Sample records for piret kll-klais reet

  1. KLL dielectronic recombination resonant strengths of He-like up to O-like xenon ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, K.; Geng, Z.; Xiao, J.

    2010-02-15

    In this work, the KLL dielectronic recombination (DR) resonant strengths of He- through to O-like Xe ions were studied, both through experiment and calculation. The experiments were done using a fast electron beam-energy scanning technique at the Shanghai electron beam ion trap. The calculations were done by using the flexible atomic code (FAC), in which the relativistic configuration interaction (RCI) method was employed. For the total resonant strengths, the present experimental and theoretical results for He-, Be-, B-, C-, N-, and O-like Xe ions agree within experimental uncertainties (about 9%). But the experimental result for Li-like Xe is 14% highermore » than the calculation. The present FAC calculations of the total DR strengths were compared with the available previous calculations, using RCI or multiconfiguration Dirac-Fock (MCDF) methods, and the agreement was very good. In this work, some intermediate-state resolved KLL DR strengths were also obtained and compared with theoretical results, and more discrepancies were revealed.« less

  2. Analytical solution of Luedeking-Piret equation for a batch fermentation obeying Monod growth kinetics.

    PubMed

    Garnier, Alain; Gaillet, Bruno

    2015-12-01

    Not so many fermentation mathematical models allow analytical solutions of batch process dynamics. The most widely used is the combination of the logistic microbial growth kinetics with Luedeking-Piret bioproduct synthesis relation. However, the logistic equation is principally based on formalistic similarities and only fits a limited range of fermentation types. In this article, we have developed an analytical solution for the combination of Monod growth kinetics with Luedeking-Piret relation, which can be identified by linear regression and used to simulate batch fermentation evolution. Two classical examples are used to show the quality of fit and the simplicity of the method proposed. A solution for the combination of Haldane substrate-limited growth model combined with Luedeking-Piret relation is also provided. These models could prove useful for the analysis of fermentation data in industry as well as academia. © 2015 Wiley Periodicals, Inc.

  3. The first experimental investigation of the KLL Auger spectrum of Ni generated in the electron capture decay of radioactive 64Cu in a solid state matrix

    NASA Astrophysics Data System (ADS)

    Inoyatov, A. Kh.; Perevoshchikov, L. L.; Kovalík, A.; Filosofov, D. V.; Gorozhankin, V. M.; Ryšavý, M.

    2012-09-01

    The KLL Auger spectrum of Ni generated in the electron capture decay of radioactive 64Cu in a solid state matrix was measured for the first time using a combined electrostatic electron spectrometer adjusted to a 7 eV instrumental resolution. Energies and relative intensities of the all nine basic spectrum components were determined and compared with data obtained from X-ray induced spectra of metallic Ni and with theoretical results as well. Absolute energy of 6562.5 ± 1.3 eV (related to the Fermi level) measured for the dominant KL2L3(1D2) than a value obtained from the X-ray induced spectra which is probably caused by the effects of chemical bonding and physico-chemical environment. Moreover, it is higher by 20.4 eV (16 σ) than a prediction of the semi-empirical calculations by Larkins which indicates an influence of the "atomic structure effect" on absolute energies of the Auger transitions following the electron capture decay and, possibly, some imperfections in the calculations. Good agreement of the measured and predicted KL1L2(3P0/1P1) transition intensity ratios indicates perceptible influence of the relativistic effects on the KLL Auger spectrum even at Z = 28.

  4. Enhancing Mo:BiVO 4 Solar Water Splitting with Patterned Au Nanospheres by Plasmon-Induced Energy Transfer [Rational Nanopositioning for BiVO 4 Solar Water Splitting by Plasmon-induced Energy Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jung Kyu; Shi, Xinjian; Jeong, Myung Jin

    Here, plasmonic metal nanostructures have been extensively investigated to improve the performance of metal oxide photoanodes for photoelectrochemical (PEC) solar water splitting cells. Most of these studies have focused on the effects of those metal nanostructures on enhancing light absorption and enabling direct energy transfer via hot electrons. However, several recent studies have shown that plasmonic metal nanostructures can improve the PEC performance of metal oxide photoanodes via another mechanism known as plasmon–induced resonant energy transfer (PIRET). However, this PIRET effect has not yet been tested for the molybdenum–doped bismuth vanadium oxide (Mo:BiVO 4), regarded as one of the bestmore » metal oxide photoanode candidates. Here, this study constructs a hybrid Au nanosphere/Mo:BiVO 4 photoanode interwoven in a hexagonal pattern to investigate the PIRET effect on the PEC performance of Mo:BiVO 4. This study finds that the Au nanosphere array not only increases light absorption of the photoanode as expected, but also improves both its charge transport and charge transfer efficiencies via PIRET, as confirmed by time–correlated single photon counting and transient absorption studies. As a result, incorporating the Au nanosphere array increases the photocurrent density of Mo:BiVO 4 at 1.23 V versus RHE by ≈2.2–fold (2.83 mA cm –2).« less

  5. Enhancing Mo:BiVO 4 Solar Water Splitting with Patterned Au Nanospheres by Plasmon-Induced Energy Transfer [Rational Nanopositioning for BiVO 4 Solar Water Splitting by Plasmon-induced Energy Transfer

    DOE PAGES

    Kim, Jung Kyu; Shi, Xinjian; Jeong, Myung Jin; ...

    2017-10-04

    Here, plasmonic metal nanostructures have been extensively investigated to improve the performance of metal oxide photoanodes for photoelectrochemical (PEC) solar water splitting cells. Most of these studies have focused on the effects of those metal nanostructures on enhancing light absorption and enabling direct energy transfer via hot electrons. However, several recent studies have shown that plasmonic metal nanostructures can improve the PEC performance of metal oxide photoanodes via another mechanism known as plasmon–induced resonant energy transfer (PIRET). However, this PIRET effect has not yet been tested for the molybdenum–doped bismuth vanadium oxide (Mo:BiVO 4), regarded as one of the bestmore » metal oxide photoanode candidates. Here, this study constructs a hybrid Au nanosphere/Mo:BiVO 4 photoanode interwoven in a hexagonal pattern to investigate the PIRET effect on the PEC performance of Mo:BiVO 4. This study finds that the Au nanosphere array not only increases light absorption of the photoanode as expected, but also improves both its charge transport and charge transfer efficiencies via PIRET, as confirmed by time–correlated single photon counting and transient absorption studies. As a result, incorporating the Au nanosphere array increases the photocurrent density of Mo:BiVO 4 at 1.23 V versus RHE by ≈2.2–fold (2.83 mA cm –2).« less

  6. GOES-R SUVI EUV Flatfields Generated Using Boustrophedon Scans

    NASA Astrophysics Data System (ADS)

    Shing, L.; Edwards, C.; Mathur, D.; Vasudevan, G.; Shaw, M.; Nwachuku, C.

    2017-12-01

    The Solar Ultraviolet Imager (SUVI) is mounted on the Solar Pointing Platform (SPP) of the Geostationary Operational Environmental Satellite, GOES-R. SUVI is a Generalized Cassegrain telescope with a large field of view that employs multilayer coatings optimized to operate in six extreme ultraviolet (EUV) narrow bandpasses centered at 9.4, 13.1, 17.1, 19.5, 28.4 and 30.4 nm. The SUVI CCD flatfield response was determined using two different techniques; The Kuhn-Lin-Lorentz (KLL) Raster and a new technique called, Dynamic Boustrophedon Scans. The new technique requires less time to collect the data and is also less sensitive to Solar features compared with the KLL method. This paper presents the flatfield results of the SUVI using this technique during Post Launch Testing (PLT).

  7. Kinetic model for microbial growth and desulphurisation with Enterobacter sp.

    PubMed

    Liu, Long; Guo, Zhiguo; Lu, Jianjiang; Xu, Xiaolin

    2015-02-01

    Biodesulphurisation was investigated by using Enterobacter sp. D4, which can selectively desulphurise and convert dibenzothiophene into 2-hydroxybiphenyl (2-HBP). The experimental values of growth, substrate consumption and product generation were obtained at 95 % confidence level of the fitted values using three models: Hinshelwood equation, Luedeking-Piret and Luedeking-Piret-like equations. The average error values between experimental values and fitted values were less than 10 %. These kinetic models describe all the experimental data with good statistical parameters. The production of 2-HBP in Enterobacter sp. was by "coupled growth".

  8. Modeling of Iron K Lines: Radiative and Auger Decay Data for Fe II-Fe IX

    NASA Technical Reports Server (NTRS)

    Palmeri, P.; Mendoza, C.; Kallman, T. R.; Bautista, M. A.; Melendez, M.

    2003-01-01

    A detailed analysis of the radiative and Auger de-excitation channels of K-shell vacancy states in Fe II-Fe IX has been carried out. Level energies, wavelengths, A-values, Auger rates and fluorescence yields have been calculated for the lowest fine-structure levels populated by photoionization of the ground state of the parent ion. Different branching ratios, namely K alpha 2/K alpha 1, K beta/K alpha, KLM/KLL, KMM/KLL, and the total K-shell fluorescence yields, omega(sub k), obtained in the present work have been compared with other theoretical data and solid-state measurements, finding good general agreement with the latter. The Kalpha 2/K alpha l ratio is found to be sensitive to the excitation mechanism. From these comparisons it has been possible to estimate an accuracy of approx.10% for the present transition probabilities.

  9. Harnessing Reversible Electronic Energy Transfer: From Molecular Dyads to Molecular Machines.

    PubMed

    Denisov, Sergey A; Yu, Shinlin; Pozzo, Jean-Luc; Jonusauskas, Gediminas; McClenaghan, Nathan D

    2016-06-17

    Reversible electronic energy transfer (REET) may be instilled in bi-/multichromophoric molecule-based systems, following photoexcitation, upon judicious structural integration of matched chromophores. This leads to a new set of photophysical properties for the ensemble, which can be fully characterized by steady-state and time-resolved spectroscopic methods. Herein, we take a comprehensive look at progress in the development of this type of supermolecule in the last five years, which has seen systems evolve from covalently tethered dyads to synthetic molecular machines, exemplified by two different pseudorotaxanes. Indeed, REET holds promise in the control of movement in molecular machines, their assembly/disassembly, as well as in charge separation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Complexity analysis of the turbulent environmental fluid flow time series

    NASA Astrophysics Data System (ADS)

    Mihailović, D. T.; Nikolić-Đorić, E.; Drešković, N.; Mimić, G.

