Science.gov

Sample records for plains site measured

  1. Aerosol measurements at the Southern Great Plains Site: Design and surface installation

    SciTech Connect

    Leifer, R.; Knuth, R.H.; Guggenheim, S.F.; Albert, B.

    1996-04-01

    To impropve the predictive capabilities of the Atmospheric Radiation Measurements (ARM) program radiation models, measurements of awserosol size distributions, condensation particle concentrations, aerosol scattering coefficients at a number of wavelenghts, and the aerosol absorption coefficients are needed at the Southern Great Plains (SGP) site. Alos, continuous measurements of ozone concnetrations are needed for model validation. The environmental Measuremenr Laboratory (EMK) has the responsibility to establish the surface aerosol measurements program at the SGP site. EML has designed a special sampling manifold.

  2. Site/Systems Operations, Maintenance and Facilities Management of the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Site

    SciTech Connect

    Wu, Susan

    2005-08-01

    This contract covered the site/systems operations, maintenance, and facilities management of the DOE Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Site.

  3. Surface summertime radiative forcing by shallow cumuli at the Atmospheric Radiation Measurement Southern Great Plains site

    SciTech Connect

    Berg, Larry K.; Kassianov, Evgueni I.; Long, Charles N.; Mills Jr., David L.

    2011-01-08

    Although shallow cumuli are common over large areas of the globe, their impact on the surface radiative forcing has not been carefully evaluated. This study addresses this shortcoming by analyzing data from days with shallow cumuli collected over eight summers (2000-2007) at the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility (collectively ACRF) Southern Great Plains site. During periods with clouds, the average shortwave and longwave radiative forcings are 45.5 W m-2 and +11.6 W m-2, respectively. The forcing has been defined so that a negative (positive) forcing indicates a surface cooling (warming). On average, the shortwave forcing is negative, however, instances with positive shortwave forcing are observed approximately 20% of the time. These positive values of shortwave forcing are associated with three-dimensional radiative effects of the clouds. The three-dimensional effects are shown to be largest for intermediate cloud amounts. The magnitude of the three-dimensional effects decreased with averaging time, but it is not negligibly small even for large averaging times as long as four hours.

  4. Application of Aerosol Hygroscopicity Measured at the Atmospheric Radiation Measurement Program's Southern Great Plains Site to Examine Composition and Evolution

    NASA Technical Reports Server (NTRS)

    Gasparini, Roberto; Runjun, Li; Collins, Don R.; Ferrare, Richard A.; Brackett, Vincent G.

    2006-01-01

    A Differential Mobility Analyzer/Tandem Differential Mobility Analyzer (DMA/TDMA) was used to measure submicron aerosol size distributions, hygroscopicity, and occasionally volatility during the May 2003 Aerosol Intensive Operational Period (IOP) at the Central Facility of the Atmospheric Radiation Measurement Program's Southern Great Plains (ARM SGP) site. Hygroscopic growth factor distributions for particles at eight dry diameters ranging from 0.012 micrometers to 0.600 micrometers were measured throughout the study. For a subset of particle sizes, more detailed measurements were occasionally made in which the relative humidity or temperature to which the aerosol was exposed was varied over a wide range. These measurements, in conjunction with backtrajectory clustering, were used to infer aerosol composition and to gain insight into the processes responsible for evolution. The hygroscopic growth of both the smallest and largest particles analyzed was typically less than that of particles with dry diameters of about 0.100 micrometers. It is speculated that condensation of secondary organic aerosol on nucleation mode particles is largely responsible for the minimal hygroscopic growth observed at the smallest sizes considered. Growth factor distributions of the largest particles characterized typically contained a nonhygroscopic mode believed to be composed primarily of dust. A model was developed to characterize the hygroscopic properties of particles within a size distribution mode through analysis of the fixed size hygroscopic growth measurements. The performance of this model was quantified through comparison of the measured fixed size hygroscopic growth factor distributions with those simulated through convolution of the size-resolved concentration contributed by each of the size modes and the mode-resolved hygroscopicity. This transformation from sizeresolved hygroscopicity to mode-resolved hygroscopicity facilitated examination of changes in the hygroscopic

  5. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    SciTech Connect

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

    1992-03-01

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.

  6. Atmospheric Radiation Measurement (ARM) Data from the Southern Great Plains (SGP) Site

    DOE Data Explorer

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. Scientists are using the information obtained from the permanent SGP site to improve cloud and radiative models and parameterizations and, thereby, the performance of atmospheric general circulation models used for climate research. More than 30 instrument clusters have been placed around the SGP site. The locations for the instruments were chosen so that the measurements reflect conditions over the typical distribution of land uses within the site. The continuous observations at the SGP site are supplemented by intensive observation periods, when the frequency of measurements is increased and special measurements are added to address specific research questions. During such periods, 2 gigabytes or more of data (two billion bytes) are generated daily. SGP data sets from 1993 to the present reside in the ARM Archive at http://www.archive.arm.gov/ http. Users will need to register for a password, but all files are then free for viewing or downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  7. Comparison Between Lidar and Nephelometer Measurements of Aerosol Hygroscopicity at the Southern Great Plains Atmospheric Radiation Measurement Site

    NASA Technical Reports Server (NTRS)

    Pahlow, M.; Feingold, G.; Jefferson, A.; Andrews, E.; Ogren, J. A.; Wang, J.; Lee, Y.-N.; Ferrare, R. A.

    2004-01-01

    Aerosol hygroscopicity has a significant effect on radiative properties of aerosols. Here a lidar method, applicable to cloud-capped, well-mixed atmospheric boundary layers, is employed to determine the hygroscopic growth factor f(RH) under unperturbed, ambient atmospheric conditions. The data used for the analysis were collected under a wide range of atmospheric aerosol levels during both routine measurement periods and during the intensive operations period (IOP) in May 2003 at the Southern Great Plains (SGP) Climate Research Facility in Oklahoma, USA, as part of the Atmospheric Radiation Measurement (ARM) program. There is a good correlation (approx. 0.7) between a lidar-derived growth factor (measured over the range 85% RH to 96% RH) with a nephelometer-derived growth factor measured over the RH range 40% to 85%. For these RH ranges, the slope of the lidar-derived growth factor is much steeper than that of the nephelometer-derived growth factor, reflecting the rapid increase in particle size with increasing RH. The results are corroborated by aerosol model calculations of lidar and nephelometer equivalent f(RH) based on in situ aerosol size and composition measurements during the IOP. It is suggested that the lidar method can provide useful measurements of the dependence of aerosol optical properties on relative humidity, and under conditions closer to saturation than can currently be achieved with humidified nephelometers.

  8. A Comparison of Measured Evaporation at Wet and Mesic Sites to Modeled Evaporation Using BIOME BGC in the Arctic Coastal Plain

    NASA Astrophysics Data System (ADS)

    Engstrom, R. N.; Hope, A. S.; Harazano, Y.; Kwon, H.; Mano, M.

    2004-05-01

    The growing season evaporation process in Arctic ecosystems is affected by the unique characteristics of the region, including non-vascular vegetation, a substantial ground heat sink, low energy inputs, and other factors. These characteristics may be a source of uncertainty in evaporation estimates using models developed for mid-latitude ecosystems. By incorporating these characteristics into evaporation models, the accuracy of model predictions should improve. In this study the ecophysiological model BIOME BGC was adapted to Arctic environments by including a non-vascular vegetation evaporation routine, adding ground heat flux as an input, accounting for ground shading by dead vegetation, developing a new parameter set for tundra vegetation, and by accounting for ponded water evaporation. The purpose of this study was to test the ability of this modified version of BIOME BGC to simulate measured evaporation fluxes at two eddy flux tower locations with contrasting wetness conditions in Arctic coastal plain ecosystems. Model simulations were compared to measured evaporation at two eddy flux towers located within 1 km of each other in Barrow, Alaska with substantially different moisture regimes for the 1999, 2000, and 2001 summer seasons. One tower was located in a marsh area that has standing water while the other tower is located in a drier, mesic tundra location. Results indicated that the model performed well at the wet site however, it tended to over predict evaporation at the drier site. This over prediction is most likely due to the affects of lateral redistribution of water from the drier site not being accounted for in model simulations. Additional results indicated that the modified BIOME BGC model was able to simulate measured leaf area index and inter-annual variations in snowmelt date well.

  9. Snake River Plain FORGE Site Characterization Data

    DOE Data Explorer

    Robert Podgorney

    2016-04-18

    The site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. This collection includes data on seismic events, groundwater, geomechanical models, gravity surveys, magnetics, resistivity, magnetotellurics (MT), rock physics, stress, the geologic setting, and supporting documentation, including several papers. Also included are 3D models (Petrel and Jewelsuite) of the proposed site. Data for wells INEL-1, WO-2, and USGS-142 have been included as links to separate data collections. These data have been assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL). Other contributors include the National Renewable Energy Laboratory (NREL), Lawrence Livermore National Laboratory (LLNL), the Center for Advanced Energy Studies (CEAS), the University of Idaho, Idaho State University, Boise State University, University of Wyoming, University of Oklahoma, Energy and Geoscience Institute-University of Utah, US Geothermal, Baker Hughes Campbell Scientific Inc., Chena Power, US Geological Survey (USGS), Idaho Department of Water Resources, Idaho Geological Survey, and Mink GeoHydro.

  10. High Plains Regional Ground-water Study web site

    USGS Publications Warehouse

    Qi, Sharon L.

    2000-01-01

    Now available on the Internet is a web site for the U.S. Geological Survey's (USGS) National Water-Quality Assessment (NAWQA) Program- High Plains Regional Ground-Water Study. The purpose of the web site is to provide public access to a wide variety of information on the USGS investigation of the ground-water resources within the High Plains aquifer system. Typical pages on the web site include the following: descriptions of the High Plains NAWQA, the National NAWQA Program, the study-area setting, current and past activities, significant findings, chemical and ancillary data (which can be downloaded), listing and access to publications, links to other sites about the High Plains area, and links to other web sites studying High Plains ground-water resources. The High Plains aquifer is a regional aquifer system that underlies 174,000 square miles in parts of eight States (Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming). Because the study area is so large, the Internet is an ideal way to provide project data and information on a near real-time basis. The web site will be a collection of living documents where project data and information are updated as it becomes available throughout the life of the project. If you have an interest in the High Plains area, you can check this site periodically to learn how the High Plains NAWQA activities are progressing over time and access new data and publications as they become available.

  11. A Climatology of Fair-Weather Cloud Statistics at the Atmospheric Radiation Measurement Program Southern Great Plains Site: Temporal and Spatial Variability

    SciTech Connect

    Berg, Larry K.; Kassianov, Evgueni I.; Long, Charles N.; Gustafson, William I.

    2006-03-30

    In previous work, Berg and Stull (2005) developed a new parameterization for Fair-Weather Cumuli (FWC). Preliminary testing of the new scheme used data collected during a field experiment conducted during the summer of 1996. This campaign included a few research flights conducted over three locations within the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site. A more comprehensive verification of the new scheme requires a detailed climatology of FWC. Several cloud climatologies have been completed for the ACRF SGP, but these efforts have focused on either broad categories of clouds grouped by height and season (e.g., Lazarus et al. 1999) or height and time of day (e.g., Dong et al. 2005). In these two examples, the low clouds were not separated by the type of cloud, either stratiform or cumuliform, nor were the horizontal chord length (the length of the cloud slice that passed directly overhead) or cloud aspect ratio (defined as the ratio of the cloud thickness to the cloud chord length) reported. Lane et al. (2002) presented distributions of cloud chord length, but only for one year. The work presented here addresses these shortcomings by looking explicitly at cases with FWC over five summers. Specifically, we will address the following questions: •Does the cloud fraction (CF), cloud-base height (CBH), and cloud-top height (CTH) of FWC change with the time of day or the year? •What is the distribution of FWC chord lengths? •Is there a relationship between the cloud chord length and the cloud thickness?

  12. Impacts of the triggering function of cumulus parameterization on warm-season diurnal rainfall cycles at the Atmospheric Radiation Measurement Southern Great Plains site

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Chi; Pan, Hua-Lu; Hsu, Huang-Hsiung

    2015-10-01

    In this study, we investigated the impacts of the triggering function of the deep convection scheme on diurnal rainfall variation in the middle latitudes by using the single-column version of the Community Atmospheric Model (SCAM). Using the climate statistics of a long-term ensemble analysis of SCAM simulations, we quantified and validated the diurnal rainfall climatological regimes at the Atmospheric Radiation Measurement Southern Great Plains (SGP) site. The results showed that the averaged diurnal rainfall cycle simulated using the default Zhang-Mcfarlane (ZM) scheme of the SCAM peaks near noon, which is far earlier than the observed nighttime peak phase. This bias was due to the ZM scheme, which produced spurious daytime rainfall, even during days in which only light rainfall was observed. By contrast, using a weather-focused scheme, the Simplified Arakawa-Schubert (SAS) scheme, we successfully simulated the nocturnal peak of the diurnal cycle. Experiments conducted on the ZM and SAS schemes featuring different triggering functions revealed that the relaxation of launching parcels above the planetary boundary layer (PBL) and the inclusion of convective inhibition (CIN) were crucial designs for the model to capture the nocturnal rainfall events of the SGP. The inclusion of CIN reduces spurious weak convective events, and the allowance of launching parcels being above the PBL better captures convective cloud base. The results of this study highlight the modulatory effect of low-level inhomogeneity on the diurnal variation of convection over midlatitudes and the importance of the triggering function of the deep convection scheme in capturing those variations.

  13. Seismic Velocity Model From Site Response Measurements and Influence of Lithological Variations Down to 500-m-depth on Ground Motion Amplification (Israel's Inner Coastal Plain)

    NASA Astrophysics Data System (ADS)

    Gvirtzman, Z.

    2003-12-01

    The last strong destructive earthquake in Israel occurred in 1927 when 300 people were killed out of a population of 200-300 thousand. Today the population is about 8 million and the bothering question is how many losses are expected, if such an earthquake will struck again. The present research focuses on the inner coastal plain of Israel, where much of its population is concentrated. The distance to the Dead Sea seismogenic zone is ~70 km and in order to estimate the ground motion expected during an EQ, amplification related to near surface sediments must be considered. One practical obstacle in estimating site effect in Israel is the lack of strong motion recordings. Another problem, typical to the area studied here, is the lack of hard rock sites that can be used as reference stations. Thus, the present study relies on the Nakamura technique, which determines the dominant frequency and the amplification factor of a single site from the ratio between horizontal and vertical components of ambient vibrations. Three advantages were most helpful here. One is the large amount of subsurface data available from hundreds of boreholes and seismic lines. The second is the simple measurement technique that allowed hundreds of results within a few years - the present study analyzes 700 provided with the courtesy of the Geophysical Survey of Israel. The third advantage is the consistent relationships found between the thickness of soft sediments overlying the hard Judea Group and the measurements. These relationships (valid to thickness smaller than 500 m) allow quick approximation of the resonance frequency and the amplification factor directly from the top Judea structural map in areas that were not surveyed. The advantage of this approximation is the availability of such a map in high resolution in most of the country; the disadvantage is the low accuracy of plus minus 50 percent. In order to improve this approximation the soft sediments overlying the Judea Group were

  14. Comparison of CERES-MODIS Stratus Cloud Properties with Ground-Based Measurements at the DOE ARM Southern Great Plains Site

    NASA Technical Reports Server (NTRS)

    Dong, Xiquan; Minnis Patrick; Xi, Baike; Sun-Mack, Sunny; Chen, Yan

    2008-01-01

    Overcast stratus cloud properties derived for the Clouds and the Earth's Radiant Energy system (CERES) Project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site from March 2000 through December 2004. Retrievals from ARM surface-based data were averaged over a 1-hour interval centered at the time of each satellite overpass, and the CERES-MODIS cloud properties were averaged within a 30-km x 30 km box centered on the ARM SGP site. Two datasets were analyzed: all of the data (ALL) which include multilayered, single-layered, and slightly broken stratus decks and a subset, single-layered unbroken decks (SL). The CERES-MODIS effective cloud heights were determined from effective cloud temperature using a lapse rate method with the surface temperature specified as the 24-h mean surface air temperature. For SL stratus, they are, on average, within the ARM radar-lidar estimated cloud boundaries and are 0.534 +/- 0.542 km and 0.108 +/- 0.480 km lower than the cloud physical tops and centers, respectively, and are comparable for day and night observations. The mean differences and standard deviations are slightly larger for ALL data, but not statistically different to those of SL data. The MODIS-derived effective cloud temperatures are 2.7 +/- 2.4 K less than the surface-observed SL cloud center temperatures with very high correlations (0.86-0.97). Variations in the height differences are mainly caused by uncertainties in the surface air temperatures, lapse rates, and cloud-top height variability. The biases are mainly the result of the differences between effective and physical cloud top, which are governed by cloud liquid water content and viewing zenith angle, and the selected lapse rate, -7.1 K km(exp -1). Based on a total of 43 samples, the means and standard deviations of the differences between the daytime Terra and surface

  15. A 25-month database of stratus cloud properties generated from ground-based measurements at the Atmospheric Radiation Measurement Southern Great Plains Site

    SciTech Connect

    Dong, Xiquan; Minnis, Patrick; Ackerman, Thomas P.; Clothiaux, Eugene E.; Mace, Gerald G.; Long, Charles N.; Liljegren, James C.

    2000-02-27

    A 25-month database of the macrophysical, microphysical, and radiative properties of isolated and overcast low-level stratus clouds has been generated using a newly developed parameterization and surface measurements from the Atmospheric Radiation Measurement central facility in Oklahoma. The database (5-min resolution) includes two parts: measurements and retrievals. The former consist of cloud base and top heights, layer-mean temperature, cloud liquid water path, and solar transmission ratio measured by a ground-based lidar/ceilometer and radar pair, radiosondes, a microwave radiometer, and a standard Eppley precision spectral pyranometer, respectively. The retrievals include the cloud-droplet effective radius and number concentration and broadband shortwave optical depth and cloud and top-of-atmosphere albedos. Stratus without any overlying mid or high-level clouds occurred most frequently during winter and least often during summer. Mean cloud-layer altitudes and geometric thicknesses were higher and greater, respectively, in summer than in winter. Both quantities are positively correlated with the cloud-layer mean temperature. Mean cloud-droplet effective radii range from 8.1 {mu}m in winter to 9.7 {mu}m during summer, while cloud-droplet number concentrations during winter are nearly twice those in summer. Since cloud liquid water paths are almost the same in both seasons, cloud optical depth is higher during the winter, leading to greater cloud albedos and lower cloud transmittances. (c) 2000 American Geophysical Union.

  16. Site scientific mission plan for the Southern Great Plains CART site: July--December 1998

    SciTech Connect

    Peppler, R.A.; Lamb, P.; Sisterson, D.L.

    1998-07-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site was designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This Site Scientific Mission Plan defines the scientific priorities for site activities during the six months beginning on July 1, 1998, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this document is to provide scientific guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, and Instrument Team [IT]) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the site operator, the site program manager, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  17. Site Scientific Mission Plan for the Southern Great Plains CART site: January--June 1994

    SciTech Connect

    Schneider, J.M.; Lamb, P.J.; Sisterson, D.L.

    1993-12-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on January 1, 1994, and also looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM Functional Teams (Management Team, Experiment Support Team, Operations Team, Data Management Team, Instrument Team, and Campaign Team), and it serves to disseminate the plans more generally within the ARM Program and among the Science Team. This document includes a description of the site`s operational status and the primary envisaged site activities, together with information concerning approved and proposed Intensive Observation Periods. Amendments will be prepared and distributed whenever the content changes by more than 30% within a six-month period. The primary users of this document are the site operator, the site scientist, the Science Team through the ARM Program Science Director, the ARM Program Experiment Center, and the aforementioned ARM Program Functional Teams. This plan is a living document that will be updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  18. Site scientific mission plan for the Southern Great Plains CART Site, January--June 1999

    SciTech Connect

    Peppler, R.A.; Sisterson, D.L.; Lamb, P.

    1999-03-10

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site was designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This Site Scientific Mission Plan defines the scientific priorities for site activities during the six months beginning on January 1, 1999, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this document is to provide scientific guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, and Instrument Team [IT]) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the site operator, the site program manager, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  19. Site Scientific Mission Plan for the Southern Great Plains CART site, July--December 1994

    SciTech Connect

    Schneider, J.M.; Lamb, P.J.; Sisterson, D.L.

    1994-07-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on July 1, 1994, and also looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM Functional Teams (Management Team, Experiment Support Team, Operations Team, Data Management Team, Instrument Team, and Campaign Team), and it serves to disseminate the plans more generally within the ARM Program and among the Science Team. This document includes a description of the site`s operational status and the primary envisaged site activities, together with information concerning approved and proposed Intensive Observation Periods. Amendments will be prepared and distributed whenever the content changes by more than 30% within a six-month period. The primary users of this document are the site operator, the site scientist, the Science Team through the ARM Program Science Director, the ARM Program Experiment Center, and the aforementioned ARM Program Functional Teams. This plan is a living document that will be updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  20. Site scientific mission plan for the Southern Great Plains CART site January--June 1996

    SciTech Connect

    Peppler, R.A.; Lamb, P.J.; Sisterson, D.L.

    1996-01-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on January 1, 1996, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, instrument Team [IT], and Campaign Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed Intensive Observation Periods (IOPs). The primary users of this document are the site operator, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  1. Site scientific mission plan for the Southern Great Plains CART site, January-June 1995

    SciTech Connect

    Schneider, J.M.; Lamb, P.J.; Sisterson, D.L.

    1994-12-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on January 1, 1995, and also looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Experiment Support Team [EST], Operations Team, Data Management Team [DMT], Instrument Team [IT], and Campaign Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary envisaged site activities, together with information concerning approved and proposed Intensive Observation Periods (IOPs). Amendments will be prepared and distributed whenever the content changes by more than 30% within a six-month period. The primary users of this document are the site operator, the site scientist, the Science Team through the ARM Program Science Director, The ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that will be updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  2. Site scientific mission plan for the southern Great Plain CART site July-December 1997.

    SciTech Connect

    Lamb, P.J.; Peppler, R.A.; Sisterson, D.L.

    1997-08-28

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on July 1, 1997, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, Instrument Team [IT], and Campaign Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the site operator, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  3. Site scientific mission plan for the Southern Great Plains CART site: January 1997--June 1997

    SciTech Connect

    Peppler, R.A.; Lamb, P.J.; Sisterson, D.L.

    1997-01-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on January 1, 1997, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, Instrument Team [IT], and Campaign Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the site operator, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  4. Failure and Redemption of Multifilter Rotating Shadowband Radiometer (MFRSR)/Normal Incidence Multifilter Radiometer (NIMFR) Cloud Screening: Contrasting Algorithm Performance at Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) and Southern Great Plains (SGP) Sites

    SciTech Connect

    Kassianov, Evgueni I.; Flynn, Connor J.; Koontz, Annette S.; Sivaraman, Chitra; Barnard, James C.

    2013-09-11

    Well-known cloud-screening algorithms, which are designed to remove cloud-contaminated aerosol optical depths (AOD) from AOD measurements, have shown great performance at many middle-to-low latitude sites around the world. However, they may occasionally fail under challenging observational conditions, such as when the sun is low (near the horizon) or when optically thin clouds with small spatial inhomogeneity occur. Such conditions have been observed quite frequently at the high-latitude Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) sites. A slightly modified cloud-screening version of the standard algorithm is proposed here with a focus on the ARM-supported Multifilter Rotating Shadowband Radiometer (MFRSR) and Normal Incidence Multifilter Radiometer (NIMFR) data. The modified version uses approximately the same techniques as the standard algorithm, but it additionally examines the magnitude of the slant-path line of sight transmittance and eliminates points when the observed magnitude is below a specified threshold. Substantial improvement of the multi-year (1999-2012) aerosol product (AOD and its Angstrom exponent) is shown for the NSA sites when the modified version is applied. Moreover, this version reproduces the AOD product at the ARM Southern Great Plains (SGP) site, which was originally generated by the standard cloud-screening algorithms. The proposed minor modification is easy to implement and its application to existing and future cloud-screening algorithms can be particularly beneficial for challenging observational conditions.

  5. Cerberus Plains: A most excellent Pathfinder landing site

    NASA Technical Reports Server (NTRS)

    Plescia, Jeff B.

    1994-01-01

    The Cerberus Plains in southeastern Elysium and western Amazonis cover greater than 10(exp 5) sq km, extending an east-west distance of approximately 3000 km and a north-south distance of up to 700 km near 195 deg. Crater numbers are 89 plus or minus 15 craters greater than 1 km/10(exp 6) sq km, indicating a stratigraphic age of Upper Amazonian and an absolute age of 200-500 Ma. The material forming the surface is referred to as the Cerberus Formation. The two ideas postulated about the unit's origin are fluvial and volcanic. Regardless of which interpretation is correct, the Cerberus Plains is an important candidate for a pathfinder landing site because it represents the youngest major geologic event (be it fluvial or volcanic) on Mars.

  6. Site scientific mission plan for the southern Great Plains CART site, January--June 1998

    SciTech Connect

    Peppler, R.A.; Lamb, P.J.; Sisterson, D.L.

    1998-01-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. The primary purpose of this site scientific mission plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team, Operations Team, and Instrument Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the Site operator, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  7. Site scientific mission plan for the Southern Great Plains CART site: July--December 1996

    SciTech Connect

    Peppler, R.A.; Lamb, P.J.; Sisterson, D.L.

    1996-07-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on July 1, 1996, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, Instrument Team [IT], and Campaign Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding. The primary objectives of the ARM program are: to describe the radiative energy flux profile of the clear and cloudy atmosphere; to understand the processes determining the flux profile; and to parameterize the processes determining the flux profile for incorporation into general circulation models.

  8. Site scientific mission plan for the Southern Great Plains CART site: July--December 1997

    SciTech Connect

    Peppler, R.A.; Lamb, P.J.; Sisterson, D.L.

    1997-07-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on July 1, 1997, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  9. Site scientific mission plan for the southern great plains CART site, July--December 1995

    SciTech Connect

    Splitt, M.E.; Lamb, P.J.; Sisterson, D.L.

    1995-07-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs Of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific Priorities for site activities during the six months beginning on July 1, 1995, and looks forward in lesser detail to subsequent six-month periods. The Primary Purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary envisioned site activities, together with information concerning approved and proposed Intensive Observation Periods (IOPs). This plan is a living document that will be updated and reissued every six months as the observational facilities are developed, tested, and augmented and as Priorities are adjusted in response to developments in scientific planning and understanding.

  10. ESTAR Measurements During the Southern Great Plains Experiment (SGP99)

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Jackson, T. J.; Swift, C. T.; Haken, M.; Bidwell, S.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    During the Southern Great Plains experiment, the synthetic aperture radiometer, ESTAR, mapped L-band brightness temperature over a swath about 50 km wide and about 300 km long extending west from Oklahoma City to El Reno and north from the Little Washita River watershed to the Kansas border. ESTAR flew on the NASA P-3B Orion aircraft at an altitude of 7.6 km and maps were made on 7 days between July 8-20, 1999. The brightness temperature maps reflect the patterns of soil moisture expected from rainfall and are consistent with values of soil moisture observed at the research sites within the SGP99 study area and with previous measurements in this area. The data add to the resources for hydrologic modeling in this area and are further validation of the technology represented by ESTAR as a potential path to a future mission to map soil moisture globally from space.

  11. Southern Great Plains cloud and radiation testbed site

    SciTech Connect

    1996-09-01

    This document presents information about the Cloud and Radiation Testbed Site and the Atmospheric Radiation Measurement program. Topics include; measuring methods, general circulation methods, milestones, instrumentation, meteorological observations, and computing facilities.

  12. AmeriFlux US-ARc ARM Southern Great Plains control site- Lamont

    SciTech Connect

    Torn, Margaret

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-ARc ARM Southern Great Plains control site- Lamont. Site Description - The ARM SGP Control site is located in the native tallgrass prairies of the USDA Grazinglands Research Laboratory near El Reno, OK. One of two adjacent 35 ha plots with identical towers, measurements at the US-ARc unburned plot are used as the experimental control. The second plot, US-Arb, was burned on 2005/03/08. Measurement comparisons between the control and burn plot are used to address questions regarding the effects of burning activities on carbon fluxes. The region evaded burning activities for at least 15 years. Current disturbances consist of only light grazing activities.

  13. Chenier Plain Sediment Burial Pipe Measurements

    NASA Technical Reports Server (NTRS)

    Moeller, Chris; Gunshor, Mat; Huh, Oscar; Winch, Dale

    2000-01-01

    These field notes describe the logistical circumstances and field conditions experienced by the researchers, who measured the waterlines on a series of vertical pipes previously buried in shallow coastal water. The purpose of the measurements was to monitor a portion of the Gulf coast in Louisiana for erosion.

  14. Groundwater recharge at five representative sites in the Hebei Plain, China.

    PubMed

    Lu, Xiaohui; Jin, Menggui; van Genuchten, Martinus Th; Wang, Bingguo

    2011-01-01

    Accurate estimates of groundwater recharge are essential for effective management of groundwater, especially when supplies are limited such as in many arid and semiarid areas. In the Hebei Plain, China, water shortage is increasingly restricting socioeconomic development, especially for agriculture, which heavily relies on groundwater. Human activities have greatly changed groundwater recharge there during the past several decades. To obtain better estimates of recharge in the plain, five representative sites were selected to investigate the effects of irrigation and water table depth on groundwater recharge. At each site, a one-dimensional unsaturated flow model (Hydrus-1D) was calibrated using field data of climate, soil moisture, and groundwater levels. A sensitivity analysis of evapotranspirative fluxes and various soil hydraulic parameters confirmed that fine-textured surface soils generally generate less recharge. Model calculations showed that recharge on average is about 175 mm/year in the piedmont plain to the west, and 133 mm/year in both the central alluvial and lacustrine plains and the coastal plain to the east. Temporal and spatial variations in the recharge processes were significant in response to rainfall and irrigation. Peak time-lags between infiltration (rainfall plus irrigation) and recharge were 18 to 35 days in the piedmont plain and 3 to 5 days in the central alluvial and lacustrine plains, but only 1 or 2 days in the coastal plain. This implies that different time-lags corresponding to different water table depths must be considered when estimating or modeling groundwater recharge. PMID:20100294

  15. Variability in ultraplankton at the Porcupine Abyssal Plain study site

    NASA Astrophysics Data System (ADS)

    Martin, Adrian P.; Zubkov, Mikhail V.; Holland, Ross J.; Tarran, Glen; Burkill, Peter

    2010-08-01

    Observations of the ultraplankton (<5 μm) are presented from a 4 day mesoscale survey centred on the Porcupine Abyssal Plain (PAP) study site (49°00'N 16°30'W), in July 2006. The organisms enumerated include two groups of phytoplankton, Synechococcus cyanobacteria, heterotrophic bacteria, large viruses, and two size classes of heterotrophic protist. The dataset comprises over 400 samples from the mixed layer taken over a 100 × 100 km 2 area at a spatial resolution of typically 2-3 km. For phytoplankton and heterotrophic bacteria there is a clear bimodal structure to the histograms of abundance indicative of two distinct communities in the region. Using the strong bimodality of one of the phytoplankton groups' histogram as a basis, the dataset is split into two subsets, with roughly 200 points in each, corresponding to the two histogram peaks. Doing so provides evidence that Synechococcus and viruses may also have a bimodal structure. Correlations between all pairings of these five organisms (both phytoplankton groups, Synechococcus, heterotrophic bacteria and viruses) are positive and quite high (r>0.7). The two communities can therefore be characterised as high and low abundance. Although there is a coincidence of low abundances with high temperatures in the southwest corner of the region, where there was known to be an eddy present, the spatial distributions of these organisms over the whole region is poorly predicted by temperature (or salinity or density). Furthermore, the spatial distributions of heterotrophic protists are found to differ strongly from those of the other organisms, having a unimodal structure and no obvious large scale structure. The more random structure of the heterotrophs' spatial distribution compared to their prey is consistent with previous results from the continental shelf, but is demonstrated for the open ocean here for the first time. Spatial variability is a large potential source of error in point samples, such as those

  16. Land Surface Product Validation Using the DOE ARM Southern Great Plains Site

    NASA Astrophysics Data System (ADS)

    Knuteson, R.; Revercomb, H.; Tobin, D.; Osborne, B.

    2003-12-01

    The University of Wisconsin Space Science and Engineering Center (UW-SSEC) is making use of the U.S. Department of Energy Atmospheric Radiation Measurement (DOE ARM) program Southern Great Plains (SGP) site for validation of NASA EOS land surface products. The DOE ARM site covers a 250 km square region that includes most of Oklahoma and southern Kansas. The site is dominated by a mixture of vegetation and bare soil with a vegetation fraction that changes with the growing season. The land use is divided between cattle ranching (permanent pasture) and wheat farming (seasonal). The DOE ARM site provides routine state-of-the-art vertical profile measurements of the atmospheric state. Special radiosonde launches have been conducted by DOE ARM to coincide with overpasses of the NASA Aqua platform. The UW-SSEC has provided ground truth measurements of surface characteristics using a mobile research vehicle (the AERIbago) during several aircraft field campaigns. The UW-SSEC Scanning High-resolution Interferometer Sounder (S-HIS) has provided high altitude observations of the thermal infrared spectrum for comparison to satellite observations. Coincident measurements of ground-based and aircraft observations with AIRS and MODIS satellite observations have been obtained during TX-2001, TX-2002, and IHOP. Preliminary land surface products from AIRS will be compared with MODIS land products and the validation measurements obtained from aircraft and ground-based sensors.

  17. Surface Forcing from CH4 at the North Slope of Alaska and Southern Great Plains Sites

    NASA Astrophysics Data System (ADS)

    Collins, W.; Feldman, D.; Turner, D. D.

    2014-12-01

    Recent increases in atmospheric CH4 have been spatially heterogeneous as indicated by in situ flask measurements and space-borne remote-sensing retrievals from the AIRS instrument, potentially leading to increased radiative forcing. We present detailed, specialized measurements at the DOE ARM North Slope of Alaska (NSA) and Southern Great Plains (SGP) sites to derive the time-series of both CH4 atmospheric concentrations and associated radiative implications at highly-contrasting natural and anthropogenic sources. Using a combination of spectroscopic measurements, in situ observations, and ancillary data for the atmospheric thermodynamic state from radiosondes and cloud-clearing from active sounders, we can separate out the contribution of CH4 to clear-sky downwelling radiance spectra and its infrared surface forcing. The time-series indicates year-to-year variation in shoulder season increases of CH4 concentration and forcing at NSA and large signals from anthropogenic activity at SGP.

  18. Clear Sky Identification Using Data From Remote Sensing Systems at ARM's Southern Great Plains Site

    SciTech Connect

    Delle Monache, L.; Rodriguez, D.; Cederwall, R.

    2000-06-27

    Clouds profoundly affect our weather and climate due, in large part, to their interactions with radiation. Unfortunately, our understanding of these interactions is, at best, incomplete, making it difficult to improve the treatment of atmospheric radiation in climate models. The improved treatment of clouds and radiation, and a better understanding of their interaction, in climate models is one of the Department of Energy's Atmospheric Radiation Measurement (ARM) Program's major goals. To learn more about the distribution of water and ice, i.e., clouds, within an atmospheric column, ARM has chosen to use the remote sensing of clouds, water vapor and aerosols at its three climatologically-diverse sites as its primary observational method. ARM's most heavily instrumented site, which has operated continuously for more than a decade, is its Southern Great Plains (SGP) Central Facility, located near Lamont, OK. Cloud-observing instruments at the Central Facility include the Whole Sky Imager, ceilometers, lidar, millimeter cloud radar, microwave radiometers and radiosondes.

  19. A one-year climatology using data from the Southern Great Plains (SGP) site micropulse lidar

    SciTech Connect

    Mace, G.G.; Ackerman, T.P.; Spinhirne, J.; Scott, S.

    1996-04-01

    The micropulse lidar (MPL) has been operational at the Southern Great Plains (SGP) site of the Atmospheric Radiation Measurement Program for the past 15 months. The compact MPL is unique among research lidar systems in that it is eye-safe and operates continuously, except during precipitation. The MPL is capable of detecting cloud base throughout the entire depth of the troposphere. The MPL data set is an unprecedented time series of cloud heights. It is a vital resource for understanding the frequency of cloud ocurrence and the impact of clouds on the surface radiation budget, as well as for large-scale model validation and satellite retrieval verification. The raw lidar data are processed for cloud base height at a temporal frequency of one minute and a vertical resolution of 270 m. The resultant time series of cloud base is used to generate histograms as a function of month and time of day. Sample results are described.

  20. SELECTING LEAST-DISTURBED SURVEY SITES FOR GREAT PLAINS STREAMS AND RIVERS

    EPA Science Inventory

    True reference condition probably does not exist for streams in highly utilized regions such as the Great Plains. Selecting least-disturbed sites for large regions is confounded by the association between human uses and natural gradients, and by multiple kinds of disturbance. U...

  1. AmeriFlux US-ARb ARM Southern Great Plains burn site- Lamont

    SciTech Connect

    Torn, Margaret

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-ARb ARM Southern Great Plains burn site- Lamont. Site Description - The ARM SGP Burn site is located in the native tallgrass prairies of the USDA Grazinglands Research Laboratory near El Reno, OK. One of two adjacent 35 ha plots, the US-ARb plot was burned on 2005/03/08. The second plot, US-ARc, was left unburned as the control for experimental purposes. Aside from 2005, the region evaded burning activities for at least 15 years. Current disturbances consist of only light grazing activities.

  2. Atrazine retention and degradation in the vadose zone at a till plain site in central Indiana

    USGS Publications Warehouse

    Bayless, E.R.

    2001-01-01

    The vadose zone was examined as an environmental compartment where significant quantities of atrazine and its degradation compounds may be stored and transformed. The vadose zone was targeted because regional studies in the White River Basin indicated a large discrepancy between the mass of atrazine applied to fields and the amount of the pesticide and its degradation compounds that are measured in ground and surface water. A study site was established in a rotationally cropped field in the till plain of central Indiana. Data were gathered during the 1994 growing season to characterize the site hydrogeology and the distribution of atrazine, desethylatrazine, deisopropylatrazine, didealkylatrazine and hydroxyatrazine in runoff, pore water, and ground water. The data indicated that atrazine and its degradation compounds were transported from land surface to a depth of 1.5 m within 60 days of application, but were undetected in the saturated zone at nearby monitoring wells. A numerical model was developed, based on the field data, to provide information about processes that could retain and degrade atrazine in the vadose zone. Simulations indicated that evapotranspiration is responsible for surface directed soil-moisture flow during much of the growing season. This process causes retention and degradation of atrazine in the vadose zone. Increased residence time in the vadose zone leads to nearly complete transformation of atrazine and its degradation products to unquantified degradation compounds. As a result of mascropore flow, small quantities of atrazine and its degradation compounds may reach the saturated zone.

  3. Comparison of optimal irrigation scheduling and groundwater recharge at representative sites in the North China Plain

    NASA Astrophysics Data System (ADS)

    Ma, Ying

    2014-05-01

    The North China Plain (NCP) is an important food production area in China, facing an increasing water shortage and overexploitation of groundwater. It is critical to optimize the irrigation scheduling and accurately estimate groundwater recharge for saving water and increasing crop water use efficiency. However, the water cycle and crop responses to irrigation are quite various in different areas, because of the spatial variation of climatic, soil, water table and other management practices in the NCP. In this study, three representative sites (LC site in the piedmont plain, TZ site in the northern alluvial and lacustrine plain, YC site in the southern alluvial and lacustrine plain) were selected to compare the optimal irrigation scheduling and corresponding groundwater recharge under different hydrological years for winter wheat-summer maize double cropping system. At each site, a physically based agro-hydrological model (SWAP) was calibrated using field data of soil moisture. Then, scenarios under different irrigation time and amount were simulated. Results showed that the optimal irrigation scheduling and corresponding groundwater recharge were significant different between the three representative sites. The mean water table depth at the LC (33.0 m), YC (10.3 m), and TZ site (2.5 m) caused great different time lags of infiltrated water and groundwater contribution to evapotranspiration. Then, the most irrigation amount was required for the TZ site but the least requirement for the YC site at each hydrologic year. As most clay contents in the deep soils at the LC site increased tortuosity and limited water movement, which resulted in lower rates of recharge compared to more sandy soils at the other two sites. Averagely, using the optimal irrigation scheduling could save 2.04×109 m3 irrigation water and reduce about 84.3% groundwater over-exploitation in winter wheat growth period in the NCP. Therefore, comparison of the simulation results among the three

  4. A comparison of radiometric fluxes influenced by parameterization cirrus clouds with observed fluxes at the Southern Great Plains (SGP) cloud and radiation testbed (CART) site

    SciTech Connect

    Mace, G.G.; Ackerman, T.P.; George, A.T.

    1996-04-01

    The data from the Atmospheric Radiation Measurement (ARM) Program`s Southern Great plains Site (SCP) is a valuable resource. We have developed an operational data processing and analysis methodology that allows us to examine continuously the influence of clouds on the radiation field and to test new and existing cloud and radiation parameterizations.

  5. Geochemistry of aerosols from an urban site, Varanasi, in the Eastern Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Ram, Kirpa; Norra, Stefan; Zirzov, Felix; Singh, Sunita; Mehra, Manisha; Nanad Tripathi, Sachichida

    2016-04-01

    PM2.5 aerosol samples were collected from an urban site, Varanasi, in the eastern Indo-Gangetic Plain on weekly basis during 19 March to 29 May 2015 (n=12), along with daily samples (n=8) during 11 to 18 March 2015 to study the geochemical and morphological features of aerosols. Samples were collected with a low volume sampler (Leckel GmbH, Germany) on the terrace of the Institute of Environment and Sustainable Development building, located in the Banaras Hindu University campus in the southern part of the city. Samples were analyzed for element concentration by Inductively Coupled Plasma Mass Spectrometry and particle morphology by Scanning Electron Microscope. PM2.5 concentration ranged between 22.3 and 70.5 μgm‑3 in daily samples, whereas those varied between 52.0 and 106 μgm‑3 in weekly samples. Lead, potassium, aluminum, zinc and iron have conspicuously higher concentrations with Pb concentration exceeding above the annual limit of 50 ngm‑3 in four samples. First results show a trend of corresponding concentrations of chemical elements originated from anthropogenic and geogenic sources. The biogenic particles are a minor fraction of the total particulate aerosols. The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) back trajectory analysis of air parcels indicate that the air mass for the low loaded days originate from eastern directions including the region of the gulf of Bengal, where as high aerosols concentrations in cases of air masses arriving from north-western direction transporting the air pollutants from the Gangetic Plain towards Varanasi. Black carbon (BC) concentration, measured using an microaethalometer (AE-51), exhibit a strong variability (4.4 to 8.4 μg m‑3) in the University campus which are ˜20-40% lower than those measured in the Varanasi city. The carbon content was found to be high with soot particles constituting the largest part in these samples and exist as single particle as well as attachment to other

  6. Water-Level Measurements for the Coastal Plain Aquifers of South Carolina Prior to Development

    USGS Publications Warehouse

    Aucott, Walter R.; Speiran, Gary K.

    1984-01-01

    Tabulations of water-level measurements for the Coastal Plain aquifers of South Carolina representing water levels prior to man-made development are presented. Included with the tabulations are local well number, location, land-surface altitude, well depth, screened interval, depth to water, water- level altitude, and date measured. These water-level measurements were used in compiling regional potentiometric maps for the Coastal Plain aquifers. This data set will be useful in the planning for future water-resource development.

  7. Flood-plain and channel aggradation of selected bridge sites in the Iowa and Skunk River basins, Iowa

    USGS Publications Warehouse

    Eash, D.A.

    1996-01-01

    Flood-plain and channel-aggradation rates were estimated at 10 bridge sites on the Iowa River upstream of Coralville Lake and at two bridge sites in the central part of the Skunk River Basin. Four measurement methods were used to quantify aggradation rates: (1) a dendrogeomorphic method that used tree-age data and sediment-deposition depths, (2) a bridge-opening cross-section method that compared historic and recent cross sections of bridge openings, (3) a stage-discharge rating-curve method that compared historic and recent stages for the 5-year flood discharge and the average discharge, and (4) nine sediment pads that were installed on the Iowa River flood plain at three bridge sites in the vicinity of Marshalltown. The sediment pads were installed prior to overbank flooding in 1993. Sediments deposited on the pads as a result of the 1993 flood ranged in depth from 0.004 to 2.95 feet. Measurement periods used to estimate average aggradation rates ranged from 1 to 98 years and varied among methods and sites. The highest aggradation rates calculated for the Iowa River Basin using the dendrogeomorphic and rating- curve measurement methods were for the State Highway 14 crossing at Marshalltown, where these highest rates were 0.045 and 0.124 feet per year, respectively. The highest aggradation rates calculated for the Skunk River Basin were for the U.S. Highway 63 crossing of the South Skunk River near Oskaloosa, where these highest rates were 0.051 and 0.298 feet per year, respectively.

  8. Periglacial landforms at the Phoenix landing site and the northern plains of Mars

    NASA Astrophysics Data System (ADS)

    Mellon, Michael T.; Arvidson, Raymond E.; Marlow, Jeffrey J.; Phillips, Roger J.; Asphaug, Erik

    2008-11-01

    We examine potentially periglacial landforms in Mars Orbiter Camera (MOC) and High Resolution Imaging Science Experiment (HiRISE) images at the Phoenix landing site and compare them with numerical models of permafrost processes to better understand the origin, nature, and history of the permafrost and the surface of the northern plains of Mars. Small-scale (3-6 m) polygonal-patterned ground is ubiquitous throughout the Phoenix landing site and northern plains. Larger-scale (20-25 m) polygonal patterns and regularly spaced (20-35 m) rubble piles (localized collections of rocks and boulders) are also common. Rubble piles were previously identified as ``basketball terrain'' in MOC images. The small polygon networks exhibit well-developed and relatively undegraded morphology, and they overlay all other landforms. Comparison of the small polygons with a numerical model shows that their size is consistent with a thermal contraction origin on current-day Mars and are likely active. In addition, the observed polygon size is consistent with a subsurface rheology of ice-cemented soil on depth scales of about 10 m. The size and morphology of the larger polygonal patterns and rubble piles indicate a past episode of polygon formation and rock sorting in thermal contraction polygons, while the ice table was about twice as deep as it is presently. The pervasive nature of small and large polygons, and the extensive sorting of surface rocks, indicates that widespread overturning of the surface layer to depths of many meters has occurred in the recent geologic past. This periglacial reworking has had a significant influence on the landscape at the Phoenix landing site and over the Martian northern plains.

  9. Ethics Review for a Multi-Site Project Involving Tribal Nations in the Northern Plains.

    PubMed

    Angal, Jyoti; Petersen, Julie M; Tobacco, Deborah; Elliott, Amy J

    2016-04-01

    Increasingly, Tribal Nations are forming ethics review panels, which function separately from institutional review boards (IRBs). The emergence of strong community representation coincides with a widespread effort supported by the U.S. Department of Health & Human Services and other federal agencies to establish a single IRB for all multi-site research. This article underscores the value of a tribal ethics review board and describes the tribal oversight for the Safe Passage Study-a multi-site, community-based project in the Northern Plains. Our experience demonstrates the benefits of tribal ethics review and makes a strong argument for including tribal oversight in future regulatory guidance for multi-site, community-based research. PMID:26928897

  10. Optical dating of geoarchaeologically significant sites from the Southern High Plains and South Texas, USA

    NASA Astrophysics Data System (ADS)

    Rich, J.; Stokes, S.

    2001-12-01

    The Southern High Plains of the United States is a key region for the investigation of early human occupation of North America. This area, including selected archaeological sites located in southern Texas, contains a range of aeolian, fluvial and playa deposits. Such deposits may be suited to luminescence-based methods of age assessment. In this paper we describe a combination of multiple and single-aliquot optical dating results for a selection of sites with some independent age control. We find generally good agreement between multiple- and single-aliquot equivalent dose ( De) estimates for the 20 samples compared, but note that the single-aliquot approach results in errors in mean De's to be less by an order of magnitude. Our results suggest that at least some of the single-aliquot methods are of great utility for low-latitude geoarchaeological sites.

  11. Geophysical detection of on-site wastewater plumes in the North Carolina Coastal Plain, USA

    NASA Astrophysics Data System (ADS)

    Smith, Matthew

    Nonpoint source pollution (NPS) continues to be the leading cause of water quality degradation in the United States. On-site wastewater systems (OWS) contribute to NPS; however, due to the range of system designs and complexity of the subsurface, OWS contributions to groundwater pollution are not well understood. As the population of coastal North Carolina continues to increase, better methods to locate and characterize wastewater impacted groundwater are needed. Previous studies have demonstrated the ability of non-intrusive geophysical methods to provide high resolution information on various contaminants in different geologic settings. The goals of this study were to evaluate the utility of ground penetrating radar (GPR) and capacitively coupled resistivity (CCR) for detecting OWS components, delineating associated wastewater plumes, and monitoring temporal variations in groundwater quality. Cross-sectional and three dimensional (3D) geophysical surveys were conducted periodically over a one year period (February 2011--January 2012) at two schools utilizing OWS in the lower Neuse River Basin (NRB) in the North Carolina Coastal Plain (NCCP). Cores were collected at both study sites; as well as monthly groundwater depth, temperature, and specific conductivity measurements to better constrain the geophysical interpretations. Additionally, dissolved inorganic nitrogen (DIN) and Cl concentrations were monitored bi-monthly to assess nutrient transport at the sites. The 3D GPR surveys effectively located the wastewater drainage trenches at both sites, in close agreement with locations described in as-built OWS blueprints. Regression analysis of resistivity versus groundwater specific conductivity revealed an inverse relationship, suggesting resistivity ≤ 250 ohm.m was indicative of wastewater impacted groundwater at both sites. The 3D resistivity models identified regions of low resistivity beneath the drainfields relative to background values. Regression analysis of

  12. Geomorphology of the 2007 Phoenix Mission Landing Sites in the Northern Plains of Mars

    NASA Astrophysics Data System (ADS)

    Seelos, K. D.; Arvidson, R. E.; Golombek, M.; Parker, T.; Tamppari, L.; Smith, P.

    2005-12-01

    In 2008, the Phoenix lander will touch down in the northern plains of Mars to sample and characterize near surface and underlying ice-rich soils, gather meteorological data, and provide insight into the evolution of the surrounding landscape. Three regions from 65 to 72 N and (A) 250-270E, (B) 120-140E, and (C) 65-85E that meet both engineering and scientific constraints were chosen for concentrated acquisition of remote data to support landing site selection. Smaller areas (150x75 km) within these regions devoid of large craters or other hazards were selected as potential landing sites; center coordinates for these targeted areas are (A) 68N, 260E, (B) 67.5N, 130E, and (C) 70N, 80E. MOLA topographic data along with MOC imagery and THEMIS 36m/pixel visible, 18m/pixel visible, and ~100m/pixel infrared data are utilized to produce geomorphologic maps at 36m/pixel for the larger regions and 18m/pixel for the targeted sites. All regions are dominated by intercrater plains units, with the plains in regions B and C comprised of slightly elevated, multiple kilometer-scale polygonal blocks surrounded or infilled by finer-grained material. The plains unit of region A lacks large polygons, instead exhibiting a smooth to mottled appearance. Patterned ground is ubiquitous throughout all regions. The characteristic dimpled texture of "basketball" terrain is most common, being superposed on the large polygons in regions B and C, and often organized into stripes with orientations partially controlled by local slopes. Small-scale polygonal ground is also observed usually in association with crater ejecta. Craters throughout all regions appear highly degraded, with most small craters (< 1km) remarkably worn with little or no rim definition and ejecta present only as a faint dark halo. Larger craters frequently exhibit pedestal-style ejecta. The style and state of landform degradation and the consistent presence of patterned ground throughout all regions suggests the long

  13. Bed site selection by neonate deer in grassland habitats on the northern Great Plains

    USGS Publications Warehouse

    Grovenburg, T.W.; Jacques, C.N.; Klaver, R.W.; Jenks, J.A.

    2010-01-01

    Bed site selection is an important behavioral trait influencing neonate survival. Vegetation characteristics of bed sites influence thermal protection of neonates and concealment from predators. Although previous studies describe bed site selection of neonatal white-tailed deer (Odocoileus virginianus) in regions of forested cover, none determined microhabitat effects on neonate bed site selection in the Northern Great Plains, an area of limited forest cover. During summers 2007–2009, we investigated bed site selection (n  =  152) by 81 radiocollared neonate white-tailed deer in north-central South Dakota, USA. We documented 80 (52.6%) bed sites in tallgrass–Conservation Reserve Program lands, 35 (23.0%) bed sites in forested cover, and 37 (24.3%) in other habitats (e.g., pasture, alfalfa, wheat). Bed site selection varied with age and sex of neonate. Tree canopy cover (P < 0.001) and tree basal area (P < 0.001) decreased with age of neonates, with no bed sites observed in forested cover after 18 days of age. Male neonates selected sites with less grass cover (P < 0.001), vertical height of understory vegetation (P < 0.001), and density of understory vegetation (P < 0.001) but greater bare ground (P  =  0.047), litter (P  =  0.028), and wheat (P  =  0.044) than did females. Odds of bed site selection increased 3.5% (odds ratio  =  1.035, 95% CI  =  1.008–1.062) for every 1-cm increase in vertical height of understory vegetation. Management for habitat throughout the grasslands of South Dakota that maximizes vertical height of understory vegetation would enhance cover characteristics selected by neonates.

  14. Hydrogeologic characterization of the cretaceous-tertiary Coastal Plain sequence at the Savannah River Site

    SciTech Connect

    Aadland, R.K.

    1990-01-01

    Several hydrostratigraphic classification schemes have been devised to describe the hydrogeology at the Savannah River Site SRS. Central to these schemes is the one-to-one fixed relationship between the hydrostratigraphic units and the lithostratigraphic units currently favored for the Site. This fixed relationship has proven difficult to apply in studies of widely separated locations at the Site due to the various facies observed in the updip Coastal Plain sequence. A detailed analysis and synthesis of the geophysical, core, and hydrologic data available from more than 164 deep wells from 23 cluster locations both on the Site and in the surrounding region was conducted to provide the basis for a hydrostratigraphic classification scheme which could be applied to the entire SRS region. As a result, an interim hydrostratigraphic classification was developed that defines the regional hydrogeologic characteristics of the aquifers underlying the Site (Aadland et al., 1990). The hydrostratigraphic code accounts for and accommodates the rapid lateral variation in lithofacies observed in the region, and eliminates all formal'' connection between the hydrostratigraphic nomenclature and the lithostratigraphic nomenclature. The code is robust and can be made as detailed as is needed to characterize the aquifer units and aquifer zones described in Site-specific studies. 15 refs., 2 figs.

  15. Base-flow measurements at partial-record sites on small streams in South Carolina

    USGS Publications Warehouse

    Barker, Carroll

    1986-01-01

    This report contains site descriptions and base-flow data collected at 362 partial-record sites in South Carolina. These data include site name, site description, latitude, longitude, drainage area, instantaneous streamflow, and date of the streamflow measurement. The base-flow data can be used as an aid to estimate low flow characteristics at ungaged locations on streams in South Carolina. Partial record data collection sites were established in all physiographic provinces except the lower Coastal Plain. Data collection sites were not established in the lower Coastal Plain because of the widespread occurrence of zero during drought periods in all but the larger streams. (USGS)

  16. Siting MSW landfills using MCE methodology in GIS environment (Case study: Birjand plain, Iran).

    PubMed

    Motlagh, Zeynab Karimzadeh; Sayadi, Mohammad Hossein

    2015-12-01

    The rapid municipal solid waste growth of Birjand plain causes to find an appropriate site selection for the landfill. In order to reduce the negative impacts of waste, the use of novel tools and technologies to gain a suitable site for landfill seems imperative. The present paper aimed to exhibits the Multi Criteria Evaluation (MCE) for the landfill site selection of the Birjand plain because till date a suitable action has not been implicated. In the present research, the parameters such as environmental and socio-economical factors have been used. The factors like slope, water resources, soil parameters, landuse, fault and protected areas in the model of effective environmental criteria and the factors viz. distance from road, urban areas, village, airport, historical place, and industries in the model of socio-economic criteria were investigated and with the use of Weighted Linear Combination (WLC) and Analytical Network Process (ANP) models were compounded and according to the Ordered Weighted Averaging (OWA) and Fuzzy Linguistic Quantifier (LQ) were aggregated. The paper focuses on the OWA method as well as an approach for integrating Geographic Information System (GIS) and OWA. OWA has been developed as a generalization of multi-criteria combination. In this study we attained comparable data via the technique of ANP and five scenarios of OWA method were used. The results of field studies, fifth scenario for the study area proposed. Based on the research findings, OWA method had a great potential and flexibility in the modeling of the complex decision-making problems. PMID:26321380

  17. Geoarchaeology and Geochronology of the Miami (Clovis) Site, Southern High Plains of Texas

    NASA Astrophysics Data System (ADS)

    Holliday, Vance T.; Haynes, C. Vance; Hofman, Jack L.; Meltzer, David J.

    1994-03-01

    The Miami site, excavated in 1937, is in a small "playa" basin on the High Plains surface. The site is one of the earliest documented co-occurrences of Clovis points and mammoth. Reinvestigation of the site and related collections was undertaken to better understand the stratigraphy, geochronology, and archaeology. The basin, 23 m diameter × 1.6 m deep, filled with (1) dark gray silty clay, and (2) near the top of the section, a lens of well-sorted silt or loess. The basin started to fill ca. 13,700 yr B.P., the loess dates to ca. 11,400 yr B.P., and the bone bed probably dates to ca. 11,400-10,500 yr B.P. The loess may be the local manifestation of a "Clovis drought." The partial remains of five mammoths (three adults and two juveniles) were recovered in 1937; no other animal remains are known. The bone is heavily weathered and there are no clear indications of human modification. Artifacts found at the site include three Clovis points and a scraper found among the bones and two flakes and a scraper found on the surface near the playa. The origins of the bone and stone assemblage are uncertain but four scenarios are offered: a successful mammoth kill, an unsuccessful kill with wounded animals dying at the watering hole, opportunistic scavenging following natural deaths, or a palimpsest of multiple deaths following both natural and human causes.

  18. ERTS surveys a 500 km squared locust breeding site in Saudi Arabia. [Red Sea coastal plain

    NASA Technical Reports Server (NTRS)

    Pedgley, D. E.

    1974-01-01

    From September 1972 to January 1973, ERTS-1 precisely located a 500 sq km area on the Red Sea coastal plain of Saudi Arabia within which the Desert Locust (Schistocerca gregaria, Forsk.) bred successfully and produced many small swarms. Growth of vegetation shown by satellite imagery was confirmed from ground surveys and raingauge data. The experiment demonstrates the feasibility of detecting potential locust breeding sites by satellite, and shows that an operational satellite would be a powerful tool for routine survey of the 3 x 10 to the 7th power sq km invasion area of the Desert Locust in Africa and Asia, as well as of other locust species in the arid and semi-arid tropics.

  19. New data on the stratigraphy and pedology of the Clovis and Plainview sites, Southern High Plains

    NASA Astrophysics Data System (ADS)

    Holliday, Vance T.

    1985-05-01

    The well known Clovis and Plainview archaeological sites of New Mexico and Texas have yielded new data on regional late Quaternary geologic, paleoclimatic, and pedologic histories. Eolian sedimentation at the Clovis site from about 10,000 to less than 8500 yr B.P. was followed by the formation of a cumulic soil between 8500 and 5000 yr B.P. Episodic eolian and slope wash deposition then culminated in massive eolian sedimentation about 5000 yr B.P. after which a Haplustalf formed then was subsequently buried by part of a dune system within the last 1000 yr. At the Plainview site, a basal stream gravel contains Plainview cultural material (ca. 10,000 yr B.P.), which is followed by a localized early Holocene lacustrine deposit, two eolian deposits (the younger dating to about 5000 yr B.P.), and a marsh deposit which slowly accreted as an Argiustoll formed in the younger eolian unit. The data indicate that on the Southern High Plains (1) between 12,000 and 8500 yr B.P. sedimentation varied from site to site, (2) there was a regional climate change toward warming and drying in the early Holocene, (3) two episodes of severe drought apparently occurred in the middle Holocene (6500 to 4500 yr B.P.), (4) between 4500 yr B.P. and the present an essentially modern climate existed, but with several shifts toward aridity within the last 1000 yr, (5) argillic horizons have developed in late Holocene soils, (6) clay illuviation can occur in calcareous soils, and (7) long-distance correlation of Holocene stratigraphy in the region is possible, particularly with the aid of soil morphology.

  20. Geochronology and Geomorphology of the Pioneer Archaeological Site (10BT676), Upper Snake River Plain, Idaho

    SciTech Connect

    Keene, Joshua L.

    2015-04-01

    The Pioneer site in southeastern Idaho, an open-air, stratified, multi-component archaeological locality on the upper Snake River Plain, provides an ideal situation for understanding the geomorphic history of the Big Lost River drainage system. We conducted a block excavation with the goal of understanding the geochronological context of both cultural and geomorphological components at the site. The results of this study show a sequence of five soil formation episodes forming three terraces beginning prior to 7200 cal yr BP and lasting until the historic period, preserving one cultural component dated to ~3800 cal yr BP and multiple components dating to the last 800 cal yr BP. In addition, periods of deposition and stability at Pioneer indicate climate fluctuation during the middle Holocene (~7200-3800 cal yr BP), minimal deposition during the late Holocene, and a period of increased deposition potentially linked to the Little Ice Age. In addition, evidence for a high-energy erosion event dated to ~3800 cal yr BP suggest a catastrophic flood event during the middle Holocene that may correlate with volcanic activity at the Craters of the Moon lava fields to the northwest. This study provides a model for the study of alluvial terrace formations in arid environments and their potential to preserve stratified archaeological deposits.

  1. Measurement-based direct radiative effect by brown carbon over Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Arola, A.; Schuster, G. L.; Pitkänen, M. R. A.; Dubovik, O.; Kokkola, H.; Lindfors, A. V.; Mielonen, T.; Raatikainen, T.; Romakkaniemi, S.; Tripathi, S. N.; Lihavainen, H.

    2015-08-01

    The importance of light absorbing organic aerosols, often called brown carbon (BrC), has become evident in recent years. However, there are relatively few measurement-based estimates for the direct radiative effect of BrC so far. In those earlier studies, the AErosol RObotic NETwork (AERONET) measured Aerosol Absorption Optical Depth (AAOD) and Absorption Angstrom Exponent (AAE) have been exploited. However, these two pieces of information are clearly not sufficient to separate properly carbonaceous aerosols from dust, while imaginary indices of refraction would contain more and better justified information for this purpose. This is first time that the direct radiative effect (DRE) of BrC is estimated by exploiting the AERONET-retrieved imaginary indices. We estimated it for four sites in Indo-Gangetic Plain (IGP), Karachi, Lahore, Kanpur and Gandhi College. We found a distinct seasonality, which was generally similar among all the sites, but with slightly different strengths. The monthly warming effect up to 0.5 W m-2 takes place during spring season. On the other hand, BrC results in overall cooling effect in the winter season, which can reach levels close to -1W m-2. We then estimated similarly also DRE of black carbon and total aerosol, in order to assess the relative significance of BrC radiative effect in the radiative effects of other components. Even though BrC impact seems minor in this context, we demonstrated that it is not insignificant and moreover that it is crucial to perform spectrally resolved radiative transfer calculations to obtain good estimates for DRE of BrC.

  2. Influence of Relief on Vegetation Factors and Agrotechnical Differentiation Measures in Transylvania Plain

    NASA Astrophysics Data System (ADS)

    Ioana Moraru, Paula; Rusu, Teodor; Bogdan, Ileana; Ioan Pop, Adrian

    2016-04-01

    Transylvanian Plain (TP), with an area of 395.616 hectares, has a special importance for Romanian agriculture being characterized as a region orographically represented by hilly areas hills whereas climatically appears as a plain. Physical-geographical conditions from TP (low level of forestation; climate specific to plains) have resulted in numerous land degradation phenomena: land erosion, landslide, draining of gradient springs and groundwater level. These conditions create a favourable framework for the development of anthropic morphogenetic processes, as well as those triggered by natural mechanisms, thus intensifying the pace and their territorial expansion. Rainfall, through annual distribution and spring-summer pluvial aggressiveness, require the implementation of preservation measures on arable land, particularly for spring cultures. Along with rainfall, more factors are involved: relief, by the high degree of fragmentation and through tilting slopes; vegetation, by the dominance of cultivated plants and by the advanced state of degradation of vegetal grasslands (especially on southern slopes); lithology, by the predominance of loose rocks (sand, marl, sandstone etc.). In order to determine the influence of landscape morphology on the agro-technical characterization of land, 11 HOBO Micro Stations (H21-002) have been implemented from April to October in the locality Caianu, at various altitudes (311-441 m) at exposure coverage (N, NW, W, S, SE, E, NE). HOBO Smart Temp (S-TMB-M002) temperature sensors and Decagon EC-5 (S-SMC-M005) moisture sensors were connected to HOBO Micro Stations. Additionally, in 4 of the 11 sites, tipping bucket rain gauges (RG3-M) were deployed to measure precipitation. Each station stored electronic data regarding ground temperature at 3 depths (10, 20, 30 cm), humidity at a depth of 10 cm, air temperature (1 m) and precipitation. Data were downloaded from the Micro Stations via a laptop computer using HOBOware Pro Software Version

  3. Measuring urea persistence, distribution and transport on coastal plain soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The persistence and mobility of urea, an organic form of nitrogen present in animal manures and commercial fertilizers, has rarely been studied and measured, because it is assumed to undergo rapid hydrolysis to ammonia. However, preliminary studies have shown urea to exist in leachate and runoff sev...

  4. Sampling design and procedures for fixed surface-water sites in the Georgia-Florida coastal plain study unit, 1993

    USGS Publications Warehouse

    Hatzell, H.H.; Oaksford, E.T.; Asbury, C.E.

    1995-01-01

    The implementation of design guidelines for the National Water-Quality Assessment (NAWQA) Program has resulted in the development of new sampling procedures and the modification of existing procedures commonly used in the Water Resources Division of the U.S. Geological Survey. The Georgia-Florida Coastal Plain (GAFL) study unit began the intensive data collection phase of the program in October 1992. This report documents the implementation of the NAWQA guidelines by describing the sampling design and procedures for collecting surface-water samples in the GAFL study unit in 1993. This documentation is provided for agencies that use water-quality data and for future study units that will be entering the intensive phase of data collection. The sampling design is intended to account for large- and small-scale spatial variations, and temporal variations in water quality for the study area. Nine fixed sites were selected in drainage basins of different sizes and different land-use characteristics located in different land-resource provinces. Each of the nine fixed sites was sampled regularly for a combination of six constituent groups composed of physical and chemical constituents: field measurements, major ions and metals, nutrients, organic carbon, pesticides, and suspended sediments. Some sites were also sampled during high-flow conditions and storm events. Discussion of the sampling procedure is divided into three phases: sample collection, sample splitting, and sample processing. A cone splitter was used to split water samples for the analysis of the sampling constituent groups except organic carbon from approximately nine liters of stream water collected at four fixed sites that were sampled intensively. An example of the sample splitting schemes designed to provide the sample volumes required for each sample constituent group is described in detail. Information about onsite sample processing has been organized into a flowchart that describes a pathway for each of

  5. Chemistry of Dry Deposition on Building Materials at an Urban Site on Indo Gangetic Plain in India

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Srivastava, S. S.; Kumari, K. M.

