Science.gov

Sample records for pitting temperature measurement

  1. Limitations of using a thermal imager for snow pit temperatures

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Jamieson, B.

    2013-10-01

    Driven by temperature gradients, kinetic snow metamorphism is important for avalanche formation. Even when gradients appear to be insufficient for kinetic metamorphism, based on temperatures measured 10 cm apart, faceting close to a~crust can still be observed. Recent studies that visualized small scale (< 10 cm) thermal structures in a profile of snow layers with an infrared (IR) camera produced interesting results. The studies found melt-freeze crusts to be warmer or cooler than the surrounding snow depending on the large scale gradient direction. However, an important assumption within the studies was that a thermal photo of a freshly exposed snow pit was similar enough to the internal temperature of the snow. In this study, we tested this assumption by recording thermal videos during the exposure of the snow pit wall. In the first minute, the results showed increasing gradients with time, both at melt-freeze crusts and at artificial surface structures such as shovel scours. Cutting through a crust with a cutting blade or a shovel produced small concavities (holes) even when the objective was to cut a planar surface. Our findings suggest there is a surface structure dependency of the thermal image, which is only observed at times with large temperature differences between air and snow. We were able to reproduce the hot-crust/cold-crust phenomenon and relate it entirely to surface structure in a temperature-controlled cold laboratory. Concave areas cooled or warmed slower compared with convex areas (bumps) when applying temperature differences between snow and air. This can be explained by increased radiative transfer or convection by air at convex areas. Thermal videos suggest that such processes influence the snow temperature within seconds. Our findings show the limitations of the use of a thermal camera for measuring pit-wall temperatures, particularly in scenarios where large gradients exist between air and snow and the interaction of snow pit and

  2. Limitations of using a thermal imager for snow pit temperatures

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Jamieson, B.

    2014-03-01

    Driven by temperature gradients, kinetic snow metamorphism plays an import role in avalanche formation. When gradients based on temperatures measured 10 cm apart appear to be insufficient for kinetic metamorphism, faceting close to a crust can be observed. Recent studies that visualised small-scale (< 10 cm) thermal structures in a profile of snow layers with an infrared (IR) camera produced interesting results. The studies found melt-freeze crusts to be warmer or cooler than the surrounding snow depending on the large-scale gradient direction. However, an important assumption within these studies was that a thermal photo of a freshly exposed snow pit was similar enough to the internal temperature of the snow. In this study, we tested this assumption by recording thermal videos during the exposure of the snow pit wall. In the first minute, the results showed increasing gradients with time, both at melt-freeze crusts and artificial surface structures such as shovel scours. Cutting through a crust with a cutting blade or shovel produced small concavities (holes) even when the objective was to cut a planar surface. Our findings suggest there is a surface structure dependency of the thermal image, which was only observed at times during a strong cooling/warming of the exposed pit wall. We were able to reproduce the hot-crust/cold-crust phenomenon and relate it entirely to surface structure in a temperature-controlled cold laboratory. Concave areas cooled or warmed more slowly compared with convex areas (bumps) when applying temperature differences between snow and air. This can be explained by increased radiative and/or turbulent energy transfer at convex areas. Thermal videos suggest that such processes influence the snow temperature within seconds. Our findings show the limitations of using a thermal camera for measuring pit-wall temperatures, particularly during windy conditions, clear skies and large temperature differences between air and snow. At crusts or other

  3. Coordinate Measuring Machine Pit Artifact Inspection Procedure

    SciTech Connect

    Montano, Joshua D.

    2012-07-31

    The goal of this document is to outline a procedure for dimensional measurement of Los Alamos National Laboratory's CMM Pit Artifact. This procedure will be used by the Manufacturing Practice's Inspection Technology Subgroup of the Interagency Manufacturing Operations Group and Joint Operations Weapon Operations Group (IMOG/JOWOG 39) round robin participants. The intent is to assess the state of industry within the Nuclear Weapons Complex for measurements made on this type of part and find which current measurement strategies and techniques produce the best results.

  4. The effect of temperature on the nucleation of corrosion pits on titanium in Ringer's physiological solution.

    PubMed

    Burstein, G T; Liu, C; Souto, R M

    2005-01-01

    This paper describes the effect of temperature on the nucleation of corrosion pits on titanium microelectrodes in Ringer's physiological solution. The results are shown for potentials far below the pitting potential, and describe breakdown of passivity with no permanent propagation of pits. Nucleation events could be observed at all the temperatures used, although they were very rare events at 20 degrees C. The frequency of breakdown rises significantly with increase in temperature. Examples are shown of current transients due to both pit nucleation and to metastable pit propagation, the latter being rare events. Analysis shows that these events constitute a significant fraction of the passive corrosion rate of titanium. PMID:15262467

  5. Effect of annealing temperature on the pitting corrosion resistance of super duplex stainless steel UNS S32750

    SciTech Connect

    Tan Hua; Jiang Yiming; Deng Bo; Sun Tao; Xu Juliang; Li Jin

    2009-09-15

    The pitting corrosion resistance of commercial super duplex stainless steels SAF2507 (UNS S32750) annealed at seven different temperatures ranging from 1030 deg. C to 1200 deg. C for 2 h has been investigated by means of potentiostatic critical pitting temperature. The microstructural evolution and pit morphologies of the specimens were studied through optical/scanning electron microscope. Increasing annealing temperature from 1030 deg. C to 1080 deg. C elevates the critical pitting temperature, whereas continuing to increase the annealing temperature to 1200 deg. C decreases the critical pitting temperature. The specimens annealed at 1080 deg. C for 2 h exhibit the best pitting corrosion resistance with the highest critical pitting temperature. The pit morphologies show that the pit initiation sites transfer from austenite phase to ferrite phase as the annealing temperature increases. The aforementioned results can be explained by the variation of pitting resistance equivalent number of ferrite and austenite phase as the annealing temperature changes.

  6. Influence of Step Annealing Temperature on the Microstructure and Pitting Corrosion Resistance of SDSS UNS S32760 Welds

    NASA Astrophysics Data System (ADS)

    Yousefieh, M.; Shamanian, M.; Saatchi, A.

    2011-12-01

    In the present work, the influence of step annealing heat treatment on the microstructure and pitting corrosion resistance of super duplex stainless steel UNS S32760 welds have been investigated. The pitting corrosion resistance in chloride solution was evaluated by potentiostatic measurements. The results showed that step annealing treatments in the temperature ranging from 550 to 1000 °C resulted in a precipitation of sigma phase and Cr2N along the ferrite/austenite and ferrite/ferrite boundaries. At this temperature range, the metastable pits mainly nucleated around the precipitates formed in the grain boundary and ferrite phase. Above 1050 °C, the microstructure contains only austenite and ferrite phases. At this condition, the critical pitting temperature of samples successfully arrived to the highest value obtained in this study.

  7. Temperature measurement

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003400.htm Temperature measurement To use the sharing features on this page, please enable JavaScript. The measurement of body temperature can help detect illness. It can also monitor ...

  8. Micro-PIT/V --- Simultaneous temperature and velocity fields in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Pottebaum, Tait

    2008-11-01

    The use of encapsulated thermochromic liquid crystals (TLC) for the simultaneous measurement of temperature and velocity fields in microfluidic devices has been demonstrated. Implementation of TLC thermometry at the micro-scale is significantly different than at the macro-scale due to the constraints on imaging and illumination configurations and the proximity of the measurements to interfaces and surfaces from which light will scatter. Unlike in micro-PIV, wavelength filtering (such as with fluorescent particles) cannot be used to remove undesired reflections, because the temperature information is carried by the particle color. Therefore, circular polarization filtering is used, exploiting the circular dichroism of TLC. Micro-PIT/V will enable new investigations into the physics of microfluidic devices involving temperature gradients, such as thermocapillary actuated devices and many ``lab-on-a-chip'' applications involving temperature sensitive chemical and biological processes. In addition, the design of operational devices can be improved by applying micro-PIT/V to the characterization of prototypes.

  9. The effect of tempering temperature on pitting corrosion resistance of 420 stainless steels

    NASA Astrophysics Data System (ADS)

    Anwar, Moch. Syaiful; Prifiharni, Siska; Mabruri, Efendi

    2016-04-01

    The AISI Type 420 stainless steels are commonly used to steam generators, mixer blades, etc. These stainless steels are most prone to pitting in dissolved Cl- containing environments. In this paper, the effect of tempering temperature on pitting corrosion resistance of AISI Type 420 stainless steels was studied. The AISI Type 420 stainless steels specimens were heat treated at the temperature of 1050°C for 1 hour to reach austenite stabilization and then quench in the oil. After that, the specimens were tempered at the temperature of 150, 250, 350 and 450°C for 30 minutes and then air cooled to the room temperature. The electrochemical potentiodynamic polarization test was conducted at 3.5% sodium chloride solution to evaluate corrosion rate and pitting corrosion behaviour. The Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) were used to evaluate the pitting corrosion product. The result have shown that highest pitting potential was found in the sample tempered at 250°C and corrosion pits were found to initiate preferentially around chromium carbides.

  10. Force-displacement measurements of earlywood bordered pits using a mesomechanical tester.

    PubMed

    Zelinka, Samuel L; Bourne, Keith J; Hermanson, John C; Glass, Samuel V; Costa, Adriana; Wiedenhoeft, Alex C

    2015-10-01

    The elastic properties of pit membranes are reported to have important implications in understanding air-seeding phenomena in gymnosperms, and pit aspiration plays a large role in wood technological applications such as wood drying and preservative treatment. Here we present force-displacement measurements for pit membranes of circular bordered pits, collected on a mesomechanical testing system. The system consists of a quartz microprobe attached to a microforce sensor that is positioned and advanced with a micromanipulator mounted on an inverted microscope. Membrane displacement is measured from digital image analysis. Unaspirated pits from earlywood of never-dried wood of Larix and Pinus and aspirated pits from earlywood of dried wood of Larix were tested to generate force-displacement curves up to the point of membrane failure. Two failure modes were observed: rupture or tearing of the pit membrane by the microprobe tip, and the stretching of the pit membrane until the torus was forced out of the pit chamber through the pit aperture without rupture, a condition we refer to as torus prolapse. PMID:25754548

  11. Simulations and measurements of artificial cracks and pits in flat stainless steel plates using tone burst eddy-current thermography (TBET)

    NASA Astrophysics Data System (ADS)

    Libin, M. N.; Balasubramaniam, Krishnan; Maxfield, B. W.; Krishnamurthy, C. V.

    2013-01-01

    Tone Burst Eddy current Thermography (TBET) is a new hybrid, non-contacting, Non-Destructive Evaluation (NDE) method which employs a combination of Pulsed Eddy current Thermography (PEC) and Thermographic Non-Destructive Evaluation (TNDE). For understanding the influence of cracking and pitting on heat generation and flow within a metallic body, a fundamental knowledge of the detailed induced current density distribution in the component under test is required. This information enables us to calculate the amount of heat produced by the defects and how that heat diffuses to the surface where it is imaged. This paper describes simulation work done for artificial pits and cracks within pits on the far surface of poorly conducting metals like stainless steel. The first phase of this investigation simulates the transient thermal distribution for artificial 2D pit and crack-like defects using the finite element package COMSOL multi-physics with the AC/DC module and general heat transfer. Considering the reflection measurement geometry where thermal excitation and temperature monitoring are on the same surface, pitting reduces the material volume thereby contributing to a larger temperature rise for the same thermal energy input. A crack within a pit gives a further increase in temperature above the pure pit baseline. The tone burst frequency can be changed to obtain approximately uniform heating (low frequency) or heating of a thin region at the observation surface. Although front surface temperature changes due to 10% deep far-side pits in a 6 mm thick plate can be measured, it is not yet clear whether a 20% deep crack within this pit can be discriminated against the background. Both simulations and measurements will be presented. The objective of this work is to determine whether the TBET method is suitable for the detection and characterization of far side pitting, cracking and cracks within those pits.

  12. KW basin backwash pit sludge measurement/video

    SciTech Connect

    Dodd, E.N. Jr.

    1994-09-06

    The purpose of this procedure is to gather visual and depth information and monitor underwater activities in the 105-KW SFBWP and transfer channel. Profile lighting (the use of lighting and shadows to show the surface contour) will be used to assess the contour of the sludge surface. Select measurements will also be taken to determine the actual sludge depth. The control/video station will be setup outside the radiation area or in lowest possible exposure area to reduce personnel exposure (ALARA). This procedure is to provide a mechanism to assist in fully characterizing the volume and surface topology of the sludge currently deposited in the sandfilter backwash pit (SFBWP). Surveillance Systems Engineering (SSE) personnel will gather visual information utilizing a closed circuit television (CCTV) color camera, mounted to stainless steel extension poles. Connections allow the camera to be connected with a pan and tilt to allow better positioning capabilities and to get good landscape profiling of the sediment surface. The information will be videotaped to a one-half inch NTSC or Y/C format. Underwater lighting will be accomplished by means of 500 watt underwater lamps.

  13. Temperature measurement

    MedlinePlus

    ... body. Wait for 5 minutes before reading. Plastic strip thermometers change color to show the temperature. This method is the least accurate. Place the strip on the forehead and read it after 1 ...

  14. The effect of some fundamental aspects of the pitting corrosion of stainless steel on electrochemical noise measurements

    SciTech Connect

    Pistorius, P.C.

    1996-12-31

    Features of metastable pit growth on stainless steel that affect the possibilities to predict stable pit growth from electrochemical noise measurements are examined. To this end, the behavior of AISI type 304 stainless steel in chloride solutions has been studied. It is confirmed that the electrode capacitance plays a major role in fluctuations of the corrosion potential during metastable growth. This means that the size of these potential fluctuations depends primarily on the size of metastable pits and not on the peak current nor the current density during growth; this means that fluctuations in electrode potential will have little value to predict stable pitting. Electrochemical current noise from twin-electrode noise probes holds more promise. However, it is shown that the direct relationship between electrochemical current noise and pitting susceptibility breaks down when the pitting behavior is altered by a change in surface condition (heat tinting).

  15. An AFM-based pit-measuring method for indirect measurements of cell-surface membrane vesicles

    SciTech Connect

    Zhang, Xiaojun; Chen, Yuan; Chen, Yong

    2014-03-28

    Highlights: • Air drying induced the transformation of cell-surface membrane vesicles into pits. • An AFM-based pit-measuring method was developed to measure cell-surface vesicles. • Our method detected at least two populations of cell-surface membrane vesicles. - Abstract: Circulating membrane vesicles, which are shed from many cell types, have multiple functions and have been correlated with many diseases. Although circulating membrane vesicles have been extensively characterized, the status of cell-surface membrane vesicles prior to their release is less understood due to the lack of effective measurement methods. Recently, as a powerful, micro- or nano-scale imaging tool, atomic force microscopy (AFM) has been applied in measuring circulating membrane vesicles. However, it seems very difficult for AFM to directly image/identify and measure cell-bound membrane vesicles due to the similarity of surface morphology between membrane vesicles and cell surfaces. Therefore, until now no AFM studies on cell-surface membrane vesicles have been reported. In this study, we found that air drying can induce the transformation of most cell-surface membrane vesicles into pits that are more readily detectable by AFM. Based on this, we developed an AFM-based pit-measuring method and, for the first time, used AFM to indirectly measure cell-surface membrane vesicles on cultured endothelial cells. Using this approach, we observed and quantitatively measured at least two populations of cell-surface membrane vesicles, a nanoscale population (<500 nm in diameter peaking at ∼250 nm) and a microscale population (from 500 nm to ∼2 μm peaking at ∼0.8 μm), whereas confocal microscopy only detected the microscale population. The AFM-based pit-measuring method is potentially useful for studying cell-surface membrane vesicles and for investigating the mechanisms of membrane vesicle formation/release.

  16. Volume Measurements of Laser-generated Pits for In Situ Geochronology using KArLE (Potassium-Argon Laser Experiment)

    NASA Technical Reports Server (NTRS)

    French, R. A.; Cohen, B. A.; Miller, J. S.

    2014-01-01

    The Potassium-Argon Laser Experiment( KArLE), is composed of two main instruments: a spectrometer as part of the Laser-Induced Breakdown Spectroscopy (LIBS) method and a Mass Spectrometer (MS). The LIBS laser ablates a sample and creates a plasma cloud, generating a pit in the sample. The LIBS plasma is measured for K abundance in weight percent and the released gas is measured using the MS, which calculates Ar abundance in mols. To relate the K and Ar measurements, total mass of the ablated sample is needed but can be difficult to directly measure. Instead, density and volume are used to calculate mass, where density is calculated based on the elemental composition of the rock (from the emission spectrum) and volume is determined by pit morphology. This study aims to reduce the uncertainty for KArLE by analyzing pit volume relationships in several analog materials and comparing methods of pit volume measurements and their associated uncertainties.

  17. FOVEA: a new program to standardize the measurement of foveal pit morphology.

    PubMed

    Moore, Bret A; Yoo, Innfarn; Tyrrell, Luke P; Benes, Bedrich; Fernandez-Juricic, Esteban

    2016-01-01

    The fovea is one of the most studied retinal specializations in vertebrates, which consists of an invagination of the retinal tissue with high packing of cone photoreceptors, leading to high visual resolution. Between species, foveae differ morphologically in the depth and width of the foveal pit and the steepness of the foveal walls, which could influence visual perception. However, there is no standardized methodology to measure the contour of the foveal pit across species. We present here FOVEA, a program for the quantification of foveal parameters (width, depth, slope of foveal pit) using images from histological cross-sections or optical coherence tomography (OCT). FOVEA is based on a new algorithm to detect the inner retina contour based on the color variation of the image. We evaluated FOVEA by comparing the fovea morphology of two Passerine birds based on histological cross-sections and its performance with data from previously published OCT images. FOVEA detected differences between species and its output was not significantly different from previous estimates using OCT software. FOVEA can be used for comparative studies to better understand the evolution of the fovea morphology in vertebrates as well as for diagnostic purposes in veterinary pathology. FOVEA is freely available for academic use and can be downloaded at: http://estebanfj.bio.purdue.edu/fovea. PMID:27076997

  18. FOVEA: a new program to standardize the measurement of foveal pit morphology

    PubMed Central

    Moore, Bret A.; Yoo, Innfarn; Tyrrell, Luke P.; Benes, Bedrich

    2016-01-01

    The fovea is one of the most studied retinal specializations in vertebrates, which consists of an invagination of the retinal tissue with high packing of cone photoreceptors, leading to high visual resolution. Between species, foveae differ morphologically in the depth and width of the foveal pit and the steepness of the foveal walls, which could influence visual perception. However, there is no standardized methodology to measure the contour of the foveal pit across species. We present here FOVEA, a program for the quantification of foveal parameters (width, depth, slope of foveal pit) using images from histological cross-sections or optical coherence tomography (OCT). FOVEA is based on a new algorithm to detect the inner retina contour based on the color variation of the image. We evaluated FOVEA by comparing the fovea morphology of two Passerine birds based on histological cross-sections and its performance with data from previously published OCT images. FOVEA detected differences between species and its output was not significantly different from previous estimates using OCT software. FOVEA can be used for comparative studies to better understand the evolution of the fovea morphology in vertebrates as well as for diagnostic purposes in veterinary pathology. FOVEA is freely available for academic use and can be downloaded at: http://estebanfj.bio.purdue.edu/fovea. PMID:27076997

  19. 10Be measured in a GRIP snow pit and modeled using the ECHAM5-HAM general circulation model

    NASA Astrophysics Data System (ADS)

    Heikkilä, U.; Beer, J.; Jouzel, J.; Feichter, J.; Kubik, P.

    2008-03-01

    10Be measured in a Greenland Ice Core Project (GRIP) snow pit (1986-1990) with a seasonal resolution is compared with the ECHAM5-HAM GCM run. The mean modeled 10Be concentration in ice (1.0.104 atoms/g) agrees well with the measured value (1.2.104 atoms/g). The measured 10Be deposition flux (88 atoms/m2/s) also agrees well with the modeled flux (69 atoms/m2/s) and the measured precipitation rate (0.67 mm/day) agrees with the modeled rate (0.61 mm/day). The mean surface temperature of -31°C estimated from δ 18O is lower than the temperature measured at a near-by weather station (-29°C) and the modeled temperature (-26°C). During the 5-year period the concentrations and deposition fluxes, both measured and modeled, show a decreasing trend consistent with the increase in the solar activity. The variability of the measured and modeled concentrations and deposition fluxes is very similar suggesting that the variability is linked to a variability in production rather than the local meteorology.

  20. High temperature measuring device

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  1. Measuring Temperature Reading

    NASA Technical Reports Server (NTRS)

    2003-01-01

    There are two requirements for taking a measurement of something. The first is a tool for taking a measurement. The second is scale for making sense of the numbers of the measurement. For example, a ruler is often used to measure short lengths. It is the tool for measurement. On the ruler are one or more number scales with equally spaced numbers. These numbers can be compared with numbers from any other ruler that is accurately set to the same scale. Measuring length is far simpler than measuring temperature. While there is evidence of tools for measuring length at various times in human history, tools and scales for measuring temperature do not appear until more recent human history. Early thermometers, called thermoscopes, first appear in the 1500's. They were crude instruments that were not at all accurate. Most did not even have a number scale associated with them. This made them useless for most practical purposes. Gabriel Fahrenheit created the first accurate thermometer in 1714, and the Fahrenheit temperature scale followed it in 1724. The thermometer s accuracy was based on its use of mercury, a silver colored substance that remains liquid over a wide range of temperatures but expands or contracts in a standard, predictable way with changes in temperature. To set the scale, Fahrenheit created the coldest temperature that he could. He mixed equal parts of ice, water, and salt, and then used this as the zero point, 0 degrees, of his scale. He intended to make 30 degrees the freezing point of water and 90 degrees the temperature of the human body, but he had to later revise these temperatures to be 32 degrees and 96 degrees. In the final version of the scale, the temperature of the human body became 98.6 degrees. 19th century thermoscope

  2. Noncontact Temperature Measurement

    NASA Technical Reports Server (NTRS)

    Lee, Mark C. (Editor)

    1988-01-01

    Noncontact temperature measurement has been identified as one of the eight advanced technology development (ATD) areas to support the effort of the Microgravity Science and Applications Division in developing six Space Station flight experiment facilities. This two-day workshop was an opportunity for all six disciplines to present their requirements on noncontact temperature measurement and to discuss state-of-the-art developments. Multi-color pyrometry, laser pyrometry and radiometric imaging techniques are addressed.

  3. Dermoscopy of Pitted Keratolysis

    PubMed Central

    Lockwood, Lauren L.; Gehrke, Samuel; Navarini, Alexander A.

    2010-01-01

    Irritated hyperhidrotic soles with multiple small pits are pathognomonic for pitted keratolysis (PK). Here we show the dermatoscopic view of typical pits that can ensure the diagnosis. PK is a plantar infection caused by Gram-positive bacteria, particularly Corynebacterium. Increases in skin surface pH, hyperhidrosis, and prolonged occlusion allow these bacteria to proliferate. The diagnosis is fundamentally clinical and treatment generally consists of a combination of hygienic measures, correcting plantar hyperhidrosis and topical antimicrobials. PMID:21076687

  4. Temperature measuring device

    DOEpatents

    Lauf, Robert J.; Bible, Don W.; Sohns, Carl W.

    1999-01-01

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  5. Temperature Measurement Aid

    NASA Technical Reports Server (NTRS)

    1979-01-01

    NASA's Ames Research Center has designed a simple but medically important device--one which holds temperature probes, called thermistors, to a person's skin without affecting the characteristics of the skin segment being measured. The device improves the accuracy of skin surface temperature measurements, valuable data in health evaluation. The need for such a device was recognized in the course of life science experiments at Ames. In earlier methods, the sensing head of the temperature probe was affixed to the patient's skin by tape or elastic bands. This created a heat variance which altered skin temperature readings. The Ames-developed thermistor holder is a plastic ring with tab extensions, shown in the upper photo on the chest, arm and leg of the patient undergoing examination. The ring holds the sensing head of the temperature probe and provides firm, constant pressure between the skin and the probe. The tabs help stabilize the ring and provide attachment points for the fastening tape or bands, which do not directly touch the sensor. With this new tool, it is possible to determine more accurately the physiological effects of strenuous exercise, particularly on the treadmill. The holder is commercially available from Yellow Springs Instrument Company, Inc., Yellow Springs, Ohio, which is producing the device under a NASA patent license.

  6. The Effects of Hot Corrosion Pits on the Fatigue Resistance of a Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Telesman, Jack; Hazel, Brian; Mourer, David P.

    2009-01-01

    The effects of hot corrosion pits on low cycle fatigue life and failure modes of the disk superalloy ME3 were investigated. Low cycle fatigue specimens were subjected to hot corrosion exposures producing pits, then tested at low and high temperatures. Fatigue lives and failure initiation points were compared to those of specimens without corrosion pits. Several tests were interrupted to estimate the fraction of fatigue life that fatigue cracks initiated at pits. Corrosion pits significantly reduced fatigue life by 60 to 98 percent. Fatigue cracks initiated at a very small fraction of life for high temperature tests, but initiated at higher fractions in tests at low temperature. Critical pit sizes required to promote fatigue cracking were estimated, based on measurements of pits initiating cracks on fracture surfaces.

  7. Electrochemical noise measurements of sustained microbially influenced pitting corrosion in a laboratory flow loop system.

    SciTech Connect

    Lin, Y. J.