    2014-02-01

    We have used the Kolmogorov complexities, sample and permutation entropies to quantify the randomness degree in river flow time series of two mountain rivers in Bosnia and Herzegovina, representing the turbulent environmental fluid, for the period 1926-1990. In particular, we have examined the monthly river flow time series from two rivers (the Miljacka and the Bosnia) in the mountain part of their flow and then calculated the Kolmogorov complexity (KL) based on the Lempel-Ziv Algorithm (LZA) (lower-KLL and upper-KLU), sample entropy (SE) and permutation entropy (PE) values for each time series. The results indicate that the KLL, KLU, SE and PE values in two rivers are close to each other regardless of the amplitude differences in their monthly flow rates. We have illustrated the changes in mountain river flow complexity by experiments using (i) the data set for the Bosnia River and (ii) anticipated human activities and projected climate changes. We have explored the sensitivity of considered measures in dependence on the length of time series. In addition, we have divided the period 1926-1990 into three subintervals: (a) 1926-1945, (b) 1946-1965, (c) 1966-1990, and calculated the KLL, KLU, SE, PE values for the various time series in these subintervals. It is found that during the period 1946-1965, there is a decrease in their complexities, and corresponding changes in the SE and PE, in comparison to the period 1926-1990. This complexity loss may be primarily attributed to (i) human interventions, after the Second World War, on these two rivers because of their use for water consumption and (ii) climate change in recent times.

  11. Voice Preprocessor for Digital Voice Applications

    DTIC Science & Technology

    1989-09-11

    helit tralnsforniers are marketed for use kll ith multitonle MI( LMS and are acceptable for w ice appl ica- tiotns. 3. Automatic Gain (iontro: A...variations of speech spectral tilt to improve the quaiit\\ of the extracted speech parameters. Nlore imnportantly, the onlN analoii circuit "e use is a

  12. Progress and Perspectives of Plasmon-Enhanced Solar Energy Conversion.

    PubMed

    Cushing, Scott K; Wu, Nianqiang

    2016-02-18

    Plasmonics allows extraordinary control of light, making it attractive for application in solar energy harvesting. In metal-semiconductor heterojunctions, plasmons can enhance photoconversion in the semiconductor via three mechanisms, including light trapping, hot electron/hole transfer, and plasmon-induced resonance energy transfer (PIRET). To understand the plasmonic enhancement, the metal's geometry, constituent metal, and interface must be viewed in terms of the effects on the plasmon's dephasing and decay route. To simplify design of plasmonic metal-semiconductor heterojunctions for high-efficiency solar energy conversion, the parameters controlling the plasmonic enhancement can be distilled to the dephasing time. The plasmonic geometry can then be further refined to optimize hot carrier transfer, PIRET, or light trapping.

  13. Studies of oxidation and thermal reduction of the Cu(100) surface using low energy positrons

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Maddox, W. B.; Weiss, A. H.

    2010-03-01

    Changes in the surface of an oxidized Cu(100) single crystal resulting from vacuum annealing have been investigated using positron annihilation induced Auger electron spectroscopy (PAES). PAES measurements show a large increase in the intensity of the Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 C. The intensity then decreases monotonically as the annealing temperature is increased to ˜600 C. In contrast, the O KLL PAES intensity is the lowest at 300 C and it starts to increase again as the temperature is increased further. PAES results are analyzed by performing calculations of positron surface states and annihilation characteristics taking into account the charge redistribution at the surface, surface reconstructions, and changes of electronic properties of the surfaces with adsorbed oxygen. Possible explanation is proposed for the observed behavior of the intensity of positron annihilation induced Cu M2,3VV and O KLL Auger peaks and probabilities of annihilation of surface trapped positrons with Cu 3p and O 1s core-level electrons with changes of the annealing temperature.

  14. Kinetic analysis and modeling of daptomycin batch fermentation by Streptomyces roseosporus.

    PubMed

    Lu, Wenyu; Fan, Jinghua; Wen, Jianping; Xia, Zhendong; Caiyin, Qinggele

    2011-02-01

    In this study, Streptomyces roseosporus was subjected to helium-neon (He-Ne) laser (632.8 nm) irradiation to improve the production ability of extracellular antibiotic daptomycin. Under the optimum irradiation dosage of 18 mW for 22 min, a stable positive mutant strain S. roseosporus LC-54 was obtained. The maximum A21978C (daptomycin is a semisynthetic antimicrobial substance derived from the A21978C complex) yield of this mutant strain was 296 mg/l, which was 146% higher than that of the wild strain. The mutant strain grew more quickly and utilized carbohydrate sources more efficiently than the wild strain. The batch culture kinetics was investigated in a 7 l bioreactor. The logistic equation for growth, the Luedeking-Piret equation for daptomycin production, and Luedeking-Piret-like equations for carbon substrate consumption were established. This model appeared to provide a reasonable description for each parameter during the growth phase and fitted fairly well with the experiment data.

  15. Tumor-Infiltrating Merkel Cell Polyomavirus-Specific T Cells Are Diverse and Associated with Improved Patient Survival. | Office of Cancer Genomics

    Cancer.gov

    Tumor-infiltrating CD8+ T cells are associated with improved survival of patients with Merkel cell carcinoma (MCC), an aggressive skin cancer causally linked to Merkel cell polyomavirus (MCPyV). However, CD8+ T-cell infiltration is robust in only 4% to 18% of MCC tumors. We characterized the T-cell receptor (TCR) repertoire restricted to one prominent epitope of MCPyV (KLLEIAPNC, "KLL") and assessed whether TCR diversity, tumor infiltration, or T-cell avidity correlated with clinical outcome.

  16. Fuel Character Effects on Current, High Pressure Ratio, Can-Type Turbine Combustion Systems

    DTIC Science & Technology

    1980-04-01

    1135 17000 71 4 1130 22000 92 5 1122 32000 133 6 1126 27000 113II 7 (JP-8) 1127 25000 104 8 1132 20000 83 9 1139 14000 58 10 1123 30000 125 11 1124...0.100 0.100 - -- 143l- 7ll /( Iso -kbP[) Fool fl-s,, kg/hr 20.00 -- 29.85 20.17 21.14 24.63 --Srl (t/L 6 /kll 5.116 1 0.081 0.002 6.577 14.284 - - b

  17. Modeling of growth and laccase production by Pycnoporus sanguineus.

    PubMed

    Saat, Muhammad Naziz; Annuar, Mohamad Suffian Mohamad; Alias, Zazali; Chuan, Ling Tau; Chisti, Yusuf

    2014-05-01

    Production of extracellular laccase by the white-rot fungus Pycnoporus sanguineus was examined in batch submerged cultures in shake flasks, baffled shake flasks and a stirred tank bioreactor. The biomass growth in the various culture systems closely followed a logistic growth model. The production of laccase followed a Luedeking-Piret model. A modified Luedeking-Piret model incorporating logistic growth effectively described the consumption of glucose. Biomass productivity, enzyme productivity and substrate consumption were enhanced in baffled shake flasks relative to the cases for the conventional shake flasks. This was associated with improved oxygen transfer in the presence of the baffles. The best results were obtained in the stirred tank bioreactor. At 28 °C, pH 4.5, an agitation speed of 600 rpm and a dissolved oxygen concentration of ~25 % of air saturation, the laccase productivity in the bioreactor exceeded 19 U L(-1 )days(-1), or 1.5-fold better than the best case for the baffled shake flask. The final concentration of the enzyme was about 325 U L(-1).

  18. Oxidation and thermal reduction of the Cu(1 0 0) surface as studied using positron annihilation induced Auger electron spectroscopy (PAES)

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Nadesalingam, M. P.; Maddox, W.; Mukherjee, S.; Rajeshwar, K.; Weiss, A. H.

    2010-01-01

    Changes in the surface of an oxidized Cu(1 0 0) single crystal resulting from vacuum annealing have been investigated using positron annihilation induced Auger electron spectroscopy (PAES). PAES measurements show a large increase in the intensity of the annihilation induced Cu M 2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 °C. The intensity then decreases monotonically as the annealing temperature is increased to ˜600 °C. Experimental probabilities of annihilation of surface-trapped positrons with Cu 3p and O 1s core-level electrons are estimated from the measured intensities of the positron annihilation induced Cu M 2,3VV and O KLL Auger transitions. Experimental PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface, surface reconstructions, and electron-positron correlations effects. The effects of oxygen adsorption on localization of positron surface state wave function and annihilation characteristics are also analyzed. Possible explanation is proposed for the observed behavior of the intensity of positron annihilation induced Cu M 2,3VV and O KLL Auger peaks and probabilities of annihilation of surface-trapped positrons with Cu 3p and O 1s core-level electrons with changes of the annealing temperature.

  19. Ion Implantation Studies of Titanium Metal Surfaces.

    DTIC Science & Technology

    1981-01-01

    sf.Th. 82-0 327 11,y 604.)___ _ 4 . TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED Final Ion Implantation Studies of Titanium Metal Suf s 6 ...AD-A113 7ag GEORGIA INST OF TECH ATLANTA SCHOOL OF PHYSICS FIG 11/ 6 ION IMPLANTATION STUDOIES OF TITANIUM METAL SURtFACES. (U) 1901 J R STEVENSON. K...LL0 kpproved ror 82 4 ±s~rutic iui.~o 82r-~~ ION IMPLANTATION STUDIES OF TITANIUM METAL SURFACES SECURITY CLASSIFICATION OIOF THIS PAGE (0fen Date

  20. Reaction of water with MgO(100) surfaces: Part III. X-ray standing wave studies

    NASA Astrophysics Data System (ADS)

    Liu, P.; Kendelewicz, T.; Nelson, E. J.; Brown, G. E.

    1998-09-01

    Clean MgO(100) surfaces cleaved in vacuum and exposed to water vapor or bulk water were studied using the X-ray standing wave (XSW) technique in back reflection mode and surface sensitive, element specific O KLL and Mg KLL Auger electron yield detection. The effects of surface charging were mitigated, but not entirely eliminated, by using a low-energy electron flood gun. Simulation of the XSW signal showed that the effect of surface charging on the XSW data could be minimized with careful experimental design. We demonstrate that the XSW method can be applied to studies of insulating surfaces, and our results for MgO(100) surfaces exposed to water vapor or bulk water indicate the following: (1) the vacuum-cleaved clean surface undergoes no surface reconstruction or significant relaxation perpendicular to the surface; (2) Mg-OH distances on surfaces exposed to water vapor or bulk water measured perpendicular to the (100) surface are the same as in bulk MgO; and (3) the z-position of the surface Mg atoms does not change within the estimated error [±2% of the (200) spacing] after the surface is fully hydroxylated. Our results for the clean, vacuum-cleaved surface disagree with results from impact collision ion-scattering spectroscopy and surface-extended electron-loss fine structure for MgO(100), which indicate 15 and 17% inward relaxation, respectively, and they support results from low-energy electron diffraction, reflection high-energy electron diffraction, and photoelectron diffraction that show little, if any, relaxation or rumpling of the surface.

  1. $$B\\to Kl^+l^-$$ decay form factors from three-flavor lattice QCD

    DOE PAGES

    Bailey, Jon A.