    2008-05-01

    Dry deposition is an important pathway for removal of pollutants from the atmosphere to earth surfaces. Agra is famous for historical monuments and cultural heritage worldwide. Increase in atmospheric contamination has caused extinction threats to building materials. The main pollutants of concern are S and N species. This paper deals with deposition of F-, Cl-, SO42-, NO3-, SO2, HNO3, NH3, Na+, K+, Ca2+, Mg2+ and NH4+ on marbles and red stones at Agra a site in Indo-Gangetic Plain. Dry deposition was higher on white marble than red stone. X-ray study reveals that higher deposition on marble is probably due to chemical characteristics of surfaces. Direct measurements study are cumbersome and tedious so an alternate method of parameterization based on meteorological parameters for calculation of dry deposition of S and N compounds to building materials are simulated and computer programme was developed to make it more convenient, fast and useful. The deposition velocity of SO2, HNO3, SO42- and NO3- obtained by current parameterization method are in the reported range. Dry deposition fluxes obtained by the current parameterization method and direct measurements are in the range.

  6. Estimating switchgrass productivity in the Great Plains using satellite vegetation index and site environmental variables

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.; Howard, Daniel M.

    2015-01-01

    Switchgrass is being evaluated as a potential feedstock source for cellulosic biofuels and is being cultivated in several regions of the United States. The recent availability of switchgrass land cover maps derived from the National Agricultural Statistics Service cropland data layer for the conterminous United States provides an opportunity to assess the environmental conditions of switchgrass over large areas and across different geographic locations. The main goal of this study is to develop a data-driven multiple regression switchgrass productivity model and identify the optimal climate and environment conditions for the highly productive switchgrass in the Great Plains (GP). Environmental and climate variables used in the study include elevation, soil organic carbon, available water capacity, climate, and seasonal weather. Satellite-derived growing season averaged Normalized Difference Vegetation Index (GSN) was used as a proxy for switchgrass productivity. Multiple regression analyses indicate that there are strong correlations between site environmental variables and switchgrass productivity (r = 0.95). Sufficient precipitation and suitable temperature during the growing season (i.e., not too hot or too cold) are favorable for switchgrass growth. Elevation and soil characteristics (e.g., soil available water capacity) are also an important factor impacting switchgrass productivity. An anticipated switchgrass biomass productivity map for the entire GP based on site environmental and climate conditions and switchgrass productivity model was generated. Highly productive switchgrass areas are mainly located in the eastern part of the GP. Results from this study can help land managers and biofuel plant investors better understand the general environmental and climate conditions influencing switchgrass growth and make optimal land use decisions regarding switchgrass development in the GP.

  7. Geomorphologic and mineralogic characterization of the northern plains of Mars at the Phoenix Mission candidate landing sites

    NASA Astrophysics Data System (ADS)

    Seelos, K. D.; Arvidson, R. E.; Cull, S. C.; Hash, C. D.; Heet, T. L.; Guinness, E. A.; McGuire, P. C.; Morris, R. V.; Murchie, S. L.; Parker, T. J.; Roush, T. L.; Seelos, F. P.; Wolff, M. J.

    2008-09-01

    A suite of remote sensing data is used to evaluate both geomorphology and mineralogy of the candidate landing sites for the 2007 Phoenix Mission. Three candidate landing site boxes are situated in the northern plains of Mars on the distal flank of Alba Patera in the region from 67°N to 72°N and from ~230°E to 260°E. Geomorphology is mapped at subkilometer spatial scales using Thermal Emission Imaging System (THEMIS) visible and Mars Orbiter Laser Altimeter (MOLA) topographic data, supplemented by images from the High-Resolution Imaging Science Experiment (HiRISE) and Context Imager (CTX). Mineralogy and spectral properties are examined using Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) visible and near-infrared multispectral mapping and targeted hyperspectral data at ~200 and ~20 m/pixel, respectively. Geomorphic mapping supports the idea that terrains along the boundary between the Amazonian Scandia region and Vastitas Borealis marginal geologic units have undergone extensive modification. Intercrater plains are disrupted to form mesas and interlocking blocks, while irregular depressions and knobby terrain are consistent with erosion/subsidence and local deposition. Despite the varied morphology, the present-day surface is nearly homogeneous with spectral signatures dominated by nanophase iron oxides and basaltic sand and rocks, similar to that of the Gusev crater plains at the Mars Exploration Rover (MER) landing site. The compilation of geomorphic and spectral information for the candidate Phoenix landing sites provides a framework for the mission's in situ observations to be extrapolated to the northern plains as a whole.

  8. Sources apportionment of PM2.5 in a background site in the North China Plain.

    PubMed

    Yao, Lan; Yang, Lingxiao; Yuan, Qi; Yan, Chao; Dong, Can; Meng, Chuanping; Sui, Xiao; Yang, Fei; Lu, Yaling; Wang, Wenxing

    2016-01-15

    To better understand the sources and potential source regions of PM2.5, a field study was conducted from January 2011 to November 2011 at a background site, the Yellow River Delta National Nature Reserve (YRDNNR) in the North China Plain. Positive matrix factorisation (PMF) analysis and a potential source contribution function (PSCF) model were used to assess the data, which showed that YRDNNR experienced serious air pollution. Concentrations of PM2.5 at YRDNNR were 71.2, 92.7, 97.1 and 62.5 μg m(-3) in spring, summer, autumn and winter, respectively, with 66.0% of the daily samples exhibiting higher concentrations of PM2.5 than the national air quality standard. PM2.5 mass closure showed remarkable seasonal variations. Sulphate, nitrate and ammonium were the dominant fractions of PM2.5 in summer (58.0%), whereas PM2.5 was characterized by a high load of organic aerosols (40.2%) in winter. PMF analysis indicated that secondary sulphate and nitrate (54.3%), biomass burning (15.8%), industry (10.7%), crustal matter (8.3%), vehicles (5.2%) and copper smelting (4.9%) were important sources of PM2.5 at YRDNNR on an annual average. The source of secondary sulphate and nitrate was probably industrial coal combustion. PSCF analysis indicated a significant regional impact on PM2.5 at YRDNNR all year round. Local emission may be non-negligible at YRDNNR in summer. The results of the present study provide a scientific basis for the development of PM2.5 control strategies on a regional scale. PMID:26433327

  9. Analytical study of the effects of the Low-Level Jet on moisture convergence and vertical motion fields at the Southern Great Plains Cloud and Radiation Testbed site

    SciTech Connect

    Bian, X.; Zhong, S.; Whiteman, C.D.; Stage, S.A.

    1996-04-01

    The Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) is located in a region that is strongly affected by a prominent meteorological phenomenon--the Great Plains Low-Level Jet (LLJ). Observations have shown that the LLJ plays a vital role in spring and summertime cloud formation and precipitation over the Great Plains. An improved understanding of the LLJ characteristics and its impact on the environment is necessary for addressing the fundamental issue of development and testing of radiational transfer and cloud parameterization schemes for the general circulation models (GCMs) using data from the SGP CART site. A climatological analysis of the summertime LLJ over the SGP has been carried out using hourly observations from the National Oceanic and Atmospheric Administration (NOAA) Wind Profiler Demonstration Network and from the ARM June 1993 Intensive Observation Period (IOP). The hourly data provide an enhanced temporal and spatial resolution relative to earlier studies which used 6- and 12-hourly rawinsonde observations at fewer stations.

  10. Multiple new-particle growth pathways observed at the US DOE Southern Great Plains field site

    NASA Astrophysics Data System (ADS)

    Hodshire, Anna L.; Lawler, Michael J.; Zhao, Jun; Ortega, John; Jen, Coty; Yli-Juuti, Taina; Brewer, Jared F.; Kodros, Jack K.; Barsanti, Kelley C.; Hanson, Dave R.; McMurry, Peter H.; Smith, James N.; Pierce, Jeffery R.

    2016-07-01

    New-particle formation (NPF) is a significant source of aerosol particles into the atmosphere. However, these particles are initially too small to have climatic importance and must grow, primarily through net uptake of low-volatility species, from diameters ˜ 1 to 30-100 nm in order to potentially impact climate. There are currently uncertainties in the physical and chemical processes associated with the growth of these freshly formed particles that lead to uncertainties in aerosol-climate modeling. Four main pathways for new-particle growth have been identified: condensation of sulfuric-acid vapor (and associated bases when available), condensation of organic vapors, uptake of organic acids through acid-base chemistry in the particle phase, and accretion of organic molecules in the particle phase to create a lower-volatility compound that then contributes to the aerosol mass. The relative importance of each pathway is uncertain and is the focus of this work. The 2013 New Particle Formation Study (NPFS) measurement campaign took place at the DOE Southern Great Plains (SGP) facility in Lamont, Oklahoma, during spring 2013. Measured gas- and particle-phase compositions during these new-particle growth events suggest three distinct growth pathways: (1) growth by primarily organics, (2) growth by primarily sulfuric acid and ammonia, and (3) growth by primarily sulfuric acid and associated bases and organics. To supplement the measurements, we used the particle growth model MABNAG (Model for Acid-Base chemistry in NAnoparticle Growth) to gain further insight into the growth processes on these 3 days at SGP. MABNAG simulates growth from (1) sulfuric-acid condensation (and subsequent salt formation with ammonia or amines), (2) near-irreversible condensation from nonreactive extremely low-volatility organic compounds (ELVOCs), and (3) organic-acid condensation and subsequent salt formation with ammonia or amines. MABNAG is able to corroborate the observed differing growth

  11. Automatic Training Site Selection for Agricultural Crop Classification: a Case Study on Karacabey Plain, Turkey

    NASA Astrophysics Data System (ADS)

    Ozdarici Ok, A.; Akyurek, Z.

    2011-09-01

    This study implements a traditional supervised classification method to an optical image composed of agricultural crops by means of a unique way, selecting the training samples automatically. Panchromatic (1m) and multispectral (4m) Kompsat-2 images (July 2008) of Karacabey Plain (~100km2), located in Marmara region, are used to evaluate the proposed approach. Due to the characteristic of rich, loamy soils combined with reasonable weather conditions, the Karacabey Plain is one of the most valuable agricultural regions of Turkey. Analyses start with applying an image fusion algorithm on the panchromatic and multispectral image. As a result of this process, 1m spatial resolution colour image is produced. In the next step, the four-band fused (1m) image and multispectral (4m) image are orthorectified. Next, the fused image (1m) is segmented using a popular segmentation method, Mean- Shift. The Mean-Shift is originally a method based on kernel density estimation and it shifts each pixel to the mode of clusters. In the segmentation procedure, three parameters must be defined: (i) spatial domain (hs), (ii) range domain (hr), and (iii) minimum region (MR). In this study, in total, 176 parameter combinations (hs, hr, and MR) are tested on a small part of the area (~10km2) to find an optimum segmentation result, and a final parameter combination (hs=18, hr=20, and MR=1000) is determined after evaluating multiple goodness measures. The final segmentation output is then utilized to the classification framework. The classification operation is applied on the four-band multispectral image (4m) to minimize the mixed pixel effect. Before the image classification, each segment is overlaid with the bands of the image fused, and several descriptive statistics of each segment are computed for each band. To select the potential homogeneous regions that are eligible for the selection of training samples, a user-defined threshold is applied. After finding those potential regions, the

  12. Multi-site evaluation of hydrology component of SWAT in the Coastal Plain of Southwest Georgia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land use changes and development within mixed use watersheds can result in adverse or positive environmental impacts. In this study, the feasibility of using the Soil Water Assessment Tool (SWAT) watershed model to predict hydrologic responses in watersheds within the Coastal Plain of southwest Geo...

  13. Multi-site Evaluation of Hydrology Component of SWAT in the Coastal Plain of Southwest Georgia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many concerns have been raised about the potential impacts of land use changes and development in ungaged watersheds. In this study, the feasibility of using the Soil Water Assessment Tool (SWAT) for predicting the hydrology of ungaged watersheds within the Coastal Plain of southwest Georgia was ev...

  14. Implementation and evaluation of the Heffter method to calculate the height of the planetary boundary layer above the ARM Southern Great Plains site

    SciTech Connect

    Pesenson, Igor

    2003-11-30

    This paper explores the Heffter Method--an algorithm for finding the height of the Planetary Boundary Layer (PBL). The algorithm is applied to the Balloon Borne Sounding System (BBSS) data collected over the Southern Great Plains (SGP) Site of the Atmospheric Radiation Measurement (ARM) Program. After discussing the successes and shortcomings of the algorithm, the resulting PBL height estimates for dates in May of 2002 are related to CO{sub 2} concentration and wind data. The CO{sub 2} data used is from the Precision Gas System (PGS) while the wind data is a combination of data from the Portable CO{sub 2} Flux System on the SGP site and BBSS.

  15. Integrated evaluation of aerosols during haze-fog episodes at one regional background site in North China Plain

    NASA Astrophysics Data System (ADS)

    Yuan, Qi; Li, Weijun; Zhou, Shengzhen; Yang, Lingxiao; Chi, Jianwei; Sui, Xiao; Wang, Wenxing

    2015-04-01

    To investigate haze-fog (HF) formation mechanisms and transport, trace gases and aerosols in the aged air masses during regional haze episodes were measured at a regional background site in the North China Plain during 4-19 July, 2011. Mixing state of individual particles, soluble ions of PM2.5, and particle number concentrations were studied using transmission electron microscope, ambient ion monitoring, and wide-range particle spectrometer, respectively. Average mass concentration of PM2.5 was 3 times higher on HF days (70 μg/m3) than on clear days (22 μg/m3). The major soluble ionic components (SO42 -, NO3-, and NH4+) in PM2.5 were over 4 times higher on HF days (40.6 μg/m3) than on clear days (9.1 μg/m3). The high sulfur oxidation ratios (SOR) and nitrogen oxidation ratios (NOR) values during HF days suggest that polluted weather favored transformation of SO2 and NOx into sulfates and nitrates compared to clear days. Particle number fraction of the accumulation mode increases from 11% on clear days up to 26% on HF days. Individual particle analysis shows that secondary inorganic particles (e.g., sulfate and nitrate) as the most abundant species likely determine internal mixing of individual particles and almost half of them mixed refractory particles (e.g., metal, fly ash, soot, and mineral) on HF days. These fine refractory particles were likely emitted from coal fired power plants, heavy industries, and urban city in Shandong and Hebei provinces. Our results suggest that aged air masses mostly contain aged particles of long-range transport and some from new particle formation and growth in the regional background atmosphere.

  16. Observation and modelling of ambient nitrous acid (HONO) at a rural site (Wangdu) in the North China Plain in summer 2014

    NASA Astrophysics Data System (ADS)

    Liu, Yuhan; Lu, Keding; Li, Xin; Dong, Huabin; Ye, Nini; Tan, Zhaofeng; Wu, Yusheng; Zeng, Liming; Bohn, Birger; Broch, Sebastian; Fuchs, Hendrik; Hofzumahaus, Andrease; Holland, Frank; Rohrer, Franz; Wahner, Andrease; Zhang, Yuanhang

    2016-04-01

    Significant missing daytime HONO sources were determined in many places worldwide from urban to rural conditions. In recent field campaigns performed in Chinese megacity regions such as Pearl River Delta, Yangtze River Delta and North China Plain, strong missing HONO sources were also determined and possible explanations including photoenhanced heterogeneous conversion of NO2, photolysis of particulate nitrate, soil emission, and emission from biomass burning. In the present work, we performed in situ measurements of ambient HONO concentration at a rural site (Wangdu) in North China Plain in summer 2014. The observed HONO concentration ranges from tens ppt to 5 ppb. The relations between observed HONO concentration and nitrogen oxide, aerosol and gas-phase chemistry are discussed with statistical methods. Moreover, we use an observational constrained box model to explore the possible roles of the state of art HONO production mechanisms. In addition, after the day of fertilization, we observed a daytime HONO peak around noon time which was distinct from other days by the HONO/NO2 ratio. We believe this peak is a strong indication of soil HONO emission since our site was located in center of a large wheat field. Compared to other days, this increased HONO concentration contributes significantly to the OH production around noontime.

  17. Enhanced Geothermal System Potential for Sites on the Eastern Snake River Plain, Idaho

    SciTech Connect

    Robert K Podgorney; Thomas R. Wood; Travis L McLing; Gregory Mines; Mitchell A Plummer; Michael McCurry; Ahmad Ghassemi; John Welhan; Joseph Moore; Jerry Fairley; Rachel Wood

    2013-09-01

    The Snake River volcanic province overlies a thermal anomaly that extends deep into the mantle and represents one of the highest heat flow provinces in North America (Blackwell and Richards, 2004). This makes the Snake River Plain (SRP) one of the most under-developed and potentially highest producing geothermal districts in the United States. Elevated heat flow is typically highest along the margins of the topographic SRP and lowest along the axis of the plain, where thermal gradients are suppressed by the Snake River aquifer. Beneath this aquifer, however, thermal gradients rise again and may tap even higher heat flows associated with the intrusion of mafic magmas into the mid-crustal sill complex (e.g., Blackwell, 1989).

  18. Multiple new-particle growth pathways observed at the US DOE Southern Great Plains field site

    DOE PAGESBeta

    Hodshire, Anna L.; Lawler, Michael J.; Zhao, Jun; Ortega, John; Jen, Coty; Yli-Juuti, Taina; Brewer, Jared F.; Kodros, Jack K.; Barsanti, Kelley C.; Hanson, Dave R.; et al

    2016-07-28

    New-particle formation (NPF) is a significant source of aerosol particles into the atmosphere. However, these particles are initially too small to have climatic importance and must grow, primarily through net uptake of low-volatility species, from diameters  ∼  1 to 30–100 nm in order to potentially impact climate. There are currently uncertainties in the physical and chemical processes associated with the growth of these freshly formed particles that lead to uncertainties in aerosol-climate modeling. Four main pathways for new-particle growth have been identified: condensation of sulfuric-acid vapor (and associated bases when available), condensation of organic vapors, uptake of organic acids through acid–base chemistrymore » in the particle phase, and accretion of organic molecules in the particle phase to create a lower-volatility compound that then contributes to the aerosol mass. The relative importance of each pathway is uncertain and is the focus of this work. The 2013 New Particle Formation Study (NPFS) measurement campaign took place at the DOE Southern Great Plains (SGP) facility in Lamont, Oklahoma, during spring 2013. Measured gas- and particle-phase compositions during these new-particle growth events suggest three distinct growth pathways: (1) growth by primarily organics, (2) growth by primarily sulfuric acid and ammonia, and (3) growth by primarily sulfuric acid and associated bases and organics. To supplement the measurements, we used the particle growth model MABNAG (Model for Acid–Base chemistry in NAnoparticle Growth) to gain further insight into the growth processes on these 3 days at SGP. MABNAG simulates growth from (1) sulfuric-acid condensation (and subsequent salt formation with ammonia or amines), (2) near-irreversible condensation from nonreactive extremely low-volatility organic compounds (ELVOCs), and (3) organic-acid condensation and subsequent salt formation with ammonia or amines. MABNAG is able to corroborate the

  19. Comparison of Vaisala radiosondes RS41 and RS92 at the ARM Southern Great Plains site

    NASA Astrophysics Data System (ADS)

    Jensen, Michael P.; Holdridge, Donna J.; Survo, Petteri; Lehtinen, Raisa; Baxter, Shannon; Toto, Tami; Johnson, Karen L.

    2016-07-01

    In the fall of 2013, the Vaisala RS41 (fourth generation) radiosonde was introduced as a replacement for the RS92-SGP radiosonde with improvements in measurement accuracy of profiles of atmospheric temperature, humidity, and pressure. In order to help characterize these improvements, an intercomparison campaign was undertaken at the US Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility site in north-central Oklahoma, USA. During 3-8 June 2014, a total of 20 twin-radiosonde flights were performed in a variety of atmospheric conditions representing typical midlatitude continental summertime conditions. The results show that for most of the observed conditions the RS92 and RS41 measurements agree much better than the manufacturer-specified combined uncertainties with notable exceptions when exiting liquid cloud layers where the "wet-bulbing" effect appears to be mitigated for several cases in the RS41 observations. The RS41 measurements of temperature and humidity, with applied correction algorithms, also appear to show less sensitivity to solar heating. These results suggest that the RS41 does provide important improvements, particularly in cloudy conditions. For many science applications - such as atmospheric process studies, retrieval development, and weather forecasting and climate modeling - the differences between the RS92 and RS41 measurements should have little impact. However, for long-term trend analysis and other climate applications, additional characterization of the RS41 measurements and their relation to the long-term observational records will be required.

  20. Comparison of Vaisala radiosondes RS41 and RS92 at the ARM Southern Great Plains Site

    SciTech Connect

    Jensen, M. P.; Holdridge, D.; Survo, P.; Lehtinen, R.; Baxter, S.; Toto, T.; Johnson, K. L.

    2015-11-02

    In the fall of 2013, the Vaisala RS41-SG (4th generation) radiosonde was introduced as a replacement for the RS92-SGP radiosonde with improvements in measurement accuracy of profiles of atmospheric temperature, humidity and pressure. Thus, in order to help characterize these improvements, an intercomparison campaign was undertaken at the US Department of Energy's Atmospheric Radiation Measurement (ARM) Facility site in north Central Oklahoma USA. During 3–8 June 2014, a total of 20 twin-radiosonde flights were performed in a variety of atmospheric conditions representing typical midlatitude continental summertime conditions. The results suggest that the RS92 and RS41 measurements generally agree within manufacturer specified tolerances with notable exceptions when exiting liquid cloud layers where the "wet bulbing" effect is mitigated in the RS41 observations. The RS41 measurements also appear to show a smaller impact from solar heating. These results suggest that the RS41 does provide important improvements, particularly in cloudy conditions, but under most observational conditions the RS41 and RS92 measurements agree within the manufacturer specified limits and so a switch to RS41 radiosondes will have little impact on long-term observational records.

  1. Comparison of Vaisala radiosondes RS41 and RS92 at the ARM Southern Great Plains Site

    DOE PAGESBeta

    Jensen, M. P.; Holdridge, D.; Survo, P.; Lehtinen, R.; Baxter, S.; Toto, T.; Johnson, K. L.

    2015-11-02

    In the fall of 2013, the Vaisala RS41-SG (4th generation) radiosonde was introduced as a replacement for the RS92-SGP radiosonde with improvements in measurement accuracy of profiles of atmospheric temperature, humidity and pressure. Thus, in order to help characterize these improvements, an intercomparison campaign was undertaken at the US Department of Energy's Atmospheric Radiation Measurement (ARM) Facility site in north Central Oklahoma USA. During 3–8 June 2014, a total of 20 twin-radiosonde flights were performed in a variety of atmospheric conditions representing typical midlatitude continental summertime conditions. The results suggest that the RS92 and RS41 measurements generally agree within manufacturermore » specified tolerances with notable exceptions when exiting liquid cloud layers where the "wet bulbing" effect is mitigated in the RS41 observations. The RS41 measurements also appear to show a smaller impact from solar heating. These results suggest that the RS41 does provide important improvements, particularly in cloudy conditions, but under most observational conditions the RS41 and RS92 measurements agree within the manufacturer specified limits and so a switch to RS41 radiosondes will have little impact on long-term observational records.« less

  2. Comparison of Vaisala radiosondes RS41 and RS92 at the ARM Southern Great Plains Site

    NASA Astrophysics Data System (ADS)

    Jensen, M. P.; Holdridge, D.; Survo, P.; Lehtinen, R.; Baxter, S.; Toto, T.; Johnson, K. L.

    2015-11-01

    In the fall of 2013, the Vaisala RS41-SG (4th generation) radiosonde was introduced as a replacement for the RS92-SGP radiosonde with improvements in measurement accuracy of profiles of atmospheric temperature, humidity and pressure. In order to help characterize these improvements, an intercomparison campaign was undertaken at the US Department of Energy's Atmospheric Radiation Measurement (ARM) Facility site in north Central Oklahoma USA. During 3-8 June 2014, a total of 20 twin-radiosonde flights were performed in a variety of atmospheric conditions representing typical midlatitude continental summertime conditions. The results suggest that the RS92 and RS41 measurements generally agree within manufacturer specified tolerances with notable exceptions when exiting liquid cloud layers where the "wet bulbing" effect is mitigated in the RS41 observations. The RS41 measurements also appear to show a smaller impact from solar heating. These results suggest that the RS41 does provide important improvements, particularly in cloudy conditions, but under most observational conditions the RS41 and RS92 measurements agree within the manufacturer specified limits and so a switch to RS41 radiosondes will have little impact on long-term observational records.

  3. The latitudinal distribution of putative periglacial sites on the northern martian plains.

    NASA Astrophysics Data System (ADS)

    Barrett, Alex; Balme, Matt; Patel, Manish; Hagermann, Axel

    2013-04-01

    Periglacial landscapes are found in cold regions of Earth where the freezing and thawing of the permafrost active layer plays an important role in shaping the landscape. A variety of distinctive landforms such as sorted circles, thermokarst depressions and solifluction lobes are indicative of periglacial environments on Earth. It has been suggested that similar features on the northern plains of Mars could be the result of the same, or similar processes (1). Since the formation of a periglacial landscape requires the freezing and thawing of water their presence on Mars would indicate that the thawing of water-ice has occurred in the geologically recent past. Periglacial landforms could have formed in past periods of higher obliquity when the environment was more conducive to the action of liquid water or due to the depression of the freezing point by brines under current conditions. We have conducted a survey of putative periglacial landforms across the northern Martian plains. Over 400 HiRISE images of the walls and floors of >1 km diameter craters have been examined to map the locations of these landforms across regions of Acidalia, Utopia and Arcadia Planitia between 30 and 80 Degrees North. These data allow an assessment of the latitudinal distribution of these features. Variations between the types of landform found in different regions of the Northern Plains of mars can also be assessed. Scalloped depressions and gullies have a similar latitude range, and are frequently found south of 60 Degrees North. There are a large number of scalloped depressions in Utopia as noted by other studies (2), similar features are found in both Acidalia and Arcadia but are not found over as wide a range of latitudes in Acidalia. Possible sorted landforms (lobes, polygons etc) can be found as far south as 40 and as far north as 70 Degrees North but most are found between 45-65 Degrees North. They seem to occur over a wider range of latitudes in Utopia Planitia than in Acidalia

  4. End-Pleistocene Soil Constituents from Selected Sites on the Mid-Atlantic Coastal Plain: First Results

    NASA Astrophysics Data System (ADS)

    Lecompte, M. A.; Rock, B. N.; Demitroff, M.; Reid, M.; Lucas, L.; Hughes, D.; Hayden, L. B.

    2008-12-01

    Stratigraphic analyses of soil samples taken from dated and undated sites located along the mid-Atlantic Coastal Plain have yielded evidence of increased contemporary biomass burning, compared to under and overlying strata. Host strata ages are known or projected to bracket the onset of the Younger Dryas cooling episode at 12.9 cal ka. This ongoing investigation includes samples from: 1) a late-Pleistocene aged periglacial feature located within the Pine Barrens of southern New Jersey; 2) an artifact dated stratum (~ 12.9 ka) in an embankment on the Chesapeake Bay in Maryland; and 3) an as yet undated (C14 test results pending) embankment of the Perquimans River in northeastern North Carolina projected to be age-appropriate. Sample analysis of scanning electron (SEM) micrographs from the Chesapeake Bay site revealed charred fragments of late-Wisconsinan Krummholz birch (Betula) and species of spruce (Picea) and fir (Abies), which are not extant on the modern-day, temperate Coastal Plain. In addition, organic faunal material is found in association with ancient charred boreal wood, including hollow hair and skin fragments that are as yet unidentified, perhaps from cold climate adapted animals as inferred from host sediment age. Charred wood fragments are found to be attracted to a neodymium magnet. Some aggregates of organic matter appear to contain magnetic spherule-like grains whose composition is awaiting geochemical analysis. Photomicrographs of all specimens and a stratigraphic breakdown in the relative amount of burned carbon associated with each site and strata will be presented, along with the results of various analyses that are currently underway.

  5. Wave Journal Bearing. Part 2: Experimental Pressure Measurements and Fractional Frequency Whirl Threshold for Wave and Plain Journal Bearings

    NASA Technical Reports Server (NTRS)

    Walker, James F.; Dimofte, Florin; Addy, Harold E., Jr.

    1995-01-01

    A new hydrodynamic bearing concept, the wave journal bearing, is being developed because it has better stability characteristics than plain journal bearings while maintaining similar load capacity. An analysis code to predict the steady state and dynamic performance of the wave journal bearing is also part of the development. To verify numerical predictions and contrast the wave journal bearing's stability characteristics to a plain journal bearing, tests were conducted at NASA Lewis Research Center using an air bearing test rig. Bearing film pressures were measured at 16 ports located around the bearing circumference at the middle of the bearing length. The pressure measurements for both a plain journal bearing and a wave journal bearing compared favorably with numerical predictions. Both bearings were tested with no radial load to determine the speed threshold for self-excited fractional frequency whirl. The plain journal bearing started to whirl immediately upon shaft start-up. The wave journal did not incur self-excited whirl until 800 to 900 rpm as predicted by the analysis. Furthermore, the wave bearing's geometry limited the whirl orbit to less than the bearing's clearance. In contrast, the plain journal bearing did not limit the whirl orbit, causing it to rub.

  6. Burn site groundwater interim measures work plan.

    SciTech Connect

    Witt, Jonathan L.; Hall, Kevin A.

    2005-05-01

    This Work Plan identifies and outlines interim measures to address nitrate contamination in groundwater at the Burn Site, Sandia National Laboratories/New Mexico. The New Mexico Environment Department has required implementation of interim measures for nitrate-contaminated groundwater at the Burn Site. The purpose of interim measures is to prevent human or environmental exposure to nitrate-contaminated groundwater originating from the Burn Site. This Work Plan details a summary of current information about the Burn Site, interim measures activities for stabilization, and project management responsibilities to accomplish this purpose.

  7. Plains Prickly Pear Response to Fire: Effects of Fuel Load, Heat, Fire Weather, and Donor Site Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plains prickly pear (Opuntia polyacantha Haw.) is common throughout the Great Plains and like related species, often becomes detrimental to agricultural production. We examined direct fire effects on plains prickly pear and mechanisms of tissue damage to facilitate development of fire prescriptions...

  8. Southern Great Plains Safety Orientation

    SciTech Connect

    Schatz, John

    2014-05-01

    Welcome to the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ARM) Southern Great Plains (SGP) site. This U.S. Department of Energy (DOE) site is managed by Argonne National Laboratory (ANL). It is very important that all visitors comply with all DOE and ANL safety requirements, as well as those of the Occupational Safety and Health Administration (OSHA), the National Fire Protection Association, and the U.S. Environmental Protection Agency, and with other requirements as applicable.

  9. The supply of nutrients due to vertical turbulent mixing: A study at the Porcupine Abyssal Plain study site in the northeast Atlantic

    NASA Astrophysics Data System (ADS)

    Martin, Adrian P.; Lucas, Michael I.; Painter, Stuart C.; Pidcock, Rosalind; Prandke, Hartmut; Prandke, Holger; Stinchcombe, Mark C.

    2010-08-01

    As part of a multidisciplinary cruise to the Porcupine Abyssal Plain (PAP) study site (49°00'N 16°30'W), in June and July 2006, observations were made of the vertical nitrate flux due to turbulent mixing. Daily profiles of nitrate and turbulent mixing, at the central PAP site, give a mean nitrate flux into the euphotic zone of 0.09 (95% confidence intervals: 0.05-0.16) mmol N m -2 d -1. This is a factor of 50 lower than the mean observed rate of nitrate uptake within the euphotic zone (5.1±1.3 mmol N m -2 d -1). By using our direct observations to 'validate' a previously published parameterisation for turbulent mixing, we further quantify the variability in the vertical turbulent flux across a roughly 100×100 km region centred on the PAP site, using hydrographic data. The flux is uniformly low (0.08±0.26 mmol N m -2 d -1, the large standard deviation being due to a strongly non-Gaussian distribution) and is consistent with direct measurements at the central site. It is demonstrated that on an annual basis convective mixing supplies at least 40-fold more nitrate to the euphotic zone than turbulent mixing at this location. Other processes, such as those related with mesoscale phenomena, may also contribute significantly.

  10. Migrating birds : assessment of impact on 915-MHz radar wind profiler performance at the Atmospheric Radiation Measurement Program's southern great plains.

    SciTech Connect

    Pekour, M. S.

    2002-03-13

    The U. S. Department of Energy's Atmospheric Radiation Measurement Program is running a small network of 915-MHz radar wind profilers (RWPs) at its Southern Great Plains Cloud and Radiation Testbed site in northern Oklahoma and southern Kansas. Seasonal migration of passerines may cause significant interference with the operation of 915-MHz RWPs. The extent of this ''bird jamming'' depends on the radar's parameters, the place of deployment, the season, and the time of day. This poster presents a new diagnostic method for detecting possible bird contamination in RWP data, along with an evaluation of the method using a three-year data set for two RWPs.

  11. A natural site for CO2 storage in the Little Hungarian Plain (western Hungary)

    NASA Astrophysics Data System (ADS)

    Király, C.; Berta, M.; Szamosfalvi, Á.; Falus, G.; Szabó, C.

    2012-04-01

    Reducing anthropogenic CO2 emissions is one of the greatest goals of the present and future environmental scientists. A measureable decrease in the atmospheric CO2 level can be achieved only by applying different solutions at the same time. Carbon capture and sequestration is considered to be an efficient technology in eliminating carbon-dioxide at large, stationary carbon-emitting industrial sources. To ensure the long term stability of the geologically trapped CO2, behavior of the CO2-reservoir-porewater system should be predictable on geological timescales. One of the suitable methods to describe a potential future CCS system is to approach it from an accessible system similar in extensions, geophysical and geochemical properties, and characteristic interactions. These are called natural sites; one of them is located in the western part of Hungary: this is the Répcelak-Mihályi Field. However the carbon dioxide is produced since the early 20th century for industrial purposes, the studied system is composed by 38 fields (26 CO2, 10 hydrocarbon, and 2 mixed gas). The CO2 is situated in a depth of about 1400 m in the Pannonian sedimentary sequence. These formations are formed by mainly sandstone, siltstone and clay; and were deposited in the late Miocene. In this ongoing research we are summarizing all the available databases from this area, provided by hydrocarbon exploration well logs, and core samples from the studied layers. We are collecting information to have the input data for further modeling projects. These data are about basic petrophysical properties (porosity and permeability), surface and deep zone gas analysis, and pore fluid contents. Concerning this group of information, we will be able to identify which major processes were taking place in the past in this natural CO2-H2O-rock system. These are expected to be mainly fluid-rock interactions. As a result, we have a close view on what reactions and at what rates are expected at a future CCS storage

  12. PERFORMING QUALITY FLOW MEASUREMENTS AT MINE SITES

    EPA Science Inventory

    Accurate flow measurement data is vital to research, monitoring, and remediation efforts at mining sites. This guidebook has been prepared to provide a summary of information relating to the performance of low measurements, and how this information can be applied at mining sites....

  13. The ridged plains as a possible landing site for the Mars sample return mission

    NASA Technical Reports Server (NTRS)

    Barlow, Nadine G.

    1988-01-01

    Differences in the shape and density of crater size-frequency distribution curves have been interpreted as indicators of different impactor populations. Within the inner solar system two production populations are seen. The signature of the first is recorded in the heavily cratered regions of the Moon, Mercury, and Mars and displays a multi-sloped distribution curve which cannot be described by a power law function at all crater diameters. The signature of the second population is seen in the lightly cratered lunar and Martian plains, where the size-frequency distribution curve can be approximated by a power law function of -3 differential slope in the 8- to 70-km diameter range. Based on data obtained from the Apollo lunar samples and crater flux estimates, the first population is believed to have been emplaced during the period of heavy bombardment which, at least on the Moon, ended about 3.8 BY ago. The second population has dominated the cratering record since that time and is commonly assumed to be due to comets and asteroids.

  14. Evaluation of Daytime Measurements of Aerosols and Water Vapor made by an Operational Raman Lidar over the Southern Great Plains

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Turner, David; Clayton, Marian; Schmid, Beat; Covert, David; Elleman, Robert; Orgren, John; Andrews, Elisabeth; Goldsmith, John E. M.; Jonsson, Hafidi

    2006-01-01

    Raman lidar water vapor and aerosol extinction profiles acquired during the daytime over the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in northern Oklahoma (36.606 N, 97.50 W, 315 m) are evaluated using profiles measured by in situ and remote sensing instruments deployed during the May 2003 Aerosol Intensive Operations Period (IOP). The automated algorithms used to derive these profiles from the Raman lidar data were first modified to reduce the adverse effects associated with a general loss of sensitivity of the Raman lidar since early 2002. The Raman lidar water vapor measurements, which are calibrated to match precipitable water vapor (PWV) derived from coincident microwave radiometer (MWR) measurements were, on average, 5-10% (0.3-0.6 g/m(exp 3) higher than the other measurements. Some of this difference is due to out-of-date line parameters that were subsequently updated in the MWR PWV retrievals. The Raman lidar aerosol extinction measurements were, on average, about 0.03 km(exp -1) higher than aerosol measurements derived from airborne Sun photometer measurements of aerosol optical thickness and in situ measurements of aerosol scattering and absorption. This bias, which was about 50% of the mean aerosol extinction measured during this IOP, decreased to about 10% when aerosol extinction comparisons were restricted to aerosol extinction values larger than 0.15 km(exp -1). The lidar measurements of the aerosol extinction/backscatter ratio and airborne Sun photometer measurements of the aerosol optical thickness were used along with in situ measurements of the aerosol size distribution to retrieve estimates of the aerosol single scattering albedo (omega(sub o)) and the effective complex refractive index. Retrieved values of omega(sub o) ranged from (0.91-0.98) and were in generally good agreement with omega(sub o) derived from airborne in situ measurements of scattering and absorption. Elevated aerosol

  15. Measurement of lateral acetabular coverage: a comparison between CT and plain radiography

    PubMed Central

    Chadayammuri, Vivek; Garabekyan, Tigran; Jesse, Mary-Kristen; Pascual-Garrido, Cecilia; Strickland, Colin; Milligan, Kenneth; Mei-Dan, Omer

    2015-01-01

    We prospectively evaluated the degree of absolute agreement between measurements of lateral center-edge angle (LCEA) on plain radiography (XR) and computed tomography (CT) in a consecutive cohort of 205 patients (410 hips) undergoing hip arthroscopy. Preoperative measurements of the LCEA were performed bilaterally utilizing standardized anteroposterior radiographs and coronal reformatted CT scans. Demographic variables including age, gender, height, weight, BMI and clinical diagnosis were recorded for all patients. Overall, measured values of the LCEA were 2.1° larger on CT compared with XR (32.9° versus 30.8°, P < 0.001). Subgroup analysis revealed the highest mean difference in hips with acetabular dysplasia and concomitant cam-type femoroacetabular impingement (FAI) [mean difference (CT–XR) 5.5°, 95% confidence interval (CI) 3.7°–7.3°, P = 0.011], followed by hips with isolated acetabular dysplasia (mean difference [CT–XR] 4.9°, 95% CI 2.7°–7.0°, P < 0.001). In contrast, 119 (29.0%) of the hips demonstrated larger measurements of the LCEA on 25 XR relative to CT. Of these hips, 20 (16.8%) had pincer-FAI and 25 had cam-FAI (21.0%), representing a significantly higher proportion compared with all other clinical subgroups (P = 0.045 and 0.036, respectively). Our study demonstrates measured values of the LCEA are consistently inflated on CT relative to XR for a wide variety of hip pathologies, highlighting the need for standardization and validation of CT-based measurements to improve the quality of clinical decision making. Level of Evidence: Diagnostic Level II. PMID:27011864

  16. Comparison of Meteorological Measurements from Sparse and Dense Surface Observation Networks in the U.S. Southern Great Plains

    SciTech Connect

    JW Monroe; MT Ritsche; M Franklin; KE Kehoe

    2008-02-28

    The primary objective of this study was to analyze the spatial variability of temperature and relative humidity across Kansas (KS) and Oklahoma (OK) for sparse and dense networks by comparing data from (1) the Surface Meteorological Observing System (SMOS) installations at the Atmospheric Radiation Measurement (ARM; Peppler et al. 2008) Program’s Southern Great Plains site and (2) the Oklahoma Mesonet (OKM; McPherson et al. 2007). Given the wealth of observations available from these networks, this study provided the unique opportunity to determine, within a quantifiable statistical limit, an optimal distance between stations deployed for observation of the climatological values of temperature and relative humidity. Average distances between a given station and its closest neighboring station for the ARM SMOS (~ 70 km) and the OKM (~ 30 km; Brotzge and Richardson 2003) networks provided an excellent framework for comparisons of sparse and dense observations (Figure 1). This study further lays groundwork for a future investigation to determine the necessary spacing between observations for initialization of gridded numerical models.

  17. Effects of supplemental flaxseed or corn on site and extent of digestion in beef heifers grazing summer rangelands in the northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Six Angus heifers (367 ± 8.0 kg) fitted with ruminal and duodenal cannulas were used in a split-plot designed experiment to determine the effects of ground flaxseed or corn and advancing season on site and extent of digestion when beef heifers grazed summer range in the northern Great Plains. Starti...

  18. Effects of supplemental flaxseed on site and extent of digestion in beef heifers grazing summer native pasture in the northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Six Angus heifers (367 ± 8.0 kg) fitted with ruminal and duodenal cannulas were used in a split-plot designed experiment to determine the effects of ground flaxseed or corn and advancing season on site and extent of digestion when beef heifers grazed summer range in the northern Great Plains. Start...

  19. Simultaneous Spectral Albedo Measurements Near the Atmospheric Radiation Measurement Southern Great Plains (ARM SGP) Central Facility

    SciTech Connect

    Michalsky, Joseph J.; Min, Qilong; Barnard, James C.; Marchand, Roger T.; Pilewskie, Peter

    2003-04-30

    In this study, a data analysis is performed to determine the area-averaged, spectral albedo at ARM's SGP central facility site. The spectral albedo is then fed into radiation transfer models to show that the diffuse discrepancy is diminished when the spectral albedo is used (as opposed to using the broadband albedo).

  20. Column Aerosol Optical Properties and Aerosol Radiative Forcing During a Serious Haze-Fog Month over North China Plain in 2013 Based on Ground-Based Sunphotometer Measurements

    NASA Technical Reports Server (NTRS)

    Che, H.; Xia, X.; Zhu, J.; Li, Z.; Dubovik, O.; Holben, Brent N.; Goloub, P.; Chen, H.; Estelles, V.; Cuevas-Agullo, E.

    2014-01-01

    In January 2013, North China Plain experienced several serious haze events. Cimel sunphotometer measurements at seven sites over rural, suburban and urban regions of North China Plain from 1 to 30 January 2013 were used to further our understanding of spatial-temporal variation of aerosol optical parameters and aerosol radiative forcing (ARF). It was found that Aerosol Optical Depth at 500 nm (AOD500nm) during non-pollution periods at all stations was lower than 0.30 and increased significantly to greater than 1.00 as pollution events developed. The Angstrom exponent (Alpha) was larger than 0.80 for all stations most of the time. AOD500nm averages increased from north to south during both polluted and non-polluted periods on the three urban sites in Beijing. The fine mode AOD during pollution periods is about a factor of 2.5 times larger than that during the non-pollution period at urban sites but a factor of 5.0 at suburban and rural sites. The fine mode fraction of AOD675nm was higher than 80% for all sites during January 2013. The absorption AOD675nm at rural sites was only about 0.01 during pollution periods, while 0.03-0.07 and 0.01-0.03 during pollution and non-pollution periods at other sites, respectively. Single scattering albedo varied between 0.87 and 0.95 during January 2013 over North China Plain. The size distribution showed an obvious tri-peak pattern during the most serious period. The fine mode effective radius in the pollution period was about 0.01-0.08 microns larger than during nonpollution periods, while the coarse mode radius in pollution periods was about 0.06-0.38 microns less than that during nonpollution periods. The total, fine and coarse mode particle volumes varied by about 0.06-0.34 cu microns, 0.03-0.23 cu microns, and 0.03-0.10 cu microns, respectively, throughout January 2013. During the most intense period (1-16 January), ARF at the surface exceeded -50W/sq m, -180W/sq m, and -200W/sq m at rural, suburban, and urban sites

  1. Impact of soil texture on soil moisture measurement accuracy by TDR in Sistan plain of Iran

    NASA Astrophysics Data System (ADS)

    sarani, noushin; Afrasiab, Peyman

    2014-05-01

    In the recent past, many researchers have developed various techniques for determining moisture content of soil. Among the various methods of estimating soil moisture, Time Domain Reflectometry (TDR) method is a relatively new method. TDR has been widely used in water system investigation in Agriculture, Geosciences, etc. The purpose of this study is determination of moisture measurement accuracy by TDR in various soil textures in Sistan plain. For this purpose, six textures and for each of them three Iteration were used. The studied textures were clay, loam, sandy loam, sandy clay loam, clay loam and sandy. The experiments were carried out at the laboratory of water engineering department of Zabol University in Iran. The provided textures were laid in the PVC cylinder with 50 cm height and 30 cm diameter. After 24 h of saturation, the soil water content of the samples was measured by oven-dry gravimetric and TDR methods. In each day the moisture measurement of each texture was carried out by these two methods until a moisture range was determined. For comparison between measured moisture values by TDR and gravimetric method, two statistical parameters include coefficient of determination (R2) and root mean square error (RMSE) were applied here. The results showed that by using SPSS, statistically significant at probably level of 1% indicated no difference between the measured value of moisture by TDR device and gravimetric method. For heavy textures consist of sandy clay loam, clay loam, and clay with increasing clay content when the moisture was low, TDR measured the moisture values less than the gravimetric method. Furthermore for light textures consist of sandy loam and sand, the TDR device measured the moisture values more than the gravimetric method. Also for clay loam and sandy clay at high moisture values, data measured by TDR was close to the gravimetric method. For all studied textures with increasing of clay content, the fitted lines slope and RMSE

  2. Assessing the use of existing data to compare plains fish assemblages collected from random and fixed sites in Colorado

    USGS Publications Warehouse

    Zuellig, Robert E.; Crockett, Harry J.

    2013-01-01

    The U.S. Geological Survey, in cooperation with Colorado Parks and Wildlife, assessed the potential use of combining recently (2007 to 2010) and formerly (1992 to 1996) collected data to compare plains fish assemblages sampled from random and fixed sites located in the South Platte and Arkansas River Basins in Colorado. The first step was to determine if fish assemblages collected between 1992 and 1996 were comparable to samples collected at the same sites between 2007 and 2010. If samples from the two time periods were comparable, then it was considered reasonable that the combined time-period data could be used to make comparisons between random and fixed sites. In contrast, if differences were found between the two time periods, then it was considered unreasonable to use these data to make comparisons between random and fixed sites. One-hundred samples collected during the 1990s and 2000s from 50 sites dispersed among 19 streams in both basins were compiled from a database maintained by Colorado Parks and Wildlife. Nonparametric multivariate two-way analysis of similarities was used to test for fish-assemblage differences between time periods while accounting for stream-to-stream differences. Results indicated relatively weak but significant time-period differences in fish assemblages. Weak time-period differences in this case possibly were related to changes in fish assemblages associated with environmental factors; however, it is difficult to separate other possible explanations such as limited replication of paired time-period samples in many of the streams or perhaps differences in sampling efficiency and effort between the time periods. Regardless, using the 1990s data to fill data gaps to compare random and fixed-site fish-assemblage data is ill advised based on the significant separation in fish assemblages between time periods and the inability to determine conclusive explanations for these results. These findings indicated that additional sampling will

  3. Determination of the 100-year flood plain on Upper Three Runs and selected tributaries, and the Savannah River at the Savannah River site, South Carolina, 1995

    USGS Publications Warehouse

    Lanier, T.H.

    1996-01-01

    The 100-year flood plain was determined for Upper Three Runs, its tributaries, and the part of the Savannah River that borders the Savannah River Site. The results are provided in tabular and graphical formats. The 100-year flood-plain maps and flood profiles provide water-resource managers of the Savannah River Site with a technical basis for making flood-plain management decisions that could minimize future flood problems and provide a basis for designing and constructing drainage structures along roadways. A hydrologic analysis was made to estimate the 100-year recurrence- interval flow for Upper Three Runs and its tributaries. The analysis showed that the well-drained, sandy soils in the head waters of Upper Three Runs reduce the high flows in the stream; therefore, the South Carolina upper Coastal Plain regional-rural-regression equation does not apply for Upper Three Runs. Conse- quently, a relation was established for 100-year recurrence-interval flow and drainage area using streamflow data from U.S. Geological Survey gaging stations on Upper Three Runs. This relation was used to compute 100-year recurrence-interval flows at selected points along the stream. The regional regression equations were applicable for the tributaries to Upper Three Runs, because the soil types in the drainage basins of the tributaries resemble those normally occurring in upper Coastal Plain basins. This was verified by analysis of the flood-frequency data collected from U.S. Geological Survey gaging station 02197342 on Fourmile Branch. Cross sections were surveyed throughout each reach, and other pertinent data such as flow resistance and land-use were col- lected. The surveyed cross sections and computed 100-year recurrence-interval flows were used in a step-backwater model to compute the 100-year flood profile for Upper Three Runs and its tributaries. The profiles were used to delineate the 100-year flood plain on topographic maps. The Savannah River forms the southwestern border

  4. Integration of geophysics within the Argonne expedited site characterization Program at a site in the southern High Plains

    SciTech Connect

    Hastings, B.; Hildebrandt, G.; Meyer, T.; Saunders, W.; Burton, J.C.

    1995-05-01

    An Argonne National Laboratory Expedited Site Characterization (ESC) program was carried out at a site in the central United States. The Argonne ESC process emphasizes an interdisciplinary approach in which all available information is integrated to produce as complete a picture as possible of the geologic and hydrologic controls on contaminant distribution and transport. As part of this process, all pertinent data that have been collected from previous investigations are thoroughly analyzed before a decision is made to collect additional information. A seismic reflection program recently concluded at the site had produced inconclusive results. Before we decided whether another acquisition program was warranted, we examined the existing data set to evaluate the quality of the raw data, the appropriateness of the processing sequence, and the integrity of the interpretation. We decided that the field data were of sufficient quality to warrant reprocessing and reinterpretation. The main thrust of the reprocessing effort was to enhance the continuity of a shallow, low-frequency reflection identified as a perching horizon within the Ogallala formation. The reinterpreted seismic data were used to locate the boundaries of the perched aquifer, which helped to guide the Argonne ESC drilling and sampling program. In addition, digitized geophysical well log data from previous drilling programs were reinterpreted and integrated into the geologic and hydrogeologic model.

  5. Clear-Water Contraction Scour at Selected Bridge Sites in the Black Prairie Belt of the Coastal Plain in Alabama, 2006

    USGS Publications Warehouse

    Lee, K.G.; Hedgecock, T.S.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Alabama Department of Transportation, made observations of clear-water contraction scour at 25 bridge sites in the Black Prairie Belt of the Coastal Plain of Alabama. These bridge sites consisted of 54 hydraulic structures, of which 37 have measurable scour holes. Observed scour depths ranged from 1.4 to 10.4 feet. Theoretical clear-water contraction-scour depths were computed for each bridge and compared with observed scour. This comparison showed that theoretical scour depths, in general, exceeded the observed scour depths by about 475 percent. Variables determined to be important in developing scour in laboratory studies along with several other hydraulic variables were investigated to understand their influence within the Alabama field data. The strongest explanatory variables for clear-water contraction scour were channel-contraction ratio and velocity index. Envelope curves were developed relating both of these explanatory variables to observed scour. These envelope curves provide useful tools for assessing reasonable ranges of scour depth in the Black Prairie Belt of Alabama.

  6. Soil moisture anomalies and convection: investigation using ground-based measurements at US Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2015-12-01

    Soil moisture is one of the key factors modulating the atmospheric boundary layer and thus the climate system. In this study, we use ground-based measurements to investigate the mechanism by which soil moisture anomalies affect clouds and precipitation. From decade-long warm season observation by Department of Energy Atmospheric Radiation Measurement at Southern Great Plains, we carefully select daytime weather regimes that are strongly coupled with land-surface processes such as clear-sky dry convection days, forced and active non-precipitating shallow cumuli days, and late-afternoon deep convective raining days (Zhang and Klein, 2010 and 2013). Based on this framework, we statistically assess: 1) the differences in soil moisture and surface heterogeneity between different convective regimes; and 2) the variances of the associated effects on surface and boundary layer meteorological conditions inside each convective regime. A specific question will be: under different soil moisture conditions, e.g. wet/dry, which convective weather regime will be favored and how this is related to large-scale environmental factors, such as free-troposphere stability and humidity? The answer to this question will improve our understanding of how soil moisture impacts boundary layer turbulence and thermodynamics, and influences the convection triggering and maintenance and their feedbacks on soil moisture, thus establish a link between soil moisture and convection at the process level. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675737

  7. Parameterizing atmosphere-land surface exchange for climate models with satellite data: A case study for the Southern Great Plains CART site

    SciTech Connect

    Gao, W.

    1994-01-01

    High-resolution satellite data provide detailed, quantitative descriptions of land surface characteristics over large areas so that objective scale linkage becomes feasible. With the aid of satellite data, Sellers et al. and Wood and Lakshmi examined the linearity of processes scaled up from 30 m to 15 km. If the phenomenon is scale invariant, then the aggregated value of a function or flux is equivalent to the function computed from aggregated values of controlling variables. The linear relation may be realistic for limited land areas having no large surface contrasts to cause significant horizontal exchange. However, for areas with sharp surface contrasts, horizontal exchange and different dynamics in the atmospheric boundary may induce nonlinear interactions, such as at interfaces of land-water, forest-farm land, and irrigated crops-desert steppe. The linear approach, however, represents the simplest scenario, and is useful for developing an effective scheme for incorporating subgrid land surface processes into large-scale models. Our studies focus on coupling satellite data and ground measurements with a satellite-data-driven land surface model to parameterize surface fluxes for large-scale climate models. In this case study, we used surface spectral reflectance data from satellite remote sensing to characterize spatial and temporal changes in vegetation and associated surface parameters in an area of about 350 {times} 400 km covering the southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site of the US Department of Energy`s Atmospheric Radiation Measurement (ARM) Program.

  8. Spatio-temporal changes in the distribution of phytopigments and phytoplanktonic groups at the Porcupine Abyssal Plain (PAP) site

    NASA Astrophysics Data System (ADS)

    Smythe-Wright, Denise; Boswell, Stephen; Kim, Young-Nam; Kemp, Alan

    2010-08-01

    We have made a comprehensive study of pigment distributions and microscopically determined phytoplankton abundances within the Porcupine Abyssal Plain (PAP) location in the North Atlantic to better understand phytoplankton variability, and make some suggestions regarding the composition of the material falling to the sea bed and its impacts on benthic organisms such as Amperima rosea. The area has been the focus of many studies of ocean fluxes and benthic communities over recent years, but little attention has been given to the spatio-temporal variability in the surface waters. Dawn casts over a 12-day period at the PAP mooring site (48.83°N 16.5°W) revealed the presence of only one species, the diatom Actinocyclus exiguus, at bloom concentrations for just 5 days. Smaller populations of other diatoms and the dinoflagellates Gymnodinium and Gyrodinium were also present at this time. Following this 5-day interval, a mixed population of small-sized dinoflagellates, prymnesiophytes, prasinophytes, chrysophytes and cyanobacteria occurred. It is clear from concomitant CTD/bottle surveys that rapid changes in phytoplankton community structure at a fixed time series position do not necessarily reflect a degradation or manifestation of one particular species but rather represent the movement of eddies and other water masses within very short timescales. These cause substantial variability in the species class and size fraction that may explain the variability in carbon export that has been seen at the PAP site. We also make some suggestions on the variable composition of the material falling to the seabed and its impact on benthic organisms such as Amperima rosea.

  9. SAR Interferometry for Measuring Recent Deformation of the Eastern Snake River Plain

    NASA Astrophysics Data System (ADS)

    Chadwick, J.; Rodgers, D.; Payne, S.

    2003-12-01

    The Eastern Snake River Plain (ESRP) is a NE-trending volcanic basin that defines the track of the Yellowstone hotspot across southern Idaho. Previous studies of the ESRP interpreted up to 6 km of upper crustal subsidence and 15-25 % extension since 10-15 Ma. Leveling studies conducted between 1906 and 1983 and more recent GPS studies indicate that at least some ESRP regions continue to actively extend and/or subside. To document the regional pattern of active deformation, we have employed interferometric synthetic aperture radar (InSAR) techniques. Snow- and rain-free ERS-1 and ERS-2 SAR images from 1992-2003 with less than 400 m baselines were acquired for areas with large, young basaltic lava flows with flat surfaces, sparse vegetation and little soil cover, such as the Craters of the Moon, Wapi, and Hell's Half-Acre lava fields. These areas are ideal for preserving surface characteristics and maintaining SAR phase coherence between images for 4-10 years, time spans that are required to detect the slow rates of topographic change on the ESRP. Results from the Wapi region indicate that differential subsidence and/or extension from 1993-1997 was symmetrically disposed about the axis of the Great Rift, with greater Line of Sight (LOS) topographic change on the margins and less along the rift. Results from the Craters of the Moon region indicate variable amounts of upper crustal subsidence and extension from 1993-1997, although the absolute amount requires further calibration by GPS analysis. Up to 2 mm/yr of differential LOS change is evident in the region over this period, with a domain of less LOS change across the axis of the Great Rift and a domain of greater LOS change to the west. The line that separates domains is relatively sharp, oriented north-northwest, and if extrapolated northward is on strike with the surface trace of a west-dipping Basin-Range normal fault. One interpretation of this pattern is that Basin-Range half-graben fault blocks underlie the

  10. Forest transpiration from sap flux density measurements in a Southeastern Coastal Plain riparian buffer system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forested riparian buffers are prevalent throughout the Southeastern Coastal Plain Region of the United States (US). Because they make up a significant portion of the regional landscape, transpiration within these riparian buffers is believed to have an important impact on the hydrologic budget of r...

  11. LASE measurements of water vapor and aerosol profiles during the Plains Elevated Convection at Night (PECAN) field experiment

    NASA Astrophysics Data System (ADS)

    Nehrir, A. R.; Ferrare, R. A.; Kooi, S. A.; Butler, C. F.; Notari, A.; Hair, J. W.; Collins, J. E., Jr.; Ismail, S.

    2015-12-01

    The Lidar Atmospheric Sensing Experiment (LASE) system was deployed on the NASA DC-8 aircraft during the Plains Elevated Convection At Night (PECAN) field experiment, which was conducted during June-July 2015 over the central and southern plains. LASE is an active remote sensor that employs the differential absorption lidar (DIAL) technique to measure range resolved profiles of water vapor and aerosols above and below the aircraft. The DC-8 conducted nine local science flights from June 30- July 14 where LASE sampled water vapor and aerosol fields in support of the PECAN primary science objectives relating to better understanding nocturnal Mesoscale Convective Systems (MCSs), Convective Initiation (CI), the Low Level Jet (LLJ), bores, and to compare different airborne and ground based measurements. LASE observed large spatial and temporal variability in water vapor and aerosol distributions in advance of nocturnal MCSs, across bores resulting from MCS outflow boundaries, and across the LLJ associated with the development of MCSs and CI. An overview of the LASE data collected during the PECAN field experiment will be presented where emphasis will be placed on variability of water vapor profiles in the vicinity of severe storms and intense convection in the central and southern plains. Preliminary comparisons show good agreement between coincident LASE and radiosonde water vapor profiles. In addition, an advanced water vapor DIAL system being developed at NASA Langley will be discussed.

  12. Nevada Test Site seismic: telemetry measurements

    SciTech Connect

    Albright, J N; Parker, L E; Horton, E H

    1983-08-01

    The feasibility and limitations of surface-to-tunnel seismic telemetry at the Nevada Test Site were explored through field measurements using current technology. Range functions for signaling were determined through analysis of monofrequency seismic signals injected into the earth at various sites as far as 70 km (43 mi) from installations of seismometers in the G-Tunnel complex of Rainier Mesa. Transmitted signal power at 16, 24, and 32 Hz was measured at two locations in G-Tunnel separated by 670 m (2200 ft). Transmissions from 58 surface sites distributed primarily along three azimuths from G-Tunnel were studied. The G-Tunnel noise environment was monitored over the 20-day duration of the field tests. Noise-power probability functions were calculated for 20-s and 280-s seismic-record populations. Signaling rates were calculated for signals transmitted from superior transmitter sites to G-Tunnel. A detection threshold of 13 dB re 1 nm/sup 2/ displacement power at 95% reliability was demanded. Consideration of field results suggests that even for the frequency range used in this study, substantially higher signaling rates are likely to be obtained in future work in view of the present lack of information relevant to hardware-siting criteria and the seismic propagation paths at the Nevada Test Site. 12 references.

  13. Regional CO2 and latent heat surface fluxes in the Southern Great Plains: Measurements, modeling, and scaling

    SciTech Connect

    Riley, W. J.; Biraud, S.C.; Torn, M.S.; Fischer, M.L.; Billesbach, D.P.; Berry, J.A.

    2009-08-15

    Characterizing net ecosystem exchanges (NEE) of CO{sub 2} and sensible and latent heat fluxes in heterogeneous landscapes is difficult, yet critical given expected changes in climate and land use. We report here a measurement and modeling study designed to improve our understanding of surface to atmosphere gas exchanges under very heterogeneous land cover in the mostly agricultural U.S. Southern Great Plains (SGP). We combined three years of site-level, eddy covariance measurements in several of the dominant land cover types with regional-scale climate data from the distributed Mesonet stations and Next Generation Weather Radar precipitation measurements to calibrate a land surface model of trace gas and energy exchanges (isotope-enabled land surface model (ISOLSM)). Yearly variations in vegetation cover distributions were estimated from Moderate Resolution Imaging Spectroradiometer normalized difference vegetation index and compared to regional and subregional vegetation cover type estimates from the U.S. Department of Agriculture census. We first applied ISOLSM at a 250 m spatial scale to account for vegetation cover type and leaf area variations that occur on hundred meter scales. Because of computational constraints, we developed a subsampling scheme within 10 km 'macrocells' to perform these high-resolution simulations. We estimate that the Atmospheric Radiation Measurement Climate Research Facility SGP region net CO{sub 2} exchange with the local atmosphere was -240, -340, and -270 gC m{sup -2} yr{sup -1} (positive toward the atmosphere) in 2003, 2004, and 2005, respectively, with large seasonal variations. We also performed simulations using two scaling approaches at resolutions of 10, 30, 60, and 90 km. The scaling approach applied in current land surface models led to regional NEE biases of up to 50 and 20% in weekly and annual estimates, respectively. An important factor in causing these biases was the complex leaf area index (LAI) distribution within

  14. Background light measurements at the DUMAND site

    NASA Technical Reports Server (NTRS)

    Aoki, T.; Kitamura, T.; Matsuno, S.; Mitsui, K.; Ohashi, Y.; Okada, A.; Cady, D. R.; Learned, J. G.; Oconnor, D.; Mcmurdo, M.

    1985-01-01

    Ambient light intensities at the DUMAND site, west of the island of Hawaii were measured around the one photoelectron level. Throughout the water column between 1,500m and 4,700m, a substantial amount of stimulateable bioluminescence is observed with a ship suspended detector. But non-stimulated bioluminescence level is comparable, or less than, K sup 40 background, when measured with a bottom tethered detector typical of a DUMAND optical module.

  15. Comparison of Seasonal Terrestrial Water Storage Variations from GRACE with Groundwater-level Measurements from the High Plains Aquifer (USA)

    NASA Technical Reports Server (NTRS)

    Strassberg, Gil; Scanlon, Bridget R.; Rodell, Matthew

    2007-01-01

    This study presents the first direct comparison of variations in seasonal GWS derived from GRACE TWS and simulated SM with GW-level measurements in a semiarid region. Results showed that variations in GWS and SM are the main sources controlling TWS changes over the High Plains, with negligible storage changes from surface water, snow, and biomass. Seasonal variations in GRACE TWS compare favorably with combined GWS from GW-level measurements (total 2,700 wells, average 1,050 GW-level measurements per season) and simulated SM from the Noah land surface model (R = 0.82, RMSD = 33 mm). Estimated uncertainty in seasonal GRACE-derived TWS is 8 mm, and estimated uncertainty in TWS changes is 11 mm. Estimated uncertainty in SM changes is 11 mm and combined uncertainty for TWS-SM changes is 15 mm. Seasonal TWS changes are detectable in 7 out of 9 monitored periods and maximum changes within a year (e.g. between winter and summer) are detectable in all 5 monitored periods. Grace-derived GWS calculated from TWS-SM generally agrees with estimates based on GW-level measurements (R = 0.58, RMSD = 33 mm). Seasonal TWS-SM changes are detectable in 5 out of the 9 monitored periods and maximum changes are detectable in all 5 monitored periods. Good correspondence between GRACE data and GW-level measurements from the intensively monitored High Plains aquifer validates the potential for using GRACE TWS and simulated SM to monitor GWS changes and aquifer depletion in semiarid regions subjected to intensive irrigation pumpage. This method can be used to monitor regions where large-scale aquifer depletion is ongoing, and in situ measurements are limited, such as the North China Plain or western India. This potential should be enhanced by future advances in GRACE processing, which will improve the spatial and temporal resolution of TWS changes, and will further increase applicability of GRACE data for monitoring GWS.

  16. Observation and modelling of the OH, HO2 and RO2 radicals at a rural site (Wangdu) in the North China Plain in summer 2014

    NASA Astrophysics Data System (ADS)

    Tan, Zhaofeng; Fuchs, Hendrik; Lu, Keding; Bohn, Birger; Broch, Sebastian; Haeseler, Rolf; Hofzumahaus, Andrease; Holland, Frank; Li, Xin; Liu, Ying; Rohrer, Franz; Shao, Min; Wang, Baolin; Wang, Ming; Wu, Yusheng; Zeng, Limin; Wahner, Andrease; Zhang, Yuanhang

    2016-04-01

    A comprehensive field campaign was carried out in summer 2014 in Wangdu located in the North China Plain. A month of continuous OH, HO2and RO2 measurements were obtained by a laser induced fluorescence system. High daytime OH, HO2 and RO2 radical concentrations were observed of which their daily maximum concentrations were (5 - 15)×106cm‑3, (3 - 14)×108 cm‑3 and (3 - 15)×108 cm‑3, respectively. A chemical box model constrained by observed trace gas compounds with state of art chemical mechanism is used to interpret the observed radical concentrations. The model underestimated the observed OH concentrations by a factor of 2 when NO is less than 100ppt in the afternoon hours. Like PRIDE-PRD2006 and CAREBEIJING2006, an additional OH recycling is required to reproduce the observed OH concentrations for the high VOC and low NOx conditions. Based on a few chemical modulation experiments we performed at the site, the determined OH interference signal were very small for the afternoon conditions. In addition, we found that observed RO2 concentrations were underestimated in the morning hours which indicated the existence of additional chemical sources of RO2 and an underestimation of the local ozone production rates in current model.

  17. An in-situ campaign of spectral measurements for monitoring the crop stress and planting area in Luancheng of North China Plain

    NASA Astrophysics Data System (ADS)

    Chen, Shui-Sen; Chen, Liang-Fu; Liu, Qin-Huo; Xiao, Qing

    2004-10-01

    In an attempt to support the demonstration application of "Spectral Library Of Chinese representative surface substances", an in-situ campaign of spectral measurements was carried out during the summer of 2003 for monitoring the crop stress and planting area in North China Plain. The experiment sites, based on Luancheng Agricultural ecosystem experiment station, Chinese Academy of Sciences, was a 5×5 km area located just south-east of Shijiazhuang, Hebei Province, China. The spectral instrument used is ASD FieldSpecFR with wavelength of 0.35~2.5μm. The experimental achievement includes: soil moisture, corn physiological & biochemical parameters, corn leaf water & chlorophyll-a,b contents, corn structure parameters, field farmland microclimate, aerological exploration data of atmosphere, corn spectra of component, corn crown & background spectra cross the growth period of crop. The paper details the whole experimental scheme and design and partial representation of results of data analysis.