    1999-01-13

    Because of the chaotic nature of the corrosion process and the complexity of the electrochemical noise signals that are generated, there is no generally accepted method of measuring and interpreting these signals that allows the consistent detection and identification of sustained localized pitting (SLP) as compared to general corrosion. We have reexamined electrochemical noise analysis (ENA) of localized corrosion using different hardware, signal collection, and signal processing designs than those used in conventional ENA techniques. The new data acquisition system was designed to identify and monitor the progress of SLP by analyzing the power spectral density (PSD) of the trend of the corrosion current noise level (CNL) and potential noise level (PNL). Each CNL and PNL data point was calculated from the root-mean- square value of the ac components of current and potential fluctuation signals, which were measured simultaneously during a short time period. The PSD analysis results consistently demonstrated that the trends of PNL and CNL contain information that can be used to differentiate between SLP and general corrosion mechanisms. The degree of linear slope in the low-frequency portion of the PSD analysis was correlated with the SLP process. Laboratory metal coupons as well as commercial corrosion probes were tested to ensure the reproducibility and consistency of the results. The on-line monitoring capability of this new ENA method was evaluated in a bench-scale flow-loop system, which simulated microbially influenced corrosion (MIC) activity. The conditions in the test flow-loop system were controlled by the addition of microbes and different substrates to favor accelerated corrosion. The ENA results demonstrated that this in-situ corrosion monitoring system could effectively identify SLP corrosion associated with MIC, compared to a more uniform general corrosion mechanism. A reduction in SLP activity could be clearly detected by the ENA monitoring system

  8. Guidelines to indirectly measure and enhance detection efficiency of stationary PIT tag interrogation systems in streams

    USGS Publications Warehouse

    Connolly, Patrick J.

    2010-01-01

    With increasing use of passive integrated transponder (PIT) tags and reliance on stationary PIT tag interrogation systems to monitor fish populations, guidelines are offered to inform users how best to use limited funding and human resources to create functional systems that maximize a desired level of detection and precision. The estimators of detection efficiency and their variability as described by Connolly et al. (2008) are explored over a span of likely performance metrics. These estimators were developed to estimate detection efficiency without relying on a known number of fish passing the system. I present graphical displays of the results derived from these estimators to show the potential efficiency and precision to be gained by adding an array or by increasing the number of PIT-tagged fish expected to move past an interrogation system.

  9. Measurement of optical scattered power from laser-induced shallow pits on silica

    SciTech Connect

    Feigenbaum, Eyal; Nielsen, Norman; Matthews, Manyalibo J.

    2015-10-01

    We describe a model for far-field scattered power and irradiance by a silica glass slab with a shallow-pitted exit surface and is experimentally validated. The comparison to the model is performed using a precisely micromachined ensemble of ~11 μm wide laser ablated shallow pits producing 1% of the incident beam scatter in a 10 mrad angle. This series of samples with damage initiations and laser-induced shallow pits resulting from 351 nm, 5 ns pulsed laser cleaning of metal microparticles at different fluences between 2 J/cm2 and 11 J/cm2 are characterized as well and found in good agreement with model predictions.

  10. Measurement of optical scattered power from laser-induced shallow pits on silica

    DOE PAGESBeta

    Feigenbaum, Eyal; Nielsen, Norman; Matthews, Manyalibo J.

    2015-10-01

    We describe a model for far-field scattered power and irradiance by a silica glass slab with a shallow-pitted exit surface and is experimentally validated. The comparison to the model is performed using a precisely micromachined ensemble of ~11 μm wide laser ablated shallow pits producing 1% of the incident beam scatter in a 10 mrad angle. This series of samples with damage initiations and laser-induced shallow pits resulting from 351 nm, 5 ns pulsed laser cleaning of metal microparticles at different fluences between 2 J/cm2 and 11 J/cm2 are characterized as well and found in good agreement with model predictions.

  11. Arne - Exploring the Mare Tranquillitatis Pit

    NASA Astrophysics Data System (ADS)

    Robinson, M. S.; Thangavelautham, J.; Wagner, R.; Hernandez, V. A.; Finch, J.

    2014-12-01

    Lunar mare "pits" are key science and exploration targets. The first three pits were discovered within Selene observations [1,2] and were proposed to represent collapses into lava tubes. Subsequent LROC images revealed 5 new mare pits and showed that the Mare Tranquillitatis pit (MTP; 8.335°N, 33.222°E) opens into a sublunarean void at least 20-meters in extent [3,4]. A key remaining task is determining pit subsurface extents, and thus fully understanding their exploration and scientific value. We propose a simple and cost effective reconnaissance of the MTP using a small lander (<130 kg) named Arne, that carries three flying microbots (or pit-bots) [5,6,7]. Key measurement objectives include decimeter scale characterization of the pit walls, 5-cm scale imaging of the eastern floor, determination of the extent of sublunarean void(s), and measurement of the magnetic and thermal environment. After landing and initial surface systems check Arne will transmit full resolution descent and surface images. Within two hours the first pit-bot will launch and fly into the eastern void. Depending on results from the first pit-bot the second and third will launch and perform follow-up observations. The primary mission is expected to last 48-hours; before the Sun sets on the lander there should be enough time to execute ten flights with each pit-bot. The pit-bots are 30-cm diameter spherical flying robots [5,6,7] equipped with stereo cameras, temperature sensors, sensors for obstacle avoidance and a laser rangefinder. Lithium hydride [5,6] and water/hydrogen peroxide power three micro-thrusters and achieve a specific impulse of 350-400 s. Each pit-bot can fly for 2 min at 2 m/s for more than 100 cycles; recharge time is 20 min. Arne will carry a magnetometer, thermometer, 2 high resolution cameras, and 6 wide angle cameras and obstacle avoidance infrared sensors enabling detailed characterization of extant sublunarean voids. [1] Haruyama et al. (2010) 41st LPSC, #1285. [2

  12. Field temperature measurements at Erta'Ale Lava Lake, Ethiopia

    NASA Astrophysics Data System (ADS)

    Burgi, Pierre-Yves; Caillet, Marc; Haefeli, Steven

    2002-06-01

    The shield volcano Erta'Ale, situated in the Danakil Depression, Ethiopia, is known for its active lava lake. In February 2001, our team visited this lake, located inside an 80-m-deep pit, to perform field temperature measurements. The distribution and variation of temperature inside the lake were obtained on the basis of infrared radiation measurements performed from the rim of the pit and from the lake shores. The crust temperature was also determined from the lake shores with a thermocouple to calibrate the pyrometer. We estimated an emissivity of the basalt of 0.74 from this experiment. Through the application of the Stefan-Boltzmann law, we then obtained an estimate of the total radiative heat flux, constrained by pyrometer measurements of the pit, and visual observations of the lake activity. Taking into account the atmospheric convective heat flux, the convected magma mass flux needed to balance the energy budget was subsequently derived and found to represent between 510 and 580 kg s-1. The surface circulation of this mass flux was also analyzed through motion processing techniques applied to video images of the lake. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00445-002-0224-3.

  13. Pit assisted oxygen chemisorption on GaN surfaces.

    PubMed

    Mishra, Monu; Krishna T C, Shibin; Aggarwal, Neha; Kaur, Mandeep; Singh, Sandeep; Gupta, Govind

    2015-06-21

    A comprehensive analysis of oxygen chemisorption on epitaxial gallium nitride (GaN) films grown at different substrate temperatures via RF-molecular beam epitaxy was carried out. Photoemission (XPS and UPS) measurements were performed to investigate the nature of the surface oxide and corresponding changes in the electronic structure. It was observed that the growth of GaN films at lower temperatures leads to a lower amount of surface oxide and vice versa was observed for a higher temperature growth. The XPS core level (CL) and valence band maximum (VBM) positions shifted towards higher binding energies (BE) with oxide coverage and revealed a downward band bending. XPS valence band spectra were de-convoluted to understand the nature of the hybridization states. UPS analysis divulged higher values of electronic affinity and ionization energy for GaN films grown at a higher substrate temperature. The surface morphology and pit structure were probed via microscopic measurements (FESEM and AFM). FESEM and AFM analysis revealed that the film surface was covered with hexagonal pits, which played a significant role in oxygen chemisorption. The favourable energetics of the pits offered an ideal site for oxygen adsorption. Pit density and pit depth were observed to be important parameters that governed the surface oxide coverage. The contribution of surface oxide was increased with an increase in average pit density as well as pit depth. PMID:25991084

  14. Measuring Soil Temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil temperature is a critical factor in the germination and early growth of many crops including corn, cotton, small grains, and vegetable crops. Soil temperature strongly influences the rate of critical biological reactions in the soil such as the rates of nitrification and microbial respiration. ...

  15. Volume Computation of a Stockpile - a Study Case Comparing GPS and Uav Measurements in AN Open Pit Quarry

    NASA Astrophysics Data System (ADS)

    Raeva, P. L.; Filipova, S. L.; Filipov, D. G.

    2016-06-01

    The following paper aims to test and evaluate the accuracy of UAV data for volumetric measurements to the conventional GNSS techniques. For this purpose, an appropriate open pit quarry has been chosen. Two sets of measurements were performed. Firstly, a stockpile was measured by GNSS technologies and later other terrestrial GNSS measurements for modelling the berms of the quarry were taken. Secondly, the area of the whole quarry including the stockpile site was mapped by a UAV flight. Having considered how dynamic our world is, new techniques and methods should be presented in numerous fields. For instance, the management of an open pit quarry requires gaining, processing and storing a large amount of information which is constantly changing with time. Fast and precise acquisition of measurements regarding the process taking place in a quarry is the key to an effective and stable maintenance. In other words, this means getting an objective evaluations of the processes, using up-to-date technologies and reliable accuracy of the results. Often legislations concerning mine engineering state that the volumetric calculations are to present ±3% accuracy of the whole amount. On one hand, extremely precise measurements could be performed by GNSS technologies, however, it could be really time consuming. On the other hand, UAV photogrammetry presents a fast, accurate method for mapping large areas and calculating stockpiles volumes. The study case was performed as a part of a master thesis.

  16. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-01-24

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with superheated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200 °C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220 °C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: 1. At relative pressures over 0.6 the capillarity forces are very important. 2. There is no significant temperature effect. 3. Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. 4. Pores smaller than 15 Å do not contribute to the adsorbed mass.

  17. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-12-31

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with super-heated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200{degrees}C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220{degrees}C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: (1) At relative pressures over 0.6 the capillarity forces are very important. (2) There is no significant temperature effect. (3) Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. (4) Pores smaller than 15 {Angstrom} do not contribute to the adsorbed mass.

  18. Volume Measurements of Laser-generated Pits for in Situ Geochronology Using KArLE (Potassium-Argon Laser Experiment)

    NASA Technical Reports Server (NTRS)

    French, R. A.; Cohen, B. A.; Miller, J. S.

    2014-01-01

    KArLE (Potassium-­-Argon Laser Experiment) has been developed for in situ planetary geochronology using the K - Ar (potassium-­-argon) isotope system, where material ablated by LIBS (Laser-­-Induced Breakdown Spectroscopy) is used to calculate isotope abundances. We are determining the accuracy and precision of volume measurements of these pits using stereo and laser microscope data to better understand the ablation process for isotope abundance calculations. If a characteristic volume can be determined with sufficient accuracy and precision for specific rock types, KArLE will prove to be a useful instrument for future planetary rover missions.

  19. Workshop Proceedings: Pitting in Steam Generator Tubing

    SciTech Connect

    1984-10-01

    A two-day workshop focused on the probable causes of steam generator pitting at two nuclear plants and on whether pitting is a low-temperature or a high-temperature phenomenon. Participants also heard descriptions of various pit-resistant metals that are suitable for tube sleeving.

  20. Temperature correction in conductivity measurements

    USGS Publications Warehouse

    Smith, Stanford H.

    1962-01-01

    Electrical conductivity has been widely used in freshwater research but usual methods employed by limnologists for converting measurements to conductance at a given temperature have not given uniformly accurate results. The temperature coefficient used to adjust conductivity of natural waters to a given temperature varies depending on the kinds and concentrations of electrolytes, the temperature at the time of measurement, and the temperature to which measurements are being adjusted. The temperature coefficient was found to differ for various lake and stream waters, and showed seasonal changes. High precision can be obtained only by determining temperature coefficients for each water studied. Mean temperature coefficients are given for various temperature ranges that may be used where less precision is required.

  1. Measuring Temperature: The Thermometer

    ERIC Educational Resources Information Center

    Chamoun, Mirvette

    2005-01-01

    The author discusses the historical development of the thermometer with the view of helping children understand the role that mathematics plays in society. A model thermometer that is divided into three sections, each displaying one of the three temperature scales used today (Fahrenheit, Celsius and Kelvin) is highlighted as a project to allow…

  2. Temperature Measurements in the Magnetic Measurement Facility

    SciTech Connect

    Wolf, Zachary

    2010-12-13

    Several key LCLS undulator parameter values depend strongly on temperature primarily because of the permanent magnet material the undulators are constructed with. The undulators will be tuned to have specific parameter values in the Magnetic Measurement Facility (MMF). Consequently, it is necessary for the temperature of the MMF to remain fairly constant. Requirements on undulator temperature have been established. When in use, the undulator temperature will be in the range 20.0 {+-} 0.2 C. In the MMF, the undulator tuning will be done at 20.0 {+-} 0.1 C. For special studies, the MMF temperature set point can be changed to a value between 18 C and 23 C with stability of {+-}0.1 C. In order to ensure that the MMF temperature requirements are met, the MMF must have a system to measure temperatures. The accuracy of the MMF temperature measurement system must be better than the {+-}0.1 C undulator tuning temperature tolerance, and is taken to be {+-}0.01 C. The temperature measurement system for the MMF is under construction. It is similar to a prototype system we built two years ago in the Sector 10 alignment lab at SLAC. At that time, our goal was to measure the lab temperature to {+-}0.1 C. The system has worked well for two years and has maintained its accuracy. For the MMF system, we propose better sensors and a more extensive calibration program to achieve the factor of 10 increase in accuracy. In this note we describe the measurement system under construction. We motivate our choice of system components and give an overview of the system. Most of the software for the system has been written and will be discussed. We discuss error sources in temperature measurements and show how these errors have been dealt with. The calibration system is described in detail. All the LCLS undulators must be tuned in the Magnetic Measurement Facility at the same temperature to within {+-}0.1 C. In order to ensure this, we are building a system to measure the temperature of the

  3. High-Sensitivity Temperature Measurement

    ERIC Educational Resources Information Center

    Leadstone, G. S.

    1978-01-01

    Describes a method of measuring small temperature differences that amount to a .01K, using an arrangement of a copper-constantan thermocouple, a microamplifier and a galvanometer, as an indirect way of measuring heat energy. (GA)

  4. Acoustical Measurement Of Furnace Temperatures

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Shakkottai; Venkateshan, Shakkottai P.

    1989-01-01

    Simple probes withstand severe conditions, yet give spatially-resolved temperature readings. Prototype acoustical system developed to measure temperatures from ambient to 1,800 degree F in such structures as large industrial lime kilns and recovery-boiler furnaces. Pulses of sound reflected from obstructions in sensing tube. Speed of sound and temperature in each segment deduced from travel times of pulses.

  5. High-temperature-measuring device

    DOEpatents

    Not Available

    1981-01-27

    A temperature measuring device for very high design temperatures (to 2000/sup 0/C) is described. The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensonally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  6. Noncontact true temperature measurement, 2

    NASA Technical Reports Server (NTRS)

    Lee, Mark C.; Allen, James L.

    1988-01-01

    A laser pyrometer was developed for acquiring the true temperature of a levitated sample. The reflectivity is measured by first expanding the laser beam to cover the entire cross-sectional surface of the diffuse target. The reflectivity calibration of this system is determined from the surface emissivity of a target with a blackbody cavity. The emissivity of the real target can then be calculated. The overall system constant is obtained by passively measuring the radiance of the blackbody cavity (emissivity = 1.0) at a known, arbitrary temperature. Since the photosensor used is highly linear over the entire operating temperature range, the true temperature of the target can then be computed. The latest results available from this on-going research indicate that true temperatures thus obtained are in very good quantitative agreement with thermocouple measured temperatures.

  7. Noncontact temperature pattern measuring device

    NASA Technical Reports Server (NTRS)

    Elleman, D. D. (Inventor); Allen, J. L. (Inventor); Lee, M. C. (Inventor)

    1987-01-01

    This invention relates to a noncontact imagine pyrometer system for obtaining the true temperature image of a given substance in a contactless fashion without making assumptions about localized emissivity of the substance or the uniformity of the temperature distribution. Such a contactless temperature imaging system has particular application in the study and production of many materials where the physical contact required to make a conventional temperature measurement drastically effects or contaminates the physical process being observed. Two examples where accurate temperature profiles are of critical interest are: (1) the solid-liquid phase change interface in the production of electronic materials and (2) metastable materials in the undercooling region. The apparent novelty resides in the recognition that an active pyrometer system may be advantageously adapted to perform contactless temperature imaging so that an accurate temperature profile can be obtained.

  8. Integrated Emissivity And Temperature Measurement

    DOEpatents

    Poulsen, Peter

    2005-11-08

    A multi-channel spectrometer and a light source are used to measure both the emitted and the reflected light from a surface which is at an elevated temperature relative to its environment. In a first method, the temperature of the surface and emissivity in each wavelength is calculated from a knowledge of the spectrum and the measurement of the incident and reflected light. In the second method, the reflected light is measured from a reference surface having a known reflectivity and the same geometry as the surface of interest and the emitted and the reflected light are measured for the surface of interest. These measurements permit the computation of the emissivity in each channel of the spectrometer and the temperature of the surface of interest.

  9. Shock temperature measurements in ammonia

    SciTech Connect

    Radousky, H.B.; Mitchell, A.C.; Nellis, W.J.; Ross, M.

    1985-07-01

    Our first shock temperature measurements on a cryogenic target are reported for NH/sub 3/. A new fast optical pyrometer and a cryogenic specimen holder for liquid NH/sub 3/ were developed to measure shock temperatures of 4400 and 3600 K at pressures of 61 and 48 GPa. These conditions correspond to those in the ice layers in Uranus and Neptune. The shock temperature data are in reasonable agreement with an equation of state based on an intermolecular potential derived from NH/sub 3/ Hugoniot data.

  10. Containerless high temperature property measurements

    NASA Technical Reports Server (NTRS)

    Nordine, Paul C.; Weber, J. K. Richard; Krishnan, Shankar; Anderson, Collin D.

    1991-01-01

    Containerless processing in the low gravity environment of space provides the opportunity to increase the temperature at which well controlled processing of and property measurements on materials is possible. This project was directed towards advancing containerless processing and property measurement techniques for application to materials research at high temperatures in space. Containerless high temperature material property studies include measurements of the vapor pressure, melting temperature, optical properties, and spectral emissivities of solid boron. The reaction of boron with nitrogen was also studied by laser polarimetric measurement of boron nitride film growth. The optical properties and spectral emissivities were measured for solid and liquid silicon, niobium, and zirconium; liquid aluminum and titanium; and liquid Ti-Al alloys of 5 to 60 atomic pct. titanium. Alternative means for noncontact temperature measurement in the absence of material emissivity data were evaluated. Also, the application of laser induced fluorescence for component activity measurements in electromagnetic levitated liquids was studied, along with the feasibility of a hybrid aerodynamic electromagnetic levitation technique.

  11. Pitted keratolysis.

    PubMed

    de Almeida, Hiram Larangeira; Siqueira, Rodrigo Nunes; Meireles, Renan da Silva; Rampon, Greice; de Castro, Luis Antonio Suita; Silva, Ricardo Marques E

    2016-01-01

    Pitted keratolysis is a skin disorder that affects the stratum corneum of the plantar surface and is caused by Gram-positive bacteria. A 30-year-old male presented with small punched-out lesions on the plantar surface. A superficial shaving was carried out for scanning electron microscopy. Hypokeratosis was noted on the plantar skin and in the acrosyringium, where the normal elimination of corneocytes was not seen. At higher magnification (x 3,500) bacteria were easily found on the surface and the described transversal bacterial septation was observed. PMID:26982791

  12. Pitted keratolysis*

    PubMed Central

    de Almeida Jr, Hiram Larangeira; Siqueira, Rodrigo Nunes; Meireles, Renan da Silva; Rampon, Greice; de Castro, Luis Antonio Suita; Silva, Ricardo Marques e

    2016-01-01

    Pitted keratolysis is a skin disorder that affects the stratum corneum of the plantar surface and is caused by Gram-positive bacteria. A 30-year-old male presented with small punched-out lesions on the plantar surface. A superficial shaving was carried out for scanning electron microscopy. Hypokeratosis was noted on the plantar skin and in the acrosyringium, where the normal elimination of corneocytes was not seen. At higher magnification (x 3,500) bacteria were easily found on the surface and the described transversal bacterial septation was observed. PMID:26982791

  13. Pit Formation during the Self-Assembly of Dithiol Monolayers on Au(111)

    NASA Astrophysics Data System (ADS)

    Macdairmid, A. R.; Cappello, M. L.; Keeler, W. J.; Banks, J. T.; Gallagher, M. C.

    2000-03-01

    The formation of pits one gold atom deep during the growth of alkanethiol monolayers on Au(111), has been observed previously by others. Explanations for pit formation include etching of the substrate, or mass transport of gold atom + thiol molecule on the surface, due to changes in surface energy^1. We have investigated the structure of dithiothreitol (DTT) SAMs on Au(111). Ex situ STM measurements indicate similar pitting occurs during formation of the dithiol monolayer. The degree of pitting depends on exposure time, sample temperature during formation, and subsequent annealing of the sample. Pitting is enhanced considerasbly when DTT is coordinated with Ti, in fact DTT/Ti films exhibit considerable pit motion during STM imaging. ^1 F. Teran et al. Electrochimica Acta 44, 1053 (1998).

  14. The Kelvin and Temperature Measurements

    PubMed Central

    Mangum, B. W.; Furukawa, G. T.; Kreider, K. G.; Meyer, C. W.; Ripple, D. C.; Strouse, G. F.; Tew, W. L.; Moldover, M. R.; Johnson, B. Carol; Yoon, H. W.; Gibson, C. E.; Saunders, R. D.

    2001-01-01

    The International Temperature Scale of 1990 (ITS-90) is defined from 0.65 K upwards to the highest temperature measurable by spectral radiation thermometry, the radiation thermometry being based on the Planck radiation law. When it was developed, the ITS-90 represented thermodynamic temperatures as closely as possible. Part I of this paper describes the realization of contact thermometry up to 1234.93 K, the temperature range in which the ITS-90 is defined in terms of calibration of thermometers at 15 fixed points and vapor pressure/temperature relations which are phase equilibrium states of pure substances. The realization is accomplished by using fixed-point devices, containing samples of the highest available purity, and suitable temperature-controlled environments. All components are constructed to achieve the defining equilibrium states of the samples for the calibration of thermometers. The high quality of the temperature realization and measurements is well documented. Various research efforts are described, including research to improve the uncertainty in thermodynamic temperatures by measuring the velocity of sound in gas up to 800 K, research in applying noise thermometry techniques, and research on thermocouples. Thermometer calibration services and high-purity samples and devices suitable for “on-site” thermometer calibration that are available to the thermometry community are described. Part II of the paper describes the realization of temperature above 1234.93 K for which the ITS-90 is defined in terms of the calibration of spectroradiometers using reference blackbody sources that are at the temperature of the equilibrium liquid-solid phase transition of pure silver, gold, or copper. The realization of temperature from absolute spectral or total radiometry over the temperature range from about 60 K to 3000 K is also described. The dissemination of the temperature scale using radiation thermometry from NIST to the customer is achieved by

  15. Method for measuring surface temperature

    SciTech Connect

    Baker, Gary A.; Baker, Sheila N.; McCleskey, T. Mark

    2009-07-28

    The present invention relates to a method for measuring a surface temperature using is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  16. Ultimate open pit stochastic optimization

    NASA Astrophysics Data System (ADS)

    Marcotte, Denis; Caron, Josiane

    2013-02-01

    Classical open pit optimization (maximum closure problem) is made on block estimates, without directly considering the block grades uncertainty. We propose an alternative approach of stochastic optimization. The stochastic optimization is taken as the optimal pit computed on the block expected profits, rather than expected grades, computed from a series of conditional simulations. The stochastic optimization generates, by construction, larger ore and waste tonnages than the classical optimization. Contrary to the classical approach, the stochastic optimization is conditionally unbiased for the realized profit given the predicted profit. A series of simulated deposits with different variograms are used to compare the stochastic approach, the classical approach and the simulated approach that maximizes expected profit among simulated designs. Profits obtained with the stochastic optimization are generally larger than the classical or simulated pit. The main factor controlling the relative gain of stochastic optimization compared to classical approach and simulated pit is shown to be the information level as measured by the boreholes spacing/range ratio. The relative gains of the stochastic approach over the classical approach increase with the treatment costs but decrease with mining costs. The relative gains of the stochastic approach over the simulated pit approach increase both with the treatment and mining costs. At early stages of an open pit project, when uncertainty is large, the stochastic optimization approach appears preferable to the classical approach or the simulated pit approach for fair comparison of the values of alternative projects and for the initial design and planning of the open pit.

  17. [Effects of scale-like pit and mulching measures on soil moisture of dryland jujube orchard in North Shaanxi Province, China].