    2016-01-27

    We compute the form factors for the B → Kl +l - semileptonic decay process in lattice QCD using gauge-field ensembles with 2+1 flavors of sea quark, generated by the MILC Collaboration. The ensembles span lattice spacings from 0.12 to 0.045 fm and have multiple sea-quark masses to help control the chiral extrapolation. The asqtad improved staggered action is used for the light valence and sea quarks, and the clover action with the Fermilab interpretation is used for the heavy b quark. We present results for the form factors f+(q 2), f 0(q 2), and f T(q 2), where q 2more » is the momentum transfer, together with a comprehensive examination of systematic errors. Lattice QCD determines the form factors for a limited range of q 2, and we use the model-independent z expansion to cover the whole kinematically allowed range. We present our final form-factor results as coefficients of the z expansion and the correlations between them, where the errors on the coefficients include statistical and all systematic uncertainties. Lastly, we use this complete description of the form factors to test QCD predictions of the form factors at high and low q 2.« less

  2. Dynamic Sequence Assignment.

    DTIC Science & Technology

    1983-12-01

    ISEF;,, YE 5) SET NXT ENTRYIN PLANTO EF RESE LATH DEFENSETOhION ET REET E CNTRON L TO E. FIND EST PS TO THIS DEFENSE ’DEF’UPDATE PS OF THIS LOCATION... cNc 8p & iin Ik - -4 C- coj C4 GoC "p c C4 tnS ’Io V4~ en *1-4C .44 0800 * .. ; J knccC C4>4- 1Sc C4 C4A xll 00 % .... ***~***M******B13 6 . -0 4 )V

  3. AES, EELS and TRIM simulation method study of InP(100) subjected to Ar+, He+ and H+ ions bombardment.

    NASA Astrophysics Data System (ADS)

    Ghaffour, M.; Abdellaoui, A.; Bouslama, M.; Ouerdane, A.; Abidri, B.

    2012-06-01

    Auger Electron Spectroscopy (AES) and Electron Energy Loss Spectroscopy (EELS) have been performed in order to investigate the InP(100) surface subjected to ions bombardment. The InP(100) surface is always contaminated by carbon and oxygen revealed by C-KLL and O-KLL AES spectra recorded just after introduction of the sample in the UHV spectrometer chamber. The usually cleaning process of the surface is the bombardment by argon ions. However, even at low energy of ions beam (300 eV) indium clusters and phosphorus vacancies are usually formed on the surface. The aim of our study is to compare the behaviour of the surface when submitted to He+ or H+ ions bombardment. The helium ions accelerated at 500V voltage and for 45 mn allow removing contaminants but induces damaged and no stoichiometric surface. The proton ions were accelerated at low energy of 500 eV to bombard the InP surface at room temperature. The proton ions broke the In-P chemical bonds to induce the formation of In metal islands. Such a chemical reactivity between hydrogen and phosphorus led to form chemical species such as PH and PH3, which desorbed from the surface. The chemical susceptibly and the small size of H+ advantaged their diffusion into bulk. Since the experimental methods alone were not able to give us with accuracy the disturbed depth of the target by these ions. We associate to the AES and EELS spectroscopies, the TRIM (Transport and Range of Ions in Matter) simulation method in order to show the mechanism of interaction between Ar+, He+ or H+ ions and InP and determine the disturbed depth of the target by argon, helium or proton ions.

  4. Electron-electron interaction in ion-atom collisions studied by projectile state-resolved Auger-electron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dohyung Lee.

    This dissertation addresses the problem of dynamic electron-electron interactions in fast ion-atom collisions using projectile Auger electron spectroscopy. The study was carried out by measuring high-resolution projectile KKL Auger electron spectra as a function of projectile energy for the various collision systems of 0.25-2 MeV/u O{sup q+} and F{sup q+} incident on H{sub 2} and He targets. The electrons were detected in the beam direction, where the kinematic broadening is minimized. A zero-degree tandem electron spectrometer system, was developed and showed the versatility of zero-degree measurements of collisionally-produced atomic states. The zero-degree binary encounter electrons (BEe), quasifree target electrons ionizedmore » by the projectiles in head-on collisions, were observed as a strong background in the KLL Auger electron spectrum. They were studied by treating the target ionization as 180{degree} Rutherford elastic scattering in the projectile frame, and resulted in a validity test of the impulse approximation (IA) and a way to determine the spectrometer efficiency. An anomalous q-dependence, in which the zero-degree BEe yields increase with decreasing projectile charge state (q), was observed. State-resolved KLL Auger cross sections were determined by using the BEe normalization and thus the cross section of the electron-electron interactions such as resonant transfer-excitation (RTE), electron-electron excitation (eeE), and electron-electron ionization (eeI) were determined. Projectile 2l capture with 1s {yields} 2p excitation by the captured target electron was observed as an RTE process with Li-like and He-like projectiles and the measured RTEA (RTE followed by Auger decay) cross sections showed good agreement with an RTE-IA treatment and RTE alignment theory.« less

  5. Semileptonic B-meson decays to light pseudoscalar mesons on the HISQ ensembles

    NASA Astrophysics Data System (ADS)

    Gelzer, Zechariah; Bernard, C.; Tar, C. De; El-Khadra, AX; Gámiz, E.; Gottlieb, Steven; Kronfeld, Andreas S.; Liu, Yuzhi; Meurice, Y.; Simone, J. N.; Toussaint, D.; Water, R. S. Van de; Zhou, R.

    2018-03-01

    We report the status of an ongoing lattice-QCD calculation of form factors for exclusive semileptonic decays of B mesons with both charged currents (B → πlv, Bs → Klv) and neutral currents (B → πl+l-, B → Kl+l-). The results are important for constraining or revealing physics beyond the Standard Model. This work uses MILC's (2+1 + 1)-flavor ensembles with the HISQ action for the sea and light valence quarks and the clover action in the Fermilab interpretation for the b quark. Simulations are carried out at three lattice spacings down to 0.088 fm, with both physical and unphysical sea-quark masses. We present preliminary results for correlation-function fits.

  6. Metal-Matrix Composites and Porous Materials: Constitute Models, Microstructure Evolution and Applications

    DTIC Science & Technology

    2000-02-23

    eonomical to rotate the stress and the c strain once rather than having to rotate 4th order tensors like c Amat, Bmat , MHS etc. whose...nu2,sigyO real*8 deps(3,3),eps_plastic,dep_plas,dumd(6,6) real*8 det,kll,dphidf,phil,phi2,ftest real*8 el212,e2323,el313,pil212,pi2323,pil313, bmat ...pi2323-f*pi2323 el313=pil313-f*pil313 spath=.true. call Btensor(a,b,c,ad,bd,cd,f,mul,kl,mu2,k2, Bmat ) do 41 i=l,3 do 42 j=l,6 Bmat (i,j)=0.0 42

  7. X-ray photoelectron spectrometry and binding energies of Be 1s and O 1s core levels in clinobarylite, BaBe{sub 2}Si{sub 2}O{sub 7}, from Khibiny massif, Kola peninsula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atuchin, V.V.; Kesler, V.G.; Sapozhnikov, V.K.

    2008-09-15

    The electronic structure of BaBe{sub 2}Si{sub 2}O{sub 7}, clinobarylite, has been investigated by means of X-ray photoelectron spectroscopy (XPS). The valence band of the crystal is mainly formed by Ba 5p, Ba 3s and O 2s states. At higher binding energies the emission lines related to the Si 2p, Be 1s, Si 2s, O 1s and numerous Ba-related states were analyzed in the photoemission spectrum. The Si KLL Auger line has been measured under excitation by the bremsstrahlung X-rays from the Al anode. Chemical bonding effects for Be 1s core level have been considered by comparison with electronic parameters measuredmore » for other beryllium containing oxides.« less

  8. Flat-fielding of Solar Hα Observations Based on the Maximum Correntropy Criterion

    NASA Astrophysics Data System (ADS)

    Xu, Gao-Gui; Zheng, Sheng; Lin, Gang-Hua; Wang, Xiao-Fan

    2016-08-01

    The flat-field CCD calibration method of Kuhn et al. (KLL) is an efficient method for flat-fielding. However, since it depends on the minimum of the sum of squares error (SSE), its solution is sensitive to noise, especially non-Gaussian noise. In this paper, a new algorithm is proposed to determine the flat field. The idea is to change the criterion of gain estimate from SSE to the maximum correntropy. The result of a test on simulated data demonstrates that our method has a higher accuracy and a faster convergence than KLL’s and Chae’s. It has been found that the method effectively suppresses noise, especially in the case of typical non-Gaussian noise. And the computing time of our algorithm is the shortest.

  9. Stochastic growth logistic model with aftereffect for batch fermentation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah

    2014-06-19

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  10. Stochastic growth logistic model with aftereffect for batch fermentation process

    NASA Astrophysics Data System (ADS)

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md

    2014-06-01

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  11. Polarization Transfer in Wide-Angle Compton Scattering and Single-Pion Photoproduction from the Proton

    NASA Astrophysics Data System (ADS)

    Fanelli, C.; Cisbani, E.; Hamilton, D. J.; Salmé, G.; Wojtsekhowski, B.; Ahmidouch, A.; Annand, J. R. M.; Baghdasaryan, H.; Beaufait, J.; Bosted, P.; Brash, E. J.; Butuceanu, C.; Carter, P.; Christy, E.; Chudakov, E.; Danagoulian, S.; Day, D.; Degtyarenko, P.; Ent, R.; Fenker, H.; Fowler, M.; Frlez, E.; Gaskell, D.; Gilman, R.; Horn, T.; Huber, G. M.; de Jager, C. W.; Jensen, E.; Jones, M. K.; Kelleher, A.; Keppel, C.; Khandaker, M.; Kohl, M.; Kumbartzki, G.; Lassiter, S.; Li, Y.; Lindgren, R.; Lovelace, H.; Luo, W.; Mack, D.; Mamyan, V.; Margaziotis, D. J.; Markowitz, P.; Maxwell, J.; Mbianda, G.; Meekins, D.; Meziane, M.; Miller, J.; Mkrtchyan, A.; Mkrtchyan, H.; Mulholland, J.; Nelyubin, V.; Pentchev, L.; Perdrisat, C. F.; Piasetzky, E.; Prok, Y.; Puckett, A. J. R.; Punjabi, V.; Shabestari, M.; Shahinyan, A.; Slifer, K.; Smith, G.; Solvignon, P.; Subedi, R.; Wesselmann, F. R.; Wood, S.; Ye, Z.; Zheng, X.

    2015-10-01

    Wide-angle exclusive Compton scattering and single-pion photoproduction from the proton have been investigated via measurement of the polarization transfer from a circularly polarized photon beam to the recoil proton. The wide-angle Compton scattering polarization transfer was analyzed at an incident photon energy of 3.7 GeV at a proton scattering angle of θcmp=70 ° . The longitudinal transfer KLL, measured to be 0.645 ±0.059 ±0.048 , where the first error is statistical and the second is systematic, has the same sign as predicted for the reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton. However, the observed value is ˜3 times larger than predicted by the generalized-parton-distribution-based calculations, which indicates a significant unknown contribution to the scattering amplitude.

  12. Auger electron diffraction in thin CoO films on Au(1 1 1)

    NASA Astrophysics Data System (ADS)

    Chassé, A.; Niebergall, L.; Heiler, M.; Neddermeyer, H.; Schindler, K.-M.