  18. Site, environmental and airflow characteristics for mono-slope beef cattle facilities in the Northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In conjunction with an emission monitoring study, long-term airflow and environmental data were collected from four regional producer-owned and -operated mono-slope beef cattle facilities in the Northern Great Plains. The barns were oriented east-west, with approximate dimensions of an 8-m south wal...

  19. Measurements of aerosol and trace gases at Agra in Indo-Gangetic plain during special aerosol land campaign II

    NASA Astrophysics Data System (ADS)

    Kumar, Ranjit; Maharaj Kumari, K.

    2010-05-01

    This paper deals with measurements of aerosol, their chemical properties and precursor trace gases at Agra in the Indo-Gangetic plain during ISRO-GBP special aerosol land campaign II. Aerosol and trace gas sampling as well a meteorological parameters monitoring were carried out at Dayalbagh, a suburban site of Agra during campaign in December 2004 along with seven other stations in India. The average TSPM level was 441.2 µg m-3 and ranges between 60.8 µg m-3 and 1004.6 µg m-3 and was higher than National Ambient Air Quality Standard values of India. The high load SPM in this region may be probably due to industrial-vehicular emissions of sulphur and nitrogen oxides, transport of soil-sand dust from local agricultural field and Thar Desert of Rajasthan and long range transported pollutants. Meteorological study revealed that high wind speed and wind from North West direction influences the aerosol load as it may be long range transported. TSP load was higher during initial foggy and foggy days and lower during post foggy days. NH4+ concentration is highest followed by NO3-, SO42-, Cl-, K+, Ca2+, Na+, Mg2+ and F-. The high concentration of NH4+ may be probably due to nearby cattle yard, use of fertilizers and biogenic emissions. The concentration of trace gases SO2, NO2, HNO3 and NH3 are 20.8 µg m-3, 26.3 µg m-3, 1.6 µg m-3, 18.6 µg m-3, respectively. The transportation of urban plumes may be responsible for high concentration of SO2 and NO2. HNO3/NO3- ratio is less than unity. NO3- and NO2 (r=0.4) suggests formation of particulate NO3- from NO2. Ratio of NH3/NH4+ is less than unity. SO42-/SO2 ratio is 0.84. The lack of correlation between SO42- and SO2 (r = 0.14) indicates only a small fraction of SO42- is contributed by SO2 while the major fraction is contributed by soil and other sources probably long range transported sulphate.

  20. The collection of clear-water contraction and abutment scour data at selected bridge sites in the coastal plain and piedmont of South Carolina

    USGS Publications Warehouse

    Benedict, Stephen T.; Caldwell, Andy W.

    1998-01-01

    Clear-water contraction and abutment scour data were collected at 128 bridge sites in South Carolina. In the sandy soils of the Coastal Plain, clear-water-scour data were collected at 63 sites (scour depths ranged from 0.4 to 7.2 meters.) In the clayey soils of the Piedmont, clear-water-scour data were collected at 47 sites (scour depths ranged from 0 to 1.4 meters.) In the sandy, clayey soils of the Piedmont, clear-water-scour data were collected at 18 sites (scour depths ranged from 0.9 to 5.5 meters.) The field data are to be compiled into a data base that will include bridge age; basin, soil and hydraulic characteristics; and theoretical scour data. The data are planned to be statistically analyzed for significant relations that may help explain and (or) predict maximum scour depths at bridges in South Carolina.

  1. Evaluation of hot dry rock exploration techniques in the Atlantic Coastal Plain: a test site on the Delmarva Peninsula of Maryland and Virginia

    SciTech Connect

    Not Available

    1981-04-01

    Detailed investigation of a potential Hot Dry Rock (HDR) energy extraction site in the area of Crisfield, Maryland, and Wallops Island, Virginia, (referred to as the Cris-Wall site) was carried out to evaluate HDR exploration techniques in the Atlantic Coastal Plain province. The findings favor the HDR exploration program that is outlined for locating a deep test hole in an area with presumed HDR potential (higher than normal heat flow). Six potential sites for extracting HDR energy have been identified within the Cris-Wall area. Each site is thought to have temperatures at the basement rock surface in excess of 75/sup 0/C and to be at least 1 km away from the nearest fault.

  2. Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870-2000.

    PubMed

    Parton, William J; Gutmann, Myron P; Merchant, Emily R; Hartman, Melannie D; Adler, Paul R; McNeal, Frederick M; Lutz, Susan M

    2015-08-25

    The Great Plains region of the United States is an agricultural production center for the global market and, as such, an important source of greenhouse gas (GHG) emissions. This article uses historical agricultural census data and ecosystem models to estimate the magnitude of annual GHG fluxes from all agricultural sources (e.g., cropping, livestock raising, irrigation, fertilizer production, tractor use) in the Great Plains from 1870 to 2000. Here, we show that carbon (C) released during the plow-out of native grasslands was the largest source of GHG emissions before 1930, whereas livestock production, direct energy use, and soil nitrous oxide emissions are currently the largest sources. Climatic factors mediate these emissions, with cool and wet weather promoting C sequestration and hot and dry weather increasing GHG release. This analysis demonstrates the long-term ecosystem consequences of both historical and current agricultural activities, but also indicates that adoption of available alternative management practices could substantially mitigate agricultural GHG fluxes, ranging from a 34% reduction with a 25% adoption rate to as much as complete elimination with possible net sequestration of C when a greater proportion of farmers adopt new agricultural practices. PMID:26240366

  3. Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870–2000

    PubMed Central

    Parton, William J.; Gutmann, Myron P.; Merchant, Emily R.; Hartman, Melannie D.; Adler, Paul R.; McNeal, Frederick M.; Lutz, Susan M.

    2015-01-01

    The Great Plains region of the United States is an agricultural production center for the global market and, as such, an important source of greenhouse gas (GHG) emissions. This article uses historical agricultural census data and ecosystem models to estimate the magnitude of annual GHG fluxes from all agricultural sources (e.g., cropping, livestock raising, irrigation, fertilizer production, tractor use) in the Great Plains from 1870 to 2000. Here, we show that carbon (C) released during the plow-out of native grasslands was the largest source of GHG emissions before 1930, whereas livestock production, direct energy use, and soil nitrous oxide emissions are currently the largest sources. Climatic factors mediate these emissions, with cool and wet weather promoting C sequestration and hot and dry weather increasing GHG release. This analysis demonstrates the long-term ecosystem consequences of both historical and current agricultural activities, but also indicates that adoption of available alternative management practices could substantially mitigate agricultural GHG fluxes, ranging from a 34% reduction with a 25% adoption rate to as much as complete elimination with possible net sequestration of C when a greater proportion of farmers adopt new agricultural practices. PMID:26240366

  4. SO2 measurements at a high altitude site in the central Himalayas: Role of regional transport

    NASA Astrophysics Data System (ADS)

    Naja, Manish; Mallik, Chinmay; Sarangi, Tapaswini; Sheel, Varun; Lal, Shyam

    2014-12-01

    Continuous measurements of a climatically important acidic gas, SO2, were made over Nainital (29.37°N, 79.45°E; 1958 m amsl), a regionally representative site in the central Himalayas, for the first time during 2009-2011. Unlike many other sites, the SO2 levels over Nainital are higher during pre-monsoon (345 pptv) compared to winter (71 pptv). High values during pre-monsoon are attributed to the transport of air masses from regions viz. Indo-Gangetic Plain (IGP), northern India and north-East Pakistan, which are dotted with numerous industries and power plants, where coal burning occurs. Transport from the polluted regions is evinced from good correlations of SO2 with wind speed, NOy and UV aerosol index during these periods. Daytime elevations in SO2 levels, influenced by 'valley winds' and boundary layer evolution, is a persistent feature at Nainital. SO2 levels are very much lower during monsoon compared to pre-monsoon, due to oxidation losses and wet scavenging. Despite this, SO2/NOy slopes are high (>0.4) both during pre-monsoon and monsoon, indicating impacts of point sources. The SO2 levels during winter are lower as the measurement site is cut off from the plains due to boundary layer dynamics. Further, the SO2 levels during winter nights are the lowest (lesser than 50 pptv) and resemble free tropospheric conditions.

  5. Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM)

    SciTech Connect

    Parworth, Caroline; Tilp, Alison; Fast, Jerome; Mei, Fan; Shippert, Tim; Sivaraman, Chitra; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ~30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations of the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.

  6. Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM)

    DOE PAGESBeta

    Parworth, Caroline; Tilp, Alison; Fast, Jerome; Mei, Fan; Shippert, Tim; Sivaraman, Chitra; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ~30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations ofmore » the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.« less

  7. Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM)

    NASA Astrophysics Data System (ADS)

    Parworth, Caroline; Fast, Jerome; Mei, Fan; Shippert, Tim; Sivaraman, Chitra; Tilp, Alison; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ∼30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations of the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.

  8. A Carbon Flux Super Site. New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling

    SciTech Connect

    Leclerc, Monique Y.

    2014-11-17

    This final report presents the main activities and results of the project “A Carbon Flux Super Site: New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling” from 10/1/2006 to 9/30/2014. It describes the new AmeriFlux tower site (Aiken) at Savanna River Site (SC) and instrumentation, long term eddy-covariance, sodar, microbarograph, soil and other measurements at the site, and intensive field campaigns of tracer experiment at the Carbon Flux Super Site, SC, in 2009 and at ARM-CF site, Lamont, OK, and experiments in Plains, GA. The main results on tracer experiment and modeling, on low-level jet characteristics and their impact on fluxes, on gravity waves and their influence on eddy fluxes, and other results are briefly described in the report.

  9. Corrective measures technology for humid sites

    SciTech Connect

    Spalding, B.P.

    1983-01-01

    The corrective measures technology task for humid sites consists of three subtasks. The first subtask has the objective of demonstrating that grout injection into closed burial trenches can achieve the hydrologic isolation of buried wastes. From laboratory testing of seven grout formulations, two promising grouts, 7.6% sodium silicate and 11.7% acrylamide, were selected for field demonstration by injection into 1:10-scale burial trenches. Both grouts effected a several orders of magnitude reduction in the mean hydraulic conductivity of the trench. The trench chemical treatment subtask has the objective of demonstrating the caustic soda injection into a closed trench's backfill and surrounding soil can achieve a fixation of radiostrontium from further ground water contamination. Monitoring of ground waters in and around the treated trench indicate a continued fixation of radiostrontium from further leaching. Soil samples were taken from the trench and found to contain /sup 90/Sr coprecipitated with calcium carbonate. The final subtask has the objective of demonstrating that the detection and treatment of ground water seeps can achieve a significant reduction in radiostrontium contamination of surface water. The utility of measuring /sup 90/Sr in ground water samples by Cerenkov radiation detection was found to be analytically equivalent to but considerably less expensive and time consuming than the standard radiochemical method.

  10. A large OH sink in summertime surface air of the northern Indo-Gangetic plain revealed through in-situ total OH Reactivity measurements

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Garg, S.; Chandra, P.; Sinha, V.

    2013-12-01

    The summertime surface air in the Northern Indo-Gangetic plain is characterized by high temperatures (up to 47 oC) and strong solar radiation (up to 765 Watt/m2), which together with large urban and agricultural emissions in the densely populated region, lead to intense photochemistry. The hydroxyl radical (OH) is the primary atmospheric oxidant responsible for oxidizing gaseous emissions and hence direct measurements of the total OH reactivity are necessary for understanding reactive emission budgets and constraining instantaneous ozone production regimes. Here, we present the first dataset of direct OH reactivity measurements from a regional surface site in the northern India-Gangetic plain (30.667°N, 76.729°E; 310 m above mean sea level). The measurements were performed in April-May 2013 using the comparative reactivity method [1]. A single PTRMS was used for sequential measurements of the total OH reactivity and circa 20 ambient VOCs. Nitrogen oxides (NO and NO2), sulphur dioxide, carbon monoxide, ozone and meteorological parameters were measured concomitantly using the IISER Mohali atmospheric chemistry facility. Air masses impacting the site arrived from rural and agricultural regions at high wind speeds of up to 24 m/s. A large variability was observed in the diel hourly averaged OH reactivity spanning an interquartile range of 36 s-1 - 120 s-1. The daily average and median total OH reactivity was 76 s-1 and 73 s-1, respectively corresponding to average and median OH chemical lifetimes of 13.1 milliseconds and 13.6 milliseconds, respectively. The five highest individual OH sinks measured were: acetaldehyde > isoprene+furan > NO2 > trimethyl benzene > CO. The measured OH reactivity did not show a pronounced diel cycle but remarkably the highest missing OH reactivity fraction (> 50 %) was observed during afternoon hours (12-16 local time) on very sunny days with low RH. This suggests that a significant fraction of secondary oxidation products formed due to

  11. An automated fog monitoring system for the Indo-Gangetic Plains based on satellite measurements

    NASA Astrophysics Data System (ADS)

    Patil, Dinesh; Chourey, Reema; Rizvi, Sarwar; Singh, Manoj; Gautam, Ritesh

    2016-05-01

    Fog is a meteorological phenomenon that causes reduction in regional visibility and affects air quality, thus leading to various societal and economic implications, especially disrupting air and rail transportation. The persistent and widespread winter fog impacts the entire the Indo-Gangetic Plains (IGP), as frequently observed in satellite imagery. The IGP is a densely populated region in south Asia, inhabiting about 1/6th of the world's population, with a strong upward pollution trend. In this study, we have used multi-spectral radiances and aerosol/cloud retrievals from Terra/Aqua MODIS data for developing an automated web-based fog monitoring system over the IGP. Using our previous and existing methodologies, and ongoing algorithm development for the detection of fog and retrieval of associated microphysical properties (e.g. fog droplet effective radius), we characterize the widespread fog detection during both daytime and nighttime. Specifically, for the night time fog detection, the algorithm employs a satellite-based bi-spectral brightness temperature difference technique between two spectral channels: MODIS band-22 (3.9μm) and band-31 (10.75μm). Further, we are extending our algorithm development to geostationary satellites, for providing continuous monitoring of the spatial-temporal variation of fog. We anticipate that the ongoing and future development of a fog monitoring system would be of assistance to air, rail and vehicular transportation management, as well as for dissemination of fog information to government agencies and general public. The outputs of fog detection algorithm and related aerosol/cloud parameters are operationally disseminated via http://fogsouthasia.com/.

  12. Partial Anhysteretic Anisotropy Measured in the Greys Landing Ignimbrite of the Central Snake River Plain

    NASA Astrophysics Data System (ADS)

    Rea-Downing, G. H.; Finn, D. R.; Coe, R. S.; Brown, E. D.; Reichow, M. K.; Knott, T.; Branney, M. J.

    2014-12-01

    Magnetic remanence directions recorded in the glassy sub-lithologies of mid-Miocene rheomorphic Snake River Plain ignimbrites are often discrepant compared to the more reliable directions in crystalline centers and underlying baked paleosols. The rocks have undergone no tectonic strain, and the rheomorphic deformation preserved in the rock occurs at ˜800°C, above magnetic blocking temperatures. Accounting for the discrepantly shallow directions is critical for the use of magnetic remanence for stratigraphic correlation and structural/tectonic reconstructions. Here we present paleomagnetic and rock magnetic data from the Grey's Landing Ignimbrite that demonstrate a strong magnetic anisotropy carried by pseudo-single to single domain magnetite grains which deflect the remanence direction by up to 40°. Strongly lineated anisotropic samples collected at distant sections ( ˜20 km separation) have their remanence deflected toward the respective flow directions inferred from their directions of maximum magnetic susceptibility (K1). Shallow K1 directions in the basal vitrophyre cause a shallowing of magnetic remanence, while a range of steep to shallow K1 directions in the folded upper vitrophyre cause both a steepening and shallowing of the remanence, respectively. There is a strong relationship between the magnitudes of remanence deflection, anisotropy of thermal remanence, coercivity, and strength of natural remanent magnetization between individual samples. There is also a strong relationship between the magnitudes of partial anisotropy of anhysteretic remanent magnetization (pAARM) and the deflection of the remanence vector difference directions, which both increase significantly with higher alternating magnetic fields. Correction of the vector difference direction using the inverse of the pAARM tensor for the same AF range is moderately successful. Previous work suggests that curvilinear demagnetization trends in the basal vitrophyre of an ignimbrite were

  13. Comparison of meteorological measurements from sparse and dense surface observational networks in the U.S. southern Great Plains.

    SciTech Connect

    Monroe, J. W.; Ritsche, M. T.; Franklin, M.; Kehoe, K. E.; Environmental Science Division; Univ.of Oklahoma

    2008-08-13

    The primary objective of this study was to analyze the spatial variability of temperature and relative humidity across Kansas (KS) and Oklahoma (OK) for sparse and dense networks by comparing data from (1) the Surface Meteorological Observing System (SMOS) installations at the Atmospheric Radiation Measurement (ARM; Peppler et al. 2007) Program's Southern Great Plains site and (2) the Oklahoma Mesonet (OKM; McPherson et al. 2007). Given the wealth of observations available from these networks, this study provided the unique opportunity to determine, within a quantifiable statistical limit, an optimal distance between stations deployed for observation of the climatological values of temperature and relative humidity. Average distances between a given station and its closest neighboring station for the ARM SMOS ({approx} 70 km) and the OKM ({approx} 30 km; Brotzge and Richardson 2003) networks provided an excellent framework for comparisons of sparse and dense observations (Figure 1). This study further lays groundwork for a future investigation to determine the necessary spacing between observations for initialization of gridded numerical models. The spatial variability of temperature and relative humidity was examined over KS and OK by comparing observations between station pairs located in three primary domains: (1) a sparse domain in KS, consisting only of ARM SMOS stations; (2) a dense domain centered in northern OK, consisting of both ARM SMOS and OKM stations; and (3) a dense domain centered in central OK, also consisting of both ARM SMOS and OKM stations (Figure 2). In addition, the ARM SMOS stations in OK were utilized to create two secondary sparse domains. Before the observations were compared, quality control (QC) beyond the standard ARM range test was added through implementation of tighter range tests specified by data quality objectives (DQOs). Furthermore, instances of poor-quality data were removed from the data set on the basis of ARM data quality

  14. Long-term Measurements of Submicrometer Aerosol Chemistry at the Southern Great Plains (SGP) Using an Aerosol Chemical Speciation Monitor (ACSM)

    SciTech Connect

    Parworth, Caroline; Fast, Jerome D.; Mei, Fan; Shippert, Timothy R.; Sivaraman, Chitra; Tilp, Alison; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the U.S. Department of Energy’s Southern Great Plains (SGP) site are discussed. Over the period of 19 months (Nov. 20, 2010 – June 2012) highly time resolved (~30 min.) NR-PM1 data was recorded. Using this dataset the value-added product (VAP) of deriving organic aerosol components (OACOMP) is introduced. With this VAP, multivariate analysis of the measured organic mass spectral matrix can be performed on long term data to return organic aerosol (OA) factors that are associated with distinct sources, evolution processes, and physiochemical properties. Three factors were obtained from this VAP including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when nitrate increased due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations showed little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increased and were mainly associated with local fires. Isoprene and carbon monoxide emission rates were computed by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) to represent the spatial distribution of biogenic and anthropogenic sources, respectively. From this model there is evidence to support that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.

  15. Low frequency amplification in deep alluvial basins: an example in the Po Plain (Northern Italy) and consequences for site specific SHA

    NASA Astrophysics Data System (ADS)

    Mascandola, Claudia; Massa, Marco; Barani, Simone; Lovati, Sara; Santulin, Marco

    2016-04-01

    This work deals with the problem of long period seismic site amplification that potentially might involve large and deep alluvial basins in case of strong earthquakes. In particular, it is here presented a case study in the Po Plain (Northern Italy), one of the most extended and deep sedimentary basin worldwide. Even if the studied area shows a low annul seismicity rate with rare strong events (Mw>6.0) and it is characterized by low to medium seismic hazard conditions, the seismic risk is significant for the high density of civil and strategic infrastructures (i.e. high degree of exposition) and the unfavourable geological conditions. The aim of this work is to provide general considerations about the seismic site response of the Po Plain, with particular attention on deep discontinuities (i.e. geological bedrock), in terms of potential low frequency amplification and their incidence on the PSHA. The current results were obtained through active and passive geophysical investigations performed near Castelleone, a site where a seismic station, which is part of the INGV (National Institute for Geophysics and Volcanology) Seismic National Network, is installed from 2009. In particular, the active analyses consisted in a MASW and a refraction survey, whereas the passive ones consisted in seismic ambient noise acquisitions with single stations and arrays of increasing aperture. The results in terms of noise HVSR indicate two main peaks, the first around 0.17 Hz and the second, as already stated in the recent literature, around 0.7 Hz. In order to correlate the amplified frequencies with the geological discontinuities, the array acquisitions were processed to obtain a shear waves velocity profile, computed with a joint inversion, considering the experimental dispersion curves and the HVSR results. The obtained velocity profile shows two main discontinuities: the shallower at ~165 m of depth, which can be correlated to the seismic bedrock (i.e. Vs > 800 m/) and the deeper

  16. Northern Plains 'Crater'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    10 December 2004 The lower left (southwest) corner of this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the location of a somewhat filled and buried meteor impact crater on the northern plains of Mars. The dark dots are boulders. A portion of a similar feature is seen in the upper right (northeast) corner of the image. This picture, showing landforms (including the odd mound north/northeast of the crater) that are typical of the martian northern lowland plains, was obtained as part of the MGS MOC effort to support the search for a landing site for the Phoenix Mars Scout lander. Phoenix will launch in 2007 and land on the northern plains in 2008. This image is located near 68.0oN, 227.4oW, and covers an area approximately 3 km (1.9 mi) wide. The scene is illuminated by sunlight from the lower left.

  17. Land data assimilation and estimation of soil moisture using measurements from the Southern Great Plains 1997 Field Experiment

    NASA Astrophysics Data System (ADS)

    Margulis, Steven A.; McLaughlin, Dennis; Entekhabi, Dara; Dunne, Susan

    2002-12-01

    Remotely sensed microwave measurements provide useful but indirect observations of surface soil moisture. Ground-based measurements are more direct but are very localized and limited in coverage. Model predictions provide a more regional perspective but rely on many simplifications and approximations and depend on inputs that are difficult to obtain over extensive areas. The only effective way to achieve soil moisture estimates with the accuracy and coverage required for hydrologic and meteorological applications is to merge information from satellites, ground-based stations, and models. In this paper we describe a convenient data merging (or data assimilation) procedure based on an ensemble Kalman filter. This procedure is illustrated with an application to the Southern Great Plains 1997 (SGP97) field experiment. It uses land surface and radiative transfer models to derive soil moisture estimates from airborne L band microwave observations and ground-based measurements of micrometeorological variables, soil texture, and vegetation type. The ensemble filter approach is appealing because (1) it can accommodate a wide range of models, (2) it can account for input and measurement uncertainties, (3) it provides information on the accuracy of its estimates, and (4) it is relatively efficient, making large-scale applications feasible. Results from our SGP97 application of the ensemble Kalman filter include large-scale maps (˜10,000 km2) of soil moisture estimates and estimation error standard deviations for the entire month long experiment and comparisons of filter soil moisture and latent heat estimates to ground truth measurements (gravimetric and flux tower observations). The ground truth comparisons show that the filter is able to track soil moisture fluctuations. The filter estimates are significantly better than those from an "open loop" simulation that includes the same ground-based data but does not incorporate radio brightness measurements. Overall, the results

  18. Windstreaked Plain

    NASA Technical Reports Server (NTRS)

    2005-01-01

    13 June 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a wind-streaked plain in Tharsis near the Pavonis Mons volcano. The lighter-toned surfaces show how the plain used to look, before strong winds removed much of a thin coating of dust. The light-toned tails behind several craters show that the winds blew from the southwest (lower left).

    Location near: 36.6oN, 88.9oW Image width: 3 km (1.9 mi Illumination from: lower left Season: Northern Autumn

  19. The Plains of Venus

    NASA Astrophysics Data System (ADS)

    Sharpton, V. L.

    2013-12-01

    Volcanic plains units of various types comprise at least 80% of the surface of Venus. Though devoid of topographic splendor and, therefore often overlooked, these plains units house a spectacular array of volcanic, tectonic, and impact features. Here I propose that the plains hold the keys to understanding the resurfacing history of Venus and resolving the global stratigraphy debate. The quasi-random distribution of impact craters and the small number that have been conspicuously modified from the outside by plains-forming volcanism have led some to propose that Venus was catastrophically resurfaced around 725×375 Ma with little volcanism since. Challenges, however, hinge on interpretations of certain morphological characteristics of impact craters: For instance, Venusian impact craters exhibit either radar dark (smooth) floor deposits or bright, blocky floors. Bright floor craters (BFC) are typically 100-400 m deeper than dark floor craters (DFC). Furthermore, all 58 impact craters with ephemeral bright ejecta rays and/or distal parabolic ejecta patterns have bright floor deposits. This suggests that BFCs are younger, on average, than DFCs. These observations suggest that DFCs could be partially filled with lava during plains emplacement and, therefore, are not strictly younger than the plains units as widely held. Because the DFC group comprises ~80% of the total crater population on Venus the recalculated emplacement age of the plains would be ~145 Ma if DFCs are indeed volcanically modified during plains formation. Improved image and topographic data are required to measure stratigraphic and morphometric relationships and resolve this issue. Plains units are also home to an abundant and diverse set of volcanic features including steep-sided domes, shield fields, isolated volcanoes, collapse features and lava channels, some of which extend for 1000s of kilometers. The inferred viscosity range of plains-forming lavas, therefore, is immense, ranging from the

  20. Understanding the ecological background of rice agriculture on the Ningshao Plain during the Neolithic Age: pollen evidence from a buried paddy field at the Tianluoshan cultural site

    NASA Astrophysics Data System (ADS)

    Li, Chunhai; Zheng, Yunfei; Yu, Shiyong; Li, Yongxiang; Shen, Huadong

    2012-03-01

    The progressive rise of atmospheric CH4 level since 5 ka has been hypothesized to result from human agricultural activities that turned forested lands, which would otherwise be a carbon sink, into paddy fields. Increasing numbers of Neolithic cultural sites unearthed in coastal eastern China, providing unique opportunities to test this hypothesis. Here, we present detailed pollen data from a buried paddy field at Tianluoshan cultural site on the Ningshao Plain, eastern China, to reconstruct the ecological conditions associated with the establishment of paddy fields. Stratigraphic data, radiocarbon ages, and pollen analyses show that vegetation underwent six phases of evolution and paddy fields were developed from 7000 to 4200 cal. yr BP. We found no evidence of slash-and-burn agriculture at the study site. Together with no presence of the irrigation system, our pollen data suggest the paddy fields at this site originated from wetlands. Hence, our findings do not support the hypothesis that anthropogenic-induced deforestation play ed a significant role in the rise of the atmospheric CH4 rise since the middle Holocene.

  1. Analysis of ground-measured and passive-microwave-derived snow depth variations in midwinter across the Northern Great Plains

    USGS Publications Warehouse

    Chang, A.T.C.; Kelly, R.E.J.; Josberger, E.G.; Armstrong, R.L.; Foster, J.L.; Mognard, N.M.

    2005-01-01

    Accurate estimation of snow mass is important for the characterization of the hydrological cycle at different space and time scales. For effective water resources management, accurate estimation of snow storage is needed. Conventionally, snow depth is measured at a point, and in order to monitor snow depth in a temporally and spatially comprehensive manner, optimum interpolation of the points is undertaken. Yet the spatial representation of point measurements at a basin or on a larger distance scale is uncertain. Spaceborne scanning sensors, which cover a wide swath and can provide rapid repeat global coverage, are ideally suited to augment the global snow information. Satellite-borne passive microwave sensors have been used to derive snow depth (SD) with some success. The uncertainties in point SD and areal SD of natural snowpacks need to be understood if comparisons are to be made between a point SD measurement and satellite SD. In this paper three issues are addressed relating satellite derivation of SD and ground measurements of SD in the northern Great Plains of the United States from 1988 to 1997. First, it is shown that in comparing samples of ground-measured point SD data with satellite-derived 25 ?? 25 km2 pixels of SD from the Defense Meteorological Satellite Program Special Sensor Microwave Imager, there are significant differences in yearly SD values even though the accumulated datasets showed similarities. Second, from variogram analysis, the spatial variability of SD from each dataset was comparable. Third, for a sampling grid cell domain of 1?? ?? 1?? in the study terrain, 10 distributed snow depth measurements per cell are required to produce a sampling error of 5 cm or better. This study has important implications for validating SD derivations from satellite microwave observations. ?? 2005 American Meteorological Society.

  2. Measured and simulated soil water evaporation from four Great Plains soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The amount of soil water lost during stage one and stage two soil water evaporation is of interest to crop water use modelers. The ratio of measured soil surface temperature (Ts) to air temperature (Ta) was tested as a signal for the transition in soil water evaporation from stage one to stage two d...

  3. Continuously measured annual ammonia emissions from Southern High Plains beef cattle feedyards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The magnitude of ammonia emissions from beef cattle feedyards varies with season during the year, but studies of continuous measurement of ammonia emissions throughout the year are rare. The quantification of annual ammonia emissions will improve emission factors, provide databases that can be used ...

  4. Error characterization of retrievals for active remote Sensing instruments in the ARM climate research facility at the Southern Great Plains site

    NASA Astrophysics Data System (ADS)

    Chandrasekar, C. V.; Hardin, J. C.; Jensen, M. P.

    2012-12-01

    The ARM Climate Research Facility deploys a network of highly instrumented ground stations, including both mobile and aerial facilities to support the study of global climate change by the national and international research community. The Southern Great Plains facility (SGP) hosts a network of C, X, and K band radars; some are in scanning mode and some are in vertically pointing mode. As an example, the Mid-Latitude Continental Convective Clouds Experiment (MC3E) (Jensen, et al. 2011), was a joint DOE Atmospheric Radiation Measurement (ARM) and NASA Global Precipitation Measurements (GPM) field campaign which took place from April - June 2011 in Central Oklahoma centered at the ARM SGP site. This paper presents retrieval methodologies for the ARM instrument suite with a focus on the error characterization for the radar measurements and the retrievals. There is extensive literature on retrieval algorithms for precipitation and cloud parameters from single frequency, dual-polarization radar systems. Multiple radar deployments are becoming more common, and the MC3E is a text book example of such a deployment. Additionally, networked deployments are becoming more common (Chandrasekar, et al. 2010), resulting in networked retrievals, initially used for attenuation mitigation. Since then, networked retrievals have expanded to include DSDs from networked X-band or Ku-band radars (Yoshikawa, et al., 2012). The above retrieval methodologies were for homogeneous, single frequency systems; the multi frequency nature of the deployment during the MC3E program is the motivation for the integrated formulation and error characterization presented in this paper. The set of radars consists of the NASA NPOL radar at S-band, as well as the C and X-band radars from the ARM program, namely the C-SAPR and X-SAPR family. This paper presents a comprehensive integrated retrieval methodology focusing on error characterization to obtain microphysical retrieval including drop size

  5. Quantifying the contribution of long-range transport to Particulate Matter (PM) mass loadings at a suburban site in the North-Western Indo Gangetic Plain (IGP)

    NASA Astrophysics Data System (ADS)

    Pawar, H.; Garg, S.; Kumar, V.; Sachan, H.; Arya, R.; Sarkar, C.; Chandra, B. P.; Sinha, B.

    2015-04-01

    Many sites in the densely populated Indo Gangetic Plain (IGP) frequently exceed the national ambient air quality standard (NAAQS) of 100 μg m-3 for 24 h average PM10 and 60 μg m-3 for 24 h average PM2.5 mass loadings, exposing residents to hazardous levels of PM throughout the year. We quantify the contribution of long range transport to elevated PM levels and the number of exceedance events through a back trajectory climatology analysis of air masses arriving at the IISER Mohali Atmospheric Chemistry facility (30.667° N, 76.729° E; 310 m a.m.s.l.) for the period August 2011-June 2013. Air masses arriving at the receptor site were classified into 6 clusters, which represent synoptic scale air mass transport patterns and the average PM mass loadings and number of exceedance events associated with each air mass type were quantified for each season. Long range transport from the west leads to significant enhancements in the average coarse mode PM mass loadings during all seasons. The contribution of long range transport from the west and south west (Source region: Arabia, Thar desert, Middle East and Afghanistan) to coarse mode PM varied between 9 and 57% of the total PM10-2.5 mass. Local pollution episodes (wind speed < 1 m s-1) contributed to enhanced coarse mode PM only during winter season. South easterly air masses (Source region: Eastern IGP) were associated with significantly lower coarse mode PM mass loadings during all seasons. For fine mode PM too, transport from the west usually leads to increased mass loadings during all seasons. Local pollution episodes contributed to enhanced PM2.5 mass loadings during winter and summer season. South easterly air masses were associated with significantly lower PM2.5 mass loadings during all seasons. Using simultaneously measured gas phase tracers we demonstrate that most PM2.5 originated from combustion sources. The fraction of days in each season during which the PM mass loadings exceeded the national ambient air

  6. Taking the measure of a landscape: Comparing a simulated and natural landscape in the Virginia Coastal Plain

    NASA Astrophysics Data System (ADS)

    Howard, Alan D.; Tierney, Heather E.

    2012-01-01

    A landform evolution model is used to investigate the historical evolution of a fluvial landscape along the Potomac River in Virginia, USA. The landscape has developed on three terraces whose ages span 3.5 Ma. The simulation model specifies the temporal evolution of base level control by the river as having a high-frequency component of the response of the Potomac River to sea level fluctuations superimposed on a long-term epeirogenic uplift. The wave-cut benches are assumed to form instantaneously during sea level highstands. The region is underlain by relatively soft coastal plain sediments with high intrinsic erodibility. The survival of portions of these terrace surfaces, up to 3.5 Ma, is attributable to a protective cover of vegetation. The vegetation influence is parameterized as a critical shear stress to fluvial erosion whose magnitude decreases with increasing contributing area. The simulation model replicates the general pattern of dissection of the natural landscape, with decreasing degrees of dissection of the younger terrace surfaces. Channel incision and relief increase in headwater areas are most pronounced during the relatively brief periods of river lowstands. Imposition of the wave-cut terraces onto the simulated landscape triggers a strong incisional response. By qualitative and quantitative measures the model replicates, in a general way, the landform evolution and present morphology of the target region.

  7. Wind Shear Characteristics at Central Plains Tall Towers (presentation)

    SciTech Connect

    Schwartz, M.; Elliott, D.

    2006-06-05

    The objectives of this report are: (1) Analyze wind shear characteristics at tall tower sites for diverse areas in the central plains (Texas to North Dakota)--Turbines hub heights are now 70-100 m above ground and Wind measurements at 70-100+ m have been rare. (2) Present conclusions about wind shear characteristics for prime wind energy development regions.

  8. Re-measuring the Slip Rate of the San Andreas Fault at Wallace Creek in the Carrizo Plain, CA

    NASA Astrophysics Data System (ADS)

    Grant Ludwig, L.; Akciz, S. O.; Arrowsmith, R.; Sato, T.; Cheiffetz, T.; Haddad, D. E.; Salisbury, J. B.; Marliyani, G. I.; Bohon, W.

    2015-12-01

    Sieh and Jahns (S&J) (1984) reported a slip rate of 33.9 +2.9 mm/yr for the San Andreas fault (SAF) at Wallace Creek (WC) in the Carrizo Plain. Referenced hundreds of times, their measurement provides critical constraint for many related studies. Paleoseismologic studies at Bidart Fan (BF), ~5 km southeast of WC, show rupture approximately every 88 yrs between ~A.D. 1350 and 1857 (Akciz et al., 2010). Measurements of slip per event for the last 5 or 6 earthquakes at WC (Liu et al., 2004; Liu-Zeng et al., 2006), when combined with rupture dates from BF, yield slip rates up to 50 mm/yr, well above widely accepted values of ~ 35 mm/yr. The apparent discrepancy between slip rates and slip per event measurements provided motivation to re-measure S&J's (1984) slip rate, which was based on 8 detrital charcoal samples, by collecting samples for radiocarbon dating with new methods that have improved dramatically since the early 1980s. We re-excavated S&J's (1984) original trenches WC-2, 7, 9, 10 and 11, and placed a new trench, WC-12. The new trench exposed a rich history of channel cut and fill prior to abandonment of the beheaded channel and incision of the modern channel. The youngest channel fills, which must be slightly younger than the abandonment, indicate that sedimentation occurred between 3675-3285 BP, after which the channel was fully abandoned. Using S&J's (1984) offset measurement of 130 m since ~3400 BP, we recalculate a late Holocene slip rate of ~38 mm/yr in our preliminary analysis. This rate is slightly higher than the S&J (1984) result of 33.9±2.9 mm/yr and Noriega et al. (2006) result of 32.4±3.1 mm/yr at the Van Matre Ranch in the southern Carrizo. Our results are closer to the higher end of the ~36±2 mm/yr velocity gradient across the SAF from decadal timescale geodetic measurements (Schmalzle, et al., 2006).

  9. Measurements of N2O emissions from different vegetable fields on the North China Plain

    NASA Astrophysics Data System (ADS)

    Diao, Tiantian; Xie, Liyong; Guo, Liping; Yan, Hongliang; Lin, Miao; Zhang, He; Lin, Jia; Lin, Erda

    2013-06-01

    Few studies have measured the N2O emission fluxes from vegetable fields. In order to identify the characteristics and the influencing factors of N2O emissions from different vegetable fields, we measured N2O emissions for a full year from four typical fields, including an open-ground vegetable field that has produced vegetables for over 20 years (OV20), a recently developed open-ground vegetable field that was converted from a maize field three years earlier (OV3), a recently developed greenhouse vegetable field that was converted from a maize field 3 years earlier (GV3) and a typical local maize field (Maize). Four different fertilization treatments were set additionally in the recently developed open-ground vegetable field. These were: no fertilizer or manure (OV3_CK), manure only (OV3_M) and the combination of manure with different rates of chemical fertilizer application (OV3_MF1 and OV3_MF3). The results showed that N2O emission fluxes fluctuated between 0.3 ± 0.1 and 912.4 ± 80.0 mg N2O-N m-2 h-1 with the highest emission peak occurring after fertilization followed by irrigation. Nitrogen application explained 64.6-84.5% of the N2O emission in the vegetable fields. The magnitude of the emission peaks depended on the nitrogen application rate and the duration of the emission peaks was mainly associated with soil temperature when appropriate irrigation was given after fertilization. The N2O emission peaks occurred later and lasted for a longer period when the soil temperature was <24 °C in May. However, emission peaks occurred earlier and lasted for a shorter period when the soil temperature was around 25-33 °C from June to August. The annual N2O emissions from the fertilized vegetable fields were 1.68-2.38 times higher than that from the maize field, which had an emission value of 2.88 ± 0.10 kg N ha-1 a-1. The N2O emission factor (EF) of manure nitrogen was 0.07% over the whole year, but was 0.11% and 0.02% in the spring cucumber season and the autumn

  10. Aquifer geochemistry at potential aquifer storage and recovery sites in coastal plain aquifers in the New York city area, USA

    USGS Publications Warehouse

    Brown, C.J.; Misut, P.E.

    2010-01-01

    The effects of injecting oxic water from the New York city (NYC) drinking-water supply and distribution system into a nearby anoxic coastal plain aquifer for later recovery during periods of water shortage (aquifer storage and recovery, or ASR) were simulated by a 3-dimensional, reactive-solute transport model. The Cretaceous aquifer system in the NYC area of New York and New Jersey, USA contains pyrite, goethite, locally occurring siderite, lignite, and locally varying amounts of dissolved Fe and salinity. Sediment from cores drilled on Staten Island and western Long Island had high extractable concentrations of Fe, Mn, and acid volatile sulfides (AVS) plus chromium-reducible sulfides (CRS) and low concentrations of As, Pb, Cd, Cr, Cu and U. Similarly, water samples from the Lloyd aquifer (Cretaceous) in western Long Island generally contained high concentrations of Fe and Mn and low concentrations of other trace elements such as As, Pb, Cd, Cr, Cu and U, all of which were below US Environmental Protection Agency (USEPA) and NY maximum contaminant levels (MCLs). In such aquifer settings, ASR operations can be complicated by the oxidative dissolution of pyrite, low pH, and high concentrations of dissolved Fe in extracted water.The simulated injection of buffered, oxic city water into a hypothetical ASR well increased the hydraulic head at the well, displaced the ambient groundwater, and formed a spheroid of injected water with lower concentrations of Fe, Mn and major ions in water surrounding the ASR well, than in ambient water. Both the dissolved O2 concentrations and the pH of water near the well generally increased in magnitude during the simulated 5-a injection phase. The resultant oxidation of Fe2+ and attendant precipitation of goethite during injection provided a substrate for sorption of dissolved Fe during the 8-a extraction phase. The baseline scenario with a low (0.001M) concentration of pyrite in aquifer sediments, indicated that nearly 190% more water

  11. 47 CFR Figure 1 to Subpart N of... - Measurement Site

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Measurement Site 1 Figure 1 to Subpart N of Part 2 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO...—Measurement Site EC03JN91.005...

  12. 47 CFR Figure 1 to Subpart N of... - Measurement Site

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Measurement Site 1 Figure 1 to Subpart N of Part 2 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO...—Measurement Site EC03JN91.005...

  13. Validation of Land Surface Temperature Products and Site Characterisation with Ground Based Radiometric Measurements

    NASA Astrophysics Data System (ADS)

    Goettsche, Frank; Olesen, Folke; Bork-Unkelbach, Annika

    2013-04-01

    Land Surface Temperature (LST) is an important quantity for the energy and water exchange between the earth's surface and the atmosphere and, therefore, an important parameter of many environmental models. LST is derived operationally from several space-borne sensors, e.g. the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-Terra and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG) and AVHRR onboard NOAA and EPS satellites. Ground based validation of LST and Land Surface Emissivity (LSE) is largely complicated by the spatial scale mismatch between satellite sensors and ground based sensors: areas observed by ground radiometers usually cover about 10 m2, whereas satellite measurements in the thermal infra-red typically cover between 1 km2 and 100 km2. Therefore, validation sites have to be carefully selected and need to be characterised on the spatial scale of the ground radiometer as well as on the scale of the satellite pixel. The permanent validation station near Gobabeb, Namibia, is one of KIT's four dedicated LST validation stations. Gobabeb is located on vast and flat gravel plains (several 100 km2), which are mainly covered by coarse gravel, sand, and desiccated grass. The plains are highly homogeneous in space and time, which makes them an ideal site for validating a broad range of satellite-derived products. However, for reliable product validation the effect of the small scale variation of surface materials (e.g. dry grass, rock outcrops) and topography needs to be closely characterised. Using a mobile radiometer system, several field experiments were performed during which the radiometer was driven along tracks of 20 km to 40 km length through the gravel plains. The results show a high level of homogeneity and a stable relationship between station LST and LST determined along the tracks from the mobile measurements with a small bias of about 0.4°C. LSEs of the dominant surface cover types at

  14. Study of Aerosol Liquid Water Content based on Hygroscopicity Measurements at High Relative Humidity in the North China Plain

    NASA Astrophysics Data System (ADS)

    Bian, Y.; Zhao, C.

    2013-12-01

    Aerosol has significant effects on direct/indirect climate forcing, visibility, tropospheric chemistry and human health. Water can represent an extensive proportion of the mass of aerosol particles, and can also serve as a medium for aqueous-phase reactions in such particulate matter. In this study, a new method is proposed to estimate the aerosol liquid water content at high relative humidity, based on aerosol hygroscopic growth factors, particle number size distribution and relative humidity measured during the Haze in China (HaChi) campaign of July-August, 2009. The aerosol liquid water content estimated by this method is compared to the results calculated by a thermodynamic equilibrium model (ISORROPIA II). The calculation results from these two methods agree well at high relative humidity above 60% with the correlation coefficient of 0.9658. At relative humidity lower than 60%, the thermodynamic equilibrium model underestimates the aerosol liquid water content. The discrepancy is mainly caused by the ISORROPIA II model, which considers only limited chemical species. The mean and maximum value of aerosol liquid water content during July-August, 2009 in the North China Plain reached 1.69×10^{-4}g/m^3 and 9.71×10^{-4}g/m^3, respectively. Aerosol liquid water content is highly related to the relative humidity. There exists a distinct diurnal variation of the aerosol liquid water content, with lower values during daytime and higher ones during night time. The contribution to the aerosol liquid water content from the accumulation mode is dominating among all the aerosol particle modes.

  15. Micrometeorological flux measurements at a coastal site

    NASA Astrophysics Data System (ADS)

    Song, Guozheng; Meixner, Franz X.; Bruse, Michael; Mamtimin, Buhalqem

    2014-05-01

    The eddy covariance (EC) technique is the only direct measurement of the momentum, heat, and trace gas (e.g. water vapor, CO2 and ozone) fluxes. The measurements are expected to be most accurate over flat terrain where there is an extended homogenous surface upwind from the tower, and when the environmental conditions are steady. Additionally, the one dimensional approach assumes that vertical turbulent exchange is the dominant flux, whereas advective influences should be negligible. The application of EC method under non-ideal conditions, for example in complex terrain, has yet to be fully explored. To explore the possibilities and limitations of EC technique under non-ideal conditions, an EC system was set up at Selles beach, Crete, Greece (35.33°N, 25.71°E) in the beginning of July 2012. The dominant wind direction was west, parallel to the coast. The EC system consisted of a sonic anemometer (CSAT3 Campbell Scientific), an infrared open-path CO2/H2O gas analyzer (LI-7500, Li-COR Biosciences) and a fast chemiluminescence ozone analyzer (enviscope GmbH). All the signals of these fast response instruments were sampled at 10 Hz and the measurement height was 3 m. Besides, another gradient system was setup. Air temperature, relative humidity (HYGROMER MP 103 A), and wind speed (WMT700 Vaisala) were measured every 10 seconds at 3 heights (0.7, 1.45, 3 m). Air intakes were set up at 0.7m and 3m. A pump drew the air through a flow system and a telflon valve alternately switched between the two heights every 30 seconds. H2O, CO2 (LI-840A, Li-COR Biosciences) and ozone mixing ratio s (model 205, 2BTechnologies) were measured every 10 seconds. Momentum, heat, CO2 and ozone fluxes were evaluated by both EC and gradient technique. For the calculation of turbulent fluxes, TK3 algorithm (Department of Micrometeorology, University Bayreuth, Germany) was applied. We will present the measured fluxes of the two systems and assess the data quality under such non-ideal condition.

  16. Catalog of data for the EPRI plume model validation and development data base - plains site. Final report

    SciTech Connect

    Hudischewskyj, A.B.; Reynolds, S.D.

    1983-10-01

    This report provides an hour-by-hour catalog of the data collected during the initial phase of the EPRI Plume Model Validation and Development (PMV and D) Project. To examine plume dispersion behavior in relatively uncomplicated terrain, a series of field measurement programs was conducted in the vicinity of the Kincaid Generating Station in central Illinois. These measurement programs comprise nine months of continuous monitoring of air quality, meteorological, and power plant emissions variables supplemented by three 3-week periods of intensive, specialized measuremenfs of plume dispersion. The data catalog indicates the instruments reporting valid information during each hour of the measurement programs; hours of ground-based and airborne lidar measurements processed to provide estimates of plume height and spread are also summarized. Because of the large volume of information contained in the data base, the catalog is designed to help data base users identify periods of time during which particular types of measurements were made.

  17. Plains Traveler

    NASA Technical Reports Server (NTRS)

    2006-01-01

    10 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a dust devil traveling across a plain west-southwest of Schiaparelli Crater, in far eastern Sinus Meridiani. The dust devil is casting a shadow toward the northeast, just south (below) of an egg-shaped crater.

    Location near: 6.4oS, 349.3oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  18. Remote sensing strategy at the first Atmospheric Radiation Measurement field site

    SciTech Connect

    Wesely, M.L.; Griffin, J.W.

    1994-07-01

    The Atmospheric Radiation Measurement (ARM) Program was initiated in 1990 by the US Department of Energy to improve climate model simulations of radiative energy transport and cloud formation, maintenance, and dissipation. ARM stresses the modeling of phenomena occurring at subgrid scales in general circulation models (GCMs). Measurements to support the modeling research will be made at three primary locations. The central facility, the primary location at the Southern Great Plains (SGP) site for study of radiative transfer, uses ground-based remote sensing instrumentation to observe radiation and the atmospheric properties that affect it. Remote sensing instruments and balloon-borne sounding systems installed at several boundary facilities on the perimeter of the overall Cloud and Radiation Testbed (CART) site evaluate vertical profiles of wind, temperature, and humidity. These observations are needed to run single-column models derived from GCMs for a single grid square with an area equivalent to the overall CART area. Observations of local meteorological conditions, air-surface exchange, and solar and infrared radiation at up to 23 extended facilities scattered throughout the CART site provide the surface boundary information needed in the single-column models. Finally, auxiliary facilities at the central facility and at a few locations within 10 km of the central facility will contain whole-sky imaging systems to map cloud characteristics. The purpose of this presentation is to describe the strategy used to obtain remote sensing instrumentation for continuous operation at the central facility.

  19. Gravity measured at the apollo 14 lading site.

    PubMed

    Nance, R L

    1971-12-01

    The gravity at the Apollo 14 landing site has been determined from the accelerometer data that were telemetered from the lunar module. The values for the lunar gravity measured at the Apollo 11, 12, and 14 sites were reduced to a common elevation and were then compared between sites. A theoretical gravity, based on the assumption of a spherical moon, was computed for each landing site and compared with the observed value. The observed gravity was also used to compute the lunar radius at each landing site. PMID:17757030

  20. Variability in aerosol optical properties over an urban site, Kanpur, in the Indo-Gangetic Plain: A case study of haze and dust events

    NASA Astrophysics Data System (ADS)

    Ram, Kirpa; Singh, Sunita; Sarin, M. M.; Srivastava, A. K.; Tripathi, S. N.

    2016-06-01

    In this study, we report on three important optical parameters, viz. absorption and scattering coefficients (babs, bscat) and single scattering abledo (SSA) based on one-year chemical-composition data collected from an urban site (Kanpur) in the Indo-Gangetic-Plain (IGP) of northern India. In addition, absorption Ängstrom exponent (AAE) was also estimated in order to understand the wavelength dependence of absorption and to decipher emission sources of carbonaceous aerosols, in particular of black carbon. The absorption and scattering coefficients ranged between 8.3 to 95.2 Mm- 1 (1 Mm- 1 = 10- 6 m- 1) and 58 to 564 Mm- 1, respectively during the study period (for n = 66; from January 2007 to March 2008) and exhibit large seasonal variability with higher values occurring in winter and lower in the summer. Single scattering albedo varied from 0.65 to 0.92 whereas AAE ranged from 0.79 to 1.40 during pre-monsoon and winter seasons, respectively. The strong seasonal variability in aerosol optical properties is attributed to varying contribution from different emission sources of carbonaceous aerosols in the IGP. A case study of haze and dust events further provide information on extreme variability in aerosol optical parameters, particularly SSA, a crucial parameter in atmospheric radiative forcing estimates.

  1. Heavy mineral delineation of the Cretaceous, Paleocene, and Eocene stratigraphic sections at the Savannah River Site, Upper Coastal Plain of South Carolina

    SciTech Connect

    Cathcart, E.M. . Dept. of Geology); Sargent, K.A. . Dept. of Geology)

    1994-03-01

    The Upper Atlantic Coastal Plain of South Carolina consists of a fluvial-deltaic and shallow marine complex of unconsolidated sediments overlying the crystalline basement rocks of the North American continent. Because of the lateral and vertical variability of these sediments, stratigraphic boundaries have been difficult to distinguish. Portions of the Cretaceous, Paleocene, and eocene stratigraphic sections from cores recovered during the construction of two monitoring wells at the Savannah River Site were studied to determine if heavy mineral suites could be utilized to distinguish boundaries. The stratigraphic sections include: the Late Cretaceous Middendorf, Black Creek, and Steel Creek Formations, the Paleocene Snapp Formation, the late Paleocene-Early Eocene Fourmile Branch Formation, and the Early Eocene Congaree formation. In previous studies composite samples were taken over 2.5 ft. intervals along the cores and processed using a heavy liquid for heavy mineral recovery. During this study, heavy mineral distributions were determined by binocular microscope and the mineral identifications confirmed by x-ray diffraction analysis of hand-picked samples. The heavy mineral concentration data and grain size data were then compared to the stratigraphic boundary positions determined by other workers using more classical methods. These comparisons were used to establish the utility of this method for delineating the stratigraphic boundaries in the area of study.

  2. Origin of lunar light plains

    NASA Technical Reports Server (NTRS)

    Chao, E. C. T.; Hodges, C. A.; Boyce, J. M.; Soderblom, L. A.

    1975-01-01

    In order to determine the origin of Cayley-type lunar light plains, their physical properties, distribution, and relative ages are examined from Apollo orbital and Lunar Orbiter photographs. The distribution and apparent age of the plains deposits and data on highly feldspathic breccias indicate that these superficial materials are neither locally derived nor part of the Imbrium ejecta. The existence of a planar facies of continuous ejecta at Orientale and in the ejecta blankets of small craters is demonstrated. The data and interpretation presented support the hypothesis that the surface and near-surface materials of some light plains, including those at the Apollo 16 site, are at least partly composed of ejecta from the Orientale basin and that the materials of many rugged areas, such as the Descartes highlands, are overlain by similar material. The possibility that some Cayley-type plains may have a different origin is not excluded.

  3. Revisiting Plain Language.

    ERIC Educational Resources Information Center

    Mazur, Beth

    2000-01-01

    Discusses the plain language movement and its origins. Reviews past and current resources related to plain language writing. Examines criticism of the movement while examining past and current plain language literature, with particular attention to the information design field. (SR)

  4. Airborne particulate polycyclic aromatic hydrocarbon (PAH) pollution in a background site in the North China Plain: concentration, size distribution, toxicity and sources.

    PubMed

    Zhu, Yanhong; Yang, Lingxiao; Yuan, Qi; Yan, Chao; Dong, Can; Meng, Chuanping; Sui, Xiao; Yao, Lan; Yang, Fei; Lu, Yaling; Wang, Wenxing

    2014-01-01

    The size-fractionated characteristics of particulate polycyclic aromatic hydrocarbons (PAHs) were studied from January 2011 to October 2011 using a Micro-orifice Uniform Deposit Impactor (MOUDI) at the Yellow River Delta National Nature Reserve (YRDNNR), a background site located in the North China Plain. The average annual concentration of total PAHs in the YRDNNR (18.95 ± 16.51 ng/m(3)) was lower than that in the urban areas of China; however, it was much higher than that in other rural or remote sites in developed countries. The dominant PAHs, which were found in each season, were fluorene (5.93%-26.80%), phenanthrene (8.17%-26.52%), fluoranthene (15.23%-27.12%) and pyrene (9.23%-16.31%). A bimodal distribution was found for 3-ring PAHs with peaks at approximately 1.0-1.8 μm and 3.2-5.6 μm; however, 4-6 ring PAHs followed a nearly unimodal distribution, with the highest peak in the 1.0-1.8 μm range. The mass median diameter (MMD) values for the total PAHs averaged 1.404, 1.467, 1.218 and 0.931 μm in spring, summer, autumn and winter, respectively. The toxicity analysis indicated that the carcinogenic potency of particulate PAHs existed primarily in the <1.8 μm size range. Diagnostic ratios and PCA analysis indicated that the PAHs in aerosol particles were mainly derived from coal combustion. In addition, back-trajectory calculations demonstrated that atmospheric PAHs were produced primarily by local anthropogenic sources. PMID:23921366

  5. First 2 years of Atmospheric CO2 measurements in the Estany Llong plain (2100 masl, Parc Nacional d'Aigüestortes i Estany de Sant Maurici, Pyrenees, Catalonia, Spain).

    NASA Astrophysics Data System (ADS)

    Curcoll, Roger; Recolons, Montserrat; Font, Anna; Agraz, Laura; Parga, Elena; Bacardit, Montse; Camarero, Lluís.; Pueyo, Salva; Rodó, Xavier; Morguí, Josep Anton

    2010-05-01

    Since April 2009, air samples are being taken bi-weekly at 10 GMT in the plain of the Estany Llong at 2100 masl. Estany Llong air sampling site (ELL, 42°34'29''N 0°57'17''E) is a remote site situated in the SW principal valley of the Parc Nacional d'Aigüestortes i Estany de Sant Maurici. New Flask-sampling equipment for Remote Mountain Sites was developed by the Institut Català de Ciències del Clima (IC3) to allow flask sampling in extreme weather conditions and carrying the sampling equipment for more than 10 km without damaging flasks. Dry Air analysis for CO2 are done at the Laboratory of IC3 using two coupled modified IRGA Licor-7000, where both pressure and flow are externally controlled. Far away from populated areas, ELL site acts as a remote site, but it is also responding to discrete events as snow melting, summer cattle breeding on pastures and trekking frequentation. Series of CO2 obtained are included as part of Long Term Ecological Research (LTER) at the Parc Nacional d'Aigüestortes i Estany de Sant Maurici. In the long term, these measurements show the mountain ecosystems contribution and geomorphologic influence on the CO2 budget of the air masses crossing a mountain range.

  6. A Three-Year Study of Ichyoplankton in Coastal Plains Reaches of the Savannah River Site and its Tributaries

    SciTech Connect

    Martin, D.

    2007-03-05

    Altering flow regimes of rivers has large effects on native floras and faunas because native species are adapted to the natural flow regime, many species require lateral connectivity with floodplain habitat for feeding or spawning, and the change in regime often makes it possible for invasive species to replace natives (Bunn & Arthington 2002). Floodplain backwaters, both permanent and temporary, are nursery areas for age 0+ fish and stable isotope studies indicate that much of the productivity that supports fish larvae is autochthonous to these habitats (Herwig et al. 2004). Limiting access by fish to floodplain habitat for feeding, spawning and nursery habitat is one of the problems noted with dams that regulate flow in rivers and is considered to be important as an argument to remove dams and other flow regulating structures from rivers (Shuman 1995; Bednarek 2001). While there have been a number of studies in the literature about the use of floodplain habitat for fish reproduction (Copp 1989; Killgore & Baker 1996; Humphries, et al. 1999; Humphries and Lake 2000; Crain et al. 2004; King 2004) there have been only a few studies that examined this aspect of stream ecology in more than a cursory way. The study reported here was originally designed to determine whether the Department of Energy's (DOE) Savannah River Site was having a negative effect on fish reproduction in the Savannah River but its experimental design allowed examination of the interactions between the river, the floodplain and the tributaries entering the Savannah River across this floodplain. This study is larger in length of river covered than most in the literature and because of its landscape scale may be in important indicator of areas where further study is required.

  7. SITE-SPECIFIC MEASUREMENTS OF RESIDENTIAL RADON PROTECTION CATEGORY

    EPA Science Inventory

    The report describes a series of benchmark measurements of soil radon potential at seven Florida sites and compares the measurements with regional estimates of radon potential from the Florida radon protection map. The measurements and map were developed under the Florida Radon R...

  8. Chemical characteristics and mutagenic activity of PM₂.₅ at a site in the Indo-Gangetic plain, India.

    PubMed

    Dubey, Jitendra; Kumari, K Maharaj; Lakhani, Anita

    2015-04-01

    Airborne fine particulate matter PM2.5 was collected from May 2010 to December 2012 at Agra, a semi-urban site in north-central India. PM2.5 samples were chemically characterized for 16 polycyclic aromatic hydrocarbons by gas chromatography. PM2.5 values varied between 8.4 and 300 µg m(-3) with 55% of the values exceeding the 24h average NAAQ (National Ambient Air Quality) standard of 65 µg m(-3). Particle associated total PAHs ranged between 8.9 and 2,065 ng m(-3) with a mean value of 880.8 ng m(-3) during the sampling period, indicated an alarming level of pollution in Agra. Strong relationship was observed between PM2.5 and total PAHs (r=0.88), suggesting an increasing PAHs concentration with increasing PM2.5 mass. On a mass basis 3-ring and 4-ring compounds were dominant. Seasonal variation in mass concentration of PAHs was observed with high concentration in winter followed by post monsoon, summer and monsoon. This seasonal pattern could be attributed to differences in source strength and climatic conditions. PAHs concentration were also observed to be negatively correlated with the meteorological parameters i.e. temperature, solar radiation, relative humidity and wind speed. Molecular diagnostic ratios revealed vehicular emissions and combustion of wood and coal as the probable sources. The estimated carcinogenicity of PAHs in terms of benzo(a)pyrene toxic equivalency (B[a]PTEQ) was assessed and confirmed that benzo[a]pyrene was the dominant PAH contributor (3.64%). Health risk of adults and children by way of PAHs was assessed by estimating the lifetime average daily dose (LADD) and corresponding incremental lifetime cancer risk (ILCR) using USEPA guidelines. The assessed cancer risk (ILCR) was found to be within the acceptable range (10(-6)-10(-4)). The particulate samples indicated the presence of both base pair and frame shift mutagens using TA98 and TA100 strains of Salmonella typhimurium. Enhanced mutagenic response was observed in the presence of

  9. Baseline measurements of terrestrial gamma radioactivity at the CEBAF site

    SciTech Connect

    Wollenberg, H.A.; Smith, A.R.

    1991-10-01

    A survey of the gamma radiation background from terrestrial sources was conducted at the CEBAF site, Newport News, Virginia, on November 12--16, 1990, to provide a gamma radiation baseline for the site prior to the startup of the accelerator. The concentrations and distributions of the natural radioelements in exposed soil were measured, and the results of the measurements were converted into gamma-ray exposure rates. Concurrently, samples were collected for laboratory gamma spectral analyses.

  10. A new interpretation of deformation rates in the Snake River Plain and adjacent basin and range regions based on GPS measurements

    SciTech Connect

    S.J. Payne; R. McCaffrey; R.W. King; S.A. Kattenhorn

    2012-04-01

    We evaluate horizontal Global Positioning System (GPS) velocities together with geologic, volcanic, and seismic data to interpret extension, shear, and contraction within the Snake River Plain and the Northern Basin and Range Province, U.S.A. We estimate horizontal surface velocities using GPS data collected at 385 sites from 1994 to 2009 and present an updated velocity field within the Stable North American Reference Frame (SNARF). Our results show an ENE-oriented extensional strain rate of 5.9 {+-} 0.7 x 10{sup -9} yr{sup -1} in the Centennial Tectonic belt and an E-oriented extensional strain rate of 6.2 {+-} 0.3 x 10{sup -9} yr{sup -1} in the Intermountain Seismic belt combined with the northern Great Basin. These extensional strain rates contrast with the regional north-south contraction of -2.6 {+-} 1.1 x 10{sup -9} yr{sup -1} calculated in the Snake River Plain and Owyhee-Oregon Plateau over a 125 x 650 km region. Tests that include dike-opening reveal that rapid extension by dike intrusion in volcanic rift zones does not occur in the Snake River Plain at present. This slow internal deformation in the Snake River Plain is in contrast to the rapidly-extending adjacent Basin and Range provinces and implies shear along boundaries of the Snake River Plain. We estimate right-lateral shear with slip rates of 0.5-1.5 mm/yr along the northwestern boundary adjacent to the Centennial Tectonic belt and left-lateral oblique extension with slip rates of <0.5 to 1.7 mm/yr along the southeastern boundary adjacent to the Intermountain Seismic belt. The fastest lateral shearing occurs near the Yellowstone Plateau where strike-slip focal mechanisms and faults with observed strike-slip components of motion are documented. The regional GPS velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic belt, Idaho batholith, Snake River Plain, Owyhee-Oregon Plateau, and central Oregon, indicating that clockwise rotation is driven by extension to the

  11. Long term measurements in reconstructed soils at a coal mine in the plains region of Alberta, Canada

    SciTech Connect

    Macyk, T.M.; Faught, R.L.; Logan, R.J.

    1995-09-01

    In 1983 the Alberta Research Council and Luscar Ltd. initiated a study to monitor the physical and chemical properties of newly mined and reconstructed soils at the Paintearth Mine. The objective was to determine what changes were occurring and the impact, if any, of these changes on long-term soil quality and productivity. Baseline soil sampling and neutron access tube installation were completed shortly after spoil leveling and soil replacement at six locations representing different slope positions and thickness of replaced subsoil. Monitoring sites were also established in unmined soils adjacent to the mine area. Neutron probe measurements to determine soil moisture and bulk density status in the upper 4 m were conducted annually from April to October. Forage crop harvests were completed to determine yield and forage quality in three different years. Sampling of soils in 15 cm intervals to a maximum depth of 210 cm for analytical purposes was completed in seven of the ten years of the study. Soil moisture data indicated that moisture content and distribution pattern in the reconstructed soils were similar to that of adjacent unmined soils. Bulk density at the reconstructed sites decreased with time during the term of the project and was similar to the bulk density values measured at unmined sites. The electrical conductivity data indicated salts were leached or redistributed downward in the profiles over time. Measurements to date indicate that in terms of soil moisture regime, bulk density status and forage yield the reconstructed soils are similar to unmined soils in the area. The overall improvement in the chemical properties of the reconstructed soils from the time of reconstruction could be largely attributed to leaching of salts.

  12. Ontogeny of a flood plain

    USGS Publications Warehouse

    Moody, J.A.; Pizzuto, J.E.; Meade, R.H.

    1999-01-01

    The ontogeny of five flood-plain segments is described for a period of 18 yr following a major flood in 1978 on the Powder River in southeastern Montana. The flood plains developed on relatively elevated sand and gravel deposits left within the channel by the 1978 flood. In cross section, the flood plains resemble benches with well-developed natural levees. Flood-plain growth occurred as sediment was draped onto preexisting surfaces in layers of sand and mud a few centimeters to decimeters thick, resulting in some lateral, but mostly vertical accretion. Annual and biannual measurements indicated that, as the flood-plain segments grew upward, the annual rate of vertical accretion decreased as the partial duration recurrence interval for the threshold or bankfull discharge increased from 0.16 to 1.3 yr. It is clear that a constant recurrence interval for overbank flow cannot be meaningfully assigned to this type of flood-plain ontogeny. These flood plains did not grow on migrating point bars, and vertical accretion at least initially occurred within the channel, rather than across the valley flat during extensive overbank flows. Sediments of these flood plains define narrow, elongated stratigraphic units that border the active channel and onlap older flood-plain deposits. These characteristics are considerably different from those of many facies models for meandering river deposits. Facies similar to those described in this paper are likely to be preserved, thereby providing important evidence in the geologic record for episodes of periodic channel expansion by ancient rivers.

  13. Analysis of Wind Characteristics at United States Tall Tower Measurement Sites

    NASA Astrophysics Data System (ADS)

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.

    2008-12-01

    A major initiative of the U.S. Department of Energy (DOE) is to ensure that 20% of the country's electricity is produced by wind energy by the year 2030. An understanding of the boundary layer characteristics, especially at elevated heights greater than 80 meters (m) above the surface is a key factor for wind turbine design, wind plant layout, and identifying potential markets for advanced wind technology. The wind resource group at the DOE National Renewable Energy Laboratory is analyzing wind data collected at tall (80+ m) towers across the United States. The towers established by both public and private initiative, measure wind characteristics at multiple levels above the surface, with the highest measurement levels generally between 80 and 110 m. A few locations have measurements above 200 m. Measurements of wind characteristics over a wide range of heights are useful to: (1) characterize the local and regional wind climate; (2) validate wind resource estimates derived from numerical models; and (3) directly assess and analyze specific wind resource characteristics such as wind speed shear over the turbine blade swept area. The majority of the available public tall tower measurement sites are located between the Appalachian and Rocky Mountains. The towers are not evenly distributed among the states. The states with the largest number of towers include Indiana, Iowa, Missouri, and Kansas. These states have five or six towers collecting data. Other states with multiple tower locations include Texas, Oklahoma, Minnesota, and Ohio. The primary consideration when analyzing the data from the tall towers is identifying tower flow effects that not only can produce slightly misleading average wind speeds, but also significantly misleading wind speed shear values. In addition, the periods-of-record of most tall tower data are only one to two years in length. The short data collection time frame does not significantly affect the diurnal wind speed pattern though it does

  14. Electrical resistivity borehole measurements: application to an urban tunnel site

    NASA Astrophysics Data System (ADS)

    Denis, A.; Marache, A.; Obellianne, T.; Breysse, D.

