - is Hermann Oberth. The others were Max Valier, Franz von Hoefft, Guido von Pirquet, Hermann Potocnik, Friedrich Schmiedl, Franz Ulinski, Eugen Saenger and others. Franz Ulinski (1890-1974) was born 1890 in Blosdorf, Moravia (now Mljadejow, Czech Republic). After attending schools in Wels, Upper Austria, he started a career in the Austro-Hungarian Army in 1910. During his service he worked beginning 1917 at an airplane engine plant in Fischamend and in 1919/20 at the "Fliegerarsenal" (aircraft arsenal) in Vienna. End of 1920 the army of the remaining republic of Austria had to severely reduce its forces and Ulinski was superannuated without further payment. Since 1917 he was also inscribed at the College for Advanced Technology in Vienna ("Technische Hochschule Wien"), but he never graduated, instead he autodidactically attained the VDI-Engineering-Diploma (VDI = "Verein Deutscher Ingenieure"- Association of German Engineers). During 1921-1924 he worked as a development engineer and later as a design engineer for a car factory. In 1925 he set up and ran his own company (radio sale enterprise) and in 1929 an engineering workshop. From 1938 to 1945 he first served as technical staff and later as a design engineer at the Siebel- Flugzeugwerke (Airplane-Factory) in Halle/Saale, Germany. After the Second World War he was employed as a design engineer at different engineering companies in Austria and he died 1974 in Wels. Ulinski's first contact with the topic of space flight occurred during the time period when he was a member of the Austro- Hungarian Army. Ulinski was one of the first in the german speaking part of Europe to publish an article with his ideas about space flight in 1920 (three years before Herman Oberth published his book on travelling into space). The Austrian flight magazine "Der Flug" (The Flight) printed a manuscript deposited by Ulinski at the Academy of Sciences in Vienna (October 1, 1919) in a special edition of December 1920. Ulinski describes in this article a space ship using corpuscular rays as impulse. The energy for accelerating the electrons comes from either solar energy, which has been transformed into electrical energy before, or from the use of "intra-atomic" energy. Unfortunately, the study suffers from some serious errors in the description of the physics involved, but still it can be considered as one of the first to propose the energy gained from solar radiation as a driving power for a spacecraft. During the Twenties another design of a space ship by Ulinski got some doubtful publicity. The space ship consisted of a closed chamber, within the rocket should work. The disagreement of this design with the laws of mechanics (physics) is rather obvious and brought Ulinski into disrepute in the rocket circles of the time. Two years ago the last known work of Ulinski with respect to rocketry was discovered. It is a typewritten manuscript of a talk he gave on March 24, 1941 at a VDI-meeting in Halle/Saale with the title "The problem of rocket flight".

  4. Results of initial operation of the Jupiter Oxygen Corporation oxy-fuel 15 MWth burner test facility

    Microsoft Academic Search

    Thomas Ochs; Danylo Oryshchyn; Rigel Woodside; Cathy Summers; Brian Patrick; Dietrich Gross; Mark Schoenfield; Thomas Weber; Dan OBrien

    2009-01-01

    Jupiter Oxygen Corporation (JOC), in cooperation with the National Energy Technology Laboratory (NETL), constructed a 15 MWth oxy-fuel burner test facility with Integrated Pollutant Removal (IPRTM) to test high flame temperature oxy-fuel combustion and advanced carbon capture. Combustion protocols include baseline air firing with natural gas, oxygen and natural gas firing with and without flue gas recirculation, and oxygen and

  5. Making a Low-Cost Soda Can Ethanol Burner for Out-of-Laboratory Flame Test Demonstrations and Experiments

    ERIC Educational Resources Information Center

    Yu, Henson L. Lee; Domingo, Perfecto N., Jr.; Yanza, Elliard Roswell S.; Guidote, Armando M., Jr.

    2015-01-01

    This article demonstrates how to make a low-cost ethanol burner utilizing soda cans. It burns with a light blue flame suitable for out-of-laboratory flame test demonstrations where interference from a yellow flame needs to be avoided.

  6. Some aspects of risk reduction strategy by multiple recycling in fast burner reactors of the plutonium and minor actinide inventories

    Microsoft Academic Search

    L. H. Baetslé; Ch. De Raedt

    1997-01-01

    This paper shows the impact of recycling light water reactor (LWR) mixed oxide (MOX) fuel in a fast burner reactor on the plutonium (Pu) and minor actinide (MA) inventories and on the related radioactivities. Reprocessing of the targets for multiple recycling will become increasingly difficult as the burnup increases. Multiple recycling of Pu + MA in fast reactors is a

  7. Some aspects of risk reduction strategy by multiple recycling in fast burner reactors of the plutonium and minor actinide inventories

    Microsoft Academic Search

    L. H. Baetsle; Ch. De Raedt

    1997-01-01

    The paper shows the impact of recycling LWR-MOX fuel in a fast burner reactor on the plutonium (Pu) and minor actinide (MA) inventories and on the related radio activities. Reprocessing of the targets for multiple recycling will become increasingly difficult as the burn up increases. Multiple recycling of Pu + MA in fast reactors is a feasible option which has

  8. SITE PROGRAM APPLICATIONS ANALYSIS ASSESSMENT OF SUPERFUND APPLICATIONS FOR THE AMERICAN COMBUSTION INC. PYRETRON OXYGEN ENHANCED BURNER

    EPA Science Inventory

    Incineration is widely used to clean up Superfund sites. Modifications which improve the efficiency with which waste can be incinerated are therefore of interest to EPA. Oxygen/air burners are of interest because their installation on conventional incinerators can allow for signi...

  9. Measurements of local mixture fraction of reacting mixture in swirl-stabilised natural gas-fuelled burners

    NASA Astrophysics Data System (ADS)

    Orain, M.; Hardalupas, Y.

    2011-11-01

    Local, time-dependent measurements of mixture fraction of the reacting mixture were obtained in a swirl-stabilised natural gas-fuelled, nominally non-premixed burner using the intensity of chemiluminescence from OH? and CH? radicals. The measurements quantified the mean, rms of fluctuations and probability density functions of local mixture fraction at the stabilisation region of the flame. In addition, the probability of flame presence and the degree of lean or rich versus stoichiometric reaction is reported. The burner was operated for three air flow Reynolds numbers (Re=18970, 29100 and 57600), at an overall equivalence ratio of 0.32, without and with imposed oscillations to the air flow of the burner at the resonance frequency of 350 Hz. Results show that combustion occurred in a partially premixed mode for all flow conditions, although fuel and air were injected separately in the reaction zone. The mean local mixture fraction was nearly stoichiometric at the base of the flame without imposed air oscillations, but with large fluctuations leading to around 80% of lean or rich reaction. The degree of non-stoichiometric reaction increased with axial distance from the burner exit and Reynolds number and lean reaction dominated. Imposed air oscillations led to lifted flames and increased the degree of non-stoichiometric reaction for Re=18970 and 29100, whereas the flame remained attached onto the injector for Re=57600 and little modification of the mixture fraction was observed.