    The local structure of thin CoO films grown on a single crystal Au(1 1 1) surface has been studied by Auger electron diffraction (AED). Therefore, the angular dependence of the Auger electron intensity of Co-LMM and O-KLL Auger electrons was recorded in the total half-space above the film. Such 2 π-scans immediately reflect the symmetry of the surface and the local structure of the film. The experimental data are compared to multiple-scattering cluster calculations, where both the influence of multiple-scattering effects and effects of Auger transition matrix elements have been investigated. We have found that the AED patterns of a CoO film in forward-scattering conditions do not always provide straightforward information on the local structure of the film, whereas the multiple-scattering approximation applied gives very good agreement between experimental and theoretical results.

  13. X-ray absorption spectroscopy to determine originating depth of electrons that form an inelastic background of Auger electron spectrum

    NASA Astrophysics Data System (ADS)

    Isomura, Noritake; Cui, Yi-Tao; Murai, Takaaki; Oji, Hiroshi; Kimoto, Yasuji

    2017-07-01

    In Auger electron spectroscopy (AES), the spectral background is mainly due to inelastic scattering of Auger electrons that lose their kinetic energy in a sample bulk. To investigate the spectral components within this background for SiO2(19.3 nm)/Si(100) with known layer thickness, X-ray absorption spectroscopy (XAS) was used in the partial-electron-yield (PEY) mode at several electron kinetic energies to probe the background of the Si KLL Auger peak. The Si K-edge PEY-XAS spectra constituted of both Si and SiO2 components at each kinetic energy, and their component fractions were approximately the same as those derived from the simulated AES background for the same sample structure. The contributions of Auger electrons originating from layers at different depths to the inelastic background could thus be identified experimentally.

  14. Polarization Transfer in Wide-Angle Compton Scattering and Single-Pion Photoproduction from the Proton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fanelli, C.; Cisbani, E.; Hamilton, D. J.

    Wide-angle exclusive Compton scattering and single-pion photoproduction from the proton have been investigated via measurement of the polarization transfer from a circularly polarized photon beam to the recoil proton. The wide-angle Compton scattering polarization transfer was analyzed at an incident photon energy of 3.7 GeV at a proton scattering angle of theta(p)(cm) cm = 70 degrees. The longitudinal transfer K-LL, measured to be 0.645 +/- 0.059 +/- 0.048, where the first error is statistical and the second is systematic, has the same sign as predicted for the reaction mechanism in which the photon interacts with a single quark carrying themore » spin of the proton. However, the observed value is similar to 3 times larger than predicted by the generalized-parton-distribution-based calculations, which indicates a significant unknown contribution to the scattering amplitude.« less

  15. Relativistic R-matrix calculations for photoionization cross-sections of C IV: implications for photorecombination of C V

    NASA Astrophysics Data System (ADS)

    Sardar, Shahid; Xu, Xin; Xu, Long-Quan; Zhu, Lin-Fan

    2018-02-01

    In this paper we present photoionization cross-sections of the ground and excited states of Li-like carbon (C IV) in the framework of fully relativistic R-matrix formalism as implemented in Dirac atomic R-matrix code. For target wavefunctions expansion, Multiconfiguration Dirac Hartree Fock calculations are performed for the lowest 17 target states of He-like carbon (C V) arising from 1s2 and 1snl, with n = 2, 3 and l = s, p, d configurations. Our target energy levels and transition parameters belonging to these levels are ascertained to be in excellent agreement with the experimental and the well-established theoretical results. We use the principle of detailed balance to get the photorecombination (PR) cross-sections of the ground state of C V. Both photoionization and PR cross-sections manifest important KLL and KLM resonance structures which are in very good agreement with the accurate measurements at Advanced Light Source (ion photon end beam station) and CRYRING (synchrotron storage ring).

  16. Characterization of aluminum nitride based films with high resolution X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Anagnostopoulos, D. F.; Siozios, A.; Patsalas, P.

    2018-02-01

    X-ray fluorescence spectra of Al based films are measured, using a lab-scale wavelength dispersive flat crystal spectrometer. Various structures of AlN films were studied, like single layered, capped, stratified, nanostructured, crystalline, or amorphous. By optimizing the set-up for enhanced energy resolution and detection efficiency, the measured line shapes of Κα, Kβ, and KLL radiative Auger transitions are shown to be adequately detailed to allow chemical characterization. The chemistry identification is based on the pattern comparison of the emitted line shape from the chemically unknown film and the reference line shapes from standard materials, recorded under identical experimental conditions. The ultimate strength of lab-scale high resolution X-ray fluorescence spectroscopy on film analysis is verified, in cases that ordinary applied techniques like X-ray photoelectron and X-ray diffraction fail, while the characterization refers to the non-destructive determination of the bulk properties of the film and not to its surface, as the probed depth is in the micrometer range.

  17. Homo-fermentative production of D-lactic acid by Lactobacillus sp. employing casein whey permeate as a raw feed-stock.

    PubMed

    Prasad, Saurav; Srikanth, Katla; Limaye, Anil M; Sivaprakasam, Senthilkumar

    2014-06-01

    Casein whey permeate (CWP), a lactose-enriched dairy waste effluent, is a viable feed stock for the production of value-added products. Two lactic acid bacteria were cultivated in a synthetic casein whey permeate medium with or without pH control. Lactobacillus lactis ATCC 4797 produced D-lactic acid (DLA) at 12.5 g l(-1) in a bioreactor. The values of Leudking-Piret model parameters suggested that lactate was a growth-associated product. Batch fermentation was also performed employing CWP (35 g lactose l(-1)) with casein hydrolysate as a nitrogen supplement in a bioreactor. After 40 h, L. lactis produced 24.3 g lactic acid l(-1) with an optical purity >98 %. Thus CWP may be regarded as a potential feed-stock for DLA production.

  18. The role of radiative de-excitation in the neutralization process of highly charged ions interacting with a single layer of graphene

    NASA Astrophysics Data System (ADS)

    Schwestka, J.; Wilhelm, R. A.; Gruber, E.; Heller, R.; Kozubek, R.; Schleberger, M.; Facsko, S.; Aumayr, F.

    2018-05-01

    X-ray emission of slow (<1 a.u.) highly charged Argon and Xenon ions is measured for transmission through a freestanding single layer of graphene. To discriminate against X-ray emission originating from the graphene's support grid a coincidence technique is used. X-ray emission of 75 keV Ar17+ and Ar18+ ions with either one or two K-shell vacancies is recorded. Using a windowless Bruker XFlash detector allows us to measure additionally Ar KLL and KLM Auger electrons and determine the branching ratio of radiative vs. non-radiative decay of Ar K-shell holes. Furthermore, X-ray spectra for 100 keV Xe22+-Xe35+ ions are compared, showing a broad M-line peak for all cases, where M-shell vacancies are present. All these peaks are accompanied by emission lines at still higher energies indicating the presence of a hollow atom during X-ray decay. We report a linear shift of the main M-line peak to higher energies for increasing incident charge state, i.e. increasing number of M-shell holes.

  19. Coherent electron emission from O2 in collisions with fast electrons

    NASA Astrophysics Data System (ADS)

    Chowdhury, Madhusree Roy; Stia, Carlos R.; Tachino, Carmen A.; Fojón, Omar A.; Rivarola, Roberto D.; Tribedi, Lokesh C.

    2017-08-01

    Absolute double differential cross sections (DDCS) of secondary electrons emitted in ionization of O2 by fast electrons have been measured for different emission angles. Theoretical calculations of atomic DDCS were obtained using the first Born approximation with an asymptotic charge of Z T = 1. The measured molecular DDCS were divided by twice the theoretical atomic DDCS to detect the presence of interference effects which was the aim of the experiment. The experimental to theoretical DDCS ratios showed clear signature of first order interference oscillation for all emission angles. The ratios were fitted by a first order Cohen-Fano type model. The variation of the oscillation amplitudes as a function of the electron emission angle showed a parabolic behaviour which goes through a minimum at 90°. The single differential and total ionization cross sections have also been deduced, besides the KLL Auger cross sections. In order to make a comparative study, we have discussed these results along with our recent experimental data obtained for N2 molecule.

  20. [Effects of dissolved oxygen and pH on Candida utilis batch fermentation of glutathione].

    PubMed

    Wei, Gong-Yuan; Li, Yin; Du, Guo-Cheng; Chen, Jian

    2003-11-01

    The effects of dissolved oxygen (DO) and pH on glutathione batch fermentation by Candida utilis WSH-02-08 in a 7 liters stirred fermentor were investigated. It was shown that DO concentration is an important factor in glutathione production. With the initial glucose concentration of 30 g/L and a 5 L/min air flow rate, and the agitation rate less than 250 r/min, the DO concentration was not sufficient to satisfy the oxygen requirement during the fermentation. With an agitation rate of more than 300 r/min, the cell growth and glutathione production were enhanced significantly, with the dry cell mass and glutathione production were 20% and 25% higher than that at 200 r/min. When C. utilis WSH 02-08 was cultivated in a batch process without pH control, cell growth and glutathione production were inhibited, likely due to a dramatic decrease in the pH. Intracellular glutathione leakages were observed when the pH was 1.5 or less. To assess the effect of pH on glutathione production, six batch processes controlled at pH 4.0, 4.5, 5.0, 5.5, 6.0 and 6.5 were conducted. The yield was highest at pH 5.5, when the dry cell mass and yield were 27% and 95% respectively higher than fermentation without pH control. The maximal intracellular glutathione content (2.15 %) was also achieved at the pH. To improve our understandings on the effect of pH on the batch glutathione production, a modified Logistic equation and Luedeking-Piret equation were used to simulate cell growth and glutathione production, respectively, under different pH. Based on the parameters obtained by the nonlinear estimation, kinetic analysis was performed to elucidate the effect of pH on the batch glutathione production. The process controlled at pH 5.5 was proven to be the best due to the higher value of K(I) (substrate inhibitory constant in the Logistic equation), lower value of a and higher value of beta (slope and intercept in the Luedeking-Piret equation, respectively).

  1. Implications of the {{\\boldsymbol{R}}}_{K} and {{\\boldsymbol{R}}}_{{K}^{* }} anomalies

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zhao, Shuai

    2018-01-01

    We discuss the implications of the recently reported {R}{{K}} and {R}{{{K}}* } anomalies, the lepton flavor non-universality in the {{B}}\\to {Kl}}+{{{l}}}- and {{B}}\\to {{{K}}}* {{{l}}}+{{{l}}}- decay channels. Using two sets of hadronic inputs of form factors, we perform a fit of new physics to the {R}{{K}} and {R}{{{K}}* } data, and significant new physics contributions are found. We suggest the study of lepton flavor universality in a number of related rare {{B}},{{{B}}}s,{{{B}}}c and {{{Λ }}}{{b}} decay channels, and in particular we give predictions for the {{μ }}-to-e ratios of decay widths with different polarizations of the final state particles, and of the {{b}}\\to {dl}}+{{{l}}}- processes, which are presumably more sensitive to the structure of the underlying new physics. With the new physics contributions embedded in the Wilson coefficients, we present theoretical predictions for lepton flavor non-universality in these processes. Supported by National Natural Science Foundation of China (11575110, 11655002, 11735010), Natural Science Foundation of Shanghai (15DZ2272100, 15ZR1423100), Young Thousand Talents Plan and Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education

  2. Decay Properties of K-Vacancy States in Fe X-Fe XVII

    NASA Technical Reports Server (NTRS)

    Mendoza, C.; Kallman, T. R.; Bautista, M. A.; Palmeri, P.