    2002-06-01

    This paper shows how it is possible to use wells drilled during geotechnical pre-investigation of a tunneling site to obtain a 2-D image of the resistivity close to a tunnel boring machine. An experimental apparatus is presented which makes it possible to perform single and borehole-to-borehole electrical measurements independent of the geological and hydrogeological context, which can be activated at any moment during the building of the tunnel. This apparatus is first demonstrated through its use on a test site. Numerical simulations and data inversion are used to analyse the experimental results. Finally, electrical resistivity tomography and single-borehole measurements on a tunneling site are presented. Experimental results show the viability of the apparatus and the efficiency of the inverse algorithm, and also highlight the limitations of the electrical resistivity tomography as a tool for geotechnical investigation in urban areas.

  15. Meteorological field measurements at potential and actual wind turbine sites

    SciTech Connect

    Renne, D.S.; Sandusky, W.F.; Hadley, D.L.

    1982-09-01

    An overview of experiences gained in a meteorological measurement program conducted at a number of locations around the United States for the purpose of site evaluation for wind energy utilization is provided. The evolution of the measurement program from its inception in 1976 to the present day is discussed. Some of the major accomplishments and areas for improvement are outlined. Some conclusions on research using data from this program are presented.

  16. Surface seismic refraction/reflection measurement determinations of potential site resonances and the areal uniformity of NEHRP site class D in Memphis, Tennessee

    USGS Publications Warehouse

    Williams, R.A.; Wood, S.; Stephenson, W.J.; Odum, J.K.; Meremonte, M.E.; Street, R.; Worley, D.M.

    2003-01-01

    We determined S-wave velocities (Vs) to about 40-m depth at 65 locations in the Memphis-Shelby County, Tennessee, area. The Vs measurements were made using high-resolution seismic refraction and reflection methods on the ground surface. We find a clear difference in the Vs profiles between sites located on the Mississippi River flood plain and those located to the east, mostly covered by loess, in the urban areas of Memphis. The average Vs to 30-m depth at 19 sites on the modern Mississippi River floodplain averages 197 m/s (?? 15 m/s) and places 17 of these sites at the low end of NEHRP soil profile category type D (average Vs 180-360 m/s). The two remaining sites are type E. Vs to 30-m depth at 46 sites in the urban areas east of the modern floodplain are more variable and generally higher than the floodplain sites, averaging about 262 m/s (??45 m/s), still within category D. We often observed the base of the loess as a prominent S-wave reflection and as an increase in Vs to about 500 m/s. Based on the two-way travel time of this reflection, during an earthquake the impedance boundary at the loess base may generate resonances in the 3- to 6-Hz range over many areas of Memphis. Amplitude spectra from four local earthquakes recorded at one site located on loess indicate consistent resonance peaks in the 4.5- to 6.5-Hz range.

  17. Measurement of long-term land subsidence by combination of InSAR and time series analysis - Application study to Kanto Plains of Japan -

    NASA Astrophysics Data System (ADS)

    Deguchi, T.; Rokugawa, S.; Matsushima, J.

    2009-04-01

    InSAR is an application technique of synthetic aperture radars and is now drawing attention as a methodology capable of measuring subtle surface deformation over a wide area with a high spatial resolution. In this study, the authors applied the method of measuring long-term land subsidence by combining InSAR and time series analysis to Kanto Plains of Japan using 28 images of ENVISAT/ASAR data. In this measuring method, the value of land deformation is set as an unknown parameter and the optimal solution to the land deformation amount is derived by applying a smoothness-constrained inversion algorithm. The vicinity of the Kanto Plain started to subside in the 1910s, and became exposed to extreme land subsidence supposedly in accordance with the reconstruction efforts after the Second World War and the economic development activities. The main causes of the land subsidence include the intake of underground water for the use in industries, agriculture, waterworks, and other fields. In the Kujukuri area, the exploitation of soluble natural gas also counts. The Ministry of Environment reported in its documents created in fiscal 2006 that a total of 214 km2 in Tokyo and the six prefectures around the Plain had undergone a subsidence of 1 cm or more per a year. As a result of long-term land subsidence over approximately five and a half years from 13th January, 2003, to 30th June, 2008, unambiguous land deformation was detected in six areas: (i) Haneda Airport, (ii) Urayasu City, (iii) Kasukabe-Koshigaya, (iv) Southern Kanagawa, (v) Toride-Ryugasaki, and (vi) Kujukuri in Chiba Prefecture. In particular, the results for the Kujukuri area were compared with the leveling data taken around the same area to verify the measuring accuracy. The comparative study revealed that the regression formula between the results obtained by time series analysis and those by the leveling can be expressed as a straight line with a gradient of approximately 1, though including a bias of about

  18. Dunes on Plains

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03047 Dunes on Plains

    These dunes are located on the plains around Doanus Vallis.

    Image information: VIS instrument. Latitude 62.3S, Longitude 335.3E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  19. Towards increasing the spatial resolution of luminescence chronologies - Portable luminescence reader measurements and standardized growth curves applied to the beach-ridge plain of Phra Thong Island, Thailand

    NASA Astrophysics Data System (ADS)

    Brill, Dominik; Jankaew, Kruawun; Brückner, Helmut

    2016-04-01

    Since optically stimulated luminescence (OSL) dating is time consuming and cost intensive, age information available for individual study sites is usually restricted to significantly less than 100 ages. In particular the interpretation of complex depositional systems with temporally and spatially diverse sedimentation histories may suffer from the effects of a poor spatial resolution or an ineffective distribution of chronological data. In these cases, time and cost efficient approaches that provide reasonable dating accuracy are required to substitute or complement full luminescence dating. For the sandy beach-ridge plain of Phra Thong Island, Thailand, which is chronologically constrained by a set of approximately 50 luminescence ages, we evaluated the potential (i) of luminescence profiling using a portable luminescence reader, and (ii) of standardized growth curves (SGCs) to improve the resolution and sampling strategy of OSL dating in coastal settings. Although SGCs are related to some shortcomings in dating accuracy, and luminescence profiling with even the favorable conditions provided by the homogeneous sandy stratigraphy of the beach-ridge plain does not equal full luminescence dating, both approaches are capable of reproducing some of the main chronostratigraphic features of the island. This includes the differentiation between Holocene and last interglacial ridges, as well as the identification of the general east-west progradation and some (but not all) of several 1500-2000 year hiatuses within the Holocene sediment succession. However, while both approaches can successfully identify relative chronological trends, robust absolute age estimates can only be achieved by considering the highly variable dosimetry, which is the main contributing factor to bulk luminescence signals apart from deposition age on Phra Thong Island. At Phra Thong, portable reader signals as a proxy for palaeodoses combined with sample-specific dose rates proved as the best

  20. Sulfate Deposition in Regolith Exposed in Trenches on the Plains Between the Spirit Landing Site and Columbia Hills in Gusev Crater, Mars

    NASA Technical Reports Server (NTRS)

    Wang, Alian; Haskin, L. A.; Squyres, S. W.; Arvidson, R.; Crumpler, L.; Gellert, R.; Hurowitz, J.; Schroeder, C.; Tosca, N.; Herkenhoff, K.

    2005-01-01

    During its exploration within Gusev crater between sol 01 and sol 158, the Spirit rover dug three trenches (Fig. 1) to expose the subsurface regolith [1, 2, 9]. Laguna trench (approx. 6 cm deep, approx.203 m from the rim of Bonneville crater) was dug in Laguna Hollow at the boundary of the impact ejecta from Bonneville crater and the surrounding plains. The Big Hole trench (approx. 6-7 cm deep) and The Boroughs trench (approx. 11 cm deep) were dug in the plains between the Bonneville crater and the Columbia Hills (approx.556 m and approx.1698 m from the rim of Bonneville crater respectively). The top, wall and floor regolith of the three trenches were investigated using the entire set of Athena scientific instruments [10].

  1. Two Years of Site Diversity Measurements in Guam, USA

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Morse, J.; Zemba, M.; Nessel, J.

    2012-01-01

    As NASA communication networks upgrade to higher frequencies, such as Ka-Band, atmospherically induced attenuation can become significant. This attenuation is caused by rain, clouds and atmospheric gases (oxygen and water vapor), with rain having the most noticeable effects. One technique to circumvent the increase in attenuation is to operate two terminals separated by a distance that exceeds the average rain cell size. The fact that rain cells are of finite size can then be exploited by rerouting the signal to the terminal with the strongest link. This technique, known as site diversity, is best suited for climates that have compact (less than 2km) and intense rain cells such as in Guam. In order to study the potential diversity gain at the Tracking and Data Relay Satellite (TDRS) Remote Ground Terminal (GRGT) complex in Guam a site test interferometer (STI) was installed in May of 2010. The STI is composed of two terminals with a 900m baseline that observe the same unmodulated beacon signal broadcast from a geostationary satellite (e.g., UFO 8). The potential site diversity gain is calculated by measuring the difference in signal attenuation seen at each terminal. Over the two years of data collection the cumulative distribution function (CDF) of the site diversity gain shows a better than 3 dB improvement for 90% of the time over standard operation. These results show that the use of site diversity in Guam can be very effective in combating rain fades.

  2. Ozone measurements from a global network of surface sites

    NASA Technical Reports Server (NTRS)

    Oltmans, Samuel J.; Levy, Hiram, II

    1994-01-01

    From a network of surface ozone monitoring sites distributed primarily over the Atlantic and Pacific Oceans, the seasonal, day-to-day, and diurnal patterns are delineated. At most of the NH (Northern Hemisphere) sites there is a spring maximum and late summer or autumn minimum. At Barrow, AK (70 deg N) and Barbados (14 deg N), however, there is a winter maximum, but the mechanisms producing the maximum are quite different. All the sites in the SH (Southern Hemisphere) show winter maxima and summer minima. At the subtropical and tropical sites, there are large day-to-day variations that reflect the changes in flow patterns. Air of tropical origin has much lower ozone concentrations than air from higher latitudes. At the two tropical sites (Barbados and Samoa), there is a marked diurnal ozone variation with highest amounts in the early morning and lowest values in the afternoon. At four of the locations (Barrow, AK; Mauna Loa, HI; American Samoa; and South Pole), there are 15- through 20-year records which allow us to look at longer term changes. At Barrow there has been a large summer increase over the 20 years of measurements. At South Pole, on the other hand, summer decreases have led to an overall decline in surface ozone amounts.

  3. Extensive goniometric spectral measurements at desert sites for military engineering

    NASA Astrophysics Data System (ADS)

    Berry, T. E.; Morgan, J. C.; Furey, J. S.; DeMoss, T. A.; Kelley, J. R.; McKenna, J. R.

    2012-10-01

    Remote-sensing technology designed to exploit disturbed earth signatures has become extremely useful in the detection of disturbed soil in military areas of operation. Soil reflectance can be exploited for this purpose and is dependent on atmospheric conditions. An understanding of the in situ soil background is vital to any type of change detection. Researchers from the Engineering Research and Development Center (ERDC) conducted OCONUS soil spectral measurements at ten sites in Afghanistan from July to November, 2011. Sampling sites were chosen on the basis of geomorphic setting, surface-soil characteristics, and field-expedient conditions. Goniometric spectral measurements at these sites have provided high quality bi-directional reflectance data, and their analyses are presented in the context of threat recognition and discrimination. These data can also provide the basis for BDRF model validation. Most spectral data were acquired under ambient solar lighting, but other data were collected at night and under artificial illumination conditions. Bidirectional measurements of soil reflectance in the VIS/NIR and SWIR were taken using the University of Lethbridge Goniometer System (ULGS) at dawn, mid-day, dusk and after sunset with a light. Soil surface roughness and reflectance varied, depending on the presence of desert varnish and desert pavement at some sites. Sun angle and dust and smoke in the atmosphere impacted soil reflectance and noise in the SWIR part of the light spectrum, in particular. The presence of minerals such as calcium carbonate, gypsum, and oxidized iron in the subsurface directly impacted reflectance measurements in disturbed soil.

  4. Validation of OMI tropospheric NO2 column data using MAX-DOAS measurements deep inside the North China Plain in June 2006: Mount Tai Experiment 2006

    NASA Astrophysics Data System (ADS)

    Irie, H.; Kanaya, Y.; Akimoto, H.; Tanimoto, H.; Wang, Z.; Gleason, J. F.; Bucsela, E. J.

    2008-11-01

    A challenge for the quantitative analysis of tropospheric nitrogen dioxide (NO2) column data from satellite observations is posed partly by the lack of satellite-independent observations for validation. We performed such observations of the tropospheric NO2 column using the ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) technique in the North China Plain (NCP) from 29 May to 29 June, 2006. Comparisons between tropospheric NO2 columns measured by MAX-DOAS and the Ozone Monitoring Instrument (OMI) onboard the Aura satellite indicate that OMI data (the standard product, version 3) over NCP may have a positive bias of 1.6×1015 molecules cm-2 (20%), yet within the uncertainty of the OMI data. Combining these results with literature validation results for the US, Europe, and Pacific Ocean suggests that a bias of +20%/-30% is a reasonable estimate, accounting for different regions.

  5. Validation of OMI Tropospheric Nitrogen Dioxide Column Data Using MAX-DOAS Measurements Deep Inside the North China Plain in June 2006

    NASA Astrophysics Data System (ADS)

    Irie, H.; Kanaya, Y.; Akimoto, H.; Tanimoto, H.; Wang, Z.; Gleason, J. F.; Bucsela, E. J.

    2007-12-01

    A challenge for the quantitative analysis of tropospheric nitrogen dioxide (NO2) column data from satellite observations is likely posed mainly by the lack of satellite-independent observations for validation. We performed such satellite-independent observations of the tropospheric NO2 column using the ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) technique in the North China Plain (NCP) from 29 May to 29 June, 2006. Comparisons between tropospheric NO2 columns measured by MAX-DOAS and the Ozone Monitoring Instrument (OMI) onboard the Aura satellite indicate that OMI data over NCP likely have a positive bias of 2×1015 molecules cm-2 (~30%), but it is within the estimated random error of 3×1015 molecules cm-2 (~40%). Considering the uncertainty estimated here will pave the way for quantitative studies using the OMI NO2 data over NCP.

  6. OWL site survey: first seeing measurement with ADIMM

    NASA Astrophysics Data System (ADS)

    Benkhaldoun, Zouhair; Abahamid, Abdelouahed; El Azhari, Youssef; Siher, El Arbi

    2004-10-01

    The ESO OWL site survey plan includes the analysis of the astronomical quality of the Atlas mountains in Morocco. In this paper we are presenting the first long time measurement of optical turbulence at Oukaimeden site. For this work we built an instrument called ADIMM for an Automated Differencial Image Motion Monitor, and we use it to the measure the optical turbulence at the Oukaimeden Site. We are describing the instrument and reporting the first results obtained after six month of working on this project. The results of night-time seeing measurements carried out during the period from Jun 14 up to October 01 2003 are presented. The median and mean values of the seeing for the entire period of observations are respectively 0.75" and 0.84". This work was organized in the framework of contract Num.69651/ODG/02/9005/GWI between the European Southern Observatory (ESO) and Astrophysics and Physics of High Energy Laboratory of the Faculty of Sciences, Cadi Ayyad University (LPHEA).

  7. Distribution of atmospheric reactive nitrogen at two sites of different socio- economic characteristics in IndoGangetic Plain(IGP) region, India.

    NASA Astrophysics Data System (ADS)

    Singh, S.; Sharma, A.; Kulshrestha, U. C.

    2015-12-01

    In India, most of the human population lives in rural areas. People depends on agriculture products to meet the demand of food supply. In order to get higher yield of agriculture and food product, increased practice of fertilizer application has added extra burden of nutrients especially, the reactive nitrogen (Nr) species viz NH3 and NOx. Growing energy demands has resulted in increased emissions of NOx from coal combustion in thermal power plant and the petroleum combustion in transport sector. In addition, biomass burning in traditional cooking and heating has become significant source of NH3 and NOx in Indian region. Significance of the study lies in the fact that increasing Nr emissions have adverse impact on human health, plant, soil and water bodies directly and to see the effect, knowledge of emission and deposition for Nr at different sites. Hence, the selection of the sites for present study was done very carefully. Delhi city and Mai village were selected to represent typical characteristics of high and low socioeconomic region respectively. Delhi is the capital of India, known for higher income group urban cluster where rural site having agricultural dominance has its importance in Indian scenario because still in India our primary source of income is agriculture. Atmospheric abundance of two major gaseous inorganic (Nr) species i.e NH3 and NO2 has been measured for one year, on monthly basis. Average concentrations of NH3 at urban and rural site have been recorded as 40.4 ±16.8 and 51.57 ±22.8 μg/m3 respectively. The average concentrations of NO2 have been recorded as 24.4 ±13.5 and 18.8 ± 12.6 μg/m3 at urban & rural site respectively. Study, also presents seasonal and diurnal variations of gaseous reactive nitrogen species at urban & rural sites to observe the contribution of different the sources of atmospheric Nr. Dynamics of Nr at both sites will be discussed in details at the conference.

  8. Data assimilation of a ten-day period during June 1993 over the Southern Great Plains Site using a nested mesoscale model

    SciTech Connect

    Dudhia, J.; Guo, Y.R.

    1996-04-01

    A goal of the Atmospheric Radiation Measurement (ARM) Program has been to obtain a complete representation of physical processes on the scale of a general circulation model (GCM) grid box in order to better parameterize radiative processes in these models. Since an observational network of practical size cannot be used alone to characterize the Cloud and Radiation Testbed (CART) site`s 3D structure and time development, data assimilation using the enhanced observations together with a mesoscale model is used to give a full 4D analysis at high resolution. The National Center for Atmospheric Research (NCAR)/Penn State Mesoscale Model (MM5) has been applied over a ten-day continuous period in a triple-nested mode with grid sizes of 60, 20 and 6.67 in. The outer domain covers the United States` 48 contiguous states; the innermost is a 480-km square centered on Lamont, Oklahoma. A simulation has been run with data assimilation using the Mesoscale Analysis and Prediction System (MAPS) 60-km analyses from the Forecast Systems Laboratory (FSL) of the National Ocean and Atmospheric Administration (NOAA). The nested domains take boundary conditions from and feed back continually to their parent meshes (i.e., they are two-way interactive). As reported last year, this provided a simulation of the basic features of mesoscale events over the CART site during the period 16-26 June 1993 when an Intensive Observation Period (IOP) was under way.

  9. Quantifying the value of redundant measurements at GRUAN sites

    NASA Astrophysics Data System (ADS)

    Madonna, F.; Rosoldi, M.; Güldner, J.; Haefele, A.; Kivi, R.; Cadeddu, M. P.; Sisterson, D.; Pappalardo, G.

    2014-06-01

    The potential for measurement redundancy to reduce uncertainty in atmospheric variables has not been investigated comprehensively for climate observations. We evaluated the usefulness of entropy and mutual correlation concepts, as defined in information theory, for quantifying random uncertainty and redundancy in time series of atmospheric water vapor provided by five highly instrumented GRUAN (GCOS [Global Climate Observing System] Reference Upper-Air Network) Stations in 2010-2012. Results show that the random uncertainties for radiosonde, frost-point hygrometer, Global Positioning System, microwave and infrared radiometers, and Raman lidar measurements differed by less than 8%. Comparisons of time series of the Integrated Water Vapor (IWV) content from ground-based remote sensing instruments with in situ soundings showed that microwave radiometers have the highest redundancy and therefore the highest potential to reduce random uncertainty of IWV time series estimated by radiosondes. Moreover, the random uncertainty of a time series from one instrument should be reduced of ~ 60% by constraining the measurements with those from another instrument. The best reduction of random uncertainty resulted from conditioning of Raman lidar measurements with microwave radiometer measurements. Specific instruments are recommended for atmospheric water vapor measurements at GRUAN sites. This approach can be applied to the study of redundant measurements for other climate variables.

  10. Mountain-Plains Handbook: The Design and Operation of a Residential Family Based Education Program. Appendix. Supplement Four to Volume Three. Measurement and Evaluation: The Research Services Division.

    ERIC Educational Resources Information Center

    Coyle, David A.; And Others

    One of five supplements which accompany chapter 3 of "Mountain-Plains Handbook: The Design and Operation of a Residential, Family Oriented Career Education Model" (CE 014 630), this document contains a master listing of all Mountain-Plains curriculum, compiled by job title, course, unit, and Learning activity package (LAPS) and arranged in…

  11. Measured data from the Avery Island Site C heater test

    SciTech Connect

    Waldman, H.; Stickney, R.G.

    1984-05-01

    Over the past six years, a comprehensive field testing program was conducted in the Avery Island salt mine. Three single canister heater tests were included in the testing program. Specifically, electric heaters, which simulate canisters of heat-generating nuclear waste, were placed in the floor of the Avery Island salt mine, and measurements were made of the response of the salt to heating. These tests were in operation by June, 1978. One of the three heater tests, Site C, operated for a period of 1858 days and was decommissioned during July and August, 1983. This data report presents the temperature and displacement data gathered during the operation and decommissioning of the Site C heater test. The purpose of this data report is to transmit the data to the scientific community. Rigorous analysis and interpretation of the data are considered beyond the scope of a data report. 8 refs., 21 figs., 1 tab.

  12. Measured data from the Avery Island Site C heater test

    SciTech Connect

    Waldman, H.; Stickney, R.G.

    1984-11-01

    Over the past six years, a comprehensive field testing program was conducted in the Avery Island salt mine. Three single canister heater tests were included in the testing program. Specifically, electric heaters, which simulate canisters of heat-generating nuclear waste, were placed in the floor of the Avery Island salt mine, and measurements were made of the response of the salt to heating. These tests were in operation by June 1978. One of the three heater tests, Site C, operated for a period of 1858 days and was decommissioned during July and August 1983. This data report presents the temperature and displacement data gathered during the operation and decommissioning of the Site C heater test. The purpose of this data report is to transmit the data to the scientific community. Rigorous analysis and interpretation of the data are considered beyond the scope of a data report. 6 references, 21 figures, 1 table.

  13. Measuring fluctuations in shear stretched DNAs using site specific labeling

    NASA Astrophysics Data System (ADS)

    Price, Allen; Graham, Thomas; Loparo, Joseph; Eaves, Joel

    2012-02-01

    We report a new technique for measuring the internal dynamics of surface tethered DNAs in shear flow. Previous studies have used end labeling or intercolating dyes which label the entire length of the DNA. Neither prior method can resolve the internal longitudinal fluctuations of the DNA. Our technique accomplishes this by site specific labeling of five sites in lambda phage DNA using EcoRI labeled with fluorescent quantum dots. We used our technique to determine the two point cross correlation functions of the longitudinal and transverse fluctuations of the DNA under shear flow. Our technique allows us to test current models of the non-equilibrium fluctuations of DNA in shear flow in a way previously inaccessible.

  14. Measurements of particulate sugars at urban and forested suburban sites

    NASA Astrophysics Data System (ADS)

    Tominaga, Sae; Matsumoto, Kiyoshi; Kaneyasu, Naoki; Shigihara, Ado; Katono, Koichi; Igawa, Manabu

    2011-04-01

    Neutral sugars (arabinose, fucose, galactose, glucose, mannose, rhamnose, and xylose) in fine and coarse aerosols were measured at urban and forested suburban sites in Japan. The most dominant compound in the sugar group was glucose at both sites. Size partitioning of the sugars generally showed dominance in the fine mode range but shifted toward the coarse mode range in summer. Seasonal trends in the sugar concentrations in the fine and coarse mode ranges were opposite: higher concentrations of fine mode sugars were found in winter, although coarse mode sugars increased in summer. Fine mode glucose consisted dominantly of the combined form, whereas free glucose increased in the coarse mode range. Although the sources of the sugars in the aerosols remain largely uncertain, primary biogenic particles can be considered as candidates of main sources of the sugars in both coarse and fine mode ranges.

  15. 'Endurance' Goal Across the Plains

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This mosaic image from the Mars Exploration Rover Opportunity's panoramic camera provides an overview of the rover's drive direction toward 'Endurance Crater,' which is in the upper right corner of image.

    The plains appear to be uniform in character from the rovers current position all the way to Endurance Crater. Granules of various sizes blanket the plains. Spherical granules fancifully called blueberries are present some intact and some broken. Larger granules pave the surface, while smaller grains, including broken blueberries, form small dunes. Randomly distributed 1-centimeter (0.4 inch) sized pebbles (as seen just left of center in the foreground of the image) make up a third type of feature on the plains. The pebbles' composition remains to be determined. Scientists plan to examine these in the coming sols.

    Examination of this part of Mars by NASA's Mars Global Surveyor orbiter revealed the presence of hematite, which led NASA to choose Meridiani Planum as Opportunity's landing site. The rover science conducted on the plains of Meridiani Planum serves to integrate what the rovers are seeing on the ground with what orbital data have shown.

    Opportunity will make stop at a small crater called 'Fram' (seen in the upper left, with relatively large rocks nearby) before heading to the rim of Endurance Crater.

  16. Field measurements and numerical modeling for the run-up heights and inundation distances of the 2011 Tohoku-oki tsunami at Sendai Plain, Japan

    NASA Astrophysics Data System (ADS)

    Goto, Kazuhisa; Fujima, Koji; Sugawara, Daisuke; Fujino, Shigehiro; Imai, Kentaro; Tsudaka, Ryouta; Abe, Tomoya; Haraguchi, Tsuyoshi

    2012-12-01

    We conducted an urgent field survey at the Sendai Plain to measure the run-up heights and inundation distances of the 2011 Tohoku-oki tsunami. We used GPS measurements because of the remarkably long inundation distances (ca. 5.4 km). We established an accurate measurement scheme using the far electric reference points (about 350 km). Using this method, we quickly measured 69 run-up heights within 3 days. The tsunami run-up heights and inundation distances varied mainly according to the local topography, ranging from 9.6 m at 0.4 km to 0.2 m at 5.4 km, respectively. Furthermore, artificial structures and topography played an important role in constraining the inundation limit. Our observations are important for future analyses using aerial and satellite imagery and numerical modeling in the area because the maximum inundation area might be underestimated in the images as a result of the subtle traces of the tsunami inundation, which were difficult to identify in the field. However, results show that numerical modeling might not reproduce minor inundation beyond the highway without sufficiently high-resolution topographic data because data for the modeling are usually rough, and the highway, small channels, and street gutters, which played an important role in local inundation, are too small a resolution to be recognized in the model.

  17. Aqueous and non-aqueous soil processes on the northern plains of Mars: Insights from the distribution of perchlorate salts at the Phoenix landing site and in Earth analog environments

    NASA Astrophysics Data System (ADS)

    Cull, Selby; Kennedy, Erin; Clark, Alice

    2014-06-01

    In 2008, the Phoenix lander returned chemical evidence of perchlorate salts in the soils at its landing site on the northern plains of Mars. Subsequent spectral mapping of the perchlorate using Phoenix's multispectral Surface Stereo Imager (SSI) showed that concentrated patches of the salt exist in the subsurface. Because atmospheric formation of Martian perchlorate should form a highly-concentrated layer of salt on the surface, subsurface concentrated patches have been interpreted as evidence that Phoenix soils experienced minor amounts of aqueous reworking after perchlorate formation. Here, we present results from a wide-scale mapping of the Phoenix landing site using SSI multispectral data. We report that, contrary to preliminary case studies, limited occurrences of rocks and soil clods with perchlorate coatings are also found on the undisturbed surface. The discovery of these patches on undisturbed surfaces points to more complex processes operating on modern-day polar soils, perhaps including a combination of aqueous and mechanical processes, such as cryoturbation. Finally, we combine results from this study with an analysis of perchlorate redistribution mechanisms on Earth to illustrate the mechanisms likely responsible for modern processing of soils on the northern plains of Mars. Concentrated perchlorate coatings found on the undisturbed surface at the Phoenix site. Phoenix soils likely processed by both aqueous and non-aqueous processes. Small-volumes of water likely responsible for producing perchlorate coatings. Non-aqueous mechanical processing could bring coated rocks back to the surface. Perchlorate may not be found on the top-most surface at equatorial sites.

  18. Site characterization using a portable optically stimulated luminescence reader: delineating disrupted stratigraphy in Holocene eolian deposits on the Canadian Great Plains

    NASA Astrophysics Data System (ADS)

    Munyikwa, K.; Gilliland, K.; Gibson, T.; Plumb, E.

    2012-12-01

    The use of portable optically stimulated luminescence (POSL) readers to elucidate on complex depositional sequences has been demonstrated in a number of recent studies. POSL readers are robust versions of the traditional lab-bound luminescence readers and they can be used in the field, allowing for rapid decisions to be made when collecting samples for dating. Furthermore, in contrast with lab-bound readers, POSL readers can perform measurements on bulk samples, negating the need to carry out time-intensive mineralogical separations. The POSL reader is equipped with both infra-red and blue light (OSL) stimulating sources such that signal separation during measurement can be carried out by selectively exciting feldspar using the IR source (IRSL) after which a quartz dominant signal is obtained from the same sample using post-IR blue OSL. The signals obtained are then plotted to give luminescence profiles that depict the variation of the luminescence signal with depth. Signal intensities depend on mineralogical concentrations, grain luminescence sensitivities, dose rates as well as on burial ages of the grains. Where all these variables, apart from the burial age, are held constant up the depositional sequence the luminescence profile serves as a proxy for the chronostratigraphy. As a contribution to a growing archive of studies that have employed POSL readers to unravel complex depositional sequences, this study uses a POSL system developed by the Scottish Universities Environmental Research Centre to characterize the stratigraphy at an archaeological site that lies next to an oilfield plant located on a Holocene fossil dune landscape in southern Alberta, Canada. Oilfield activity was initiated at the site several decades ago and it involved the laying of pipelines below ground which disturbed considerable archaeological deposits. Subsequent work led to the discovery of the archeological site which was previously occupied by ancestral indigenous peoples at various

  19. Use of AVHRR-derived spectral reflectances to estimate surface albedo across the Southern Great Plains Cloud and Radiation Testbed (CART) site

    SciTech Connect

    Qiu, J.; Gao, W.

    1997-03-01

    Substantial variations in surface albedo across a large area cause difficulty in estimating regional net solar radiation and atmospheric absorption of shortwave radiation when only ground point measurements of surface albedo are used to represent the whole area. Information on spatial variations and site-wide averages of surface albedo, which vary with the underlying surface type and conditions and the solar zenith angle, is important for studies of clouds and atmospheric radiation over a large surface area. In this study, a bidirectional reflectance model was used to inversely retrieve surface properties such as leaf area index and then the bidirectional reflectance distribution was calculated by using the same radiation model. The albedo was calculated by converting the narrowband reflectance to broadband reflectance and then integrating over the upper hemisphere.

  20. Measurement of volatile organic chemicals at selected sites in California

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.; Salas, L.; Viezee, W.; Sitton, B.; Ferek, R.

    1992-01-01

    Urban air concentrations of 24 selected volatile organic chemicals that may be potentially hazardous to human health and environment were measured during field experiments conducted at two California locations, at Houston, and at Denver. Chemicals measured included chlorofluorocarbons, halomethanes, haloethanes, halopropanes, chloroethylenes, and aromatic hydrocarbons. With emphasis on California sites, data from these studies are analyzed and interpreted with respect to variabilities in ambient air concentrations, diurnal changes, relation to prevailing meteorology, sources and trends. Except in a few instances, mean concentrations are typically between 0 and 5 ppb. Significant variabilities in atmospheric concentrations associated with intense sources and adverse meteorological conditions are shown to exist. In addition to short-term variability, there is evidence of systematic diurnal and seasonal trends. In some instances it is possible to detect declining trends resulting from the effectiveness of control strategies.

  1. Direct measurements of transport properties are essential for site characterization

    SciTech Connect

    Wright, J.; Conca, J.L.

    1994-08-01

    Direct measurements of transport parameters on subsurface sediments using, the UFA method provided detailed hydrostratigraphic mapping, and subsurface flux distributions at a mixed-waste disposal site at Hanford. Seven hundred unsaturated conductivity measurements on fifty samples were obtained in only six months total of UFA run time. These data are used to provide realistic information to conceptual models, predictive models and restoration strategies. The UFA instrument consists of an ultracentrifuge with a constant, ultralow flow pump that provides fluid to the sample surface through a rotating seal assembly and microdispersal system. Effluent from the sample is collected in a transparent, volumetrically-calibrated chamber at the bottom of the sample assembly. Using a strobe light, an observer can check the chamber while the sample is being centrifuged. Materials can be run in the UFA as recomposited samples or in situ samples can be subcored directly into the sample UFA chamber.

  2. Detection limit for activation measurements in ultralow background sites

    NASA Astrophysics Data System (ADS)

    Trache, Livius; Chesneanu, D.; Margineanu, R.; Pantelica, A.; Ghita, D. G.; Burducea, I.; Straticiuc, M.; Tang, X. D.

    2014-09-01

    We used 12C +13C fusion at the beam energies E = 6, 7 and 8 MeV to determine the sensitivity and the limits of activation method measurements in ultralow background sites. A 13C beam of 0.5 μA from the 3 MV Tandem accelerator of the Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH impinged on thick graphite targets. After about 24 hrs of irradiation targets were measured in two different laboratories: one with a heavy shielded Ge detector in the institute (at the surface) and one located underground in the microBequerel laboratory, in the salt mine of Slanic-Prahova, Romania. The 1369- and 2754 keV peaks from 24Na deactivation were clearly observed in the γ-ray spectra obtained for acquisitions lasting a few hours, or a few days. Determination of the detection limit in evaluating the cross sections for the target irradiated at Ec . m = 3 MeV indicates the fact that it is possible to measure gamma spectrum in underground laboratory down to Ec . m = 2 . 6 MeV. Cleaning the spectra with beta-gamma coincidences and increasing beam intensity 20 times will take as further down. The measurements are motivated by the study of the 12 C +12 C reaction at astrophysical energies.

  3. Geophysical monitoring and evaluation of coastal plain aquifers.

    PubMed

    Land, Lewis A; Lautier, Jeff C; Wilson, Nathaniel C; Chianese, Gabrielle; Webb, Steven

    2004-01-01

    We use time domain electromagnetic (TDEM) soundings to monitor ground water conditions beneath the coastal plain in eastern North Carolina. The TDEM method measures the earth's response to an induced electromagnetic field. The resulting signal is converted, through a complex inversion process, to apparent resistivity values, which can be directly correlated to borehole resistivity logs. TDEM soundings are used to map the interface between fresh and salt water within coastal aquifers, and estimate depth to basement when siting new monitoring wells. Focused TDEM surveys have identified areas of salt water encroachment caused by high volumes of discharge from local supply wells. Electromagnetic sounding, when used in tandem with the state's network of monitoring wells, is an accurate and inexpensive tool for evaluating fresh water/salt water relationships on both local and regional scales within coastal plain aquifers. PMID:14763617

  4. Lunar weather measurements at three Apollo sites 1969-1976

    NASA Astrophysics Data System (ADS)

    Hollick, Monique; O'Brien, Brian J.

    2013-11-01

    first lunar weather stations, matchbox-sized, 270 g Apollo Dust Detector Experiments about 100 cm above the surface of the Moon near Apollo 12, 14, and 15 landing sites, measured dust accretion, charged particle radiation, and temperature changes—three environmental factors proved during Apollo to affect technical systems deployed on the Moon. Degradation of seven horizontal solar cells was measured every lunar daytime from 1969 to 1976. The anomalously intense August 1972 solar particle event (SPE) degraded three covered cells by less than 1%, while two cells desensitized by intense preirradiation showed no measurable effects. Although independent studies estimated the long-term fluence bombarding the cells was less than half that of the August SPE, long-term gradual degradation of five covered cells (normalized to 2000 days) was an order of magnitude greater, between 4% and 10%. If the long-term effects were totally caused by dust, with articulated caveats including simulated (maria) Minnesota Lunar Simulant-1 dust particles with diameters 20 to 38 µm, this provides the first direct measured long-term net accretion of dust with an upper limit of order 100 µg cm-2 yr-1, equivalent to a layer 1 mm thick in 1000 years, but it may be significantly less. Two bare cells were abruptly degraded by 7% during the August SPE, however long-term they measured additional damage of 29% and 24%, indicating a long-neglected suite of low-energy radiation, posing risks for bare materials exposed on the surface of the Moon.

  5. Kennedy Space Center Press Site (SWMU 074) Interim Measure Report

    NASA Technical Reports Server (NTRS)

    Applegate, Joseph L.

    2015-01-01

    This report summarizes the Interim Measure (IM) activities conducted at the Kennedy Space Center (KSC) Press Site ("the Press Site"). This facility has been designated as Solid Waste Management Unit 074 under KSC's Resource Conservation and Recovery Act Corrective Action program. The activities were completed as part of the Vehicle Assembly Building (VAB) Area Land Use Controls Implementation Plan (LUCIP) Elimination Project. The purpose of the VAB Area LUCIP Elimination Project was to delineate and remove soil affected with constituents of concern (COCs) that historically resulted in Land Use Controls (LUCs). The goal of the project was to eliminate the LUCs on soil. LUCs for groundwater were not addressed as part of the project and are not discussed in this report. This report is intended to meet the Florida Department of Environmental Protection (FDEP) Corrective Action Management Plan requirement as part of the KSC Hazardous and Solid Waste Amendments permit and the U.S. Environmental Protection Agency's (USEPA's) Toxic Substance Control Act (TSCA) self-implementing polychlorinated biphenyl (PCB) cleanup requirements of 40 Code of Federal Regulations (CFR) 761.61(a).

  6. Strain measurement at the knee ligament insertion sites.

    PubMed

    Hinterwimmer, S; Baumgart, R; Plitz, W

    2003-01-01

    We describe the modification of an existing method of ligament strain measurement at the knee joint in detail. At ten fresh joint specimens we used that technique where strain gauges are attached to the ligamentous insertions and origins. We both improved the preparation of the attachment site and the application of the strain gauges. In a special apparatus the specimens were moved from 0 degree extension to 100 degrees flexion while simulating muscle strength and axial force. Testing was performed at the posterior cruciate ligament with both intact and transsected anterior cruciate ligament. In contrast to other existing techniques it does not affect the motion of the joint or the integrity and the function of the ligaments. Unlike the original description of that method we could register a loading behaviour of the posterior cruciate ligament that is similar to those reported in the literature. PMID:12655843

  7. The exposure history of the Apollo 16 sites. An assessment based on methane and carbide measurements. [in lunar soils

    NASA Technical Reports Server (NTRS)

    Pillinger, C. T.; Eglinton, C.; Gowar, A. P.; Jull, A. J. T.; Maxwell, J. R.

    1974-01-01

    Soils from eight stations at the Apollo 16 landing site have been analyzed for methane and carbide. These results, in conjunction with published data from photogeology, bulk chemistry, rare gases, primordial and radionuclides, and agglutinate abundances have been interpreted in terms of differing contributions from three components, North and South Ray crater ejecta and Cayley Plains material.

  8. The Plains City Story

    ERIC Educational Resources Information Center

    van Olphen, Marcela; Rios, Francisco; Berube, William; Dexter, Robin; McCarthy, Robert

    2006-01-01

    This case study portrays a contemporary phenomenon that affects many U.S. school districts. Specifically, the authors address the challenges that the superintendent of the Plains City school district faced as a result of a change in the demographic distribution of his district. The gradual development of the pig farming industry in Plains City…

  9. Validation of OMI tropospheric NO2 column data using MAX-DOAS measurements deep inside the North China Plain in June 2006

    NASA Astrophysics Data System (ADS)

    Irie, H.; Kanaya, Y.; Akimoto, H.; Tanimoto, H.; Wang, Z.; Gleason, J. F.; Bucsela, E. J.

    2008-04-01

    A challenge for the quantitative analysis of tropospheric nitrogen dioxide (NO2) column data from satellite observations is posed mainly by the lack of satellite-independent observations for validation. We performed such observations of the tropospheric NO2 column using the ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) technique in the North China Plain (NCP) from 29 May to 29 June 2006. Comparisons between tropospheric NO2 columns measured by MAX-DOAS and the Ozone Monitoring Instrument (OMI) onboard the Aura satellite indicate that OMI data (the standard product, version 3) over NCP may have a positive bias of 1.6×1015 molecules cm-2 (20%), where the estimated random error in the OMI data is 0.6×1015 molecules cm-2 or approximately 8%. Combining these results with literature validation results for the US, Europe, and Pacific Ocean suggests that a bias of +20%/-30% is a reasonable estimate, accounting for different regions. Considering the uncertainty estimated here will pave the way for quantitative studies using OMI NO2 data, especially over NCP.

  10. Ages of Lunar Light Plains

    NASA Astrophysics Data System (ADS)

    Hiesinger, Harald; Howes van der Bogert, Carolyn; Thiessen, Fiona; Robinson, Mark

    2013-04-01

    Light plains are characterized by their relative smoothness and lower crater densities (compared to the highlands), and their occurrence as crater fills. They also exhibit highland-like characteristics, such as high albedos (in comparison to mare basalts) and their geological and stratigraphic setting. Despite the long history of investigating light plains, there are still numerous open questions concerning their mode of emplacement, their mineralogical composition, their ages, and their origin. We dated 16 light plains with crater size-frequency distribution (CSFD) measurements. All dated regions were previously identified as light plains in the geologic maps [1-5] and either mapped as smooth light plains (Ip) or light plains with undulatory surfaces (INp). The studied light plains occur both inside and outside the South Pole-Aitken (SPA) basin within a latitudinal band between ~-36° and ~-75°. In particular, we investigated the following smooth light plains: Janssen (40.82°E, -44.96°; Ip [1]), Nishina (-170.8°E, -44.57°; Ip [2]), South of Nishina (Ip [2]), Obruchev (162.43°E, -38.67°; Ip [2]), Oresme (169.22°E, -42.61°, Ip [2]), Schrödinger (132.93°E, -74.73°; Ip [3]), Nearch (39.01°E, -58.58°; Ip [3]), Nasmyth (-56.39°E, -50.49°; Ip [3]), Manzinus (26.37°E, -67.51°; Ip [3]), Klaproth (-26.26°E, -69.85°; Ip [3]), Phocylides (-57.31°E, -52.79°, Ip [3]), Buffon (-133.53°E, -40.64°; Ip [4]), Roche (136.54°E, -42.37°; Ip [5]). We also dated the following light plains with undulatory surfaces: Koch (150.33°E, -42.13°; INp [2]), Garavito (156.78°E, -47.21°; INp [2]), Eötvös (134.43°E, -35.61°; INp [5]). Our CSFD measurements resulted in absolute model ages of 3.71 to 4.02 Ga for all investigated light plains, thus confirming the Imbrian and/or Nectarian ages of the geologic maps [1-5]. We only dated three INp light plains, but they appear to have ages that are close to the upper limit, i.e., 3.96-4.02 Ga. However, further CSFDs of INp

  11. Rocky Martian Plain

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The rocky Martian plain surrounding Viking 2 is seen in high resolution in this 85-degree panorama sweeping from north at the left to east at right during the Martian afternoon on September 5. Large blocks litter the surface. Some are porous, sponge-like rocks like the one at the left edge (size estimate: 1 1/2 to 2 feet); others are dense and fine-grained, such as the very bright rounded block (1 to 1 1/2 feet across) toward lower right. Pebbled surface between the rocks is covered in places by small drifts of very fine material similar to drifts seen at the Viking 1 landing site some 4600 miles to the southwest. The fine-grained material is banked up behind some rocks, but wind tails seen by Viking 1 are not well-developed here. On the right horizon, flat-topped ridges or hills are illuminated by the afternoon sun. Slope of the horizon is due to the 8-degree tilt of the spacecraft.

  12. Ozonesonde measurements from the Atmospheric Radiation Measurement (ARM) site in Billings, Oklahoma

    SciTech Connect

    1998-12-01

    Ozonesonde instruments were prepared and released at the Atmospheric Radiation Measurement (ARM) site located near Billings, Oklahoma. Ozone sensors, associated radiosondes, balloons, and other parts and pieces required for the ozone observations were provided by WFF on a reimbursable arrangement with ANL. Observations were scheduled daily at 1,700 UTC beginning on September 22, 1995. Attempts to maintain this schedule were frustrated by a few simultaneous operations involving different electronic devices in use resulting in considerable rf noise. Since radiosondes are necessarily low-cost instruments their reception is particularly susceptible to noisy rf fields. Overall, however, 36 ozonesonde flights were made with the last observation occurring on November 1, 1995. Ozone data were processed on-site through the ground-station software and preliminary data delivered to Mike Splitt at the ARM site.

  13. Measuring the Influence of Pearlite Dissolution on the Transient Dynamic Strength of Rapidly Heated Plain Carbon Steels

    NASA Astrophysics Data System (ADS)

    Mates, Steven; Stoudt, Mark; Gangireddy, Sindhura

    2016-05-01

    Carbon steels containing ferrite-pearlite microstructures weaken dramatically when pearlite dissolves into austenite on heating. The kinetics of this phase transformation, while fast, can play a role during dynamic, high-temperature manufacturing processes, including high-speed machining, when the time scale of this transformation is on the order of the manufacturing process itself. In such a regime, the mechanical strength of carbon steel can become time dependent. The present work uses a rapidly heated, high-strain-rate mechanical test to study the effect of temperature and time on the amount of pearlite dissolved and on the resulting transient effect on dynamic strength of a low and a high carbon (eutectoid) steel. Measurements indicate that the transient effect occurs for heating times less than about 3 s. The 1075 steel loses about twice the strength compared to the 1018 steel (85 MPa to 45 MPa) owing to its higher initial pearlite volume fraction. Pearlite dissolution is confirmed by metallographic examination of tested samples. Despite the different starting pearlite fractions, the kinetics of dissolution are comparable for the two steels, owing to the similarity in their initial pearlite morphology.

  14. Measuring the Influence of Pearlite Dissolution on the Transient Dynamic Strength of Rapidly Heated Plain Carbon Steels

    NASA Astrophysics Data System (ADS)

    Mates, Steven; Stoudt, Mark; Gangireddy, Sindhura

    2016-07-01

    Carbon steels containing ferrite-pearlite microstructures weaken dramatically when pearlite dissolves into austenite on heating. The kinetics of this phase transformation, while fast, can play a role during dynamic, high-temperature manufacturing processes, including high-speed machining, when the time scale of this transformation is on the order of the manufacturing process itself. In such a regime, the mechanical strength of carbon steel can become time dependent. The present work uses a rapidly heated, high-strain-rate mechanical test to study the effect of temperature and time on the amount of pearlite dissolved and on the resulting transient effect on dynamic strength of a low and a high carbon (eutectoid) steel. Measurements indicate that the transient effect occurs for heating times less than about 3 s. The 1075 steel loses about twice the strength compared to the 1018 steel (85 MPa to 45 MPa) owing to its higher initial pearlite volume fraction. Pearlite dissolution is confirmed by metallographic examination of tested samples. Despite the different starting pearlite fractions, the kinetics of dissolution are comparable for the two steels, owing to the similarity in their initial pearlite morphology.

  15. IRRIGATION WASTEWATER DISPOSAL WELL STUDIES--SNAKE PLAIN AQUIFER

    EPA Science Inventory

    An investigation was conducted to evaluate the impact of irrigation disposal well practices on the water quality of the Snake Plain aquifer. A study site was selected where the geology was determined to be characteristic of areas in the Snake River Plain where irrigation disposal...

  16. Guide for selecting Manning's roughness coefficients for natural channels and flood plains

    USGS Publications Warehouse

    Arcement, George J.; Schneider, Verne R.

    1989-01-01

    Although much research has been done on Manning's roughness coefficient, n, for stream channels, very little has been done concerning the roughness values for densely vegetated flood plains. The n value is determined from the values of the factors that affect the roughness of channels and flood plains. In densely vegetated flood plains, the major roughness is caused by trees, vines, and brush. The n value for this type of flood plain can be determined by measuring the vegetation density of the flood plain. Photographs of flood-plain segments where n values have been verified can be used as a comparison standard to aid in assigning n values to similar flood plains.

  17. Individual particle analysis of aerosols collected under haze and non-haze conditions at a high-elevation mountain site in the North China plain

    NASA Astrophysics Data System (ADS)

    Li, W. J.; Zhang, D. Z.; Shao, L. Y.; Zhou, S. Z.; Wang, W. X.

    2011-11-01

    The North China plain is a region with megacities and huge populations. Aerosols over the highly polluted area have a significant impact on the regional and global climate. In order to investigate the physical and chemical characteristics of aerosol particles in elevated layers there, observations were carried out at the summit of Mt. Tai (1534 m a.s.l.) from 19 to 28 April, 2010, when the air masses were advected from the east (phase-I: 19-21 April), from the south (phase-II: 22-25 April), and from the northwest (phase-III: 26-28 April). Individual aerosol particles were identified with transmission electron microscopy (TEM), new particle formation (NPF) and growth events were monitored by a wide-range particle spectrometer, and ion concentrations in PM2.5 were analyzed. During phase-I and phase-II, haze layers caused by anthropogenic pollution were observed, and a high percentage of particles were sulfur-rich (47-49%). In phase-III, the haze disappeared due to the intrusion of cold air from the northwest, and mineral dust particles from deserts were dominant (43%). NPF followed by particle growth during daytime was more pronounced on hazy than on clear days. Particle growth during daytime resulted in an increase of particle geometric mean diameter from 10-22 nm in the morning to 56-96 nm in the evening. TEM analysis suggests that sulfuric acid and secondary organic compounds should be important factors for particle nucleation and growth. However, the presence of fine anthropogenic particles (e.g., soot, metal, and fly ash) embedded within S-rich particles indicates that they could weaken NPF and enhance particle growth through condensation and coagulation. Abundant mineral particles in phase-III likely suppressed the NPF processes because they supplied sufficient area on which acidic gases or acids condensed.

  18. [Analysis of Single Particle Aging and Mixing State at an Agriculture Site (Quzhou) in the North China Plain in Summer Using a Single Particle Aerosol Mass Spectrometer].

    PubMed

    Huang, Zi-long; Zeng, Li-mm; Dong, I-Iua-Bin; Li, Mei; Zhu, Tong

    2016-04-15

    To characterize the size distribution and chemical ompsitins f abiet prtices t a agicuturesit intheNorh o Chinese Plain, a single particle aerosol mass spectrometer (SPAMS) was deployed from June 30 to July 8, 2013. A total of 230,152 particles in the size range of 0.2-2.0 pm were chemically analyzed with both positive and negative ion spectra. The results revealed that aerosol could he classified into eight dominant groups, including elemental carbon (EC, 55.5%), organic carbon (OC, 10.7%), alkalis (Na-K, 17.4%), other metals (1.7%), Fe-rich (6.3%), Pb-rich (3.1%), dust (4.8%), and other (0.8%). The observed eight types of particles contained secondary components such as 46NO2-, 62NO3-, 96SO3-, 96SO4-, 97HSO4-, showing that they probably went through different aging processes. The analysis of particle size distribution showed that 700-800 nm was the peak value of all particles, and that dust and Fe particles were mainly in the coarse size range. EC particles subtype group research revealed EC particles tended to be aging with the above mentioned secondary ions and eventually led to a particle type conversion from EC to the less aging ECN and the more serious aging ECS, the diurnal variation of which was obviously negatively correlated, and there was a possibility of forming OC/EC mixture with the adsorption of secondary organic matter on EC surface. PMID:27548937

  19. Variation of Stable Carbon and Nitrogen Isotopic Composition of PM10 at Urban Sites of Indo Gangetic Plain (IGP) of India.

    PubMed

    Sharma, S K; Mandal, T K; Shenoy, D M; Bardhan, Pratirupa; Srivastava, Manoj K; Chatterjee, A; Saxena, Mohit; Saraswati; Singh, B P; Ghosh, S K

    2015-11-01

    This paper presents the variation of elemental concentrations of total carbon (TC), total nitrogen (TN) and isotopic ratios of δ13C and δ15N along with δ13OC and OC of PM10 mass over Delhi, Varanasi and Kolkata of the Indo Gangetic Plain (IGP), India. For Delhi, the average concentrations of TC and TN of PM10 were 53.0±33.6 and 14.9±10.8 µg m(-3), whereas δ13C and δ15N of PM10 were -25.5±0.5 and 9.6±2.8‰, respectively. For Varanasi, the average values of δ13C and δ15N of PM10 were -25.4±0.8 and 6.8±2.4‰, respectively. For Kolkata, TC and TN values for PM10 ranged from 9.1-98.2 to 1.4-25.9 µg m(-3), respectively with average values of 32.6±24.9 and 9.3±8.2 µg m(-3), respectively. The average concentrations of δ13C and δ15N were -26.0±0.4 and 7.4±2.7‰, respectively over Kolkata with ranges of -26.6 to -24.9‰ and 2.8±11.5‰, respectively. The isotopic analysis revealed that biomass burning, vehicular emission and secondary inorganic aerosols were likely sources of PM10 mass over IGP, India. PMID:26438175

  20. A 1 year record of carbonaceous aerosols from an urban site in the Indo-Gangetic Plain: Characterization, sources, and temporal variability

    NASA Astrophysics Data System (ADS)

    Ram, Kirpa; Sarin, M. M.; Tripathi, S. N.

    2010-12-01

    This study presents a comprehensive 1 year (January 2007-March 2008) data set on the chemical composition of ambient aerosols collected from an urban location (Kanpur) in the Indo-Gangetic Plain (IGP) and suggests that the varying strength of the regional emission sources, boundary layer dynamics, and formation of secondary aerosols all contribute significantly to the temporal variability in the mass concentrations of elemental carbon (EC), organic carbon (OC), and water-soluble OC (WSOC). On average, carbonaceous aerosols contribute nearly one third of the PM10 mass during winter, whereas their fractional mass is only ˜10% during summer. A three- to four-fold increase in the OC and K+ concentrations during winter and a significant linear relation between them suggest biomass burning (wood fuel and agricultural waste) emission as a dominant source. The relatively high OC/EC ratio (average: 7.4 ± 3.5 for n = 66) also supports that emissions from biomass burning are overwhelming for the particulate OC in the IGP. The WSOC/OC ratios vary from 0.21 to 0.70 over the annual seasonal cycle with relatively high ratios in the summer, suggesting the significance of secondary organic aerosols. The long-range transport of mineral aerosols from Iran, Afghanistan, and the Thar Desert (western India) is pronounced during summer months. The temporal variability in the concentrations of selected inorganic constituents and neutralization of acidic species (SO42- and NO3-) by NH4+ (dominant during winter) and Ca2+ (in summer) reflect conspicuous changes in the source strength of anthropogenic emissions.

  1. Hydrogeologic framework, hydrology, and refined conceptual model of groundwater flow for Coastal Plain aquifers at the Standard Chlorine of Delaware, Inc. Superfund Site, New Castle County, Delaware, 2005-12

    USGS Publications Warehouse

    Brayton, Michael J.; Cruz, Roberto M.; Myers, Luke; Degnan, James R.; Raffensperger, Jeff P.

    2015-01-01

    The regional hydrogeologic framework indicates that the site is underlain by Coastal Plain sediments of the Columbia, Merchantville, and Potomac Formations. Two primary aquifers underlying the site, the Columbia and the upper Potomac, are separated by the Merchantville Formation confining unit. Local groundwater flow in the surficial (Columbia) aquifer is controlled by topography and generally flows northward and discharges to nearby surface water. Regional flow within the Potomac aquifer is towards the southeast, and is strongly influenced by major water withdrawals locally. Previous investigations at the site indicated that contaminants, primarily benzene and chlorinated benzene compounds, were present in the Columbia aquifer in most locations; however, there were only limited detections in the upper Potomac aquifer as of 2004. From 2005 through 2012, the USGS designed a monitoring network, assisted with exploratory drilling, collected data at monitoring wells, conducted geophysical surveys, evaluated water-level responses in wells during pumping of a production well, and evaluated major aquifer withdrawals. Data collected through these efforts were used to refine the local conceptual flow system. The refined conceptual flow system for the site includes: (a) identification of gaps in confining units in the study area, (b) identification and correlation of multiple water-bearing sand intervals within the upper Potomac Formation, (c) connections between groundwater and surface water, (d) connections between shallow and deeper groundwater, (e) new water-level (or potentiometric surface) maps and inferred flow directions, and (f) identification of major local pumping well influences. The implications of the revised conceptual flow system on the occurrence and movement of site contaminants are that the resulting detection of contaminants in the upper Potomac aquifer at specific well locations can be attributed primarily to either advective lateral transport, direct

  2. Widespread Plains Volcanism on Mercury Ended by 3.6 Ga

    NASA Astrophysics Data System (ADS)

    Byrne, P. K.; Ostrach, L. R.; Fassett, C.; Chapman, C. R.; Evans, A. J.; Klimczak, C.; Banks, M. E.; Head, J. W., III; Solomon, S. C.

    2015-12-01

    The largest volcanic plains deposits on Mercury are situated in its northern hemisphere and include the extensive northern smooth plains and the Caloris interior plains. Crater size-frequency analyses have shown that both deposits were emplaced around 3.8 Ga, for any of the published model production function (MPF) chronologies for impact crater formation on Mercury. The largest volcanic deposit in the southern hemisphere, the Rembrandt interior plains, has a model age of ~3.7 Ga. To test the hypothesis that all major volcanic smooth plains on Mercury were emplaced at about the same time, we determined crater size-frequency distributions for nine additional deposits (see Table 1). The diameters of craters that superpose the smooth plains at each site were measured with CraterTools, yielding crater areal densities in terms of N(10), the number of craters ≥10 km in diameter per 106 km2 area (Table 1). Our crater density measurements span N(10) values of 29-146, a range that encompasses corresponding values for the larger areas of smooth plains. With CraterStats, we fit our data (for craters ≥4 km in diameter) to the MPF chronologies of Le Feuvre and Wieczorek. For porous scaling, the model ages of all nine sites span a narrow window (Table 1). Non-porous scaling fails to match the crater size-frequency distributions. We show that widespread plains volcanism, likely the primary process by which Mercury's crust developed, had ended by 3.6 Ga. Younger volcanic deposits have been identified on the planet, but only within impact structures and at volumes much less than the smallest deposit considered here. Superposition relations between shortening landforms and craters on Mercury indicate that global contraction in response to interior cooling was underway by ~3.6 Ga. The cessation of widespread plains volcanism on Mercury may therefore reflect the onset of a stress state within the planet's lithosphere that inhibited magma ascent. Conversely, mantle thermochemical

  3. Individual particle analysis of aerosols collected under haze and non-haze conditions at a high-elevation mountain site in the North China plain

    NASA Astrophysics Data System (ADS)

    Li, W. J.; Zhang, D. Z.; Shao, L. Y.; Zhou, S. Z.; Wang, W. X.

    2011-08-01

    The North China plain is a region with megacities and huge populations. Aerosols over the highly polluted area have a significant impact on a regional and global climate. In order to investigate the physical and chemical characteristics of aerosol particles in elevated layers there, observations were carried out at the summit of Mt. Tai (1534 m a.s.l) from 19 to 28 April 2010, when the air masses were advected from the east (phase-I: 19-21 April), from the south (phase-II: 22-25 April), and from the northwest (phase-III: 26-28 April). Individual aerosol particles were identified with transmission electron microscopy (TEM), new particle formation (NPF) and growth events were monitored by a wide-range particle spectrometer, and ion concentrations in PM2.5 were analyzed. During phase-I and phase-II, haze layers caused by anthropogenic pollution were observed, and a major number of particles were sulfur-rich (47-49 %). In phase-III, haze disappeared due to the intrusion of cold air from the northwest, and mineral dust particles from deserts were predominant (43 %). NPF followed by particle growth during daytime was more pronounced at upper levels of the haze layers than clear days. Particle growth during daytime resulted in an increase of particle geometric mean diameter from 10-22 nm in the morning to 56-96 nm in the evening. TEM analysis suggests that sulfuric acid and secondary organic compounds should be important factors for particle nucleation and growth. Moreover, the presence of ultrafine and fine anthropogenic particles (e.g., soot, metal, and fly ash) embedded within S-rich particles may indicate their influences on particle nucleation through condensation and enhancement of particle growth through coagulation. Each fine refractory particle can enlarge the sulfate particles by 10-20 nm. Abundant mineral particles in phase-III likely suppressed the NPF processes because a high number of crustal mineral particles in the free troposphere supplied an important

  4. Seismoelectric studies in an outwash plain

    SciTech Connect

    Wolfe, P.J.; Yu, Jianming; Gershenzon, N.

    1996-11-01

    Initial studies of the seismoelectric effect in an outwash plain have been conducted near Yellow Springs, Ohio. The purpose was to make seismoelectric measurements in a simple, well-understood test site where the seismoelectric signals could be clearly recorded and theoretical predictions could be calculated with as few assumptions as possible. Suppression of electrical noise was a major concern because 60 Hz electromagnetic fields from the power grid system are unavoidable in most parts of the United States. The site was characterized by seismic refraction surveys, DC resistivity surveys, and two drill holes. The site has a fairly uniform, 3 m thick unsaturated layer over a thick saturated sandy layer. The water table was near the top of the outwash layer. For the seismoelectric studies a sledgehammer source was used. Seismic signals and electrical signals were recorded separately and jointly with a variety of electrode combinations. An engineering seismograph was used to record both the seismic and electrical signals. The built-in 60 Hz and 180 Hz notch filters were effective in suppressing much of the power grid pickup. Electrical signals were observed which were consistent in time and frequency with the expectation of seismoelectric response due to the electrokinetic effect. The peak-to-peak electric field amplitude was about 6 mV/m and the time delay corresponded with one-way seismic travel times to the water table.

  5. Characteristics and recent trends of sulfur dioxide at urban, rural, and background sites in north China: effectiveness of control measures.

    PubMed

    Lin, Weili; Xu, Xiaobin; Ma, Zhiqiang; Zhao, Huarong; Liu, Xiwen; Wang, Ying

    2012-01-01

    SO2 measurements made in recent years at sites in Beijing and its surrounding areas are performed to study the variations and trends of surface SO2 at different types of sites in Northern China. The overall average concentrations of SO2 are (16.8 +/- 13.1) ppb, (14.8 +/- 9.4) ppb, and (7.5 +/- 4.0) ppb at China Meteorological Administration (CMA, Beijing urban area), Gucheng (GCH, relatively polluted rural area, 110 km to the southwest of Beijing urban area), and Shangdianzi (SDZ, clean background area, 100 km to the northeast of Beijing urban area), respectively. The SO2 levels in winter (heating season) are 4-6 folds higher than those in summer. There are highly significant correlations among the daily means of SO2 at different sites, indicating regional characteristics of SO2 pollution. Diurnal patterns of surface SO2 at all sites have a common feature with a daytime peak, which is probably caused by the downward mixing and/or the advection transport of SO2-richer air over the North China Plain. The concentrations of SO2 at CMA and GCH show highly significant downward trends (-4.4 ppb/yr for CMA and -2.4 ppb/yr for GCH), while a less significant trend (-0.3 ppb/yr) is identified in the data from SDZ, reflecting the character of SDZ as a regional atmospheric background site in North China. The SO2 concentrations of all three sites show a significant decrease from period before to after the control measures for the 2008 Olympic Games, suggesting that the SO2 pollution control has long-term effectiveness and benefits. In the post-Olympics period, the mean concentrations of SO2 at CMA, GCH, and SDZ are (14.3 +/- 11.0) ppb, (12.1 +/- 7.7) ppb, and (7.5 +/- 4.0) ppb, respectively, with reductions of 26%, 36%, and 13%, respectively, compared to the levels before. Detailed analysis shows that the differences of temperature, relative humidity, wind speed, and wind direction were not the dominant factors for the significant differences of SO2 between the pre-Olympics and

  6. MEASURING BASE-FLOW CHEMISTRY AS AN INDICATOR OF REGIONAL GROUND-WATER QUALITY IN THE MID-ATLANTIC COASTAL PLAIN

    EPA Science Inventory

    Water quality in headwater (first-order) streams of the Mid-Atlantic Coastal Plain during base flow in the winter and spring is related to land use, hydrogeology, and other natural and human influences. A random survey of water quality in 174 headwater streams in the Mid-Atlantic...

  7. Mountain-Plains Handbook: The Design and Operation of a Residential Family Based Education Program. Appendix. Supplement I To Volume 3. Measurement and Evaluation: The Research Services Division.

    ERIC Educational Resources Information Center

    Coyle, David A.; And Others

    One of five supplements which accompany chapter 3 of "Mountain-Plains Handbook: The Design and Operation of a Residential, Family Oriented Career Education Model" (CE 014 630), this document contains specific information concerning the data monitoring procedures and forms utilized by the research services division. Included are the following…

  8. EFFECT OF TILLAGE AND CHEMICALLY-WEEDED FALLOWING ON MEASURED WIND EROSION ON SUNFLOWER STUBBLE LAND IN THE NORTHERN GREAT PLAINS, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diversification of cropping systems in the northern Great Plains of the USA includes crop species with residues that are less durable than small cereal grains, creating potential wind erosion hazards under drought and tillage disturbance. No-tillage with chemical weed control is currently considered...

  9. Potential Landing Sites for Future Missions to Venus

    NASA Astrophysics Data System (ADS)

    Basilevsky, A. T.; Ivanov, M. A.; Head, J. W.

    2014-05-01

    Landing sites to sample materials of tesserae terrain, tessera transitional terrain, shield plains, regional plains with wrinkle ridges and lobate plains are suggested with special attention to avoid the overlying materials of radar-dark parabolas .

  10. Backwater at bridges and densely wooded flood plains, Tallahala Creek at Waldrup, Mississippi

    USGS Publications Warehouse

    Colson, B.E.; Ming, C.O.; Arcement, George J.

    1978-01-01

    Floodflow data that will provide a base for evaluating digital models relating to open-channel flow were obtained at 22 sites on streams in Alabama, Louisiana, and Mississippi. Thirty-five floods were measured. Analysis of the data indicated that backwater and discharges computed by standard indirect methods currently in use would be inaccurate where densely vegetated flood plains are crossed by highway embankments and single-opening bridges. This atlas presents flood information at the site on Tallahala Creek at Waldrup, Miss. Water depths, velocities, and discharges through bridge openings on Tallahala Creek at Waldrup, Miss., for floods of April 14, 1969, February 21, 1971, and April 13, 1974, were measured together with peak water surface elevations along embankments and along cross sections. Manning 's roughness coefficient values in different parts of the flood plain are shown on maps, and flood-frequency relations are shown on graphs. (Woodard-USGS)

  11. The Great Plains low-level jet (LLJ) during the atmospheric radiation measurement (ARM) intensive observation period (IOP)-4 and simulations of land use pattern effect on the LLJ

    SciTech Connect

    Wu, Y.; Raman, S.

    1996-04-01

    The Great Plains low-level jet (LLJ) is an important element of the low-level atmospheric circulation. It transports water vapor from the Gulf of Mexico, which in turn affects the development of weather over the Great Plains of the central United States. The LLJ is generally recognized as a complex response of the atmospheric boundary layer to the diurnal cycle of thermal forcing. Early studies have attributed the Great Plains LLJ to the diurnal oscillations of frictional effect, buoyancy over sloping terrain, and the blocking effects of the Rocky Mountains. Recent investigations show that the speed of the LLJ is also affected by the soil type and soil moisture. Some studies also suggest that synoptic patterns may play an important role in the development of the LLJ. Land surface heterogeneties significantly affect mesoscale circulations by generating strong contrasts in surface thermal fluxes. Thus one would expect that the land use pattern should have effects on the LLJ`s development and structure. In this study, we try to determine the relative roles of the synoptic forcing, planetary boundary layers (PBL) processes, and the land use pattern in the formation of the LLJ using the observations from the Atmospheric Radiation Measurement (ARM) Intensive Operation Period (IOP)-4 and numerical sensitivity tests.