  10. Cold Flow PIV and Spray Visualization Experiments Applied to the Development of ALSTOM Dual Fuel Gas Turbine Burners

    Microsoft Academic Search

    Stefano Bernero; Adrian Glauser; Martin Zajadatz

    The development of liquid fuel injectors for dual fuel gas turbine burners involves complex processes like spray formation and evaporation of single and multi phase fluids under high temperature and pressure conditions. Since for such complex phenomena satisfactory numerical modeling methods are still under development, experiments play a key role in the development process. Gas turbine testing or full-scale experiments

  11. ACID DEPOSITION STRATEGIES, THE LIMB (LIMESTONE INJECTION/MULTISTAGE BURNERS) PROGRAM AND IMPLICATIONS FOR CONTROL TECHNOLOGY REQUIREMENTS

    EPA Science Inventory

    The paper summarizes the various acid deposition bills introduced in the U.S. Congress during the past 2 years and discusses emission sources. A rapidly emerging technology called Limestone Injection/Multistage Burners (LIMB), which has the potential for simultaneous SO2 and NOx ...

  12. Simulation of Nitrogen Emissions in a Low Swirl Burner J. B. Bell, M. S. Day, X. Gao, M. J. Lijewski

    E-print Network

    Bell, John B.

    Simulation of Nitrogen Emissions in a Low Swirl Burner J. B. Bell, M. S. Day, X. Gao, M. J nitrogen emissions. The simulation shows how the cellular burn- ing structures characteristic of lean of the simulation data illustrates the chemical pathways that lead to nitrogen emissions and how they are enhanced

  13. High Pressure Burner Rig Testing of Advanced Environmental Barrier Coatings for Si3N4 Turbine Components

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Pastel, Robert T.

    2007-01-01

    Advanced thermal and environmental barrier coatings are being developed for Si3N4 components for turbine engine propulsion applications. High pressure burner rig testing was used to evaluate the coating system performance and durability. Test results demonstrated the feasibility and durability of the coating component systems under the simulated engine environments.

  14. EPA (ENVIRONMENTAL PROTECTION AGENCY) LIMB (LIMESTONE INJECTION MULTISTAGE BURNER) DEVELOPMENT AND DEMONSTRATION PROGRAM STATUS REPORT (APRIL 1985)

    EPA Science Inventory

    The report summarizes the technical status of EPA's Limestone Injection Multistage Burner (LIMB) program and discusses the planned program leading to commercialization by 1990. It provides a background on the emissions of SO2 and NOx from coal-fired utility boilers and discusses ...

  15. DEVELOPMENT OF CRITERIA FOR EXTENSION OF APPLICABILITY OF LOW EMISSION, HIGH EFFICIENCY COAL BURNERS: SECOND ANNUAL REPORT

    EPA Science Inventory

    The report, describing the second year's effort under this contract, concerns the development of criteria for the evaluation and applicability of low-emission, high efficiency coal burners. The report describes progress in three major areas: (1) bench scale studies, (2) distribut...

  16. DEVELOPMENT OF CRITERIA FOR EXTENSION OF APPLICABILITY OF LOW-EMISSION, HIGH-EFFICIENCY COAL BURNERS: FOURTH ANNUAL REPORT

    EPA Science Inventory

    The report summarizes technical progress during the fourth year of effort on EPA contract 68-02-2667. NOx and SOx emission characteristics of two low-NOx distributed-mixing burners were tested with three coals in a large water-tube simulator furnace (50-70 million Btu/hr firing r...

  17. The Oxy-combustion burner development for the CO 2 pilot at Lacq

    Microsoft Academic Search

    Denis Cieutat; Ivan Sanchez-Molinero; Rémi Tsiava; Patrick Recourt; Nicolas Aimard; Claude Prébendé

    2009-01-01

    Steam demand is increasing for Oil & Gas projects, and in particular oil sands and extra-heavy oils thermal recovery schemes. Use of oil residues and bitumen can be a cost-effective solution for natural gas substitution in SAGD (Steam Assisted Gravity Drainage). However, use of such fuels gives rise to higher specific GHG emissions. Oxy-combustion technology is an elegant solution to

  18. Contributions to the history of psychology: CXII. Intelligence, behavior genetics, and the Pioneer Fund.

    PubMed

    Weyher, H F

    1998-06-01

    Since World War I, political controversies have complicated the long-standing debate on nature versus nurture, especially the question of the source of the observed mean difference in intelligence between white and black groups. The Pioneer Fund, one of the few nonprofit foundations making grants for study and research into human individual and group differences, has been widely and unfairly attacked by those who believe any such research jeopardizes political commitment to legal equality. The four main scholarly areas of research financially supported by Pioneer have been behavioral genetics, cognitive ability, demographic characteristics, and racial variation. This article provides a unique perspective on the history of the Pioneer Fund and some of the controversies that have taken place. PMID:9709538

  19. High precision thermal modeling of complex systems with application to the flyby and Pioneer anomaly

    NASA Astrophysics Data System (ADS)

    Rievers, B.; Lämmerzahl, C.

    2011-06-01

    Thermal modeling of complex systems faces the problems of an effective digitalization of the detailed geometry and properties of the system, calculation of the thermal flows and temperature maps, treatment of the thermal radiation including possible multiple reflections, inclusion of additional external influences, extraction of the radiation pressure from calculated surface data, and computational effectiveness. In previous publications the solution to these problems have been outlined and a first application to the Pioneer spacecraft have been shown. Here we like to present the application of our thermal modeling to the Rosetta flyby anomaly as well as to the Pioneer anomaly. The analysis outlines that thermal recoil pressure is not the cause of the Rosetta flyby anomaly but likely resolves the anomalous acceleration observed for Pioneer 10.