    2003-01-01

    We report extensive calculations of the decay properties of fine-structure K-vacancy levels in Fe X-Fe XVII. A large set of level energies, wavelengths, radiative and Auger rates, and fluorescence yields has been computed using three different standard atomic codes, namely Cowan's HFR, AUTOSTRUCTURE and the Breit-Pauli R-matrix package. This multi-code approach is used to the study the effects of core relaxation, configuration interaction and the Breit interaction, and enables the estimate of statistical accuracy ratings. The Ksigma and KLL Auger widths have been found to be nearly independent of both the outer-electron configuration and electron occupancy keeping a constant ratio of 1.53 +/- 0.06. By comparing with previous theoretical and measured wavelengths, the accuracy of the present set is determined to be within 2 m Angstrom. Also, the good agreement found between the different radiative and Auger data sets that have been computed allow us to propose with confidence an accuracy rating of 20% for the line fluorescence yields greater than 0.01. Emission and absorption spectral features are predicted finding good correlation with measurements in both laboratory and astrophysical plasmas.

  3. Mechanistic Understanding of the Plasmonic Enhancement for Solar Water Splitting.

    PubMed

    Zhang, Peng; Wang, Tuo; Gong, Jinlong

    2015-09-23

    H2 generation by solar water splitting is one of the most promising solutions to meet the increasing energy demands of the fast developing society. However, the efficiency of solar-water-splitting systems is still too low for practical applications, which requires further enhancement via different strategies such as doping, construction of heterojunctions, morphology control, and optimization of the crystal structure. Recently, integration of plasmonic metals to semiconductor photocatalysts has been proved to be an effective way to improve their photocatalytic activities. Thus, in-depth understanding of the enhancement mechanisms is of great importance for better utilization of the plasmonic effect. This review describes the relevant mechanisms from three aspects, including: i) light absorption and scattering; ii) hot-electron injection and iii) plasmon-induced resonance energy transfer (PIRET). Perspectives are also proposed to trigger further innovative thinking on plasmonic-enhanced solar water splitting. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Biosynthesis of poly(3-hydroxybutyrate) (PHB) by Cupriavidus necator H16 from jatropha oil as carbon source.

    PubMed

    Batcha, Abeed Fatima Mohidin; Prasad, D M Reddy; Khan, Maksudur R; Abdullah, Hamidah

    2014-05-01

    Poly(3-hydroxybutyrate) (PHB) is a biodegradable polymer that can be synthesized through bacterial fermentation. In this study, Cupriavidus necator H16 is used to synthesize PHB by using Jatropha oil as its sole carbon source. Different variables mainly jatropha oil and urea concentrations, and agitation rate were investigated to determine the optimum condition for microbial fermentation in batch culture. Based on the results, the highest cell dry weight and PHB concentrations of 20.1 and 15.5 g/L, respectively, were obtained when 20 g/L of jatropha oil was used. Ethanol was used as external stress factor and the addition of 1.5 % ethanol at 38 h had a positive effect with a high PHB yield of 0.987 g PHB/g jatropha oil. The kinetic studies for cell growth rate and PHB production were conducted and the data were fitted with Logistic and Leudeking–Piret models. The rate constants were evaluated and the theoretical values were in accordance with the experimental data obtained

  5. Growth, structure, and magnetic properties of γ-Fe2O3 epitaxial films on MgO

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Kim, Y. J.; Thevuthasan, S.; Chambers, S. A.; Lubitz, P.

    1997-04-01

    Single-crystal epitaxial thin films of γ-Fe2O3(001) have been grown on MgO(001) using oxygen-plasma-assisted molecular beam epitaxy. The structure and magnetic properties of these films have been characterized by a variety of techniques, including reflection high-energy electron diffraction (RHEED), low-energy electron diffraction (LEED), x-ray photoelectron spectroscopy and x-ray photoelectron/Auger electron diffraction (XPD/AED), vibrating sample magnetometry, and ferromagnetic resonance. Real-time RHEED reveals that the film growth occurs in a layer-by-layer fashion. The γ-Fe2O3(001) film surface exhibits a (1×1) LEED pattern. The growth of γ-Fe2Ooverflow="scroll">3 films at 450 °C is accompanied by significant Mg outdiffusion. AED of Mg KLL Auger emission reveals that Mg substitutionally incorporates in the γ-Fe2O3 lattice, occupying the octahedral sites. Magnetic moments are ˜2300 G and ˜4500 G for γ-Fe2O3 films grown at 250 °C and 450 °C, respectively. The high magnetic moment for the films grown at 450 °C could be attributed to the high degree of structural order of the films and Mg substitution at octahedral sites.

  6. Effect of temperature on Brettanomyces bruxellensis: metabolic and kinetic aspects.

    PubMed

    Brandam, Cédric; Castro-Martínez, Claudia; Délia, Marie-Line; Ramón-Portugal, Felipe; Strehaiano, Pierre

    2008-01-01

    The effect of temperatures ranging from 15 to 35 degrees C on a culture of Brettanomyces bruxellensis was investigated in regards to thermodynamics, metabolism, and kinetics. In this temperature range, we observed an increase in growth and production rates. The growth behavior was well represented using the Arrhenius model, and an apparent activation energy of 16.61 kcal/mol was estimated. A stuck fermentation was observed at 35 degrees C as represented by high cell death. The carbon balance established that temperature had no effect on repartition of the glucose consumption between biomass and products. Hence, the same biomass concentration was obtained for all temperatures, except at 35 degrees C. Moreover, using logistic and Luedeking-Piret models, we demonstrated that production rates of ethanol and acetic acid were partially growth associated. Parameters associated with growth (alpha eth and alpha aa) remained constant with changing temperature, whereas, parameters associated with the population (beta eth and beta aa) varied. Optimal values were obtained at 32 degrees C for ethanol and at 25 degrees C for acetic acid.

  7. The Effect of Thermal and Mechanical Treatments on Kaolinite: Characterization by XPS and IEP Measurements.

    PubMed

    Torres Sánchez RM; Basaldella; Marco

    1999-07-15

    The surface transformations induced on kaolinite by different thermal and mechanical treatments have been investigated by means of X-ray photoelectron spectroscopy (XPS), Bremsstrahlung induced Auger spectroscopy, and isoelectric point (IEP) measurements. Heating the kaolinite at temperatures between 500 and 750 degrees C results in the change of a substantial fraction of surface Al from octahedral to tetrahedral coordination, which we associate with the dehydroxylation of kaolinite. Heating at 900 and 980 degrees C brings about the development of an octahedral Al fraction which is associated with the formation of gamma-Al(2)O(3). The development of an Al tetrahedral component in the Al KLL spectra of the mechanically treated (ground) samples has been also observed. The Si/Al atomic ratio obtained by XPS in the thermally treated samples is the same as that shown by the original kaolinite. However, the XPS data show a clear reduction of the Si/Al atomic ratio in the mechanically treated samples, which suggests that the mechanical treatment has induced an Al enrichment of the kaolinite surface. The IEP values indicated a thermal transformation to metakaolinite and mullite with the increase of temperature (750 to 980 degrees C). The IEP change for the milled samples can be only explained by assuming a 30% kaolinite coating by the Al oxide neoformed by grinding. Copyright 1999 Academic Press.

  8. Growth, structure, and magnetic properties of {gamma}-Fe{sub 2}O{sub 3} epitaxial films on MgO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Y.; Kim, Y.J.; Thevuthasan, S.

    1997-04-01

    Single-crystal epitaxial thin films of {gamma}-Fe{sub 2}O{sub 3}(001) have been grown on MgO(001) using oxygen-plasma-assisted molecular beam epitaxy. The structure and magnetic properties of these films have been characterized by a variety of techniques, including reflection high-energy electron diffraction (RHEED), low-energy electron diffraction (LEED), x-ray photoelectron spectroscopy and x-ray photoelectron/Auger electron diffraction (XPD/AED), vibrating sample magnetometry, and ferromagnetic resonance. Real-time RHEED reveals that the film growth occurs in a layer-by-layer fashion. The {gamma}-Fe{sub 2}O{sub 3}(001) film surface exhibits a (1{times}1) LEED pattern. The growth of {gamma}-Fe{sub 2}O{sub 3} films at 450 {degree}C is accompanied by significant Mg outdiffusion. AED ofmore » Mg KLL Auger emission reveals that Mg substitutionally incorporates in the {gamma}-Fe{sub 2}O{sub 3} lattice, occupying the octahedral sites. Magnetic moments are {approximately}2300 G and {approximately}4500 G for {gamma}-Fe{sub 2}O{sub 3} films grown at 250{degree}C and 450{degree}C, respectively. The high magnetic moment for the films grown at 450{degree}C could be attributed to the high degree of structural order of the films and Mg substitution at octahedral sites. {copyright} {ital 1997 American Institute of Physics.}« less

  9. Spectra of electrons emitted as a result of the sticking and annihilation of low energy positrons to the surfaces of graphene and highly oriented pyrolytic graphite (HOPG)

    NASA Astrophysics Data System (ADS)

    Chrysler, M.; Chirayath, V.; McDonald, A.; Lim, Z.; Shastry, K.; Gladen, R.; Fairchild, A.; Koymen, A.; Weiss, A.

    Positron annihilation induced Auger electron spectroscopy (PAES) was used to study the positron induced low energy electron spectra from HOPG and a sample composed of 6-8 layers of graphene grown on polycrystalline copper. A low energy (~2eV) beam of positrons was used to implant positrons into a surface localized state on the graphene and HOPG samples. Measurements of the energy spectra of the positron induced electrons obtained using a TOF spectrometer indicate the presence of an annihilation induced KLL C Auger peak (at ~263 eV) along with a narrow low energy secondary peak due to an Auger mediated positron sticking (AMPS) process. A broad spectral feature was also observed below ~15 eV which we believe may be due to a VVV C Auger transition not previously observed. The energy dependence of the integrated intensity of the AMPS peak was measured for a series of incident positron kinetic energies ranging from ~1.5 eV up to 11 eV from which the binding energy of the surface localized positron state on graphene and HOPG was estimated. The implication of our results regarding the applicability of AMPS and PAES to the study of graphene surfaces and interfaces will be discussed. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.

  10. An RBF-FD closest point method for solving PDEs on surfaces

    NASA Astrophysics Data System (ADS)

    Petras, A.; Ling, L.; Ruuth, S. J.