  12. Simultaneous measurement of particulate and gaseous pollutants in an urban city in North China Plain during the heating period: Implication of source contribution

    NASA Astrophysics Data System (ADS)

    Sun, Yuwei; Zhou, Xuehua; Wai, KaMing; Yuan, Qi; Xu, Zheng; Zhou, Shenzhen; Qi, Qian; Wang, Wenxing

    2013-12-01

    A comprehensive measurement program was undertaken in winter 2009 in a large urban city (Ji'nan) in North China Plain (NCP). The average concentrations of NO, NO2, NOx, NOy, SO2, O3, CO, PM2.5 and BC during the program were 63.9 ± 65.1 ppb, 45.2 ± 16.9 ppb, 106.6 ± 77.8 ppb, 120.7 ± 77.4 ppb, 54.3 ± 25.8 ppb, 6.3 ± 6.0 ppb, 2138.3 ± 1512.8 ppb, 171.3 ± 83.9 μg/m3 and 9.8 ± 6.9 μg/m3, respectively. Two severe haze episodes were observed. All species, except O3, had elevated concentrations on the episodes compared with those on non-hazy days due to accumulation of pollutants. Diurnal variations of species concentrations and correlation analysis suggested that emissions from vehicles and coal combustion (from power plants, industry and domestic heating) are the main sources. Air mass on Episode 1 was predominately influenced by coal combustion, while pollution was characterized by the vehicular emissions on Episode 2. In contrast, on non-hazy days, pollutants were mainly from the mixing of local coal-fired and vehicular exhaust emissions. These distinct characteristics were further supported by higher ratios of CO to NOy and SO2 to NOy on Episode 1 (25.46 ppb/ppb and 0.51 ppb/ppb) compared to Episode 2 (15.55 ppb/ppb and 0.36 ppb/ppb) and non-hazy days (18.15 ppb/ppb and 0.45 ppb/ppb). Multiple linear regression analysis was applied to the concentrations of NOy, SO2 and CO in the observation and empirical equations were obtained for the NOy concentration. Based on the equations, the relative contributions from mobile (i.e. vehicular exhaust) and point sources (i.e. coal combustion) to NOy were estimated to be 68.2% and 38.6%, respectively, demonstrating that even in the demanding period of domestic heating in NCP, vehicular emissions in a large urban city contribute more to NOy than coal combustion emissions. This also implies that vehicular emissions, featured with high NOx, become a dominant source of pollution, highlighting the recent finding of long

  13. Southern Great Plains Newsletter

    SciTech Connect

    J. Prell L. R. Roeder

    2010-09-01

    This months issue contains the following articles: (1) Scientists convene at SGP site for complex convective cloud experiment; (2) VORTEX2 spins down; (3) Sunphotometer supports SPARTICUS (a Sun and Aureole Measurement imaging sunphotometer) campaign and satellite validation studies; and (4) Ceilometer represents first deployment of new ground-based instruments from Recovery Act.

  14. Nest sites and conservation of endangered Interior Least Terns Sterna antillarum athalassos on an alkaline flat in the south-central Great Plains (USA)

    USGS Publications Warehouse

    Winton, Brian R.; Leslie, David M., Jr.

    2003-01-01

    We monitored nest sites of endangered Interior Least Terns on a 5 095 ha alkaline flat in north-central Oklahoma, USA. After nest loss, Least Terns commonly renested and experienced 30% apparent nest success in 1995-1996 (n = 233 nests). Nest success and predation differed by location on the alkaline flat in 1995 and overall, but nest success and flooding did not differ by microhabitat type. Predation was highest at nests ??? 5 cm from debris (driftwood/hay) in 1995. No differences in nesting success, flooding, or predation were observed on comparing nests inside and outside electrified enclosures. Coyotes and Striped Skunks were confirmed nest predators, and Ring-billed Gulls were suspected nest predators. We identified one location on the alkaline flat of about 1 000 ha with consistently lower nest losses attributable to flooding and predation and the highest hatching success compared with other parts of the alkaline flat; it was typified by open ground and bisected by several creeks. Management activities that minimize flooding and predation in this area could further enhance nest success and theoretically increase overall productivity of this population of Least Terns. However, the efficacy of electrified enclosures and nest-site enhancements, as currently undertaken, is questionable because of considerable annual variation in use by and protection of Least Terns.

  15. MEASUREMENT OF BIOAVAILABLE IRON AT TWO HAZARDOUS WASTE SITES

    EPA Science Inventory

    In the past, the concentrations of iron II in monitoring wells has been used to evaluate natural attenuation processes at hazardous waste sites. Changes in the aqueous concentrations of electron acceptors/products are important to the evaluation of natural biological attenuation...

  16. DENSE GAS PLUME FIELD MEASUREMENTS AT THE NEVADA TEST SITE

    EPA Science Inventory

    Field experiments on dense gas diffusion carried out at the Spills Test Facility on the Nevada Test Site are briefly described, including four "baseline" releases made in July 1993 and two new series planned for August-September 1995. he first series will target neutral to very s...

  17. Trace metal enrichment in agricultural soils of Jianghan Plain

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Ying, S.; Daniel, J. N.; Bu, J.; Gan, Y.; Wang, Y.; Schaefer, M.; Fendorf, S. E.

    2014-12-01

    Coal consumption in China is increasing annually due to constantly rising energy demand. As a result, a massive amount of coal combustion byproducts, particularly in the form of fly ash, are expelled from power plants and distributed through atmospheric transport. The fly ash is eventually deposited on to land, potentially contaminating agricultural soils. Coal fly ash contains high concentration of a suite of toxic trace metals including lead, chromium, and arsenic. In this study, we surveyed the concentration of trace metals in agricultural soils at 131 sites within a 20 km radius of Yangluo Power Plant, a 2400 MW plant within the highly populated Jianghan Plain of Central China. Using X-ray fluorecence (XRF) spectrometry, the total concentration of trace metals in homogenized surface and subsurface soil samples were measured to calculate the corresponding enrichment factor at each site. Our initial findings demonstrate that Pb is enriched in a majority of sites, independent of land use, whereas As and Cr are generally not enriched in this region. Further studies using Pb isotopes as a source-tracing tool will help determine the Pb pollution's origin. Ultimately, the results of this study may inform whether crops grown within the Jianghan Plain have the potential of being contaminated by metals emitted from coal power plants.

  18. Diagnosing causes of cloud parameterization deficiencies using ARM measurements over SGP site

    SciTech Connect

    Wu, W.; Liu, Y.; Betts, A. K.

    2010-03-15

    Decade-long continuous surface-based measurements at Great Southern Plains (SGP) collected by the US Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility are first used to evaluate the three major reanalyses (i.e., ERA-Interim, NCEP/NCAR Reanalysis I and NCEP/DOE Reanalysis II) to identify model biases in simulating surface shortwave cloud forcing and total cloud fraction. The results show large systematic lower biases in the modeled surface shortwave cloud forcing and cloud fraction from all the three reanalysis datasets. Then we focus on diagnosing the causes of these model biases using the Active Remote Sensing of Clouds (ARSCL) products (e.g., vertical distribution of cloud fraction, cloud-base and cloud-top heights, and cloud optical depth) and meteorological measurements (temperature, humidity and stability). Efforts are made to couple cloud properties with boundary processes in the diagnosis.

  19. Aspects of the quality of data from the Southern Great Plains (SGP) cloud and radiation testbed (CART) site broadband radiation sensors

    SciTech Connect

    Splitt, M.E.; Wesely, M.L.

    1996-04-01

    A systmatic evaluation of the performance of broadband radiometers at the Radiation Testbed (CART) site is needed to estimate the uncertainties of the irradiance observations. Here, net radiation observed with the net radiometer in the enrgy balance Bowen ratio station at the Central facility is compared with the net radiation computed as the sum of component irradiances recorded by nearby pyranameters and pyrgeometers. In addition, data obtained from the central facility pyranometers, pyrgeometers, and pyrheliometers are examined for April 1994, when intensive operations periods were being carried out. The data used in this study are from central facility radiometers in a solar and infrared observation station, and EBBR station, the so-called `BSRN` set of upward pointing radiometers, and a set of radiometers pointed down at the 25-m level of a 60-m tower.

  20. Gross primary production and light response parameters of four Southern Plains ecosystems estimated using long-term CO2-flux tower measurements

    NASA Astrophysics Data System (ADS)

    Gilmanov, Tagir G.; Verma, Shashi B.; Sims, Phillip L.; Meyers, Tilden P.; Bradford, James A.; Burba, George G.; Suyker, Andrew E.

    2003-06-01

    Gross primary production (GPP) is one of the most important characteristics of an ecosystem. At present, no empirically based method to estimate GPP is available, other than measurements of net CO2 exchange and calculations of respiration. Data sets from continuous CO2 flux measurements in a number of ecosystems (Ameriflux, AgriFlux, etc.) for the first time provide an opportunity to obtain empirically based estimates of GPP. In this paper, using the results of CO2 flux tower measurements during the 1997 season at four sites in Oklahoma (tallgrass prairie, mixed prairie, pasture, and winter wheat crop), we describe a method to evaluate the average daytime rate of ecosystem respiration, Rd, by estimation of the respiration term of the nonrectangular hyperbolic model of the ecosystem-scale light-response curve. Comparison of these predicted daytime respiration rates with directly measured corresponding nighttime values, Rn, after appropriate length of the night and temperature correction, demonstrated close linear relationship, with 0.82 ≤ R2 ≤ 0.98 for weekly averaged fluxes. Daily gross primary productivity, Pg, can be calculated as Pg = Pd + Rd, where Pd is the daytime integral of the net ecosystem CO2 exchange, obtained directly from measurements. Annual GPP for the sites, obtained as the sum of Pg over the whole period with Pg > 0 were: tallgrass prairie, 5223 g CO2 m-2; winter wheat, 2853 g CO2 m-2; mixed prairie, 3037 g CO2 m-2; and pasture, 2333 g CO2 m-2. These values are in agreement with published GPP estimates for nonforest terrestrial ecosystems.

  1. A case study of the Great Plains low-level jet using wind profiler network data and a high resolution mesoscale model

    SciTech Connect

    Zhong, S.; Fast, J.D.; Bian, X.; Stage, S.

    1996-04-01

    The Great Plains low-level jet (LLJ) has important effects on the life cycle of clouds and on radiative and surface heat and moisture fluxes at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site. This diurnal phenomenon governs the transport and convergence of low-level moisture into the region and often leads to the development of clouds and precipitation. A full understanding of the life cycle of clouds at the SGP CART site and their proper representation in single column and global climate models cannot be obtained without an improved understanding of this important phenomenon.

  2. Active Layer and Moisture Measurements for Intensive Site 0 and 1, Barrow, Alaska

    DOE Data Explorer

    John Peterson

    2015-04-17

    These are measurements of Active Layer Thickness collected along several lines beginning in September, 2011 to the present. The data were collected at several time periods along the Site0 L2 Line, the Site1 AB Line, and an ERT Monitoring Line near Area A in Site1.

  3. Plains Tectonics on Venus

    NASA Technical Reports Server (NTRS)

    Banerdt, W. B.; McGill, G. E.; Zuber, M. T.

    1996-01-01

    Tectonic deformation in the plains of Venus is pervasive, with virtually every area of the planet showing evidence for faulting or fracturing. This deformation can be classified into three general categories, defined by the intensity and areal extent of the surface deformation: distributed deformation, concentrated deformation, and local fracture patterns.

  4. Mountain-Plains Curriculum.

    ERIC Educational Resources Information Center

    Mountain-Plains Education and Economic Development Program, Inc., Glasgow AFB, MT.

    The document lists the Mountain-Plains curriculum by job title (where applicable), including support courses. The curriculum areas covered are mathematics skills, communication skills, office education, lodging services, food services, marketing and distribution, welding support, automotive, small engines, career guidance, World of Work, health…

  5. Wide Angle Imaging Lidar (WAIL): Theory of Operation and Results from Cross-Platform Validation at the ARM Southern Great Plains Site

    NASA Astrophysics Data System (ADS)

    Polonsky, I. N.; Davis, A. B.; Love, S. P.

    2004-05-01

    WAIL was designed to determine physical and geometrical characteristics of optically thick clouds using the off-beam component of the lidar return that can be accurately modeled within the 3D photon diffusion approximation. The theory shows that the WAIL signal depends not only on the cloud optical characteristics (phase function, extinction and scattering coefficients) but also on the outer thickness of the cloud layer. This makes it possible to estimate the mean optical and geometrical thicknesses of the cloud. The comparison with Monte Carlo simulation demonstrates the high accuracy of the diffusion approximation for moderately to very dense clouds. During operation WAIL is able to collect a complete data set from a cloud every few minutes, with averaging over horizontal scale of a kilometer or so. In order to validate WAIL's ability to deliver cloud properties, the LANL instrument was deployed as a part of the THickness from Off-beam Returns (THOR) validation IOP. The goal was to probe clouds above the SGP CART site at night in March 2002 from below (WAIL and ARM instruments) and from NASA's P3 aircraft (carrying THOR, the GSFC counterpart of WAIL) flying above the clouds. The permanent cloud instruments we used to compare with the results obtained from WAIL were ARM's laser ceilometer, micro-pulse lidar (MPL), millimeter-wavelength cloud radar (MMCR), and micro-wave radiometer (MWR). The comparison shows that, in spite of an unusually low cloud ceiling, an unfavorable observation condition for WAIL's present configuration, cloud properties obtained from the new instrument are in good agreement with their counterparts obtained by other instruments. So WAIL can duplicate, at least for single-layer clouds, the cloud products of the MWR and MMCR together. But WAIL does this with green laser light, which is far more representative than microwaves of photon transport processes at work in the climate system.

  6. Wind Shear Characteristics at Central Plains Tall Towers

    SciTech Connect

    Schwartz, M.; Elliott, D.

    2006-01-01

    The object of this study is to analyze wind shear characteristics at tall tower sites in the Central Plains of the United States. The hub heights of modern turbines used for wind farm projects are now 70 meters (m) to 100 m above ground and some advanced turbines under development for deployment during the second half of this decade are rated at 2-5 megawatts of energy generation with rotor diameters near 100 m and hub heights of 100-120 m. These advanced turbines will take advantage of the higher wind speeds aloft to generate more wind energy. Specific knowledge of important wind shear characteristics near and at turbine hub height is needed to optimize turbine design and wind farm layout. Unfortunately, wind speed shear measurements at heights of 80-120 m were virtually nonexistent a few years ago and are still quite uncommon today. The Central Plains is a prime wind energy development region and knowledge about the wind shear characteristics will reduce uncertainty about the resource and enhance wind farm design. Previous analyses of tall tower data (Schwartz and Elliott, 2005) concentrated on data from specific states. The wind energy community has recognized the need to fill the gap of direct wind speed measurements at levels 70 m and higher above the ground. Programs instituted during the last 5 years at the state level and supported by the U.S. Department of Energy's (DOE) State Energy Program initiative have placed anemometers and vanes at several levels on existing tall (70 m+) communication towers. The Central Plains has a fairly high concentration of tall tower sites. The distribution of tall tower sites varies among the states in the Central Plains, because the tall tower program is new and the available state and federal funding to establish tall towers is variable. Our wind resource assessment group at DOE's National Renewable Energy Laboratory (NREL) has obtained much of these necessary measurement data from both individual state sources and regional

  7. Direct gas in mud measurement at the well site

    SciTech Connect

    Hawker, D.

    1999-09-01

    A patented process developed by Datalog provides a direct quantitative gas measurement from the drilling fluid, eliminates the gas trap (degasser) and the conversion to gas-in-air measurements associated with traditional gas detection methods. Quantitative hydrocarbon gas measurement can be performed at the wellsite through the use of this gas detection system called GasWizard. This is achieved with a passive device containing a gas permeable membrane that is immersed in the drilling fluid. The device extracts a gas sample that is directly proportional to the actual gas concentration in the drilling fluid. Through this simple process, the gas measurement is equally effective in conventional water or oil-base drilling muds or in underbalanced drilling fluids such as foam, air or nitrogen.

  8. Late Eocene to middle Miocene (33 to 13 million years ago) vegetation and climate development on the North American Atlantic Coastal Plain (IODP Expedition 313, Site M0027)

    NASA Astrophysics Data System (ADS)

    Kotthoff, U.; Greenwood, D. R.; McCarthy, F. M. G.; Müller-Navarra, K.; Prader, S.; Hesselbo, S. P.

    2014-08-01

    We investigated the palynology of sediment cores from Site M0027 of IODP (Integrated Ocean Drilling Program) Expedition 313 on the New Jersey shallow shelf to examine vegetation and climate dynamics on the east coast of North America between 33 and 13 million years ago and to assess the impact of over-regional climate events on the region. Palynological results are complemented with pollen-based quantitative climate reconstructions. Our results indicate that the hinterland vegetation of the New Jersey shelf was characterized by oak-hickory forests in the lowlands and conifer-dominated vegetation in the highlands from the early Oligocene to the middle Miocene. The Oligocene witnessed several expansions of conifer forest, probably related to cooling events. The pollen-based climate data imply an increase in annual temperatures from ∼11.5 °C to more than 16 °C during the Oligocene. The Mi-1 cooling event at the onset of the Miocene is reflected by an expansion of conifers and mean annual temperature decrease of ∼4 °C, from ∼16 °C to ∼12 °C around 23 million years before present. Relatively low annual temperatures are also recorded for several samples during an interval around ∼20 million years before present, which may reflect the Mi-1a and the Mi-1aa cooling events. Generally, the Miocene ecosystem and climate conditions were very similar to those of the Oligocene. Miocene grasslands, as known from other areas in the USA during that time period, are not evident for the hinterland of the New Jersey shelf, possibly reflecting moisture from the proto-Gulf Stream. The palaeovegetation data reveal stable conditions during the mid-Miocene climatic optimum at ∼15 million years before present, with only a minor increase in deciduous-evergreen mixed forest taxa and a decrease in swamp forest taxa. Pollen-based annual temperature reconstructions show average annual temperatures of ∼14 °C during the mid-Miocene climatic optimum, ∼2

  9. Savannah River Site Experiences in In Situ Field Measurements of Radioactive Materials

    SciTech Connect

    Moore, F.S.

    1999-10-07

    This paper discusses some of the field gamma-ray measurements made at the Savannah River Site, the equipment used for the measurements, and lessons learned during in situ identification and characterization of radioactive materials.

  10. Properties of a 5500-year-old flood-plain in the Loup River Basin, Nebraska

    NASA Astrophysics Data System (ADS)

    May, David W.

    2003-12-01

    Flood-plain aggradation within the Loup River Basin of central Nebraska was episodic and alternated with incision throughout much of the Holocene. A widespread episode of flood-plain stability, however, occurred about 5700-5100 cal. year BP. The purpose of this paper is to describe the properties of this buried flood-plain at six sites in the basin, to consider why the properties of the buried flood-plain vary from site to site, and to evaluate possible reasons why the Loup River flood-plains stabilized 5500 years ago. Episodic valley-bottom aggradation was common during flood-plain formation at five of the six sites. The radiocarbon ages, particle-size data, and organic-carbon data for the buried flood-plain reveal that valley-bottom aggradation generally slowed between about 5700 and 5100 cal. year BP. Erratic down-profile changes in percentages of sand, clay, and organic matter indicate flood-plain sedimentation and soil formation were often episodic. Sand and clay rarely show a steady fining-upward trend. Organic matter fluctuates with depth; at some sites multiple, incipient A horizons were buried during waning valley-bottom aggradation. At two localities, the buried flood-plain is evident as a clay-rich stratum that must have been deposited in a paleochannel. Flood-plain stabilization between 5700 and 5100 cal. year BP probably occurred in response to the effects of external climate forcing on vegetation and hydrologic changes. Flood-plains of other rivers in the central Great Plains also stabilized at this time, further supporting a climatic explanation for slowing of valley aggradation and formation of a flood-plain at this time. Recognition of buried flood-plains is important to both soil mapping in valleys and to the discovery of cultural resources in valleys.

  11. Backwater at bridges and densely wooded flood plains, Yockanookany River near Thomastown, Mississippi

    USGS Publications Warehouse

    Colson, B.E.; Ming, C.O.; Arcement, George J.

    1979-01-01

    Floodflow data that will provide a base for evaluating digital models relating to open-channel flow were obtained at 22 sites on streams in Alabama, Louisiana, and Mississippi. Thirty-five floods were measured. Analysis of the data indicated methods currently in use would be inaccurate where densely vegetated flood plains are crossed by highway embankments and single-opening bridges. This atlas presents flood information at the site on Yockanookany River near Thomastown, Miss. Water depths, velocities, and discharges through bridge openings on Yockanookany River near Thomastown, Miss., for floods of April 12, 1969, January 2, 1970, and March 15, 1975, are shown, together with peak water-surface elevations along embankments and along cross sections. Manning 's roughness coefficient values in different parts of the flood plain are shown on maps, and flood-frequency relations are shown on a graph. (Kosco-USGS)

  12. Backwater at bridges and densely wooded flood plains, west fork Amite River near Liberty, Mississippi

    USGS Publications Warehouse

    Colson, B.E.; Ming, C.O.; Arcement, George J.

    1979-01-01

    Floodflow data that will provide a base for evaluating digital models relating to open-channel flow were obtained at 22 sites on streams in Alabama, Louisiana, and Mississippi. Thirty-five floods were measured. Analysis of the data indicated methods currently in use would be inaccurate where densely vegetated flood plains are crossed by highway embankments and single-opening bridges. This atlas presents flood information at the site on West Fork Amite River near Liberty, MS. Water depths , velocities, and discharges through bridge openings on West Fork Amite River near Liberty, MS for floods of December 6, 1971 , and March 25, 1973, are shown, together with peak water-surface elevations along embankments and along cross sections. Manning 's roughness coefficient values in different parts of the flood plain are shown on maps, and flood-frequency relations are shown on a graph. (USGS).

  13. Backwater at bridges and densely wooded flood plains, Thompson Creek near Clara, Mississippi

    USGS Publications Warehouse

    Colson, B.E.; Ming, C.O.; Arcement, George J.

    1979-01-01

    Floodflow data that will provide a base for evaluating digital models relating to open-channel flow were obtained at 22 sites on streams in Alabama, Louisiana, and Mississippi. Thirty-five floods were measured. Analysis of the data indicated methods currently in use would be inaccurate where densely vegetated flood plains are crossed by highway embankments and single-opening bridges. This atlas presents flood information at the site on Thompson Creek near Clara, MS: Water depths, velocities, and discharges through bridge openings on Thompson Creek near Clara, MS, for flood of March 3, 1971, are shown, together with peak water-surface elevations along embankments and along cross sections. Manning 's roughness coefficient values in different parts of the flood plain are shown on maps, and flood-frequency relations are shown on a graph. (USGS).

  14. Occurrence and variability of mining-related lead and zinc in the Spring River flood plain and tributary flood plains, Cherokee County, Kansas, 2009--11

    USGS Publications Warehouse

    Juracek, Kyle E.

    2013-01-01

    Historical mining activity in the Tri-State Mining District (TSMD), located in parts of southeast Kansas, southwest Missouri, and northeast Oklahoma, has resulted in a substantial ongoing input of cadmium, lead, and zinc to the environment. To provide some of the information needed to support remediation efforts in the Cherokee County, Kansas, superfund site, a 4-year study was begun in 2009 by the U.S. Geological Survey that was requested and funded by the U.S. Environmental Protection Agency. A combination of surficial-soil sampling and coring was used to investigate the occurrence and variability of mining-related lead and zinc in the flood plains of the Spring River and several tributaries within the superfund site. Lead- and zinc-contaminated flood plains are a concern, in part, because they represent a long-term source of contamination to the fluvial environment. Lead and zinc contamination was assessed with reference to probable-effect concentrations (PECs), which represent the concentrations above which adverse aquatic biological effects are likely to occur. The general PECs for lead and zinc were 128 and 459 milligrams per kilogram, respectively. The TSMD-specific PECs for lead and zinc were 150 and 2,083 milligrams per kilogram, respectively. Typically, surficial soils in the Spring River flood plain had lead and zinc concentrations that were less than the general PECs. Lead and zinc concentrations in the surficial-soil samples were variable with distance downstream and with distance from the Spring River channel, and the largest lead and zinc concentrations usually were located near the channel. Lead and zinc concentrations larger than the general or TSMD-specific PECs, or both, were infrequent at depth in the Spring River flood plain. When present, such contamination typically was confined to the upper 2 feet of the core and frequently was confined to the upper 6 inches. Tributaries with few or no lead- and zinc-mined areas in the basin—Brush Creek

  15. Result of storage term measurements at a sandy grassland site

    NASA Astrophysics Data System (ADS)

    Pintér, Krisztina; Barcza, Zoltán; Balogh, János; Nagy, Zoltán

    2015-04-01

    Eddy covariance (EC) technique is common technique to investigate fluxes over ecosystems. In the past 20 years the focus was on the carbon dioxide (CO2) budget of ecosystems measured as net ecosystem exchange (NEE). Night underestimation of fluxes is a frequent problem, addressed by several EC studies. When the turbulence is low the accumulation of CO2 close to the ground can be significant, so the storage term (rate of change of storage, RCS) has to be taken into account. In the case of tall vegetation storage measurements are routinely done, but in the case of short vegetation it is often neglected based on the assumption that its positive values after sunset and negative values at dawn extinguish each other when calculating daily and yearly sums. The EC system at the sandy grassland (Bugacpuszta, Hungary) was complemented by a 5-level (0.2, 0.5, 1, 2 and 4m) concentration profile measuring system and the storage term was calculated from the profile at half-hourly intervals. RCS was also calculated using only the concentration measurements of the EC system assuming linear concentration profile between the surface and the level of the measurement (linear approach). When comparing the uncorrected and the corrected (profile method) half-hourly fluxes storage correction did not affect the daytime NEE values (slope=1.0084, const=-0.0053, R2=0.9922) and had only a minor effect on the measured Reco values (slope=0.9577, const=0.0066, R2=0.9173). Yearly sums were calculated for the first whole year (August, 2013 - July, 2014) of the concentration profile measurement. Application of the linear approach storage correction enhanced the sink (more negative NEE) by 12 gC m-2 year-1 as compared to the uncorrected yearly sum. On the other hand, the use of storage terms calculated from the concentration profile measurements increased the sink activity by 54 gC m-2 year-1. Considering this more than 4 fold difference, concentration profiling should also be considered in case of

  16. Measuring enjoyable informal learning using augmented reality at cultural heritage site

    NASA Astrophysics Data System (ADS)

    Pendit, Ulka Chandini; Zaibon, Syamsul Bahrin; Bakar, Juliana Aida Abu

    2016-08-01

    The instrument of evaluation of measuring enjoyable informal learning at cultural heritage site was produced by validity and reliability analysis. It involved two cycles of steps, content validity and face validity and content validity and reliability analysis. From the analysis, it was found out that the instrument is reliable to be measure enjoyable informal learning at cultural heritage site.

  17. Dating fluvial archives of the Riverine Plain, Southeastern Australia

    NASA Astrophysics Data System (ADS)

    Mueller, Daniela; Cohen, Tim; Reinfelds, Ivars; Jacobs, Zenobia; Shulmeister, James

    2016-04-01

    The Riverine Plain of Southeastern Australia is characterized by a multiplicity of relict river channels. Compared to the modern drainage system the most prominent of those distinct features are defined by large bankfull channel widths, large meander wavelengths and coarse sediment loads. Such morphological differences provide evidence for regimes of higher discharge, stemming from significant changes in runoff volumes, flood-frequency regimes and sediment supply. An existing geochronology for some of these channels is based on multi-grain thermoluminescence (Murrumbidgee River; Page et al., 1996) or radio-carbon dating (Goulburn River; Bowler, 1978) and indicates enhanced fluvial activity between 30 to 13 ka. The absence of exact Last Glacial Maximum (LGM, 21 ± 3 ka) ages of the Murrumbidgee palaeochannels was interpreted to indicate decreased fluvial activity during the peak of the LGM but was not inferred for the nearby Goulburn River. Recent developments in optical dating, especially measurements of individual grains of quartz, allow for an examination of these previous findings. Key sites along the Murrumbidgee and Goulburn Rivers have been revisited and new sites of the adjacent Murray River have been investigated. A revised, high-resolution geochronology based on single-grain optically stimulated luminescence dating is used to examine the precise occurrence of those massive channels and their implications for the Southern Hemisphere LGM. References: Page, K., Nanson, G., Price, D. (1996). Chronology of Murrumbidgee River palaeochannels on the Riverine Plain, southeastern Australia. Journal of Quaternary Science 11(4): 311-326. Bowler, J. (1978). Quaternary Climate and Tectonics in the Evolution of the Riverine Plain, Southeastern Australia. In: Davies, J. & Williams, M. (Editors). Landform Evolution in Australia, Australian National University Press: Canberra. p. 70-112.

  18. Surface refractivity measurements at NASA spacecraft tracking sites

    NASA Technical Reports Server (NTRS)

    Schmid, P. E.

    1972-01-01

    High-accuracy spacecraft tracking requires tropospheric modeling which is generally scaled by either estimated or measured values of surface refractivity. This report summarizes the results of a worldwide surface-refractivity test conducted in 1968 in support of the Apollo program. The results are directly applicable to all NASA radio-tracking systems.

  19. Chemical composition of pre-monsoon air in the Indo-Gangetic Plain measured using a new PTR-MS and air quality facility: high surface ozone and strong influence of biomass burning

    NASA Astrophysics Data System (ADS)

    Sinha, V.; Kumar, V.; Sarkar, C.

    2013-12-01

    One seventh of the world population lives in the Indo-Gangetic Plain (IGP) and the fertile region sustains agricultural food crop production for much of South Asia. Yet it remains one of the most under-studied regions of the world in terms of atmospheric composition and chemistry. In particular, the emissions and chemistry of volatile organic compounds (VOCs) that form surface ozone and secondary organic aerosol through photochemical reactions involving nitrogen oxides is not well understood. In this study, ambient levels of VOCs such as methanol, acetone, acetaldehyde, acetonitrile and isoprene were measured for the first time in the IGP. A new atmospheric chemistry facility that combines India's first high sensitivity proton transfer reaction mass spectrometer, an ambient air quality station and meteorological station, was used to quantify in-situ levels of several VOCs and air pollutants in May 2012 at a suburban site in Mohali (N. W. IGP). Westerly winds arriving at high wind speeds (5-20 m s-1) in the pre-monsoon season at the site, were conducive for chemical characterization of regional emission signatures. Average levels of VOCs and air pollutants in May 2012 ranged from 1.2-1.7 nmol mol-1 for aromatic VOCs, 5.9-37.4 nmol mol-1 for the oxygenated VOCs, 1.4 nmol mol-1 for acetonitrile, 1.9 nmol mol-1 for isoprene, 567 nmol mol-1 for carbon monoxide, 57.8 nmol mol-1 for ozone, 11.5 nmol mol-1 for nitrogen oxides, 7.3 nmol mol-1 for sulphur dioxide, 104 μg m-3 for PM2.5 and 276 μg m-3 for PM10. By analyzing the one minute in-situ data with meteorological parameters and applying chemical tracers (e.g. acetonitrile for biomass burning) and inter-VOC correlations, we were able to constrain major emission source activities on both temporal and diel scales. Wheat residue burning activity caused massive increases (> 3 times of baseline values) for all the measured VOCs and primary pollutants. Other forms of biomass burning at night were also a significant source

  20. Chemical composition of pre-monsoon air in the Indo-Gangetic Plain measured using a new air quality facility and PTR-MS: high surface ozone and strong influence of biomass burning

    NASA Astrophysics Data System (ADS)

    Sinha, V.; Kumar, V.; Sarkar, C.

    2014-06-01

    One seventh of the world's population lives in the Indo-Gangetic Plain (IGP) and the fertile region sustains agricultural food crop production for much of South Asia, yet it remains one of the most under-studied regions of the world in terms of atmospheric composition and chemistry. In particular, the emissions and chemistry of volatile organic compounds (VOCs) that form surface ozone and secondary organic aerosol through photochemical reactions involving nitrogen oxides are not well understood. In this study, ambient levels of VOCs such as methanol, acetone, acetaldehyde, acetonitrile and isoprene were measured for the first time in the IGP. A new atmospheric chemistry facility that combines India's first high-sensitivity proton transfer reaction mass spectrometer, an ambient air quality station and a meteorological station, was used to quantify in situ levels of several VOCs and air pollutants in May 2012 at a suburban site in Mohali (northwest IGP). Westerly winds arriving at high wind speeds (5-20 m s-1) in the pre-monsoon season at the site were conducive for chemical characterization of regional emission signatures. Average levels of VOCs and air pollutants in May~2012 ranged from 1.2 to 2.7 nmol mol-1 for aromatic VOCs, 5.9 to 37.5 nmol mol-1 for the oxygenated VOCs, 1.4 nmol mol-1 for acetonitrile, 1.9 nmol mol-1 for isoprene, 567 nmol mol-1 for carbon monoxide, 57.8 nmol mol-1 for ozone, 11.5 nmol mol-1 for nitrogen oxides, 7.3 nmol mol-1 for sulfur dioxide, 104 μg m-3 for PM2.5 and 276 μg m-3 for PM10. By analyzing the one-minute in situ data with meteorological parameters and applying chemical tracers (e.g., acetonitrile for biomass burning) and inter-VOC correlations, we were able to constrain major emission source activities on both temporal and diel scales. Wheat residue burning caused massive increases (> 3 times the baseline values) for all the measured VOCs and primary pollutants. Other forms of biomass burning at night were also a significant

  1. Dynamics of playa lakes in the Texas High Plains

    NASA Technical Reports Server (NTRS)

    Reeves, C. C., Jr. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. Three small playa lake basins on the southern High Plains, Texas, have been examined by geologists, pedologists, hydrologists, and botanists to establish ground truth for correlation with ERTS-1 imagery. Although the sites are recognizable, details of the three playa basins are too small, at present resolution, to be accurately determined by the available MSS imagery. However, a fourth study site, consisting of a dual playa complex approximately 5 miles long in a basin of 9 square miles, does resolve available imagery allowing accurate measurement of water fluctuations and water depth. Of the available MSS imagery, Band 5 is the most usable. Definition of Band 4 is less due to reduced tonal contrast. The greatest tonal contrast appears on Band 6 and Band 7 between dry land and water areas. Band 6 is particularly good for defining large water areas, Band 7 being best for small lake basins, and Band 5 for growing fields.

  2. Summertime Low-Level Jets over the Great Plains

    SciTech Connect

    Stensrud, D.J.

    1996-04-01

    The sky over the southern Great Plains Cloud and Atmospheric Radiation Testbed (CART) site of the Atmospheric Radiation Measurement (ARM) Program during the predawn and early morning hours often is partially obstructed by stratocumulus, stratus fractus, or cumulus fractus that are moving rapidly to the north, even through the surface winds are weak. This cloud movement is evidence of the low-level jet (LLJ), a wind speed maximum that occurs in the lowest few kilometers of the atmosphere. Owing to the wide spacing between upper-air sounding sites and the relatively infrequent sounding launches, LLJ evolution has been difficult to observe adequately, even though the effects of LLJs on moisture flux into North America are large. Model simulation of the LLJ is described.

  3. ABDOMINAL SUBCUTANEOUS ADIPOSE TISSUE (SAT) AND VICERAL ADIPOSE TISSUE (VAT) MEASUREMENTS IN HIV+ ADULTS: INFLUENCES OF MEASUREMENT SITE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Loss of SAT and an increase in VAT are common with HIV lipodystrophy. Excess abdominal VAT is a known risk factor for cardiovascular disease. Computerized axial tomography (CT) can be used to measure SAT and VAT areas in cross-sectional images of the abdomen. The ideal site(s) and number of abdomina...

  4. Recent Solar Measurements Results at the Parabolic Dish Test Site

    NASA Technical Reports Server (NTRS)

    Ross, D. L.

    1984-01-01

    After the Mexican volcanic eruptions of March 28, April 3 and 4, 1982, the question of its effect on insolation levels at the Parabolic Dish Test Site (PDTS) naturally arose. Clearly, the answer to the original question is that the Mexican volcanic explosion had a significant impact on energy and insolation levels at the PDTS and, furthermore, it has been quite long lasting. The first really significant decrease in energy and insolation levels occurred in June 1982 when the energy level decreased by 19.7% while the peak insolation levels went down by 4.0%. June of 1982 was also the first month (of 13 consecutive months) when peak insolation levels did not equal or exceed 1,000 W/sq m. Signs of a recovery from the effects of the volcanic explosion began to appear in May of 1983, when the energy level exceeded that of May 1981 as well as May 1982. It would appear that energy and insolation levels are improving at the PDTS, but have not quite reached normal or pre-volcanic levels. At this time the data would seem to suggest a return to normal energy and insolation levels will occur in the very near future.

  5. Seismic Velocity Measurements at Expanded Seismic Network Sites

    SciTech Connect

    Woolery, Edward W; Wang, Zhenming

    2005-01-01

    Structures at the Paducah Gaseous Diffusion Plant (PGDP), as well as at other locations in the northern Jackson Purchase of western Kentucky may be subjected to large far-field earthquake ground motions from the New Madrid seismic zone, as well as those from small and moderate-sized local events. The resultant ground motion a particular structure is exposed from such event will be a consequence of the earthquake magnitude, the structures' proximity to the event, and the dynamic and geometrical characteristics of the thick soils upon which they are, of necessity, constructed. This investigation evaluated the latter. Downhole and surface (i.e., refraction and reflection) seismic velocity data were collected at the Kentucky Seismic and Strong-Motion Network expansion sites in the vicinity of the Paducah Gaseous Diffusion Plant (PGDP) to define the dynamic properties of the deep sediment overburden that can produce modifying effects on earthquake waves. These effects are manifested as modifications of the earthquake waves' amplitude, frequency, and duration. Each of these three ground motion manifestations is also fundamental to the assessment of secondary earthquake engineering hazards such as liquefaction.

  6. Light Plains in the South-Pole Aitken Basin: Surface Ages and Mineralogical Composition

    NASA Astrophysics Data System (ADS)

    Thiessen, F.; Hiesinger, H.; van der Bogert, C. H.; Pasckert, J. H.; Robinson, M. S.

    2012-04-01

    We studied light plains in the north-eastern South-Pole Aitken basin to investigate their origin, ages, and mineralogical composition. Light plains, also known as the Cayley Formation, occur on the near- and farside of the Moon. Due to their smooth texture, lower crater densities, and occurrence as crater fills, they were thought to be of volcanic origin [e.g., 1]. However, Apollo 16 samples of light plains deposits were in fact highly brecciated rocks [2]. Therefore, the Imbrium and Orientale impacts were thought to have formed light plains because they reshaped the surface thousands of kilometers from their impact sites. Subsequent studies revealed varying surface ages of light plains [e.g., 3] and different mineralogical compositions, which are in some cases more highland-like and in others more mare-like. Hence, an origin solely from the Imbrium and/or Orientale impacts is unlikely. Thus, the question whether light plains formed due to large impacts or regional cratering, or through endogenic processes remains open. We performed crater size-frequency measurements [e.g., 4] on Lunar Reconnaissance Orbiter Wide Angle Camera images and obtained absolute model ages between 3.43 and 3.81 Ga. We observed neither a distinctive peak of light plains ages nor clustering of similar ages in any specific regions of the studied area. Due to the fact that the derived ages vary as much as 380 Ma, an origin by a single event seems unlikely. Moreover, some ages even post-date the Imbrium and Orientale impacts, and thus an origin related to those impacts is not likely. Examination of multispectral data from Clementine [5] shows that the Ti abundances vary between 0.2 and 3 wt % and Fe abundances between 12.5 and 19 wt %. We observed a regional difference in distribution: light plains units within the Apollo basin have lower Fe and Ti values and are more highland-like, whereas light plains outside the Apollo basin show higher Fe and Ti values and are more mare-like. Furthermore, M

  7. Analysis of a long-term measurement of air pollutants (2007-2011) in North China Plain (NCP); Impact of emission reduction during the Beijing Olympic Games.

    PubMed

    Xu, Ruiguang; Tang, Guiqian; Wang, Yuesi; Tie, Xuexi

    2016-09-01

    Five years measurements were used to evaluate the effect of emission controls on the changes of air pollutants in Beijing and its surroundings in the NCP during 2008 Olympic Games (2008OG). The major challenge of this study was to filter out the effect of variability of meteorological conditions, when compared the air pollutants during the game to non-game period. We used four-year (2007, 2009-2011) average as the Non-2008OG to smooth the temporal variability caused by meteorological parameters. To study the spatial variability and regional transport, 6 sites (urban, rural, a mega city, a heavy industrial city, and a remote site) were selected. The result showed that the annually meteorological variability was significantly reduced. Such as, in BJ the differences between 2008OG and 5-years averaged values were 2.7% for relative humidity and 0.6% for wind speed. As a result, the anomaly of air pollutants between 2008OG and Non-2008OG can largely attribute to the emission control. The comparison showed that the major pollutants (PM10, PM2.5, NO, NOx) at the 6 sites in 2008OG were consistently lowered. For example, PM2.5 in BJ decreased from 75 to 45 μg/m(3) (40% reduction). However, the emission controls had minor effect on O3 concentrations (1% reduction). In contrast, the O3 precursor (NOx) reduced from 19.7 to 13.2 ppb (33% reduction). The in-sensitivity between NOx and O3 suggested that the O3 formation was under VOCs control condition in NCP, showing that strong VOC emission control is needed in order to significantly reduce O3 concentration in the region. PMID:27355197

  8. Measurements of fog composition at a rural site

    NASA Astrophysics Data System (ADS)

    Straub, Derek J.; Hutchings, James W.; Herckes, Pierre

    2012-02-01

    Studies that focus on fog chemistry in the United States have been limited to relatively few locations. Apart from measurements along the East and West coasts and extensive analysis of radiation fog in the Central Valley of California, fog composition has been characterized in only a handful of other locations. To complement and expand the existing fog chemistry data that are currently available, a new field campaign was established at a rural location in Central Pennsylvania to produce a unique, long term record of fog composition. From 2007 to 2010, 41 fog events were sampled with an automated Caltech Heated Rod Cloudwater Collector (CHRCC). The collected samples were analyzed primarily for pH and major inorganic ions. Dissolved organic carbon (DOC) and trace metals were analyzed in selected samples and N-nitrosodimethylamine (NDMA) was quantified in two samples. Sample composition varied widely during the study period. Sulfate concentrations ranged from 15 to 955 (median = 123) μN and pH varied between 3.08 and 7.41 (median = 5.77). In terms of volume weighted averages, ammonium was the most abundant ionic species followed by sulfate, calcium, and nitrate. For the subset of samples in which DOC was analyzed, concentrations ranged from 2.2 to 22.6 mgC l -1. Comparisons with regional precipitation chemistry measurements reveal the influence of local agricultural and soil sources on fog composition. The sum of sulfate, nitrate, and ammonium measured in the present study is considerably lower than the majority of radiation, precipitation, and coastal fogs collected in the United States although the ammonium/(nitrate + sulfate) ratio is similar to those found in the Central Valley of California.

  9. Estimating 1980 ground-water pumpage for irrigation on the High Plains in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Heimes, F.J.; Luckey, R.R.

    1983-01-01

    Current ground-water use is required for the High Plains Regional Aquifer-System Analysis. In response to this need, a sampling approach was developed to estimate water pumped for irrigation on the High Plains during 1980. Pumpage was computed by combining application estimates with mapped irrigated-acreage information. Irrigation application (inches of water applied) was measured at 480 sites in 15 counties in the High Plains during the 1980 growing season. The relationship between calculated Blaney-Criddle irrigation demand and measured application was used to estimate application for unsampled areas of the High Plains. Application estimates multiplied by irrigated-acreate estimates, compiled from Landsat-satellite imagery, yielded the volume of ground water pumped for irrigation. The estimate of ground water pumped for irrigation in the High Plains during 1980 and 18,902,000 acre-feet for 13 ,715,000 irrigated areas. The sampled application data were evaluated for significant trends. The application was greater for crops requiring more water such as corn and hay and less for crops such as sorghum, grain, and cotton. The data showed greater application for flood-irrigated systems than for sprinkler-irrigation systems. Areas of the High Plains with thin saturated thickness tended to have a smaller average discharge per well, fewer irrigated acres per well, and a predominance of crops requiring less water crops. (USGS).

  10. Source apportionment and risk assessment of PM1 bound trace metals collected during foggy and non-foggy episodes at a representative site in the Indo-Gangetic plain.

    PubMed

    Singh, Dharmendra Kumar; Gupta, Tarun

    2016-04-15

    The concentration, spatial distribution and source of 13-PM1 bound trace metals (Fe, Cu, Mn, Cr, Zn, Cd, Ni, K, Mg, Na, Ca, Pb and V) and adverse health effects of 5-PM1 bound trace metals (Mn, Zn, Ni, Cr and Cd) collected during foggy and non-foggy episodes are presented. Twenty-four samples from each period (foggy and non-foggy episodes) were collected from Kanpur, a typical densely populated city and the most polluted representative site in the Indo-Gangetic plain of India, and were analyzed for carcinogenic (Ni, Cr and Cd) and non-carcinogenic metals (Mn and Zn). The average mass concentration of PM1 during foggy and non-foggy episodes was found to be 160.16±37.70 and 132.87±27.97μg/m(3). Source identification via principle component analysis suggested that vehicular emission and anthropogenic, industrial and crustal dust were the dominant sources in this region. During both episodes the decreasing order of hazard quotient (Hq) for adult and children was as Mn>Cr>Cd>Ni>Zn. In a non-foggy episode the hazardous index (Hi) values of these 5 trace metals were found to be ~3.5 times higher than a foggy episode's exposed population, respectively. In a foggy episode, due to the exposure to total carcinogenic trace metals (Ni, Cr and Cd) present in the ambient air, 95% probability total incremental lifetime cancer risks (TIlcR) were ~687 cancer cases and ~402 cancer cases per million in the adult population and children population respectively. These cancer cases were ~1.6 times higher than a non-foggy episode's exposed population. PMID:26808399

  11. Net Ecosystem Production (NEP) of the Great Plains, United States

    USGS Publications Warehouse

    Howard, Daniel; Gilmanov, Tagir; Gu, Yingxin; Wylie, Bruce; Zhang, Li

    2012-01-01

    Flux tower networks, such as AmeriFlux and FLUXNET, consist of a growing number of eddy covariance flux tower sites that provide a synoptic record of the exchange of carbon, water, and energy between the ecosystem and atmosphere at various temporal frequencies. These towers also detect and measure certain site characteristics, such as wind, temperature, precipitation, humidity, atmospheric pressure, soil features, and phenological progressions. Efforts are continuous to combine flux tower network data with remote sensing data to upscale the conditions observed at specific sites to a regional and, ultimately, worldwide scale. Data-driven regression tree models have the ability to incorporate flux tower records and remote sensing data to quantify exchanges of carbon with the atmosphere (Wylie and others, 2007; Xiao and others, 2010; Zhang and others, 2010; Zhang and others, 2011). Previous study results demonstrated the dramatic effect weather has on NEP and revealed specific ecoregions and times acting as carbon sinks or sources. As of 2012, more than 100 site-years of flux tower measurements, represented by more than 50 individual cropland or grassland sites throughout the Great Plains and surrounding area, have been acquired, quality controlled, and partitioned into gross photosynthesis (Pg) and ecosystem Re using detailed light-response, soil temperature, and vapor pressure deficit (VPD) based analysis.

  12. Radiological verification survey results at the Pompton Plains Railroad Spur, Pequannock, New Jersey (PJ008V)

    SciTech Connect

    Rodriguez, R.E.; Johnson, C.A.

    1995-05-01

    The US Department of Energy (DOE) conducted remedial action during 1993 at the Pompton Plains railroad spur and eight vicinity properties in the Wayne and Pequannock Townships in New Jersey as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are in the vicinity of the DOE-owned Wayne Interim Storage Site (WISS), formerly the W.R. Grace facility. The property at the Pompton Plains Railroad Spur, Pequannock, New Jersey is one of these vicinity properties. At the request of DOE, a team from Oak Ridge National Laboratory conducted an independent radiological verification survey at this property. The purpose of the survey, conducted between September and December 1993, was to confirm the success of the remedial actions performed to remove any radioactive materials in excess of the identified guidelines. The verification survey included surface gamma scans and gamma readings at 1 meter, beta-gamma scans, and the collection of soil and debris samples for radionuclide analysis. Results of the survey demonstrated that all radiological measurements on the property at the Pompton Plains railroad spur were within applicable DOE guidelines. Based on the results of the remedial action data and confirmed by the verification survey data, the portions of the site that had been remediated during this action successfully meet the DOE remedial action objectives.

  13. The advertised price of cigarette packs in retail outlets across Australia before and after the implementation of plain packaging: a repeated measures observational study

    PubMed Central

    Scollo, Michelle; Bayly, Megan; Wakefield, Melanie

    2015-01-01

    Objective This study monitored the advertised price of the most prominently promoted and the cheapest single packs of cigarettes in Australian retail outlets before and after the implementation of plain packaging. Methods A panel of 421 outlets in four large Australian cities was visited monthly from May 2012 to August 2013 and the brand, pack size and price of the most-prominently listed and lowest-priced single cigarette pack were recorded from each store's tobacco price board. Changes in the inflation-adjusted stick price were examined using linear mixed models, controlling for fixed effects of city, store type, area socioeconomic status and random effects of time. The adjusted stick price was also examined over time by tobacco manufacturer and pack size. Results The inflation-adjusted stick price of the most-prominently advertised single packs was significantly higher than in May–July 2012 from August–October 2012 for mainstream and premium brands and from February–April 2013 for value brands. Adjusted average stick prices of lowest-priced packs in August 2013 were $0.02 (95% CI $0.02 to $0.03, p<0.001) higher than in May–July 2012 ($Aug13). A large real increase in stick price was seen in February–April 2013 across all major manufacturers, market segments and pack size categories. Discussion The price of cigarettes most prominently promoted on price boards did not decrease in the months following implementation of Australia's plain packaging legislation. Retail prices continued to increase above the level resulting from automatic indexation of excise/customs duty even at the lowest-priced end of the Australian market.

  14. Measurement of carbon for carbon sequestration and site monitoring

    SciTech Connect

    Martin, Madhavi Z; Wullschleger, Stan D; Garten Jr, Charles T; Palumbo, Anthony Vito

    2007-01-01

    A 2 to 6 degree C increase in global temperature by 2050 has been predicted due to the production of greenhouse gases that is directly linked to human activities. This has encouraged an increase in the international efforts on ways to reduce anthropogenic emissions of greenhouse gases particularly carbon dioxide (CO{sub 2}) as evidence for the link between atmospheric greenhouse gases and climate change has been established. Suggestion that soils and vegetation could be managed to increase their uptake and storage of CO{sub 2}, and thus become 'land carbon sinks' is an incentive for scientists to undertake the ability to measure and quantify the carbon in soils and vegetation to establish base-line quantities present at this time. The verification of the permanence of these carbon sinks has raised some concern regarding the accuracy of their long-term existence. Out of the total percentage of carbon that is potentially sequestered in the terrestrial land mass, only 25% of that is sequestered above ground and almost 75% is hypothesized to be sequestered underground. Soil is composed of solids, liquids, and gases which is similar to a three-phase system. The gross chemical composition of soil organic carbon (SOC) consists of 65% humic substances that are amorphous, dark-colored, complex, polyelectrolyte-like materials that range in molecular weight from a few hundred to several thousand Daltons. The very complex structure of humic and fulvic acid makes it difficult to obtain a spectral signature for all soils in general. The humic acids of different soils have been observed to have polymeric structure, appearing as rings, chains and clusters as seen in electron microscope observations. The humification processes of the soils will decide the sizes of their macromolecules that range from 60-500 angstroms. The percentage of the humus that occurs in the light brown soils is much lower than the humus present in dark brown soils. The humus of forest soils is characterized

  15. Soil gas survey in the Ilan Plain, NE Taiwan and its tectonic implications

    NASA Astrophysics Data System (ADS)

    Chiu, Chun-Ming; Yang, Tsanyao Frank; Lin, Shih-Jung; Fu, Ching-Chou; Walia, Vivek

    2010-05-01

    The Ilan Plain, northeast Taiwan, which is located at the western tip of the Okinawa Trough, undergoes extension and left-lateral slip. There may exist a few suspected faults and fractures underneath the Ilan Plain related to back-arc spreading of the Okinawa Trough. However, theses fault traces have not been well understood due to the thick alluvial sediments. Previous geochemical and geophysical research suggested melting features and igneous intrusive rocks resulting from the opening of the Okinawa Trough. The soil gas method is a useful tool to recognize the fractures and fault zones of which provide the pathways for migration of fluid from deep source toward surface. This study attempts to utilize soil gas method to survey the Ilan Plain. We measured carbon dioxide flux, helium concentration, radon concentration and gas chemical compositions to identify the distribution of faults/fractures and to verify the influence of spreading of the Okinawa Trough to the plain. The results show that soil gas concentrations decrease from east to west, which seems to relate to the progressive westward extension of the Okinawa Trough. Besides, the spatial distribution of anomaly sites corresponds to the specific faults and fractures pointed out by previous studies. Higher soil gas concentration appears in the southern part of the plain, where seismic activities occurred intensively and frequently, implies the existence of fault/fractures and the invasion of magmatic fluids beneath the Ilan Plain. Carbon isotopic compositions of soil carbon dioxide indicate a mixture of organic and magmatic source. Based on the radon and carbon dioxide concentration, we propose two potential gas reservoirs. One is the deep source, showing good correlation with radon and carbon dioxide concentration. The correlation also suggests that carbon dioxide is the carrier gas of radon being transported along the faults and fractures in the Ilan Plain. The other one may be the in-situ radon source

  16. Automated measurement of site-specific N-glycosylation occupancy with SWATH-MS.

    PubMed

    Xu, Ying; Bailey, Ulla-Maja; Schulz, Benjamin L

    2015-07-01

    Asparagine-linked glycosylation is a common post-translational modification of proteins catalyzed by oligosaccharyltransferase that is important in regulating many aspects of protein function. Analysis of protein glycosylation, including glycoproteomic measurement of the site-specific extent of glycosylation, remains challenging. Here, we developed methods combining enzymatic deglycosylation and protease digestion with SWATH-MS to enable automated measurement of site-specific occupancy at many glycosylation sites. Deglycosylation with peptide-endoglycosidase H, leaving a remnant N-acetylglucosamine on asparagines previously carrying high-mannose glycans, followed by trypsin digestion allowed robust automated measurement of occupancy at many sites. Combining deglycosylation with the more general peptide-N-glycosidase F enzyme with AspN protease digest allowed robust automated differentiation of nonglycosylated and deglycosylated forms of a given glycosylation site. Ratiometric analysis of deglycosylated peptides and the total intensities of all peptides from the corresponding proteins allowed relative quantification of site-specific glycosylation occupancy between yeast strains with various isoforms of oligosaccharyltransferase. This approach also allowed robust measurement of glycosylation sites in human salivary glycoproteins. This method for automated relative quantification of site-specific glycosylation occupancy will be a useful tool for research with model systems and clinical samples. PMID:25737293

  17. 78 FR 76391 - Proposed Enhancements to the Motor Carrier Safety Measurement System (SMS) Public Web Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ...: Background On November 5, 2013 (78 FR 66420), FMCSA published a notice in the Federal Register requesting... System (SMS) Public Web Site AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION... Safety Measurement System (SMS) public Web site. On December 6, 2013, Advocates ] for Highway and...

  18. A METHOD FOR THE MEASUREMENT OF SITE-SPECIFIC TAUTOMERIC AND ZWITTERIONIC MICROSPECIES EQUILIBRIUM CONSTANTS

    EPA Science Inventory

    We describe a method for the individual measurement of simultaneously occurring, unimolecular, site-specific "microequilibrium" constants as in, for example, prototropic tautomerism and zwitterionic equilibria. Our method represents an elaboration of that of Nygren et al. (Anal. ...

  19. METHOD FOR THE MEASUREMENT OF SITE-SPECIFIC TAUTOMERIC AND ZWITTERIONIC MICROSPECIES EQUILIBRIUM CONSTANTS

    EPA Science Inventory

    We describe a method for the individual measurement of simultaneously occurring, unimolecular, site-specific “microequilibrium” constants as in, for example, prototropic tautomerism and zwitterionic equilibria. Our method represents an elaboration of that of Nygren et al. (Anal. ...

  20. First measurements of aerosol optical depth and Angstrom exponent number from AERONET's Kuching site

    NASA Astrophysics Data System (ADS)

    Salinas, Santo V.; Chew, Boon N.; Mohamad, M.; Mahmud, M.; Liew, Soo C.

    2013-10-01

    We report our first measurements, over the 2011 dry season period, of aerosol optical depth, Angstrom exponent number and its fine mode counterpart obtained from photometric measurements at AERONET's newest site located at the city of Kuching, Sarawak, East Malaysia. This site was set up as part of the collaborative efforts of the Seven South East Asian Studies (7SEAS) regional aerosol measurements initiative. Located at the converging zone between peninsular Malaysia and the land masses of Sumatra, Borneo, Java and Sulawesi, this site is expected to provide first hand evidence about the physical and optical characteristics of the regional aerosol environment, specially during the biomass burning months. Moreover, given its relative proximity to our Singapore radiation measurement super-site, Kuching is expected to provide further insight on aerosol transport pathways caused by seasonal winds transporting smoke to other parts of the maritime continent and the South Asia region.

  1. Spatial Variability of Surface Irradiance Measurements at the Manus ARM Site

    SciTech Connect

    Riihimaki, Laura D.; Long, Charles N.

    2014-05-16

    The location of the Atmospheric Radiation Measurement (ARM) site on Manus island in Papua New Guinea was chosen because it is very close the coast, in a geographically at, near-sea level area of the island, minimizing the impact of local island effects on the meteorology of the measurements [Ackerman et al., 1999]. In this study, we confirm that the Manus site is in deed less impacted by the island meteorology than slightly inland by comparing over a year of broadband surface irradiance and ceilometer measurements and derived quantities at the standard Manus site and a second location 7 km away as part of the AMIE-Manus campaign. The two sites show statistically similar distributions of irradiance and other derived quantities for all wind directions except easterly winds, when the inland site is down wind from the standard Manus site. Under easterly wind conditions, which occur 17% of the time, there is a higher occurrence of cloudiness at the down wind site likely do to land heating and orographic effects. This increased cloudiness is caused by shallow, broken clouds often with bases around 700 m in altitude. While the central Manus site consistently measures a frequency of occurrence of low clouds (cloud base height less than 1200 m) about 25+4% regardless of wind direction, the AMIE site has higher frequencies of low clouds (38%) when winds are from the east. This increase in low, locally produced clouds causes an additional -20 W/m2 shortwave surface cloud radiative effect at the AMIE site in easterly conditions than in other meteorological conditions that exhibit better agreement between the two sites.

  2. Devil-Streaked Plain

    NASA Technical Reports Server (NTRS)

    2006-01-01

    19 February 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark streaks on a plain south of the giant impact basin, Hellas Planitia. The streaks map the routes traveled by dozens of individual southern spring and early summer dust devils.

    Location near: 68.4oS, 296.1oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  3. Martian lake basins and lacustrine plains

    NASA Astrophysics Data System (ADS)

    de Hon, R. A.

    1992-02-01

    A classification of Martian lake basins based on the location of the basin in respect to water sources is proposed. The classes are type 1: valley-head basins; type 2: intravalley basins; type 3: valley-terminal basins; and type 4: isolated basins. Martian lakes are ephemeral features. Many craters and irregular depressions impounded water only until the basins filled and overflowed. Water escaping by spillover rapidly cut crevasses in the downstream side of basins and drained the ponds. Clastic lacustrine sediments collected in the lakes as flowing water lost velocity and turbulence. Evaporitic deposits may be significant in those basins that were not rapidly drained. Sediments deposited in lake basins form smooth, featureless plains. Lacustrine plains are potentially candidate sites for Mars landings and for the search for evidence of ancient life.

  4. Northern Plains Patterns

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-513, 14 October 2003

    Patterns are common on the northern plains of Mars. Like their terrestrial counterparts in places like Siberia, Alaska, and northern Canada, patterned ground on Mars might be an indicator of the presence of ground ice. Whether it is true that the patterns on Mars are related to ground ice and whether the ice is still present beneath the martian surface are unknown. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture shows an example of patterned ground on the martian northern plains near 72.4oN, 252.6oW. The dark dots and lines are low mounds and chains of mounds. The circular feature near the center of the image is the location of a buried meteor impact crater; its presence today is marked only by the dark boulders on its rim and ejecta blanket that have managed to remain uncovered at the martian surface. The area shown is 3 km (1.9 mi) wide and illuminated by sunlight from the lower left.

  5. Second chance for the plains bison

    USGS Publications Warehouse

    Freese, Curtis H.; Aune, K.; Boyd, D.; Derr, James N.; Forrest, Steven C.; Gates, C. Cormack; Gogan, Peter J.; Grassel, Shaun M.; Halbert, Natalie D.; Kunkel, Kyran; Redford, K.

    2007-01-01

    Before European settlement the plains bison (Bison bison bison) numbered in the tens of millions across most of the temperate region of North America. Within the span of a few decades during the mid- to late-1800s its numbers were reduced by hunting and other factors to a few hundred. The plight of the plains bison led to one of the first major movements in North America to save an endangered species. A few individuals and the American Bison Society rescued the remaining animals. Attempts to hybridize cattle and bison when bison numbers were low resulted in extensive cattle gene introgression in bison. Today, though approximately 500,000 plains bison exist in North America, few are free of cattle gene introgression, 96% are subject to anthropogenic selection for commodity production, and only 4% are in herds managed primarily for conservation purposes. Small herd size, artificial selection, cattle-gene introgression, and other factors threaten the diversity and integrity of the bison genome. In addition, the bison is for all practical purposes ecologically extinct across its former range, with multiple consequences for grassland biodiversity. Urgent measures are needed to conserve the wild bison genome and to restore the ecological role of bison in grassland ecosystems. Socioeconomic trends in the Great Plains, combined with new information about bison conservation needs and new conservation initiatives by both the public and public sectors, have set the stage for significant progress in bison conservation over the next few years.

  6. Recommended Procedures for Measuring Radon Fluxes from Disposal Sites of Residual Radioactive Materials

    SciTech Connect

    Young, J. A.; Thomas, V. W.; Jackson, P. O.

    1983-03-01

    This report recommends instrumentation and methods suitable for measuring radon fluxes emanating from covered disposal sites of residual radioactive materials such as uranium mill tailings. Problems of spatial and temporal variations in radon flux are discussed and the advantages and disadvantages of several instruments are examined. A year-long measurement program and a two month measurement methodology are then presented based on the inherent difficulties of measuring average radon flux over a cover using the recommended instrumentation.

  7. [Biodegradation Coefficients of Typical Pollutants in the Plain Rivers Network].

    PubMed

    Feng, Shuai; Li, Xu-yongl; Deng, Jian-cai

    2016-05-15

    Biodegradation is a significant part of pollutant integrated degradation, the process rate of which is represented by the biodegradation coefficient. To investigate the biodegradation law of typical pollutants in the plain rivers network located in the upstream of the Lake Taihu, experiments were conducted in site in September 2015, one order kinetics model was used to measure the biodegradation coefficients for permanganate index, ammonia, total nitrogen and total phosphorus, and influencing factors of the biodegradation coefficients were also analyzed. The results showed that the biodegradation coefficients for permanganate index, ammonia, total nitrogen and total phosphorus were 0.008 3-0.126 4 d⁻¹, 0.002 1-0.213 8 d⁻¹, 0.002 1-0.090 5 d⁻¹ and 0.011 0- 0.152 8 d⁻¹, respectively. The influencing factors of the biodegradation coefficients for permanganate index were permanganate index and pH; those for ammonia were ammonia concentration and pH; those for total nitrogen were inorganic nitrogen concentration, total dissolved solid concentration and nitrite concentration; and those for total phosphorus were background concentration and pH. The research results were of important guiding significance for pollutants removal and ecological restoration of the plain rivers network located in the unstream of the Lake Taihu. PMID:27506025

  8. DNA binding site characterization by means of Rényi entropy measures on nucleotide transitions.

    PubMed

    Perera, A; Vallverdu, M; Claria, F; Soria, J M; Caminal, P

    2008-06-01

    In this work, parametric information-theory measures for the characterization of binding sites in DNA are extended with the use of transitional probabilities on the sequence. We propose the use of parametric uncertainty measures such as Rényi entropies obtained from the transition probabilities for the study of the binding sites, in addition to nucleotide frequency-based Rényi measures. Results are reported in this work comparing transition frequencies (i.e., dinucleotides) and base frequencies for Shannon and parametric Rényi entropies for a number of binding sites found in E. Coli, lambda and T7 organisms. We observe that the information provided by both approaches is not redundant. Furthermore, under the presence of noise in the binding site matrix we observe overall improved robustness of nucleotide transition-based algorithms when compared with nucleotide frequency-based method. PMID:18556261

  9. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. [Great Plains Corridor

    NASA Technical Reports Server (NTRS)

    Rouse, J. W., Jr. (Principal Investigator); Haas, R. H.; Deering, D. W.; Schell, J. A.

    1973-01-01

    The author has identified the following significant results. The Great Plains Corridor rangeland project utilizes natural vegetation systems as phenological indicators of seasonal development and climatic effects upon regional growth conditions. A method has been developed for quantitative measurement of vegetation conditions over broad regions using ERTS-1 MSS data. Radiance values recorded in ERTS-1 spectral bands 5 and 7, corrected for sun angle, are used to compute a band ratio parameter which is shown to be correlated with green biomass and vegetation moisture content. This report details the progress being made toward determining factors associated with the transformed vegetation index (TVI) and limitations on the method. During the first year of ERTS-1 operation (cycles 1-20), an average of 50% usable ERTS-1 data was obtained for the ten Great Plains Corridor test sites.

  10. Study on method of radiometric calibration for precision measurement of micro size damage site

    NASA Astrophysics Data System (ADS)

    Yuan, Hao-yu; Peng, Zhi-tao; Wang, Wen-fang; Chen, Feng-dong; Tang, Jun; Feng, Bo; Liu, Guo-dong; Liu, Bing-guo

    2014-09-01

    Large aperture optical have high risk of damage when woke on high flux laser. For avoid lethal damages breakdown the expensive large aperture optical, replace the optical that damaged before damage site increase to can't repaired, we need precision measurement of optical surface damage sites size. The size of the optics which be detected is 400μm ×400μm, and the size of CCD array pixel is 4K×4K which we selected, so pixel resolution only 100μm of the Optical Damage Online Inspection system, it hard to measurement damage sites which size less than 100μm. This paper describes a method of radiometric calibration to measure online optical damage site that greater than 50μm by Optical Damage Online Inspection system. Numerical statement gray on CCD of different size damage sites by select a fixed variable of illumination intensity, shutter and numerical aperture of image-forming system. Fitting a curve with suitable function of gray and actual size, precision measure optical damage sites that greater than 50μm by the curve. Test results indicate that, the deviation less than 20% which measure size and actual size .This method settle problems of micro size damage site hard to measure online under the condition of long working distance and low optical resolution. At present, this method have used on Optical Damage Online Inspection system of high flux laser installation, it important significance for observation damage site size grown and accurately appraise the optical damage.

  11. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. [Great Plains Corridor

    NASA Technical Reports Server (NTRS)

    Rouse, J. W., Jr. (Principal Investigator); Haas, R. H.; Deering, D. W.; Schell, J. A.; Harlan, J. C.

    1974-01-01

    The author has identified the following significant results. The Great Plains Corridor rangeland project successfully utilized natural vegetation systems as phenological indicators of seasonal development and climatic effects upon regional growth conditions. An effective method was developed for quantitative measurement of vegetation conditions, including green biomass estimates, recorded in bands 5 and 6, corrected for sun angle, were used to compute a ratio parameter (TV16) which is shown to be highly correlated with green biomass and vegatation moisture content. Analyses results of ERTS-1 digital data and correlated ground data are summarized. Attention was given to analyzing weather influences and test site variables on vegetation condition measurements with ERTS-1 data.