    PubMed

    Li, Hong-Chen; Zhao, Xi-Ning; Gao, Xiao-Ding; Wang, Jia-Wen; Shi, Yin-Guang

    2014-08-01

    Soil moisture is a key factor affecting jujube growth in the semiarid Northern Shaanxi Province. The impacts of different engineering and mulching measures on soil moisture were investigated via in situ measurements in a typical dryland jujube orchard. The results showed that the mean soil moistures (0-180 cm) of scale-like pit + branch mulching, scale-like scale + straw mulching, and soil moisture of scale-like pit with no mulching were increased by 14.2%, 9.4%, and 4.8% than control, respectively. Different measures, especially for the scale-like pit + branch mulching, significantly increased the soil moisture in the soil surface (0-20 cm) and the main root zone layer (20-100 cm) during the jujube growth stage. Individual precipitation events had great impacts on soil moisture in the 0-100 cm, while its effect on soil moisture in deep layers was not apparent. There was no significant difference among the soil moistures in different soil depths of scale-like pit with no mulching when compared with the control under high, medium, and low soil humidity conditions. This study indicated that using the clipped jujube branches as mulching could both save materials cost and achieve the goal of reserving more water in dryland jujube orchard in north Shaanxi Province. PMID:25509081

  18. Single Etch-Pit Shape on Off-Angled 4H-SiC(0001) Si-Face Formed by Chlorine Trifluoride

    NASA Astrophysics Data System (ADS)

    Hatayama, Tomoaki; Tamura, Tetsuya; Yano, Hiroshi; Fuyuki, Takashi

    2012-07-01

    The etch pit shape of an off-angled 4H-SiC Si-face formed by chlorine trifluoride (ClF3) in nitrogen (N2) ambient has been studied. One type of etch pit with a crooked hexagonal shape was formed at an etching temperature below 500 °C. The angle of the etch pit measured from a cross-sectional atomic force microscopy image was about 10° from the [11bar 20] view. The dislocation type of the etch pit was discussed in relation to the etch pit shape and an electron-beam-induced current image.

  19. Snake bite: pit vipers.

    PubMed

    Peterson, Michael E

    2006-11-01

    Pit vipers are the largest group of venomous snakes in the United States and are involved in an estimated 150,000 bites annually of dogs and cats. The severity of any pit viper bite is related to the volume and toxicity of the venom injected as well as the location of the bite, which may influence the rate of venom uptake. The toxicity of rattlesnake venom varies widely. It is possible for pit vipers' venom to be strictly neurotoxic with virtually no local signs of envenomation. Venom consists of 90% water and has a minimum of 10 enzymes and 3 to 12 nonenzymatic proteins and peptides in any individual snake. The onset of clinical signs after envenomation may be delayed for several hours. The presence of fang marks does not indicate that envenomation has occurred, only that a bite has taken place. Systemic clinical manifestations encompass a wide variety of problems including pain, weakness, dizziness, nausea, severe hypotension, and thrombocytopenia. The victim's clotting abnormalities largely depend upon the species of snake involved. Venom induced thrombocytopenia occurs in approximately 30% of envenomations. Many first aid measures have been advocated for pit viper bite victims, none has been shown to prevent morbidity or mortality. Current recommendations for first aid in the field are to keep the victim calm, keep the bite site below heart level if possible, and transport the victim to a veterinary medical facility for primary medical intervention. The patient should be hospitalized and monitored closely for a minimum of 8 hours for the onset of signs of envenomation. The only proven specific therapy against pit viper envenomation is the administration of antivenin. The dosage of antivenin needed is calculated relative to the amount of venom injected, the body mass of the victim, and the bite site. The average dosage in dogs and cats is 1 to 2 vials of antivenin. PMID:17265901

  20. Noncontact temperature pattern measuring device

    NASA Technical Reports Server (NTRS)

    Elleman, Daniel D. (Inventor); Allen, James L. (Inventor); Lee, Mark C. (Inventor)

    1989-01-01

    Laser pyrometer techniques are utilized to accurately image a true temperature distribution on a given target without touching the target and without knowing the localized emissivity of the target. The pyrometer utilizes a very high definition laser beam and photodetector, both having a very narrow focus. The pyrometer is mounted in a mechanism designed to permit the pyrometer to be aimed and focused at precise localized points on the target surface. The pyrometer is swept over the surface area to be imaged, temperature measurements being taken at each point of focus.

  1. Ground-based multispectral measurements for airborne data verification in non-operating open pit mine "Kremikovtsi"

    NASA Astrophysics Data System (ADS)

    Borisova, Denitsa; Nikolov, Hristo; Petkov, Doyno

    2013-10-01

    The impact of mining industry and metal production on the environment is presented all over the world. In our research we set focus on the impact of already non-operating ferrous "Kremikovtsi"open pit mine and related waste dumps and tailings which we consider to be the major factor responsible for pollution of one densely populated region in Bulgaria. The approach adopted is based on correct estimation of the distribution of the iron oxides inside open pit mines and the neighboring regions those considered in this case to be the key issue for the ecological state assessment of soils, vegetation and water. For this study the foremost source of data are those of airborne origin and those combined with ground-based in-situ and laboratory acquired data were used for verification of the environmental variables and thus in process of assessment of the present environmental status influenced by previous mining activities. The percentage of iron content was selected as main indicator for presence of metal pollution since it could be reliably identified by multispectral data used in this study and also because the iron compounds are widely spread in the most of the minerals, rocks and soils. In our research the number of samples from every source (air, field, lab) was taken in the way to be statistically sound and confident. In order to establish relationship between the degree of pollution of the soil and mulspectral data 40 soil samples were collected during a field campaign in the study area together with GPS measurements for two types of laboratory measurements: the first one, chemical and mineralogical analysis and the second one, non-destructive spectroscopy. In this work for environmental variables verification over large areas mulspectral satellite data from Landsat instruments TM/ETM+ and from ALI/OLI (Operational Land Imager) were used. Ground-based (laboratory and in-situ) spectrometric measurements were performed using the designed and constructed in Remote

  2. High temperature skin friction measurement

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Holmes, Harlan K.; Supplee, Frank H., Jr.

    1989-01-01

    Skin friction measurement in the NASA Langley hypersonic propulsion facility is described. The sensor configuration utilized an existing balance, modified to provide thermal isolation and an increased standoff distance. For test run times of about 20 sec and ambient-air cooling of the test section and balance, the modified balance performed satisfactorily, even when it was subjected to acoustic and structural vibration. The balance is an inertially balanced closed-loop servo system where the current to a moving-coil motor needed to restore or null the output from the position sensor is a measure of the force or skin friction tending to displace the moving element. The accuracy of the sensor is directly affected by the position sensor in the feedback loop, in this case a linear-variable differential transformer which has proven to be influenced by temperature gradients.

  3. Conditions of growth of open corrosion pits in stainless steels -- Electrochemical experiments on model pits

    SciTech Connect

    Hakkarainen, T.J.

    1998-12-31

    The effects of the most important variables on continued growth and repassivation of open macroscopic corrosion pits in stainless steel sheets were investigated using two different artificial pit configurations. The pit growth was activated under anodic polarization either by injecting concentrated chloride solution into the pit or by initially filling the pit with chromic chloride crystals (CrCl{sub 3}-6H{sub 2}O). Experiments were made on sheet specimens of stainless steels of type UNS S31603 (316L) or UNS S312.54 in bulk solutions containing chloride and/or sulfate ions. Various aspects of the test arrangements and pitting of stainless steels are discussed, including the electrolyte composition within the pits, repassivation potentials and the IR-drops associated with pit growth. It is demonstrated that using the artificial pit configurations the effects of the main variables affecting the conditions for growth and repassivation of open corrosion pits can be investigated quantitatively, including electrode potentials, temperature, and composition of the bulk solution. It is concluded that for continued growth of corrosion pits with ``large`` openings to the bulk solution, a strongly oxidizing environment is required, and that sulfate ions in amounts comparable to or in excess of that of chloride ions may stabilize pit growth.

  4. The application of PIT tags to measure transport of detrital coral fragments on a fringing reef: Majuro Atoll, Marshall Islands

    NASA Astrophysics Data System (ADS)

    Ford, Murray R.

    2014-06-01

    Passive integrated transponder (PIT) tags are a radio-frequency identification device widely used as a machine-readable identification tool in fisheries research. PIT tags have also been employed, to a lesser extent, to track the movement of gravel-sized clasts within fluvial and coastal systems. In this study, PIT tags were inserted into detrital coral fragments and used to establish source-sink transport pathways on a fringing reef on Majuro Atoll in the Marshall Islands. Results suggest the transport of gravel-sized material on the inter-tidal reef flat is exclusively across-reef towards the lagoon. Considerable variation in the distance travelled by fragments was observed. Fragments were largely intact and visually recognisable after almost 5 months on the reef flat. However, the branches of some recovered fragments had broken off and corallite abrasion was observed in recovered fragments. This study indicates that PIT tags are an inexpensive and powerful new addition to the suite of sediment transport and taphonomic tools for researchers working within coral reef systems.

  5. Laser Pyrometer For Spot Temperature Measurements

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Allen, J. L.; Lee, M. C.

    1988-01-01

    Laser pyrometer makes temperature map by scanning measuring spot across target. Scanning laser pyrometer passively measures radiation emitted by scanned spot on target and calibrated by similar passive measurement on blackbody of known temperature. Laser beam turned on for active measurements of reflectances of target spot and reflectance standard. From measurements, temperature of target spot inferred. Pyrometer useful for non-contact measurement of temperature distributions in processing of materials.

  6. Simultaneous measurement of temperature and velocity fields in convective air flows

    NASA Astrophysics Data System (ADS)

    Schmeling, Daniel; Bosbach, Johannes; Wagner, Claus

    2014-03-01

    Thermal convective air flows are of great relevance in fundamental studies and technical applications such as heat exchangers or indoor ventilation. Since these kinds of flow are driven by temperature gradients, simultaneous measurements of instantaneous velocity and temperature fields are highly desirable. A possible solution is the combination of particle image velocimetry (PIV) and particle image thermography (PIT) using thermochromic liquid crystals (TLCs) as tracer particles. While combined PIV and PIT is already state of the art for measurements in liquids, this is not yet the case for gas flows. In this study we address the adaptation of the measuring technique to gaseous fluids with respect to the generation of the tracer particles, the particle illumination and the image filtering process. Results of the simultaneous PIV/PIT stemming from application to a fluid system with continuous air exchange are presented. The measurements were conducted in a cuboidal convection sample with air in- and outlet at a Rayleigh number Ra ≈ 9.0 × 107. They prove the feasibility of the method by providing absolute and relative temperature accuracies of σT = 0.19 K and σΔT = 0.06 K, respectively. Further open issues that have to be addressed in order to mature the technique are identified.

  7. Measurements of the dynamics of thermal plumes in turbulent mixed convection based on combined PIT and PIV

    NASA Astrophysics Data System (ADS)

    Schmeling, Daniel; Bosbach, Johannes; Wagner, Claus

    2015-06-01

    The dynamics of thermal plumes and their abundance is investigated in mixed convection in a cuboidal sample with respect to the characteristic numbers. The parameter range spans , and . Combined particle image thermography and particle image velocimetry is conducted in a horizontal layer close above the bottom thermal boundary layer. This combination of measurement techniques, using thermochromic liquid crystals as tracer particles, which is novel for air flows, allows for simultaneous measurement of temperature and velocity fields. Details of the measurement technique are published in Schmeling et al. (Meas Sci Technol 25:035302, 2014). The fingerprints of sheet-like plumes and those of the stems of mushroom-like plumes are visible in the instantaneous temperature fields. A study of temperature PDFs reveals that the distributions can be well described by a sum of two Gaussian distributions. Analysing the ratio of the probabilities reveals a sudden change at a critical Ra c ≈ 2.3 × 108. Here, denotes the abundance of fluid temperatures imprinted by the bulk flow, while represses the abundance of temperatures ascribed to warm thermal plumes. Accordingly, is a measure for the plume fraction in the measurement plane. The change occurs in the regime , in which the interaction of buoyancy-induced large-scale circulations with the wall jet of the incoming air results in an instability reported already by Schmeling et al. (Exp Fluids 54:1517, 2013). A combined evaluation of the temperature and velocity fields reveals a change in the horizontal heat fluxes at . Furthermore, the total amount of heat transported in x direction within the measurement layer increases with in bulk-dominated regions, while it stays almost constant for plume-dominated ones.

  8. Pitted keratolysis (image)

    MedlinePlus

    This picture shows pitted, flesh colored "pits" (keratolysis) or depressions on the soles of the feet, associated with a bad odor (mal-odor). This is thought to be caused by overgrowth of diptheroids ...

  9. Comet 67P's Pitted Surface

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-11-01

    High-resolution imagery of comet 67P ChuryumovGerasimenko has revealed that its surface is covered in active pits some measuring hundreds of meters both wide and deep! But what processes caused these pits to form?Pitted LandscapeESAs Rosetta mission arrived at comet 67P in August 2014. As the comet continued its journey around the Sun, Rosetta extensively documented 67Ps surface through high-resolution images taken with the on-board instrument NavCam. These images have revealed that active, circular depressions are a common feature on the comets surface.In an attempt to determine how these pits formed, an international team of scientists led by Olivier Mousis (Laboratory of Astrophysics of Marseille) has run a series of simulations of a region of the comet the Seth region that contains a 200-meter-deep pit. These simulations include the effects of various phase transitions, heat transfer through the matrix of ices and dust, and gas diffusion throughout the porous material.Escaping VolatilesAdditional examples of pitted areas on 67Ps northern-hemisphere surface include the Ash region and the Maat region (both imaged September 2014 by NavCam) [Mousis et al. 2015]Previous studies have already eliminated two potential formation mechanisms for the pits: impacts (the sizes of the pits werent right) and erosion due to sunlight (the pits dont have the right shape). Mousis and collaborators assume that the pits are instead caused by the depletion of volatile materials chemical compounds with low boiling points either via explosive outbursts at the comets surface, or via sinkholes opening from below the surface. But what process causes the volatiles to deplete when the comet heats?The authors simulations demonstrate that volatiles trapped beneath the comets surface either in icy structures called clathrates or within amorphous ice can be suddenly released as the comet warms up. The team shows that the release of volatiles from these two structures can create 200-meter

  10. 121. Man with temperature probe aimed at armature measuring temperature ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    121. Man with temperature probe aimed at armature measuring temperature as armature heats up between the two electrodes. March 27, 1985 - Statue of Liberty, Liberty Island, Manhattan, New York County, NY

  11. Pitting corrosion monitoring with an improved electrochemical noise technique

    SciTech Connect

    Chen, J.F.; Shadley, J.; Rybicki, E.F.

    1999-11-01

    The electrochemical emission spectroscopy (EES) technique is a newly developed on-line corrosion monitoring technique, which is capable of detecting localized corrosion as well as measuring uniform corrosion. The main difference between this technique and the traditional electrochemical noise technique is the use of an inert microelectrode to sense the current signal from a working electrode instead of using two identical working electrodes to generate the current signal. In this paper, the ability of the EES technique is evaluated for pitting corrosion monitoring. Pitting corrosion is generated on three systems: stainless steel types 304 and 316 in aerated 3% NaCl solution at 50 C and stainless steel type 304 in 6% FeCl{sub 3} solution at room temperature. In all cases, the on-set of pitting corrosion is clearly indicated in both potential and current spectrums. A parameter called the corrosion admittance, which is defined in the EES technique, is capable of indicating instantaneous localized corrosion activities.

  12. The relationship between induction time for pitting and pitting potential for high purity aluminum.

    SciTech Connect

    Wall, Frederick Douglas; Vandenavyle, Justin J.; Martinez, Michael A.

    2003-08-01

    The objective of this study was to determine if a distribution of pit induction times (from potentiostatic experiments) could be used to predict a distribution of pitting potentials (from potentiodynamic experiments) for high-purity aluminum. Pit induction times were measured for 99.99 Al in 50 mM NaCl at potentials of -0.35, -0.3, -0.25, and -0.2 V vs. saturated calomel electrode. Analysis of the data showed that the pit germination rate generally was an exponential function of the applied potential; however, a subset of the germination rate data appeared to be mostly potential insensitive. The germination rate behavior was used as an input into a mathematical relationship that provided a prediction of pitting potential distribution. Good general agreement was found between the predicted distribution and an experimentally determined pitting potential distribution, suggesting that the relationships presented here provide a suitable means for quantitatively describing pit germination rate.

  13. Non-destructive measurement of demineralization and remineralization in the occlusal pits and fissures of extracted 3rd molars with PS-OCT

    NASA Astrophysics Data System (ADS)

    Lee, Chulsung; Hsu, Dennis J.; Le, Michael H.; Darling, Cynthia L.; Fried, Daniel

    2009-02-01

    Previous studies have demonstrated that Polarization Sensitive Optical Coherence Tomography (PS-OCT) can be used to image the remineralization of early artificial caries lesion on smooth enamel surfaces of human and bovine teeth. However, most new dental decay is found in the pits and fissures of the occlusal surfaces of posterior dentition and it is in these high risk areas where the performance of new caries imaging devices need to be investigated. The purpose of this study was to demonstrate that PS-OCT can be used to measure the subsequent remineralization of artificial lesions produced in the pits and fissures of extracted 3rd molars. A PS-OCT system operating at 1310-nm was used to acquire polarization resolved images of occlusal surfaces exposed to a demineralizing solution at pH-4.5 followed by a fluoride containing remineralizing solution at pH-7.0 containing 2-ppm fluoride. The integrated reflectivity was calculated to a depth of 200-µm in the entire lesion area using an automated image processing algorithm. Although a well-defined surface zone was clearly resolved in only a few of the samples that underwent remineralization, the PS-OCT measurements indicated a significant (p<0.05) reduction in the integrated reflectivity between the severity of the lesions that were exposed to the remineralization solution and those that were not. The lesion depth and mineral loss were also measured with polarized light microscopy and transverse microradiography after sectioning the teeth. These results show that PS-OCT can be used to non-destructively monitor the remineralization potential of anti-caries agents in the important pits and fissures of the occlusal surface.

  14. Catalytic considerations in temperature measurement.

    NASA Technical Reports Server (NTRS)

    Ash, R. L.; Crossman, G. R.; Chitnis, R. V.

    1972-01-01

    Literature discussing catalytic activity in platinum group temperature sensors is surveyed. Methods for the determination and/or elimination of catalytic activity are reported. A particular application of the literature is discussed in which it is possible to infer that a shielded platinum total temperature probe does not experience significant catalytic activity in the wake of a supersonic hydrogen burner, while a bare iridium plus rhodium, iridium thermocouple does. It is concluded that catalytic data corrections are restricted and that it is preferable to coat the temperature sensor with a noncatalytic coating. Furthermore, the desirability of transparent coatings is discussed.

  15. Measurement of thermodynamic temperature of high temperature fixed points

    SciTech Connect

    Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I.

    2013-09-11

    The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 'Radiation Thermometry'. The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

  16. Surface Temperature Measurement Using Hematite Coating

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J. (Inventor)

    2015-01-01

    Systems and methods that are capable of measuring temperature via spectrophotometry principles are discussed herein. These systems and methods are based on the temperature dependence of the reflection spectrum of hematite. Light reflected from these sensors can be measured to determine a temperature, based on changes in the reflection spectrum discussed herein.

  17. Measuring the performance of two stationary interrogation systems for detecting downstream and upstream movement of PIT-tagged salmonids

    USGS Publications Warehouse

    Connolly, P.J.; Jezorek, I.G.; Martens, K.D.; Prentice, E.F.

    2008-01-01

    We tested the performance of two stationary interrogation systems designed for detecting the movement of fish with passive integrated transponder (PIT) tags. These systems allowed us to determine the direction of fish movement with high detection efficiency and high precision in a dynamic stream environment. We describe an indirect method for deriving an estimate for detection efficiency and the associated variance that does not rely on a known number of fish passing the system. By using six antennas arranged in a longitudinal series of three arrays, we attained detection efficiencies for downstream- and upstream-moving fish exceeding 96% during high-flow periods and approached 100% during low-flow periods for the two interrogation systems we tested. Because these systems did not rely on structural components, such as bridges or culverts, they were readily adaptable to remote, natural stream sites. Because of built-in redundancy, these systems were able to perform even with a loss of one or more antennas owing to dislodgement or electrical failure. However, the reduction in redundancy resulted in decreased efficiency and precision and the potential loss of ability to determine the direction of fish movement. What we learned about these systems should be applicable to a wide variety of other antenna configurations and to other types of PIT tags and transceivers.

  18. Temperature measurement inside metallic cables using distributed temperature system

    NASA Astrophysics Data System (ADS)

    Jaros, Jakub; Papes, Martin; Liner, Andrej; Vasinek, Vladimir; Mach, Veleslav; Hruby, David; Kajnar, Tomas; Perecar, Frantisek

    2015-07-01

    Nowadays, metallic cables are produced so as to avoid the maximum allowable temperature of the cable by the normal operation and the maximum allowable temperature for short-circuit the exceeding the maximum allowable internal temperature. The temperature increase is an unwanted phenomena causing losses in the cable and its abrasion. Longterm overload can lead to damaging of the cable or to the risk of fire in extreme cases. In our work, we present the temperature distribution measurement inside the metallic cables using distributed temperature system. Within the cooperation with manufacturer of the metallic cables, optical fibers were implemented into these cables. The cables are double coated and the fibers are allocated between these coatings and also in the centre of the cable. Thus we are able to measure the temperature inside the cable and also on the surface temperature along the whole cable length with spatial resolution 1 m during the cable heating. This measurement method can be also used for short-circuit prediction and detection, because this phenomena is always accompanied with temperature increase. Distributed temperature systems are already successfully implemented in temperature measurements in industry environment, such as construction, sewer systems, caliducts etc. The main advantage of these systems is electromagnetic resistance, low application price and the possibility of monitoring several kilometers long distances.

  19. Temperature Correction in Probe Measurements

    NASA Astrophysics Data System (ADS)

    Gutsev, S. A.

    2015-09-01

    This work is devoted to experimental investigations of a decaying plasma using Langmuir probes. The gas pressure, the discharge current, and the moment of afterglow were selected to obtain probe characteristics in collisionless, intermediate, and drifting regimes of motion of charged particles. The manner in which the shape of the volt- ampere characteristics changes on passage from the collisionless motion to diffusion motion has been shown. A detailed analysis has been made of the source of errors arising when orbital-motion formulas or the logarithmic-operation method are applied to processing of the probe curves. It has been shown that neglect of collisions of charged particles in the probe layer leads to an ion-density value overstated more than three times, an electron-temperature value overstated two times, and an ion temperature overstated three to nine times. A model of interaction of charged particles in the probe layer has been proposed for correction of the procedure of determining temperature. Such an approach makes it possible to determine the space-charge layer in the probe, and also the value of the self-consistent field. The use of the developed procedures gives good agreement between experimental and theoretical results.

  20. Method and apparatus for optical temperature measurements

    DOEpatents

    Angel, S. Michael; Hirschfeld, Tomas B.

    1988-01-01

    A method and apparatus are provided for remotely monitoring temperature. Both method and apparatus employ a temperature probe material having an excitation-dependent emission line whose fluorescence intensity varies directly with temperature whenever excited by light having a first wavelength and whose fluorescence intensity varies inversely with temperature whenever excited by light having a second wavelength. Temperature is measured by alternatively illuminating the temperature probe material with light having the first wavelength and light having the second wavelength, monitoring the intensity of the successive emissions of the excitation-dependent emission line, and relating the intensity ratio of successive emissions to temperature.

  1. Method and apparatus for optical temperature measurements

    DOEpatents

    Angel, S.M.; Hirschfeld, T.B.

    1986-04-22

    A method and apparatus are provided for remotely monitoring temperature. Both method and apparatus employ a temperature probe material having an excitation-dependent emission line whose fluorescence intensity varies directly with temperature whenever excited by light having a first wavelength and whose fluorescence intensity varies inversely with temperature whenever excited by light having a second wavelength. Temperature is measured by alternatively illiminating the temperature probe material with light having the first wavelength and light having the second wavelength, monitoring the intensity of the successive emissions of the excitation-dependent emission line, and relating the intensity ratio of successive emissions to temperature. 3 figs.

  2. Method and apparatus for optical temperature measurement

    DOEpatents

    O'Rourke, Patrick E.; Livingston, Ronald R.; Prather, William S.

    1994-01-01

    A temperature probe and a method for using said probe for temperature measurements based on changes in light absorption by the probe. The probe comprises a first and a second optical fiber that carry light to and from the probe, and a temperature sensor material, the absorbance of which changes with temperature, through which the light is directed. Light is directed through the first optical fiber, passes through the temperature sensor material, and is transmitted by a second optical fiber from the material to a detector. Temperature-dependent and temperature-independent factors are derived from measurements of the transmitted light intensity. For each sensor material, the temperature T is a function of the ratio, R, of these factors. The temperature function f(R) is found by applying standard data analysis techniques to plots of T versus R at a series of known temperatures. For a sensor having a known temperature function f(R) and known characteristic and temperature-dependent factors, the temperature can be computed from a measurement of R. Suitable sensor materials include neodymium-doped boresilicate glass, accurate to .+-.0.5.degree. C. over an operating temperature range of about -196.degree. C. to 400.degree. C.; and a mixture of D.sub.2 O and H.sub.2 O, accurate to .+-.0.1.degree. C. over an operating range of about 5.degree. C. to 90.degree. C.

  3. Method and apparatus for optical temperature measurement

    DOEpatents

    O'Rourke, P.E.; Livingston, R.R.; Prather, W.S.

    1994-09-20

    A temperature probe and a method for using said probe for temperature measurements based on changes in light absorption by the probe are disclosed. The probe comprises a first and a second optical fiber that carry light to and from the probe, and a temperature sensor material, the absorbance of which changes with temperature, through which the light is directed. Light is directed through the first optical fiber, passes through the temperature sensor material, and is transmitted by a second optical fiber from the material to a detector. Temperature-dependent and temperature-independent factors are derived from measurements of the transmitted light intensity. For each sensor material, the temperature T is a function of the ratio, R, of these factors. The temperature function f(R) is found by applying standard data analysis techniques to plots of T versus R at a series of known temperatures. For a sensor having a known temperature function f(R) and known characteristic and temperature-dependent factors, the temperature can be computed from a measurement of R. Suitable sensor materials include neodymium-doped borosilicate glass, accurate to [+-]0.5 C over an operating temperature range of about [minus]196 C to 400 C; and a mixture of D[sub 2]O and H[sub 2]O, accurate to [+-]0.1 C over an operating range of about 5 C to 90 C. 13 figs.