  20. High precision thermal modeling of complex systems with application to the flyby and Pioneer anomaly

    E-print Network

    Rievers, Benny

    2011-01-01

    Thermal modeling of complex systems faces the problems of an effective digitalization of the detailed geometry and properties of the system, calculation of the thermal flows and temperature maps, treatment of the thermal radiation including possible multiple reflections, inclusion of additional external influences, extraction of the radiation pressure from calculated surface data, and computational effectiveness. In previous publications the solution to these problems have been outlined and a first application to the Pioneer spacecraft have been shown. Here we like to present the application of our thermal modeling to the Rosetta flyby anomaly as well as to the Pioneer anomaly. The analysis outlines that thermal recoil pressure is not the cause of the Rosetta flyby anomaly but likely resolves the anomalous acceleration observed for Pioneer 10.

  1. High-gain backup antenna design for Pioneer Venus Orbiter spacecraft

    NASA Technical Reports Server (NTRS)

    Glaser, J. I.

    1986-01-01

    The development and performance is described of a high-gain antenna designed to serve on the Pioneer Venus Orbiter spacecraft as a backup to the principal high-gain antenna unit in the unlikely event the mechanically despun antenna mechanism malfunctioned. The final design, a center-fed standing wave array of six sleeve dipoles enclosed in a fiber glass radome, performed successfully, as did all the antennas, on the Pioneer Orbiter spacecraft which was launched on May 20, 1978, as part of the Pioneer Venus mission. Photographs of experimental models giving details of design and construction are included, as well as graphs showing measured pattern and impedance matching characteristics of the subject antenna.

  2. Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, July 1--September 30, 1995

    SciTech Connect

    Bai, T.; Yeboah, Y.D.; Sampath, R.

    1995-10-01

    The objective of this investigation is to characterize the operation of fan powered infrared burner (PIR) at various gas compositions and ambient conditions and develop design guidelines for appliances in containing PIR burners for satisfactory performance. During this period, experimental setup with optical and electronic instrumentation that is necessary for measuring the radiant heat output and the emission gas output of the burner has been established. The radiation measurement instrument, an FTIR, has been purchased and installed in the porous burner experimental system. The radiation measurement capability of the FTIR was tested and found to be satisfactory. A standard blackbody source, made by Graseby Infrared, was employed to calibrate the FTIR. A collection duct for emission gas measurement was fabricated and connected to the existing Horiba gas analyzer. Test runs are being conducted for flue gas analysis. A number of published research papers on modeling of porous burners were reviewed. The physical mechanism and theoretical analysis of the combustion process of the PIR burner was formulated. The numerical modeling, and implementation of a PIR burner code at CAU`s computing facility is in progress.

  3. Charcoal burner

    SciTech Connect

    Bakic, M.C.

    1988-12-27

    A combustible fuel apparatus is described comprising: side walls formed contiguous with and extending upward from a base and converging to form a closed container, having stacked charcoal fuel particles therein. The base may be placed directly on a substantially horizontal surface and the container may be ignited and substantially burned to ash, and the charcoal fuel particles may be ignited and sufficiently burned for cooking, wherein the charcoal fuel particles are stacked on the base in a relatively stable position prior to the igniting of the container, and are maintained in a relatively stable position during and after the igniting and burning of the container, whereby a mound of ignited charcoal fuel particles remains on the substantially horizontal surface after the burning of the container, the mound having a configuration substantially similar to the shape of the container prior to the combustion thereof.

  4. Used oil as a fuel oil alternative

    SciTech Connect

    Karaosmanoglu, F.; Beker, U.G. [Istanbul Technical Univ. (Turkey). Chemical Engineering Dept.

    1996-09-01

    In this study, the possibility of using used frying oil as a fuel oil alternative has been investigated. The fuel oil analysis tests applied to the reference fuel oil, used frying oil and its blends with fuel oil, were done according to standard test methods. The experimental results indicated that used frying oil and its blends with fuel oil can be proposed as a possible substitute for fuel oil.

  5. Pioneer and Voyager observations of the solar wind at large heliocentric distances and latitudes

    NASA Technical Reports Server (NTRS)

    Gazis, P. R.; Mihalov, J. D.; Barnes, A.; Lazarus, A. J.; Smith, E. J.

    1989-01-01

    Data obtained from the electrostatic analyzers aboard the Pioneer 10 and 11 spacecraft and from the Faraday cup aboard Voyager 2 were used to study spatial gradients in the distant solar wind. Prior to mid-1985, both spacecraft observed nearly identical solar wind structures. After day 150 of 1985, the velocity structure at Voyager 2 became flatter, and the Voyager 2 velocities were smaller than those observed by Pioneer 11. It is suggested that these changes in the solar wind at low latitudes may be related to a change which occurred in the coronal hole structure in early 1985.

  6. Oil Spill

    NSDL National Science Digital Library

    Lawrence Hall of Science

    2009-01-01

    In this simulation, learners try to clean up an "oil spill" with different items to understand the challenge scientists face in finding the best materials to clean up large oil spills in nature. Learners test cotton balls, dryer lint, sand, and grass to find out which absorbs the most oil. Then, learners submit their findings and comments online. The web page includes a video interview with a NASA environmental engineer and a link to other resources and activities.

  7. Application of fiber optic flame monitoring system for estimation burner input parameters

    NASA Astrophysics Data System (ADS)

    Kotyra, Andrzej; Wójcik, Waldemar; Zhussupbektov, Sarsenbek; Iskakova, Aigul

    2014-05-01

    The paper presents application of fiber optic flame monitoring system and its signals analysis for estimation thermal power and air-fuel ratio of single burner that are hard to determine. To achieve this, several combustion tests were conducted for nine different settings of the laboratory combustion facility, where thermal power and excess air coefficient were kept constant and set independently for known biomass content. Thermal power was regulated by adjusting fuel flow rate knowing the heating value of the known fuel blend. The fiber optic probe was capable to monitor several zones of the flame located along the axis of the flame. The k-NN regression algorithm was applied to determine thermal power and air-fuel ratio.

  8. An Experimental and Numerical Study of a Supersonic Burner for CFD Model Development

    NASA Technical Reports Server (NTRS)

    Magnotti, G.; Cutler, A. D.

    2008-01-01

    A laboratory scale supersonic burner has been developed for validation of computational fluid dynamics models. Detailed numerical simulations were performed for the flow inside the combustor, and coupled with finite element thermal analysis to obtain more accurate outflow conditions. A database of nozzle exit profiles for a wide range of conditions of interest was generated to be used as boundary conditions for simulation of the external jet, or for validation of non-intrusive measurement techniques. A set of experiments was performed to validate the numerical results. In particular, temperature measurements obtained by using an infrared camera show that the computed heat transfer was larger than the measured value. Relaminarization in the convergent part of the nozzle was found to be responsible for this discrepancy, and further numerical simulations sustained this conclusion.