    2018-10-01

    Partial differential equations (PDEs) on surfaces appear in many applications throughout the natural and applied sciences. The classical closest point method (Ruuth and Merriman (2008) [17]) is an embedding method for solving PDEs on surfaces using standard finite difference schemes. In this paper, we formulate an explicit closest point method using finite difference schemes derived from radial basis functions (RBF-FD). Unlike the orthogonal gradients method (Piret (2012) [22]), our proposed method uses RBF centers on regular grid nodes. This formulation not only reduces the computational cost but also avoids the ill-conditioning from point clustering on the surface and is more natural to couple with a grid based manifold evolution algorithm (Leung and Zhao (2009) [26]). When compared to the standard finite difference discretization of the closest point method, the proposed method requires a smaller computational domain surrounding the surface, resulting in a decrease in the number of sampling points on the surface. In addition, higher-order schemes can easily be constructed by increasing the number of points in the RBF-FD stencil. Applications to a variety of examples are provided to illustrate the numerical convergence of the method.

  11. Kinetic studies on batch cultivation of Trichoderma reesei and application to enhance cellulase production by fed-batch fermentation.

    PubMed

    Ma, Lijuan; Li, Chen; Yang, Zhenhua; Jia, Wendi; Zhang, Dongyuan; Chen, Shulin

    2013-07-20

    Reducing the production cost of cellulase as the key enzyme for cellulose hydrolysis to fermentable sugars remains a major challenge for biofuel production. Because of the complexity of cellulase production, kinetic modeling and mass balance calculation can be used as effective tools for process design and optimization. In this study, kinetic models for cell growth, substrate consumption and cellulase production in batch fermentation were developed, and then applied in fed-batch fermentation to enhance cellulase production. Inhibition effect of substrate was considered and a modified Luedeking-Piret model was developed for cellulase production and substrate consumption according to the growth characteristics of Trichoderma reesei. The model predictions fit well with the experimental data. Simulation results showed that higher initial substrate concentration led to decrease of cellulase production rate. Mass balance and kinetic simulation results were applied to determine the feeding strategy. Cellulase production and its corresponding productivity increased by 82.13% after employing the proper feeding strategy in fed-batch fermentation. This method combining mathematics and chemometrics by kinetic modeling and mass balance can not only improve cellulase fermentation process, but also help to better understand the cellulase fermentation process. The model development can also provide insight to other similar fermentation processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Kinetic characterization and fed-batch fermentation for maximal simultaneous production of esterase and protease from Lysinibacillus fusiformis AU01.

    PubMed

    Divakar, K; Suryia Prabha, M; Nandhinidevi, G; Gautam, P

    2017-04-21

    The simultaneous production of intracellular esterase and extracellular protease from the strain Lysinibacillus fusiformis AU01 was studied in detail. The production was performed both under batch and fed-batch modes. The maximum yield of intracellular esterase and protease was obtained under full oxygen saturation at the beginning of the fermentation. The data were fitted to the Luedeking-Piret model and it was shown that the enzyme (both esterase and protease) production was growth associated. A decrease in intracellular esterase and increase in the extracellular esterase were observed during late stationary phase. The appearance of intracellular proteins in extracellular media and decrease in viable cell count and biomass during late stationary phase confirmed that the presence of extracellular esterase is due to cell lysis. Even though the fed-batch fermentation with different feeding strategies showed improved productivity, feeding yeast extract under DO-stat fermentation conditions showed highest intracellular esterase and protease production. Under DO-stat fed-batch cultivation, maximum intracellular esterase activity of 820 × 10 3 U/L and extracellular protease activity of 172 × 10 3 U/L were obtained at the 16th hr. Intracellular esterase and extracellular protease production were increased fivefold and fourfold, respectively, when compared to batch fermentation performed under shake flask conditions.

  13. Biodegradation kinetics of thin-stillage treatment by Aspergillus awamori and characterization of recovered chitosan.

    PubMed

    Ray, S Ghosh; Ghangrekar, M M

    2016-02-01

    An attempt has been made to provide solution for distillery wastewater using fungal pretreatment followed by an anaerobic process to achieve higher organic matter removal, which is a challenge at present with currently adopted technologies. Submerged growth kinetics of distillery wastewater supernatant by Aspergillus awamori was also evaluated. The proposed kinetic models using a logistic equation for fungal growth and the Leudeking-Piret equation for product formation were validated experimentally, and substrate consumption equation was derived using estimated kinetic coefficients. Up to 59.6 % chemical oxygen demand (COD) and 70 % total organic carbon (TOC) removals were observed in 96 h of fungal incubation. Maximum specific growth rate of fungi, coefficient of biomass yield on substrate and growth-associated product formation coefficient were estimated to be 0.07 ± 0.01 h(-1), 0.614 kg biomass/kg utilized COD and 0.215 kg CO2/kg utilized TOC, respectively. The chitosan recovery of 0.072-0.078 kg/kg of dry mycelium was obtained using dilute sulphuric acid extraction, showing high purity and characteristic chitosan properties according to FTIR and XRD analyses. After anaerobic treatment of the fungal pretreated effluent with COD concentration of 7.920 ± 0.120 kg COD/m(3) (organic loading rate of 3.28 kg COD/m(3) day), overall COD reduction of 91.07 % was achieved from distillery wastewater.

  14. Outer membrane vesicles (OMV) production of Neisseria meningitidis serogroup B in batch process.

    PubMed

    Santos, Sílvia; Arauz, Luciana Juncioni de; Baruque-Ramos, Júlia; Lebrun, Ivo; Carneiro, Sylvia Mendes; Barreto, Sandra Alves; Schenkman, Rocilda Perazzini Furtado

    2012-09-14

    Serogroup B outer membrane vesicles (OMV) with iron regulated proteins (IRP) from Neisseria meningitidis constitute the antigen for the vaccine against the disease caused by this bacterium. Aiming to enhance final OMV concentration, seven batch experiments were carried out under four different conditions: (i) with original Catlin medium; (ii) with original Catlin medium and lactate and amino acids pulse at the 6th cultivation hour; (iii) with Catlin medium with double initial concentrations of lactate and amino acids and (iv) Catlin medium without glycerol and with double initial concentrations of lactate and amino acids. The cultivation experiments were carried out in a 7-L bioreactor under the following conditions: 36°C, 0.5atm, overlay air 1L/min, agitation: 250-850 rpm, and O(2) control at 10%, 20 h. After lactate and amino acids exhaustion, cell growth reached stationary phase and a significant release increase of OMV was observed. According to the Luedeking & Piret model, OMV liberation is non-growth associated. Glycerol was not consumed during cultivation. The maximum OMV concentration value attained was 162 mg/L with correspondent productivity of 8.1mg/(Lh) employing Catlin medium with double initial concentrations of lactate and amino acids. The obtained OMV satisfied constitution and protein pattern criteria and were suitable for vaccine production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Photoionization of the Fe lons: Structure of the K-Edge

    NASA Technical Reports Server (NTRS)

    Palmeri, P.; Mendoza, C.; Kallman, T.; Bautista, M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    X-ray absorption and emission features arising from the inner-shell transitions in iron are of practical importance in astrophysics due to the Fe cosmic abundance and to the absence of traits from other elements in the nearby spectrum. As a result, the strengths and energies of such features can constrain the ionization stage, elemental abundance, and column density of the gas in the vicinity of the exotic cosmic objects, e.g. active galactic nuclei (AGN) and galactic black hole candidates. Although the observational technology in X-ray astronomy is still evolving and currently lacks high spectroscopic resolution, the astrophysical models have been based on atomic calculations that predict a sudden and high step-like increase of the cross section at the K-shell threshold (see for instance. New Breit-Pauli R-matrix calculations of the photoionization cross section of the ground states of Fe XVII in the region near the K threshold are presented. They strongly support the view that the previously assumed sharp edge behaviour is not correct. The latter has been caused by the neglect of spectator Auger channels in the decay of the resonances converging to the K threshold. These decay channels include the dominant KLL channels and give rise to constant widths (independent of n). As a consequence, these series display damped Lorentzian components that rapidly blend to impose continuity at threshold, thus reformatting the previously held picture of the edge. Apparent broadened iron edges detected in the spectra of AGN and galactic black hole candidates seem to indicate that these quantum effects may be at least partially responsible for the observed broadening.

  16. Modelling the growth kinetics of Kocuria marina DAGII as a function of single and binary substrate during batch production of β-Cryptoxanthin.

    PubMed

    Mitra, Ruchira; Chaudhuri, Surabhi; Dutta, Debjani

    2017-01-01

    In the present investigation, growth kinetics of Kocuria marina DAGII during batch production of β-Cryptoxanthin (β-CRX) was studied by considering the effect of glucose and maltose as a single and binary substrate. The importance of mixed substrate over single substrate has been emphasised in the present study. Different mathematical models namely, the Logistic model for cell growth, the Logistic mass balance equation for substrate consumption and the Luedeking-Piret model for β-CRX production were successfully implemented. Model-based analyses for the single substrate experiments suggested that the concentrations of glucose and maltose higher than 7.5 and 10.0 g/L, respectively, inhibited the growth and β-CRX production by K. marina DAGII. The Han and Levenspiel model and the Luong product inhibition model accurately described the cell growth in glucose and maltose substrate systems with a R 2 value of 0.9989 and 0.9998, respectively. The effect of glucose and maltose as binary substrate was further investigated. The binary substrate kinetics was well described using the sum-kinetics with interaction parameters model. The results of production kinetics revealed that the presence of binary substrate in the cultivation medium increased the biomass and β-CRX yield significantly. This study is a first time detailed investigation on kinetic behaviours of K. marina DAGII during β-CRX production. The parameters obtained in the study might be helpful for developing strategies for commercial production of β-CRX by K. marina DAGII.

  17. Statistical optimization for enhanced yields of probiotic Bacillus coagulans and its phage resistant mutants followed by kinetic modelling of the process.

    PubMed

    Pandey, Kavita R; Joshi, Chetan; Vakil, Babu V

    2016-01-01

    Probiotics are microorganisms which when administered in adequate amounts confer health benefits to the host. A leading pharmaceutical company producing Bacillus coagulans as a probiotic was facing the problem of recurring phage attacks. Two mutants viz. B. co PIII and B. co MIII that were isolated as phage resistant mutants after UV irradiation and MMS treatment of phage sensitive B. coagulans parental culture were characterized at functional and molecular level and were noted to have undergone interesting genetic changes. The non-specific genetic alterations induced by mutagenesis can also lead to alterations in cell performance. Hence, in the current study the parental strain and the two mutants were selected for shake flask optimization. Plackett-Burman design was used to select the significant culture variables affecting biomass production. Evolutionary operation method was applied for further optimization. The study showed wide variations in the nutritional requirements of phage resistant mutants, post exposure to mutagens. An increment of 150, 134 and 152 % was observed in the biomass productions of B. coagulans (parental type) and mutants B.co PIII and B.co MIII respectively, compared to the yield from one-factor-at-a-time technique. Using Logistic and modified Leudeking-Piret equations, biomass accumulation and substrate utilization efficiency of the bioprocess were determined. The experimental data was in agreement with the results predicted by statistical analysis and modelling. The developed model may be useful for controlling the growth and substrate consumption kinetics in large scale fermentation using B. coagulans .