  12. Quails on the High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Southern High Plains of Texas are on the southern end of the North American Great Plains and occupy about 20 million acres. The climate is semi-arid, with long-term (90-year) average annual precipitation at Lubbock of 18.9 inches. Two species of quail, northern bobwhite (Colinus virginianus) and...

  13. In situ radiation measurements at the former Soviet Nuclear Test Site

    SciTech Connect

    Tipton, W.J.

    1996-06-01

    A team from the Remote Sensing Laboratory conducted a series of in situ radiological measurements at the former Soviet Nuclear Test Site near Semipalatinsk, Kazakhstan, during the period of July 21-30, 1994. The survey team measured the terrestrial gamma radiation at selected areas on the site to determine the levels of natural and man-made radiation. The survey was part of a cooperative effort between the United States team and teams of radiation scientists from the National Nuclear Center of the Republic of Kazakhstan and the V.G. Khlopin Radium Institute in St. Petersburg, Russia. In addition to in situ radiation measurements made by the United States and Russian teams, soil samples were collected and analyzed by the Russian and Kazakhstani teams. All teams conducted their measurements at ten locations within the test site. The United States team also made a number of additional measurements to locate and verify the positions of three potential fallout plumes containing plutonium contamination from nonnuclear tests. In addition, the United States team made several measurements in Kurchatov City, the housing area used by personnel and their families who work(ed) at the test sites. Comparisons between the United States and Russian in situ measurements and the soil sample results are presented as well as comparisons with a Soviet aerial survey conducted in 1990-1991. The agreement between the different types of measurements made by all three countries was quite good.

  14. Quantifying the contribution of long-range transport to particulate matter (PM) mass loadings at a suburban site in the north-western Indo-Gangetic Plain (NW-IGP)

    NASA Astrophysics Data System (ADS)

    Pawar, H.; Garg, S.; Kumar, V.; Sachan, H.; Arya, R.; Sarkar, C.; Chandra, B. P.; Sinha, B.

    2015-08-01

    Many sites in the densely populated Indo-Gangetic Plain (IGP) frequently exceed the national ambient air quality standard (NAAQS) of 100 μg m-3 for 24 h average PM10 and 60 μg m-3 for 24 h average PM2.5 mass loadings, exposing residents to hazardous levels of particulate matter (PM) throughout the year. We quantify the contribution of long-range transport to elevated PM levels and the number of exceedance events through a back-trajectory climatology analysis of air masses arriving at the IISER Mohali Atmospheric Chemistry facility (30.667° N, 76.729° E; 310 m a.m.s.l.) for the period August 2011-June 2013. Air masses arriving at the receptor site were classified into six clusters, which represent synoptic-scale air-mass transport patterns. Long-range transport from the west leads to significant enhancements in the average fine- and coarse-mode PM mass loadings during all seasons. The contribution of long-range transport from the west and south-west (source regions: Arabia, Thar Desert, Middle East and Afghanistan) to coarse-mode PM varied between 9 and 57 % of the total PM10-2.5 mass. Local pollution episodes (wind speed < 1 m s-1) contributed to enhanced PM2.5 mass loadings during both the winter and summer seasons and to enhanced coarse-mode PM only during the winter season. South-easterly air masses (source region: eastern IGP) were associated with significantly lower fine- and coarse-mode PM mass loadings during all seasons. The fraction of days in each season during which the PM mass loadings exceeded the national ambient air quality standard was controlled by long-range transport to a much lesser degree. For the local cluster, which represents regional air masses (source region: NW-IGP), the fraction of days during which the national ambient air quality standard (NAAQS) of 60 μg m-3 for 24 h average PM2.5 was exceeded varied between 36 % of the days associated with this synoptic-scale transport during the monsoon, and 95 % during post-monsoon and winter

  15. PM over summertime India: Sources and trends investigated using long term measurements and multi-receptor site back trajectory analysis

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod; Sarkar, Chinmoy; Sachan, Himanshu; Kumar, Devender; Sinha, Baerbel

    2013-04-01

    We apply multi-receptor site residence-time weighted concentration back trajectory analysis to a ten year data set (1991-2003) of PM10 and TSP measurement data from four Indian megacities Delhi, Mumbai, Kolkata and Chennai. The dataset was sourced from the published and peer reviewed work of Gupta and Kumar (2006). Sources and trends of PM10 and TSP during the pre-monsoon season (March-June) were investigated. Residence-time weighted concentration maps were derived using 72 hour HYSPLIT back trajectory ensemble calculations. Trajectory runs were started 100 m AGL and the observed PM monthly averages were attributed to all trajectory runs in a month and each trajectory of the ensemble runs with equal probability. For investigating trends the dataset was further subdivided into two groups of four year durations each (1992-1995 and 2000-2003). We found a linear correlation with a slope of 1.0 (R2=0.9) between estimated seasonal average TSP (2000-2003) using our approach and the measured seasonal averages (2006-2007) for Kanpur, Ahmedabad, Pune and Bangalore. A linear fit between predicted and measured PM10 concentration for 19 sites with PM10 observations of at least one seasonal average between 1999-2009 shows a slope of 1.4 (R2=0.4). For the observation period 2000-2003, the Thar Desert and Taklimakan Desert emerged as largest sources for both PM10 (>180 μg/m3 and >200 μg/m3 respectively) and TSP (>650 μg/m3 and >725 μg/m3 respectively). In-situ observation at Bikaner (central Thar Desert) and in Jhunjhunu (semi-arid site at the border of the Thar Desert) indicate that both TSP and PM10 inside the desert source region are underpredicted by a factor of 10 compared to in-situ observations while for the semi arid area bordering the desert PM10 and TSP are underpredicted by a factor of 5 and 3 respectively. This indicates that strong sources are underpredicted by a receptor site centred approach. The entire North-Western Indo-Gangetic Basin (NW-IGB), where crop

  16. Petrography of Rocks Examined by the Mars Exploration Rover Spirit within the Gusev Plains and Columbia Hills, Mars

    NASA Astrophysics Data System (ADS)

    Crumpler, L. S.; McSween, H.

    2005-12-01

    Petrographic and megascopic textures of rocks encountered along the traverse of the Spirit Mars Exploration Rover within the Gusev plains (landing site to hills) and within the Columbia Hills (West Spur to lower Husband Hill), together with chemical data based on in situ measurements with the Athena spectrometers, provide information about the mechanisms and conditions of rock emplacement. Primary igneous and low-grade alteration textures are identified within the plains whereas clastic and alteration textures dominate within the Columbia Hills. Plains rocks include primary igneous petrographic textures common to xenocrystic and phyric rocks, megascopic textures similar to that known to occur within differing vertical positions of terrestrial basaltic lavas, and uniform chemical compositions typical of batch melted mantle rocks. Apparent vesicularity (ratio of summed vesicle volume from area over rock unit volume) of rocks in the plains lava surface varied with host rock dimension and angularity. Vesicle distributions in the smaller clasts in the Gusev plains tend to be exponential, typical of upper sections, whereas, dis-tributions in larger, more angular Gusev plains blocks are characterized by hybrid distri-butions, typical of flow interiors. Since small vesicular clasts are a small fraction of the observed clast population, it is inferred that the upper vesicular zones within the Gusev plains lava flows were rela-tively thin (low vesicularity at shallow depths) compared with that predicted for lava flows on Earth. A thin upper vesicular zone in the Gusev plains lavas could be indirect evidence for atmospheric pressure close to current values at the time of Gusev plains basalt emplacement during the Hesperian. Rocks with volcaniclastic or impactite textures occur in outcrops visited within the Columbia Hills. Megascopic and microscopic (Microscopic Imager) textures were examined along apparent lamination planes at several outcrops of moderately consolidated

  17. Ambient measurements of selected VOCs in populated and remote sites of the Sahara desert

    NASA Astrophysics Data System (ADS)

    Yassaa, Noureddine; Ciccioli, Paolo; Brancaleoni, Enzo; Frattoni, Massimiliano; Meklati, Brahim Youcef

    2011-04-01

    For the first time, ambient levels of benzene, toluene, carbon tetrachloride and selected oxygenated organic compounds have been measured in both populated and remote sites in the Sahara desert. The levels of these species were generally found to be high in the industrialized regions of the North Sahara, progressively decreasing with latitude so that lowest levels were reached in remote desert sites close to the Equator. The emissions from traffic, and the oil production and its transformation, together with the solvent use were the main anthropogenic sources determining the levels of aromatic, aliphatic and chlorinated organic compounds in desert sites near two Algerian cities. Substantial levels of acetone and some semi-volatile compounds, emitted or formed by photochemical reactions, were also found. Although some of these compounds were below the detection limits in the most remote sites of the Sahara desert located in Mauritania and Niger, measurable levels of benzene and toluene were still found together with significant amounts of acetone. Data seem to indicate that forest fires occurring in the tropical regions of the North African continent were the most likely sources for the background levels measured during most of our measurements. The data presented here did not differ too much from those measured in the most isolated sites of the northern hemisphere.

  18. Snake River Plain FORGE Well Data for USGS-142

    DOE Data Explorer

    Robert Podgorney

    2015-11-23

    Well data for the USGS-142 well located in eastern Snake River Plain, Idaho. This data collection includes lithology reports, borehole logs, and photos of rhyolite core samples. This collection of data has been assembled as part of the site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. They were assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL).

  19. Interannual variation of cloud optical properties at ACRF Manus and Nauru sites from MFRSR measurements

    NASA Astrophysics Data System (ADS)

    Yin, Bangsheng; Li, Siwei; Li, Rui; Min, Qilong; Duan, Minzheng

    2015-03-01

    The long-term measurements of Multi-Filter Rotating Shadowband Radiometers and other instruments at two Atmospheric Radiation Measurements Climate Research Facility sites of Manus and Nauru have been processed to develop the climatology of cloud properties in the tropical warm pool region. Due to their unique geolocations and associated large-scale circulation patterns, cloud properties at these two sites exhibit distinctive characteristics. At the Nauru site, cloud properties are statistically significantly correlated with Pacific Decadal Oscillation index; the monthly anomaly values of cloud fraction, overcast cloud occurrence and optical depth decrease with Southern Oscillation Index (SOI). At the Manus site, monthly anomaly values of cloud fraction, overcast cloud occurrence and optical depth, to some extent, are bifurcately correlated with SOI, depending on the phase of El Niño/Southern Oscillation. The correlation of SOI and the MFRSR retrieved cloud optical properties can be explained by the drifting of tropical convection center in the equatorial area.

  20. Department of Energy Plutonium ES&H Vulnerability Assessment Savannah River Site interim compensatory measures

    SciTech Connect

    Bickford, W.E.

    1994-09-15

    The Savannah River Site (SRS) has recently completed a self-assessment of potential vulnerabilities associated with plutonium and other transuranic materials stored at the site. An independent Working Group Assessment Team (WGAT) appointed by DOE/ES&H also performed an independent assessment, and reviewed and validated the site self-assessment. The purpose of this report is to provide a status of interim compensatory measures at SRS to address hazards in advance of any corrective actions. ES&H has requested this status for all vulnerabilities ranked medium or higher with respect to potential consequences to workers, environment, and the public.

  1. Multi-scale soil moisture measurements at the Gourma meso-scale site in Mali

    NASA Astrophysics Data System (ADS)

    de Rosnay, P.; Gruhier, C.; Timouk, F.; Baup, F.; Mougin, E.; Hiernaux, P.; Kergoat, L.; LeDantec, V.

    2009-08-01

    SummaryThis paper presents the ground soil moisture measurements performed over the so-called Gourma meso-scale site in Mali, Sahel, in the context of the African Monsoon Multidisciplinary Analysis (AMMA) project. The Gourma meso-scale soil moisture network is part of a complete land surface processes observing and modelling strategy and is associated to vegetation and meteorological field measurements as well as soil moisture remote sensing. It is spanning 2° in latitude between 15°N and 17°N. In 2007, it includes 10 soil moisture stations, of which three stations also have meteorological and flux measurements. A relevant spatial sampling strategy is proposed to characterise soil moisture at different scales including local, kilometer, super-site and meso-scales. In addition to the local stations network, transect measurements were performed on different coarse textured (sand to sandy-loam) sites, using portable impedance probes. They indicate mean value and standard deviation (STD) of the surface soil moisture (SSM) at the kilometer scale. This paper presents the data set and illustrates soil moisture spatial and temporal features over the Sahelian Gourma meso-scale site for 2005-2006. Up-scaling relation of SSM is investigated from (i) local to kilometer scale and (ii) from local to the super site scale. It is shown to be stable in space and time (2005-2006) for different coarse textured sites. For the Agoufou local site, the up-scaling relation captures SSM dynamics at the kilometer scale with a 0.9% accuracy in volumetric soil moisture. At the multi-site scale, an unique up-scaling relation is shown to be able to represent kilometer SSM for the coarse textured soils of the meso-scale site with an accuracy of 2.2% (volumetric). Spatial stability of the ground soil moisture stations network is also addressed by the Mean Relative Difference (MRD) approach for the Agoufou super site where five soil moisture stations are available (about 25 km×25 km). This

  2. Downhole temperature measurements at NanTroSEIZE input Sites and their implications

    NASA Astrophysics Data System (ADS)

    Henry, P.; Kanamatsu, T.; Marcaillou, B.; Matsubayashi, O.; LEE, Y.; Underwood, M.; Moe, K.; IODP Expedition 333 Scientists

    2011-12-01

    Short heat flow probe data available in the Nankai Trough display a wide range of variation from 80 to 150 mW/m2. Accurate determination of heat flow at depths was needed to better constrain the seaward boundary condition in thermal models of subduction, and as an input parameter for models of diagenesis and fluid-rock interaction in the sediment and oceanic crust. One objective of NanTroSEIZE expedition 333 was to perform bottom-hole measurements of temperature with APCT-3 at two sites located on the seaward side of Nankai Trough. Site C0011 is located on the flank of the Kashinosaki Knoll where sediment thickness is ≈1 km and Site C0012 is located near its summit where sediment thickness is 520 m. These two sites had been partly cored during NanTroSEIZE Exp. 322, which revealed contrasting trends in pore fluid chemistry with depth. Chlorinity decreasing with depth at Site C0011 was interpreted as a consequence of smectite-illite reaction. Chorinity increasing with depth at Site C0012 could result from alteration of volcanic material in the sediment and from diffusional exchange with the basaltic basement. Exp. 333 documented a major change of physical properties associated with a sharp decrease in dissolved silica concentration at ≈250 mbsf at Site C0011 and tentatively identified a similar transition between 60 and 80 mbsf at Site C0012. From an analogy with results obtained after ODP Leg 190 (Spinelli et al., 2007), it can be proposed that the process responsible for an anomalously high porosity of the sediment above this boundary is cementation by opal-CT and opal dissolution with precipitation of quartz below the boundary. Heat flow measured during Expedition 333 is 90 mW/m2 at Site C0011 and 140 mW/m2 at Site C0012. The measurement at site C0011 is consistent with the heat flow expected from conductive cooling of a 20 Ma lithosphere after correction for the thermal impact of the sedimentation. At site C0012 the measurement is 30% higher than expected

  3. DNA binding sites characterization by means of Rényi entropy measures on nucleotide transitions.

    PubMed

    Perera, Alexandre; Vallverdu, Montserrat; Claria, Francesc; Soria, José Manuel; Caminal, Pere

    2006-01-01

    In this work, parametric information-theory measures for the characterization of binding sites in DNA are extended with the use of transitional probabilities on the sequence. We propose the use of parametric uncertainty measure such as Renyi entropies obtained from the transition probabilities for the study of the binding sites, in addition to nucleotide frequency based Renyi measures. Results are reported in this manuscript comparing transition frequencies (i.e. dinucelotides) and base frequencies for Shannon and parametric Renyi for a number of binding sites found in E. Coli, lambda and T7 organisms. We observe that, for the evaluated datasets, the information provided by both approaches is not redundant, as they evolve differently under increasing Renyi orders. PMID:17946719

  4. Novel active comb-shaped dry electrode for EEG measurement in hairy site.

    PubMed

    Huang, Yan-Jun; Wu, Chung-Yu; Wong, Alice May-Kuen; Lin, Bor-Shyh

    2015-01-01

    Electroencephalography (EEG) is an important biopotential, and has been widely applied in clinical applications. The conventional EEG electrode with conductive gels is usually used for measuring EEG. However, the use of conductive gel also encounters with the issue of drying and hardening. Recently, many dry EEG electrodes based on different conductive materials and techniques were proposed to solve the previous issue. However, measuring EEG in the hairy site is still a difficult challenge. In this study, a novel active comb-shaped dry electrode was proposed to measure EEG in hairy site. Different form other comb-shaped or spike-shaped dry electrodes, it can provide more excellent performance of avoiding the signal attenuation, phase distortion, and the reduction of common mode rejection ratio. Even under walking motion, it can effectively acquire EEG in hairy site. Finally, the experiments for alpha rhythm and steady-state visually evoked potential were also tested to validate the proposed electrode. PMID:25137719

  5. Status of corrective measures technology for shallow land burial at arid sites

    NASA Astrophysics Data System (ADS)

    Abeele, W. V.; Nyhan, J. W.; Drennon, B. J.; Lopez, E. A.; Herrera, W. J.; Langhorst, G. J.

    The field research program involving corrective measure technologies for arid shallow land burial sites is described. Soil erosion and infiltration of water into a simulated trench cap with various surface treatments was measured and compared with similar data from agricultural systems across the United States. Report of field testing of biointrusion barriers continues at a closed-out waste disposal site at Los Alamos. Final results of an experiment designed to determine the effects of subsidence on the performance of a cobble-gravel biobarrier system are reported, as well as the results of hydrologic modeling activities involving biobarrier systems.

  6. A mobile detector for measurements of the atmospheric muon flux in underground sites

    NASA Astrophysics Data System (ADS)

    Mitrica, Bogdan; Margineanu, Romul; Stoica, Sabin; Petcu, Mirel; Brancus, Iliana; Jipa, Alexandru; Lazanu, Ionel; Sima, Octavian; Haungs, Andreas; Rebel, Heinigerd; Petre, Marian; Toma, Gabriel; Saftoiu, Alexandra; Stanca, Denis; Apostu, Ana; Gomoiu, Claudia

    2011-10-01

    Muons comprise an important contribution of the natural radiation dose in air (approx. 30 nSv/h of a total dose rate of 65-130 nSv/h), as well as in underground sites even when the flux and relative contribution are significantly reduced. The flux of muons observed underground can be used as an estimator for the depth in mwe (meter water equivalent) of the underground site. The water equivalent depth is important information to devise physics experiments feasible for a specific site. A mobile detector for performing measurements of the muon flux was developed in IFIN-HH, Bucharest. Consisting of two scintillator plates (approx. 0.9 m2) which measure in coincidence, the detector is installed on a van which facilitates measurements at different locations at the surface or underground. The detector was used to determine muon fluxes at different sites in Romania. In particular, data were taken and the values of meter water equivalents were assessed for several locations at the salt mine in Slanic-Prahova, Romania. The measurements have been performed in two different galleries of the Slanic mine at different depths. In order to test the stability of the method, also measurements of the muon flux at the surface at different elevations were performed. The results were compared with predictions of Monte-Carlo simulations using the CORSIKA and MUSIC codes.

  7. The Sensitivity of Genetic Connectivity Measures to Unsampled and Under-Sampled Sites

    PubMed Central

    Koen, Erin L.; Bowman, Jeff; Garroway, Colin J.; Wilson, Paul J.

    2013-01-01

    Landscape genetic analyses assess the influence of landscape structure on genetic differentiation. It is rarely possible to collect genetic samples from all individuals on the landscape and thus it is important to assess the sensitivity of landscape genetic analyses to the effects of unsampled and under-sampled sites. Network-based measures of genetic distance, such as conditional genetic distance (cGD), might be particularly sensitive to sampling intensity because pairwise estimates are relative to the entire network. We addressed this question by subsampling microsatellite data from two empirical datasets. We found that pairwise estimates of cGD were sensitive to both unsampled and under-sampled sites, and FST, Dest, and deucl were more sensitive to under-sampled than unsampled sites. We found that the rank order of cGD was also sensitive to unsampled and under-sampled sites, but not enough to affect the outcome of Mantel tests for isolation by distance. We simulated isolation by resistance and found that although cGD estimates were sensitive to unsampled sites, by increasing the number of sites sampled the accuracy of conclusions drawn from landscape genetic analyses increased, a feature that is not possible with pairwise estimates of genetic differentiation such as FST, Dest, and deucl. We suggest that users of cGD assess the sensitivity of this measure by subsampling within their own network and use caution when making extrapolations beyond their sampled network. PMID:23409155

  8. Historical and current environmental influences on an endemic great plains fish

    USGS Publications Warehouse

    Fischer, John R.; Paukert, C.P.

    2008-01-01

    Native fishes of the Great Plains are at risk of decline due to disturbances to physical habitat caused by changes in land and water use, as well as shifts in species assemblages driven by the invasion of introduced species with the loss of natives. We used historical and current fish assemblage data in conjunction with current habitat information to assess these influences on an endemic Great Plains stream fish, the plains topminnow (Fundulus sciadicus). Of the 31 sites where the plains topminnow occurred historically (1939-1940), it was found in only seven of those sites in 2003-2005. Our results demonstrate a shift in fish assemblage over time that coincides with the loss of plains topminnow. Changes in fish assemblages were characterized by increases in occurrence of exotic, invasive and generalist species with declines in occurrences of native fishes. An information theoretic approach was used to evaluate candidate models of current fish assemblage and physical/chemical habitat on the presence of the plains topminnow. Candidate models that included both instream habitat (e.g., vegetation coverage, undercut banks) and the native fish species assemblage are important to predicting presence of the plains topminnow within its historic range. Conservation of Great Plains fishes including the plains topminnow will need a combination of habitat protection and enhancement.

  9. Prairie grassland bidirectional reflectances measured by different instruments at the FIFE site

    NASA Technical Reports Server (NTRS)

    Deering, D. W.; Middleton, E. M.; Irons, J. R.; Blad, B. L.; Walter-Shea, E. A.; Hays, C. J.; Walthall, C.; Eck, T. F.; Ahmad, S. P.; Banerjee, B. P.

    1992-01-01

    Land surface reflectance measurements were obtained during the First ISLSCP Field Experiment (FIFE) field campaigns utilizing a variety of airborne and ground-based spectral radiometers. To study the validity of the assumption that the values obtained by the several different teams and instruments were interchangeable, the surface radiation measurement teams converged on a common site for one day during the fifth intensive field campaign in 1989. The bidirectional reflectances from the various instruments were basically found to be comparable.

  10. Continuous Profiles of Cloud Microphysical Properties for the Fixed Atmospheric Radiation Measurement Sites

    SciTech Connect

    Jensen, M; Jensen, K

    2006-06-01

    The Atmospheric Radiation Measurement (ARM) Program defined a specific metric for the third quarter of Fiscal Year 2006 to produce and refine a one-year continuous time series of cloud microphysical properties based on cloud radar measurements for each of the fixed ARM sites. To accomplish this metric, we used a combination of recently developed algorithms that interpret radar reflectivity profiles, lidar backscatter profiles, and microwave brightness temperatures into the context of the underlying cloud microphysical structure.

  11. A comparison of measured and modeled turbulent fluxes over snow based on site characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sensible and latent heat and mass flux represent a significant component of the snowcover energy and mass balance in mountain environments. Though these fluxes are computed in energy balance snow models, limited measurements exist for comparison or validation in complex, mountainous sites. Sensibl...

  12. Measurements of particulate matter concentrations at a landfill site (Crete, Greece)

    SciTech Connect

    Chalvatzaki, E.; Kopanakis, I.; Kontaksakis, M.; Glytsos, T.; Kalogerakis, N.; Lazaridis, M.

    2010-11-15

    Large amounts of solid waste are disposed in landfills and the potential of particulate matter (PM) emissions into the atmosphere is significant. Particulate matter emissions in landfills are the result of resuspension from the disposed waste and other activities such as mechanical recycling and composting, waste unloading and sorting, the process of coating residues and waste transport by trucks. Measurements of ambient levels of inhalable particulate matter (PM{sub 10}) were performed in a landfill site located at Chania (Crete, Greece). Elevated PM{sub 10} concentrations were measured in the landfill site during several landfill operations. It was observed that the meteorological conditions (mainly wind velocity and temperature) influence considerably the PM{sub 10} concentrations. Comparison between the PM{sub 10} concentrations at the landfill and at a PM{sub 10} background site indicates the influence of the landfill activities on local concentrations at the landfill. No correlation was observed between the measurements at the landfill and the background sites. Finally, specific preventing measures are proposed to control the PM concentrations in landfills.

  13. IN SITU APPARENT CONDUCTIVITY MEASUREMENTS AND MICROBIAL POPULATION DISTRIBUTION AT A HYDROCARBON CONTAMINATED SITE

    EPA Science Inventory

    We investigated the bulk electrical conductivity and microbial population distribution in sediments at a site contaminated with light non-aqueous phase liquid (LNAPL). The bulk conductivity was measured using in situ vertical resistivity probes, while the most probable number met...

  14. SITE-SPECIFIC PROTOCOL FOR MEASURING SOIL RADON POTENTIALS FOR FLORIDA HOUSES

    EPA Science Inventory

    The report describes a protocol for site-specific measurement of radon potentials for Florida houses that is consistent with existing residential radon protection maps. The protocol gives further guidance on the possible need for radon-protective house construction features. In a...

  15. Plain packaging of cigarettes: do we have sufficient evidence?

    PubMed Central

    Smith, Collin N; Kraemer, John D; Johnson, Andrea C; Mays, Darren

    2015-01-01

    Tobacco industry marketing is a primary factor influencing cigarette smoking behavior and the cigarette pack has become an important marketing vehicle for tobacco companies. Standardized “plain” cigarette packaging is advocated as a public health policy to prevent and reduce morbidity and mortality caused by smoking by reducing youth smoking initiation and promoting cessation among smokers. Plain packaging was implemented in Australia in December 2012, and several other countries are considering doing so, but each faces foreseeable legal resistance from opponents to such measures. Tobacco companies have challenged these public health policies, citing international trade agreements and intellectual property laws. Decision-making in these court cases will hinge in part on whether the evidence indicates the public health benefits of plain packaging outweigh any potential harm to tobacco manufacturers’ interests. We reviewed the available evidence in support of plain packaging, finding evidence from observational, experimental, and population-based studies. Results indicate that plain packaging can reduce positive perceptions of smoking and dissuade tobacco use. Governments deciding to implement plain cigarette packaging measures can rely on this evidence to help make a strong case that plain packaging plays an important role in the context of comprehensive smoking prevention efforts. PMID:25897269

  16. Improved measurement of aluminum in irradiated fuel reprocessed at the Savannah River Site

    SciTech Connect

    Maxwell, S.L. III

    1991-12-31

    At the Savannah River Site (SRS), irradiated fuel from research reactor operators or their contract fuel service companies is reprocessed in the H-Canyon Separations Facility. Final processing costs are based on analytical measurements of the amount of total metal dissolved. Shipper estimates for uranium and uranium-235 and measured values at SRS have historically agreed very well. There have occasionally been significant differences between shipper estimates for aluminum and the aluminum content determined at SRS. To minimize analytical error that might contribute to poor shipper-receiver agreement for the reprocessing of off-site fuel, a new analytical method to measure aluminum was developed by SRS Analytical Laboratories at the Central Laboratory Facilities. An EDTA (ethylenediaminetetraacetic acid) titration method, subject to dissolver matrix interferences, was previously used at SRS to measure aluminum in H-Canyon dissolver during the reprocessing of offsite fuel. The new method combines rapid ion exchange technology with direct current argon plasma spectrometry to enhance the reliability of aluminum measurements for off-site fuel. The technique rapidly removes spectral interferences such as uranium and significantly lowers gamma levels due to fission products. Aluminium is separated quantitatively by using an anion exchange technique that employs oxalate complexing, small particle size resin and rapid flow rates. The new method, which has eliminated matrix interference problems with these analyses and improved the quality of aluminum measurements, has improved the overall agreement between shipper-receiver values for offsite fuel processed SRS.

  17. Improved measurement of aluminum in irradiated fuel reprocessed at the Savannah River Site

    SciTech Connect

    Maxwell, S.L. III.

    1991-01-01

    At the Savannah River Site (SRS), irradiated fuel from research reactor operators or their contract fuel service companies is reprocessed in the H-Canyon Separations Facility. Final processing costs are based on analytical measurements of the amount of total metal dissolved. Shipper estimates for uranium and uranium-235 and measured values at SRS have historically agreed very well. There have occasionally been significant differences between shipper estimates for aluminum and the aluminum content determined at SRS. To minimize analytical error that might contribute to poor shipper-receiver agreement for the reprocessing of off-site fuel, a new analytical method to measure aluminum was developed by SRS Analytical Laboratories at the Central Laboratory Facilities. An EDTA (ethylenediaminetetraacetic acid) titration method, subject to dissolver matrix interferences, was previously used at SRS to measure aluminum in H-Canyon dissolver during the reprocessing of offsite fuel. The new method combines rapid ion exchange technology with direct current argon plasma spectrometry to enhance the reliability of aluminum measurements for off-site fuel. The technique rapidly removes spectral interferences such as uranium and significantly lowers gamma levels due to fission products. Aluminium is separated quantitatively by using an anion exchange technique that employs oxalate complexing, small particle size resin and rapid flow rates. The new method, which has eliminated matrix interference problems with these analyses and improved the quality of aluminum measurements, has improved the overall agreement between shipper-receiver values for offsite fuel processed SRS.

  18. Comparison of land surface temperature measurements at NOAA CRN sites with airborne and satellite observations

    NASA Astrophysics Data System (ADS)

    Krishnan, P.; Kochendorfer, J.; Baker, B.; Dumas, E.; Meyers, T. P.; Guillevic, P.; Corda, S.; Muratore, J.; Martos, B.

    2011-12-01

    Land surface temperature (LST) is a key variable for studying global or regional land surface processes and the energy and water vapor exchange at the biosphere-atmosphere interface. In an effort to better quantify the spatial variability and overall representativeness of single-point surface temperature measurement being recorded at NOAA's Climate Reference Network (CRN) sites and to improve the accuracy of satellite land surface temperature measurements, airborne flight campaigns were conducted over two vegetated sites in Tennessee, USA during 2010 to 2011. During the campaign, multiple measurements of land surface temperature were made using Infra-Red temperature sensors at micrometeorological tower sites and onboard an instrumented Piper Navajo airborne research aircraft. In addition to this, coincident Moderate Resolution Imaging Spectroradiometer (MODIS) LST observations, onboard the NASA Terra and Aqua Earth Observing System satellites were used. The aircraft-based and satellite based land surface temperature measurements were compared to in situ, tower based LST measurements. Preliminary results show good agreement between in situ, aircraft and satellite measurements.

  19. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Measurement and errors of crater statistics

    NASA Astrophysics Data System (ADS)

    Leake, M. A.

    1982-09-01

    Planetary imagery techniques, errors in measurement or degradation assignment, and statistical formulas are presented with respect to cratering data. Base map photograph preparation, measurement of crater diameters and sampled area, and instruments used are discussed. Possible uncertainties, such as Sun angle, scale factors, degradation classification, and biases in crater recognition are discussed. The mathematical formulas used in crater statistics are presented.

  20. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Measurement and errors of crater statistics. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    Planetary imagery techniques, errors in measurement or degradation assignment, and statistical formulas are presented with respect to cratering data. Base map photograph preparation, measurement of crater diameters and sampled area, and instruments used are discussed. Possible uncertainties, such as Sun angle, scale factors, degradation classification, and biases in crater recognition are discussed. The mathematical formulas used in crater statistics are presented.

  1. Characterization of Lunar Farside Plains

    NASA Technical Reports Server (NTRS)

    Mest, S.C.; Garry, W. B.; Ostrach, L. R.; Han, S.-C.; Staid, M. I.

    2016-01-01

    The Moon contains broad and isolated areas of plains that have been recognized as mare, cryptomare, impact ejecta, or impact melt. These deposits have been extensively studied on the lunar nearside by remote sensing via telescopes and numerous spacecraft, and in some cases, in situ robotically and by astronauts. Only recently have the deposits on the entire farside been able to be observed and evaluated to the same degree. There are spatially extensive plains deposits located throughout the lunar farside highlands whose formation has remained ambiguous. Many of the plains deposits in the lunar farside highlands display higher albedos than mare materials. Some deposits are located in close proximity to relatively younger impact craters suggesting that plains could be composed of cryptomare or ejecta materials. Some deposits are within the range in which ejecta from large basin-forming events (e.g., SPA and Orientale) likely distributed large amounts of ejecta across the surface. Here we are conducting a series of observations and models in order to resolve the nature and origin of lunar farside plains deposits. Understanding these plains is important for understanding the volcanic and impact histories of the lunar farside, and is important for future mapping and thermal modeling studies.

  2. Long Term Agroecosystem Research in the southern plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Southern Plains (SP) site of the Long Term Agroecosystem Research (LTAR) network is headquartered at USDA-ARS’s Grazinglands Research Laboratory (GRL) in El Reno, Oklahoma. The GRL was established in 1948. A long-term watershed and climate research program was established in the Little Washita ...

  3. Hydrologic impacts of strip tillage for a Coastal Plain soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strip till is a growing practice among many Coastal Plain cotton growers which can lead to reduced surface runoff and reduced transport of sediment and agrichemicals. This research examines nine years of rainfall-runoff data from a paired conventional till / strip till research site. Annual water ...

  4. The dawn of the Southern Plains Range Research Station

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On 31 October 1913, U.S. Senator Thomas P. Gore announced that Woodward would be the site of the government experiment farm in western Oklahoma. This marked the beginning of a century of USDA agricultural research on the southern Great Plains. A 160 acre parcel of land located southwest of the cit...

  5. Application of passive sampling for measuring dissolved concentrations of organic contaminants in the water column at three marine superfund sites

    EPA Science Inventory

    At contaminated sediment sites, including U.S. EPA Superfund sites, it is critical to measure water column concentrations of freely dissolved contaminants to understand the complete exposure of aquatic organisms to hydrophobic organic contaminants (HOCs). However, historically a...

  6. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Areal measurement of Mercury's first quadrant. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    Various linear and areal measurements of Mercury's first quadrant which were used in geological map preparation, map analysis, and statistical surveys of crater densities are discussed. Accuracy of each method rests on the determination of the scale of the photograph, i.e., the conversion factor between distances on the planet (in km) and distances on the photograph (in cm). Measurement errors arise due to uncertainty in Mercury's radius, poor resolution, poor coverage, high Sun angle illumination in the limb regions, planetary curvature, limited precision in measuring instruments, and inaccuracies in the printed map scales. Estimates are given for these errors.

  7. Automated flow for site definition and CD measurement with a SEM for use in mask production

    NASA Astrophysics Data System (ADS)

    Rotsch, Christian; Haffner, Henning; Ruebekohl, Christian; Buechner, Bettine

    2002-12-01

    The continuous tightening of CD and registration specifications demands most advanced metrology equipment and highly sophisticated logistics and measurement strategies. Not only the smallness of structures but also the increasing number of measurement sites is a challenge. Until recently, CD measurements in mask mass production were done at a handful of different positions using mainly optical microscopy. The measurement locations were usually picked randomly according to the visual image and some general rules that were agreed upon between lithographers and the mask shop. In this paper we describe a flow for SEM based CD measurement in automated production. A new type of instances is introduced solely to provide a simple and effective way for transferring the desired measurement locations from design to a mask shop. Therefore, we use the new CATS features that allow highly automated and flexible off-line preparation of measurement jobs. On the KLA-Tencor 8250-R CD-SEM we furthermore utilize its capability of converting CATS output files into fully functional SEM measurement jobs with large numbers of sites and multiple steps of pattern recognition. A comparison of results obtained with the CATS jobs with those of native SEM jobs proves the consistency of data.

  8. Radiation measurements of excavated items at a radioactive-waste burial site

    NASA Astrophysics Data System (ADS)

    Stromswold, D. C.; Alvarez, J. L.; Ludowise, J. D.

    1995-12-01

    Radiation measurements on items excavated from a radioactive-waste burial ground were part of a field test of excavation techniques for the cleanup of subsurface sites. The waste resulted from plutonium production for nuclear weapons at Hanford, WA. The radiation measurements investigated techniques for classifying bulk waste for placement into a permanent disposal facility. Hand-held γ-ray survey instruments measured exposure rates (mR/h) from contaminated dirt and radioactive objects as they were removed by heavy excavation equipment. Gamma-ray detectors mounted on the excavation equipment provided additional data that were transmitted by radio. Exposure rates from identifiable objects (e.g. specific reactor components) were compared with expected exposure rates calculated from site-disposal records and computer modeling. Selected objects were subjected to additional on-site measurements using a high-purity germanium detector. Detected nuclides included 60Co, 137Cs, 152,154Eu, and 108mAg. A large-volume neutron detector checked for possible transuranic nuclides. Alpha and β spectrometry also were tested. but their utility for this application was limited due to the short range of the particles and the difficulty of maintaining a repeatable measurement geometry in the field.

  9. Filling the gaps in meteorological continuous data measured at FLUXNET sites with ERA-Interim reanalysis

    SciTech Connect

    Vuichard, N.

    2015-07-13

    In this study, exchanges of carbon, water and energy between the land surface and the atmosphere are monitored by eddy covariance technique at the ecosystem level. Currently, the FLUXNET database contains more than 500 registered sites, and up to 250 of them share data (free fair-use data set). Many modelling groups use the FLUXNET data set for evaluating ecosystem models' performance, but this requires uninterrupted time series for the meteorological variables used as input. Because original in situ data often contain gaps, from very short (few hours) up to relatively long (some months) ones, we develop a new and robust method for filling the gaps in meteorological data measured at site level. Our approach has the benefit of making use of continuous data available globally (ERA-Interim) and a high temporal resolution spanning from 1989 to today. These data are, however, not measured at site level, and for this reason a method to downscale and correct the ERA-Interim data is needed. We apply this method to the level 4 data (L4) from the La Thuile collection, freely available after registration under a fair-use policy. The performance of the developed method varies across sites and is also function of the meteorological variable. On average over all sites, applying the bias correction method to the ERA-Interim data reduced the mismatch with the in situ data by 10 to 36 %, depending on the meteorological variable considered. In comparison to the internal variability of the in situ data, the root mean square error (RMSE) between the in situ data and the unbiased ERA-I (ERA-Interim) data remains relatively large (on average over all sites, from 27 to 76 % of the standard deviation of in situ data, depending on the meteorological variable considered). The performance of the method remains poor for the wind speed field, in particular regarding its capacity to conserve a standard deviation similar to the one measured at FLUXNET stations.

  10. [Field measurement of Gobi surface emissivity spectrum at Dunhuang calibration site of China].

    PubMed

    Zhang, Yong; Li, Yuan; Rong, Zhi-guo; Hu, Xiu-qing; Zhang, Li-jun; Liu, Jing-jing

    2009-05-01

    Gobi surface emissivity spectrum of Dunhuang radiometric calibration site of China is one of the key factors to calibrate the thermal infrared remote sensors using land surface. Based on the iterative spectrally smooth temperature/emissivity separation (ISSTES)algorithm, Dunhuang Gobi surface emissivity spectrum was measured using BOMEM MR154 Fourier transform spectroradiometer and Infrared Golden Board. Emissivity spectrum data were obtained at different time and locations. These spectrum data were convolved with the channel response function of CE312 radiometer and compared with the channel emissivity measured by the same instrument. The results showed that the difference between these two kinds of channel emissivity was within 0.012 and exhibited a good consistency. With these measured emissivity spectra, all of the mainstream thermal infrared remote sensors can be calibrated using Dunhuang Gobi surface at radiometric calibration site of China. PMID:19650456

  11. Performance evaluation of quantitative adiabatic (13)C NMR pulse sequences for site-specific isotopic measurements.

    PubMed

    Thibaudeau, Christophe; Remaud, Gérald; Silvestre, Virginie; Akoka, Serge

    2010-07-01

    (2)H/(1)H and (13)C/(12)C site-specific isotope ratios determined by NMR spectroscopy may be used to discriminate pharmaceutically active ingredients based on the synthetic process used in production. Extending the Site-specific Natural Isotope Fractionation NMR (SNIF-NMR) method to (13)C is highly beneficial for complex organic molecules when measurements of (2)H/(1)H ratios lead to poorly defined molecular fingerprints. The current NMR methodology to determine (13)C/(12)C site-specific isotope ratios suffers from poor sensitivity and long experimental times. In this work, several NMR pulse sequences based on polarization transfer were evaluated and optimized to measure precise quantitative (13)C NMR spectra within a short time. Adiabatic 180 degrees (1)H and (13)C pulses were incorporated into distortionless enhancement by polarization transfer (DEPT) and refocused insensitive nuclei enhanced by polarization transfer (INEPT) to minimize the influence of 180 degrees pulse imperfections and of off-resonance effects on the precision of the measured (13)C peak areas. The adiabatic DEPT sequence was applied to draw up a precise site-specific (13)C isotope profile of ibuprofen. A modified heteronuclear cross-polarization (HCP) experiment featuring (1)H and (13)C spin-locks with adiabatic 180 degrees pulses is also introduced. This sequence enables efficient magnetization transfer across a wide (13)C frequency range although not enough for an application in quantitative (13)C isotopic analysis. PMID:20527737

  12. Raman Lidar Water Vapor Measurements at the DOE SGP CART Site

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Smith, David E. (Technical Monitor)

    2001-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) was deployed to the Department of Energy's (DOE) Cloud and Radiation Testbed site in northern Oklahoma September - December, 2000 for two DOE sponsored field campaigns: 1) the Water Vapor Intensive Operations Experiment 2000 and 2) the Atmospheric Radiations Measurement First International Satellite Cloud Climatology Experiment Experiment (AFWEX). WvIOP2000 focussed on water vapor measurements in the lower troposphere while AFWEX focussed on upper tropospheric water vapor. For the first time ever, four water vapor lidars were operated simultaneously: one airborne and three ground-based systems. Intercomparisons of these measurements and others will be presented at the meeting.

  13. Standard Measurement and Verification Plan for Lighting Retrofit Projects for Buildings and Building Sites

    SciTech Connect

    Richman, Eric E.

    2012-10-31

    This document provides a framework for standard measurement and verification (M&V) of lighting retrofit and replacement projects. It was developed to provide site owners, contractors, and other involved organizations with the essential elements of a robust M&V plan for lighting projects. It includes details on all aspects of effectively measuring light levels of existing and post-retrofit projects, conducting power measurement, and developing cost-effectiveness analysis. This framework M&V plan also enables consistent comparison among similar lighting projects, and may be used to develop M&V plans for non--lighting-technology retrofits and new installations.

  14. CUES - A Study Site for Measuring Snowpack Energy Balance in the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Bair, Edward; Dozier, Jeff; Davis, Robert; Colee, Michael; Claffey, Keran

    2015-09-01

    Accurate measurement and modeling of the snowpack energy balance are critical to understanding the terrestrial water cycle. Most of the water resources in the western US come from snowmelt, yet statistical runoff models that rely on the historical record are becoming less reliable because of a changing climate. For physically based snow melt models that do not depend on past conditions, ground based measurements of the energy balance components are imperative for verification. For this purpose, the US Army Corps of Engineers Cold Regions Research and Engineering Laboratory (CRREL) and the University of California, Santa Barbara (UCSB) established the “CUES” snow study site (CRREL/UCSB Energy Site, http://www.snow.ucsb.edu/) at 2940 m elevation on Mammoth Mountain, California. We describe CUES, provide an overview of research, share our experience with scientific measurements, and encourage future collaborative research. Snow measurements began near the current CUES site for ski area operations in 1969. In the 1970s, researchers began taking scientific measurements. Today, CUES benefits from year round gondola access and a fiber optic internet connection. Data loggers and computers automatically record and store over 100 measurements from more than 50 instruments each minute. CUES is one of only five high altitude mountain sites in the Western US where a full suite of energy balance components are measured. In addition to measuring snow on the ground at multiple locations, extensive radiometric and meteorological measurements are recorded. Some of the more novel measurements include scans by an automated terrestrial LiDAR, passive and active microwave imaging of snow stratigraphy, microscopic imaging of snow grains, snowflake imaging with a multi-angle camera, fluxes from upward and downward looking radiometers, snow water equivalent from different types of snow pillows, snowmelt from lysimeters, and concentration of impurities in the snowpack. We give an

  15. Establishing the Antarctic Dome C community reference standard site towards consistent measurements from Earth observation satellites

    USGS Publications Warehouse

    Cao, C.; Uprety, S.; Xiong, J.; Wu, A.; Jing, P.; Smith, D.; Chander, G.; Fox, N.; Ungar, S.

    2010-01-01

    Establishing satellite measurement consistency by using common desert sites has become increasingly more important not only for climate change detection but also for quantitative retrievals of geophysical variables in satellite applications. Using the Antarctic Dome C site (75°06′S, 123°21′E, elevation 3.2 km) for satellite radiometric calibration and validation (Cal/Val) is of great interest owing to its unique location and characteristics. The site surface is covered with uniformly distributed permanent snow, and the atmospheric effect is small and relatively constant. In this study, the long-term stability and spectral characteristics of this site are evaluated using well-calibrated satellite instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Preliminary results show that despite a few limitations, the site in general is stable in the long term, the bidirectional reflectance distribution function (BRDF) model works well, and the site is most suitable for the Cal/Val of reflective solar bands in the 0.4–1.0 µm range. It was found that for the past decade, the reflectivity change of the site is within 1.35% at 0.64 µm, and interannual variability is within 2%. The site is able to resolve calibration biases between instruments at a level of ~1%. The usefulness of the site is demonstrated by comparing observations from seven satellite instruments involving four space agencies, including OrbView-2–SeaWiFS, Terra–Aqua MODIS, Earth Observing 1 (EO-1) – Hyperion, Meteorological Operational satellite programme (MetOp) – Advanced Very High Resolution Radiometer (AVHRR), Envisat Medium Resolution Imaging Spectrometer (MERIS) – dvanced Along-Track Scanning Radiometer (AATSR), and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). Dome C is a promising candidate site for climate quality calibration of satellite radiometers towards more consistent satellite measurements, as part

  16. Real-time Measurements of Biological Particles at Several Continental Sites using the WIBS-4A

    NASA Astrophysics Data System (ADS)

    McMeeking, G. R.; Kok, G. L.; Petters, M. D.; Wright, T.; Hader, J.; Mccubbin, I. B.; Hallar, A. G.; Twohy, C. H.; Toohey, D. W.; DeMott, P. J.; McCluskey, C.; Baumgardner, D.

    2013-12-01

    Biological particles (bacteria, fungi/fungal spores, viruses, algae and fragments of biological material) may play a significant role in modifying cloud properties by acting as ice nuclei and thus have an indirect effect on climate forcing. Little is known, however, regarding the abundance and distribution of biological particles and their importance to cloud microphysics in different environments. On-line, continuous measurement systems offer the potential to measure biological systems at high time resolution and sensitivity, providing greater insight into their distribution in the atmosphere, dispersal mechanisms and potential soures. The WIBS-4A (Wideband Integrated Bioaerosol Sensor) detects fluorescent biological material in real-time associated with individual particles. It measures five properties: a) optical size via light scattering, b) fluorescent emissions in the wavelength range 310-400 following excitation by 280 nm light, c) fluorescent emissions in the wavelength range 420-650 following excitation by 280 nm light, d) fluorescent emissions in the wavelength range 420-650 following excitation by 370 nm light, and e) particle asymmetry factor based on intensities of forward scattered light onto a 4-element detector. Together, these properties aid the classification of sampled particles that contain biofluorophores such as tryptophan or NAD(P)H, which can be found in biological particles. Here we present results from a series of laboratory, ground- and aircraft-based measurements of biological particles using the WIBS-4A. The studies include airborne measurements over the United States, ground-based measurements at a coastal site, an urban site in the southeast US and a high alpine site, and laboratory measurements of a variety of biological and non-biological particles. Our analysis focused on both the characterization of the instrument response as well as an evaluation of its suitability for performing ambient measurements and potential artifacts. We

  17. Representativeness of the ground observational sites and up-scaling of the point soil moisture measurements

    NASA Astrophysics Data System (ADS)

    Chen, Jinlei; Wen, Jun; Tian, Hui

    2016-02-01

    Soil moisture plays an increasingly important role in the cycle of energy-water exchange, climate change, and hydrologic processes. It is usually measured at a point site, but regional soil moisture is essential for validating remote sensing products and numerical modeling results. In the study reported in this paper, the minimal number of required sites (NRS) for establishing a research observational network and the representative single sites for regional soil moisture estimation are discussed using the soil moisture data derived from the "Maqu soil moisture observational network" (101°40‧-102°40‧E, 33°30‧-35°45‧N), which is supported by Chinese Academy of Science. Furthermore, the best up-scaling method suitable for this network has been studied by evaluating four commonly used up-scaling methods. The results showed that (1) Under a given accuracy requirement R ⩾ 0.99, RMSD ⩽ 0.02 m3/m3, NRS at both 5 and 10 cm depth is 10. (2) Representativeness of the sites has been validated by time stability analysis (TSA), time sliding correlation analysis (TSCA) and optimal combination of sites (OCS). NST01 is the most representative site at 5 cm depth for the first two methods; NST07 and NST02 are the most representative sites at 10 cm depth. The optimum combination sites at 5 cm depth are NST01, NST02, and NST07. NST05, NST08, and NST13 are the best group at 10 cm depth. (3) Linear fitting, compared with other three methods, is the best up-scaling method for all types of representative sites obtained above, and linear regression equations between a single site and regional soil moisture are established hereafter. "Single site" obtained by OCS has the greatest up-scaling effect, and TSCA takes the second place. (4) Linear fitting equations show good practicability in estimating the variation of regional soil moisture from July 3, 2013 to July 3, 2014, when a large number of observed soil moisture data are lost.

  18. Dynamics of playa lakes in the Texas High Plains

    NASA Technical Reports Server (NTRS)

    Reeves, C. C., Jr. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. Regional viewing of ERTS-1 imagery around the test sites shows that storm paths can be accurately traced and a count made of the number of intermittent lake basins filled by the storm. Therefore, during wet years ERTS-type imagery can be used to conduct a reliable count of the tens of thousands of natural lake basins on the southern High Plains which contain water. This type of regional overview of water filled basins in the normally arid southern High Plains is illustrated by bands 6 and 7, ERTS E-1078-16524.

  19. Site evaluation study for the Indian National Large Solar Telescope using microthermal measurements

    NASA Astrophysics Data System (ADS)

    Dhananjay, K.

    2014-01-01

    A microthermal seeing measurement device has been developed in-house to measure the temperature structure function DT(r, h) and the air temperature Tair(h). A pressure sensor, located adjacent to it, measures the average barometric pressure P(h). From the data measured, the temperature structure coefficient C_T^2(r, h) and the refractive index structure constant C_N^2(h) are computed for the five equidistant microthermal seeing layers in the 3-15 m range in the surface layers. A statistical analysis is performed on the local coherence length ro(loc)(h1, h2). Corresponding values of the atmospheric seeing ɛ(loc)(h1, h2) for all 10 microthermal seeing slabs is also computed and plotted, and the data are logged in real time. Because the characterization of the three sites is under way and the best site for the National Large Solar Telescope facility is yet to be determined, in this paper I discuss the preliminary results obtained from the Hanle site. A summary of the first results is as follows: ɛ(loc) (3 m, 6 m) = 0.663 arcsec, ɛ(loc) (6 m, 9 m) = 0.465 arcsec, ɛ(loc) (9 m, 12 m) = 0.363 arcsec and ɛ(loc) (12 m, 15 m) = 0.315 arcsec.

  20. Comparing measured and modelled soil carbon: which site-specific variables are linked to high stability?

    NASA Astrophysics Data System (ADS)

    Robertson, Andy; Schipanski, Meagan; Ma, Liwang; Ahuja, Lajpat; McNamara, Niall; Smith, Pete; Davies, Christian

    2016-04-01

    Changes in soil carbon (C) stocks have been studied in depth over the last two decades, as net greenhouse gas (GHG) sinks are highlighted to be a partial solution to the causes of climate change. However, the stability of this soil C is often overlooked when measuring these changes. Ultimately a net sequestration in soils is far less beneficial if labile C is replacing more stable forms. To date there is no accepted framework for measuring soil C stability, and as a result there is considerable uncertainty associated with the simulated impacts of land management and land use change when using process-based systems models. However, a recent effort to equate measurable soil C fractions to model pools has generated data that help to assess the impacts of land management, and can ultimately help to reduce the uncertainty of model predictions. Our research compiles this existing fractionation data along with site metadata to create a simplistic statistical model able to quantify the relative importance of different site-specific conditions. Data was mined from 23 published studies and combined with original data to generate a dataset of 100+ land use change sites across Europe. For sites to be included they required soil C fractions isolated using the Zimmermann et al. (2007) method and specific site metadata (mean annual precipitation, MAP; mean annual temperature, MAT; soil pH; land use; altitude). Of the sites, 75% were used to develop a generalized linear mixed model (GLMM) to create coefficients where site parameters can be used to predict influence on the measured soil fraction C stocks. The remaining 25% of sites were used to evaluate uncertainty and validate this empirical model. Further, four of the aforementioned sites were used to simulate soil C dynamics using the RothC, DayCent and RZWQM2 models. A sensitivity analysis (4096 model runs for each variable applying Latin hypercube random sampling techniques) was then used to observe whether these models place

  1. Analysis of Hydrogen Tunneling in an Enzyme Active Site using von Neumann Measurements

    PubMed Central

    Sumner, Isaiah; Iyengar, Srinivasan S.

    2010-01-01

    We build on our earlier quantum wavepacket study of hydrogen transfer in the biological enzyme, soybean lipoxygenase-1, by using von Neumann quantum measurement theory to gain qualitative insights into the transfer event. We treat the enzyme active site as a measurement device which acts on the tunneling hydrogen nucleus via the potential it exerts at each configuration. A series of changing active site geometries during the tunneling process effects a sequential projection of the initial, reactant state onto the final, product state. We study this process using several different kinds of von Neumann measurements and show how a discrete sequence of such measurements not only progressively increases the projection of the hydrogen nuclear wavepacket onto the product side but also favors proton over deuteron transfer. Several qualitative features of the hydrogen tunneling problem found in wavepacket dynamics studies are also recovered here. These include the shift in the “transition state” towards the reactant as a result of nuclear quantization, greater participation of excited states in the case of deuterium, and presence of critical points along the reaction coordinate that facilitate hydrogen and deuterium transfer and coincide with surface crossings. To further “tailor” the dynamics, we construct a perturbation to the sequence of measurements, that is a perturbation to the dynamical sequence of active site geometry evolution, which leads us to insight on the existence of sensitive regions of the reaction profile where subtle changes to the dynamics of the active site can have an effect on the hydrogen and deuterium transfer process. PMID:22933858

  2. Measurements of integrated water vapor and cloud liquid water from microwave radiometers at the DOE ARM Cloud and Radiation Testbed in the U.S. Southern Great Plains

    SciTech Connect

    Liljegren, J.C.; Lesht, B.M.

    1996-06-01

    The operation and calibration of the ARM microwave radiometers is summarized. Measured radiometric brightness temperatures are compared with calculations based on the model using co-located radiosondes. Comparisons of perceptible water vapor retrieved from the radiometer with integrated soundings and co-located GPS retrievals are presented. The three water vapor sensing systems are shown to agree to within about 1 mm.

  3. Interannual Variability in Net Ecosystem Exchange in United States Great Plains Grasslands

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Wylie, Bruce; Ji, Lei; Gilmanov, Tagir; Howard, Danny

    2010-05-01

    The grasslands in the United States Great Plains occupy about 1.5 million km2 and span considerable moisture and temperature gradients. The grasslands are characterized by different photosynthetic pathways, from C3 dominance in the north to C4 dominance in the south. The contributions of grasslands to local and regional carbon budgets remain uncertain due to the lack of carbon flux data for these extensive and diverse grassland ecosystems and local variances in climate variability, land use changes, and varying land management practices. There are limited studies on the seasonal, spatial, and interannual variabilities in carbon exchange as well as responses to climatic change across the Great Plains. Our objective was to quantify how the grassland ecosystems will respond to climate under a variety of environmental conditions. Net ecosystem exchange (NEE) was measured at 15 flux towers distributed throughout the Great Plains. These sites represent the wide spatial, ecological, and climatological ranges of grasslands found in this region. We developed a remote sensing-based piecewise regression (PWR) model to estimate grassland carbon fluxes from 2000 to 2008 using flux-tower data and remotely sensed data (250-m resolution) input at 7-day intervals. The model integrated MODIS-derived vegetation indices, weather data, and phenological parameters with the observed NEE data. The correlation coefficient (r) for the independent tests between tower-measured NEE and PWR-estimated NEE were 0.61 to 0.98 for the individual tower sites withheld and 0.81 to 0.92 for the individual years withheld. We mapped 7-day interval NEE at 250-m resolution for the years 2000 to 2008 and evaluated the interannual variability of NEE and its response to climatic variation. NEE varied in space and time across the 9 years (from 0.3 in 2002 to 47.7 g C • m-2 • yr-1 in 2005) with an average annual NEE of 24 ± 14 g C • m-2 • yr-1 and a cumulative flux of 214 g C • m-2. On average, the

  4. Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design.

    PubMed Central

    Liang, J.; Edelsbrunner, H.; Woodward, C.

    1998-01-01

    Identification and size characterization of surface pockets and occluded cavities are initial steps in protein structure-based ligand design. A new program, CAST, for automatically locating and measuring protein pockets and cavities, is based on precise computational geometry methods, including alpha shape and discrete flow theory. CAST identifies and measures pockets and pocket mouth openings, as well as cavities. The program specifies the atoms lining pockets, pocket openings, and buried cavities; the volume and area of pockets and cavities; and the area and circumference of mouth openings. CAST analysis of over 100 proteins has been carried out; proteins examined include a set of 51 monomeric enzyme-ligand structures, several elastase-inhibitor complexes, the FK506 binding protein, 30 HIV-1 protease-inhibitor complexes, and a number of small and large protein inhibitors. Medium-sized globular proteins typically have 10-20 pockets/cavities. Most often, binding sites are pockets with 1-2 mouth openings; much less frequently they are cavities. Ligand binding pockets vary widely in size, most within the range 10(2)-10(3)A3. Statistical analysis reveals that the number of pockets and cavities is correlated with protein size, but there is no correlation between the size of the protein and the size of binding sites. Most frequently, the largest pocket/cavity is the active site, but there are a number of instructive exceptions. Ligand volume and binding site volume are somewhat correlated when binding site volume is < or =700 A3, but the ligand seldom occupies the entire site. Auxiliary pockets near the active site have been suggested as additional binding surface for designed ligands (Mattos C et al., 1994, Nat Struct Biol 1:55-58). Analysis of elastase-inhibitor complexes suggests that CAST can identify ancillary pockets suitable for recruitment in ligand design strategies. Analysis of the FK506 binding protein, and of compounds developed in SAR by NMR (Shuker SB et

  5. Measuring and modeling near surface reflected and emitted radiation fluxes at the FIFE site

    NASA Technical Reports Server (NTRS)

    Blad, Blaine L.; Norman, John M.; Walter-Shea, Elizabeth; Starks, Patrick; Vining, Roel; Hays, Cynthia

    1988-01-01

    Research was conducted during the four Intensive Field Campaigns (IFC) of the FIFE project in 1987. The research was done on a tall grass prairie with specific measurement sites on and near the Konza Prairie in Kansas. Measurements were made to help meet the following objectives: determination of the variability in reflected and emitted radiation fluxes in selected spectral wavebands as a function of topography and vegetative community; development of techniques to account for slope and sun angle effects on the radiation fluxes; estimation of shortwave albedo and net radiation fluxes using the reflected and emitted spectral measurements described; estimation of leaf and canopy spectral properties from calculated normalized differences coupled with off-nadir measurements using inversion techniques; estimation of plant water status at several locations with indices utilizing plant temperature and other environmental parameters; and determination of relationships between estimated plant water status and measured soil water content. Results are discussed.

  6. Hydrological indices for eco-hydrology of intermittent alluvial plains rivers.

    NASA Astrophysics Data System (ADS)

    Schmidt, J.; Arscott, D.; Larned, S.

    2009-04-01

    Alluvial plains river systems are frequently under pressures from land use changes, stream bed modifications, and hydrological alterations (e.g., for irrigation schemes). Flow variations in alluvial plain rivers can be influenced by variations in groundwater surface-water exchange, changes of channel planform, climatic variations, and abstractions. Hence they often show complex spatial and temporal patterns of river flows. Many plants and animals that inhabit alluvial plains rivers are sensitive to natural and anthropogenetic alterations to catchment hydrology and geomorphology. In this paper we present a model that accounts for spatial and temporal flow variations along intermittent alluvial plains rivers, and we describe a suite of hydrological indices that can be used to test for flow-ecology relationships along the river. The natural hydro-geomorphic complexity along intermittent alluvial plains rivers poses a challenge for developing relationships between rainfall recharge and river flows, predicting effects of water resource developments, and for understanding hydrologic effects on ecological systems. Hydrological models that can reconstruct historic flows and/or predict future flows are required for assessing potential hydrological impacts from, for example land-use or climate change. If strong flow-ecology relationships exist, these models can be used to infer potential ecological effects related to the impact in question. The model we developed, the Empirical Longitudinal Flow MODel (ELFMOD), reconstructs longitudinal-temporal flow patterns along river sections using measured flows at sites along the section and other flow-state predictor variables (e.g., groundwater levels, rainfall). Spatio-temporal flow matrices simulated by ELFMOD can be processed into hydrological indices of flow states and flow changes in space and time. For example, for each simulated point in space and time the distance to a wetting or drying front along river can be calculated, or

  7. Evaluation of the H+/site ratio of mitochondrial electron transport from rate measurements.

    PubMed

    Reynafarje, B; Brand, M D; Lehninger, A L

    1976-12-10

    The mitochondrial H+/site ratio (i.e. the number of protons ejected per pair of electrons traversing each of the energy-conserving sites of the respiratory chain) has been evaluated employing a new experimental approach. In this method the rates of oxygen uptake and H+ ejection were measured simultaneously during the initial period of respiration evoked by addition of succinate to aerobic, rotenone-inhibited, de-energized mitochondria. Either K+, in the presence of valinomycin, or Ca2+, was used as mobile cation to dissipate the membrane potential and allow quantitative H+ ejection into the medium. The H+/site ratio observed with this method in the absence of precautions to inhibit the uptake of phosphate was close to 2.0, in agreement with values obtained using the oxygen pulse technique (Mitchell, P. and Moyle, J. (1967) Biochem. J. 105, 1147-1162). However, when phosphate movements were eliminated either by inhibition of the phosphate-hydroxide antiporter with N-ethylamaleimide or by depleting the mitochondria of their endogenous phosphate content, H+/site ratios close to 4.0 were consistently observed. This ratio was independent of the concentration of succinate, of mitochondrial protein, of pH between 6 and 8, and of ionic composition of the medium, provided that sufficient K+ (plus valinomycin) or Ca2+ were present. Specific inhibitors of the hydrolysis of endogenous ATP or transport of other ions (adenine nucleotides, tricarboxylates, HCO3-, etc.) were shown not to affect the observed H+/site ratio. Furthermore, the replacement of succinate by alpha-glycerol phosphate, a substrate which is oxidized on the outer surface of the inner membrane and thus does not need to enter the matrix, gave the same H+/site ratios as did succinate. It is concluded that the H+/site ratio of mitochondrial electron transport, when phosphate movements are eliminated, may be close to 4.0. PMID:12164

  8. Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska (NSA) Site

    DOE Data Explorer

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. The North Slope of Alaska (NSA) site is a permanent site providing data about cloud and radiative processes at high latitudes. These data are being used to refine models and parameterizations as they relate to the Arctic. Centered at Barrow and extending to the south (to the vicinity of Atqasuk), west (to the vicinity of Wainwright), and east (towards Oliktok), the NSA site has become a focal point for atmospheric and ecological research activity on the North Slope. Approximately 300,000 NSA data sets from 1993 to the present reside in the ARM Archive at http://www.archive.arm.gov/. Users will need to register for a password, but all files are then free for viewing or downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  9. Real time black carbon measurements in West and Central Africa urban sites

    NASA Astrophysics Data System (ADS)

    Doumbia, El Hadji Thierno; Liousse, Catherine; Galy-Lacaux, Corinne; Ndiaye, Seydi Ababacar; Diop, Babacar; Ouafo, Marie; Assamoi, Eric Michel; Gardrat, Eric; Castera, Pierre; Rosset, Robert; Akpo, Aristide; Sigha, Luc

    2012-07-01

    Real time measurements of Black Carbon (BC) in PM2.5 aerosols were performed during AMMA and POLCA programs, between 2005 and 2010 in Cotonou (Benin), Dakar (Senegal), Bamako (Mali), and Yaounde (Cameroon). Indeed, BC was chosen as a metric because of its interest as an urban pollutant. The instrumented sites are representative of the traffic source. At Dakar, BC concentrations are high from November to April (13,000 ± 3500 ng m-3) and lower from May to September (8000 ± 3200 ng m-3). In dry season (November-April), high BC concentrations occurred as a result of northeasterly long-range transport of polluted air masses over West Africa, in addition to local emissions. However, during wet season (May-September) reduced traffic levels, school vacations and wet deposition processes contribute to lower BC concentration levels. Measured diurnal BC peak concentrations, at all sites, mainly occur during morning and evening rush-hour periods, indicating the paramount role of traffic. Highest values are observed between 5-9 a.m. and from 5 p.m. to 9 p.m. depending on the site, while lowest are occurred at night time and middle afternoon when activities of the population are reduced. BC source apportionment from absorption measurements also confirmed the relative importance of traffic (88%) versus biomass burning (12%). Also, BC measurements were functions of days of the week, with highest values occurring on Fridays and lowest ones on Sundays. Spatial variations associated to BC levels are very different from one site to another, revealing different types of sources with strong variations at the regional scale. It appears that mean BC concentrations in Dakar are lower by a factor of two, compared to those observed in Bamako, but remain higher than in some other West African sites (e.g. Cotonou, Yaounde). Overall, BC concentrations in our different sites are comparable to reported European and Asian megacity levels. Finally, using measured BC/PM2.5 ratios, we have

  10. Site-directed spin labeling of proteins for distance measurements in vitro and in cells.

    PubMed

    Roser, P; Schmidt, M J; Drescher, M; Summerer, D

    2016-06-15

    Site-directed spin labeling (SDSL) in combination with electron paramagnetic resonance (EPR) spectroscopy allows studying the structure, dynamics, and interactions of proteins via distance measurements in the nanometer range. We here give an overview of available spin labels, the strategies for their introduction into proteins, and the associated potentials for protein structural studies in vitro and in the context of living cells. PMID:27181459

  11. Filling the gaps in meteorological continuous data measured at FLUXNET sites with ERA-Interim reanalysis

    NASA Astrophysics Data System (ADS)

    Vuichard, N.; Papale, D.