  4. Accurate temperature measurements with a degrading thermocouple

    SciTech Connect

    Skripnik, Y.A.; Khimicheva, A.I.

    1995-04-01

    Ways are considered of enhancing the accuracy of thermoelectric measurement of temperature. The high accuracy method proposed for monitoring the temperature of an aggressive medium can determine the temperature, irrespective of the instantaneous values of the Seebeck and Peltier coefficients, i.e., irrespective of the uncontrolled thermocouple sensitivity, which varies during use.

  5. Minimizing noise-temperature measurement errors

    NASA Technical Reports Server (NTRS)

    Stelzried, C. T.

    1992-01-01

    An analysis of noise-temperature measurement errors of low-noise amplifiers was performed. Results of this analysis can be used to optimize measurement schemes for minimum errors. For the cases evaluated, the effective noise temperature (Te) of a Ka-band maser can be measured most accurately by switching between an ambient and a 2-K cooled load without an isolation attenuator. A measurement accuracy of 0.3 K was obtained for this example.

  6. Temperature measurement systems in wearable electronics

    NASA Astrophysics Data System (ADS)

    Walczak, S.; Gołebiowski, J.

    2014-08-01

    The aim of this paper is to present the concept of temperature measurement system, adapted to wearable electronics applications. Temperature is one of the most commonly monitored factor in smart textiles, especially in sportswear, medical and rescue products. Depending on the application, measured temperature could be used as an initial value of alert, heating, lifesaving or analysis system. The concept of the temperature measurement multi-point system, which consists of flexible screen-printed resistive sensors, placed on the T-shirt connected with the central unit and the power supply is elaborated in the paper.

  7. Ultrasonic temperature measurements with fiber optic system

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Wu, Nan; Zhou, Jingcheng; Ma, Tong; Liu, Yuqian; Cao, Chengyu; Wang, Xingwei

    2016-04-01

    Ultrasonic temperature measurements have been developed and widely applied in non-contact temperature tests in many industries. However, using optical fibers to build ultrasound generators are novel. This paper reports this new fiber optic ultrasonic system based on the generator of gold nanoparticles/polydimethylsiloxane (PDMS) composites. The optical acoustic system was designed to test the change of temperature on the aluminum plate and the temperature of the torch in the air. This paper explores the relationship between the ultrasonic transmission and the change of temperature. From the experimental results, the trend of ultrasonic speed was different in the aluminum plate and air with the change of temperature. Since the system can measure the average temperature of the transmission path, it will have significant influence on simulating the temperature distribution.

  8. Linearization of Pt resistance temperature measurement circuit

    NASA Astrophysics Data System (ADS)

    Li, Chuan-xiang

    2001-09-01

    A correction method for non-linear Pt resistance temperature measurement based on the principle of A/D conversion is introduced. The design principle of Pt resistance linear temperature measurement is analyzed and a new method for interfacing A/D converter with single chip computer 89c52 is provided together with the experimental data.

  9. Laser Spectroscopic Measurement Of Temperature And Density

    NASA Technical Reports Server (NTRS)

    Mckenzie, Robert L.; Laufer, Gabriel

    1991-01-01

    Report discusses research on use of laser-induced fluorescence in oxygen and Raman scattering in air for simultaneous measurement of temperature and density of air. Major application of laser spectroscopic techniques, measurement of fluctuations of temperature and density in hypersonic flows in wind tunnels.

  10. Simple, accurate temperature-measuring instrument

    NASA Technical Reports Server (NTRS)

    Mc Fadin, L. W.

    1970-01-01

    Compact instrument, composed of integrated circuits and a temperature-sensitive platinum resistor, measures temperature over a wide dynamic range. Ultimate accuracy is limited by nonlinearity of the platinum resistor. With proper calibration and current regulation to within 0.01 percent, a measurement accuracy of 0.05 percent can be achieved.

  11. Liquid crystal quantitative temperature measurement technique

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Wu, Zongshan

    2001-10-01

    Quantitative temperature measurement using wide band thermochromic liquid crystals is an “area” thermal measurement technique. This technique utilizes the feature that liquid crystal changes its reflex light color with variation of temperature and applies an image capturing and processing system to calibrate the characteristic curve of liquid crystal’s color-temperature. Afterwards, the technique uses this curve to measure the distribution of temperature on experimental model. In this paper, firstly, each part of quantitative temperature measurement system using liquid crystal is illustrated and discussed. Then the technique is employed in a long duration hypersonic wind tunnel, and the quantitative result of the heat transfer coefficient along laminar plate is obtained. Additionally, some qualitative results are also given. In the end, comparing the experimental results with reference enthalpy theoretical results, a conclusion of thermal measurement accuracy is drawn.

  12. Optic Nerve Pit

    MedlinePlus

    ... What is the effect of optic pit on vision? The pit itself does not affect vision and most patients remain without any symptoms for decades. About 50% of patients start feeling vision deterioration in their 20’s or 30’s. It is ...

  13. Temperature Sensitive Particle for Velocity and Temperature Measurement.

    NASA Astrophysics Data System (ADS)

    Someya, Satoshi; Okamoto, Koji; Iida, Masao

    2007-11-01

    Phosphorescence and fluorescence are often applied to measure the temperature and the concentration of oxygen. The intensity and the lifetime of phosphor depend on the temperature and the oxygen concentration, due to the quenching effect of the phosphor. The present study clarified the effects of temperature on the lifetime of phosphorescence of Porphyrins, Ru(bpy)3^2+ and the europium complex. The phosphorescence lifetime of oil solution / water solution / painted wall were measured with changing temperature and oxygen concentration. In addition, the optical property of the small particles incorporated with the europium complex was investigated in the oil/water. The lifetime was strongly affected by temperature. Then, the temperature sensitive particle (TSParticle) with metal complex was applied to measure temperature in Silicone oil (10cSt) two-dimensionally. Present study is the result of ?High speed three-dimensional direct measurement technology development for the evaluation of heat flux and flow of liquid metal? entrusted to the University of Tokyo by the Ministry of Education, Culture, Sports, Science and Technology of Japan(MEXT).

  14. Uncertainty of temperature measurement with thermal cameras

    NASA Astrophysics Data System (ADS)

    Chrzanowski, Krzysztof; Matyszkiel, Robert; Fischer, Joachim; Barela, Jaroslaw

    2001-06-01

    All main international metrological organizations are proposing a parameter called uncertainty as a measure of the accuracy of measurements. A mathematical model that enables the calculations of uncertainty of temperature measurement with thermal cameras is presented. The standard uncertainty or the expanded uncertainty of temperature measurement of the tested object can be calculated when the bounds within which the real object effective emissivity (epsilon) r, the real effective background temperature Tba(r), and the real effective atmospheric transmittance (tau) a(r) are located and can be estimated; and when the intrinsic uncertainty of the thermal camera and the relative spectral sensitivity of the thermal camera are known.

  15. Measuring global temperatures: Their analysis and interpretation

    NASA Astrophysics Data System (ADS)

    Pielke, Roger A., Sr.

    2011-07-01

    This book documents how global surface temperature anomalies (GSTAs) and multidecadal trends are obtained. While ocean heat content change is a more robust metric with which to diagnose global warming, GSTAs have become a primary icon in the climate change debate. The book begins with a brief overview chapter of the Earth's radiative energy budget followed by two chapters on measurement approaches to monitoring temperature, including an interesting discussion of temperature scales. Chapters 4-6 concern measuring land and ocean temperatures. Chapters 7 and 8 discuss global networks and how point measurements are converted to obtain global averages. Chapter 9 focuses on changes in time of temperatures, including maximum and minimum values. This is followed by a short chapter on temperature profiles through the atmosphere and a final chapter of recommendations for future observations of this metric.

  16. Nonintrusive temperature measurements on advanced turbomachinery components

    SciTech Connect

    Noel, B.W.; Turley, W.D.; Lewis, W.

    1992-12-31

    A nonintrusive, noncontacting method we developed for temperature measurements in hostile environments is well-suited for measurements on advanced turbine components. The method is not only superior to thermocouples in sufficiently difficult environments, but also is the only known method for making measurements in situations where no form of pyrometry works. We demonstrated the method, which uses laser-induced fluorescence of thermographic phosphors bonded to the component surfaces, on turbine blades and vanes in developmental turbine engines. The method is extendable to the much-higher temperatures expected inside advanced turbomachinery. Of particular note is the adaptability of the method to surface-temperature measurements on ceramics operating at high temperatures. In this temperature range, the ceramics become translucent, and surface emissivity becomes meaningless. We shall discuss the method, its advantages and limitations, recent test results on operating turbine engines, and the extension to ceramic components.

  17. Nulling Infrared Radiometer for Measuring Temperature

    NASA Technical Reports Server (NTRS)

    Ryan, Robert

    2003-01-01

    A nulling, self-calibrating infrared radiometer is being developed for use in noncontact measurement of temperature in any of a variety of industrial and scientific applications. This instrument is expected to be especially well-suited to measurement of ambient or near-ambient temperature and, even more specifically, for measuring the surface temperature of a natural body of water. Although this radiometer would utilize the long-wavelength infrared (LWIR) portion of the spectrum (wavelengths of 8 to 12 m), its basic principle of operation could also be applied to other spectral bands (corresponding to other temperature ranges) in which the atmosphere is transparent and in which design requirements for sensitivity and temperature-measurement accuracy could be satisfied.

  18. Accurate measurement of unsteady state fluid temperature

    NASA Astrophysics Data System (ADS)

    Jaremkiewicz, Magdalena

    2016-07-01

    In this paper, two accurate methods for determining the transient fluid temperature were presented. Measurements were conducted for boiling water since its temperature is known. At the beginning the thermometers are at the ambient temperature and next they are immediately immersed into saturated water. The measurements were carried out with two thermometers of different construction but with the same housing outer diameter equal to 15 mm. One of them is a K-type industrial thermometer widely available commercially. The temperature indicated by the thermometer was corrected considering the thermometers as the first or second order inertia devices. The new design of a thermometer was proposed and also used to measure the temperature of boiling water. Its characteristic feature is a cylinder-shaped housing with the sheath thermocouple located in its center. The temperature of the fluid was determined based on measurements taken in the axis of the solid cylindrical element (housing) using the inverse space marching method. Measurements of the transient temperature of the air flowing through the wind tunnel using the same thermometers were also carried out. The proposed measurement technique provides more accurate results compared with measurements using industrial thermometers in conjunction with simple temperature correction using the inertial thermometer model of the first or second order. By comparing the results, it was demonstrated that the new thermometer allows obtaining the fluid temperature much faster and with higher accuracy in comparison to the industrial thermometer. Accurate measurements of the fast changing fluid temperature are possible due to the low inertia thermometer and fast space marching method applied for solving the inverse heat conduction problem.

  19. [Temperature Measurement with Bluetooth under Android Platform].

    PubMed

    Wang, Shuai; Shen, Hao; Luo, Changze

    2015-03-01

    To realize the real-time transmission of temperature data and display using the platform of intelligent mobile phone and bluetooth. Application of Arduino Uno R3 in temperature data acquisition of digital temperature sensor DS18B20 acquisition, through the HC-05 bluetooth transmits the data to the intelligent smart phone Android system, realizes transmission of temperature data. Using Java language to write applications program under Android development environment, can achieve real-time temperature data display, storage and drawing temperature fluctuations drawn graphics. Temperature sensor is experimentally tested to meet the body temperature measurement precision and accuracy. This paper can provide a reference for other smart phone mobile medical product development. PMID:26524781

  20. Atmospheric temperature measurements, using Raman lidar

    NASA Technical Reports Server (NTRS)

    Salzman, J. A.; Coney, T. A.

    1974-01-01

    The Raman-shifted return of a lidar system had been used to make atmospheric temperature measurements. The measurements were made along a horizontal path at temperatures ranging from -30 to 30 C and at ranges of about 100 meters. The temperature data were acquired by recording the intensity ratio of two portions of the rotational Raman spectrum, which were simultaneously sampled from a preset range. These tests verified that the theoretical predictions formulated in the design of the system were adequate. Measurements were made to an accuracy of + or - 4 C with 1-minute temporal resolution.

  1. Solar absorber material reflectivity measurements at temperature

    SciTech Connect

    Bonometti, J.A.; Hawk, C.W.

    1999-07-01

    Assessment of absorber shell material properties at high operating temperatures is essential to the full understanding of the solar energy absorption process in a solar thermal rocket. A review of these properties, their application and a new experimental methodology to measure them at high temperatures is presented. The direct application for the research is absorber cavity development for a Solar Thermal Upper Stage (STUS). High temperature measurements, greater than 1,000 Kelvin, are difficult to obtain for incident radiation upon a solid surface that forms an absorber cavity in a solar thermal engine. The basic material properties determine the amount of solar energy that is absorbed, transmitted or reflected and are dependent upon the material's temperature. This investigation developed a new approach to evaluate the material properties (i.e., reflectivity, absorptive) of the absorber wall and experimentally determined them for rhenium and niobium sample coupons. The secular reflectivity was measured both at room temperature and at temperatures near 1,000 Kelvin over a range of angles from 0 to 90 degrees. The same experimental measurements were used to calculate the total reflectivity of the sample by integrating the recorded intensities over a hemisphere. The test methodology used the incident solar energy as the heating source while directly measuring the reflected light (an integrated value over all visible wavelengths). Temperature dependence on total reflectivity was found to follow an inverse power function of the material's temperature.

  2. Surface aspects of pitting and stress corrosion cracking

    NASA Technical Reports Server (NTRS)

    Truhan, J. S., Jr.; Hehemann, R. F.

    1977-01-01

    The pitting and stress corrosion cracking of a stable austenitic stainless steel in aqueous chloride environments were investigated using a secondary ion mass spectrometer as the primary experimental technique. The surface concentration of hydrogen, oxygen, the hydroxide, and chloride ion, magnesium or sodium, chromium and nickel were measured as a function of potential in both aqueous sodium chloride and magnesium chloride environments at room temperature and boiling temperatures. It was found that, under anodic conditions, a sharp increase in the chloride concentration was observed to occur for all environmental conditions. The increase may be associated with the formation of an iron chloride complex. Higher localized chloride concentrations at pits and cracks were also detected with an electron microprobe.

  3. Dynamic temperature measurements with embedded optical sensors.

    SciTech Connect

    Dolan, Daniel H.,; Seagle, Christopher T; Ao, Tommy

    2013-10-01

    This report summarizes LDRD project number 151365, %5CDynamic Temperature Measurements with Embedded Optical Sensors%22. The purpose of this project was to develop an optical sensor capable of detecting modest temperature states (<1000 K) with nanosecond time resolution, a recurring diagnostic need in dynamic compression experiments at the Sandia Z machine. Gold sensors were selected because the visible re ectance spectrum of gold varies strongly with temperature. A variety of static and dynamic measurements were performed to assess re ectance changes at di erent temperatures and pressures. Using a minimal optical model for gold, a plausible connection between static calibrations and dynamic measurements was found. With re nements to the model and diagnostic upgrades, embedded gold sensors seem capable of detecting minor (<50 K) temperature changes under dynamic compression.

  4. Metastable pitting of carbon steel under potentiostatic control

    SciTech Connect

    Cheng, Y.F.; Luo, J.L.

    1999-03-01

    The metastable pitting of A516-70 carbon steel was studied under potentiostatic control in solutions containing chloride ions. It was shown that there were different current fluctuation patterns and spectral slopes, that is, roll-off slopes, in passivity, general corrosion, and metastable pitting. Pits were often covered by a deposit which played an important role in the current fluctuation, with a quick current rise followed by a slow drop. There was a transitional potential (about 0 mV vs Ag/AgCl electrode) below which the metastable pitting initiation rate increased with the potential, because more sites would be activated. Above the transitional potential, the decay of the pitting occurrence rate with increased potential was due to the elimination of available pit sites. When the applied potential was between {minus}50 and 100 mV, pit growth kinetics was controlled by the potential drop through the deposit over the pit mouth. The potential dependence of repassivation time was mainly due to the effect of applied potential on the deposit over the pit mouth. There seemed to be good agreement between the calculated pit size and the measured values by optical microphotography. The assumption of hemispherical pit geometry was reasonable in calculating the pit radii.

  5. Pitted terrains on Vesta: Thermophysical analysis

    NASA Astrophysics Data System (ADS)

    Capria, M.; Tosi, F.; De Sanctis, M.; Turrini, D.; Ammannito, E.; Capaccioni, F.; Fonte, S.; Frigeri, A.; Longobardo, A.; Palomba, E.; Zambon, F.; Schroeder, S.; Denevi, B.; Williams, D.; Scully, J.; Russell, C.; Raymond, C.

    2014-07-01

    Launched in 2007, the Dawn spacecraft, after one year spent orbiting Vesta, is now on its way to Ceres. In the science payload, the Visible and Infrared mapping spectrometer (VIR) is devoted to the study of the mineralogical composition and thermophysical properties of Vesta's surface [1]. Disk-resolved surface temperatures of Vesta have been determined from the infrared spectra measured by VIR [2]. The observed temperatures, together with a thermophysical model, have been used to constrain the thermal properties of a large part of the surface of the asteroid [3]. The average thermal inertia of the surface is quite low, consistent with a widespread presence of a dust layer. While the global thermal inertia is low, the characterization of its surface in terms of regions showing peculiar thermophysical properties gives us the possibility to identify specific areas with different thermal and structural characteristics. These variations can be linked to strong albedo variations that have been observed, or to other physical and structural characteristics of the first few centimeters of the soil. The highest values of thermal inertia have been determined on areas coinciding with locations where pitted terrains have been found [4]. Pitted terrains, first identified on Mars, have been found in association with 4 craters on Vesta: Marcia, Cornelia, Licinia, and Numisia. The Marcia area is characterized by high hydrogen and OH content [5]. By analogy with Mars, the formation of these terrains is thought to be due to the rapid release of volatiles, triggered by heating from an impact event. A question arises on the origin of volatiles: hydrated minerals, or ground, buried ice? In order to discuss the second hypothesis, we have to assume that a comet impact delivers ice that gets buried under a layer of regolith. Successively, another impact on the same area would give origin to the pitted terrain. The buried ice has obviously to survive for the time between the two impacts

  6. High-temperature capacitive strain measurement system

    NASA Technical Reports Server (NTRS)

    Wilson, E. J.; Egger, R. L.

    1975-01-01

    Capacitive strain gage and signal conditioning system measures stress-induced strain and cancels thermal expansion strain at temperatures to 1,500 F (815 C). Gage does not significantly restrain or reinforce specimen.

  7. Human body temperature - Its measurement and regulation

    SciTech Connect

    Houdas, Y.; Ring, E.F.J.

    1982-01-01

    The terminology used in thermal physiology is examined, and principles of heat transfer are discussed, taking into account heat quantity, heat flux, temperature, pressure, quantities used in physiology, a number of common definitions, the equivalence between different forms of energy, the release of potential energy in living tissues, heat transfer without change of state, and heat transfer with change of state. Temperature and humidity measurement are considered along with man and his environment, the temperature distribution in the systems and tracts of the human body, physiological changes affecting the temperature distribution, problems of temperature regulation, questions of heat loss and conservation, acclimatization to heat and cold, and disorders of thermoregulation. Attention is given to possible thermal imaging applications, causes of temperature irregularities in the head and neck, common causes of increased temperatures of upper limbs, and thermography in disease. 193 references.

  8. Simultaneous Measurement of Temperature Dependent Thermophysical Properties

    NASA Astrophysics Data System (ADS)

    Czél, Balázs; Gróf, Gyula; Kiss, László

    2011-11-01

    A new evaluation method for a transient measurement of thermophysical properties is presented in this paper. The aim of the research was to couple a new automatic evaluation procedure to the BICOND thermophysical property measurement method to enhance the simultaneous determination of the temperature dependent thermal conductivity and volumetric heat capacity. The thermophysical properties of two different polymers were measured and compared with the literature data and with the measurement results that were done by well-known, traditional methods. The BICOND method involves a step-down cooling, recording the temperature histories of the inner and the outer surfaces of a hollow cylindrical sample and the thermophysical properties are evaluated from the solution of the corresponding inverse heat conduction using a genetic algorithm-based method (BIGEN) developed by the authors. The BIGEN is able to find the material properties with any kind of temperature dependency, that is illustrated through the measurement results of poly(tetrafluoroethylene) (PTFE) and polyamide (PA) samples.

  9. Measuring temperature rise during orthopaedic surgical procedures.

    PubMed

    Manoogian, Sarah; Lee, Adam K; Widmaier, James C

    2016-09-01

    A reliable means for measuring temperatures generated during surgical procedures is needed to recommend best practices for inserting fixation devices and minimizing the risk of osteonecrosis. Twenty four screw tests for three surgical procedures were conducted using the four thermocouples in the bone and one thermocouple in the screw. The maximum temperature rise recorded from the thermocouple in the screw (92.7±8.9°C, 158.7±20.9°C, 204.4±35.2°C) was consistently higher than the average temperature rise recorded in the bone (31.8±9.3°C, 44.9±12.4°C, 77.3±12.7°C). The same overall trend between the temperatures that resulted from three screw insertion procedures was recorded with significant statistical analyses using either the thermocouple in the screw or the average of several in-bone thermocouples. Placing a single thermocouple in the bone was determined to have limitations in accurately comparing temperatures from different external fixation screw insertion procedures. Using the preferred measurement techniques, a standard screw with a predrilled hole was found to have the lowest maximum temperatures for the shortest duration compared to the other two insertion procedures. Future studies evaluating bone temperature increase need to use reliable temperature measurements for recommending best practices to surgeons. PMID:27246667

  10. MISSE 1 and 2 Tray Temperature Measurements

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Kinard, William H.

    2006-01-01

    The Materials International Space Station Experiment (MISSE 1 & 2) was deployed August 10,2001 and retrieved July 30,2005. This experiment is a co-operative endeavor by NASA-LaRC. NASA-GRC, NASA-MSFC, NASA-JSC, the Materials Laboratory at the Air Force Research Laboratory, and the Boeing Phantom Works. The objective of the experiment is to evaluate performance, stability, and long term survivability of materials and components planned for use by NASA and DOD on future LEO, synchronous orbit, and interplanetary space missions. Temperature is an important parameter in the evaluation of space environmental effects on materials. The MISSE 1 & 2 had autonomous temperature data loggers to measure the temperature of each of the four experiment trays. The MISSE tray-temperature data loggers have one external thermistor data channel, and a 12 bit digital converter. The MISSE experiment trays were exposed to the ISS space environment for nearly four times the nominal design lifetime for this experiment. Nevertheless, all of the data loggers provided useful temperature measurements of MISSE. The temperature measurement system has been discussed in a previous paper. This paper presents temperature measurements of MISSE payload experiment carriers (PECs) 1 and 2 experiment trays.

  11. Microwave temperature measurement in microfluidic devices.

    PubMed

    Wong, David; Yesiloz, Gurkan; Boybay, Muhammed S; Ren, Carolyn L

    2016-06-21

    In spite of various existing thermometry methods for microfluidic applications, it remains challenging to measure the temperature of individual droplets in segmented flow since fast moving droplets do not allow sufficient exposure time demanded by both fluorescence based techniques and resistance temperature detectors. In this contribution, we present a microwave thermometry method that is non-intrusive and requires minimal external equipment. This technique relies on the correlation of fluid temperature with the resonance frequency of a microwave sensor that operates at a GHz frequency range. It is a remote yet direct sensing technique, eliminating the need for mixing fluorescent dyes with the working fluid. We demonstrated that the sensor operates reliably over multiple tests and is capable of both heating and sensing. It measures temperature to within ±1.2 °C accuracy and can detect the temperature of individual droplets. PMID:27199210

  12. Azimuthal radiometric temperature measurements of wheat canopies

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.

    1981-01-01

    The effects of azimuthal view angle on the radiometric temperature of wheat canopies at various stages of development are investigated. Measurements of plant height, total leaf area index, green leaf area index and Feeks growth stage together with infrared radiometric temperature measurements at 12 azimuth intervals with respect to solar azimuth and at different solar zenith angles were obtained for four wheat canopies at various heights. Results reveal a difference on the order of 2 C between the temperatures measured at azimuths of 0 and 180 deg under calm wind conditions, which is attributed to the time-dependent transfer of heat between canopy component surfaces. The azimuthal dependence must thus be taken into account in the determination of radiometric temperatures.

  13. Comparison Measurements of Silicon Carbide Temperature Monitors

    SciTech Connect

    J. L. Rempe; K. G. Condie; D. L. Knudson; L. L. Snead

    2010-06-01

    As part of the efforts initiated through the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program to make Silicon Carbide (SiC) temperature monitors available, a capability was developed at the Idaho National Laboratory (INL) to complete post-irradiation evaluations of these monitors. INL selected the resistance measurement approach for detecting peak irradiation temperature from SiC temperature monitors. To demonstrate this new capability, comparison measurements were completed by INL and Oak Ridge National Laboratory (ORNL) on identical samples subjected to identical irradiation conditions. Results reported in this paper indicate that the resistance measurement approach can yield similar peak irradiation temperatures if appropriate equipment is used and appropriate procedures are followed.