  18. Studies Of Oxidation And Thermal Reduction Of The Cu(100) Surface Using Positron Annihilation Induced Auger Electron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Nadesalingam, M. P.; Maddox, W.; Weiss, A. H.

    2011-06-01

    Positron annihilation induced Auger electron spectroscopy (PAES) measurements from the surface of an oxidized Cu(100) single crystal show a large increase in the intensity of the annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 °C. The PAES intensity then decreases monotonically as the annealing temperature is increased to ˜550 °C. Experimental positron annihilation probabilities with Cu 3p and O 1s core electrons are estimated from the measured intensities of the positron annihilation induced Cu M2,3VV and O KLL Auger transitions. PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of the surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface and various surface structures associated with low and high oxygen coverages. The variations in atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface are found to affect localization and spatial extent of the positron surface state wave function. The computed positron binding energy and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface. Theoretical positron annihilation probabilities with Cu 3p and O 1s core electrons computed for the oxidized Cu(100) surface are compared with experimental ones. The obtained results provide a demonstration of thermal reduction of the copper oxide surface after annealing at 300 °C followed by re-oxidation of the Cu(100) surface at higher annealing temperatures presumably due to diffusion of subsurface oxygen to the surface.

  19. Studies Of Oxidation And Thermal Reduction Of The Cu(100) Surface Using Positron Annihilation Induced Auger Electron Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fazleev, N. G.; Department of Physics, Kazan State University, Kazan 420008; Nadesalingam, M. P.

    2011-06-01

    Positron annihilation induced Auger electron spectroscopy (PAES) measurements from the surface of an oxidized Cu(100) single crystal show a large increase in the intensity of the annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 deg. C. The PAES intensity then decreases monotonically as the annealing temperature is increased to {approx}550 deg. C. Experimental positron annihilation probabilities with Cu 3p and O 1s core electrons are estimated from the measured intensities of the positron annihilation induced Cu M{sub 2,3}VV and O KLL Auger transitions. PAESmore » results are analyzed by performing calculations of positron surface states and annihilation probabilities of the surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface and various surface structures associated with low and high oxygen coverages. The variations in atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface are found to affect localization and spatial extent of the positron surface state wave function. The computed positron binding energy and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface. Theoretical positron annihilation probabilities with Cu 3p and O 1s core electrons computed for the oxidized Cu(100) surface are compared with experimental ones. The obtained results provide a demonstration of thermal reduction of the copper oxide surface after annealing at 300 deg. C followed by re-oxidation of the Cu(100) surface at higher annealing temperatures presumably due to diffusion of subsurface oxygen to the surface.« less

  20. Plasmonic Enhancement Mechanisms in Solar Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Cushing, Scott K.

    possible: i) increasing light absorption in the semiconductor by light trapping through scattering, ii) transferring hot carriers from metal to semiconductor after light absorption in the metal, and iii) non-radiative excitation of interband transitions in the semiconductor by plasmon-induced resonant energy transfer (PIRET). The effects of the metal on charge transport and carrier recombination were also revealed. Next, it has been shown that the strength and balance of the three enhancement mechanisms is rooted in the plasmon's dephasing time, or how long it takes the collective electron oscillations to stop being collective. The importance of coherent effects in plasmonic enhancement is also shown. Based on these findings, a thermodynamic balance framework has been used to predict the theoretical maximum efficiency of solar energy conversion in plasmonic metal-semiconductor heterojunctions. These calculations have revealed how plasmonics is best used to address the different light absorption problems in semiconductors, and that not taking into account the plasmon's dephasing is the origin of low plasmonic enhancement Finally, to prove these guidelines, each of the three enhancement mechanisms has been translated into optimal device geometries, showing the plasmon's potential for solar energy harvesting. This dissertation identifies the three possible plasmonic enhancement mechanisms for the first time, discovering a new enhancement mechanism (PIRET) in the process. It has also been shown for the first time that the various plasmon-semiconductor interactions could be rooted in the plasmon's dephasing. This has allowed for the first maximum efficiency estimates which have combined all three enhancement mechanisms to be performed, and revealed that changes in the plasmon's dephasing leads to the disparity in reported plasmonic enhancements. These findings are combined to create optimal device design guidelines, which are proven by fabrication of several devices with top

  1. D-Lactic acid biosynthesis from biomass-derived sugars via Lactobacillus delbrueckii fermentation.

    PubMed

    Zhang, Yixing; Vadlani, Praveen V

    2013-12-01

    Poly-lactic acid (PLA) derived from renewable resources is considered to be a good substitute for petroleum-based plastics. The number of poly L-lactic acid applications is increased by the introduction of a stereocomplex PLA, which consists of both poly-L and D-lactic acid and has a higher melting temperature. To date, several studies have explored the production of L-lactic acid, but information on biosynthesis of D-lactic acid is limited. Pulp and corn stover are abundant, renewable lignocellulosic materials that can be hydrolyzed to sugars and used in biosynthesis of D-lactic acid. In our study, saccharification of pulp and corn stover was done by cellulase CTec2 and sugars generated from hydrolysis were converted to D-lactic acid by a homofermentative strain, L. delbrueckii, through a sequential hydrolysis and fermentation process (SHF) and a simultaneous saccharification and fermentation process (SSF). 36.3 g L(-1) of D-lactic acid with 99.8 % optical purity was obtained in the batch fermentation of pulp and attained highest yield and productivity of 0.83 g g(-1) and 1.01 g L(-1) h(-1), respectively. Luedeking-Piret model described the mixed growth-associated production of D-lactic acid with a maximum specific growth rate 0.2 h(-1) and product formation rate 0.026 h(-1), obtained for this strain. The efficient synthesis of D-lactic acid having high optical purity and melting point will lead to unique stereocomplex PLA with innovative applications in polymer industry.

  2. Measurements of Polarization Transfers in Real Compton Scattering by a proton target at JLAB. A new source of information on the 3D shape of the nucleon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fanelli, Cristiano V.

    2015-03-01

    In this thesis work, results of the analysis of the polarization transfers measured in real Compton scattering (RCS) by the Collaboration E07-002 at the Je fferson Lab Hall-C are presented. The data were collected at large scattering angle (theta_cm = 70deg) and with a polarized incident photon beam at an average energy of 3.8 GeV. Such a kind of experiments allows one to understand more deeply the reaction mechanism, that involves a real photon, by extracting both Compton form factors and Generalized Parton Distributions (GPDs) (also relevant for possibly shedding light on the total angular momentum of the nucleon). Themore » obtained results for the longitudinal and transverse polarization transfers K_LL and K_LT, are of crucial importance, since they confirm unambiguously the disagreement between experimental data and pQCD prediction, as it was found in E99-114 experiment, and favor the Handbag mechanism. The E99-114 and E07-002 results can contribute to attract new interest on the great yield of the Compton scattering by a nucleon target, as demonstrated by the recent approval of an experimental proposal submitted to the Jefferson Lab PAC 42 for a Wide-angle Compton Scattering experiment, at 8 and 10 GeV Photon Energies. The new experiments approved to run with the updated 12 GeV electron beam at JLab, are characterized by much higher luminosities, and a new GEM tracker is under development to tackle the challenging backgrounds. Within this context, we present a new multistep tracking algorithm, based on (i) a Neural Network (NN) designed for a fast and efficient association of the hits measured by the GEM detector which allows the track identification, and (ii) the application of both a Kalman filter and Rauch-Tung-Striebel smoother to further improve the track reconstruction. The full procedure, i.e. NN and filtering, appears very promising, with high performances in terms of both association effciency and reconstruction accuracy, and these preliminary

  3. The surface plasmon-induced hot carrier effect on the catalytic activity of CO oxidation on a Cu2O/hexoctahedral Au inverse catalyst.

    PubMed

    Lee, Si Woo; Hong, Jong Wook; Lee, Hyunhwa; Wi, Dae Han; Kim, Sun Mi; Han, Sang Woo; Park, Jeong Young

    2018-06-14

    The intrinsic correlation between an enhancement of catalytic activity and the flow of hot electrons generated at metal-oxide interfaces suggests an intriguing way to control catalytic reactions and is a significant subject in heterogeneous catalysis. Here, we show surface plasmon-induced catalytic enhancement by the peculiar nanocatalyst design of hexoctahedral (HOH) Au nanocrystals (NCs) with Cu2O clusters. We found that this inverse catalyst comprising a reactive oxide for the catalytic portion and a metal as the source of electrons by localized surface plasmon resonance (localized SPR) exhibits a change in catalytic activity by direct hot electron transfer or plasmon-induced resonance energy transfer (PIRET) when exposed to light. We prepared two types of inverse catalysts, Cu2O at the vertex sites of HOH Au NCs (Cu2O/Au vertex site) and a HOH Au NC-Cu2O core-shell structure (HOH Au@Cu2O), to test the structural effect on surface plasmons. Under broadband light illumination, the Cu2O/Au vertex site catalyst showed 30-90% higher catalytic activity and the HOH Au@Cu2O catalyst showed 10-30% higher catalytic activity than when in the dark. Embedding thin SiO2 layers between the HOH Au NCs and the Cu2O verified that the dominant mechanism for the catalytic enhancement is direct hot electron transfer from the HOH Au to the Cu2O. Finite-difference time domain calculations show that a much stronger electric field was formed on the vertex sites after growing the Cu2O on the HOH Au NCs. These results imply that the catalytic activity is enhanced when hot electrons, created from photon absorption on the HOH Au metal and amplified by the presence of surface plasmons, are transferred to the reactive Cu2O.

  4. Mathematical modeling of fed-batch fermentation of Schizochytrium sp. FJU-512 growth and DHA production using a shift control strategy.

    PubMed

    Zhang, Mingliang; Wu, Weibin; Guo, Xiaolei; Weichen, You; Qi, Feng; Jiang, Xianzhang; Huang, Jianzhong

    2018-03-01

    To obtain high-cell-density cultures of Schizochytrium sp. FJU-512 for DHA production, two stages of fermentation strategy were used and carbon/nitrogen ratio, DO and temperature were controlled at different levels. The final dry cell weight, total lipid production and DHA yield in 15 l bioreactor reached 103.9, 37.2 and 16.0 g/l, respectively. For the further study of microbial growth and DHA production dynamics, we established a set of kinetic models for the fed-batch production of DHA by Schizochytrium sp. FJU-512 in 15 and 100 l fermenters and a compensatory parameter n was integrated into the model in order to find the optimal mathematical equations. A modified Logistic model was proposed to fit the cell growth data and the following kinetic parameters were obtained: µ m  = 0.0525/h, X m  = 100 g/l and n  = 4.1717 for the 15 l bioreactor, as well as µ m  = 0.0382/h, X m  = 107.4371 g/l and n  = 10 for the 100 l bioreactor. The Luedeking-Piret equations were utilized to model DHA production, yielding values of α  = 0.0648 g/g and β  = 0.0014 g/g/h for the 15 l bioreactor, while the values of α and β obtained for the 100 l fermentation were 0.0209 g/g and 0.0030 g/g/h. The predicted results compared with experimental data showed that the established models had a good fitting precision and were able to exactly depict the dynamic features of the DHA production process.