  9. Performance (Off-Design) Cycle Analysis for a Turbofan Engine With Interstage Turbine Burner

    NASA Technical Reports Server (NTRS)

    Liew, K. H.; Urip, E.; Yang, S. L.; Mattingly, J. D.; Marek, C. J.

    2005-01-01

    This report presents the performance of a steady-state, dual-spool, separate-exhaust turbofan engine, with an interstage turbine burner (ITB) serving as a secondary combustor. The ITB, which is located in the transition duct between the high- and the low-pressure turbines, is a relatively new concept for increasing specific thrust and lowering pollutant emissions in modern jet-engine propulsion. A detailed off-design performance analysis of ITB engines is written in Microsoft(Registered Trademark) Excel (Redmond, Washington) macrocode with Visual Basic Application to calculate engine performances over the entire operating envelope. Several design-point engine cases are pre-selected using a parametric cycle-analysis code developed previously in Microsoft(Registered Trademark) Excel, for off-design analysis. The off-design code calculates engine performances (i.e. thrust and thrust-specific-fuel-consumption) at various flight conditions and throttle settings.

  10. Analyzing the aerodynamic structure of swirl flow in vortex burner models

    NASA Astrophysics Data System (ADS)

    Gesheva, E. S.; Litvinov, I. V.; Shtork, S. I.; Alekseenko, S. V.

    2014-09-01

    The article presents the results from experimental and numerical investigations of the parameters characterizing large-scale vortex structures formed in the models of various burners with flow swirling. The experiments included flow visualization and velocity field measurements carried out using a modern contact-less diagnostic system constructed on the basis of a laser Doppler anemometer. In addition, the frequency responses of unsteady vortex flow modes were investigated using dedicated acoustic sensors. The distribution of static pressure induced by an unsteady vortex was obtained using the phase averaging method. Along with experiments, the swirl flow parameters were calculated using an analytic theory and the Star CCM+ commercial software package. The adequacy of the mathematical modeling results was checked by comparing them with the physical experiment data.

  11. Burner Rig Hot Corrosion of a Single Crystal Ni-48Al-Ti-Hf-Ga Alloy

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Darolia, Ram; Cuy, Michael D.

    1998-01-01

    The hot corrosion resistance of a single crystal Ni-48Al-1Ti-0.5Hf-0.2Ga alloy was examined in a Mach 0.3 burner rig at 900 C for 300 hours. The combustion chamber was doped with 2 ppmw synthetic sea salt. The hot corrosion attack produced a random mound morphology on the surface. Microstructurally, the hot corrosion attack appeared to initiate with oxide-filled pits which were often broad and shallow. At an intermediate stage, the pits increased in size to incorporate unoxidized Ni islands in the corrosion product. The rampant attack stage, which was observed only at sharp sample corners, was characterized by rapid inward growth of alumina in finger-like protrusions incorporating significant amounts of Al-depleted Ni islands. Aluminum consumption in the oxide fingers resulted in the growth of a gamma' layer ahead of the advancing oxide fingers.

  12. Thermophotovoltaics for Combined Heat and Power Using Low NOx Gas Fired Radiant Tube Burners

    NASA Astrophysics Data System (ADS)

    Fraas, Lewis; Avery, James; Malfa, Enrico; Wuenning, Joachim G.; Kovacik, Gary; Astle, Chris

    2003-01-01

    Three new developments have now occurred, making economical TPV systems possible. The first development is the diffused junction GaSb cell that responds out to 1.8 microns producing over 1 W/cm2 electric, given a blackbody IR emitter temperature of 1250 C. This high power density along with a simple diffused junction cell makes an array cost of 0.50 per Watt possible. The second development is new IR emitters and filters that put 75% of the radiant energy in the cell convertible band. The third development is a set of commercially available ceramic radiant tube burners that operate at up to 1250 C. Herein, we present near term and longer term spectral control designs leading to a 1.5 kW TPV generator / furnace incorporating these new features. This TPV generator / furnace is designed to replace the residential furnace for combined heat and power for the home.

  13. Mach 0.3 Burner Rig Facility at the NASA Glenn Materials Research Laboratory

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Miller, Robert A.; Zhu, Dongming; Perez, Michael; Cuy, Michael D.; Robinson, R. Craig

    2011-01-01

    This Technical Memorandum presents the current capabilities of the state-of-the-art Mach 0.3 Burner Rig Facility. It is used for materials research including oxidation, corrosion, erosion and impact. Consisting of seven computer controlled jet-fueled combustors in individual test cells, these relatively small rigs burn just 2 to 3 gal of jet fuel per hour. The rigs are used as an efficient means of subjecting potential aircraft engine/airframe advanced materials to the high temperatures, high velocities and thermal cycling closely approximating actual operating environments. Materials of various geometries and compositions can be evaluated at temperatures from 700 to 2400 F. Tests are conducted not only on bare superalloys and ceramics, but also to study the behavior and durability of protective coatings applied to those materials.

  14. Demonstration of laser speckle system on burner liner cyclic rig. Final report

    SciTech Connect

    Stetson, K.A.

    1986-06-01

    A demonstration test was conducted to apply speckle photogrammetry to the measurement of strains on a sample of combustor liner material in a cyclic fatigue rig. A system for recording specklegrams was assembled and shipped to the NASA Lewis Research Center, where it was set up and operated during rig tests. Data in the form of recorded specklegrams were sent back to United Technologies Research Center for processing to extract strains. Difficulties were found in the form of warping and bowing of the sample during the tests which degraded the data. Steps were taken by NASA personnel to correct this problem and further tests were run. Final data processing indicated erratic patterns of strain on the burner liner sample.

  15. Mechanical swirler for a low-NO.sub.x, weak-swirl burner

    DOEpatents

    Cheng, Robert K. (Kensington, CA); Yegian, Derek T. (Berkeley, CA)

    1999-01-01

    Disclosed is a mechanical swirler for generating diverging flow in lean premixed fuel burners. The swirler of the present invention includes a central passage with an entrance for accepting a feed gas, a flow balancing insert that introduces additional pressure drop beyond that occurring in the central passage in the absence of the flow balancing insert, and an exit aligned to direct the feed gas into a combustor. The swirler also has an annular passage about the central passage and including one or more vanes oriented to impart angular momentum to feed gas exiting the annular passage. The diverging flow generated by the swirler stabilizes lean combustion thus allowing for lower production of pollutants, particularly oxides of nitrogen.