  14. Containerless measurements on liquids at high temperatures

    NASA Technical Reports Server (NTRS)

    Weber, Richard

    1993-01-01

    The application of containerless techniques for measurements of the thermophysical properties of high temperature liquids is reviewed. Recent results obtained in the materials research laboratories at Intersonics are also presented. Work to measure high temperature liquid properties is motivated by both the need for reliable property data for modeling of industrial processes involving molten materials and generation of data form basic modeling of materials behavior. The motivation for this work and examples of variations in thermophysical property values from the literature are presented. The variations may be attributed to changes in the specimen properties caused by chemical changes in the specimen and/or to measurement errors. The two methods used to achieve containerless conditions were aeroacoustic levitation and electromagnetic levitation. Their qualities are presented. The accompanying slides show the layout of levitation equipment and present examples of levitated metallic and ceramic specimens. Containerless techniques provide a high degree of control over specimen chemistry, nucleation and allow precise control of liquid composition to be achieved. Effects of minor additions can thus be measured in a systematic way. Operation in reduced gravity enables enhanced control of liquid motion which can allow measurement of liquid transport properties. Examples of nucleation control, the thermodynamics of oxide contamination removal, and control of the chromium content of liquid aluminum oxide by high temperature containerless processes are presented. The feasibility of measuring temperature, emissivity, liquidus temperature, enthalpy, surface tension, density, viscosity, and thermal diffusivity are discussed in the final section of the paper.

  15. Assessment of body temperature measurement options.

    PubMed

    Sund-Levander, Märtha; Grodzinsky, Ewa

    Assessment of body temperature is important for decisions in nursing care, medical diagnosis, treatment and the need of laboratory tests. The definition of normal body temperature as 37°C was established in the middle of the 19th century. Since then the technical design and the accuracy of thermometers has been much improved. Knowledge of physical influence on the individual body temperature, such as thermoregulation and hormones, are still not taken into consideration in body temperature assessment. It is time for a change; the unadjusted mode should be used, without adjusting to another site and the same site of measurement should be used as far as possible. Peripheral sites, such as the axillary and the forehead site, are not recommended as an assessment of core body temperature in adults. Frail elderly individuals might have a low normal body temperature and therefore be at risk of being assessed as non-febrile. As the ear site is close to the hypothalamus and quickly responds to changes in the set point temperature, it is a preferable and recommendable site for measurement of body temperature. PMID:24037397

  16. Emissivities of ceramics for temperature measurements

    NASA Astrophysics Data System (ADS)

    Bauer, Wolfgang; Moldenhauer, Alexander

    2004-04-01

    Ceramics are used as construction materials for buildings and thermal technical plants. Depending on the fields of its application between ambient temperature and more than 1000 °C there are different ceramic materials in use. For the temperature measurements with pyrometers and infrared cameras band emissivities are needed as settings. Pyrometers and infrared cameras have different spectral work ranges. Therefore, for different devices different emissivities are needed for one and the same material. Selectivity of the spectral emissivities like with ceramic materials can lead thereby to larger differences between the emissivities of a material, and furthermore to temperature dependence of the band emissivities of a material. Examples of different temperature-dependent spectral, band, and total emissivities are shown. These emissivities for different work ranges of pyrometers and infrared cameras were computed based on measured spectral emissivities. The investigation leads to a selection of suitable band emissivities for radiation thermometry of ceramics.

  17. Laser weld penetration estimation using temperature measurements

    SciTech Connect

    Lankalapalli, K.N.; Tu, J.F.; Leong, K.H.; Gartner, M.

    1997-10-01

    Penetration depth is an important factor critical to the quality of a laser weld. This paper examines the feasibility of using temperature measurements on the bottom surface of the work-piece to estimate weld penetration. A three-dimensional analytical model relating penetration depth, weld bead width and welding speed to temperature distribution at the bottom surface of the workpiece is developed. Temperatures on the bottom surface of the workpiece are measured using infrared thermocouples located behind the laser beam. Experimental results from bead-on-plate welds on low carbon steel plates of varying thickness at different levels of laser power and speeds validate the model and show that the temperature on the bottom surface is a sensitive indicator of penetration depth. The proposed model is computationally efficient and is suitable for on-line process monitoring application.

  18. Turbine gas temperature measurement and control system

    NASA Technical Reports Server (NTRS)

    Webb, W. L.

    1973-01-01

    A fluidic Turbine Inlet Gas Temperature (TIGIT) Measurement and Control System was developed for use on a Pratt and Whitney Aircraft J58 engine. Based on engine operating requirements, criteria for high temperature materials selection, system design, and system performance were established. To minimize development and operational risk, the TIGT control system was designed to interface with an existing Exhaust Gas Temperature (EGT) Trim System and thereby modulate steady-state fuel flow to maintain a desired TIGT level. Extensive component and system testing was conducted including heated (2300F) vibration tests for the fluidic sensor and gas sampling probe, temperature and vibration tests on the system electronics, burner rig testing of the TIGT measurement system, and in excess of 100 hours of system testing on a J58 engine. (Modified author abstract)

  19. Apparatus and method for high temperature viscosity and temperature measurements

    DOEpatents

    Balasubramaniam, Krishnan; Shah, Vimal; Costley, R. Daniel; Singh, Jagdish P.

    2001-01-01

    A probe for measuring the viscosity and/or temperature of high temperature liquids, such as molten metals, glass and similar materials comprises a rod which is an acoustical waveguide through which a transducer emits an ultrasonic signal through one end of the probe, and which is reflected from (a) a notch or slit or an interface between two materials of the probe and (b) from the other end of the probe which is in contact with the hot liquid or hot melt, and is detected by the same transducer at the signal emission end. To avoid the harmful effects of introducing a thermally conductive heat sink into the melt, the probe is made of relatively thermally insulative (non-heat-conductive) refractory material. The time between signal emission and reflection, and the amplitude of reflections, are compared against calibration curves to obtain temperature and viscosity values.

  20. Thin film thermocouples for high temperature measurement

    NASA Astrophysics Data System (ADS)

    Kreider, Kenneth G.

    1989-05-01

    Thin film thermocouples have unique capabilities for measuring surface temperatures at high temperatures (above 800 K) under harsh conditions. Their low mass, approximately 2 x 10(-5) g/mm permits very rapid response and very little disturbance of heat transfer to the surface being measured. This has led to applications inside gas turbine engines and diesel engines measuring the surface temperature of first stage turbine blades and vanes and ceramic liners in diesel cylinders. The most successful high temperature (up to 1300 K) thin film thermocouples are sputter deposited from platinum and platinum-10 percent rhodium targets although results using base metal alloys, gold, and platinel will also be presented. The fabrication techniques used to form the thermocouples, approaches used to solve the high temperature insulation and adherence problems, current applications, and test results using the thin film thermocouples are reviewed. In addition a discussion will be presented on the current problems and future trends related to applications of thin film thermocouples at higher temperatures up to 1900 K.

  1. Temperature measurement of sputtered metal dimers

    SciTech Connect

    Fayet, P.; Wolf, J.P.; Woeste, L.

    1986-05-15

    The temperatures of sputtered alkali-metal dimers have been measured using one- and two-photon ionization spectroscopy. They are estimated to be 1470 +- 300 K, 1025 +- 200 K, and 1000 +- 200 K for Cs/sub 2/, K/sub 2/, and Na/sub 2/, respectively. The vibrational and rotational temperatures are found to be very similar. No dependence of the dimer excitation is found, neither on target temperature nor on the primary-ion energy. The results are compared with some currently used models to explain cluster formation in sputtering experiments.

  2. Dual neutron flux/temperature measurement sensor

    DOEpatents

    Mihalczo, John T.; Simpson, Marc L.; McElhaney, Stephanie A.

    1994-01-01

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination.

  3. A Method of Measuring Piston Temperatures

    NASA Technical Reports Server (NTRS)

    Pinkel, Benjamin; Mangniello, Eugene J

    1940-01-01

    A method that makes use of thermocouples has been developed to measure the temperature of engine pistons operating at high speeds. The thermocouples installed on the moving piston are connected with a potentiometer outside the engine by means of pneumatically operated plungers, which make contact with the piston thermocouples for about 10 crankshaft degrees at the bottom of the piston stroke. The equipment is operated satisfactory at engine speeds of 2,400 r.p.m. and shows promise of successful operation at higher engine speeds. Measurements of piston temperatures in a liquid-cooled compression-ignition engine and in an air-cooled spark-ignition are presented.

  4. Two-temperature method for measuring emissivity

    USGS Publications Warehouse

    Watson, K.

    1992-01-01

    Spectral emissivity can be uniquely determined from radiance measurements if the object can be observed at two different temperatures. The advantage of this approach is that the spectral emissivity is determined without a priori assumptions about spectral shape. Because the different temperatures are obtained by observing the scene at two times in the diurnal cycle (optimally after midday and midnight), the method assumes that emissivity is temporally invariant. This is valid for rocks and dry soils, not well established for vegetation, and not true when changes in soil moisture occur between the measurements. Accurate image registration and satisfactory signal:noise are critical factors that limit extensive use of this method. ?? 1992.

  5. Non-contact temperature measurement requirements

    NASA Technical Reports Server (NTRS)

    Higgins, D. B.; Witherow, W. K.

    1989-01-01

    The Marshall Space Flight Center is involved with levitation experiments for Spacelab, Space Station, and drop tube/tower operations. These experiments have temperature measurement requirements, that of course must be non-contact in nature. The experiment modules involved are the Acoustic Levitator Furnace (ALF), and the Modular Electromagnetic Levitator (MEL). User requirements of the ALF and drop tube are presented. The center also has temperature measurement needs that are not microgravity experiment oriented, but rather are related to the propulsion system for the STS. This requirement will also be discussed.

  6. Ascraeus Mons Collapse Pits

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form.

    These collapse pits are found on the flank of Ascraeus Mons. The pits and channels are all related to lava tube formation and emptying.

    Image information: IR instrument. Latitude 8, Longitude 253.9 East (106.1 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science

  7. Measuring Titan's mesospheric temperatures by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Penteado, P.; Griffith, C.; Greathouse, T.; Roe, H.; Yelle, R.

    2005-08-01

    Titan's temperature profile is an indicator of the atmospheric energy transport, by radiation, convection and conduction. From the surface up to ˜250 km altitude, the temperature profile was measured by the Voyager 1 radio occultations and infrared spectra. In the troposphere, heating by the surface and low atmosphere by solar radiation absorption and cooling by emission to space are the dominant processes that establish the temperature profile, which decreases from ˜94 K at the surface, to ˜70 K at 200 km. Between 200 and 350 km, the atmosphere radiative absorption and emission balance, and the temperature is approximately constante. At 250-500 km altitudes, observations of stellar occultations reveal oscillations between 170 and 150 K. Atmospheric models predict the existence of a mesosphere, in the region 350-550 km, with the temperature decreasing from ethane and other hydrocarbons' emissions. In this work we analyze emission lines of methane's ν 4 band (8.1 μ m, 1230 cm-1) with high resolution spectra. The line profiles of different intensities allow us to determine the vertical temperature profile for the region 100-600 km, which was not possible with previously available data. We present the first infrared observation that can measure independently the temperatures for the regions 100-200 km, 200-400 km, and 400-600 km. These measurements show the existence of a mesosphere, with a temperature drop of at least 15 K from 380+50-100 km altitude. Paulo Penteado is sponsored by the NASA Planetary Astronomy Program and the Brazilian Government through CAPES.

  8. Ion temperature measurements in the Maryland Spheromak

    SciTech Connect

    Gauvreau, J.L.

    1992-12-31

    Initial spectroscopic data from MS showed evidence of ion heating as deduced from the line widths of different ion species. Detailed measurements of OIV spectral emission line profiles in space and time revealed that heating takes place at early time, before spheromak formation and is occurring within the current discharge. The measured ion temperature is several times the electron temperature and cannot be explained by classical (Spitzer) resistivity. Classically, ions are expected to have lower temperatures than the electrons and therefore, lower temperatures than observed. High ion temperatures have been observed in different RFP`s and Spheromaks but are usually associated with relaxation to the Taylor state and occur in the sustainment phase. During formation, the current delivered to start the discharge is not axisymmetric and as a consequence, X-points appear in the magnetic flux. A two dimensional analysis predicts that magnetic reconnection occurring at an X-point can give rise to high ion heating rates. A simple 0-dimensional calculation showed that within the first 20 {mu}s, a conversion of mass flow kinetic energy into ion temperature could take place due to viscosity.

  9. Material parameter measurements at high temperatures

    NASA Technical Reports Server (NTRS)

    Dominek, A.; Park, A.; Peters, L., Jr.

    1988-01-01

    Alternate fixtures of techniques for the measurement of the constitutive material parameters at elevated temperatures are presented. The technique utilizes scattered field data from material coated cylinders between parallel plates or material coated hemispheres over a finite size groundplane. The data acquisition is centered around the HP 8510B Network Analyzer. The parameters are then found from a numerical search algorithm using the Newton-Ralphson technique with the measured and calculated fields from these canonical scatters. Numerical and experimental results are shown.

  10. Dynamic gas temperature measurement system, volume 1

    NASA Technical Reports Server (NTRS)

    Elmore, D. L.; Robinson, W. W.; Watkins, W. B.

    1983-01-01

    A gas temperature measurement system with compensated frequency response of 1 kHz and capability to operate in the exhaust of a gas turbine engine combustor was developed. A review of available technologies which could attain this objective was done. The most promising method was identified as a two wire thermocouple, with a compensation method based on the responses of the two different diameter thermocouples to the fluctuating gas temperature field. In a detailed design of the probe, transient conduction effects were identified as significant. A compensation scheme was derived to include the effects of gas convection and wire conduction. The two wire thermocouple concept was tested in a laboratory burner exhaust to temperatures of about 3000 F and in a gas turbine engine to combustor exhaust temperatures of about 2400 F. Uncompensated and compensated waveforms and compensation spectra are presented.

  11. Measuring electron temperature in the extended corona

    NASA Technical Reports Server (NTRS)

    Hassler, Donald M.; Gardner, L. D.; Kohl, John L.

    1992-01-01

    A technique for measuring electron temperature in the extended corona from the line profile of the electron scattered component of coronal H I Ly alpha produced by Thomson scattering of chromospheric Ly alpha emission is discussed. Because of the high thermal velocity of electrons at coronal temperatures (approximately 6800 km/s at T(sub e) = 1,500,000 K) the effect of nonthermal velocities and solar wind flows on the electron velocity distribution are negligible. However, the low electron mass which is responsible for the high thermal velocity also results in a very wide profile (approximately equal to 50 A). This wide profile, together with an intensity that is three orders of magnitude weaker than the resonantly scattered component of Ly alpha makes the direct measurement of T(sub e) a challenging observational problem. An evaluation of this technique based on simulated measurements is presented and the subsequent instrumental requirements necessary to make a meaningful determination of the electron temperature are discussed. Estimates of uncertainties in the measured electron temperature are related to critical instrument parameters such as grating stray light suppression.

  12. Ascraeus Mons Pits

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-482, 13 September 2003

    This August 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a suite of collapse pits on the northeast flank of the volcano, Ascraeus Mons. These pits are aligned along the trend of faults that are not well exposed at the surface; the faults are concentric to the volcano summit. The image is located near 13.0oN, 103.2oW. This picture covers an area 3 km (1.9 mi) across and is illuminated by sunlight from the lower left.

  13. Temperature measurements of shocked silica aerogel foam.

    PubMed

    Falk, K; McCoy, C A; Fryer, C L; Greeff, C W; Hungerford, A L; Montgomery, D S; Schmidt, D W; Sheppard, D G; Williams, J R; Boehly, T R; Benage, J F

    2014-09-01

    We present recent results of equation-of-state (EOS) measurements of shocked silica (SiO_{2}) aerogel foam at the OMEGA laser facility. Silica aerogel is an important low-density pressure standard used in many high energy density experiments, including the novel technique of shock and release. Due to its many applications, it has been a heavily studied material and has a well-known Hugoniot curve. This work then complements the velocity and pressure measurements with additional temperature data providing the full EOS information within the warm dense matter regime for the temperature interval of 1-15 eV and shock velocities between 10 and 40 km/s corresponding to shock pressures of 0.3-2 Mbar. The experimental results were compared with hydrodynamic simulations and EOS models. We found that the measured temperature was systematically lower than suggested by theoretical calculations. Simulations provide a possible explanation that the emission measured by optical pyrometry comes from a radiative precursor rather than from the shock front, which could have important implications for such measurements. PMID:25314547

  14. Temperature measurements of shocked silica aerogel foam

    DOE PAGESBeta

    Falk, K.; McCoy, C. A.; Fryer, C. L.; Greeff, C. W.; Hungerford, A. L.; Montgomery, D. S.; Schmidt, D. W.; Sheppard, D. G.; Williams, J. R.; Boehly, T. R.; et al

    2014-09-12

    We present recent results of equation-of-state (EOS) measurements of shocked silica (SiO2) aerogel foam at the OMEGA laser facility. Silica aerogel is an important low-density pressure standard used in many high energy density experiments, including the novel technique of shock and release. Due to its many applications, it has been a heavily studied material and has a well-known Hugoniot curve. This work then complements the velocity and pressure measurements with additional temperature data providing the full EOS information within the warm dense matter regime for the temperature interval of 1–15 eV and shock velocities between 10 and 40 km/s correspondingmore » to shock pressures of 0.3–2 Mbar. The experimental results were compared with hydrodynamic simulations and EOS models. We found that the measured temperature was systematically lower than suggested by theoretical calculations. As a result, simulations provide a possible explanation that the emission measured by optical pyrometry comes from a radiative precursor rather than from the shock front, which could have important implications for such measurements.« less

  15. Temperature measurements of shocked silica aerogel foam

    SciTech Connect

    Falk, K.; McCoy, C. A.; Fryer, C. L.; Greeff, C. W.; Hungerford, A. L.; Montgomery, D. S.; Schmidt, D. W.; Sheppard, D. G.; Williams, J. R.; Boehly, T. R.; Benage, J. F.

    2014-09-12

    We present recent results of equation-of-state (EOS) measurements of shocked silica (SiO2) aerogel foam at the OMEGA laser facility. Silica aerogel is an important low-density pressure standard used in many high energy density experiments, including the novel technique of shock and release. Due to its many applications, it has been a heavily studied material and has a well-known Hugoniot curve. This work then complements the velocity and pressure measurements with additional temperature data providing the full EOS information within the warm dense matter regime for the temperature interval of 1–15 eV and shock velocities between 10 and 40 km/s corresponding to shock pressures of 0.3–2 Mbar. The experimental results were compared with hydrodynamic simulations and EOS models. We found that the measured temperature was systematically lower than suggested by theoretical calculations. As a result, simulations provide a possible explanation that the emission measured by optical pyrometry comes from a radiative precursor rather than from the shock front, which could have important implications for such measurements.

  16. Variable-Temperature Critical-Current Measurements

    SciTech Connect

    L. F. Goodrich; T. C. Stauffer

    2009-05-19

    This is the final report of a three year contract that covered 09/19/2005 to 07/14/2008. We requested and received a no cost time extension for the third year, 07/15/2007 to 07/14/2008, to allow DoE to send us funds if they became available during that year. It turned out that we did not receive any funding for the third year. The following paper covers our variable-temperature critical-current measurements. We made transport critical-current (Ic) measurements on commercial multifilamentary Nb3Sn strands at temperatures (T) from 4 to 17 K and magnetic fields (H) from 0 to 14 T. One of the unique features of our measurements is that we can cover a wide range of critical currents from less than 0.1 A to over 700 A.

  17. PIV as a temperature measurement tool

    NASA Astrophysics Data System (ADS)

    Oweis, Ghanem F.

    2015-11-01

    In particle image velocimetry (PIV), a camera records time-lapse snapshot images of the positions of particles embedded in a fluid, which faithfully trace the flow path. Cross correlating sequential particle image pairs results in 2D maps of the particle displacement and velocity fields. Here, the same PIV method is extended to temperature measurements in viscoelastic material. The motivation originates in a need for tissue temperature measurements in hyperthermia therapies such as laser ablation eye surgery and high intensity focused ultrasound (HIFU) tumor ablation. Micron sized particles are embedded in an optically clear tissue mimicking phantom, illuminated with a laser sheet, and imaged with a CCD camera. When the phantom is subjected to heating from a focused ultrasound beam, the particles remain stationary, but not their spatial distribution in the recorded images. The images manifest particle displacements commensurate with alterations in the temperature distribution from heating. The underlying principle behind the thermometric capability of PIV is discussed. Temperature changes can be detected with high sensitivity, and the method works best with spatially localized temperature distributions.

  18. High temperature measurement of water vapor absorption

    NASA Technical Reports Server (NTRS)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  19. Measuring Thermal Conductivity at LH2 Temperatures

    NASA Technical Reports Server (NTRS)

    Selvidge, Shawn; Watwood, Michael C.

    2004-01-01

    For many years, the National Institute of Standards and Technology (NIST) produced reference materials for materials testing. One such reference material was intended for use with a guarded hot plate apparatus designed to meet the requirements of ASTM C177-97, "Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus." This apparatus can be used to test materials in various gaseous environments from atmospheric pressure to a vacuum. It allows the thermal transmission properties of insulating materials to be measured from just above ambient temperature down to temperatures below liquid hydrogen. However, NIST did not generate data below 77 K temperature for the reference material in question. This paper describes a test method used at NASA's Marshall Space Flight Center (MSFC) to optimize thermal conductivity measurements during the development of thermal protection systems. The test method extends the usability range of this reference material by generating data at temperatures lower than 77 K. Information provided by this test is discussed, as are the capabilities of the MSFC Hydrogen Test Facility, where advanced methods for materials testing are routinely developed and optimized in support of aerospace applications.

  20. Correcting horsepower measurements to a standard temperature

    NASA Technical Reports Server (NTRS)

    Sparrow, Stanwood W

    1925-01-01

    This report discusses the relation between the temperature of the air at the entrance to the carburetor and the power developed by the engine. Its scope is limited to a consideration of the range of temperatures likely to result from changes of season, locality, or altitude, since its primary aim is the finding of a satisfactory basis for correcting power measurements to a standard temperature. The tests upon which this report is based were made upon aviation engines in the Altitude Laboratory of the Bureau of Standards. From the results of over 1,600 tests it is concluded that if calculations be based on the assumption that the indicated horsepower of an engine varies inversely as the square root of the absolute temperature of the carburetor air the values obtained will check closely experimental measurements. The extent to which this relationship would be expected from theoretical considerations is discussed and some suggestions are given relative to the use of this relationship in correcting horsepower measurements. (author)

  1. Stationary and transient thermal states of barometric pumping in the access pit of an underground quarry.

    PubMed

    Perrier, Frédéric; Le Mouël, Jean-Louis

    2016-04-15

    The transition zone between free and underground atmospheres hosts spectacular phenomena, as demonstrated by temperature measurements performed in the 4.6m diameter and 20m deep vertical access pit of an abandoned underground quarry located in Vincennes, near Paris. In summer, a stable stratification of the atmosphere is maintained, with coherent temperature variations associated with atmospheric pressure changes, with a barometric tide S2 larger than 0.1°C peak to peak. When the winter regime of turbulent cold air avalanches is initiated, stratification with pressure induced signals can be restored transiently in the upper part of the pit, while the lower part remains fully mixed and insensitive to pressure variations. The amplitude of the pressure to temperature transfer function increases with frequency below 5×10(-4)Hz, with values at 3×10(-5)Hz varying from 0.1°C·hPa(-1) at the bottom up to 2°C·hPa(-1) towards the top of the pit. These temperature variations are accounted for by cave breathing, which is pressure induced motion of air amplified by the large volume of the quarry. This understanding is supported by a numerical model including advective heat transport, heat diffusion, and heat exchange with the pit walls. Mean lifetime in the pit is of the order of 9 to 13h, and barometric pumping results in an effective ventilation rate of the quarry of the order of 10(-7)s(-1). This study illustrates the important role of barometric pumping in heat and matter transport between atmosphere and lithosphere. The resulting stationary and transient states, revealed in this pit, are probably a general feature of functioning interface systems, and therefore are an important aspect to consider in problems of contaminant transport, or the preservation of precious heritage such as rare ecosystems or painted caves. PMID:26855357

  2. PIT Coating Requirements Analysis

    SciTech Connect

    MINTEER, D.J.

    2000-10-20

    This study identifies the applicable requirements for procurement and installation of a coating intended for tank farm valve and pump pit interior surfaces. These requirements are intended to be incorporated into project specification documents and design media. This study also evaluates previously recommended coatings and identifies requirement-compliant coating products.

  3. Thermal analysis of simulated Pantex pit storage

    SciTech Connect

    Aceves, S.M., Kornblum, B.T.

    1996-10-01

    This report investigates potential pit storage configurations that could be used at the Mason and Hanger Pantex Plant. The study utilizes data from a thermal test series performed at Lawrence Livermore National Laboratory (LLNL) that simulated these storage configurations. The heat output values used in the LLNL test series do not represent actual pits but are rounded numbers that were chosen for convenience to allow parameter excursions. Specifically in this project, we are modeling the heat transfer and air flow around cylindrical storage containers in Pantex magazines in order to predict container temperatures. This difficult problem in thermal- fluid mechanics involves transient, three-dimensional (3-D) natural convection and thermal radiation around interacting containers with various heat generation rates. Our approach is to link together two computational methods in order to synthesize a modeling procedure for a large array of pit storage containers. The approach employs a finite element analysis of a few containers, followed by a lumped- parameter model of an array of containers. The modeling procedure we developed was applied in the simulation of a recent experiment where temperatures of pit storage containers were monitored in a steady- state, controlled environment. Our calculated pit container temperatures are comparable with data from that experiment. We found it absolutely necessary to include thermal radiation between containers in order to predict temperatures accurately, although the assumption of black-body radiation appears to be sufficient. When radiation is neglected the calculated temperatures are 4 to 6 {degrees}C higher than temperature data from the experiment. We also investigated our model`s sensitivity to variations in the natural convection heat transfer coefficient and found that with a 50% drop in the coefficient, calculated temperatures are approximately I {degree}C higher. Finally, with a modified lumped-parameter model, we

  4. Thermoluminescence measurement technique using millisecond temperature pulses.

    PubMed

    Manfred, Michael E; Gabriel, Nicholas T; Yukihara, Eduardo G; Talghader, Joseph J

    2010-06-01

    A measurement technique, pulsed thermoluminescence, is described which uses short thermal pulses to excite trapped carriers leading to radiative recombination. The pulses are obtained using microstructures with approximately 500 micros thermal time constants. The technique has many of the advantages of pulsed optically stimulated luminescence without the need for optical sources and filters to isolate the luminescent signal. Charge carrier traps in alpha-Al(2)O(3):C particles on microheaters were filled using 205 nm light. Temperature pulses of 10 and 50 ms were applied to the heaters and compared with a standard thermoluminescence curve taken at a ramp rate of 5 K s(-1). This produced curves of intensity verses temperature similar to standard thermoluminescence except shifted to higher temperatures. The luminescence of single particles was read multiple times with negligible loss of population. The lower limit of the duration of useful pulses appears to be limited by particle size and thermal contact between the particle and heater. PMID:20522565

  5. Microwave radiometer for subsurface temperature measurement

    NASA Technical Reports Server (NTRS)

    Porter, R. A.; Bechis, K. P.