  5. Theory and Application of Auger and Photoelectron Diffraction and Holography

    NASA Astrophysics Data System (ADS)

    Chen, Xiang

    This dissertation addresses the theories and applications of three important surface analysis techniques: Auger electron diffraction (AED), x-ray photoelectron diffraction (XPD), and Auger and photoelectron holography. A full multiple-scattering scheme for the calculations of XPD, AED, and Kikuchi electron diffraction pattern from a surface cluster is described. It is used to simulate 64 eV M_{2,3}VV and 913 eV L_3VV AED patterns from Cu(001) surfaces, in order to test assertions in the literature that they are explicable by a classical "blocking" and channeling model. We find that this contention is not valid, and that only a quantum mechanical multiple-scattering calculation is able to simulate these patterns well. The same multiple scattering simulation scheme is also used to investigate the anomalous phenomena of peak shifts off the forward-scattering directions in photo -electron diffraction patterns of Mg KLL (1180 eV) and O 1s (955 eV) from MgO(001) surfaces. These shifts are explained by calculations assuming a short electron mean free path. Similar simulations of XPD from a CoSi_2(111) surface for Co-3p and Si-2p normal emission agree well with experimental diffraction patterns. A filtering process aimed at eliminating the self -interference effect in photoelectron holography is developed. A better reconstructed image from Si-2p XPD from a Si(001) (2 times 1) surface is seen at atomic resolution. A reconstruction algorithm which corrects for the anisotropic emitter waves as well as the anisotropic atomic scattering factors is used for holographic reconstruction from a Co-3p XPD pattern from a CoSi_2 surface. This new algorithm considerably improves the reconstructed image. Finally, a new reconstruction algorithm called "atomic position recovery by iterative optimization of reconstructed intensities" (APRIORI), which takes account of the self-interference terms omitted by the other holographic algorithms, is developed. Tests on a Ni-C-O chain and Si(111

  6. Polarization of resonantly excited X-ray lines

    NASA Astrophysics Data System (ADS)

    Shah, Chintan; Amaro, Pedro; Steinbrügge, René; Bernitt, Sven; Fritzsche, Stephan; Surzhykov, Andrey; Crespo Lopez-Urrutia, José R.; Tashenov, Stanislav

    2017-08-01

    For a wide range of temperatures, resonantly captured electrons with energies below the excitation threshold are the strongest source of X-ray line excitation in hot plasmas containing highly charged Fe ions. The angular distribution and polarization of X-rays emitted due to these processes were experimentally studied using an electron beam ion trap. The electron-ion collision energy was scanned over the KLL dielectronic, trielectronic, and quadruelectronic recombination resonances of Fe18+..24+ and Kr28+..34+ with an exemplary resolution of ~6 eV. The angular distribution of induced X-ray fluorescence was measured along and perpendicular to the electron beam propagation direction [1]. Subsequently, the polarization of X-ray fluorescence was also measured using a novel Compton polarimeter [2, 3].The experimental data reveal the alignment of the populated excited states and exhibit a high sensitivity to the relativistic Breit interaction [2, 4]. We observed that most of the transitions lead to polarization, including hitherto-neglected trielectronic and quadruelectronic recombination channels. Furthermore, these channels dominate the polarization of the prominent Kα X-rays emitted by hot anisotropic plasmas in a wide temperature range. The present experimental results comprehensively benchmark full-order atomic calculations carried out with the FAC [5] and RATIP [6] codes. We conclude that accurate polarization diagnostics of hot anisotropic plasmas, e.~g., of solar flares and active galactic nuclei, and laboratory fusion plasmas of tokamaks can only be obtained under the premise of careful inclusion of relativistic effects and higher-order resonances which were often neglected in previous works [1]. The present experiments also demonstrate the suitability of the applied technique for accurate directional diagnostics of electron or ion beams in hot plasmas [7].[1] C. Shah et al., Phys. Rev. E 93, 061201 (R) (2016)[2] C. Shah et al., Phys. Rev. A 92, 042702 (2015

  7. Nature, theory and modelling of geophysical convective planetary boundary layers

    NASA Astrophysics Data System (ADS)

    Zilitinkevich, Sergej

    2015-04-01

    horizontal branches of organised structures. This mechanism (Zilitinkevich et al., 2006), was overlooked in conventional local theories, such as the Monin-Obukhov similarity theory, and convective heat/mass transfer law: Nu~Ra1/3, where Nu and Ra are the Nusselt number and Raleigh numbers. References Hellsten A., Zilitinkevich S., 2013: Role of convective structures and background turbulence in the dry convective boundary layer. Boundary-Layer Meteorol. 149, 323-353. Zilitinkevich, S.S., 1973: Shear convection. Boundary-Layer Meteorol. 3, 416-423. Zilitinkevich, S.S., 1991: Turbulent Penetrative Convection, Avebury Technical, Aldershot, 180 pp. Zilitinkevich S.S., 2012: The Height of the Atmospheric Planetary Boundary layer: State of the Art and New Development - Chapter 13 in 'National Security and Human Health Implications of Climate Change', edited by H.J.S. Fernando, Z. Klaić, J.L. McKulley, NATO Science for Peace and Security Series - C: Environmental Security (ISBN 978-94-007-2429-7), Springer, 147-161. Zilitinkevich S.S., 2013: Atmospheric Turbulence and Planetary Boundary Layers. Fizmatlit, Moscow, 248 pp. Zilitinkevich, S.S., Hunt, J.C.R., Grachev, A.A., Esau, I.N., Lalas, D.P., Akylas, E., Tombrou, M., Fairall, C.W., Fernando, H.J.S., Baklanov, and A., Joffre, S.M., 2006: The influence of large convective eddies on the surface layer turbulence. Quart. J. Roy. Met. Soc. 132, 1423-1456. Zilitinkevich S.S., Tyuryakov S.A., Troitskaya Yu. I., Mareev E., 2012: Theoretical models of the height of the atmospheric planetary boundary layer and turbulent entrainment at its upper boundary. Izvestija RAN, FAO, 48, No.1, 150-160 Zilitinkevich, S.S., Elperin, T., Kleeorin, N., Rogachevskii, I., Esau, I.N., 2013: A hierarchy of energy- and flux-budget (EFB) turbulence closure models for stably stratified geophysical flows. Boundary-Layer Meteorol. 146, 341-373.

  8. Low-Energy Electrons Emitted in Ion Collisions with Thin Foils

    NASA Astrophysics Data System (ADS)

    Kraemer, Michael; Kozhuharov, Christophor; Durante, Marco; Hagmann, Siegbert; Kraft, Gerhard; Lineva, Natallia

    this end, electron spectra were measured from collisions of 3.6 and 11.4 MeV/u carbon ions impinging on thin (4 to 40ug/cm**2) C, Ni, Ag, and Au targets. The results were compared with simple conventional theories as well as with dedicated TRAX Monte Carlo simulations taking transport through the material into account. We will discuss the importance of the projectile electrons as well as the instantaneous charge state of the projectile within the target material. These investigations were complemented with protons in comparison with singly charged H3 molecules as projectiles. The fact that the ratio of the cross sections for electron production is not unity and slightly increases with the electron energy supports the emphasis that we put on the importance of the projectile electrons and on the knowledge of the instantaneous charge state. The spectra further exhibit two structures that belong to the KLL-Auger lines of carbon and oxygen. The C-line originates from the target surface and from the adsorbed carbon; the O-line originates entirely from the adsorbed oxygen molecules. It appears that the line structure can be explained by the back-diffusion of the Auger electrons.

  9. PREFACE: Nanosafe2010: International Conference on Safe Production and Use of Nanomaterials

    NASA Astrophysics Data System (ADS)

    Sentein, Carole; Schuster, Frédéric; Tardif, François

    2011-07-01

    ESevertsov Inst. of Ecology and Evolution, RU KÜCK AUniv. Bremen, DE KUO Y-MChung Hwa University, TW KVITEK LPalacky Univ., CZ LABILLE JCEREGE, FR LAMMINEN EDekati, FI LARUE CCEA, FR LE BIHAN OINERIS, FR LE DUR DEcomesure, FR LECERF PCILAS, FR LEGRAND MCordouan, FR LELONG CUJF CEA, FR LIMOUSIN SINERIS, FR LINDELOEV JGEA Process Engineering, DK LIU P PChina Jiliang University, CN LIU WCEREGE, FR MACHEREY A-CCNRS, FR MAGGA YCEA, FR MAHLENDORF FUniversity Duisburg-Essen, DE MANIER NINERIS, FR MANZO LUniv. Pavia, IT MARCHETTO ACEA, FR MARCONE GUNICAMP, BR MARI DEPFL, CH MARIE-DESVERGNE CCEA, FR MARIE-LOUISE APSA Peugeot-Citroen, FR MARMUSE LNano-H S.A.S., FR MARRA JPhilips Research Aerasense, NL MASION ACEREGE, FR MATEI EPolitehnica University Bucharest, RO MATSUI YKyoto Univ., JP MATZKE MUniv. Gothenburg, SE MAYNE-L'HERMITE MCEA, FR MELINTE G ABabes-Bolyai University, RO MERINO CGrupo Antolin Ingenieria, ES MICHAUD-SORET ICEA, FR MICHELETTI CJRC, IT MONTIGEL EBasler Versicherungen, CH MONTOYA ERAMEM, ES MOSSUZ VCEA, FR MOTELLIER SCEA, FR MOTZKUS CLNE, FR MUIR BNaneum, GB NAKAMURA KJAPAN NUS CO., JP NEUBAUER NKarlsruhe Institute of Technologie, DE NEUMEISTER LBG ETEM, DE NGUYEN TNIST, US NIORT NINTERTEK, FR NOIRTIN AINTERTEK, FR NOWACK BEmpa, CH NYEMBE DUniv. Johannesburg, ZA Ó CLAONADH NDublin Institute of Technology, IE OBERDÖRSTER GUniv. Rochester, US OGURA IAIST, JP OSTIGUY CIRSST, CA OTSUKA KJFE Techno-Research Corp., JP OUF F-XIRSN, FR OUSACI SALMA, FR PAGET VCEA, FR PAILLEUX MEcole des Mines de Saint Etienne, FR PANDARD PINERIS, FR PANZER OEuropean Research Services, DE PARISELLI FCNRS, FR PERLET JNANO Magazine, GB PETERS RRIKILT, NL PETIT A-NCEA, FR PETKOVIC JNational Institute of Biology, SI PIMENOFF JBeneq, FI PINAULT MCEA, FR PIRET J-PUniv. Namur, BE PONTONE RTekna Plasma Systems, FR POURCHEZ JEcole des Mines de Saint Etienne, FR PRAETORIUS AETH Zurich, CH PRAT OCEA, FR PREVENSLIK TQED Radiations, CN PREVOST CIRSN, FR PROY HUART DFrance Nature Environnement, FR PUI