  16. Assessment of Startup Fuel Options for the GNEP Advanced Burner Reactor (ABR)

    SciTech Connect

    Jon Carmack (062056); Kemal O. Pasamehmetoglu (103171); David Alberstein

    2008-02-01

    The Global Nuclear Energy Program (GNEP) includes a program element for the development and construction of an advanced sodium cooled fast reactor to demonstrate the burning (transmutation) of significant quantities of minor actinides obtained from a separations process and fabricated into a transuranic bearing fuel assembly. To demonstrate and qualify transuranic (TRU) fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype is needed. The ABR would necessarily be started up using conventional metal alloy or oxide (U or U, Pu) fuel. Startup fuel is needed for the ABR for the first 2 to 4 core loads of fuel in the ABR. Following start up, a series of advanced TRU bearing fuel assemblies will be irradiated in qualification lead test assemblies in the ABR. There are multiple options for this startup fuel. This report provides a description of the possible startup fuel options as well as possible fabrication alternatives available to the program in the current domestic and international facilities and infrastructure.

  17. A Blueprint for GNEP Advanced Burner Reactor Startup Fuel Fabrication Facility

    SciTech Connect

    S. Khericha

    2010-12-01

    The purpose of this article is to identify the requirements and issues associated with design of GNEP Advanced Burner Reactor Fuel Facility. The report was prepared in support of providing data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives was to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept was proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR was proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu was assumed to be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) was being considered for fabrication of WG Pu fuel for the ABR. It was estimated that the facility will provide the startup fuel for 10-15 years and would take 3 to 5 years to construct.

  18. Development of a High-Pressure Gaseous Burner for Calibrating Optical Diagnostic Techniques

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet

    2003-01-01

    In this work-in-progress report, we show the development of a unique high-pressure burner facility (up to 60 atm) that provides steady, reproducible premixed flames with high precision, while having the capability to use multiple fuel/oxidizer combinations. The highpressure facility has four optical access ports for applying different laser diagnostic techniques and will provide a standard reference flame for the development of a spectroscopic database in high-pressure/temperature conditions. Spontaneous Raman scattering (SRS) was the first diagnostic applied, and was used to successfully probe premixed hydrogen-air flames generated in the facility using a novel multi-jet micro-premixed array burner element. The SRS spectral data include contributions from H2, N2, O2, and H2O and were collected over a wide range of equivalence ratios ranging from 0.16 to 4.9 at an initial pressure of 10-atm via a spatially resolved point SRS measurement with a high-performance optical system. Temperatures in fuel-lean to stoichiometric conditions were determined from the ratio of the Stokes to anti-Stokes scattering of the Q-branch of N2, and those in fuel-rich conditions via the rotational temperature of H2. The SRS derived temperatures using both techniques were consistent and indicated that the flame temperature was approximately 500 K below that predicted by adiabatic equilibrium, indicating a large amount of heat-loss at the measurement zone. The integrated vibrational SRS signals show that SRS provides quantitative number density data in high-pressure H2-air flames.

  19. Burner Emissions Associated with Lobed and Non-Lobed Fuel Injectors

    NASA Technical Reports Server (NTRS)

    Mitchell, M. G.; Smith, L. L.; Karagozian, A. R.; Smith, O. I.

    1998-01-01

    The present experimental study examines NO(sub x), and CO emissions associated with three alternative fuel-injector geometries. These injectors mix fuel and air and strain their interfaces to differing extents and thus create different local equivalence ratios within flow regions upstream of flame ignition and stabilization. Two of the devices studied are lobed fuel injectors, in which molecular mixing of reactants is associated with streamwise vorticity generation, while the third one is a non-lobed fuel injector. Results show that rapid mixing allowed both lobed injector geometries to produce very lean premixed flame structures, with a lower achievable turn-down or fuel/air mass flux ratio than for the analogous non-lobed injector, which largely, produced distinct diffusion flames. All three injectors exhibited some level of sooting near walls and in the far-field region, with the non-lobed injector sooting to the greatest extent. At low fuel flow rates, in which the lobed injectors created locally very lean premixed conditions, there resulted lower NO(sub x) emissions as compared with non-lobed injector emissions. Yet at higher fuel-air mass flux ratios, NO(sub x) emissions from the lobed injectors were actually higher than for the nonlobed injector, likely due to reduced sooting and hence reduced radiative heat losses associated with enhanced mixing. For both lobed injector geometries examined here, CO emissions became high for low values of the fuel/air mass flux ratio, again consistent with locally premixed combustion behavior, despite the fact that fuel was injected separately from air directly into the burner test section. The present study demonstrates that, for fuel-air mixing enhancement devices, control of the local equivalence ratio is critical in order to optimize burner emissions.

  20. Development, Application and Performance of Venturi Register L. E. A. Burner System for Firing Oil and Gas Fuels 

    E-print Network

    Cawte, A. D.

    1979-01-01

    The effect of reducing excess air as a means of curtailing energy waste was recognized in Europe come twenty - five years ago. Research and development work was begun by the British Admiralty and the Associated British Combustion Company, now known...

  1. New powerful thermal modelling for high-precision gravity missions with application to Pioneer 10\\/11

    Microsoft Academic Search

    Benny Rievers; Claus Lämmerzahl; Meike List; Stefanie Bremer; Hansjörg Dittus

    2009-01-01

    The evaluation of about 25 years of Doppler data has shown an anomalous constant deceleration of the deep space probes Pioneer 10 and 11. This observation became known as the Pioneer anomaly (PA) and has been confirmed independently by several groups. Many disturbing effects that could cause a constant deceleration of the craft have been excluded as possible source of

  2. SE pioneers symposium: the first 25 years --- the next 25 years: on doing work of lasting value

    Microsoft Academic Search

    Stuart R. Faulk; Lawrence G. Votta

    2003-01-01

    The Pioneers' Symposium provides a forum in which Software Engineering's next generation of researchers, faculty, and practitioners have the opportunity to interact with and learn from some of the field's pioneering thinkers. The invited speakers are individuals whose works are not only seminal, but have demonstrated enduring value to both the research and development communities. Attendees will have the opportunity

  3. Solar Cycle Dependence of the Solar Wind Dynamics: Pioneer, Voyager, and Ulysses from 1 to 5 AU

    NASA Technical Reports Server (NTRS)

    Gonzalez-Esparza, J. A.; Smith, E. J.