    1976-01-01

    A UHF radiometer, operating at a frequency of 800 MHz, was modified to provide an integral, three frequency voltage standing wave ratio (VSWR) circuit in the radio frequency (RF) head. The VSWR circuit provides readings of power transmission at the antenna-material interface with an accuracy of plus or minus 5 percent. The power transmission readings are numerically equal to the emissivity of the material under observation. Knowledge of material emissivity is useful in the interpretation of subsurface apparent temperatures obtained on phantom models of biological tissue. The emissivities of phantom models consisting of lean beefsteak were found to lie in the range 0.623 to 0.779, depending on moisture content. Radiometric measurements performed on instrumented phantoms showed that the radiometer was capable of sensing small temperature changes occurring at depths of at least 19 to 30 mm. This is consistent with previously generated data which showed that the radiometer could sense temperatures at a depth of 38 mm.

  6. Wireless sensor for temperature and humidity measurement

    NASA Astrophysics Data System (ADS)

    Drumea, Andrei; Svasta, Paul

    2010-11-01

    Temperature and humidity sensors have a broad range of applications, from heating and ventilation of houses to controlled drying of fruits, vegetables or meat in food industry. Modern sensors are integrated devices, usually MEMS, factory-calibrated and with digital output of measured parameters. They can have power down modes for reduced energy consumption. Such an integrated device allows the implementation of a battery powered wireless sensor when coupled with a low power microcontroller and a radio subsystem. A radio sensor can work independently or together with others in a radio network. Presented paper focuses mainly on measurement and construction aspects of sensors for temperature and humidity designed and implemented by authors; network aspects (communication between two or more sensors) are not analyzed.

  7. Measurements on insulating materials at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Anderson, W. E.; Davis, R. S.

    1980-01-01

    Results of a four-year effort to study the high voltage dielectric behavior of various materials at cryogenic temperatures are described. Dissipation factors at 60 Hz were measured for polymer tapes and epoxy samples at 4.2 K, atmospheric pressure. Multi-layer polymer samples in coaxial geometries at temperatures from 7 K to 10 K and helium pressures up to 1.5 megapascals were also studied. The measurements were performed at stresses up to 40 MV/m. Since partial discharges were major source of losses at the higher stresses and their presence was possibly detrimental to the integrity of the insulation, instrumentation was developed and implemented to study these discharges under conditions found in proposed ac superconducting power-transmission lines.

  8. Improved Refractometer for Measuring Temperatures of Drops

    NASA Technical Reports Server (NTRS)

    Naqwi, Amir A.

    2004-01-01

    The Dual Rainbow refractometer is an enhanced version of the Rainbow refractometer, which is added to, and extends the capabilities of, a phase Doppler particle analyzer (PDPA). A PDPA utilizes pairs of laser beams to measure individual components of velocity and sizes of drops in a spray. The Rainbow-refractometer addition measures the temperatures of individual drops. The designs of prior versions of the Rainbow refractometer have required substantial modifications of PDPA transmitting optics, plus dedicated lasers as sources of illumination separate from, and in addition to, those needed for PDPA measurements. The enhancement embodied in the Dual Rainbow refractometer eliminates the need for a dedicated laser and confers other advantages as described below. A dedicated laser is no longer needed because the Dual Rainbow refractometer utilizes one of the pairs of laser beams already present in a PDPA. Hence, the design of the Dual Rainbow refractometer simplifies the task of upgrading PDPA hardware to enable measurement of temperature. Furthermore, in a PDPA/Dual Rainbow refractometer system, a single argon-ion laser with three main wavelengths can be used to measure the temperatures, sizes, and all three components of velocity (in contradistinction to only two components of velocity in a prior PDPA/Rainbow refractometer system). In order to enable the Dual Rainbow refractometer to utilize a pair of PDPA laser beams, it was necessary to (1) find a location for the refractometer receiver, such that the combined rainbow patterns of two laser beams amount to a pattern identical to that of a single beam, (2) adjust the polarization of the two beams to obtain the strongest rainbow pattern, and (3) find a location for the PDPA receiver to obtain a linear relationship between the measured phase shift and drop size.

  9. Drainage pits in cohesionless materials: implications for surface of Phobos.

    PubMed

    Horstman, K C; Melosh, H J

    1989-09-10

    Viking orbiter images show grooves and chains of pits crossing the surface of Phobos, many of which converge toward the large crater Stickney or its antipode. Although it has been proposed that the pits and grooves are chains of secondary craters, their morphology and geometric relations suggest that they are the surface traces of fractures in the underlying solid body of Phobos. Several models have been proposed to explain the pits, of which the most plausible are gas venting and drainage of regolith into open fractures. the latter mechanism is best supported by the image data and is the mechanism studied in this investigation. Drainage pits and fissures are modeled experimentally by using two rigid substrate plates placed edge to edge and covered by uniform thicknesses of dry fragmental debris (simulated regolith). Fracture extension is simulated by drawing the plates apart, allowing drainage of regolith into the newly created void. A typical drainage experiment begins with a shallow depression on the surface of the regolith, above the open fissure. Increased drainage causes local drainage pits to form; continued drainage causes the pits to coalesce, forming a cuspate groove. The resulting experimental patterns of pits and grooves have pronounced similarities to those observed on Phobos. Characteristics such as lack of raised rims, linearity of grooves and chains of pits, uniform spacing of pits, and progression from discrete pits to cuspate grooves are the same in the experiments and on Phobos. In contrast, gas-venting pits occur in irregular chains and have raised rims. These experiments thus indicate that the Phobos grooves and pits formed as drainage structures. The pit spacing in an experiment is measured at the time that the maximum number of pits forms, prior to groove development. The average pit spacing is compared to the regolith thickness for each material. Regression line fits indicate that the average spacing of drainage pits in unconsolidated

  10. Electron temperature measurement in an ultracold plasma

    NASA Astrophysics Data System (ADS)

    Afrousheh, K.; Bohlouli, P. Z.; Fedorov, M.; Mugford, A.; Martin, J. D. D.

    2004-05-01

    There has been growing interest in recent years in studying ultracold plasmas. These cold plasmas are produced by photoionizing a sample of cold atoms in a MOT. Of interest is the evolution of electron temperature in these plasmas. Strong correlation due to low initial temperature, as well as lack of correlation due to rapid heating are two possible scenarios. We will present a unique experimental method for measuring electron temperature in a cold plasma, as well as our calculation of the feasibility of the proposed method. In this process, which we call stimulated photoattachment, we stimulate the transition of free electrons from the continuum to bound states of nearby atoms by a laser beam. The negative ions produced can be observed with a microchannel plate detector. For electrons with well-defined energy this is a resonant process. The width of the resonance indicates the electron temperature. This technique has advantage of high temporal resolution of the evolution of electron temperature after the plasma is formed.

  11. Thermoreflectance temperature measurement with millimeter wave

    SciTech Connect

    Pradere, C. Caumes, J.-P.; BenKhemis, S.; Palomo, E.; Batsale, J.-C.; Pernot, G.; Dilhaire, S.

    2014-06-15

    GigaHertz (GHz) thermoreflectance technique is developed to measure the transient temperature of metal and semiconductor materials located behind an opaque surface. The principle is based on the synchronous detection, using a commercial THz pyrometer, of a modulated millimeter wave (at 110 GHz) reflected by the sample hidden behind a shield layer. Measurements were performed on aluminum, copper, and silicon bulks hidden by a 5 cm thick Teflon plate. We report the first measurement of the thermoreflectance coefficient which exhibits a value 100 times higher at 2.8 mm radiation than those measured at visible wavelengths for both metallic and semiconductor materials. This giant thermoreflectance coefficient κ, close to 10{sup −3} K{sup −1} versus 10{sup −5} K{sup −1} for the visible domain, is very promising for future thermoreflectance applications.

  12. Sudden onset of pitting corrosion on stainless steel as a critical phenomenon.

    PubMed

    Punckt, C; Bölscher, M; Rotermund, H H; Mikhailov, A S; Organ, L; Budiansky, N; Scully, J R; Hudson, J L

    2004-08-20

    Stainless steels undergo a sharp rise in pitting corrosion rate as the potential, solution concentration, or temperature is changed only slightly. We report experiments using real-time microscopic in situ visualizations that resolve the nucleation and evolution of individual pits during the transition. They suggest that the sudden onset of corrosion is explained by an explosive autocatalytic growth in the number of metastable pits and that stabilization of individual pits takes place only later. This finding agrees with a theoretical approach treating the onset of pitting corrosion as a cooperative critical phenomenon resulting from interactions among metastable pits, and it extends perspectives on the control and prevention of corrosion onset. PMID:15326349

  13. Electrochemical Studies of Nitrate-Induced Pitting in Carbon Steel

    SciTech Connect

    Zapp, P.E.

    1998-12-07

    The phenomenon of pitting in carbon steel exposed to alkaline solutions of nitrate and chloride was studied with the cyclic potentiodynamic polarization technique. Open-circuit and pitting potentials were measured on specimens of ASTM A537 carbon steel in pH 9.73 salt solutions at 40 degrees Celsius, with and without the inhibiting nitrite ion present. Nitrate is not so aggressive a pitting agent as is chloride. Both nitrate and chloride did induce passive breakdown and pitting in nitrite-free solutions, but the carbon steel retained passivity in solutions with 0.11-M nitrite even at a nitrate concentration of 2.2 M.

  14. Central pit craters on Ganymede

    NASA Astrophysics Data System (ADS)

    Alzate, Nathalia; Barlow, Nadine G.

    2011-02-01

    Central pit craters are common on Mars, Ganymede and Callisto, and thus are generally believed to require target volatiles in their formation. The purpose of this study is to identify the environmental conditions under which central pit craters form on Ganymede. We have conducted a study of 471 central pit craters with diameters between 5 and 150 km on Ganymede and compared the results to 1604 central pit craters on Mars (diameter range 5-160 km). Both floor and summit pits occur on Mars whereas floor pits dominate on Ganymede. Central peak craters are found in similar locations and diameter ranges as central pit craters on Mars and overlap in location and at diameters <60 km on Ganymede. Central pit craters show no regional variations on either Ganymede or Mars and are not concentrated on specific geologic units. Central pit craters show a range of preservation states, indicating that conditions favoring central pit formation have existed since crater-retaining surfaces have existed on Ganymede and Mars. Central pit craters on Ganymede are generally about three times larger than those on Mars, probably due to gravity scaling although target characteristics and resolution also may play a role. Central pits tend to be larger relative to their parent crater on Ganymede than on Mars, probably because of Ganymede's purer ice crust. A transition to different characteristics occurs in Ganymede's icy crust at depths of 4-7 km based on the larger pit-to-crater-diameter relationship for craters in the 70-130-km-diameter range and lack of central peaks in craters larger than 60-km-diameter. We use our results to constrain the proposed formation models for central pits on these two bodies. Our results are most consistent with the melt-drainage model for central pit formation.

  15. The display of portable infrared measuring temperature

    NASA Astrophysics Data System (ADS)

    Qian, Yitao; Gu, Guohua; Sui, Xiubao

    2014-11-01

    In recent years based on security, quality supervision, inspection and medical for the urgent need of infrared temperature measurement and infrared display technology, coupled with embedded system to achieve rapid development, which is widely used in the electronic products and the field of intelligent instruments and industrial control, this paper has designed a kind of more comprehensive, more efficient and more intuitive infrared thermometer. Unlike previous handheld infrared thermometer, we regard an embedded Linux system as the system, with its open source code, support most mainstream hardware platforms, unified peripheral interface and can be customized, to build an embedded infrared system that has provided strong system support; the pseudocolor techniques and Qt interface display technology make the image more colorful and the picture function more diverse; With ARM microprocessor as the display and temperature measuring platform, it costs reduction and reduce volume and power consumption; the FrameBuffer interface technology and multithreading technology realize the smooth real-time display. And ultimately the display size of real-time infrared image is 640 * 480 at a speed of 25 frames / sec. What is more, display is equipped with the menu option so that thermometer can be required to complete the operation through the button. The temperature display system aims at small volume, easy to use and flexible. I believe this thermometer will have a good application prospect.

  16. Infrared radiometric technique in temperature measurement

    NASA Technical Reports Server (NTRS)

    Glazer, S.; Madding, R.

    1988-01-01

    One class of commercially available imaging infrared radiometers using cooled detectors is sensitive to radiation over the 3 to 12 micron wavelength band. Spectral filters can tailor instrument sensitivity to specific regions where the target exhibits optimum radiance. The broadband spectral response coupled with real time two-dimensional imaging and emittance/background temperature corrections make the instruments useful for remote measurement of surface temperatures from -20 C to +1500 C. Commonly used radiometric techniques and assumptions are discussed, and performance specifications for a typical modern commercial instrument are presented. The potential usefulness of an imaging infrared radiometer in space laboratories is highlighted through examples of research, nondestructive evaluation, safety, and routine maintenance applications. Future improvements in instrument design and application of the radiometric technique are discussed.

  17. Complementary Use of Information from Space-Based Dinsar and Field Measuring Systems for Operational Monitoring Purposes in Open Pit Iron Mines of Carajas Mining Complex (brazilian Amazon Region)

    NASA Astrophysics Data System (ADS)

    Paradella, W. R.; Mura, J. C.; Gama, F. F.; Santos, A. R.; Silva, G. G.; Galo, M.; Camargo, P. O.; Silva, A. Q.

    2015-04-01

    Now spanning five simultaneous open-pit operations with exploration carried out through open pit benching, Carajas complex encompasses the world's largest iron reserves. Open pit mining operations in the area can lead to slope instabilities with risks to personnel, equipment and production due to intense excavations in rock products of low geomechanical quality, blasting practices and heavy precipitation. Thus, an effective prediction and management of surface deformations should be a key concern for the mining operations. The ground displacement monitoring techniques in Carajas include surface measurement techniques at discrete points (total station/reflective prisms) and over area using SSR (Slope Stability Radar, a ground based radar). On the other hand, DInSAR techniques are receiving relevance in the mining industry for reasons such a synoptic and continuous coverage without the need for ground instrumentation and a point-to-point good accuracy of measuring displacements (millimeter to centimeter scale) over a dense grid. Using a stack of 33 StripMap TerraSAR-X images acquired over Carajas covering the time span from March 2012 to April 2013, a monitoring approach is discussed based on the complementary use of information provided by DInSAR (DInSAR Time-Series and Persistent Scatterer Interferometry) and surface measuring techniques (total station/prisms, ground-based radar).

  18. Polar Cap Pits

    NASA Technical Reports Server (NTRS)

    2005-01-01

    17 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows kidney bean-shaped pits, and other pits, formed by erosion in a landscape of frozen carbon dioxide. This images shows one of about a dozen different patterns that are common in various locations across the martian south polar residual cap, an area that has been receiving intense scrutiny by the MGS MOC this year, because it is visible on every orbit and in daylight for most of 2005.

    Location near: 86.9oS, 6.9oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  19. D-Area Burning/Rubble Pits (431-D and 431-1D) Corrective Measures Study/Focused Feasibility Study

    SciTech Connect

    Palmer, E.R.; Mason, J.T.

    1995-09-01

    The purpose of this report is to determine alternatives which may be used to remediate the D-Area Burning/Rubble Pits (DBRP). An objective of this process is to provide decision makers adequate information to compare alternatives, select an appropriate remediation for the DBRP, and demonstrate the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements in the Record of Decision.

  20. Instrument for Measuring Temperature of Water

    NASA Technical Reports Server (NTRS)

    Ryan, Robert; Nixon, Thomas; Pagnutti, Mary; Zanoni, Vicki

    2002-01-01

    A pseudo-Brewster angle infrared radiometer has been proposed for use in noncontact measurement of the surface temperature of a large body of water (e.g., a lake or ocean). This radiometer could be situated on a waterborne, airborne, or spaceborne platform. The design of the pseudo-Brewster angle radiometer would exploit the spectral emissivity and polarization characteristics of water to minimize errors attributable to the emissivity of water and to the reflection of downwelling (e.g., Solar and cloud-reflected) infrared radiation.

  1. Ariel's Densely Pitted Surface

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This mosaic of the four highest-resolution images of Ariel represents the most detailed Voyager 2 picture of this satellite of Uranus. The images were taken through the clear filter of Voyager's narrow-angle camera on Jan. 24, 1986, at a distance of about 130,000 kilometers (80,000 miles). Ariel is about 1,200 km (750 mi) in diameter; the resolution here is 2.4 km (1.5 mi). Much of Ariel's surface is densely pitted with craters 5 to 10 km (3 to 6 mi) across. These craters are close to the threshold of detection in this picture. Numerous valleys and fault scarps crisscross the highly pitted terrain. Voyager scientists believe the valleys have formed over down-dropped fault blocks (graben); apparently, extensive faulting has occurred as a result of expansion and stretching of Ariel's crust. The largest fault valleys, near the terminator at right, as well as a smooth region near the center of this image, have been partly filled with deposits that are younger and less heavily cratered than the pitted terrain. Narrow, somewhat sinuous scarps and valleys have been formed, in turn, in these young deposits. It is not yet clear whether these sinuous features have been formed by faulting or by the flow of fluids.

    JPL manages the Voyager project for NASA's Office of Space Science.

  2. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  3. Remote measurement of ground temperature and emissivity

    SciTech Connect

    Henderson, J.R.

    1994-06-01

    TAISIR, Temperature and Imaging System InfraRed, is a nominally satellite based platform for remote sensing of the earth. One of its design features is to acquire atmospheric data simultaneous with ground data, resulting in minimal dependence on external atmospheric models for data correction. Extensive modeling of the rms error of determining a ground temperature and emissivity for a gray body has been performed as a function of integration time, spectroscopic resolution of the system, ground emissivity, atmospheric variables, and atmospheric data accuracy. We find that increased resolution improves measurement accuracy by emphasizing those regions where the atmospheric transmission is highest and atmospheric emission/absorption lowest. We find rms temperature errors {le}1K and rms emissivity errors <0.01 are obtainable for reasonable seeing and with sufficient information about the atmosphere. A new method is developed for modeling the dependence of the band-averaged transmission and emission. Monte Carlo simulations of satellite data taken using a multi-angle technique are used to derive signal-to-noise requirements. The applicability of those results to the TAISIR system requirements are discussed.

  4. Measuring the configurational temperature of granular media

    NASA Astrophysics Data System (ADS)

    Schröter, Matthias

    2009-03-01

    Twenty years ago Edwards and Oakeshott suggested developing a statistical mechanics of static granular media based on the idea that the logarithm of the number of mechanically stable states of a specific sample constitutes the relevant entropy [1]. From this entropy then, a configurational temperature, named compactivity, could be derived. However, in the absence of an appropriate thermometer to measure compactivity, the question if it is indeed a relevant state variable remained untested. Only recently it was shown that the steady state volume fluctuations of a periodically driven sample can be used to measure the compactivity of a granular sample including its dependence on volume fraction and surface friction of the particles [2]. This opens up the possibility of studying questions like the existence of a zeroth law of granular thermodynamics or the relationship between compactivity and other forms of granular temperature. [1] Edwards and Oakeshott, Physica A 157, 1080 (1989). [2] M. Schr"oter, D. Goldman, and H. L. Swinney Phys. Rev. E 71, 030301(R) (2005)

  5. Temperature buffer test design, instrumentation and measurements

    NASA Astrophysics Data System (ADS)

    Sandén, Torbjörn; Goudarzi, Reza; de Combarieu, Michel; Åkesson, Mattias; Hökmark, Harald

    The Temperature Buffer Test, TBT, is a heated full-scale field experiment carried out jointly by ANDRA and SKB at the SKB Äspö Hard Rock Laboratory in Southeast Sweden. An existing 8 m deep, 1.8 m diameter KBS-3-type deposition hole located at -420 m level has been selected for the test. The objectives are to improve the general understanding of Thermo-Hydro-Mechanical, THM, behavior of buffer materials submitted to severe thermal conditions with temperatures well over 100 °C during water uptake of partly saturated bentonite-based buffer materials, and to check, in due time, their properties after water saturation. The test includes two carbon steel heating canisters each 3 m high and 0.6 m diameter, surrounded by 0.6 m of buffer material. There is a 0.2 m thick sand shield between the upper heater and the surrounding bentonite, while the lower heater is surrounded by bentonite only. On top of the stack of bentonite blocks is a confining plug anchored to the rock. In the slot between buffer and rock wall is a sand filter equipped with pipes to control the water pressure at the boundary, which is seldom done with an EBS in situ experiment. Both heater mid-height planes are densely instrumented in order to follow, with direct or indirect methods, buffer THM evolution. Temperature, relative humidity, stress and pore pressure have been monitored since the test start in March 2003. Total water inflow is also monitored. Firstly, the present paper describes the test design, the instrumentation, the plug anchoring system and the system for water boundary pressure control. Second, having described the test, the paper shows different measurements that illustrate evolution of temperature, saturation, suction and swelling pressure in the upper and the lower buffer.

  6. Gnamma Pit Growth: Insights from Wind Tunnel Experiments and Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Schmeeckle, M. W.

    2014-12-01

    Gnamma pit is an Australian aboriginal term for weathering pit, and its formation is controlled by a mix of mineral decay and eolian processes. Prior literature suggests that two processes limit pit growth: decay along grain boundaries sufficient to allow mineral detachment; and eolian events sufficient to deflate accumulate minerals. However, prior literature contains little empirical data on the nature of these processes. Our research focuses on developing a better understanding of wind thresholds that deflate particles from pits. A set of wind-tunnel tests with a range of weathering pit shapes and grus particle sizes explored the wind threshold needed to deflate particles in different situations. An empirical equation expresses the way to estimate wind the speed threshold via pit depth and particle size. With this equation, the threshold for evacuating particles in the pit can be estimated by measuring the pit depth and smallest particles in the weathering pit, that indicates that the wind speed would not exceed this value when this pit is still active. We also developed a computational fluid dynamics model to investigate the distribution of wall shear stress. Ultimately, there exists some potential to utilize our refined understanding of gnamma pits as an indicator of paleo-wind intensity in pit locations where the accumulated sediment can be dated (e.g., by OSL) and such filled pits excavated to understand the paleo-wind conditions that would have once allowed the growth of such a pit.

  7. Instrument for Measuring Temperature of Water

    NASA Technical Reports Server (NTRS)

    Ryan, Robert; Nixon, Thomas; Pagnutti, Mary; Zanoni, Vicki

    2003-01-01

    A pseudo-Brewster-angle infrared radiometer has been proposed for use in noncontact measurement of the surface temperature of a large body of water (e.g., a lake or ocean). This radiometer could be situated on a waterborne, airborne, or spaceborne platform. The design of the pseudo-Brewster-angle radiometer would exploit the spectral-emissivity and polarization characteristics of water to minimize errors attributable to the emissivity of water and to the reflection of downwelling (e.g., Solar and cloud-reflected) infrared radiation. The relevant emissivity and polarization characteristics are the following: . The Brewster angle is the angle at which light polarized parallel to the plane of incidence on a purely dielectric material is not reflected. The pseudo-Brewster angle, defined for a lossy dielectric (somewhat electrically conductive) material, is the angle for which the reflectivity for parallel-polarized light is minimized. For pure water, the reflectivity for parallel-polarized light is only 2.2 x 10(exp -4) at its pseudo- Brewster angle of 51deg. The reflectivity remains near zero, several degrees off from the 51deg optimum, allowing this angle of incidence requirement to be easily achieved. . The wavelength range of interest for measuring water temperatures is 8 to 12 microns. The emissivity of water for parallel- polarized light at the pseudo-Brewster angle is greater than 0.999 in this wavelength range. The radiometer would be sensitive in the wavelength range of 8 to 12 microns, would be equipped with a polarizer to discriminate against infrared light polarized perpendicular to the plane of incidence, and would be aimed toward a body of water at the pseudo- Brewster angle (see figure). Because the infrared radiation entering the radiometer would be polarized parallel to the plane of incidence and because very little downwelling parallel-polarized radiation would be reflected into the radiometer on account of the pseudo-Brewster arrangement, the

  8. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  9. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  10. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  11. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  12. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  13. High temperature hall effect measurement system design, measurement and analysis

    NASA Astrophysics Data System (ADS)

    Berkun, Isil

    A reliable knowledge of the transport properties of semiconductor materials is essential for the development and understanding of a number of electronic devices. In this thesis, the work on developing a Hall Effect measurement system with software based data acqui- sition and control for a temperature range of 300K-700K will be described. A system was developed for high temperature measurements of materials including single crystal diamond, poly-crystalline diamond, and thermoelectric compounds. An added capability for monitor- ing the current versus voltage behavior of the contacts was used for studying the influence of ohmic and non-ohmic contacts on Hall Effect measurements. The system has been primar- ily used for testing the transport properties of boron-doped single crystal diamond (SCD) deposited in a microwave plasma-assisted chemical vapor deposition (MPCVD) reactor [1]. Diamond has several outstanding properties that are of high interest for its development as an electronic material. These include a relatively wide band gap of 5.5 (eV), high thermal conductivity, high mobility, high saturation velocity, and a high breakdown voltage. For a temperature range of 300K-700K, IV curves, Hall mobilities and carrier concentrations are shown. Temperature dependent Hall effect measurements have shown carrier concentrations from below 1017cm --3 to approximately 1021 cm--3 with mobilities ranging from 763( cm2/V s) to 0.15(cm 2/V s) respectively. Simulation results have shown the effects of single and mixed carrier models, activation energies, effective mass and doping concentrations. These studies have been helpful in the development of single crystal diamond for diode applications. Reference materials of Ge and GaAs were used to test the Hall Effect system. The system was also used to characterize polycrystalline diamond deposited on glass for electrochemical applications, and Mg2(Si,Sn) compounds which are promising candidates of low-cost, light weight and non

  14. The Measurement of Temperature; Part i: Temperature Scales

    ERIC Educational Resources Information Center

    Forrest, A. M.