    2015-07-01

    Exchanges of carbon, water and energy between the land surface and the atmosphere are monitored by eddy covariance technique at the ecosystem level. Currently, the FLUXNET database contains more than 500 registered sites, and up to 250 of them share data (free fair-use data set). Many modelling groups use the FLUXNET data set for evaluating ecosystem models' performance, but this requires uninterrupted time series for the meteorological variables used as input. Because original in situ data often contain gaps, from very short (few hours) up to relatively long (some months) ones, we develop a new and robust method for filling the gaps in meteorological data measured at site level. Our approach has the benefit of making use of continuous data available globally (ERA-Interim) and a high temporal resolution spanning from 1989 to today. These data are, however, not measured at site level, and for this reason a method to downscale and correct the ERA-Interim data is needed. We apply this method to the level 4 data (L4) from the La Thuile collection, freely available after registration under a fair-use policy. The performance of the developed method varies across sites and is also function of the meteorological variable. On average over all sites, applying the bias correction method to the ERA-Interim data reduced the mismatch with the in situ data by 10 to 36 %, depending on the meteorological variable considered. In comparison to the internal variability of the in situ data, the root mean square error (RMSE) between the in situ data and the unbiased ERA-I (ERA-Interim) data remains relatively large (on average over all sites, from 27 to 76 % of the standard deviation of in situ data, depending on the meteorological variable considered). The performance of the method remains poor for the wind speed field, in particular regarding its capacity to conserve a standard deviation similar to the one measured at FLUXNET stations. The ERA-Interim reanalysis data de-biased at

  12. Filling the gaps in meteorological continuous data measured at FLUXNET sites with ERA-interim reanalysis

    NASA Astrophysics Data System (ADS)

    Vuichard, N.; Papale, D.

    2015-01-01

    Exchanges of carbon, water and energy between the land surface and the atmosphere are monitored by eddy covariance technique at the ecosystem level. Currently, the FLUXNET database contains more than 500 sites registered and up to 250 of them sharing data (Free Fair Use dataset). Many modelling groups use the FLUXNET dataset for evaluating ecosystem model's performances but it requires uninterrupted time series for the meteorological variables used as input. Because original in-situ data often contain gaps, from very short (few hours) up to relatively long (some months), we develop a new and robust method for filling the gaps in meteorological data measured at site level. Our approach has the benefit of making use of continuous data available globally (ERA-interim) and high temporal resolution spanning from 1989 to today. These data are however not measured at site level and for this reason a method to downscale and correct the ERA-interim data is needed. We apply this method on the level 4 data (L4) from the LaThuile collection, freely available after registration under a Fair-Use policy. The performances of the developed method vary across sites and are also function of the meteorological variable. On average overall sites, the bias correction leads to cancel from 10 to 36% of the initial mismatch between in-situ and ERA-interim data, depending of the meteorological variable considered. In comparison to the internal variability of the in-situ data, the root mean square error (RMSE) between the in-situ data and the un-biased ERA-I data remains relatively large (on average overall sites, from 27 to 76% of the standard deviation of in-situ data, depending of the meteorological variable considered). The performance of the method remains low for the wind speed field, in particular regarding its capacity to conserve a standard deviation similar to the one measured at FLUXNET stations. The ERA-interim reanalysis data debiased at FLUXNET sites can be downloaded from the

  13. Aerosol measurements at a high-elevation site: composition, size, and cloud condensation nuclei activity

    SciTech Connect

    Friedman, Beth; Zelenyuk, Alla; Beranek, Josef; Kulkarni, Gourihar R.; Pekour, Mikhail S.; Hallar, Anna G.; McCubbin, Ian; Thornton, Joel A.; Cziczo, D. J.

    2013-12-09

    We present measurements of CCN concentrations and associated aerosol composition and size properties at a high-elevation research site in March 2011. CCN closure and aerosol hygroscopicity were assessed using simplified assumptions of bulk aerosol properties as well as a new method utilizing single particle composition and size to assess the importance of particle mixing state in CCN activation. Free troposphere analysis found no significant difference between the CCN activity of free tropospheric aerosol and boundary layer aerosol at this location. Closure results indicate that using only size and number information leads to adequate prediction, in the majority of cases within 50%, of CCN concentrations, while incorporating the hygroscopicity parameters of the individual aerosol components measured by single particle mass spectrometry adds to the agreement, in most cases within 20%, between predicted and measured CCN concentrations. For high-elevation continental sites, with largely aged aerosol and low amounts of local area emissions, a lack of chemical knowledge and hygroscopicity may not hinder models in predicting CCN concentrations. At sites influenced by fresh emissions or more heterogeneous particle types, single particle composition information may be more useful in predicting CCN concentrations and understanding the importance of particle mixing state on CCN activation.

  14. A site-level comparison of lysimeter and eddy-covariance flux measurements of evapotranspiration

    NASA Astrophysics Data System (ADS)

    Hirschi, Martin; Michel, Dominik; Lehner, Irene; Seneviratne, Sonia I.

    2015-04-01

    Accurate measurements of evapotranspiration are required for many meteorological, climatological, ecological and hydrological research applications and developments. Here we examine and compare two widely used methods to measure evapotranspiration at the site level: lysimeter-based measurements (EL) and eddy-covariance (EC) flux measurements (EEC). The analyses are based on parallel measurements at the research catchment Rietholzbach in northeastern Switzerland and focuses on the period June 2009 to December 2013. The measurements are compared on the yearly, monthly, daily, and hourly time scales, and with respect to an over 35-year lysimeter evapotranspiration time series. Overall, the two measurement techniques agree well, especially on the annual time scale. They also agree well with an independent catchment water-balance estimate of evapotranspiration. The good agreement of these independent methods emphasizes the representativeness of the lysimeter and EC measurements for the entire catchment despite their comparatively small source areas. The study also discusses different possibilities to close the energy balance of the EC flux measurements. From the comparison of EL and EEC, the closure of the energy balance according to the Bowen ratio is found to be reasonable.

  15. Pulsed EPR Distance Measurements in Soluble Proteins by Site-directed Spin-labeling (SDSL)

    PubMed Central

    de Vera, Ian Mitchelle S.; Blackburn, Mandy E.; Galiano, Luis; Fanucci, Gail E.

    2015-01-01

    The resurgence of pulsed electron paramagnetic resonance (EPR) in structural biology centers on recent improvements in distance measurements using the double electron-electron resonance (DEER) technique. This unit focuses on EPR-based distance measurements by site-directed spin-labeling (SDSL) of engineered cysteine residues in soluble proteins, with HIV-1 protease used as a model. To elucidate conformational changes in proteins, experimental protocols were optimized and existing data analysis programs were employed to derive distance distribution profiles. Experimental considerations, sample preparation and error analysis for artifact suppression are also outlined here. PMID:24510645

  16. Atmospheric measurement analysis for the Radiometric Calibration Test Site (RadCaTS)

    NASA Astrophysics Data System (ADS)

    Czapla-Myers, Jeffrey

    2015-09-01

    The Radiometric Calibration Test Site (RadCaTS) was developed by the University of Arizona in the early 2000s to collect ground-based data in support of the calibration and validation of Earth-observing sensors. It uses the reflectance-based approach, which requires measurements of the atmosphere and surface reflectance. The measurements are used in MODTRAN to determine the at-sensor radiance for a given time and date. In the traditional reflectance-based approach, on-site personnel use an automated solar radiometer (ASR) to measure the atmospheric attenuation, but in the case of RadCaTS, an AERONET Cimel sun photometer is used to make atmospheric measurements. This work presents a comparison between the Cimel-derived atmospheric characteristics such as aerosol optical depth, the Angstrom exponent, and the columnar water vapor, to those derived using a traditional solar radiometer. The top-of-atmosphere radiance derived using the Cimel and ASR measurements are compared using Landsat 8 OLI bands as a test case for the period 2012-2014 to determine if any biases exist between the two methodologies.

  17. Evaluation of measurement reproducibility using the standard-sites data, 1994 Fernald field characterization demonstration project

    SciTech Connect

    Rautman, C.A.

    1996-02-01

    The US Department of Energy conducted the 1994 Fernald (Ohio) field characterization demonstration project to evaluate the performance of a group of both industry-standard and proposed alternative technologies in describing the nature and extent of uranium contamination in surficial soils. Detector stability and measurement reproducibility under actual operating conditions encountered in the field is critical to establishing the credibility of the proposed alternative characterization methods. Comparability of measured uranium activities to those reported by conventional, US Environmental Protection Agency (EPA)-certified laboratory methods is also required. The eleven (11) technologies demonstrated included (1) EPA-standard soil sampling and laboratory mass-spectroscopy analyses, and currently-accepted field-screening techniques using (2) sodium-iodide scintillometers, (3) FIDLER low-energy scintillometers, and (4) a field-portable x-ray fluorescence spectrometer. Proposed advanced characterization techniques included (5) alpha-track detectors, (6) a high-energy beta scintillometer, (7) electret ionization chambers, (8) and (9) a high-resolution gamma-ray spectrometer in two different configurations, (10) a field-adapted laser ablation-inductively coupled plasma-atomic emission spectroscopy (ICP-AES) technique, and (11) a long-range alpha detector. Measurement reproducibility and the accuracy of each method were tested by acquiring numerous replicate measurements of total uranium activity at each of two ``standard sites`` located within the main field demonstration area. Meteorological variables including temperature, relative humidity. and 24-hour rainfall quantities were also recorded in conjunction with the standard-sites measurements.

  18. Measurement of solvation responses at multiple sites in a globular protein.

    PubMed

    Abbyad, Paul; Shi, Xinghua; Childs, William; McAnaney, Tim B; Cohen, Bruce E; Boxer, Steven G

    2007-07-19

    Proteins respond to electrostatic perturbations through complex reorganizations of their charged and polar groups, as well as those of the surrounding media. These solvation responses occur both in the protein interior and on its surface, though the exact mechanisms of solvation are not well understood, in part because of limited data on the solvation responses for any given protein. Here, we characterize the solvation kinetics at sites throughout the sequence of a small globular protein, the B1 domain of streptococcal protein G (GB1), using the synthetic fluorescent amino acid Aladan. Aladan was incorporated into seven different GB1 sites, and the time-dependent Stokes shift was measured over the femtosecond to nanosecond time scales by fluorescence upconversion and time-correlated single photon counting. The seven sites range from buried within the protein core to fully solvent-exposed on the protein surface, and are located on different protein secondary structures including beta-sheets, helices, and loops. The dynamics in the protein sites were compared against the free fluorophore in buffer. All protein sites exhibited an initial, ultrafast Stokes shift on the subpicosecond time scale similar to that observed for the free fluorophore, but smaller in magnitude. As the probe is moved from the surface to more buried sites, the dynamics of the solvation response become slower, while no clear correlation between dynamics and secondary structure is observed. We suggest that restricted movements of the surrounding protein residues give rise to the observed long time dynamics and that such movements comprise a large portion of the protein's solvation response. The proper treatment of dynamic Stokes shift data when the time scale for solvation is comparable to the fluorescence lifetime is discussed. PMID:17592867

  19. Measurement of Solvation Responses at Multiple Sites in a Globular Protein

    PubMed Central

    Abbyad, Paul; Shi, Xinghua; Childs, William; McAnaney, Tim B.; Cohen, Bruce E.; Boxer, Steven G.

    2008-01-01

    Proteins respond to electrostatic perturbations through complex reorganizations of their charged and polar groups, as well as those of the surrounding media. These solvation responses occur both in the protein interior and on its surface, though the exact mechanisms of solvation are not well understood, in part because of limited data on the solvation responses for any given protein. Here, we characterize the solvation kinetics at sites throughout the sequence of a small globular protein, the B1 domain of streptococcal protein G (GB1), using the synthetic fluorescent amino acid Aladan. Aladan was incorporated into seven different GB1 sites, and the time-dependent Stokes shift measured over the femtosecond to nanosecond timescales by fluorescence upconversion and time-correlated single photon counting. The seven sites range from buried within the protein core to fully solvent-exposed on the protein surface, and are located on different protein secondary structures including β-sheets, helices and loops. The dynamics in the protein sites were compared against the free fluorophore in buffer. All protein sites exhibited an initial, ultra-fast Stokes shift on the sub-picosecond timescale similar to that observed for the free fluorophore, but smaller in magnitude. As the probe is moved from the surface to more buried sites, the dynamics of the solvation response become slower, while no clear correlation between dynamics and secondary structure is observed. We suggest that restricted movements of the surrounding protein residues give rise to the observed long time dynamics and that such movements comprise a large portion of the protein’s solvation response. The proper treatment of dynamic Stokes shift data when the timescale for solvation is comparable to the fluorescence lifetime is discussed. PMID:17592867

  20. Nitrogen oxides measurements in an Amazon site and enhancements associated with a cold front

    NASA Astrophysics Data System (ADS)

    Cordova, A. M.; Longo, K.; Freitas, S.; Gatti, L. V.; Artaxo, P.; Procópio, A.; Silva Dias, M. A. F.; Freitas, E. D.

    2004-05-01

    An intensive atmospheric chemistry study was carried out in a pristine Amazonian forest site (Balbina), Amazonas state, Brazil during the 2001 wet season, as part of the LBA/CLAIRE 2001 (The Large Scale Biosphere Atmosphere Experiment in Amazonia/Cooperative LBA Airborne Regional Experiment) field campaign. Measurements of nitrogen oxide (NO), nitrogen dioxide (NO2) and ozone (O3) were performed simultaneously with aerosol particles and black carbon concentrations and meteorological parameters observations. Very low trace gases and aerosol concentrations are typically observed at this pristine tropical site. During the measurement period, there was a three-day episode of enhancement of NO2 and black carbon concentration. NO2 concentration reached a maximum value of 4 ppbv, which corresponds to three times the background concentration observed for this site. Black carbon concentration increased from the approximated 100 ng/m3 average value to a 200 ng/m3 maximum during the same period. Biomass burning spots were detected southward, between latitudes 15 to 10° S, 5-6 days before this episode from GOES-8 WF_ABBA (Wildfire Automated Biomass Burning Algorithm). An atmospheric numerical simulation of the whole measurement period was carried out using the RAMS model coupled to a biomass burning emission and transport model. The simulation results pictured a smoke transport event from Central Brazil associated to an approach of a mid-latitude cold front, reinforcing the hypothesis of biomass burning products being long-range transported from the South by the cold front and crossing the Equator. This transport event shows how the pristine atmosphere pattern in Amazonia is impacted by biomass burning emissions from sites very far away.

  1. Older Smooth Plains on Mercury Obscured by Impact Features

    NASA Astrophysics Data System (ADS)

    Byrne, P. K.; Denevi, B. W.; Klimczak, C.; Prockter, L. M.; Solomon, S. C.; Whitten, J.; Head, J. W.

    2012-12-01

    On the basis of morphology and spectral reflectance, the surface of Mercury can be broadly divided into three major terrain types: low-reflectance material, intermediate terrain, and smooth plains. This last terrain type is distinguished morphologically by a comparatively smooth and gently rolling surface, has a lower density of impact craters and basins than other surface units on the planet, and typically occupies low-lying areas. Their smooth texture, embayment of other landforms, and distinctive partial to complete burial of older impact features suggests that most of these plains are probably volcanic in nature. Recent mapping work has shown that smooth plains younger than the end of the late heavy bombardment (LHB) occupy ~30% of Mercury's surface. An outstanding question concerns the distribution and nature of older plains units on the planet, especially those that underlie large impact features and may correspond morphologically to smooth plains but have not yet been mapped accordingly. A preliminary survey of such terrain yielded five exemplar sites: at the Amaral (26.5°S, 117.8°E; 101 km diameter), Mickiewicz (23.2°N, 256.7°E; 103 km), and Vivaldi (13.8°N, 274.1°E; 212 km) basins and at two unnamed features at 53.1°S, 38.6°E (83 km in diameter) and 7.1°N, 38.3°E (118 km). We expect that more thorough mapping will uncover additional candidate areas. In each of the example sites, an extensive continuous ejecta deposit and secondary impact field characterize the proximal and distal facies, respectively, of the impact feature; and in each case, the secondaries field (and impact-sculpted terrain in the case of Vivaldi) is superposed upon patches of plains that otherwise appear smooth and host numerous, flooded antecedent craters tens of kilometers in diameter. Moreover, these smooth patches occur at several ranges of azimuths surrounding each crater or basin, suggesting that they may have formed contiguous units prior to formation of the younger

  2. Measuring and computing natural ground-water recharge at sites in south-central Kansas

    USGS Publications Warehouse

    Sophocleous, M.A.; Perry, C.A.

    1987-01-01

    To measure the natural groundwater recharge process, two sites in south-central Kansas were instrumented with sensors and data microloggers. The atmospheric-boundary layer and the unsaturated and saturated soil zones were monitored as a single regime. Direct observations also were used to evaluate the measurements. Atmospheric sensors included an anemometer, a tipping-bucket rain gage, an air-temperature thermistor, a relative-humidity probe, a net radiometer, and a barometric-pressure transducer. Sensors in the unsaturated zone consisted of soil-temperature thermocouples, tensiometers coupled with pressure transducers and dial gages, gypsum blocks, and a neutron-moisture probe. The saturated-zone sensors consisted of a water-level pressure transducer, a conventional float gage connected to a variable potentiometer, soil thermocouples, and a number of multiple-depth piezometers. Evaluation of the operation of these sensors and recorders indicates that certain types of equipment, such as pressure transducers, are very sensitive to environmental conditions. A number of suggestions aimed at improving instrumentation of recharge investigations are outlined. Precipitation and evapotranspiration data, taken together with soil moisture profiles and storage changes, water fluxes in the unsaturated zone and hydraulic gradients in the saturated zone at various depths, soil temperature, water table hydrographs, and water level changes in nearby wells, describe the recharge process. Although the two instrumented sites are located in sand-dune environments in area characterized by a shallow water table and a sub-humid continental climate, a significant difference was observed in the estimated total recharge. The estimates ranged from less than 2.5 mm at the Zenith site to approximately 154 mm at the Burrton site from February to June 1983. The principal reasons that the Burrton site had more recharge than the Zenith site were more precipitation, less evapotranspiration, and a

  3. Filling the gaps in meteorological continuous data measured at FLUXNET sites with ERA-Interim reanalysis

    DOE PAGESBeta

    Vuichard, N.; Papale, D.

    2015-07-13

    In this study, exchanges of carbon, water and energy between the land surface and the atmosphere are monitored by eddy covariance technique at the ecosystem level. Currently, the FLUXNET database contains more than 500 registered sites, and up to 250 of them share data (free fair-use data set). Many modelling groups use the FLUXNET data set for evaluating ecosystem models' performance, but this requires uninterrupted time series for the meteorological variables used as input. Because original in situ data often contain gaps, from very short (few hours) up to relatively long (some months) ones, we develop a new and robustmore » method for filling the gaps in meteorological data measured at site level. Our approach has the benefit of making use of continuous data available globally (ERA-Interim) and a high temporal resolution spanning from 1989 to today. These data are, however, not measured at site level, and for this reason a method to downscale and correct the ERA-Interim data is needed. We apply this method to the level 4 data (L4) from the La Thuile collection, freely available after registration under a fair-use policy. The performance of the developed method varies across sites and is also function of the meteorological variable. On average over all sites, applying the bias correction method to the ERA-Interim data reduced the mismatch with the in situ data by 10 to 36 %, depending on the meteorological variable considered. In comparison to the internal variability of the in situ data, the root mean square error (RMSE) between the in situ data and the unbiased ERA-I (ERA-Interim) data remains relatively large (on average over all sites, from 27 to 76 % of the standard deviation of in situ data, depending on the meteorological variable considered). The performance of the method remains poor for the wind speed field, in particular regarding its capacity to conserve a standard deviation similar to the one measured at FLUXNET stations.« less

  4. Aerosol backscatter measurements at 10.6 microns with airborne and ground-based CO2 Doppler lidars over the Colorado High Plains. I - Lidar intercomparison

    NASA Technical Reports Server (NTRS)

    Bowdle, David A.; Rothermel, Jeffry; Vaughan, J. Michael; Brown, Derek W.; Post, Madison J.

    1991-01-01

    An airborne continuous-wave (CW) focused CO2 Doppler lidar and a ground-based pulsed CO2 Doppler lidar were to obtain seven pairs of comparative measurements of tropospheric aerosol backscatter profiles at 10.6-micron wavelength, near Denver, Colorado, during a 20-day period in July 1982. In regions of uniform backscatter, the two lidars show good agreement, with differences usually less than about 50 percent near 8-km altitude and less than a factor of 2 or 3 elsewhere but with the pulsed lidar often lower than the CW lidar. Near sharp backscatter gradients, the two lidars show poorer agreement, with the pulsed lidar usually higher than the CW lidar. Most discrepancies arise from a combination of atmospheric factors and instrument factors, particularly small-scale areal and temporal backscatter heterogeneity above the planetary boundary layer, unusual large-scale vertical backscatter structure in the upper troposphere and lower stratosphere, and differences in the spatial resolution, detection threshold, and noise estimation for the two lidars.

  5. Cloud Classes and Radiative Heating profiles at the Manus and Nauru Atmospheric Radiation Measurement (ARM) Sites

    SciTech Connect

    Mather, James H.; McFarlane, Sally A.

    2009-10-07

    The Tropical Western Pacific (TWP) is a convective regime; however, the frequency and depth of convection is dependant on dynamical forcing which exhibits variability on a range of temporal scales and also on location within the region. Manus Island, Papua New Guinea lies in the heart of the western Pacific warm pool region and exhibits frequent deep convection much of the time while Nauru, which lies approximately 20 degrees to the East of Manus, lies in a transition zone where the frequency of convection is dependent on the phase of the El Nino/Southern Oscillation. Because of this difference in dynamical regime, the distribution of clouds and the associated radiative heating is quite different at the two sites. Individual cloud types: boundary layer cumulus, thin cirrus, stratiform convective outflow, do occur at both sites – but with different frequencies. In this study we compare cloud profiles and heating profiles for specific cloud types at these two sites using data from the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF). Results of this comparison indicate that, while the frequency of specific cloud types differ between the two sites as one would expect, the characteristics of individual cloud classes are remarkably similar. This information could prove to be very useful for applying tropical ARM data to the broader region.

  6. A reliable measurement for identifying a lumbosacral transitional vertebra with a solid bony bridge on a single-slice midsagittal MRI or plain lateral radiograph.

    PubMed

    Farshad, M; Aichmair, A; Hughes, A P; Herzog, R J; Farshad-Amacker, N A

    2013-11-01

    The purpose of this study was to devise a simple but reliable radiological method of identifying a lumbosacral transitional vertebra (LSTV) with a solid bony bridge on sagittal MRI, which could then be applied to a lateral radiograph. The vertical mid-vertebral angle (VMVA) and the vertical anterior vertebral angle (VAVA) of the three most caudal segments of the lumbar spine were measured on MRI and/or on a lateral radiograph in 92 patients with a LSTV and 94 controls, and the differences per segment (Diff-VMVA and Diff-VAVA) were calculated. The Diff-VMVA of the two most caudal vertebrae was significantly higher in the control group (25° (sd 8) than in patients with a LSTV (type 2a+b: 16° (SD 9), type 3a+b: -9° (SD 10), type 4: -5° (SD 7); p < 0.001). A Diff-VMVA of ≤ +10° identified a LSTV with a solid bony bridge (type 3+4) with a sensitivity of 100% and a specificity of 89% on MRI and a sensitivity of 94% and a specificity of 74% on a lateral radiograph. A sensitivity of 100% could be achieved with a cut-off value of 28° for the Diff-VAVA, but with a lower specificity (76%) on MRI than with Diff-VMVA. Using this simple method (Diff-VMVA ≤ +10°), solid bony bridging of the posterior elements of a LSTV, and therefore the first adjacent mobile segment, can be easily identified without the need for additional imaging. PMID:24151275

  7. Quantitative morphometric measurements using site selective image cytometry of intact tissue

    PubMed Central

    Kwon, Hyuk-Sang; Nam, Yoon Sung; Wiktor-Brown, Dominika M.; Engelward, Bevin P.; So, Peter T.C.

    2008-01-01

    Site selective two-photon tissue image cytometry has previously been successfully applied to measure the number of rare cells in three-dimensional tissue specimens up to cubic millimetres in size. However, the extension of this approach for high-throughput quantification of cellular morphological states has not been demonstrated. In this paper, we report the use of site-selective tissue image cytometry for the study of homologous recombination (HR) events during cell division in the pancreas of transgenic mice. Since HRs are rare events, recombinant cells distribute sparsely inside the organ. A detailed measurement throughout the whole tissue is thus not practical. Instead, the site selective two-photon tissue cytometer incorporates a low magnification, wide field, one-photon imaging subsystem that rapidly identifies regions of interest containing recombinant cell clusters. Subsequently, high-resolution three-dimensional assays based on two-photon microscopy can be performed only in these regions of interest. We further show that three-dimensional morphology extraction algorithms can be used to analyse the resultant high-resolution two-photon image stacks providing information not only on the frequency and the distribution of these recombinant cell clusters and their constituent cells, but also on their morphology. PMID:19049958

  8. 40 CFR 201.23 - Test site, weather conditions and background noise criteria for measurement at a 30 meter (100...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Test site, weather conditions and background noise criteria for measurement at a 30 meter (100 feet) distance of the noise from locomotive and... TRANSPORTATION EQUIPMENT; INTERSTATE RAIL CARRIERS Measurement Criteria § 201.23 Test site, weather...

  9. 40 CFR 201.23 - Test site, weather conditions and background noise criteria for measurement at a 30 meter (100...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Test site, weather conditions and background noise criteria for measurement at a 30 meter (100 feet) distance of the noise from locomotive and... TRANSPORTATION EQUIPMENT; INTERSTATE RAIL CARRIERS Measurement Criteria § 201.23 Test site, weather...

  10. Plain English Laws: Symbolic or Real?

    ERIC Educational Resources Information Center

    Timm, Paul R.; Oswald, Daniel

    1985-01-01

    Surveyed business communication educators and found widespread confusion about the existence and nature of Plain English laws. Concludes that legally compelling business to use plain language in consumer documents may be futile. (PD)

  11. Sediment transport time measured with U-Series isotopes: Resultsfrom ODP North Atlantic Drill Site 984

    SciTech Connect

    DePaolo, Donald J.; Maher, Kate; Christensen, John N.; McManus,Jerry

    2006-06-05

    High precision uranium isotope measurements of marineclastic sediments are used to measure the transport and storage time ofsediment from source to site of deposition. The approach is demonstratedon fine-grained, late Pleistocene deep-sea sediments from Ocean DrillingProgram Site 984A on the Bjorn Drift in the North Atlantic. The sedimentsare siliciclastic with up to 30 percent carbonate, and dated by sigma 18Oof benthic foraminifera. Nd and Sr isotopes indicate that provenance hasoscillated between a proximal source during the last three interglacialperiods volcanic rocks from Iceland and a distal continental sourceduring glacial periods. An unexpected finding is that the 234U/238Uratios of the silicate portion of the sediment, isolated by leaching withhydrochloric acid, are significantly less than the secular equilibriumvalue and show large and systematic variations that are correlated withglacial cycles and sediment provenance. The 234U depletions are inferredto be due to alpha-recoil loss of234Th, and are used to calculate"comminution ages" of the sediment -- the time elapsed between thegeneration of the small (<_ 50 mu-m) sediment grains in the sourceareas by comminution of bedrock, and the time of deposition on theseafloor. Transport times, the difference between comminution ages anddepositional ages, vary from less than 10 ky to about 300 to 400 ky forthe Site 984A sediments. Long transport times may reflect prior storagein soils, on continental shelves, or elsewhere on the seafloor. Transporttime may also be a measure of bottom current strength. During the mostrecent interglacial periods the detritus from distal continental sourcesis diluted with sediment from Iceland that is rapidly transported to thesite of deposition. The comminution age approach could be used to dateQuaternary non-marine sediments, soils, and atmospheric dust, and may beenhanced by concomitant measurement of 226Ra/230Th, 230Th/234U, andcosmogenic nuclides.

  12. The origins of ice crystals measured in mixed phase clouds at High-Alpine site Jungfraujoch

    NASA Astrophysics Data System (ADS)

    Lloyd, G.; Choularton, T. W.; Bower, K. N.; Gallagher, M. W.; Connolly, P. J.; Flynn, M.; Farrington, R.; Crosier, J.; Schlenczek, O.; Fugal, J.; Henneberger, J.

    2015-07-01

    During the winter of 2013 and 2014 measurements of cloud microphysical properties over a five week period at the high Alpine site Jungfraujoch, Switzerland were carried out as part of the Cloud Aerosol Characterisation Experiments (CLACE) and the Ice Nucleation Process Investigation and Quantification project (INUPIAQ) Measurements of aerosol properties at a second, lower site, Schilthorn, Switzerland, were used as input for a primary ice nucleation scheme to predict ice nuclei concentrations at Jungfraujoch Frequent, rapid transitions in the ice and liquid properties of the clouds at Jungfraujoch were identified that led to large fluctuations in ice mass fractions over temporal scales of seconds to hours. During the measurement period we observed high concentrations of ice particles that exceeded 1000 L-1 at temperatures around -15 °C, verified by multiple instruments These concentrations could not be explained using the usual primary ice nucleation schemes, which predicted ice nucleus concentrations several orders of magnitude smaller than the peak ice crystal number concentrations. Secondary ice production through the Hallet-Mossop process as a possible explanation was ruled out, as the cloud was rarely within the active temperature range for this process It is shown that other mechanisms of secondary ice particle production cannot explain the highest ice particle concentrations. We describe 4 possible mechanisms that could lead to high cloud ice concentrations generated from the snow covered surfaces surrounding the measurement site. Of these we show that hoar frost crystals generated at the cloud enveloped snow surface could be the most important source of cloud ice concentrations Blowing snow was also observed to make significant contributions at higher wind speeds when ice crystal concentrations were < 100 L-1.

  13. Computation of backwater and discharge at width constrictions of heavily vegetated flood plains

    USGS Publications Warehouse

    Schneider, V.R.; Board, J.W.; Colson, B.E.; Lee, F.N.; Druffel, Leroy

    1977-01-01

    The U.S. Geological Survey, cooperated with the Federal Highway Administration and the State Highway Departments of Mississippi, Alabama, and Louisiana, to develop a proposed method for computing backwater and discharge at width constrictions of heavily vegetated flood plains. Data were collected at 20 single opening sites for 31 floods. Flood-plain width varied from 4 to 14 times the bridge opening width. The recurrence intervals of peak discharge ranged from a 2-year flood to greater than a 100-year flood, with a median interval of 6 years. Measured backwater ranged from 0.39 to 3.16 feet. Backwater computed by the present standard Geological Survey method averaged 29 percent less than the measured, and that computed by the currently used Federal Highway Administration method averaged 47 percent less than the measured. Discharge computed by the Survey method averaged 21 percent more then the measured. Analysis of data showed that the flood-plain widths and the Manning 's roughness coefficient are larger than those used to develop the standard methods. A method to more accurately compute backwater and discharge was developed. The difference between the contracted and natural water-surface profiles computed using standard step-backwater procedures is defined as backwater. The energy loss terms in the step-backwater procedure are computed as the product of the geometric mean of the energy slopes and the flow distance in the reach was derived from potential flow theory. The mean error was 1 percent when using the proposed method for computing backwater and 3 percent for computing discharge. (Woodard-USGS)

  14. Quantifying the Influence of Biomass Burning on Measurement Sites in the Western U.S.

    NASA Astrophysics Data System (ADS)

    Lin, J. C.; Mallia, D.; Urbanski, S. P.; Stephens, B. B.

    2014-12-01

    Understanding and quantifying the impact of biomass burning on measurement sites in the Western U.S. is important, as fire activity is thought to be strengthening due to climate change while population growth across the West has been increasing the number of people exposed to these wildfires. Fires can emit large quantities of species relevant for air quality, as well as carbon-containing gases (CO2, CO, CH4), thereby making it a source of carbon to the atmosphere. The intense, highly varying, and often localized nature of fire emissions render it difficult for models to capture the impact of biomass burning on atmospheric distributions of CO2 and other trace gases, particularly with emission inventories at resolutions that are coarse in comparison to the spatiotemporal variability of actual fires. In this study, we present simulations of CO2, CO, and PM2.5 at measurement sites in the Western U.S. The modeling framework consists of (1) Receptor-oriented Lagrangian particle dispersion model simulations from the Stochastic Time-Inverted Lagrangian Transport (STILT) model; (2) Nested meteorological fields from the Weather Research and Forecasting (WRF) model; and (3) High-resolution wildland fire emission inventories from the Missoula Fire Sciences Laboratory covering the entire Western U.S. The modeling framework enables researchers to investigate and quantify the impact of biomass burning emissions on trace gas sampling sites. For CO2, we will compare our estimates against values from NOAA's CarbonTracker simulations. Differences from other existing emission inventories (e.g., GFED, FINN) will also be quantified. Examples will be shown at selected sites across the Western U.S, on mountains as well as lower elevations.

  15. Plain Language Clear and Simple.

    ERIC Educational Resources Information Center

    National Literacy Secretariat, Ottawa (Ontario).

    Written for Canadian public servants and written with their help, this handbook presents principles and tips to make official writing clear, concise, and well organized. The handbook defines "plain language" writing as a technique of organizing information in ways that make sense to the reader--using familiar, straightforward words. The handbook…

  16. Long-term Agroecosystem Research in the Northern Great Plains.

    NASA Astrophysics Data System (ADS)

    Schmer, M.; Sanderson, M.; Liebig, M. A.; Wienhold, B.; Awada, T.; Papiernik, S.; Osborne, S.; Kemp, W.; Okalebo, J. A.; Riedall, W.

    2015-12-01

    The Northern Great Plains is the bread basket of the United States, accounting for a substantial portion of U.S. agricultural production. This region faces critical challenges regarding balancing food needs, resource conservation (e.g Ogallala aquifer), environmental concerns, and rural economy development. Developing transformative, multifunctional systems will require equally imaginative and efficient tools to help farmers manage complex agroecosystems in a rapidly changing climate. The Northern Plains long-term agroecosystem research (LTAR) site at Mandan, ND and the Platte River High Plains LTAR (ARS/University of Nebraska-Lincoln) at Lincoln, NE in collaboration with USDA-ARS research units in Brookings, SD and Fargo, ND are collaborating to address the grand challenge of providing and sustaining multiple service provisions from Northern Great Plains agroecosystems. We propose to attain these goals through sustainable intensification based on the adoption of conservation agriculture principles including reduced soil disturbance, livestock integration, and greater complexity and diversity in the cropping system. Here, we summarize new concepts these locations have pioneered in dynamic cropping systems, resource use efficiency, and agricultural management technologies. As part of the LTAR network, we will conduct long-term cross-site research to design and assess new agricultural practices and systems aimed at improving our understanding of decision making processes and outcomes across an array of agricultural systems.

  17. Overall dry deposition velocities of trace elements measured at harbor and traffic site in central Taiwan.

    PubMed

    Fang, Guor-Cheng; Wu, Yuh-Shen; Chang, Shih-Yu; Lin, Jum-Bo; Lin, Jhih-Guang

    2007-03-01

    For reasonable and convenient assessments of the characteristics of the dry deposition velocities between Taichung harbor site and Wuchi town site in central Taiwan, the overall dry deposition velocities of several metallic elements were calculated as the particulate diameter (D(p)) distributions of large particles (D(p) > 10 microm), coarse particles (10 microm < D(p) < 2.5 microm), and fine particles (D(p) < 2.5 microm) based on the ambient measurements during March-December of 2004. In this work, the dry deposition fluxes showed the higher correlation with coarse particle concentrations than large particle concentrations; however, the least well correlation was observed between the dry deposition fluxes and the fine particle concentrations. The calculated best-fit overall dry deposition velocities obtained using coarse particle concentrations varied from approximately 0.2 cm s(-1) for Cr to 1.5 cm s(-1) for Pb and 0.2 cm s(-1) for Fe to 2.6 cm s(-1) for Pb at Taichung harbor and Wuchi town site, respectively. In general, the crustal elements had higher deposition velocities than anthropogenic elements. In addition, overall dry deposition velocities for crustal elements were higher in Wuchi town site than in Taichung harbor site. The results identified the dry deposition flux was mainly contributed from large and coarse particles due to their high deposition velocities. The results also indicated that the best approach to estimate overall dry deposition was by depending on the characteristics of particles with diameters larger than 2.5 microm. PMID:17166552

  18. The Texas High Plains Evapotranspiration (TXHPET) network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The newly developed Texas High Plains Evapotranspiration (TXHPET) network is comprised of the North Plains and South Plains evapotranspiration (ET) networks. The TXHPET network currently entails the operation of 18 meteorological stations located in 15 Texas counties and regional coverage is estima...

  19. 49 CFR 229.64 - Plain bearings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Plain bearings. 229.64 Section 229.64 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....64 Plain bearings. A plain bearing box shall contain visible free oil and may not be cracked to...

  20. 49 CFR 229.64 - Plain bearings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Plain bearings. 229.64 Section 229.64 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....64 Plain bearings. A plain bearing box shall contain visible free oil and may not be cracked to...

  1. 49 CFR 229.64 - Plain bearings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Plain bearings. 229.64 Section 229.64 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....64 Plain bearings. A plain bearing box shall contain visible free oil and may not be cracked to...

  2. 49 CFR 229.64 - Plain bearings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Plain bearings. 229.64 Section 229.64 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....64 Plain bearings. A plain bearing box shall contain visible free oil and may not be cracked to...

  3. 49 CFR 229.64 - Plain bearings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Plain bearings. 229.64 Section 229.64 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....64 Plain bearings. A plain bearing box shall contain visible free oil and may not be cracked to...

  4. A proposed wind measurement and analysis approach for evaluating a prospective wind plant site

    NASA Astrophysics Data System (ADS)

    Wendell, L. L.; Barnard, J. C.; Morris, V. R.

    1994-05-01

    On the basis of research results, cooperative efforts with wind energy developers, and work with meteorological consultants, Pacific Northwest Laboratory (PNL) has proposed an approach for performing wind measurement assessments for prospective wind plant sites. The primary goal of this approach is to effectively balance comprehensiveness with expense. The approach begins with the acquisition of high-resolution digital terrain data for the site. These data are used in computational and visual analyses to determine the best locations for a reference tower and several satellite towers used for wind measurements. The reference tower has wind sensors at three levels: 20, 30, and 40 m. The satellite towers have one sensor at 30 m. The sensors measure the vertical wind speed as well as the horizontal speed and direction. The sampling rate must be at least 4 times per second. The data acquisition system keeps track of turbulence statistics that are saved at intervals from ten minutes to one hour. Statistics for the 30-m level at the satellite towers, as well as the reference tower, provide the mean and variance of the total speed and covariances of the component speeds. The data base produced by this approach over 1-2 years should be valuable for both routine and in-depth analyses. This approach takes advantage of some recent technological developments. It is not being proposed as a standard at this time, but as a tool to be refined with experience.

  5. Magnetism and the interior of the moon. [measured at Apollo landing sites

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1974-01-01

    During the time period 1961-1972 eleven magnetometers were sent to the moon. The results of lunar magnetometer data analysis are reviewed, with emphasis on the lunar interior. Magnetic fields have been measured on the lunar surface at the Apollo 12, 14, 15, and 16 landing sites. The remanent field values at these sites are given. Satellite and surface measurements show strong evidence that the lunar crust is magnetized over much of the lunar globe. The origin of the lunar remanent field is not yet satisfactorily understood; several source models are presented. Simultaneous data from the Apollo 12 lunar surface magnetometer and the Explorer 35 Ames magnetometer are used to construct a wholemoon hysteresis curve, from which the global lunar permeability is determined. Total iron abundance is calculated for two assumed compositional models of the lunar interior. Other lunar models with a small iron core and with a shallow iron-rich layer are also discussed in light of the measured global permeability.

  6. Lower tropospheric ozone and aerosol measurements at a coastal mountain site in Northern California

    NASA Astrophysics Data System (ADS)

    Post, A.; Conley, S. A.; Zhao, Y.; Cliff, S. S.; Faloona, I. C.; Wexler, A. S.; Lighthall, D.

    2012-12-01

    Increasing concern over the impacts of exogenous air pollution in California's Central Valley have prompted the establishment of a coastal, high altitude monitoring site at the Chews Ridge Observatory (1550 m) approximately 30 km east of Point Sur in Monterey County. Six months of ozone and aerosol measurements are presented in the context of long-range transport and its potential impact on surface air quality in the southern San Joaquin Valley. Moreover, approximately monthly ozone surveys are conducted by aircraft upwind, over the Pacific Ocean, and downwind, over the Central Valley, to characterize horizontal and vertical transport across the coastal mountains. The measurements exhibit no systematic diurnal variations of ozone or water vapor, an indication that the site primarily samples lower free tropospheric air which has not been significantly influenced by either local emissions or convective coupling to the surface. Aerosol size is measured with a scanning mobility particle sizer and composition is analyzed with an 8-stage rotating drum impactor whose substrates are characterized by X-ray fluorescence. Various elemental ratios and back trajectory calculations are used to infer the temporal patterns of influence that long range transport has on California air quality.

  7. Mercury species measured atop the Moody Tower TRAMP site, Houston, Texas

    NASA Astrophysics Data System (ADS)

    Brooks, Steven; Luke, Winston; Cohen, Mark; Kelly, Paul; Lefer, Barry; Rappenglück, Bernhard

    2010-10-01

    Atmospheric mercury speciation was monitored within Houston, Texas, USA, August 6-October 14, 2006 as part of the TexAQS Radical and Aerosol Measurement Program (TRAMP). On average, all mercury levels were significantly elevated compared to a rural Gulf of Mexico coastal site. Concentrations varied from very clean to very dirty. Multi-day periods of stagnant or low-wind conditions brought elevated concentrations of all mercury species, whereas multi-day periods of strong winds, particularly southerly winds off the Gulf of Mexico, brought very low values of mercury species. Over the entire mercury measurement period, the daily averages of mercury species showed distinct and consistent relationships with the average planetary boundary layer dynamics, with gaseous elemental and particulate-bound mercury near-surface concentrations enhanced by a shallow nocturnal boundary layer, and reactive gaseous mercury concentration enhanced by midday convective boundary layer air entrainment transporting air aloft to the surface. Mercury concentrations were not significantly correlated with known products of combustion, likely indicating non-combustion mercury sources from the Houston area petrochemical complexes. On the morning of August 31, 2006 an observed emission event at a refinery complex on the Houston Ship Channel resulted in extremely high concentrations of aerosol mass and particulate-bound mercury at the TRAMP measurement site 20 km downwind.

  8. Relative position and pose measurement approach of specific operation site of space non-cooperative target

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Zhou, Ying; Li, Ronghua; Huang, Jianming

    2015-12-01

    In order to achieve the rendezvous and capture of the space non-cooperative target, the relative position and pose measurement of non-cooperative target must be resolved. Since the marker is not installed into the non-cooperative target and there is no inter satellite link to transfer the information, so it is very difficult to measure the relative position and pose measurement of non-cooperative target. The solar array connecting frame of non-cooperative targets have their characters and are easy to capture, so the position and pose measurement of specific operation site of non-cooperative target based on stereo vision has been studied in this paper. The method composed of image acquiring, image filtering, edge detection, feature extraction and relative pose measurement. Finally, the relative position and attitude parameters of the solar wing connection were obtained and provided to the control system. The results of simulation and ground verification show that the algorithm is accurate and effective, and can satisfy the technical requirements of the on orbit operation. The measurement approach can be used for engineering implementation.

  9. Diabetes and Hypertension Quality Measurement in Four Safety-Net Sites

    PubMed Central

    Benkert, R.; Dennehy, P.; White, J.; Hamilton, A.; Tanner, C.

    2014-01-01

    Summary Background In this new era after the Health Information Technology for Economic and Clinical Health (HITECH) Act of 2009, the literature on lessons learned with electronic health record (EHR) implementation needs to be revisited. Objectives Our objective was to describe what implementation of a commercially available EHR with built-in quality query algorithms showed us about our care for diabetes and hypertension populations in four safety net clinics, specifically feasibility of data retrieval, measurements over time, quality of data, and how our teams used this data. Methods A cross-sectional study was conducted from October 2008 to October 2012 in four safety-net clinics located in the Midwest and Western United States. A data warehouse that stores data from across the U.S was utilized for data extraction from patients with diabetes or hypertension diagnoses and at least two office visits per year. Standard quality measures were collected over a period of two to four years. All sites were engaged in a partnership model with the IT staff and a shared learning process to enhance the use of the quality metrics. Results While use of the algorithms was feasible across sites, challenges occurred when attempting to use the query results for research purposes. There was wide variation of both process and outcome results by individual centers. Composite calculations balanced out the differences seen in the individual measures. Despite using consistent quality definitions, the differences across centers had an impact on numerators and denominators. All sites agreed to a partnership model of EHR implementation, and each center utilized the available resources of the partnership for Center-specific quality initiatives. Conclusions Utilizing a shared EHR, a Regional Extension Center-like partnership model, and similar quality query algorithms allowed safety-net clinics to benchmark and improve the quality of care across differing patient populations and health care

  10. Using NMR, SIP, and MS measurements for monitoring subsurface biogeochemical reactions at the Rifle IFRC site

    NASA Astrophysics Data System (ADS)

    Rosier, C. L.; Keating, K.; Williams, K. H.; Robbins, M.; Ntarlagiannis, D.; Grunewald, E.; Walsh, D. O.

    2013-12-01

    The Rifle Integrated Field Research Challenge (IFRC) site is located on a former uranium ore-processing facility in Rifle, Colorado (USA). Although removal of tailings and contaminated surface materials was completed in 1996, residual uranium contamination of groundwater and subsurface sediments remains. Since 2002, research at the site has primarily focused on quantifying uranium mobility associated with stimulated and natural biogeochemical processes. Uranium mobility at the Rifle IFRC site is typically quantified through direct sampling of groundwater; however, direct sampling does not provide information about the solid phase material outside of the borehole and continuous measurements are not always possible due to multiple constraints. Geophysical methods have been suggested as a minimally invasive alternative approach for long term monitoring of biogeochemical reactions associated with uranium remediation. In this study, nuclear magnetic resonance (NMR), spectral induced polarization (SIP), and magnetic susceptibility (MS) are considered as potential geophysical methods for monitoring the biogeochemical reactions occurring at the Rifle IFRC site. Additionally, a pilot field study using an NMR borehole-logging tool was carried out at the Rifle IFRC site. These methods are sensitive to changes in the chemical and physical subsurface properties that occur as a result of bioremediation efforts; specifically, changes in the redox state and chemical form of iron, production of iron sulfide minerals, production of the magnetic mineral magnetite, and associated changes in the pore geometry. Laboratory experiments consisted of monitoring changes in the NMR, SIP and MS response of an acetate-amended columns packed with sediments from the Rifle IFRC site over the course of two months. The MS values remained relatively stable throughout the course of the experiment suggesting negligible production of magnetic phases (e.g. magnetite, pyrrhotite) as a result of enhanced

  11. KSC Press Site Transformer Bldg. (K7-1205c) SWMU 074 Interim Measure Work Plan

    NASA Technical Reports Server (NTRS)

    Starr, A. Scott; Applegate, Joe

    2014-01-01

    This document presents and discusses the Interim Measure (IM) Work Plan for the Press Site Transformer Building (K7-1205C). The purpose of the proposed IM activities is to remove soil affected with polychlorinated biphenyls (PCBs) greater than the Florida Department of Environmental Protection (FDEP) residential direct-exposure Soil Cleanup Target Level (R-SCTL) of 0.5 milligrams per kilogram and encapsulate concrete exhibiting PCB concentration greater than the Toxic Substance Control Act (TSCA) threshold of 50 milligrams per kilogram.

  12. Continuous Water Vapor Profiles for the Fixed Atmospheric Radiation Measurement Sites

    SciTech Connect

    Jensen, M.; Troyan, D.

    2006-01-09

    The Atmospheric Radiation Measurement (ARM) Program defined a specific metric for the first quarter of Fiscal Year 2006 to complete a continuous time series of the vertical profile of water vapor for selected 30-day periods from each of the fixed ARM sites. In order to accomplish this metric, a new technique devised to incorporate radiosonde data, microwave radiometer data and analysis information from numerical weather forecast models has been developed. The product of this analysis, referred to as the merged sounding value-added product, includes vertical profiles of atmospheric water vapor concentration and several other important thermodynamic state variables at 1-minute time intervals and 266 vertical levels.

  13. Static and dynamic stress analyses of the prototype high head Francis runner based on site measurement

    NASA Astrophysics Data System (ADS)

    Huang, X.; Oram, C.; Sick, M.

    2014-03-01

    More efforts are put on hydro-power to balance voltage and frequency within seconds for primary control in modern smart grids. This requires hydraulic turbines to run at off-design conditions. especially at low load or speed-no load. Besides. the tendency of increasing power output and decreasing weight of the turbine runners has also led to the high level vibration problem of the runners. especially high head Francis runners. Therefore. it is important to carry out the static and dynamic stress analyses of prototype high head Francis runners. This paper investigates the static and dynamic stresses on the prototype high head Francis runner based on site measurements and numerical simulations. The site measurements are performed with pressure transducers and strain gauges. Based on the measured results. computational fluid dynamics (CFD) simulations for the flow channel from stay vane to draft tube cone are performed. Static pressure distributions and dynamic pressure pulsations caused by rotor-stator interaction (RSI) are obtained under various operating conditions. With the CFD results. static and dynamic stresses on the runner at different operating points are calculated by means of the finite element method (FEM). The agreement between simulation and measurement is analysed with linear regression method. which indicates that the numerical result agrees well with that of measurement. Furthermore. the maximum static and dynamic stresses on the runner blade are obtained at various operating points. The relations of the maximum stresses and the power output are discussed in detail. The influences of the boundary conditions on the structural behaviour of the runner are also discussed.

  14. Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site

    SciTech Connect

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.; Myers, D.A.; Gardner, M.G.; Williamson, T.; Huffman, J.

    1999-06-01

    The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted of the development of one borehole under a mock waste tank at a depth of {approximately} {minus}8 m ({minus}27 ft.), following a predetermined drill path, tracking the drill path to within a radius of {approximately}1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of {approximately} {minus}21 m ({minus}70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned.

  15. Temporal reduction of repeat-station measurements by using on-site variometer records

    NASA Astrophysics Data System (ADS)

    Vadasz, Gergely; Csontos, Andras; Heilig, Balazs; Kovacs, Peter

    2016-04-01

    The temporal reduction of repeat-station (RS) data is usually carried out by the use of the variometer records of observatories. In stations located far from reference observatories, the accuracy of the reduction can be eventually increased by the installation of an on-site variometer. The site of the variometer station must be carefully selected in order to ensure low level of magnetic and mechanical noise, as well as temperature stability. The variometer record is referenced to the repeat station by carrying out the absolute measurements. In order to collect enough data from quiet geomagnetic condition, the variometer recording must be operated for at least one or two months. Thus, the station operates as a temporal observatory whose records can also improve the accuracy of global models of the geomagnetic field inferred from satellite data. During the last two repeat-station campaigns of Hungary carried out in 2012 and 2014, a three-component DIDD magnetometer was installed in the Baradla cave, near to our Aggtelek repeat station. In the poster, we present the variometer site, the installation of the DIDD variometer and the results of the recordings. The improvement of the reduction accuracy is also shown by comparing the reduced RS magnetic components obtained with and without the use of the DIDD variometer records.

  16. MPL-Net Measurements of Aerosol and Cloud Vertical Distributions at Co-Located AERONET Sites

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Campbell, James R.; Berkoff, Timothy A.; Spinhirne, James D.; Tsay, Si-Chee; Holben, Brent; Starr, David OC. (Technical Monitor)

    2002-01-01

    In the early 1990s, the first small, eye-safe, and autonomous lidar system was developed, the Micropulse Lidar (MPL). The MPL acquires signal profiles of backscattered laser light from aerosols and clouds. The signals are analyzed to yield multiple layer heights, optical depths of each layer, average extinction-to-backscatter ratios for each layer, and profiles of extinction in each layer. In 2000, several MPL sites were organized into a coordinated network, called MPL-Net, by the Cloud and Aerosol Lidar Group at NASA Goddard Space Flight Center (GSFC) using funding provided by the NASA Earth Observing System. tn addition to the funding provided by NASA EOS, the NASA CERES Ground Validation Group supplied four MPL systems to the project, and the NASA TOMS group contributed their MPL for work at GSFC. The Atmospheric Radiation Measurement Program (ARM) also agreed to make their data available to the MPL-Net project for processing. In addition to the initial NASA and ARM operated sites, several other independent research groups have also expressed interest in joining the network using their own instruments. Finally, a limited amount of EOS funding was set aside to participate in various field experiments each year. The NASA Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) project also provides funds to deploy their MPL during ocean research cruises. All together, the MPL-Net project has participated in four major field experiments since 2000. Most MPL-Net sites and field experiment locations are also co-located with sunphotometers in the NASA Aerosol Robotic Network. (AERONET). Therefore, at these locations data is collected on both aerosol and cloud vertical structure as well as column optical depth and sky radiance. Real-time data products are now available from most MPL-Net sites. Our real-time products are generated at times of AERONET aerosol optical depth (AOD) measurements. The AERONET AOD is used as input to our

  17. Characterization and Remediation of Contaminated Sites:Modeling, Measurement and Assessment

    NASA Astrophysics Data System (ADS)

    Basu, N. B.; Rao, P. C.; Poyer, I. C.; Christ, J. A.; Zhang, C. Y.; Jawitz, J. W.; Werth, C. J.; Annable, M. D.; Hatfield, K.

    2008-05-01

    The complexity of natural systems makes it impossible to estimate parameters at the required level of spatial and temporal detail. Thus, it becomes necessary to transition from spatially distributed parameters to spatially integrated parameters that are capable of adequately capturing the system dynamics, without always accounting for local process behavior. Contaminant flux across the source control plane is proposed as an integrated metric that captures source behavior and links it to plume dynamics. Contaminant fluxes were measured using an innovative technology, the passive flux meter at field sites contaminated with dense non-aqueous phase liquids or DNAPLs in the US and Australia. Flux distributions were observed to be positively or negatively correlated with the conductivity distribution, depending on the source characteristics of the site. The impact of partial source depletion on the mean contaminant flux and flux architecture was investigated in three-dimensional complex heterogeneous settings using the multiphase transport code UTCHEM and the reactive transport code ISCO3D. Source mass depletion reduced the mean contaminant flux approximately linearly, while the contaminant flux standard deviation reduced proportionally with the mean (i.e., coefficient of variation of flux distribution is constant with time). Similar analysis was performed using data from field sites, and the results confirmed the numerical simulations. The linearity of the mass depletion-flux reduction relationship indicates the ability to design remediation systems that deplete mass to achieve target reduction in source strength. Stability of the flux distribution indicates the ability to characterize the distributions in time once the initial distribution is known. Lagrangian techniques were used to predict contaminant flux behavior during source depletion in terms of the statistics of the hydrodynamic and DNAPL distribution. The advantage of the Lagrangian techniques lies in their

  18. From site measurements to spatial modelling - multi-criteria model evaluation

    NASA Astrophysics Data System (ADS)

    Gottschalk, Pia; Roers, Michael; Wechsung, Frank

    2015-04-01

    Hydrological models are traditionally evaluated at gauge stations for river runoff which is assumed to be the valid and global test for model performance. One model output is assumed to reflect the performance of all implemented processes and parameters. It neglects the complex interactions of landscape processes which are actually simulated by the model but not tested. The application of a spatial hydrological model however offers a vast potential of evaluation aspects which shall be presented here with the example of the eco-hydrological model SWIM. We present current activities to evaluate SWIM at the lysimeter site Brandis, the eddy-co-variance site Gebesee and with spatial crop yields of Germany to constrain model performance additionally to river runoff. The lysimeter site is used to evaluate actuall evapotranspiration, total runoff below the soil profile and crop yields. The eddy-covariance site Gebesee offers data to study crop growth via net-ecosystem carbon exchange and actuall evapotranspiration. The performance of the vegetation module is tested via spatial crop yields at county level of Germany. Crop yields are an indirect measure of crop growth which is an important driver of the landscape water balance and therefore eventually determines river runoff as well. First results at the lysimeter site show that simulated soil water dynamics are less sensitive to soil type than measured soil water dynamics. First results from the simulation of actuall evapotranspiration and carbon exchange at Gebesee show a satisfactorily model performance with however difficulties to capture initial vegetation growth in spring. The latter is a hint at problems capturing winter growth conditions and subsequent impacts on crop growth. This is also reflected in the performance of simulated crop yields for Germany where the model reflects crop yields of silage maize much better than of winter wheat. With the given approach we would like to highlight the advantages and

  19. Serious BTEX pollution in rural area of the North China Plain during winter season.

    PubMed

    Liu, Kankan; Zhang, Chenglong; Cheng, Ye; Liu, Chengtang; Zhang, Hongxing; Zhang, Gen; Sun, Xu; Mu, Yujing

    2015-04-01

    Atmospheric BTEX compounds (benzene, toluene, ethylbenzene and xylenes) in a rural site of the North China Plain (NCP) were preliminarily investigated in winter, and the outdoor concentrations (25.8-236.0 μg/m3) were found to be much higher than those reported in urban regions. The pollution of BTEX inside a farmer's house was even more serious, with combined concentrations of 254.5-1552.9 μg/m3. Based on the ratio of benzene to toluene (1.17±0.34) measured, the serious BTEX pollution in the rural site was mainly ascribed to domestic coal combustion for heating during the winter season. With the enhancement of farmers' incomes in recent years, coal consumption by farmers in the NCP is rapidly increasing to keep their houses warm, and hence the serious air pollution in rural areas of the NCP during winter, including BTEX, should be paid great attention. PMID:25872726

  20. Convective Signals from Surface Measurements at ARM Tropical Western Pacific Site: Manus

    SciTech Connect

    Wang, Yi; Long, Charles N.; Mather, James H.; Liu, Xiaodong

    2011-02-23

    The Madden-Julian Oscillation (MJO) signal has been detected using observations from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Tropical Western Pacific (TWP). With downwelling shortwave radiative fluxes and fractional sky cover from the ACRF TWP Manus site, and the statistical tools of wavelet and spectrum power, we report finding major convective signals from surface observations spanning the period from 1996 to 2006. Our findings are confirmed with the satellite-retrieved values of precipitation from the Global Precipitation Climatology Project (GPCP), and interpolated outgoing longwave radiation (OLR) satellite measurements from the National Oceanic and Atmospheric Administration (NOAA) for the same location. Our results indicate that the MJO convective signal has a strong seasonal-to-interannual evolution that is likely correlated with the interannual variability of El Ni ˜no Southern Oscillation (ENSO).

  1. Atmospheric Radiation Measurement (ARM) Data from the Tropical Western Pacific (TWP) Site.

    DOE Data Explorer

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. The Tropical Western Pacific (TWP) site is one of the four fixed sites. It consists of three climate research facilities; the Manus facility on Los Negros Island in Manus, Papua New Guinea (established in 1996); the Nauru facility on Nauru Island, Republic of Nauru (1998); and the Darwin facility in Darwin, Northern Territory, Australia (2002). The operations are supported by government agencies in each host country. Covering the area roughly between 10 degrees N and 10 degrees S of the equator and from 130 degrees E to 167 degrees E, the TWP locale includes a region that plays a large role in the interannual variability observed in the global climate system. More than 250,000 TWP data sets from 1996 to the present reside in the ARM Archive. Begin at the TWP information page for links or access data directly from the ARM Archive at http://www.archive.arm.gov/. Users will need to register for a password, but all files are then free for viewing or downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  2. Roundhouse (RND) Mountain Top Research Site: Measurements and Uncertainties for Winter Alpine Weather Conditions

    NASA Astrophysics Data System (ADS)

    Gultepe, I.; Isaac, G. A.; Joe, P.; Kucera, P. A.; Theriault, J. M.; Fisico, T.

    2014-01-01

    The objective of this work is to better understand and summarize the mountain meteorological observations collected during the Science of Nowcasting Winter Weather for the Vancouver 2010 Olympics and Paralympics (SNOW-V10) project that was supported by the Fog Remote Sensing and Modeling (FRAM) project. The Roundhouse (RND) meteorological station was located 1,856 m above sea level that is subject to the winter extreme weather conditions. Below this site, there were three additional observation sites at 1,640, 1,320, and 774 m. These four stations provided some or all the following measurements at 1 min resolution: precipitation rate (PR) and amount, cloud/fog microphysics, 3D wind speed (horizontal wind speed, U h; vertical air velocity, w a), visibility (Vis), infrared (IR) and shortwave (SW) radiative fluxes, temperature ( T) and relative humidity with respect to water (RHw), and aerosol observations. In this work, comparisons are made to assess the uncertainties and variability for the measurements of Vis, RHw, T, PR, and wind for various winter weather conditions. The ground-based cloud imaging probe (GCIP) measurements of snow particles using a profiling microwave radiometer (PMWR) data have also been shown to assess the icing conditions. Overall, the conclusions suggest that uncertainties in the measurements of Vis, PR, T, and RH can be as large as 50, >60, 50, and >20 %, respectively, and these numbers may increase depending on U h, T, Vis, and PR magnitude. Variability of observations along the Whistler Mountain slope (~500 m) suggested that to verify the models, model space resolution should be better than 100 m and time scales better than 1 min. It is also concluded that differences between observed and model based parameters are strongly related to a model's capability of accurate prediction of liquid water content (LWC), PR, and RHw over complex topography.

  3. Tobacco branding, plain packaging, pictorial warnings, and symbolic consumption.

    PubMed

    Hoek, Janet; Gendall, Philip; Gifford, Heather; Pirikahu, Gill; McCool, Judith; Pene, Gina; Edwards, Richard; Thomson, George

    2012-05-01

    We use brand association and symbolic consumption theory to explore how plain cigarette packaging would influence the identities young adults cocreate with tobacco products. Group discussions and in-depth interviews with 86 young adult smokers and nonsmokers investigated how participants perceive tobacco branding and plain cigarette packaging with larger health warnings. We examined the transcript data using thematic analysis and explored how removing tobacco branding and replacing this with larger warnings would affect the symbolic status of tobacco brands and their social connotations. Smokers used tobacco brand imagery to define their social attributes and standing, and their connection with specific groups. Plain cigarette packaging usurped this process by undermining aspirational connotations and exposing tobacco products as toxic. Replacing tobacco branding with larger health warnings diminishes the cachet brand insignia creates, weakens the social benefits brands confer on users, and represents a potentially powerful policy measure. PMID:22203384

  4. Stream Restoration Effects on an Impaired Benthic Macroinvertebrate Community in a Small Coastal Plain Stream in Johnston County, North Carolina.

    NASA Astrophysics Data System (ADS)

    Price, G. W.; Roessler, C. E.

    2005-05-01

    Pre- and post-construction benthic macroinvertebrate community data were collected from a recently restored small coastal plain stream in North Carolina. Metrics for comparing two sites, a restoration and a reference reach, included total and EPT taxa richness, total and EPT biotic indices (BIs), and EPT abundance. Initially, the restoration site scored worse than the reference site on every metric and indicated an impaired status for biological integrity, the stream's primary designated use. Two years after restoration, metric values for the restoration site have improved, while those for the reference site remained stable. EPT taxa richness has nearly doubled from 7 to 13 taxa, exceeding that of the reference site. However, BIs at the restoration site, while improving, remain worse than those of the reference site, suggesting that the restoration site community has not yet stabilized. This conclusion is supported by the lesser number of shredders found at the restoration site than the reference site. However, it is anticipated that the restoration shredder population will grow as organic matter input from maturing riparian vegetation increases. These observations suggest that stream restoration can be an effective management tool for restoring biological integrity, as measured by benthic macroinvertebrate communities.

  5. Influence of a multidimensional measure of attitudes on motives to use social networking sites.

    PubMed

    Krishnan, Archana; Hunt, Daniel Scot

    2015-03-01

    Positive attitudes toward a new communication technology tend to be a significant motivator in subsequent adoption and use. The recent spurt in the adoption of social media tools such as social networking sites (SNSs) demands the examination of attitudinal variables on motives to use these Web sites. This study explicated a multidimensional measure of attitudes toward SNSs and tested a theoretical model to examine the effect of attitudes on motives to use SNSs and SNS activity. Participants (N=674) completed a cross-sectional survey consisting of measures of attitudes toward SNSs, motives of SNS use, and level of activity. Results showed support for a revised model in which attitudinal variables-ease of use, self-disclosure, and social connection-strongly predicted motives of SNS use such as passing time, information/entertainment, social conformity, and, most importantly, socialization. The motive of using SNSs as a social tool superseded the direct effect of other motives on SNS activity, suggesting that users' primary activity on SNSs was for socialization and for relational development and maintenance. PMID:25751048

  6. A reliable aptamer array prepared by repeating inkjet-spotting toward on-site measurement.

    PubMed

    Inoue, Suzuyo; Seyama, Michiko; Miura, Toru; Horiuchi, Tsutomu; Iwasaki, Yuzuru; Takahashi, Jun-Ichi; Hayashi, Katsuyoshi; Tamechika, Emi

    2016-11-15

    A preparation protocol is proposed for a reliable aptamer array utilizing an ink-jet spotter. We accumulated streptavidin and biotinylated-aptamer in this order on a biotinylated-polyethylene glycol-coated gold substrate to prepare an aptamer array. The aptamer array was prepared with an alternate spotting structure where each aptamer spot was placed between reference spots formed with blocking solution thus suppressing contamination from neighboring spots during the blocking and washing processes. Four aptamer spots were prepared in a small area of 1×4.8mm(2) with five reference spots made of blocking solution. We evaluated the thrombin binding ability of the spotted aptamer array using a multi-analysis surface plasmon resonance sensor. We prepared a disposable capillary-driven flow chip designed for on-site measurement (Miura et al., 2010) with our aptamer array and detected thrombin from phosphate-buffered saline at concentrations of 50ngmL(-1) and 1μgmL(-1) (equivalent to 1.35 and 27nM, respectively). A correlation was observed between the refractive index shift and thrombin concentration. This implies that our array preparation protocol meets the requirement for the preparation of a one-time-use chip for on-site measurement. PMID:27315520

  7. PROGENITOR DIAGNOSTICS FOR STRIPPED CORE-COLLAPSE SUPERNOVAE: MEASURED METALLICITIES AT EXPLOSION SITES

    SciTech Connect

    Modjaz, M.; Bloom, J. S.; Filippenko, A. V.; Perley, D.; Silverman, J. M.; Kewley, L.

    2011-04-10

    Metallicity is expected to influence not only the lives of massive stars but also the outcome of their deaths as supernovae (SNe) and gamma-ray bursts (GRBs). However, there are surprisingly few direct measurements of the local metallicities of different flavors of core-collapse SNe (CCSNe). Here, we present the largest existing set of host-galaxy spectra with H II region emission lines at the sites of 35 stripped-envelope CCSNe. We derive local oxygen abundances in a robust manner in order to constrain the SN Ib/c progenitor population. We obtain spectra at the SN sites, include SNe from targeted and untargeted surveys, and perform the abundance determinations using three different oxygen-abundance calibrations. The sites of SNe Ic (the demise of the most heavily stripped stars, having lost both H and He layers) are systematically more metal rich than those of SNe Ib (arising from stars that retained their He layer) in all calibrations. A Kolmogorov-Smirnov test yields the very low probability of 1% that SN Ib and SN Ic environment abundances, which are different on average by {approx}0.2 dex (in the Pettini and Pagel scale), are drawn from the same parent population. Broad-lined SNe Ic (without GRBs) occur at metallicities between those of SNe Ib and SNe Ic. Lastly, we find that the host-galaxy central oxygen abundance is not a good indicator of the local SN metallicity; hence, large-scale SN surveys need to obtain local abundance measurements in order to quantify the impact of metallicity on stellar death.