    1996-01-01

    Significant differences between Pioneer and Voyager observations were found in solar wind structure between 1 to 6 AU. These disagreements were attributed to temporal effects related to the solar cycle, but no unifying study of Pioneer-Voyager observations was performed.

  4. Evidence that pioneer olfactory axons regulate telencephalon cell cycle kinetics to induce the formation of the olfactory bulb

    Microsoft Academic Search

    Qizhi Gong; Michael T Shipley

    1995-01-01

    Early olfactory axons follow a specific pathway to reach the developing telencephalon. We observed that a subpopulation of these axons, the pioneer olfactory axons, penetrate into the ventricular zone of a highly restricted region of the telencephalon at E13 and E14. At E15, this same telencephalic region evaginates to form the olfactory bulb. To investigate the possibility that the pioneer

  5. The sedimentary response to a pioneer geo-engineering project: Tracking the Kander River deviation in the sediments of Lake

    E-print Network

    Wehrli, Bernhard

    The sedimentary response to a pioneer geo-engineering project: Tracking the Kander River deviation was deviated into peri-alpine Lake Thun. This pioneering geo-engineering project, the first river correction degree, by further engineering of the Kander River bed and gravel withdrawal at the Kander Delta

  6. A Comparative Assessment of Determinate Sentencing in the Four Pioneer States

    ERIC Educational Resources Information Center

    Lagoy, Stephen P.; And Others

    1978-01-01

    In examining the nature of the determinate sentencing schemes in four pioneer states, the authors compare and contrast the provisions for determinacy in each of the revised criminal codes, with the objective of informing legislators, planners, and practitioners about the variation possible within the apparently straightforward guidelines…

  7. Options for a non-dedicated test of the Pioneer anomaly

    E-print Network

    Izzo, D; Izzo, Dario; Rathke, Andreas

    2005-01-01

    The Doppler-tracking data of the Pioneer 10 and 11 spacecraft show an unmodelled constant acceleration in the direction of the inner Solar System. Serious efforts have been undertaken to find a conventional explanation for this effect, all without success at the time we are writing. Hence the effect, commonly dubbed the Pioneer anomaly, is attracting considerable attention. We discuss strategies for an experimental verification of the anomaly via a space mission. Emphasis is put on two most plausible scenarios, non-dedicated concepts employing either a planetary exploration mission to the outer Solar System or a piggy-backed micro satellite to be launched from a mother-spacecraft travelling to Saturn or Jupiter. The study analyses the impact of a Pioneer anomaly test on the system and trajectory design for these two paradigms. It is found that both paradigms are capable of verifying and characterising the Pioneer anomaly without hampering the planetary exploration goals of the missions by a suitable adaption ...

  8. Religious broadcasting 1920 -- 1980: Four religious broadcast pioneers and the process of evangelization

    Microsoft Academic Search

    Thomas F. X Hoar

    2011-01-01

    This dissertation, through an examination of four religious broadcast pioneers, investigates the development of the broadcast technologies of radio and television and their influence on the process of evangelization in the American Christian experience of the twentieth century. The religious broadcasters are examined in two pairs of a Catholic and a non-Catholic Christian according to two specific periods of technological

  9. The Message from the Pioneers in EBD: Learning from the Past and Preparing for the Future

    ERIC Educational Resources Information Center

    Albrecht, Susan Fread

    2009-01-01

    The Minnesota Conference for Teachers of Children with Emotional and Behavior Disorders (EBD) hosted a panel discussion in the fall of 2005 to reunite pioneers in the field of research and publication who shaped the early instructional practices of educators working with disturbed and disturbing youth in schools. The distinguished researchers and…

  10. Aquatic geochemistry of the rare earth elements and yttrium in the Pioneer River catchment, Australia

    Microsoft Academic Search

    Michael G. LawrenceA; Stacy D. JupiterB; Balz S. KamberC

    2006-01-01

    The rare earth elements are strong provenance indicators in geological materials, yet the potential for tracing provinciality in surface freshwater samples has not been adequately tested. Rare earth element and yttrium concentrations were measured at 33 locations in the Pioneer River catchment, Mackay, central Queensland,Australia. The rare earth element patterns were compared on the basis of geological, topographical and land-use

  11. 75 FR 57289 - Notice of Inventory Completion: Pioneer Historical Society of Bent County, Las Animas, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-20

    ...Park Service Notice of Inventory Completion: Pioneer...the completion of an inventory of human remains in...Nation, Oklahoma; Forest County Potawatomi Community...publication of a Notice of Inventory Completion in the Federal...Nation, Oklahoma; Forest County Potawatomi...

  12. Guidance of Peripheral Pioneer Neurons in the Grasshopper: Adhesive Hierarchy of Epithelial and Neuronal Surfaces

    Microsoft Academic Search

    John Berlot; Corey S. Goodman

    1984-01-01

    An important question in developmental neurobiology is how a neuron finds its way over long distances to its correct target during embryogenesis. Peripheral pioneer neurons in insect embryos have been used for study because of the relative simplicity of the early embryonic appendages, and the accessibility of the identified neurons whose growth cones traverse this terrain. The data presented suggest

  13. Error correction during guidance of pioneer axons in the leg of the cockroach embryo

    Microsoft Academic Search

    I. Rajan; J. L. Denburg

    1996-01-01

    Axons of the Til and Fe2 pioneer neurons in the legs of insect embryos possess separate and highly stereotyped proximal projections towards the CNS. However, quantitative analyses of deviations from the standard paths during the period of axon growth indicate that transient errors occur unexpectedly often. The distribution of legs with axons following deviant paths among the embryos analyzed is

  14. A seven-month solar cycle observed with the Langmuir probe on Pioneer Venus Orbiter

    Microsoft Academic Search

    W. R. Hoegy; C. L. Wolff

    1989-01-01

    An approximately 7-month solar cycle has been observed in the photoelectron current measured by the Langmuir probe on Pioneer Venus Orbiter over the time period from 1979 through 1987. The probe photoelectron current, {ital I}{sub {ital pe}}, is obtained when the spacecraft is outside the Venus ionosphere, and the measured current is due to photoelectron emission caused by EUV solar

  15. Shaping the Reading Field: The Impact of Early Reading Pioneers, Scientific Research, and Progressive Ideas

    ERIC Educational Resources Information Center

    Israel, Susan E., Ed.; Monaghan, E. Jennifer, Ed.