    1974-01-01

    Discusses the inter-relationships between some important temperature scales such as the Celsius scale, the Kelvin Thermodynamic scale, and the International Practical Temperature Scale (IPTS). Included is a description of the 1968 IPTS with emphasis on innovations introduced in the range below 273.15 k. (CC)

  15. Nonintrusive Measurement Of Temperature Of LED Junction

    NASA Technical Reports Server (NTRS)

    Leidecker, Henning; Powers, Charles

    1991-01-01

    Temperature inferred from spectrum of emitted light. Method of determining temperature of junction based on two relevant characteristics of LED. Gap between valence and conduction electron-energy bands in LED material decreases with increasing temperature, causing wavelength of emitted photon to increase with temperature. Other, as temperature increases, non-radiative processes dissipate more of input electrical energy as heat and less as photons in band-gap wavelenth region; optical and quantum efficiencies decrease with increasing temperature. In principal, either characteristic alone used to determine temperature. However, desirable to use both to obtain indication of uncertainty.

  16. 13. DETAIL WEST OF TURBINE PIT SHOWING PIT DRAINED AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. DETAIL WEST OF TURBINE PIT SHOWING PIT DRAINED AND TURBINE EXPOSED. ORIGINAL WATER LEVEL SHOWN BY LINE JUST ABOVE ARCHED OPENING TO LEFT. WATER LINE AFTER 1982 INSTALLATION OF FLASH BOARDS REVEALED BY DARK STAIN. - Middle Creek Hydroelectric Dam, On Middle Creek, West of U.S. Route 15, 3 miles South of Selinsgrove, Selinsgrove, Snyder County, PA

  17. Improvement of the operation rate of medical temperature measuring devices

    NASA Astrophysics Data System (ADS)

    Hotra, O.; Boyko, O.; Zyska, T.

    2014-08-01

    A method of reducing measuring time of temperature measurements of biological objects based on preheating the resistance temperature detector (RTD) up to the temperature close to the temperature to be measured, is proposed. It has been found that at the same measuring time, the preheating allows to decrease the measurement error by a factor of 5 to 45 over the temperature range of 35-41°С. The measurement time is reduced by 1.6-4 times over this range, keeping the same value of the measurement error.

  18. Measurement Corner: Volume, Temperature and Pressure

    ERIC Educational Resources Information Center

    Teates, Thomas G.

    1977-01-01

    Boyle's Law and basic relationships between volume and pressure of a gas at constant temperature are presented. Suggests two laboratory activities for demonstrating the effect of temperature on the volume of a gas or liquid. (CS)

  19. Crowdsourcing urban air temperature measurements using smartphones

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-10-01

    Crowdsourced data from cell phone battery temperature sensors could be used to contribute to improved real-time, high-resolution air temperature estimates in urban areas, a new study shows. Temperature observations in cities are in some cases currently limited to a few weather stations, but there are millions of smartphone users in many cities. The batteries in cell phones have temperature sensors to avoid damage to the phone.

  20. Crevice and pitting corrosion behavior of stainless steels in seawater

    SciTech Connect

    Zaragoza-Ayala, A.E.; Orozco-Cruz, R.

    1999-11-01

    Pitting and crevice corrosion tests in natural seawater were performed on a series of stainless steels (i.e., S31603, N08904, S32304, S31803, S32520, N08925 and S31266) in order to determine their resistance to these types of localized corrosion. Open circuit potential (OCP) measurements for these alloys show for short exposure times an ennoblement in the OCP. After a certain time, occasional fall and rise in the OCP values was observed, which can be related to nucleation and repassivation of pits and/or crevices on the metal surface. Analysis of the electrochemical behavior and microscopic observations shows that only S31603 and S32304 alloys were susceptible to crevice and pitting corrosion, whereas the remaining alloys exhibited good resistance. Pitting potentials determined by the potentiodynamic technique also show S3 1603 and S32304 are susceptible to pitting corrosion under the experimental conditions used in this work.

  1. Spectral-based inferential measurement of grey-body's temperature

    NASA Astrophysics Data System (ADS)

    Zheng, Feng; Liu, Liying; Zhu, Lingxi; Huan, Kewei; Li, Ye; Shi, Xiaoguang

    2015-11-01

    Aiming at the problems of temperature measurement and the defects of radiance thermometry theory, one method of spectral-based inferential measurement is proposed, which adopts the Empirical Risk Minimization (ERM) functional model as the temperature measurement model. Then, the radiance thermometry theory and inferential measurement technology are discussed comparatively. Temperatures of some targets, such and tungsten lamp and solar surface, are measured by spectral-based inferential measurement.

  2. Device for self-verifying temperature measurement and control

    DOEpatents

    Watkins, Arthur D.; Cannon, Collins P.; Tolle, Charles R.

    2004-08-03

    A measuring instrument includes a first temperature sensor, a second temperature sensor and circuitry. The first and second temperature sensors each generate a signal indicative of the temperature of a medium being detected. The circuitry is configured to activate verification of temperature being sensed with the first sensor. According to one construction, the first temperature sensor comprises at least one thermocouple temperature sensor and the second temperature sensor comprises an optical temperature sensor, each sensor measuring temperature over the same range of temperature, but using a different physical phenomena. Also according to one construction, the circuitry comprises a computer configured to detect failure of one of the thermocouples by comparing temperature of the optical temperature sensor with each of the thermocouple temperature sensors. Even further, an output control signal is generated via a fuzzy inference machine and control apparatus.

  3. Modelling the mechanical behaviour of pit membranes in bordered pits with respect to cavitation resistance in angiosperms

    PubMed Central

    Tixier, Aude; Herbette, Stephane; Jansen, Steven; Capron, Marie; Tordjeman, Philippe; Cochard, Hervé; Badel, Eric

    2014-01-01

    Background and Aims Various correlations have been identified between anatomical features of bordered pits in angiosperm xylem and vulnerability to cavitation, suggesting that the mechanical behaviour of the pits may play a role. Theoretical modelling of the membrane behaviour has been undertaken, but it requires input of parameters at the nanoscale level. However, to date, no experimental data have indicated clearly that pit membranes experience strain at high levels during cavitation events. Methods Transmission electron microscopy (TEM) was used in order to quantify the pit micromorphology of four tree species that show contrasting differences in vulnerability to cavitation, namely Sorbus aria, Carpinus betulus, Fagus sylvatica and Populus tremula. This allowed anatomical characters to be included in a mechanical model that was based on the Kirchhoff–Love thin plate theory. A mechanistic model was developed that included the geometric features of the pits that could be measured, with the purpose of evaluating the pit membrane strain that results from a pressure difference being applied across the membrane. This approach allowed an assessment to be made of the impact of the geometry of a pit on its mechanical behaviour, and provided an estimate of the impact on air-seeding resistance. Key Results The TEM observations showed evidence of residual strains on the pit membranes, thus demonstrating that this membrane may experience a large degree of strain during cavitation. The mechanical modelling revealed the interspecific variability of the strains experienced by the pit membrane, which varied according to the pit geometry and the pressure experienced. The modelling output combined with the TEM observations suggests that cavitation occurs after the pit membrane has been deflected against the pit border. Interspecific variability of the strains experienced was correlated with vulnerability to cavitation. Assuming that air-seeding occurs at a given pit membrane

  4. High-temperature archeointensity measurements from Mesopotamia

    NASA Astrophysics Data System (ADS)

    Gallet, Yves; Le Goff, Maxime

    2006-01-01

    We present new archeointensity results obtained from 127 potsherds and baked brick fragments dated from the last four millennia BC which were collected from different Syrian archeological excavations. High temperature magnetization measurements were carried out using a laboratory-built triaxial vibrating sample magnetometer (Triaxe), and ancient field intensity determinations were derived from the experimental procedure described by Le Goff and Gallet [Le Goff and Gallet. Earth Planet. Sci. Lett. 229 (2004) 31-43]. As some of the studied samples were previously analyzed using the classical Thellier and Thellier [Thellier and Thellier . Ann. Geophys. 15 (1959) 285-376] method revised by Coe [Coe. J. Geophys. Res. 72 (1967) 3247-3262], a comparison of the results is made from the two methods. The differences both at the fragment and site levels are mostly within ± 5%, which strengthens the validity of the experimental procedure developed for the Triaxe. The new data help to better constrain the geomagnetic field intensity variations in Mesopotamia during archeological times, with the probable occurrence of an archeomagnetic jerk around 2800-2600 BC.

  5. Controlling potential barrier height by changing V-shaped pit size and the effect on optical and electrical properties for InGaN/GaN based light-emitting diodes

    SciTech Connect

    Okada, Narihito Kashihara, Hiroyuki; Sugimoto, Kohei; Yamada, Yoichi; Tadatomo, Kazuyuki

    2015-01-14

    The internal quantum efficiency (IQE) of InGaN/GaN multiple quantum wells (MQWs) with blue light emission was improved by inserting an InGaN/GaN superlattice (SL) beneath the MQWs. While the SL technique is useful for improving the light-emitting diode (LED) performance, its effectiveness from a multilateral point of view requires investigation. V-shaped pits (V-pits), which generate a potential barrier and screen the effect of the threading dislocation, are one of the candidates for increasing the light emission efficiency of LEDs exceptionally. In this research, we investigated the relationship between the V-pit and SL and revealed that the V-pit diameter is strongly correlated with the IQE by changing the number of SL periods. Using scanning near-field optical microscopy and photoluminescence measurements, we demonstrated the distinct presence of the potential barrier formed by the V-pits around the dislocations. The relationship between the V-pit and the number of SL periods resulted in changing the potential barrier height, which is related to the V-pit diameter determined by the number of SL periods. In addition, we made an attempt to insert pit expansion layers (PELs) composed of combination of SL and middle temperature grown GaN layer instead of only SL structure. As a result of the evaluation of LEDs using SL or PEL, the EL intensity was strongly related to pit diameter regardless of the structures to form the V-pits. In addition, it was clear that larger V-pits reduce the efficiency droop, which is considered to be suppression of the carrier loss at high injection current.

  6. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  7. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  8. 46 CFR 154.1340 - Temperature measuring devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Temperature measuring devices. 154.1340 Section 154.1340... Instrumentation § 154.1340 Temperature measuring devices. (a) Each cargo tank must have devices that measure the temperature: (1) At the bottom of the tank; and (2) Near the top of the tank and below the maximum...

  9. 46 CFR 154.1340 - Temperature measuring devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Temperature measuring devices. 154.1340 Section 154.1340... Instrumentation § 154.1340 Temperature measuring devices. (a) Each cargo tank must have devices that measure the temperature: (1) At the bottom of the tank; and (2) Near the top of the tank and below the maximum...

  10. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  11. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  12. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  13. 46 CFR 154.1340 - Temperature measuring devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Temperature measuring devices. 154.1340 Section 154.1340... Instrumentation § 154.1340 Temperature measuring devices. (a) Each cargo tank must have devices that measure the temperature: (1) At the bottom of the tank; and (2) Near the top of the tank and below the maximum...

  14. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  15. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  16. 46 CFR 154.1340 - Temperature measuring devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Temperature measuring devices. 154.1340 Section 154.1340... Instrumentation § 154.1340 Temperature measuring devices. (a) Each cargo tank must have devices that measure the temperature: (1) At the bottom of the tank; and (2) Near the top of the tank and below the maximum...

  17. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  18. Soil moisture inferences from thermal infrared measurements of vegetation temperatures

    NASA Technical Reports Server (NTRS)

    Jackson, R. D. (Principal Investigator)

    1981-01-01

    Thermal infrared measurements of wheat (Triticum durum) canopy temperatures were used in a crop water stress index to infer root zone soil moisture. Results indicated that one time plant temperature measurement cannot produce precise estimates of root zone soil moisture due to complicating plant factors. Plant temperature measurements do yield useful qualitative information concerning soil moisture and plant condition.

  19. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  20. 46 CFR 154.1340 - Temperature measuring devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Temperature measuring devices. 154.1340 Section 154.1340... Instrumentation § 154.1340 Temperature measuring devices. (a) Each cargo tank must have devices that measure the temperature: (1) At the bottom of the tank; and (2) Near the top of the tank and below the maximum...

  1. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  2. [FRONTAL, AXILLARY AND TYMPANIC TEMPERATURE MEASUREMENTS IN CHILDREN].

    PubMed

    Antabak, Anko; Sisko, Jerko; Romić, Ivan; Papes, Dino; Pasini, Miran; Haluzan, Damir; Bogović, Marko; Medancić, Suzana Srsen; Cavar, Stanko; Luetić, Tomislav; Fuchs, Nino; Andabak, Matej; Prlić, Ivica; Curković, Selena

    2016-01-01

    The purpose of this study was to compare the results of body temperature measurements obtained by standard axillary thermometers with the results of infrared tympanic and frontal skin thermometry in afebrile children. This study comprises a single-center, prospective comparison trial. A total of 345 afebrile children aged 4 to 16 years hospitalized in the pediatric surgery department for elective surgery were included. One thousand axillary, tympanic and frontal measurements were obtained and compared. We used two different infrared thermometers in this study; one type measured the tympanic temperature, the other the temperature on the forehead. The axillary temperature measured with the glass thermometer was set as the standard. Each patient was exposed to a constant environmental temperature for a minimum of 10 min before simultaneous temperature measurements. The mean-frontal temperature 36.9 ± 0.38 °C was equal to the axillary temperature 36.9 ± 0.16 °C. The mean tympanic temperature was 36.3 ± 0.98 °C. The mean difference between the tympanic and axillary temperatures was -0.4 °C. The tympanic temperature had a threefold greater dispersion than frontal and a fivefold greater dispersion than axillary temperature. The results of this study suggest that the axillary temperature measured with glass thermometer has the least dispersion. Somewhat less reliable is the frontal temperature measured with infrared thermometer. The least reliable is tympanic temperature measurement. PMID:27290811

  3. Global methane emissions from pit latrines.

    PubMed

    Reid, Matthew C; Guan, Kaiyu; Wagner, Fabian; Mauzerall, Denise L

    2014-01-01

    Pit latrines are an important form of decentralized wastewater management, providing hygienic and low-cost sanitation for approximately one-quarter of the global population. Latrines are also major sources of the greenhouse gas methane (CH4) from the anaerobic decomposition of organic matter in pits. In this study, we develop a spatially explicit approach to account for local hydrological control over the anaerobic condition of latrines and use this analysis to derive a set of country-specific emissions factors and to estimate global pit latrine CH4 emissions. Between 2000 and 2015 we project global emissions to fall from 5.2 to 3.8 Tg y(-1), or from ∼ 2% to ∼ 1% of global anthropogenic CH4 emissions, due largely to urbanization in China. Two and a half billion people still lack improved sanitation services, however, and progress toward universal access to improved sanitation will likely drive future growth in pit latrine emissions. We discuss modeling results in the context of sustainable water, sanitation, and hygiene development and consider appropriate technologies to ensure hygienic sanitation while limiting CH4 emissions. We show that low-CH4 on-site alternatives like composting toilets may be price competitive with other CH4 mitigation measures in organic waste sectors, with marginal abatement costs ranging from 57 to 944 $/ton carbon dioxide equivalents (CO2e) in Africa and 46 to 97 $/ton CO2e in Asia. PMID:24999745

  4. Bulk temperature measurement in thermally striped pipe flows

    SciTech Connect

    Lemure, N.; Olvera, J.R.; Ruggles, A.E.

    1995-12-01

    The hot leg flows in some Pressurized Water Reactor (PWR) designs have a temperature distribution across the pipe cross-section. This condition is often referred to as a thermally striped flow. Here, the bulk temperature measurement of pipe flows with thermal striping is explored. An experiment is conducted to examine the feasibility of using temperature measurements on the external surface of the pipe to estimate the bulk temperature of the flow. Simple mixing models are used to characterize the development of the temperature profile in the flow. Simple averaging techniques and Backward Propagating Neural Net are used to predict bulk temperature from the external temperature measurements. Accurate bulk temperatures can be predicted. However, some temperature distributions in the flow effectively mask the bulk temperature from the wall and cause significant error in the bulk temperature predicted using this technique.

  5. Non invasive measurement of strain and temperature by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Holden, T. M.; Root, J. H.; Tennant, D. C.; Kroeze, D. E.; Leggett, D.

    1990-06-01

    Two methods have been developed to determine temperature noninvasively within engineering components by neutron diffraction. The integrated intensity of a diffraction line depends on temperature through the Debye-Waller factor. The angular position of the line, in the absence of an applied load, depends on temperature through the thermal expansion coefficient. Temperature may thus be determined by accurate relative intensity measurements with respect to a reference temperature and, alternatively, by accurate measurement of the interplanar spacings. It was also shown to be feasible to measure the strain response to an applied load at elevated temperatures. Measurements were made on Waspalloy and the Ti alloy AMS 4928. For Waspalloy, the thermal expansion at zero stress gave the average temperature with a precision of +/- 4 K and agreed with thermocouple measurements to within 5 K on average. The intensity data suggest that temperature can be measured with a precision of +/- 10 K in a loaded component.

  6. Refractory thermowell for continuous high temperature measurement of molten metal

    DOEpatents

    Thiesen, Todd J.

    1992-01-01

    An apparatus for the continuous high temperature measurement of materials in vessels lined with rammed or cast refractory materials. A refractory housing member is integral with the refractory lining of the vessel and contains a plurality of high temperature sensing means, such as thermocouples. A face of the housing is flush with the refractory lining and contacts the high temperature material contained in the vessel. Continuous temperature measurement is achieved by a means which is coupled to the thermocouples for indicating the temperature.

  7. Titan's Surface Temperatures Measured by Cassini CIRS

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Flasar, F. M.; Kundle, V. G.; Samuelson, R. E.; Pearl, J. C.; Nixon, C. A.; Carlson, R. C.; Mamoutkine, A. A.; Brasunas, J. C.; Guandique, E.; Arhterberg, R. K.; Bjoraker, G. L.; Romani, P. N.; Segura, M. E.; Albright, S. A.; Elliott, M. H.; Tingley, J. S.; Calcutt, S.; Coustenis, A.; Bezard, B.; Courtin, R.

    2008-01-01

    A large fraction of 19-micron thermal radiation from the surface of Titan reaches space through a spectral window of low atmospheric opacity. The emergent radiance, after removing the effect of the atmosphere, gives the brightness temperature of the surface. This atmospheric window is covered by the far-infrared channel of the Composite Infrared spectrometer1 (CIRS) on Cassini. In mapping Titan surface temperatures, CIRS is able to improve upon results of Voyager IRIS, by taking advantage of improved latitude coverage and a much larger dataset. Observations are from a wide range of emission angles and thereby provide constraints on the atmospheric opacity and radiance that are used to derive the surface temperature. CIRS finds an average equatorial surface brightness temperature of 93.7+/-0.6 K, virtually identical to the HASI temperature at the Huygens landing site. Mapping in latitude shows that the surface temperature decreases toward the poles by about 2 K in the south and 3 K in the north. This surface temperature distribution is consistent with the formation of lakes seen at high latitudes on Titan.

  8. Analysis of electrochemical noise from metastable pitting in aluminum, aged Al-2%Cu, and AA 2024-T3

    SciTech Connect

    Pride, S.T.; Scully, J.R.; Hudson, J.L.

    1996-12-31

    The authors compare methods of analyzing electrochemical current (ECN) and potential (EPN) noise data associated with metastable pitting and the transition from metastable to stable pitting. Various analysis methods were applied to electrochemical noise data associated with metastable pit events on aluminum, aged Al-2%Cu, and AA 2024-T3 ST. Two experimental approaches were used. High-purity Al, roughly simulating copper-depleted grain boundary zones in aged Al-Cu alloys, was potentiostatically polarized so that current spikes associated with individual pitting events could be analyzed. Second, the coupling current between nominally identical galvanically coupled Al, aged Al-2%Cu, and AA 2024-T3 ST electrodes was recorded in conjunction with couple potential using a saturated calomel reference electrode. Pit stabilization occurred when individual pits exceeded a threshold of I{sub pit}/r{sub pit} > 10{sup {minus}2} A/cm at all times during pit growth as established from potentiostatic measurements. The magnitude of this ratio is linked directly to the concentration of the aggressive solution within pits. Two related statistical pit stabilization factors (I{sub rms}/r{sub pit total} from ECN data and the mean of (I{sub peak}-I{sub ox})/r{sub pit} values from each pit current spike) were obtained from galvanic ECN data containing a large number of pit current spikes. These parameters provided a better indication of the transition to stable pitting than the pitting index or noise resistance but also had shortcomings. Spectral analysis using current and potential spectral power density (SPD) data provided qualitative information on pit susceptibility. However, the transition to stable pitting could not be accurately defined because of a lack of information on pit sizes in spectral data.

  9. Turbine Blade Temperature Measurements Using Thin Film Temperature Sensors

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Przybyszewski, J. S.; Claing, R. G.

    1981-01-01

    The development of thin film temperature sensors is discussed. The technology for sputtering 2 micron thin film platinum versus platinum 10 percent rhodium thermocouples on alumina forming coatings was improved and extended to applications on actual turbine blades. Good adherence was found to depend upon achieving a proper morphology of the alumina surface. Problems of adapting fabrication procedures to turbine blades were uncovered, and improvements were recommended. Testing at 1250 K at one atmosphere pressure was then extended to a higher Mach No. (0.5) in combustor flow for 60 hours and 71 thermal cycles. The mean time to failure was 47 hours accumulated during 1 hour exposures in the combustor. Calibration drift was about 0.1 percent per hour, attributable to oxidation of the rhodium in the thin films. An increase in film thickness and application of a protective overcoat are recommended to reduce drift in actual engine testing.

  10. Floating Probe Assembly for Measuring Temperature of Water

    NASA Technical Reports Server (NTRS)

    Stewart, Randy; Ruffin, Clyde

    2003-01-01

    A floating apparatus denoted a temperature probe aquatic suspension system (TPASS) has been developed for measuring the temperature of an ocean, lake, or other natural body of water at predetermined depths. These types of measurements are used in computer models to relate remotely sensed water-surface temperature to bulkwater temperature. Prior instruments built for the same purpose were found to give inaccurate readings because the apparatuses themselves significantly affected the temperatures of the water in their vicinities. The design of the TPASS is intended to satisfy a requirement to minimize the perturbation of the temperatures to be measured.

  11. Application of inverse heat conduction problem on temperature measurement

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhou, G.; Dong, B.; Li, Q.; Liu, L. Q.

    2013-09-01

    For regenerative cooling devices, such as G-M refrigerator, pulse tube cooler or thermoacoustic cooler, the gas oscillating bring about temperature fluctuations inevitably, which is harmful in many applications requiring high stable temperatures. To find out the oscillating mechanism of the cooling temperature and improve the temperature stability of cooler, the inner temperature of the cold head has to be measured. However, it is difficult to measure the inner oscillating temperature of the cold head directly because the invasive temperature detectors may disturb the oscillating flow. Fortunately, the outer surface temperature of the cold head can be measured accurately by invasive temperature measurement techniques. In this paper, a mathematical model of inverse heat conduction problem is presented to identify the inner surface oscillating temperature of cold head according to the measured temperature of the outer surface in a GM cryocooler. Inverse heat conduction problem will be solved using control volume approach. Outer surface oscillating temperature could be used as input conditions of inverse problem and the inner surface oscillating temperature of cold head can be inversely obtained. A simple uncertainty analysis of the oscillating temperature measurement also will be provided.

  12. A noncontact temperature measurement method in polymerase chain reaction reactors

    NASA Astrophysics Data System (ADS)

    Sochivko, D. G.; Varlamov, D. A.; Fedorov, A. A.; Kurochkin, V. E.

    2016-04-01

    A new noncontact method for measuring temperatures of liquids, which is based on the fluorescent probes, is proposed. The method is intended for measuring temperatures of reaction media in reactors of devices for polymerase chain reactions in real time and can be used for determining dynamic temperature parameters.

  13. 7 CFR 28.301 - Measurement: humidity; temperature.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70 °F....

  14. 7 CFR 28.301 - Measurement: humidity; temperature.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70 °F....

  15. 7 CFR 28.301 - Measurement: humidity; temperature.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70 °F....

  16. 7 CFR 28.301 - Measurement: humidity; temperature.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70 °F....