    2007-01-01

    Only by exploring the past of the reading field can the literacy leaders of today make informed decisions about reading education in the future. This indispensable resource offers new insight into the development of reading education by examining the groundbreaking contributions of the "early reading pioneers"--16 reading researchers, reading…

  16. IMMEDIATE RELEASE July 16, 2003 DARPA AWARDS CONTRACTS FOR PIONEERING R&D IN COGNITIVE SYSTEMS

    E-print Network

    Cheyer, Adam

    (more) IMMEDIATE RELEASE July 16, 2003 DARPA AWARDS CONTRACTS FOR PIONEERING R&D IN COGNITIVE SYSTEMS The Defense Advanced Research Projects Agency (DARPA) has awarded contracts to Carnegie Mellon worlds of multiple simultaneous tasks and unexpected events. DARPA's Information Processing Technology

  17. Pioneer 10 observations of zodiacal light brightness near the ecliptic: Changes with heliocentric distance

    Microsoft Academic Search

    M. So HANNER; J. Go SPARROW; J. L. WEINBERG; D. Eo BEESON

    Sky maps made by the Pioneer 10 Imaging Photopolarimeter (IPP) at sun-spacecraft distances from 1 to 3 AU have been analyzed to derive the brightness of the zodiacal light near the ecliptic at elongations greater than 90 degrees.The change in zodiacal light brightness with heliocentric distance is compared with models of the spatial distribution of the dust. Use of background

  18. Seed bank versus seed rain in the regeneration of a tropical pioneer tree

    Microsoft Academic Search

    Elena R. Alvarez-Buylla; Miguel Martínez-Ramos

    1990-01-01

    We used the tropical pioneer tree, Cecropia obtusifolia to evaluate the relative importance of different sources of seeds in the regeneration of species that depend on ephemeral sites. We studied seed production in a population established in a 5 ha plot, and dispersal, dormancy and seed predation in two recent treefall gaps (35 years since disturbed) for a one year

  19. Ab Initio Calculation of the Anomalous Acceleration of Pioneer 10 In Vacuo

    E-print Network

    Russell Anania; Michael Makoid

    2006-03-25

    The anomalous acceleration of Pioneer 10 is presented as a calculation using a simple optical model. The model is based on the bending of background gravity behind the Sun in the same way that light is bent by the Sun. Structures of ponderable matter about the Solar system, neutron stars, and galaxies are described. Viewable red and blue shiftings of light are predicted.

  20. The Pioneer Days of Scientific Computing in Switzerland Martin H. Gutknecht

    E-print Network

    Gutknecht, Martin H.

    Places The Pioneer Days of Scientific Computing in Switzerland Martin H. Gutknecht 1. Getting and scientific computing in Switzerland, one naturally thinks of Jan­ uary 1948 and the founding of the Institute of scientific computing on programmable machines in Switzerland. From the beginning Stiefel was backed up in his

  1. FROM LEIDY TO SNIESZKO: PIONEERS OF FISH HEALTH IN THE US (1850 TO 1950)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The achievements of seven fish health pioneers from Joseph P. Leidy to Stanislas F. Snieszko are discussed. Leidy (1823-1891), a prominent 19th century scientist, published more than 600 papers; working at the fringe of his interests he published 23 papers on fish parasites making him the most proli...

  2. System design of the Pioneer Venus spacecraft. Volume 14: Test planning trades

    NASA Technical Reports Server (NTRS)

    Pedretti, C. D.

    1973-01-01

    Pioneer Venus system test plans and trade studies which were first published as Study Tasks (References 1 through 5) are reviewed. The plan and trade studies are presented in a condensed form. Greater detail may be found in the referenced study tasks if desired. All significant conclusions and plan outlines of the original studies are, presented.

  3. The Microphysics of the Clouds of Venus: Results of the Pioneer Venus Particle Size Spectrometer Experiment

    Microsoft Academic Search

    R. G. Knollenberg; D. M. Hunten

    1980-01-01

    The results of the particle size spectrometer experiment on the Pioneer Venus sounder probe are presented. The vertical cloud structure is found to consist of three primary cloud regions of approximately 20 km total thickness suspended within an ubiquitous aerosol haze which extends more than 10 km above and below it. The three cloud regions are separated by sharp transition

  4. Structure and meteorology of the middle atmosphere of Venus Infrared remote sensing from the Pioneer orbiter

    Microsoft Academic Search

    F. W. Taylor; R. Beer; M. T. Chahine; D. J. Diner; L. S. Elson; R. D. Haskins; D. J. McCleese; J. V. Martonchik; P. E. Reichley; S. P. Bradley; J. Delderfield; J. T. Schofield; C. B. Farmer; L. Froidevaux; J. Leung; M. T. Coffey; J. C. Gille

    1980-01-01

    The results of the Pioneer Venus orbiter radiometric temperature-sounding experiment are presented with examples of each of the primary data products. The measured temperature field is used to model the dynamics of the middle atmosphere from 60 to 140 km, and the thermal and solar fluxes are used to calculate the planetary radiation budget. The data for the diurnal variation

  5. Stream interfaces and energetic ions in corotating interaction regions: Ulysses test of Pioneer results

    SciTech Connect

    Intriligator, Devrie S.; Siscoe, George L.; Wibberenz, Gerd; Kunow, Horst; Gosling, John T. [Space Plasma Laboratory, Carmel Research Center, Santa Monica, California (United States); Space Plasma Laboratory, Carmel Research Center, Santa Monica, California (United States); Center for Space Physics, Boston University, Boston, Massachusetts (United States); Institut fuer Kernphysik, Universitat Kiel 24118 Kiel (Germany); Los Alamos National Laboratory, New Mexico (United States)

    1996-07-20

    Ulysses measurements of energetic solar wind ions (5-23 MeV) associated with the trailing reverse shock found to be consistent with an earlier result obtained by Pioneers. The observations cover the middle latitude region 20-30 deg.of south heliosphere.

  6. Stream interfaces and energetic ions in corotating interaction regions: Ulysses test of Pioneer results

    SciTech Connect

    Intriligator, D.S. [Space Plasma Laboratory, Carmel Research Center, Santa Monica, California (United States); Siscoe, G.L. [Space Plasma Laboratory, Carmel Research Center, Santa Monica, California (United States)]|[Center for Space Physics, Boston University, Boston, Massachusetts (United States); Wibberenz, G.; Kunow, H. [Institut fuer Kernphysik, Universitat Kiel 24118 Kiel (Germany); Gosling, J.T. [Los Alamos National Laboratory, New Mexico (United States)

    1996-07-01

    Ulysses measurements of energetic solar wind ions (5-23 MeV) associated with the trailing reverse shock found to be consistent with an earlier result obtained by Pioneers. The observations cover the middle latitude region 20-30 deg.of south heliosphere. {copyright} {ital 1996 American Institute of Physics.}

  7. Rocket pioneer Robert Goddard: A micro-biography (pt 2/3)

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Archive footage of Robert Goddard, rocket pioneer of the 1920's and '30's. Ahead of his time, and the first to use liquid propellant. From the 'Moonwalk Series: Episode 1 - 'The Day Before''. A four part documentary series made in the 1970's about the Apollo 11 mission.

  8. Rocket pioneer Robert Goddard: A micro-biography (pt 1/3)

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Archive footage of Robert Goddard, rocket pioneer of the 1920's and '30's. Ahead of his time, and the first to use liquid propellant. From the 'Moonwalk Series: Episode 1 - 'The Day Before''. A four part documentary series made in the 1970's about the Apollo 11 mission.

  9. Rocket pioneer Robert Goddard: A micro-biography (pt 3/3)

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Archive footage of Robert Goddard, rocket pioneer of the 1920's and '30's. Ahead of his time, and the first to use liquid propellant. From the 'Moonwalk Series: Episode 1 - 'The Day Before''. A four part documentary series made in the 1970's about the Apollo 11 mission.

  10. Irradiation to control quarantine insects in exported fresh commodities: Pioneering generic doses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The United States Food and Drug Administration has approved radiation doses up to 1000 Gy (1 kGy) for preservation and disinfestation of fresh fruits and vegetables. In 2006, USDA-APHIS published a pioneering rule providing generic low-dose radiation quarantine treatments to control insects. A gener...

  11. CIRES,19672002Cooperative Institute for Research in Environmental Sciences Pioneering a Successful Partnership

    E-print Network

    Colorado at Boulder, University of

    Pioneering a Successful Partnership Carl Kisslinger with chapters by Alexander F. H. Goetz Roger G. Barry Partnership Carl Kisslinger #12;CIRES,1967­2002 Cooperative Institute for Research in Environmental Sciences in Environmental Sciences University of Colorado at Boulder Boulder, Colorado 80309-0584 © 2002 by Carl Kisslinger

  12. In memory of Eugene (Jen?) von Gothard: a pioneering nineteenth century Hungarian astrophysicist

    NASA Astrophysics Data System (ADS)

    Vincze, Ildik? J.; Jankovics, István

    2012-07-01

    Eugene von Gothard was a Hungarian engineer/scientist, instrument-maker and astrophysicist who founded the Herény Astrophysical Observatory in 1881 and carried out pioneering work in astronomical photography and spectroscopy. In this paper we provide biographical material about von Gothard and describe his observatory, before discussing his astronomical observations and the contribution that hemade to the early development of astrophysics.

  13. Pioneer 9 plasma wave and solar plasma measurements for the August 1972 storm period

    Microsoft Academic Search

    Frederick L. Scarf; John H. Wolfe

    1974-01-01

    The solar disturbances of August 1972 produced large-scale solar wind perturbations that were detected by the Pioneer 9 plasma probe, electric field detector, and magnetometer for an extended time period commencing early on August 3. During this 10-day interval the interplanetary plasma parameters at r - 0.8 AU varied over unusually wide ranges, so that the conditions for generation of

  14. Robert Owen: A Historiographic Study of a Pioneer of Human Resource Development

    ERIC Educational Resources Information Center

    Hatcher, Tim

    2013-01-01

    Purpose: The purpose of this paper is to investigate the ideals and activities of the nineteenth century Welsh industrialist and reformer Robert Owen (1771-1858), and how they informed modern human resource development (HRD) concepts and practices and provided evidence of Owen as a HRD pioneer. Design/methodology/approach: Historiography provided…

  15. The Pioneering Legacy of Betty Ford | NIH MedlinePlus the Magazine

    MedlinePLUS

    ... this page please turn Javascript on. Feature: Preventing Drug Abuse and Addiction The Pioneering Legacy of Betty Ford ... her family convinced her to enter treatment for abuse of prescription pain ... alcohol and drug addiction, located next to the Eisenhower Medical Center ...

  16. Oil prices

    Microsoft Academic Search

    Paul Stevens

    1996-01-01

    The paper argues that the international oil market has recently experienced fundamental changes which could well result in a significant discontinuity leading to much lower prices and consequent instability. The paper develops an analytical framework to explain how oil prices are determined. It then considers the future prospects for the various factors and driving forces which will influence future price.

  17. Barley Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley (Hordeum vulgare) is an ancient grain that has was domesticated for use as a food. Currently only about 2% is used for food, about two thirds is used for animal feed and one third for malting. Because the oil content of most barley cultivars is low (<2%), obtaining oil from whole barley gra...

  18. Oil Tankers

    NSDL National Science Digital Library

    This website on oil tankers, authored by United Nations Atlas of the Oceans, explains how their size is a consequence of how their volume and surface area scale up. A cross-section diagram shows how the relative size of oil tankers has grown from the 1950s to the 1990s. Limiting factors on the size of tankers are also discussed.

  19. Antidiabetic oils.

    PubMed

    Berraaouan, Ali; Abid, Sanae; Bnouham, Mohamed

    2013-11-01

    Many studies have demonstrated evidence of the health benefits of natural products. Plant extracts have been tested on a variety of physiological disorders, including diabetes mellitus. Studies have tested aqueous extracts, plant fractions extracts, families of active of compounds, and specific active compounds. In this review, we describe the antidiabetic effects of vegetable oils. Information was collected from ScienceDirect and PubMed databases using the following key words: Diabetes mellitus, Oils, Vegetable oils, Type 1 diabetes, type 2 diabetes, antidiabetic effect, antihyperglycemic, antidiabetic oil. We have compiled approximately ten vegetable oils with including experimental studies that have demonstrated benefits on diabetes mellitus. There are soybean, argan, olive, palm, walnut, black cumin, safflower, Colocynth, Black seed, Rice bran, Cinnamom, and Rocket oils. For each vegetable oil, we investigated on the plant's traditional uses, their pharmacological activities and their antidiabetic effects. It seems that many vegetable oils are really interesting and can be used in the improvement of human health, particularly, to prevent or to treat diabetes mellitus complications. PMID:24111621

  20. Oils Spills

    NSDL National Science Digital Library

    Emergency Management Division

    This page from the US Environmental Protection Agency's Emergency Management division outlines EPA programs to prevent and respond to oil spill events. There is also information available on the environmental dangers posed by oil and how different technologies are used to clean up spills both in oceans and freshwater.