  17. Water temperature-influential factors, field measurement, and data presentation

    USGS Publications Warehouse

    Stevens, Herbert H.; Ficke, John F.; Smoot, George F.

    1975-01-01

    This manual contains suggested procedures for collecting and reporting of water-temperature data on streams, lakes and reservoirs, estuaries, and ground water. Among the topics discussed are the selection of equipment and measuring sites, objectives and accuracy of measurements, and data processing and presentation. Background information on the influence of temperature on water quality and the factors influencing water temperature are also presented.

  18. 7 CFR 28.301 - Measurement: humidity; temperature.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70° F....

  19. Testing and evaluation of thermal cameras for absolute temperature measurement

    NASA Astrophysics Data System (ADS)

    Chrzanowski, Krzysztof; Fischer, Joachim; Matyszkiel, Robert

    2000-09-01

    The accuracy of temperature measurement is the most important criterion for the evaluation of thermal cameras used in applications requiring absolute temperature measurement. All the main international metrological organizations currently propose a parameter called uncertainty as a measure of measurement accuracy. We propose a set of parameters for the characterization of thermal measurement cameras. It is shown that if these parameters are known, then it is possible to determine the uncertainty of temperature measurement due to only the internal errors of these cameras. Values of this uncertainty can be used as an objective criterion for comparisons of different thermal measurement cameras.

  20. Measuring subcutaneous temperature and differential rates of rewarming from hibernation and daily torpor in two species of bats.

    PubMed

    Currie, Shannon E; Körtner, Gerhard; Geiser, Fritz

    2015-12-01

    Prolonged and remote measurement of body temperature (Tb) in undisturbed small hibernators was not possible in the past because of technological limitations. Although passive integrated transponders (PITs) have been used previously to measure subcutaneous temperature (Tsub) during daily torpor in a small marsupial, no study has attempted to use these devices at Tbs below 10°C. Therefore, we investigated whether subcutaneous interscapular PITs can be used as a viable tool for measuring Tb in a small hibernating bat (Nyctophilus gouldi; Ng) and compared it with measurements of Tb during daily torpor in a heterothermic bat (Syconycteris australis; Sa). The precision of transponders was investigated as a function of ambient temperature (Ta) and remote Tsub readings enabled us to quantify Tsub-Tb differentials during steady-state torpor and arousal. Transponders functioned well outside the manufacturer's recommended range, down to ~5°C. At rest, Tsub and rectal Tb (Trec) were strongly correlated for both bat species (Ng r(2)=0.88; Sa r(2)=0.95) and this was also true for N. gouldi in steady-state torpor (r(2)=0.93). During induced rewarming Tsub increased faster than Trec in both species. Our results demonstrate that transponders can be used to provide accurate remote measurement of Tb in two species of bats during different physiological states, both during steady-state conditions and throughout dynamic phases such as rewarming from torpor. We show that, at least during rewarming, regional heterothermy common to larger hibernators and other hibernating bats is also present in bats capable of daily torpor. PMID:26300411

  1. Nanosecond-resolved temperature measurements using magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Xu, Wenbiao; Liu, Wenzhong; Zhang, Pu

    2016-05-01

    Instantaneous and noninvasive temperature measurements are important when laser thermotherapy or welding is performed. A noninvasive nanosecond-resolved magnetic nanoparticle (MNP) temperature measurement system is described in which a transient change in temperature causes an instantaneous change in the magnetic susceptibilities of the MNPs. These transient changes in the magnetic susceptibilities are rapidly recorded using a wideband magnetic measurement system with an upper frequency limit of 0.5 GHz. The Langevin function (the thermodynamic model characterizing the MNP magnetization process) is used to obtain the temperature information. Experiments showed that the MNP DC magnetization temperature-measurement system can detect a 14.4 ns laser pulse at least. This method of measuring temperature is likely to be useful for acquiring the internal temperatures of materials irradiated with lasers, as well as in other areas of research.

  2. Nanosecond-resolved temperature measurements using magnetic nanoparticles.

    PubMed

    Xu, Wenbiao; Liu, Wenzhong; Zhang, Pu

    2016-05-01

    Instantaneous and noninvasive temperature measurements are important when laser thermotherapy or welding is performed. A noninvasive nanosecond-resolved magnetic nanoparticle (MNP) temperature measurement system is described in which a transient change in temperature causes an instantaneous change in the magnetic susceptibilities of the MNPs. These transient changes in the magnetic susceptibilities are rapidly recorded using a wideband magnetic measurement system with an upper frequency limit of 0.5 GHz. The Langevin function (the thermodynamic model characterizing the MNP magnetization process) is used to obtain the temperature information. Experiments showed that the MNP DC magnetization temperature-measurement system can detect a 14.4 ns laser pulse at least. This method of measuring temperature is likely to be useful for acquiring the internal temperatures of materials irradiated with lasers, as well as in other areas of research. PMID:27250457

  3. 105-KW Sandfilter Backwash Pit sludge volume calculation

    SciTech Connect

    Dodd, E.N. Jr.

    1995-02-10

    The volume of sludge contained in the 100-KW Sandfilter Backwash Pit (SFBWP) was calculated from depth measurements of the sludge, pit dimension measurements and analysis of video tape recordings taken by an underwater camera. The term sludge as used in this report is any combination of sand, sediment, or corrosion products visible in the SFBWP area. This work was performed to determine baseline volume for use in determination of quantities of uranium and plutonium deposited in the pit from sandfilter backwashes. The SFBWP has three areas where sludge is deposited: (1) the main pit floor, (2) the transfer channel floor, and (3) the surfaces and structures in the SFBWP. The depths of sludge and the uniformity of deposition varies significantly between these three areas. As a result, each of the areas was evaluated separately. The total volume of sludge determined was 3.75 M{sup 3} (132.2 ft{sup 3}).

  4. Time Resolved Thermal Diffusivity of Seasonal Snow Determined from Inexpensive, Easily-Implemented Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Oldroyd, H. J.; Higgins, C. W.; Huwald, H.; Selker, J. S.; Parlange, M. B.

    2011-12-01

    Thermal diffusivity of snow is an important physical property associated with key hydrological phenomena such as snow melt and heat and water vapor exchange with the atmosphere. These phenomena have broad implications in studies of climate and heat and water budgets on many scales. However, direct measurements of snow thermal diffusivity require coupled point measurements of thermal conductivity and density, which are nonstationary due to snow metamorphism. Furthermore, thermal conductivity measurements are typically obtained with specialized heating probes or plates and snow density measurements require digging snow pits. Therefore, direct measurements are difficult to obtain with high enough temporal resolution such that direct comparisons with atmospheric conditions can be made. This study uses highly resolved (7.5 to 10 cm for depth and 1min for time) temperature measurements from the Plaine Morte glacier in Switzerland as initial and boundary conditions to numerically solve the 1D heat equation and iteratively optimize for thermal diffusivity. The method uses flux boundary conditions to constrain thermal diffusivity such that spuriously high values in thermal diffusivity are eliminated. Additionally, a t-test ensuring statistical significance between solutions of varied thermal diffusivity result in further constraints on thermal diffusivity that eliminate spuriously low values. The results show that time resolved (1 minute) thermal diffusivity can be determined from easily implemented and inexpensive temperature measurements of seasonal snow with good agreement to widely used parameterizations based on snow density. This high time resolution further affords the ability to explore possible turbulence-induced enhancements to heat and mass transfer in the snow.

  5. [Welding arc temperature field measurements based on Boltzmann spectrometry].

    PubMed

    Si, Hong; Hua, Xue-Ming; Zhang, Wang; Li, Fang; Xiao, Xiao

    2012-09-01

    Arc plasma, as non-uniform plasma, has complicated energy and mass transport processes in its internal, so plasma temperature measurement is of great significance. Compared with absolute spectral line intensity method and standard temperature method, Boltzmann plot measuring is more accurate and convenient. Based on the Boltzmann theory, the present paper calculates the temperature distribution of the plasma and analyzes the principle of lines selection by real time scanning the space of the TIG are measurements. PMID:23240385

  6. Temperature measurement. [liquid monopropellant rocket engine performance tests

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The design, installation, checkout, calibration, and operation of a temperature measuring system to be used during tests of a liquid monopropellant rocket engine are discussed. Appendixes include: (1) temperature measurement system elemental uncertainties, and (2) tables and equations for use with thermocouples and resistance thermometers. Design guidelines are given for the critical components of each portion of the system to provide an optimum temperature measurement system which meets the performance criteria specified.

  7. Temperature Measurement of a Glass Material Using a Multiwavelength Pyrometer

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    1997-01-01

    Temperature measurement of a substance that is transparent using the traditional 1-color, 2-color and other pyrometers has been difficult. The radiation detected by pyrometers do not come from a well defined location in the transparent body. The multiwavelength pyrometer developed at the NASA Lewis Research Center can measure the surface temperature of many materials. We show in this paper that it also measures the surface and a bulk subsurface temperature of transparent materials like glass.

  8. Dielectric property measurement of zirconia fibers at high temperature

    SciTech Connect

    Vogt, G.J.; Tinga, W.R.; Plovnick, R.H.

    1995-12-31

    Using a self-heating, electronically tunable microwave dielectrometer, the complex dielectric constant of zirconia-based filaments was measured at 915 MHz from 350{degrees} to 1100{degrees}C. When exposed to a low temperature environment, this fibrous material cools rapidly within several seconds due to a large surface area to volume ratio. Such rapid sample cooling necessitates the use of a self-heating technique to measure the complex dielectric constant at temperatures up to 1100{degrees}C. Sample temperature was measured with optical fiber thermometry. The effect of sample temperature measurement on data accuracy is discussed.

  9. Active radiometer for self-calibrated furnace temperature measurements

    DOEpatents

    Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Wittle, J. Kenneth; Surma, Jeffrey E.

    1996-01-01

    Radiometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The radiometer includes a heterodyne millimeter/submillimeter-wave receiver including a millimeter/submillimeter-wave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement.

  10. Measurement and correlation of jet fuel viscosities at low temperatures

    NASA Technical Reports Server (NTRS)

    Schruben, D. L.

    1985-01-01

    Apparatus and procedures were developed to measure jet fuel viscosity for eight current and future jet fuels at temperatures from ambient to near -60 C by shear viscometry. Viscosity data showed good reproducibility even at temperatures a few degrees below the measured freezing point. The viscosity-temperature relationship could be correlated by two linear segments when plotted as a standard log-log type representation (ASTM D 341). At high temperatures, the viscosity-temperature slope is low. At low temperatures, where wax precipitation is significant, the slope is higher. The breakpoint between temperature regions is the filter flow temperature, a fuel characteristic approximated by the freezing point. A generalization of the representation for the eight experimental fuels provided a predictive correlation for low-temperature viscosity, considered sufficiently accurate for many design or performance calculations.

  11. Autonomous System for MISSE Temperature Measurements

    NASA Technical Reports Server (NTRS)

    Harvey, G. A.; Lash, T. J.; Kinard, W. H.; Bull, K.; deGeest, F.

    2001-01-01

    The Materials International Space Station Experiment (MISSE) is scheduled to be deployed during the summer of 2001. This experiment is a cooperative endeavor by NASA-LaRC, NASA-GRC, NASA MSFC, NASA-JSC, the Materials Laboratory at the Air Force Research Laboratory, and the Boeing Phantom Works. The objective of the experiment is to evaluate performance, stability, and long term survivability of materials and components planned for use by NASA and DOD on future LEO, synchronous orbit, and interplanetary space missions. Temperature is an important parameter in the evaluation of space environmental effects on materials.

  12. Solar energy control system. [temperature measurement

    NASA Technical Reports Server (NTRS)

    Currie, J. R. (Inventor)

    1981-01-01

    A solar energy control system for a hot air type solar energy heating system wherein thermocouples are arranged to sense the temperature of a solar collector, a space to be heated, and a top and bottom of a heat storage unit is disclosed. Pertinent thermocouples are differentially connected together, and these are employed to effect the operation of dampers, a fan, and an auxiliary heat source. In accomplishing this, the differential outputs from the thermocouples are amplified by a single amplifier by multiplexing techniques. Additionally, the amplifier is corrected as to offset by including as one multiplex channel a common reference signal.

  13. MRI Based Diagnostics for Temperature Measurements in Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Burton, Lauren Sascha; Elkins, Christopher J.; Eaton, John K.

    2014-11-01

    Accurate modeling of the thermal diffusion in the complex turbulent flows related to cooling high temperature gas turbine blades is critical to optimize the performance and predict the lifetime of the blades. Magnetic Resonance Imaging (MRI) techniques for temperature measurement in simple but related flows are being developed in an effort to obtain full field thermal measurements to better understand diffusion processes and support the development of more accurate computational models in these flows. Magnetic Resonance Thermometry (MRT) utilizes the temperature dependence of the hydrogen proton resonant frequency (PRF) in water. MRT is now routinely used to measure tissue temperatures during medical procedures, and a few previous studies have made velocity and temperature measurements in turbulent pipe flows. In this study, MRT is applied to the flow of a heated single hole film cooling jet (Reynolds number 3000) inclined at 30 degrees injected into a cold developing turbulent channel flow (Reynolds number 25,000 based on bulk velocity and channel height.) The jet fluid temperature is 30 degrees Celsius above the temperature in the channel. The temperature measurements compare well to previously published results for measured passive scalar concentration in the same flow although the temperature measurements show higher uncertainties of 5--10 % of the temperature difference. Techniques for reducing this uncertainty will be presented as well as procedures for applying MRT to quantify the turbulent heat transfer coefficient in turbulent internal flows.

  14. Temperature Measurement of Ceramic Materials Using a Multiwavelength Pyrometer

    NASA Technical Reports Server (NTRS)

    Ng, Daniel; Fralick, Gustave

    1999-01-01

    The surface temperatures of several pure ceramic materials (alumina, beryllia, magnesia, yittria and spinel) in the shape of pellets were measured using a multiwavelength pyrometer. In one of the measurements, radiation signal collection is provided simply by an optical fiber. In the other experiments, a 4.75 inch (12 cm) parabolic mirror collects the signal for the spectrometer. Temperature measurement using the traditional one- and two-color pyrometer for these ceramic materials is difficult because of their complex optical properties, such as low emissivity which varies with both temperature and wavelength. In at least one of the materials, yittria, the detected optical emission increased as the temperature was decreased due to such emissivity variation. The reasons for such changes are not known. The multiwavelength pyrometer has demonstrated its ability to measure surface temperatures under such conditions. Platinum electrodes were embedded in the ceramic pellets for resistance measurements as the temperature changed.

  15. Measuring Contact Thermal Conductances at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Salerno, Louis J.; Kittel, Peter; Brooks, Walter; Spivak, Alan L.; Marks, William G., Jr.

    1987-01-01

    Instrument measures thermal conductance of pressed contacts in liquid helium. Makes measurements automatically as function of force on pairs of brass samples having various surface finishes. Developed as part of effort to determine heat-transfer characteristics of bolted joints on cryogenically cooled focal planes in infrared equipment. Cylindrical chamber hangs from cover plate in bath of liquid helium. Inside chamber rocker arm applies controlled force to samples. Upper sample made slightly wider than lower one so two samples remain in complete contact even under slight lateral misalignment.

  16. An Integrated-Circuit Temperature Sensor for Calorimetry and Differential Temperature Measurement.

    ERIC Educational Resources Information Center

    Muyskens, Mark A.

    1997-01-01

    Describes the application of an integrated-circuit (IC) chip which provides an easy-to-use, inexpensive, rugged, computer-interfaceable temperature sensor for calorimetry and differential temperature measurement. Discusses its design and advantages. (JRH)

  17. Thermistor holder for skin-temperature measurements

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Williams, B. A.

    1974-01-01

    Sensing head of thermistor probe is supported in center area of plastic ring which has tabs so that it can be anchored in place by rubber bands or adhesive tapes. Device attaches probes to human subjects practically, reliably, and without affecting characteristics of skin segment being measured.

  18. Finger temperature controller for non-invasive blood glucose measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Xiqin; Ting, Choon Meng; Yeo, Joon Hock

    2010-11-01

    Blood glucose level is an important parameter for doctors to diagnose and treat diabetes. The Near-Infra-Red (NIR) spectroscopy method is the most promising approach and this involves measurement on the body skin. However it is noted that the skin temperature does fluctuate with the environmental and physiological conditions and we found that temperature has important influences on the glucose measurement. In-vitro and in-vivo investigations on the temperature influence on blood glucose measurement have been carried out. The in-vitro results show that water temperature has significant influence on water absorption. Since 90% of blood components are water, skin temperature of measurement site has significant influence on blood glucose measurement. Also the skin temperature is related to the blood volume, blood volume inside capillary vessels changes with skin temperature. In this paper the relationship of skin temperature and signal from the skin and inside tissue was studied at different finger temperatures. Our OGTT (oral glucose tolerance test) trials results show the laser signals follow the skin temperature trend and the correlation of signal and skin temperature is much stronger than the correlation of signal and glucose concentration. A finger heater device is designed to heat and maintain the skin temperature of measurement site. The heater is controlled by an electronic circuit according to the skin temperature sensed by a thermocouple that is put close to the measurement site. In vivo trials were carried out and the results show that the skin temperature significantly influences the signal fluctuations caused by pulsate blood and the average signal value.

  19. Microwave radiometric system for biomedical 'true temperature' and emissivity measurements.

    PubMed

    Lüdeke, K M; Köhler, J

    1983-09-01

    A novel type of radiometer is described, which solves the problem of emissivity-(mismatch)-independent noise temperature measurements by simultaneous registration of an object's apparent temperature and its reflectivity with just one microwave receiver and real-time calculation of the object's emissivity and its actual temperature. PMID:6558132

  20. Portable optical fiber probe for in vivo brain temperature measurements

    PubMed Central

    Musolino, Stefan; Schartner, Erik P.; Tsiminis, Georgios; Salem, Abdallah; Monro, Tanya M.; Hutchinson, Mark R.

    2016-01-01

    This work reports on the development of an optical fiber based probe for in vivo measurements of brain temperature. By utilizing a thin layer of rare-earth doped tellurite glass on the tip of a conventional silica optical fiber a robust probe, suitable for long-term in vivo measurements of temperature can be fabricated. This probe can be interrogated using a portable optical measurement setup, allowing for measurements to be performed outside of standard optical laboratories. PMID:27570698

  1. Portable optical fiber probe for in vivo brain temperature measurements.

    PubMed

    Musolino, Stefan; Schartner, Erik P; Tsiminis, Georgios; Salem, Abdallah; Monro, Tanya M; Hutchinson, Mark R

    2016-08-01

    This work reports on the development of an optical fiber based probe for in vivo measurements of brain temperature. By utilizing a thin layer of rare-earth doped tellurite glass on the tip of a conventional silica optical fiber a robust probe, suitable for long-term in vivo measurements of temperature can be fabricated. This probe can be interrogated using a portable optical measurement setup, allowing for measurements to be performed outside of standard optical laboratories. PMID:27570698

  2. Short-time spectroscopic measurement of the temperature of solids

    NASA Astrophysics Data System (ADS)

    Mach, H.

    1984-02-01

    The short-time temperature rise dependent deformation caused by shocks on solids were measured with radiation pyrometric and spectroscopic methods. The methods can only be applied on solids emitting a measurable radiation and are based on spectral radiation and the temperature of the solid. The Planck-Kirchhoff radiation laws and the measuring method are presented. The measuring equipment consists of an image reproducing optical device and a photodetector with spectral or interference filters for wavelength selection.

  3. Influence of Resistance Method on Motor Winding Temperature Rise Measurement

    NASA Astrophysics Data System (ADS)

    Beges, G.

    2011-12-01

    The objective of this article is presentation of influences when measuring the motor winding temperature rise in the scope of safety testing of electrical appliances, with respect to conformity assessment. The temperature measurement in testing is one of the most defined fields of measurement, but it is very important how the measurement is performed. Standards only describe that the resistance method shall be used for determination of the temperature rise (heating) of the winding. The temperature rise is defined as the average temperature rise of the windings above the ambient (surrounding) temperature, at the specified load of the unit under test. It is not explicitly defined how to approach this measurement when using cooling characteristics of the winding for determination of the temperature rise. Since the extrapolation curve is used, the procedure is also very important to obtain a result as accurate as possible. It is important that measurement results and their associated uncertainties are correctly evaluated, and on that basis, appropriate conclusions of conformity of the product with specifications are made. The resistance method influence on the motor winding temperature rise measurement is a case study in this article. The article focuses on the measurement of the temperature rise of electrical motors used in electrical appliances according to the standard EN 60335-1, clause 11 (2002) (identical as standard IEC 60335-1, 2001). In this article, the influencing parameters are analyzed when measuring the temperature rise of electromotor winding. As a case study, concrete measurements are presented. The optimal time after which the performer has to start measurement of the cooling characteristics is analyzed, since the motors are typically mounted deep into appliances. Especially for a collector motor winding, it takes some time for a performer to be able to connect the measuring instrument to collector's lamellas because this contact has an important

  4. CARS Temperature Measurements in Turbulent and Supersonic Facilities

    NASA Technical Reports Server (NTRS)

    Jarrett, O., Jr.; Antcliff, R. R.; Smith, M. W.; Cutler, A. D.; Diskin, G. S.; Northam, G. B.

    1991-01-01

    This paper documents the development of the National Aeronautics and Space Administration s (NASA) Langley Research Center ( LaRC) Coherent Antistokes Raman Spectroscopy (CARS) systems for measurements of temperature in a turbulent subsonic or supersonic reacting hydrogen-air environment. Spectra data provides temperature data when compared to a precalculated library of nitrogen CARS spectra. Library validity was confirmed by comparing CARS temperatures derived through the library with three different techniques for determination of the temperature in hydrogen-air combustion and an electrically heated furnace. The CARS system has been used to survey temperature profiles in the simulated flow of a supersonic combustion ramjet (scramjet) model. Measurement results will be discussed.

  5. Temperature measurement error simulation of the pure rotational Raman lidar

    NASA Astrophysics Data System (ADS)

    Jia, Jingyu; Huang, Yong; Wang, Zhirui; Yi, Fan; Shen, Jianglin; Jia, Xiaoxing; Chen, Huabin; Yang, Chuan; Zhang, Mingyang

    2015-11-01

    Temperature represents the atmospheric thermodynamic state. Measure the atmospheric temperature accurately and precisely is very important to understand the physics of the atmospheric process. Lidar has some advantages in the atmospheric temperature measurement. Based on the lidar equation and the theory of pure rotational Raman (PRR), we've simulated the temperature measurement errors of the double-grating-polychromator (DGP) based PRR lidar. First of all, without considering the attenuation terms of the atmospheric transmittance and the range in the lidar equation, we've simulated the temperature measurement errors which are influenced by the beam splitting system parameters, such as the center wavelength, the receiving bandwidth and the atmospheric temperature. We analyzed three types of the temperature measurement errors in theory. We've proposed several design methods for the beam splitting system to reduce the temperature measurement errors. Secondly, we simulated the temperature measurement error profiles by the lidar equation. As the lidar power-aperture product is determined, the main target of our lidar system is to reduce the statistical and the leakage errors.

  6. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, Douglas D.

    1985-01-01

    The present invention is a thermometer used for measuring furnace temperaes in the range of about 1800.degree. to 2700.degree. C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  7. Research on temperature measurement by X-ray transmission intensity

    NASA Astrophysics Data System (ADS)

    Chen, Shuyue; Cheng, Rong

    2013-02-01

    The relationship between temperature and X-ray transmission intensity was researched and analyzed by inspecting material density change, which is caused by thermal expansion. A digital radiographic system was employed to obtain the images. On this basis, we deduced the temperature formula based on the average gray level of the captured images. The measured temperatures were obtained from the experiments and the errors were analyzed. We concluded that when X-rays pass through an object, the X-ray strength and the gray level of the image under high temperatures are greater than those under lower temperatures and the image gray level error has great impact on the accuracy of the measured temperature. The presented approach allowed the non-contact temperature measurement of material.

  8. Stochastic modeling of the influence of environment on pitting corrosion damage of radioactive-waste containers

    SciTech Connect

    Henshall, G.A.

    1994-06-01

    A physically-based, phenomenological stochastic model for pit initiation and growth is presented as a potential tool for predicting the degradation of high-level radioactive-waste containers by aqueous pitting corrosion. Included in the model are simple phenomenological equations describing the dependence of the controlling stochastic parameters on the applied (or corrosion) potential, chloride ion concentration, and absolute temperature. Results from this model are presented that demonstrate its ability to simulate several important environmental effects on pitting.

  9. Proximity effect thermometer for local temperature measurements on mesoscopic samples.

    SciTech Connect

    Aumentado, J.; Eom, J.; Chandrasekhar, V.; Baldo, P. M.; Rehn, L. E.; Materials Science Division; Northwestern Univ; Univ. of Chicago

    1999-11-29

    Using the strong temperature-dependent resistance of a normal metal wire in proximity to a superconductor, we have been able to measure the local temperature of electrons heated by flowing a direct-current (dc) in a metallic wire to within a few tens of millikelvin at low temperatures. By placing two such thermometers at different parts of a sample, we have been able to measure the temperature difference induced by a dc flowing in the samples. This technique may provide a flexible means of making quantitative thermal and thermoelectric measurements on mesoscopic metallic samples.

  10. Digital holographic interferometry for measurement of temperature in axisymmetric flames.

    PubMed

    Sharma, Shobhna; Sheoran, Gyanendra; Shakher, Chandra

    2012-06-01

    In this paper, experimental investigations and analysis is presented to measure the temperature and temperature profile of gaseous flames using lensless Fourier transform digital holographic interferometry. The evaluations of the experimental results give the accuracy, sensitivity, spatial resolution, and range of measurements to be well within the experimental limits. Details of the experimental results and analysis are presented. PMID:22695554