  8. Integration of surface and upper air measurements for determining evapotranspiration at a high mountain site

    NASA Astrophysics Data System (ADS)

    Connell, Bernadette Helen

    An integrated approach using surface and upper air measurements was used to estimate evapotranspiration in a high mountain area. The first part of this work focused on identifying potential errors introduced into the results due to the characteristics of the sonde instrument and the dynamic environment it was used in. The second part of this work focused on estimating the evapotranspiration. Sources of error were reviewed for radiosonde measurements in the Atmospheric Boundary Layer and focusing on two radiosonde models manufactured by Atmospheric Instrumentation Research, Inc. Temperature and humidity lag errors and wind errors were analyzed. Errors in measurement of azimuth and elevation angles and pressure over short time intervals and at higher altitudes introduced wind vector errors greater than 5 m s-1. Mean temperature and humidity lag errors were small, but individual large lag errors occurred with dramatic changes in the environment, such as near the surface or at the top of the boundary layer. Dual sonde flights showed mean instrument error comparable to lag error. Vertical profiles of potential temperature and specific humidity measured by radiosondes within the surface boundary layer were used to estimate Bowen Ratio at a high elevation alpine site for 2 cases representing moist/windy and dry/calm conditions. The Bowen Ratio was combined with surface global radiation measurements to estimate evaporation (ET) through an energy balance approach. Weather modified vegetation characteristics and their spatial distribution reflect the large local differences in the latent (ET) and sensible heat fluxes measured a 2 surface stations close by. The sonde estimates correlated well (R2 = 0.90) with a weighted average of the surface measured ET in both an undisturbed high pressure ridge system characterized by a dry deep convective boundary layer and during the passage of a weak frontal system characterized by a shallower mechanically mixed moist boundary layer.

  9. Measuring Methane Emissions from Industrial and Waste Processing Sites Using the Dual Tracer Flux Ratio Method

    NASA Astrophysics Data System (ADS)

    Herndon, S.; Floerchinger, C.; Roscioli, J. R.; Yacovitch, T.; Franklin, J. P.; Shorter, J. H.; Kolb, C. E.; Subramanian, R.; Robinson, A. L.; Molina, L. T.; Allen, D.

    2013-12-01

    In order to directly quantify facility scale methane emissions during recent multi-state measurement campaigns we have deployed novel tracer release emission characterization approaches to investigate a wide variety of facility types. The development and application of a dual tracer flux ratio methodology will be discussed. Using known release rates of two (or more) inert tracer species, downwind methane plume measurements can be used to quantify and evaluate the uncertainty in known releases and unknown emissions of methane. Results from experiments designed to challenge the experimental methodology will be presented, which determined that for downwind sampling distances in excess of ~200 m, the dual tracer release method is quite robust (<20% emission rate error) under many atmospheric conditions and landscape variations. At downwind distances less than ~200 m, the assumption of equivalent dispersion between spatially separated release points can break down. For some facilities, this can be used to distinguish and estimate the magnitude of methane emissions taking place at different spatial points within the facility. Measured emissions for selected facilities will be presented and, where possible, the accurate quantification of the episodic releases during specific activities, as well as continuous fugitive emissions are identified and will be discussed . Collaboration with on-site operators allows these measurements to inform the design and implementation of effective mitigation strategies.

  10. Site-resolved measurement of spin correlations for fermions in an optical lattice

    NASA Astrophysics Data System (ADS)

    Parsons, Maxwell; Mazurenko, Anton; Chiu, Christie; Ji, Geoffrey; Greif, Daniel; Greiner, Markus

    2016-05-01

    The recent demonstrations of site-resolved imaging of fermionic atoms in an optical lattice enable local measurements of charge correlations in Fermi lattice systems. Access to local spin correlations, however, has not yet been demonstrated. Measuring spin correlations is of particular interest because in the repulsive 2D Hubbard model, away from half-filling, the interplay of the spin and charge degrees of freedom is expected to give rise to pseudo-gap physics and perhaps d-wave superconductivity, but this doped regime is difficult to describe with current theoretical techniques. In this talk, I describe a new method for locally measuring spin correlations with our Fermi Gas Microscope. We observe nearest-neighbor AFM correlations in a two-component mixture of fermionic lithium atoms in a 2D optical lattice. The ability to measure trap-resolved magnetic correlations will allow us to explore entropy redistribution schemes, and may provide a way to access the low-temperature phases of the Hubbard model using ultracold atoms.

  11. Snake River Plain FORGE Well Data for WO-2

    DOE Data Explorer

    Robert Podgorney

    1991-07-29

    Well data for the WO-2 well located in eastern Snake River Plain, Idaho. This data collection includes lithology reports, borehole logs, temperature at depth data, neutron density and gamma data, and rock strength parameters for the WO-2 well. This collection of data has been assembled as part of the site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. They were assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL).

  12. Snake River Plain FORGE Well Data for INEL-1

    DOE Data Explorer

    Robert Podgorney

    1979-03-01

    Well data for the INEL-1 well located in eastern Snake River Plain, Idaho. This data collection includes caliper logs, lithology reports, borehole logs, temperature at depth data, neutron density and gamma data, full color logs, fracture analysis, photos, and rock strength parameters for the INEL-1 well. This collection of data has been assembled as part of the site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. They were assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL).

  13. Measurements of methane emissions at natural gas production sites in the United States

    PubMed Central

    Allen, David T.; Torres, Vincent M.; Thomas, James; Sullivan, David W.; Harrison, Matthew; Hendler, Al; Herndon, Scott C.; Kolb, Charles E.; Fraser, Matthew P.; Hill, A. Daniel; Lamb, Brian K.; Miskimins, Jennifer; Sawyer, Robert F.; Seinfeld, John H.

    2013-01-01

    Engineering estimates of methane emissions from natural gas production have led to varied projections of national emissions. This work reports direct measurements of methane emissions at 190 onshore natural gas sites in the United States (150 production sites, 27 well completion flowbacks, 9 well unloadings, and 4 workovers). For well completion flowbacks, which clear fractured wells of liquid to allow gas production, methane emissions ranged from 0.01 Mg to 17 Mg (mean = 1.7 Mg; 95% confidence bounds of 0.67–3.3 Mg), compared with an average of 81 Mg per event in the 2011 EPA national emission inventory from April 2013. Emission factors for pneumatic pumps and controllers as well as equipment leaks were both comparable to and higher than estimates in the national inventory. Overall, if emission factors from this work for completion flowbacks, equipment leaks, and pneumatic pumps and controllers are assumed to be representative of national populations and are used to estimate national emissions, total annual emissions from these source categories are calculated to be 957 Gg of methane (with sampling and measurement uncertainties estimated at ±200 Gg). The estimate for comparable source categories in the EPA national inventory is ∼1,200 Gg. Additional measurements of unloadings and workovers are needed to produce national emission estimates for these source categories. The 957 Gg in emissions for completion flowbacks, pneumatics, and equipment leaks, coupled with EPA national inventory estimates for other categories, leads to an estimated 2,300 Gg of methane emissions from natural gas production (0.42% of gross gas production). PMID:24043804

  14. Measurements of methane emissions at natural gas production sites in the United States.

    PubMed

    Allen, David T; Torres, Vincent M; Thomas, James; Sullivan, David W; Harrison, Matthew; Hendler, Al; Herndon, Scott C; Kolb, Charles E; Fraser, Matthew P; Hill, A Daniel; Lamb, Brian K; Miskimins, Jennifer; Sawyer, Robert F; Seinfeld, John H

    2013-10-29

    Engineering estimates of methane emissions from natural gas production have led to varied projections of national emissions. This work reports direct measurements of methane emissions at 190 onshore natural gas sites in the United States (150 production sites, 27 well completion flowbacks, 9 well unloadings, and 4 workovers). For well completion flowbacks, which clear fractured wells of liquid to allow gas production, methane emissions ranged from 0.01 Mg to 17 Mg (mean = 1.7 Mg; 95% confidence bounds of 0.67-3.3 Mg), compared with an average of 81 Mg per event in the 2011 EPA national emission inventory from April 2013. Emission factors for pneumatic pumps and controllers as well as equipment leaks were both comparable to and higher than estimates in the national inventory. Overall, if emission factors from this work for completion flowbacks, equipment leaks, and pneumatic pumps and controllers are assumed to be representative of national populations and are used to estimate national emissions, total annual emissions from these source categories are calculated to be 957 Gg of methane (with sampling and measurement uncertainties estimated at ± 200 Gg). The estimate for comparable source categories in the EPA national inventory is ~1,200 Gg. Additional measurements of unloadings and workovers are needed to produce national emission estimates for these source categories. The 957 Gg in emissions for completion flowbacks, pneumatics, and equipment leaks, coupled with EPA national inventory estimates for other categories, leads to an estimated 2,300 Gg of methane emissions from natural gas production (0.42% of gross gas production). PMID:24043804

  15. Traceability for measurements of radioactivity in waste materials arising from nuclear site decommissioning

    NASA Astrophysics Data System (ADS)

    Dean, Julian C. J.; Adsley, Ian; Burgess, Peter H.

    2007-08-01

    Site decommissioning is now a major aspect of the work of the nuclear industry worldwide. One of its many technical challenges is the need to measure levels of radioactivity in a range of materials (e.g. concrete, brick and steel) in order that radioactive waste may be identified, sentenced and consigned to the appropriate waste stream in accordance with national regulations. This is done using any of a number of measurement techniques, falling under three categories: (i) bulk monitoring (for γ and neutron emitters), (ii) surface monitoring (predominantly for α and β emitters) and (iii) radiochemical analysis. The last is often used to determine a 'radionuclide fingerprint' for a particular operational area for use in conjunction with data from in situ monitoring. Traceability to national standards can be difficult to demonstrate for measurements of this type. Only a limited number of standards and reference materials are available, and their chemical and physical forms do not match those of the very wide range of samples being measured. Traceability for surface measurements is further complicated by the subjective nature of monitoring using hand-held detectors. This paper describes some of the detector types used for γ non-destructive assay (NDA) and for surface measurements, gives examples of currently available standards and calibration procedures and provides some guidance in how to achieve traceability. A generic analysis regime for an operational area is presented which demonstrates points where traceability can, in principle, be attained. A new methodology for developing 'realistic' large-volume standard sources, traceable to national standards, has been developed by the National Physical Laboratory (NPL), and this is described.

  16. Southern Great Plains Ice Nuclei Characterization Experiment Final Campaign Summary

    SciTech Connect

    DeMott, PJ; Suski, KJ; Hill, TCJ; Levin, EJT

    2015-03-01

    The first ever ice nucleating particle (INP) measurements to be collected at the Southern Great Plains site were made during a period from late April to June 2014, as a trial for possible longer-term measurements at the site. These measurements will also be used to lay the foundation for understanding and parameterizing (for cloud resolving modeling) the sources of these climatically important aerosols as well as to augment the existing database containing this knowledge. Siting the measurements during the spring was intended to capture INP sources in or to this region from plant, soil, dust transported over long distances, biomass burning, and pollution aerosols at a time when they may influence warm-season convective clouds and precipitation. Data have been archived of real-time measurements of INP number concentrations as a function of processing conditions (temperature and relative humidity) during 18 days of sampling that spanned two distinctly different weather situations: a warm, dry and windy period with regional dust and biomass burning influences in early May, and a cooler period of frequent precipitation during early June. Precipitation delayed winter wheat harvesting, preventing intended sampling during that perturbation on atmospheric aerosols. INP concentrations were highest and most variable at all temperatures in the dry period, where we attribute the INP activity primarily to soil dust emissions. Additional offline INP analyses are underway to extend the characterization of INP to cover the entire mixed phase cloud regime from -5°C to -35°C during the full study. Initial comparisons between methods on four days show good agreement and excellent future promise. The additional offline immersion freezing data will be archived as soon as completed under separate funding. Analyses of additional specialized studies for specific attribution of INP to biological and smoke sources are continuing via the National Science Foundation and National Aeronautics

  17. Verification of Satellite Rainfall Estimates from the Tropical Rainfall Measuring Mission over Ground Validation Sites

    NASA Astrophysics Data System (ADS)

    Fisher, B. L.; Wolff, D. B.; Silberstein, D. S.; Marks, D. M.; Pippitt, J. L.

    2007-12-01

    The Tropical Rainfall Measuring Mission's (TRMM) Ground Validation (GV) Program was originally established with the principal long-term goal of determining the random errors and systematic biases stemming from the application of the TRMM rainfall algorithms. The GV Program has been structured around two validation strategies: 1) determining the quantitative accuracy of the integrated monthly rainfall products at GV regional sites over large areas of about 500 km2 using integrated ground measurements and 2) evaluating the instantaneous satellite and GV rain rate statistics at spatio-temporal scales compatible with the satellite sensor resolution (Simpson et al. 1988, Thiele 1988). The GV Program has continued to evolve since the launch of the TRMM satellite on November 27, 1997. This presentation will discuss current GV methods of validating TRMM operational rain products in conjunction with ongoing research. The challenge facing TRMM GV has been how to best utilize rain information from the GV system to infer the random and systematic error characteristics of the satellite rain estimates. A fundamental problem of validating space-borne rain estimates is that the true mean areal rainfall is an ideal, scale-dependent parameter that cannot be directly measured. Empirical validation uses ground-based rain estimates to determine the error characteristics of the satellite-inferred rain estimates, but ground estimates also incur measurement errors and contribute to the error covariance. Furthermore, sampling errors, associated with the discrete, discontinuous temporal sampling by the rain sensors aboard the TRMM satellite, become statistically entangled in the monthly estimates. Sampling errors complicate the task of linking biases in the rain retrievals to the physics of the satellite algorithms. The TRMM Satellite Validation Office (TSVO) has made key progress towards effective satellite validation. For disentangling the sampling and retrieval errors, TSVO has developed

  18. Hydrologic Characteristics of Low-Impact Stormwater Control Measures at Two Sites in Northeastern Ohio, 2008-2013

    EPA Science Inventory

    This report updates and examines hydrologic data gathered to characterize the performance of two stormwater control measures (SCM) sites in the Chagrin River watershed, Ohio. At the Sterncrest Drive site, roadside bioswales and rain gardens were used to alleviate drainage problem...

  19. HISTORY AND ACCOMPLISHMENTS OF THE US EPA'S SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION (SITE) MONITORING AND MEASUREMENT (MMT) PROGRAM

    EPA Science Inventory

    This manuscript presents the history and evolution of the U.S. Environmental Protection Agency's (EPA) Superfund Innovative Technology Evaluation (SITE) Monitoring and Measurement Technology (MMT) Program. This includes a discussion of how the fundamental concepts of a performanc...

  20. Comparison of stress-measuring techniques at the DNA-UTP site, Rodgers Hollow, Kentucky

    SciTech Connect

    Finley, R.E.

    1994-12-01

    The Defense Nuclear Agency (DNA) is developing explosives technology through its Underground Technology Program (UTP). Sandia National Laboratories (SNL) has supported the DNA by conducting research to characterize the in situ stress and rock mass deformability at one of the UTP underground sites at Rodgers Hollow, near Louisville, Kentucky on the Fort Knox Military Reservation. The purpose of SNL`s testing was to determine the in situ stress using three different measurement techniques and, if possible, to estimate the rock mass modulus near the underground opening. The three stress-measuring techniques are (1) borehole deformation measurements using overcoring, (2) Anelastic Strain Recovery (ASR) complemented by laboratory ultrasonic and mechanical properties testing, and (3) the in situ flatjack technique using cancellation pressure. Rock mass modulus around the underground opening was estimated using the load deformation history of the flatjack and surrounding rock. Borehole deformation measurements using the overcoring technique probably represent the most reliable method for in situ stress determination in boreholes up to 50 ft (15 m) deep in competent rock around an isolated excavation. The technique is used extensively by the tunneling and mining industries. The ASR technique is also a core-based technique and is used in the petroleum and natural gas industries for characterization of in situ stress from deep boreholes. The flatjack technique has also been used in the tunneling and mining industries, and until recently has been limited to measurement of the stress immediately around the excavation. Results from the flatjack technique must be further analyzed to calculate the in situ stress in the far field.

  1. Dryline on 22 May 2002 During IHOP: Convective Scale Measurements at the Profiling Site

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Flamant, Cyrille; Miller, David; Evans, Keith; Fabry, Federic; DiGirolamo, Paolo; Whiteman, David; Geerts, Bart; Weckwerth, Tammy; Brown, William

    2004-01-01

    A unique set of measurements of wind, water vapor mixing ratio and boundary layer height variability was observed during the first MOP dryline mission of 22 May 2002. Water vapor mixing ratio from the Scanning Raman Lidar (SRL), high-resolution profiles of aerosol backscatter from the HARLIE and wind profiles from the GLOW are combined with the vertical velocity derived from the NCAR/ISS/MAPR and the high-resolution FMCW radar to reveal the convective variability of the cumulus cloud-topped boundary layer. A combined analysis of the in-situ and remote sensing data from aircraft, radiosonde, lidars, and radars reveals moisture variability within boundary layer updraft and downdraft regions as well as characterizes the boundary layer height variability in the dry and moist sides of the dryline. The profiler site measurements will be tied to aircraft data to reveal the relative intensity and location of these updrafts to the dry line. This study provides unprecedented high temporal and spatial resolution measurements of wind, moisture and backscatter within a dryline and the associated convective boundary layer.

  2. Estimation of Regional Net CO2 Exchange over the Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Biraud, S. C.; Riley, W. J.; Fischer, M. L.; Torn, M. S.; Cooley, H. S.

    2004-12-01

    Estimating spatially distributed ecosystem CO2 exchange is an important component of the North American Carbon Program. We describe here a methodology to estimate Net Ecosystem Exchange (NEE) over the Southern Great Plains, using: (1) data from the Department Of Energy's Atmospheric Radiation Measurement (ARM) sites in Oklahoma and Kansas; (2) meteorological forcing data from the Mesonet facilities; (3) soil and vegetation types from 1 km resolution USGS databases; (4) vegetation status (e.g., LAI) from 1 km satellite measurements of surface reflectance (MODIS); (5) a tested land-surface model; and (6) a coupled land-surface and meteorological model (MM5/ISOLSM). This framework allows us to simulate regional surface fluxes in addition to ABL and free troposphere concentrations of CO2 at a continental scale with fine-scale nested grids centered on the ARM central facility. We use the offline land-surface and coupled models to estimate regional NEE, and compare predictions to measurements from the 9 Extended Facility sites with eddy correlation measurements. Site level comparisons to portable ECOR measurements in several crop types are also presented. Our approach also allows us to extend bottom-up estimates to periods and areas where meteorological forcing data are unavailable.

  3. Corrective measures technology for shallow land burial at arid sites: field studies of biointrusion barriers and erosion control

    SciTech Connect

    Nyhan, J.W.; Hakonson, T.E.; Lopez, E.A.

    1986-03-01

    The field research program involving corrective measures technologies for arid shallow land burial (SLB) sites is described. Results of field testing of a biointrusion barrier installed at a close-out waste disposal site (Area B) at Los Alamos are presented. Soil erosion and infiltration of water into a simulated trench cap with various surface treatments were measured, and the interaction between erosion control and subsurface water dynamics is discussed relative to waste management.

  4. Excreta Sampling as an Alternative to In Vivo Measurements at the Hanford Site.

    PubMed

    Carbaugh, Eugene H; Antonio, Cheryl L; Lynch, Timothy P

    2015-08-01

    The capabilities of indirect radiobioassay by urine and fecal sample analysis were compared with the direct radiobioassay methods of whole body counting and lung counting for the most common radionuclides and inhalation exposure scenarios encountered by Hanford workers. Radionuclides addressed by in vivo measurement included 137Cs, 60Co, 154Eu, and 241Am as an indicator for plutonium mixtures. The same radionuclides were addressed using gamma energy analysis of urine samples, augmented by radiochemistry and alpha spectrometry methods for plutonium in urine and fecal samples. It was concluded that in vivo whole body counting and lung counting capability should be maintained at the Hanford Site for the foreseeable future, however, urine and fecal sample analysis could provide adequate, though degraded, monitoring capability for workers as a short-term alternative, should in vivo capability be lost due to planned or unplanned circumstances. PMID:26102322

  5. Environmental measurements at the Savannah River Site with Underwater gamma detectors

    SciTech Connect

    Winn, W.G.

    1994-12-31

    Underwater NAI(Tl) and HPGe detectors are used in the environmental measurements programs at the Savannah River Site (SRS). A 22.9 cm {times} 10.2 cm NAI(Tl) detector on the Savannah River continuously monitors effluent releases from both SRS (DOE) and Plant Vogtle (Georgia Power). Correlations with known releases indicate a sensitivity of 4 mBq/l for {sup 58}Co with 1500 min spectra; such levels are well below those of hazardous or legal concern. A 30%-efficient HPGE detector has appraised radionuclides in SRS cooling pond sediments; the dominant gamma-emitting radionuclide detected was {sup 137}Cs, at levels ranging up to 2.0 MBq/m{sup 2}. The pond activities were adequately quantified by 1 min counts with the HPGE detector; resulting contour maps of sediment {sup 137}Cs provided guidance for partially draining the ponds for dam repairs.

  6. Measuring youth exposure to alcohol marketing on social networking sites: challenges and prospects.

    PubMed

    Jernigan, David H; Rushman, Anne E

    2014-02-01

    Youth exposure to alcohol marketing has been linked to increased alcohol consumption and problems. On relatively new and highly interactive social networking sites (SNS) that are popular with youth, tools for measuring youth exposure to alcohol marketing in traditional media are inadequate. We critically review the existing policies of Facebook, Twitter, and YouTube designed to keep branded alcohol content away from underage youth. Looking at brand and user activity on Facebook for the 15 alcohol brands most popular among US youth, we found activity has grown dramatically in the past 3 years, and underage users may be accounting for some of this activity. Surveys of youth and adult participation in alcohol marketing on SNS will be needed to inform debate over these marketing practices. PMID:24284473

  7. A Compact Microelectrode Array Chip with Multiple Measuring Sites for Electrochemical Applications

    PubMed Central

    Dimaki, Maria; Vergani, Marco; Heiskanen, Arto; Kwasny, Dorota; Sasso, Luigi; Carminati, Marco; Gerrard, Juliet A.; Emneus, Jenny; Svendsen, Winnie E.

    2014-01-01

    In this paper we demonstrate the fabrication and electrochemical characterization of a microchip with 12 identical but individually addressable electrochemical measuring sites, each consisting of a set of interdigitated electrodes acting as a working electrode as well as two circular electrodes functioning as a counter and reference electrode in close proximity. The electrodes are made of gold on a silicon oxide substrate and are passivated by a silicon nitride membrane. A method for avoiding the creation of high edges at the electrodes (known as lift-off ears) is presented. The microchip design is highly symmetric to accommodate easy electronic integration and provides space for microfluidic inlets and outlets for integrated custom-made microfluidic systems on top. PMID:24878592

  8. A compact microelectrode array chip with multiple measuring sites for electrochemical applications.

    PubMed

    Dimaki, Maria; Vergani, Marco; Heiskanen, Arto; Kwasny, Dorota; Sasso, Luigi; Carminati, Marco; Gerrard, Juliet A; Emneus, Jenny; Svendsen, Winnie E

    2014-01-01

    In this paper we demonstrate the fabrication and electrochemical characterization of a microchip with 12 identical but individually addressable electrochemical measuring sites, each consisting of a set of interdigitated electrodes acting as a working electrode as well as two circular electrodes functioning as a counter and reference electrode in close proximity. The electrodes are made of gold on a silicon oxide substrate and are passivated by a silicon nitride membrane. A method for avoiding the creation of high edges at the electrodes (known as lift-off ears) is presented. The microchip design is highly symmetric to accommodate easy electronic integration and provides space for microfluidic inlets and outlets for integrated custom-made microfluidic systems on top. PMID:24878592

  9. Evaluating indigenous grass species as on-site sediment trapping measures, northwest Ethiopian highlands

    NASA Astrophysics Data System (ADS)

    Mekonnen, Mulatie; Keesstra, Saskia; Ritsema, Coen; Stroosnijder, Leo; Baartman, Jantiene

    2016-04-01

    Although many studies have been conducted to evaluate the sediment trapping efficacy (STE) of grass species as an on-site sediment trapping measure, still a lot of grass species are availab1e of which their STE is unknown. Lack of information on the STE of such grass species has a negative influence on their acceptance and practical application by the users. Therefore, this study was conducted at Debre Mewi watershed, northwestern Ethiopian highlands, to evaluate the STE of four locally dominant indigenous grass species (Desho, Senbelet, Akirma and Sebez) and one exotic species (Vetiver) using plot experiments. On average, the annual runoff produced was found to be 79; 64; 69; 71; 74; 75 l m-2, which resulted in 7; 1.7; 2.9; 3.6; 4.5 and 5.6 kg m-2 yr-1 of sediment yield on the Control, Desho, Vetiver, Senbelet, Akirma and Sebez plots, respectively. Desho had a trapping efficacy of 76 % because of its fast growth and lateral spreading nature. Vetiver and Senbelet reduced the transported sediment with 59 % and 49 % STE, respectively. Because of their slow growth nature, Akirma and Sebez showed low STEs, 36 % and 20 %, respectively. The grass species were found to be important sources of livestock feed in addition to trapping sediment and reducing soil loss. Desho, Senbelet, Akirma, Vetiver and Sebez provided 132, 106, 76, 69 and 51 t ha-1 yr-1 fresh biomass, respectively. The indigenous grass species provided a practical means to reduce sediment yield, therefore, it can be concluded that such indigenous grass species can be used as an on-site sediment trapping measure in the northwestern highlands of Ethiopia.

  10. Hiding in plain sight

    NASA Astrophysics Data System (ADS)

    Riedel, Adric Richard

    2012-05-01

    Since the first successful measurements of stellar trigonometric parallax in the 1830s, the study of nearby stars has focused on the highest proper motion stars (micro > 0.18″ yr-1). Those high proper motion stars have formed the backbone of the last 150 years of study of the Solar Neighborhood and the composition of the Galaxy. Statistically speaking, though, there is a population of stars that will have low proper motions when their space motions have been projected onto the sky. At the same time, over the last twenty years, populations of relatively young stars (less than ˜ 100 Myr), most of them with low proper motions, have been revealed near (< 100 pc) the Sun. This dissertation is the result of two related projects: A photometric search for nearby (< 25pc) southern-hemisphere M dwarf stars with low proper motions (micro < 0.18″ yr-1), and a search for nearby (< 100 pc) pre-main-sequence (< 125 Myr old) M dwarf systems. The projects rely on a variety of photometric, spectroscopic, and astrometric analyses (including parallaxes from our program) using data from telescopes at CTIO via the SMARTS Consortium and at Lowell Observatory. Within this dissertation, I describe the identification and confirmation of 23 new nearby low proper motion M dwarf systems within 25 pc, 8 of which are within 15 pc (50% of the anticipated low-proper-motion 15 pc sample). I also report photometric, spectroscopic, and astrometric parameters and identifications for a selection of 25 known and new candidate nearby young M dwarfs, including new low-mass members of the TW Hydra, beta Pictoris, Tucana-Horologium, Argus, and AB Doradus associations, following the methods of my Riedel et al. (2011) paper and its discovery of AP Col, the closest pre-main-sequence star to the Solar System. These low proper motion and nearby star discoveries are put into the context of the Solar Neighborhood as a whole by means of the new RECONS 25 pc Database, to which I have now added (including my

  11. Monitoring Soil Erosion of a Burn Site in the Central Basin and Range Ecoregion: Final Report on Measurements at the Gleason Fire Site, Nevada

    SciTech Connect

    Miller, Julianne; Etyemezian, Vicken; Shillito, Rose; Cablk, Mary; Fenstermaker, Lynn; Shafer, David

    2013-10-01

    The increase in wildfires in arid and semi-arid parts of Nevada and elsewhere in the southwestern United States has implications for post-closure management and long-term stewardship for Soil Corrective Action Units (CAUs) on the Nevada National Security Site (NNSS) for which the Nevada Field Office of the United States Department of Energy, National Nuclear Security Administration has responsibility. For many CAUs and Corrective Action Sites, where closure-in-place alternatives are now being implemented or considered, there is a chance that these sites could burn over at some time while they still pose a risk to the environment or human health, given the long half lives of some of the radionuclide contaminants. This study was initiated to examine the effects and duration of wildfire on wind and water erodibility on sites analogous to those that exist on the NNSS. The data analyzed herein were gathered at the prescribed Gleason Fire site near Ely, Nevada, a site comparable to the northern portion of the NNSS. Quantification of wind erosion was conducted with a Portable In-Situ Wind ERosion Lab (PI-SWERL) on unburned soils, and on interspace and plant understory soils within the burned area. The PI-SWERL was used to estimate emissions of suspendible particles (particulate matter with aerodynamic diameters less than or equal to 10 micrometers) at different wind speeds. Filter samples, collected from the exhaust of the PI-SWERL during measurements, were analyzed for chemical composition. Based on nearly three years of data, the Gleason Fire site does not appear to have returned to pre burn wind erosion levels. Chemical composition data of suspendible particles are variable and show a trend toward pre-burn levels, but provide little insight into how the composition has been changing over time since the fire. Soil, runoff, and sediment data were collected from the Gleason Fire site to monitor the water erosion potential over the nearly three-year period. Soil

  12. Use of a marker organism in poultry processing to identify sites of cross-contamination and evaluate possible control measures.

    PubMed

    Mead, G C; Hudson, W R; Hinton, M H

    1994-07-01

    1. Nine different sites at a poultry processing plant were selected in the course of a hazard analysis to investigate the degree of microbial cross-contamination that could occur during processing and the effectiveness of possible control measures. 2. At each site, carcases, equipment or working surfaces were inoculated with a non-pathogenic strain of nalidixic acid-resistant Escherichia coli K12; transmission of the organism among carcases being processed was followed qualitatively and, where appropriate, quantitatively. 3. The degree of cross-contamination and the extent to which it could be controlled by the proposed measures varied from one site to another. PMID:7953779

  13. Column-integrated aerosol optical properties and direct radiative forcing based on sun photometer measurements at a semi-arid rural site in Northeast China

    NASA Astrophysics Data System (ADS)

    Wu, Yunfei; Zhu, Jun; Che, Huizheng; Xia, Xiangao; Zhang, Renjian

    2015-04-01

    Ground and satellite remote sensing measurements have revealed heavy aerosol loading in China; however, aerosol optical properties and direct radiative forcing in Northeast China - important in climate modeling and remote sensing - have not been widely studied. We studied four years of continuous sun photometer measurements at Tongyu, a typical semi-arid rural site in Northeast China, to better understand column-integrated aerosol optical properties and direct radiative forcing. The annual average aerosol optical depth (AOD) at 500 nm was 0.20 ± 0.26; the Ångström exponent (AE) between 440 and 870 nm was 1.37 ± 0.64; and the single scattering albedo (SSA) at 440 nm was 0.91 ± 0.05. The AOD at this rural site was a quarter of that observed in the polluted North China Plain and Yangtze River Delta regions. Anthropogenic fine-mode particles were the dominant contributor to AOD. The AOD and AE showed generally opposite seasonal variation patterns. Relatively higher AOD values in summer (0.26 ± 0.27) and spring (0.24 ± 0.30) were likely related to long-range transportation of anthropogenic aerosols from southern industrial regions in summer, and the increased contribution of dust events in spring. The minimum AOD (0.16 ± 0.22) was concurrent with the maximum AE (1.75 ± 0.76), observed in winter. On average, the absorption AOD (AAOD) at 440 nm and its absorption Ångström exponent (AAE) between 440 and 870 nm were 0.06 ± 0.03 and 1.04 ± 0.43, respectively. The mean AAE was considerably higher than 1 in autumn and winter, indicating that brown carbon from biomass burning contributed greatly to aerosol absorption. The AAE was lower than 1 in summer and spring, related to the coating of black carbon particles. Large negative aerosol direct radiative forcing was estimated at the bottom of the atmosphere, with relatively lower values estimated at the top of the atmosphere; the means were - 26.28 and - 9.42 W m- 2, respectively. This resulted in a strong cooling

  14. Intercomparison of ammonia measurement techniques at an intensively managed grassland site (Oensingen, Switzerland)

    NASA Astrophysics Data System (ADS)

    Norman, M.; Spirig, C.; Wolff, V.; Trebs, I.; Flechard, C.; Wisthaler, A.; Schnitzhofer, R.; Hansel, A.; Neftel, A.

    2009-04-01

    As part of a field campaign in the framework of the NitroEurope project, three different instruments for atmospheric ammonia (NH3) measurements were operated side-by-side on a managed grassland site in Switzerland: a modified Proton Transfer Reaction Mass Spectrometer (PTR-MS), a GRadient of AErosol and Gases Online Registrator (GRAEGOR), and an Automated Ammonia Analyzer (AiRRmonia). The modified PTR-MS approach is based on chemical ionization of NH3 using O2+ instead of H3O+ as ionizing agent, GRAEGOR and AiRRmonia measure NH4+ in liquids after absorption of gaseous NH3 in a rotating wet-annular denuder and through a gas permeable membrane, respectively. Bivariate regression slopes using uncorrected data from all three instruments ranged from 0.78 to 0.97 while measuring ambient NH3 levels between 2 and 25 ppbv during a 5 days intercomparison period. Correlation coefficients r2 were in the range of 0.79 to 0.94 for hourly average mixing ratios. Observed discrepancies could be partly attributed to temperature effects on the GRAEGOR calibration. Bivariate regression slopes using corrected data were >0.92 with offsets ranging from 0.22 to 0.58 ppbv. The intercomparison demonstrated the potential of PTR-MS to resolve short-time NH3 fluctuations which could not be measured by the two other slow-response instruments. During conditions favoring condensation in inlet lines, the PTR-MS underestimated NH3 mixing ratios, underlining the importance of careful inlet designs as an essential component for any inlet-based instrument.

  15. Intercomparison of ammonia measurement techniques at an intensively managed grassland site (Oensingen, Switzerland)

    NASA Astrophysics Data System (ADS)

    Norman, M.; Spirig, C.; Wolff, V.; Trebs, I.; Flechard, C.; Wisthaler, A.; Schnitzhofer, R.; Hansel, A.; Neftel, A.

    2008-11-01

    As part of a field campaign in the framework of the NitroEurope project, three different instruments for atmospheric ammonia (NH3) measurements were operated side-by-side on a managed grassland site in Switzerland: a modified Proton Transfer Reaction Mass Spectrometer (PTR-MS), a GRadient of AErosol and Gases Online Registrator (GRAEGOR), and an Automated Ammonia Analyzer (AiRRmonia). The modified PTR-MS approach is based on chemical ionization of NH3 using O2+ instead of H3O+ as ionizing agent, GRAEGOR and AiRRmonia measure NH4+ in liquids after absorption of gaseous NH3 in a rotating wet-annular denuder and through a gas permeable membrane, respectively. Bivariate regression slopes using uncorrected data from all three instruments ranged from 0.78 to 0.97 while measuring ambient NH3 levels between 2 and 25 ppbv during a 5 days intercomparison period. Correlation coefficients r2 were in the range of 0.79 to 0.94 for hourly average concentrations. Observed discrepancies could be partly attributed to temperature effects on the GRAEGOR calibration. Bivariate regression slopes using corrected data ranged 0.92 to 0.95 with offsets ranging from 0.22 to 0.58 ppbv. The intercomparison demonstrated the potential of PTR-MS to resolve short-time NH3 fluctuations which could not be measured by the two other slow-response instruments. During conditions favoring condensation in inlet lines, the PTR-MS underestimated NH3 concentrations, underlining the importance of careful inlet designs as an essential component for any inlet-based instrument.

  16. High concentrations of regional dust from deserts to plains across the central Rocky Mountains, USA

    NASA Astrophysics Data System (ADS)

    Reynolds, R. L.; Munson, S. M.; Fernandez, D. P.; Neff, J. C.

    2015-12-01

    Regional mineral dust in the American Southwest affects snow-melt rates, biogeochemical cycling, visibility, and public health. We measured total suspended particulates (TSP) across a 500-km-long sampling network of five remote sites in Utah and Colorado, USA, forming a gradient in distance from major dust emitting areas. The two westernmost sites on the Colorado Plateau desert had similar TSP concentrations (2008-2012, daily average=126 μg m-3; max. daily average over a two-week period=700 μg m-3 at Canyonlands National Park, Utah), while the easternmost High Plains site, close to cropped and grazed areas in northeastern Colorado, had an average concentration of 143 μg m-3 in 2011-2012 (max. daily average=656 μg m-3). Such concentrations rank comparably with those of TSP in several African and Asian cities in the paths of frequent dust storms. Dust loadings at the two intervening montane sites decreased from the western slope of the Rocky Mountains (Telluride, daily average=68 μg m-3) to an eastern site (Niwot Ridge, daily average=58 μg m-3). Back-trajectory analyses and satellite retrievals indicated that the three westernmost sites received most dust from large desert-source regions as far as 300 km to their southwest. These sources also sometimes sent dust to the two easternmost sites, which additionally captured dust from sources north and northwest of the central Rocky Mountains as well as locally at the Plains site. The PM10 fraction accounted for <15% of TSP, but most TSP is only slightly larger (typical median size, 15-20 μm) after about 100-800 km transport distances. Correlations between TSP and PM10 values indicate increases in both fractions during regional wind storms, especially related to Pacific frontal systems during late winter to late spring. These measurements and observations indicate that most dust deposition and associated air-quality problems in the interior American West are connected to regional dust sources and not to those in

  17. Lead precipitation fluxes at tropical oceanic sites determined from /sup 210/Pb measurements

    SciTech Connect

    Settle, D.M.; Patterson, C.C.; Turekian, K.K.; Cochran, J.K.

    1982-02-20

    Concentrations of lead, /sup 210/Pb, and /sup 210/Po were measured in rain selected for least influence by local sources of contamination at several tropical and subtropical islands (Enewetak; Pigeon Key, Florida; and American Samoa) and shipboard stations (near Bermuda and Tahiti). Ratios expressed as ng Pb/dpm /sup 210/Pb in rain were 250--900 for Pigeon Key (assuming 12% adsorption for /sup 210/Pb and no adsorption for lead), depending on whether the air masses containing the analyzed rain came from the Caribbean or from the continent, respectively; about 390 for the northern Sargasso Sea downwind from emissions of industrial lead in North America; 65 for Enewetak, remote from continental emissions of industrial lead in the northern hemisphere; and 14 near Tahiti, a remote location in the southern hemisphere where industrial lead emissions to the atmosphere are much less than in the northern hemisphere. (The American Samoa sample yielded a higher ratio than Tahiti; the reason for this is not clear but may be due to local Pb sources). The corresponding fluxes of lead to the oceans, based on measured or modeled /sup 210/Pb precipitation fluxes, are about 4 ng Pb/cm/sup 2/y for Tahiti, 10 for Enewetak, and 270 for the Sargasso Sea site, and between 110 to 390 at Pigeon Key.

  18. Peroxyacetyl nitrate (PAN) measurements at a remote site in New Mexico

    SciTech Connect

    Prestbo, E. ); Gaffney, J.S. )

    1988-09-01

    Photochemical oxidants are not limited to the criteria pollutant, ozone. Peroxyactyl nitrate (PAN) is probably one of the better known non-criteria oxidants. PAN was originally referred to as compound X, as it caused a unique type of plant damage to numerous crops in southern California. PAN was associated with Los Angeles photochemical smog and ozone in the late 1950s and 60s. It should not be confused with X-agent which has also been associated with photochemical oxidants. PAN has been found to be an important means of transporting NOx in remote regions. This is due to its rather long atmospheric lifetime. It reacts slowly with OH radical, is photochemically stable, and has a low water solubility. Its principal loss is due to unimolecular decomposition. The authors have been making ozone, NO, NO{sup 2}, and PAN measurements at a remote site near Los Alamos, New Mexico for an extended period of time. An automated gas chromatograph equipped with an electron capture detector is used to make the PAN measurements. Diffusion tubes with PAN/n-tridecane solutions are used to calibrate the instrument. Typical PAN data obtained at the sight are presented. The collected PAN and oxidant data are examined, and have been modeled to determine the possible concentrations of peracetic acid and methyl hydroperoxide in remote air. These studies are discussed in light of their possible implications for peroxide contributions to environmental impacts and aqueous chemistry reactions.

  19. Measurements of peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) at selected urban, rural and remote sites

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.; Salas, Louis J.

    1989-01-01

    PAN and PPN were measured in a series of eight field studies performed at urban, rural and remote locations in the contiguous U.S. during 1983-1985. Seven of the eight studies were performed in the winter/spring period, a period of sparsely available data. Nearly 2000 air samples were analyzed during these studies. Mean PAN and PPN levels in the range of 45-1600 ppt (max. 7.9 ppb) and 5-230 ppt (max. 0.9 ppb), respectively, were measured. Despite a great deal of observed variability, PAN and PPN showed virtually identical behavior at all sites and in all seasons, supporting the view that these nitrogenous compounds are produced and destroyed by very similar mechanisms. On the average PPN concentrations were about 8 percent (range 3-14 percent) of PAN values. It is inferred that PPN/PAN ratio is highest in urban areas and declines as polluted air masses are transported over long distances.

  20. Uncertainty and bias of surface ozone measurements at selected Global Atmosphere Watch sites

    NASA Astrophysics Data System (ADS)

    Klausen, JöRg; Zellweger, Christoph; Buchmann, Brigitte; Hofer, Peter

    2003-10-01

    The Global Atmosphere Watch (GAW) program currently coordinates 22 ground-based atmospheric background monitoring stations of global scope. The GAW World Calibration Centre for Surface Ozone, Carbon Monoxide and Methane (WCC-EMPA) is responsible for tracing surface ozone measurements at these stations to the designated reference within the GAW program, the Standard Reference Photometer SRP 2 maintained at the National Institute of Standards and Technology (NIST). The recommended method for surface ozone measurements is based on UV absorption at 254 nm (Hg line). Repeated and regular intercomparisons of station instruments are necessary to achieve and maintain high and known data quality. In this paper, the traceability chain is explained, and standard uncertainties for each element are evaluated. Data of 26 intercomparisons performed at 14 stations between 1996 and 2002 are analyzed. On 23 occasions, the instruments passed the audit with "good" agreement, in one case with "sufficient" agreement. On 2 occasions, both first audits at the site, the audited instrument did not comply with the minimal data quality requirements. The best instruments in use exhibit a median absolute bias of approximately 0.32 ppbv and a standard uncertainty of approximately 0.8 ppbv (0-100 ppbv). The quantitative improvement of data quality as a result of repeated audits can be demonstrated with several stations.

  1. Integrated metagenomics and field measurements of polygon features at the NGEE-Arctic Barrow site

    NASA Astrophysics Data System (ADS)

    Tas, N.; Wu, Y.; Smith, L. J.; Ulrich, C.; Kneafsey, T. J.; Torn, M. S.; Hubbard, S. S.; Wullschleger, S. D.; Jansson, J.

    2013-12-01

    Arctic soils contain an estimated 12-42% of terrestrial carbon, most of which is sequestered in permafrost. High latitudes have experienced the greatest regional warming in recent decades and observations suggest that permafrost degradation is now commonly observed in the region. With increasing global temperatures, permafrost soils are becoming a potential source of greenhouse gas (GHG) emissions. Because of widespread permafrost thaw much of the soil organic matter may be available for rapid mineralization by microorganisms in the soil. Yet little is known about the vulnerability of permafrost and the potential response of soil microorganisms to availability of new carbon sources. On the Alaskan North Slope the collapse and rise of soil due to formation of ice wedges and permafrost thaw create distinct features called polygons. As part of the U.S. Department of Energy (DOE) Next Generation Ecosystem Experiment (NGEE) in the Arctic, we aimed to determine the distribution of microbial populations across a range of polygon features and to correlate the microbial data to GHG flux data. To determine the microbial community distribution and metabolic potential, we collected seasonally thawed active layer soil samples along two polygon transects (Site 0 and AB), including high-centered, transitional and low-centered polygons. Illumina HiSeq technology was used to sequence 16SrRNA genes and metagenomes from these active layer soils. The sequence data was correlated to GHG flux measurements and to environmental data from the site, including geophysical and geochemical soil characteristics. Both the microbial communities and the flux measurements varied along the polygon transect. Each polygon had a distinct microbial community structure; however, these microbial communities shared many metabolic capabilities. For example, many genes involved in degradation of chitin could be found all three polygons. Functional genes involved in methanogenesis and CH4-flux measurements

  2. Investigation of ice cloud microphysical properties of DCSs using aircraft in situ measurements during MC3E over the ARM SGP site

    NASA Astrophysics Data System (ADS)

    Wang, Jingyu; Dong, Xiquan; Xi, Baike

    2015-04-01

    Six deep convective systems (DCSs) with a total of 5589 five-second samples and a range of temperatures from -41°C to 0°C during the Midlatitude Continental Convective Clouds Experiment (MC3E) were selected to investigate the ice cloud microphysical properties of DCSs over the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site. The ice cloud measurements of the DCS cases were made by the University of North Dakota Citation II research aircraft, and the ice cloud properties were derived through the following processes. First, the instances of supercooled liquid water in the ice-dominated cloud layers of DCSs have been eliminated using multisensor detection, including the Rosemount Icing Detector, King and Cloud Droplet Probes, as well as 2DC and Cloud Imaging Probe images. Then the Nevzorov-measured ice water contents (IWCs) at maximum diameter Dmax < 4000 µm are used as the best estimation to determine a new mass-dimensional relationship. Finally, the newly derived mass-dimensional relationship (a = 0.00365, b = 2.1) has been applied to a full spectrum of particle size distributions (PSDs, 120-30,000 µm) constructed from both 2DC and High-Volume Precipitation Spectrometer measurements to calculate the best-estimated IWCs of DCSs during MC3E. The averages of the total number concentrations (Nt), median mass diameter (Dm), maximum diameter (Dmax), and IWC from six selected cases are 0.035 cm-3, 1666 µm, 8841 µm, and 0.45 g m-3, respectively. The gamma-type-size distributions are then generated matching the observed PSDs (120-30,000 µm), and the fitted gamma parameters are compared with the observed PSDs through multimoment assessments including first moment (Dm), third moment (IWC), and sixth moment (equivalent radar reflectivity, Ze). For application of observed PSDs to the remote sensing community, a series of empirical relationships between fitted parameters and Ze values has been derived, and the bullet rosette

  3. Estimates of mean monthly streamflow for selected sites in the Musselshell River basin, Montana, base period water years 1937-86

    USGS Publications Warehouse

    Parrett, Charles; Johnson, D.R.

    1989-01-01

    Estimates of mean monthly and mean annual streamflow were made for 56 selected sites in the Musselshell River basin and 1 site outside the basin. The study area was divided into a Mountain Region and a Plains Region and the estimation methods were applied separately in the two regions. Four methods were developed to estimate mean monthly streamflow at ungaged sites. The first method was based on the regression relation between mean monthly streamflow and various basin and climatic characteristics. The standard errors ranged from 35 to 71% in the Mountain Region and from 98 to 157% in the Plains Region. The second method was based on the regression relations between mean monthly streamflow and active-channel width. The standard errors ranged from 38 to 81% in the Mountain Region and from 71 to 98% in the Plains Region. The third method was based on correlation of measured streamflow at ungaged sites with concurrent daily mean streamflow at nearby gaged sites. The standard errors ranged from 36 to 66% in the Mountain Region and from 109 to 321% in the Plains Region. The fourth method, generally the most reliable, estimated mean monthly streamflows by weighing individual estimates in accordance with their variance and degree of independence. The standard error for this method when all three individual estimates were weighed ranged from 25 to 55% in the Mountain Region and from 71 to 97% in the Plains Region. (USGS)

  4. Lunar Smooth Plains Identification and Classification

    NASA Astrophysics Data System (ADS)

    Boyd, A. K.; Robinson, M. S.; Mahanti, P.; Lawrence, S. J.; Spudis, P.; Jolliff, B. L.

    2012-12-01

    Smooth plains are widespread on the Moon and have diverse origins. The maria comprise the majority of the smooth plains and are volcanic in origin. Highland smooth plains are patchy, and tend to fill large craters and basins; their origins have eluded unambiguous classification. Prior to the Apollo 16 mission, many workers thought that highland plains were volcanic, possibly more silicic than the maria. However, as the Apollo 16 samples are mostly impact breccias, the highland smooth plains were re-interpreted basin impact ejecta, most likely from the Imbrium and possibly Orientale basins. Conversely, some known non-mare volcanic units, such as the Apennine Bench Formation, contain light plains. These interpretations do not rule out alternate origins for a subset of highland smooth plains, including impact melt or volcanic origins (effusive or pyroclastic). We developed an algorithm to identify smooth plains using topographic parameters from the WAC Global Lunar Digital Terrain Model (DTM) (GLD100), sampled at 333 m/pixel. We classify the smooth plains using the Clementine UVVIS FeO map and photometrically corrected Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) images. Terrain with slopes less than 2° (1 km baseline) and standard deviation of slope less than 0.75° (1 km x 1 km box, n=9) are defined as smooth plains. Highland smooth plains are distinguished from basaltic smooth plains using the following criteria: LROC WAC 643 nm normalized reflectance > 0.056, LROC WAC 321 nm / 415 nm ratio < 0.74, and Clementine FeO < 12 wt.% (excluding Clementine non-coverage areas). The remaining smooth plains are classified as maria and are subdivided into two classes: LROC WAC 321 nm / 415 nm ratio > 0.77 is termed blue maria and a ratio ≤ 0.77 is termed red maria. The automatic classification was limited to the 87% of the Moon covered by photometrically normalized WAC data (60°S to 60°N). The differences between the maria and highland smooth plains

  5. Solar Radiation Measurements at the Chesapeake Bay COVE Site and Comparison With Model

    NASA Astrophysics Data System (ADS)

    Jin, Z.; Charlock, T.; Rutledge, K.

    2001-05-01

    To validate retrievals of flux and albedo in the CERES satellite program, broad-band upwelling and downwelling solar irradiances are measured routinely at the CERES Ocean Validation Experiment (COVE) site 25 km east of the coast of Virginia, near the mouth of the Chesapeake Bay. A full year of observations are compared with simulations from a coupled radiative transfer model. The coupled model treats absorption and scattering by layers of both the atmosphere and the ocean explicitly and consistently, in terms of the inherent optical properties of the air and the sea. Key input parameters for the model include aerosol optical depth, wind speed, and total precipitable water; these are measured at COVE. The modeled total downwelling irradiances, which depend mainly on the atmospheric optical properties, agree well with observations. But the modeled upwelling irradiances (and hence ocean surface albedo), which depend heavily on the the ocean optical properties, are generally less than the observations. The measured upwelling irradiances are strongly influenced by sea state and surface wind, resulting in a seasonal variation of the ocean surface albedo. Candidates to explain the discrepancy of observed and modeled albedo are (1) in-ocean scattering that was not included in the model (i.e., sediments or air bubbles), (2) possible inadequacy of the classical Cox-Munk distribution for the wind speed dependence of sea slopes, and (3) uncertainties in aerosol optical properties. We are presently testing SeaWiFS data as a source for the concentrations of chlorophyl and dissolved organic matter (DOM); and plan to compare the model with available upwelling spectral irradiances and radiances, in addition to the broadband fluxes as described above.

  6. Ground-based air-sampling measurements near the Nevada Test Site after atmospheric nuclear tests.

    PubMed

    Cederwall, R T; Ricker, Y E; Cederwall, P L; Homan, D N; Anspaugh, L R

    1990-11-01

    Historical air-sampling data measured within 320 km (200 mi) of the Nevada Test Site (NTS) have been reviewed for periods following atmospheric nuclear tests, primarily in the 1950s. These data come mostly from high-volume air samplers, with some from cascade-impactor samplers. Measurements considered here are for beta radiation from gross fission products. The resulting air-quality data base is comprised of almost 13,000 samples from 42 sampling locations downwind of the NTS. In order to compile an accurate air-quality data base for use in estimating exposure via inhalation, raw data values were sought where possible, and the required calculations were performed on a computer with state-of-the-art algorithms. The data-processing procedures consisted of (1) entry and error checking of historical data; (2) determination of appropriate background values, air-sampling volumes, and net air concentrations; and (3) calculation of integrated air concentration (C) for each sample (considering fallout arrival times). Comparing C values for collocated high-volume and cascade-impactor samplers during the Upshot-Knothole series showed similar lognormal distributions, but with a geometric mean C for cascade impactors about half that for the high-volume air samplers. Overall, the uncertainty in C values is about a factor of three. In the past, it has been assumed that C could be related to ground deposition by a constant having units of velocity. In our data bases, simultaneous measurements of air concentration and ground deposition at the same locations were not related by a constant; indeed, there was a great amount of scatter. This suggests that the relationship between C and ground deposition in this situation is too complex to be treated adequately by simple approaches. PMID:2211113

  7. Ground-based air-sampling measurements near the Nevada Test Site after atmospheric nuclear tests

    SciTech Connect

    Cederwall, R.T.; Ricker, Y.E.; Cederwall, P.L.; Homan, D.N.; Anspaugh, L.R. )

    1990-11-01

    Historical air-sampling data measured within 320 km (200 mi) of the Nevada Test Site (NTS) have been reviewed for periods following atmospheric nuclear tests, primarily in the 1950s. These data come mostly from high-volume air samplers, with some from cascade-impactor samplers. Measurements considered here are for beta radiation from gross fission products. The resulting air-quality data base is comprised of almost 13,000 samples from 42 sampling locations downwind of the NTS. In order to compile an accurate air-quality data base for use in estimating exposure via inhalation, raw data values were sought where possible, and the required calculations were performed on a computer with state-of-the-art algorithms. The data-processing procedures consisted of (1) entry and error checking of historical data; (2) determination of appropriate background values, air-sampling volumes, and net air concentrations; and (3) calculation of integrated air concentration (C) for each sample (considering fallout arrival times). Comparing C values for collocated high-volume and cascade-impactor samplers during the Upshot-Knothole series showed similar lognormal distributions, but with a geometric mean C for cascade impactors about half that for the high-volume air samplers. Overall, the uncertainty in C values is about a factor of three. In the past, it has been assumed that C could be related to ground deposition by a constant having units of velocity. In our data bases, simultaneous measurements of air concentration and ground deposition at the same locations were not related by a constant; indeed, there was a great amount of scatter. This suggests that the relationship between C and ground deposition in this situation is too complex to be treated adequately by simple approaches.

  8. Magnetic Measurements and Heavy Metal Concentrations at Formosa Mine Superfund Site, Douglas County, OR

    NASA Astrophysics Data System (ADS)

    Upton, T. L.

    2015-12-01

    Advances in the field of environmental magnetism have led to exciting new applications for this field. Magnetic minerals are ubiquitous in the environment and tend to have an affinity for heavy metals. It has been demonstrated that magnetic properties are often significantly related to concentrations of heavy metals and/or pollution loading index (PLI). As a result, magnetic techniques have been used as proxy for determining hot spots of several types of pollution produced from a diversity of anthropogenic sources. Magnetic measurements are non-destructive and relatively inexpensive compared to geochemical analyses. The utility of environmental magnetic methods varies widely depending on biological, chemical and physical processes that create and transform soils and sediments. Applications in the direction of mapping heavy metals have been studied and shown to be quite useful in countries such as China and India but to date, little research has been done in the US. As such, there is need to expand the scope of research to a wider range of soil types and land uses, especially within the US. This study investigates the application of environmental magnetic techniques to mapping of heavy metal concentrations and PLI at the Formosa Mine Superfund Site, an abandoned mine about 25 miles southwest of Roseburg, OR. Using hotspot analysis, correlation and cluster analyses, interactions between metals and magnetic parameters are examined in relation to environmental factors such as proximity to seeps and adits. Preliminary results suggest significant correlation of magnetic susceptibility with certain heavy metals, signifying that magnetic methods may be useful in mapping heavy metal hotspots at this site.

  9. SITE TECHNOLOGY PROFILES, TENTH EDITION, VOLUME 3 - MEASUREMENT AND MONITORING PROGRAM

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program, now in its thirteenth year, is an integral part of EPA's research into alternative cleanup methods for hazardous waste sites around the nation. The SITE Program was created to encourage the development and routine us...

  10. SITE TECHNOLOGY PROFILES - 11TH EDITION, MEASUREMENT AND MONITORING PROGRAM, VOLUME 3

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program, now in its eleventh year is an integral part of EPA's research into alternative cleanup methods for hazardous waste sites around the nation. The SITE Program was created to encourage the development and routine use o...

  11. Effects of Grazing Pressure on Efficiency of Grazing on North American Great Plains Rangelands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Robust prediction models describing vegetation and animal responses to stocking rate in North American Great Plains rangelands are lacking as across site comparisons are limited by different qualitative designations of light, moderate and heavy stocking. Comparisons of stocking rates across sites ca...

  12. Pesticides in surface water measured at select sites in the Sacramento River basin, California, 1996-1998

    USGS Publications Warehouse

    Domagalski, Joseph L.

    2000-01-01

    Pesticides were measured in one urban stream, one agricultural stream, one site on the Sacramento River, and one large flood control channel over a period of 18 months during 1996-1998. All sites were located within the Sacramento River Basin of California. Measurements were made on 83 pesticides or pesticide transformation products by either gas chromatography/mass spectrometry or by high performance liquid chromatography with ultraviolet light spectrometry. Some pesticides were detected frequently at the agricultural stream and downstream in the Sacramento River and at the flood control channel of the Sacramento River. These were pesticides related to rice farming (molinate, carbofuran, thiobencarb, and bentazon); herbicides used both agriculturally or for roadside maintenance (diuron, simazine, and metolachlor); or insecticides used on orchards and row corps (diazinon and chlorpyrifos). No pesticide concen-trations above enforceable water quality criteria were measured at either the agricultural site or the Sacramento River sites. In contrast to the agricul-tural site, insecticides used for household, lawn, or garden maintenance were the most frequently detected pesticides at the urban site. Diazinon, an organophosphate insecticide, exceeded recom-mended criteria for the protection of aquatic life, and the diazinon levels were frequently above known toxic levels for certain zooplankton species at the urban site. Because of the low discharge of the urban stream, pesticide concentrations were greatly diluted upon mixing with Sacramento River water.

  13. Airborne Spectral Measurements of Surface-Atmosphere Anisotropy for Skukuza and Mongu Sites

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; King, Michael D.; Arnold, G. T.; Li, J. Y.

    2001-01-01

    The Cloud Absorption Radiometer (CAR) was flown aboard the University of Washington Convair CV-580 research aircraft and took measurements on 23 flights between August 15 and September 16. On 12 of those flights, BRF (bidirectional reflection function) measurements were obtained over different natural surfaces and ecosystems in southern Africa. The BRF measurements were done to characterize surface anisotropy in support of SAFARI 2000 science objectives principally to validate products from NASA's EOS (Earth Observing System) satellites, and to parameterize and validate BRF models. In this paper we present results of BRFs taken over two EOS validation sites: Skukuza tower, South Africa (25.0 S, 31.5 E) and Mongu tower, Zambia (15.4 S, 23.3 E). The CAR is capable of measuring scattered light in fourteen spectral bands. The scan mirror, rotating at 100 rpm, directs the light into a Dall-Kirkham telescope where the beam is split into nine paths. Eight light beams pass through beam splitters, dichroics, and lenses to individual detectors (0.34-1.27 microns), and finally are registered by eight data channels. They are sampled simultaneously and continuously. The ninth beam passes through a spinning filter wheel to an InSb detector cooled by a Stirling cycle cooler. Signals registered by the ninth data channel are selected from among six spectral channels (1.55-2.30 microns). The filter wheel can either cycle through all six spectral bands at a prescribed interval (usually changing filter every fifth scan line), or lock onto any one of the six spectral bands and sample it continuously. To measure the BRF of the surface-atmosphere system, the University of Washington CV-580 had to bank at a comfortable roll angle of approximately 20 degrees and fly in a circle about 3 km in diameter above the surface for roughly two minutes. Replicated observations (multiple circular orbits) were acquired over selected surfaces so that average BRF smooth out small-scale surface and

  14. Acoustic-Seismic Coupling in Porous Ground - Measurements and Analysis for On-Site-Inspection Support

    NASA Astrophysics Data System (ADS)

    Liebsch, Mattes; Gorschlüter, Felix; Altmann, Jürgen

    2014-05-01

    During on-site inspections (OSI) of the Comprehensive Nuclear Test Ban Treaty Organisation (CTBTO) a local seismic network can be installed to measure seismic aftershock signals of an assumed underground nuclear explosion. These signals are caused by relaxation processes in and near the cavity created by the explosion and when detected can lead to a localisation of the cavity. This localisation is necessary to take gas samples from the ground which are analysed for radioactive noble gas isotopes to confirm or dismiss the suspicion of a nuclear test. The aftershock signals are of very low magnitude so they can be masked by different sources, in particular periodic disturbances caused by vehicles and aircraft in the inspection area. Vehicles and aircraft (mainly helicopters) will be used for the inspection activities themselves, e.g. for overhead imagery or magnetic-anomaly sensing. While vehicles in contact with the ground can excite soil vibrations directly, aircraft and vehicles alike emit acoustic waves which excite soil vibrations when hitting the ground. These disturbing signals are of periodic nature while the seismic aftershock signals are pulse-shaped, so their separation is possible. The understanding of the coupling of acoustic waves to the ground is yet incomplete, a better understanding is necessary to improve the performance of an OSI, e.g. to address potential consequences for the sensor placement, the helicopter trajectories etc. In a project funded by the Young Scientist Research Award of the CTBTO to one of us (ML), we investigated the acoustic-seismic coupling of airborne signals of jet aircraft and artificially induced ones by a speaker. During a measurement campaign several acoustic and seismic sensors were placed below the take-off trajectory of an airport at 4 km distance. Therefore taking off and landing jet aircraft passed nearly straightly above the setup. Microphones were placed close to the ground to record the sound pressure of incident

  15. Solar-absorption measurements of ozone from two ground based FTIR sites

    NASA Astrophysics Data System (ADS)

    Plaza, Eddy; Stremme, Wolfgang; Bezanilla, Alejandro; Grutter, Michel; Blumenstock, Thomas; Hase, Frank; Gisi, Michael

    2013-04-01

    Ozone reduces the amount of ultraviolet light entering earths atmosphere and continuous monitoring of total ozone column especially in higher latitudes has been a major task since the discovery of the stratospheric ozone depletion. As tropospheric ozone is a main greenhouse gas, monitoring of ozone in the lower atmosphere and also in the tropics gains importance. Tropospheric ozone also plays an important role in air quality and high levels of ozone in the boundary layer affects the public health. Ozone is produced through a complicated path of photochemistry processes from volatile organic compounds and nitrogen oxides (NOx)[1]. In large cities, these ozone precursors are mainly emitted from anthropogenic activities and in Mexico City the ozone concentration frequently exceedes the local standard for air quality (e.g. on 80% of the days of the year 2002)[2]. Since May 2012 high resolution Fourier transform infrared solar absorption spectra have been used for determining the total column and profile of ozone at the high altitude remote site Altzomoni (19°.12`N, 98°.65`E) located 60 km southeast of Mexico City at 4000 m a.s.l. These measurements are complemented with solar absorption spectra recorded with a moderate resolution FTIR spectrometer at the UNAM campus in Mexcio City (19°25`N, 99°10`W, 2240 m a.s.l.). The vertical profiles and total columns of ozone are inferred from solar spectra by using the retrieval code PROFFIT. The results are compared with simulations of the Whole Atmosphere Community Climate Model (WACCM) and other correlative data. The ozone column amount in the polluted mixing layer of Mexico City is estimated from the intercomparison of measurements at the urban and remote sites and discussed. [1] Tie, X.; Brasseur, G.; Ying, Z. Impact of Model Resolution on Chemical Ozone Formation in Mexico City: Application of the Wrf-Chem Model. Atmospheric Chemistry and Physics. 2010, 10, 8983-8995. [2] McKinley, G.; Zuk, M.; Hojer, M.; Avalos, M

  16. Lower tropospheric ozone and aerosol measurements at a coastal mountain site in Central California

    NASA Astrophysics Data System (ADS)

    Post, A.; Faloona, I. C.; Lighthall, D.; Wexler, A. S.; Cliff, S. S.; Conley, S. A.; Zhao, Y.

    2013-12-01

    Increasing concern over the impacts of exogenous air pollution in California's Central Valley has prompted the establishment of a coastal, high altitude monitoring site at the Chews Ridge Observatory (1550 m) approximately 30 km east of Point Sur in Monterey County, operated by the Monterey Institute for Research in Astronomy. Eighteen months of ozone and aerosol measurements are presented in the context of long-range transport and its potential impact on surface air quality in the southern San Joaquin Valley. Moreover, several ozone surveys have been conducted by aircraft upwind, over the Pacific Ocean, and downwind, over the Central Valley, to characterize horizontal and vertical transport across the coastal mountains. Diurnal variations present at Chews Ridge indicate the formation of a convective boundary layer on the ridge during the daytime leading to a 6-8 ppb decrease in ozone accompanied by a rise in specific humidity of 2-3 g/kg due to coupling with the forest. During the nighttime, the sampled air masses are representative of free tropospheric conditions which have not been significantly influenced by either local emissions nor convective coupling to the surface. The maximum daily 8-hour average ozone concentration at Chews Ridge is used in lagged correlation analysis with two sites in the San Joaquin Valley, Fresno and Arvin, to de-emphasize the influence of locally produced, diurnally cycled ozone. The correlation coefficients (~0.60) peak between 9-21 hour lag and tend to decorrelate completely within 4-5 days. These and other analyses along with data provided by the aircraft sampling are used to provide a deeper understanding of ozone transport into the San Joaquin Valley. Aerosol size is measured with a scanning mobility particle sizer and composition is analyzed with an 8-stage rotating drum impactor whose substrates are characterized by X-ray fluorescence. Various elemental ratios and back trajectory calculations are used to infer the temporal

  17. Mobile measurement of methane and hydrogen sulfide at natural gas production site fence lines in the Texas Barnett Shale.

    PubMed

    Eapi, Gautam R; Sabnis, Madhu S; Sattler, Melanie L

    2014-08-01

    Production of natural gas from shale formations is bringing drilling and production operations to regions of the United States that have seen little or no similar activity in the past, which has generated considerable interest in potential environmental impacts. This study focused on the Barnett Shale Fort Worth Basin in Texas, which saw the number of gas-producing wells grow from 726 in 2001 to 15,870 in 2011. This study aimed to measure fence line concentrations of methane and hydrogen sulfide at natural gas production sites (wells, liquid storage tanks, and associated equipment) in the four core counties of the Barnett Shale (Denton, Johnson, Tarrant, and Wise). A mobile measurement survey was conducted in the vicinity of 4788 wells near 401 lease sites, representing 35% of gas production volume, 31% of wells, and 38% of condensate production volume in the four-county core area. Methane and hydrogen sulfide concentrations were measured using a Picarro G2204 cavity ring-down spectrometer (CRDS). Since the research team did not have access to lease site interiors, measurements were made by driving on roads on the exterior of the lease sites. Over 150 hr of data were collected from March to July 2012. During two sets of drive-by measurements, it was found that 66 sites (16.5%) had methane concentrations > 3 parts per million (ppm) just beyond the fence line. Thirty-two lease sites (8.0%) had hydrogen sulfide concentrations > 4.7 parts per billion (ppb) (odor recognition threshold) just beyond the fence line. Measured concentrations generally did not correlate well with site characteristics (natural gas production volume, number of wells, or condensate production). t tests showed that for two counties, methane concentrations for dry sites were higher than those for wet sites. Follow-up study is recommended to provide more information at sites identified with high levels of methane and hydrogen sulfide. Implications: Information regarding air emissions from shale gas

  18. Black carbon and its correlation with trace gases at a rural site in Beijing: Top-down constraints from ambient measurements on bottom-up emissions

    NASA Astrophysics Data System (ADS)

    Wang, Yuxuan; Wang, Xuan; Kondo, Yutaka; Kajino, Mizuo; Munger, J. William; Hao, Jiming

    2011-12-01

    The mass concentrations of black carbon (BC) were measured continuously at Miyun, a rural site near Beijing, concurrently with some trace gases (CO, CO2, NOy, SO2) during the nonheating seasons of 2010 (April to October). The average concentration of BC was 2.26 ± 2.33 μg m-3. About 70%-100% of the air masses arriving at the site from June to September were from the source region of Beijing and the North China Plain (NCP), while in the spring, 40% were of continental background origin. BC had moderate to strong positive correlations with CO (R2 = 0.51), NOy (R2 = 0.58), and CO2 (nonsummer, R2 = 0.54), but not with SO2 (R2 < 0.1). The observed ΔBC/ΔCO ratio was 0.0050 ± 0.0001 μg m-3/ppbv for the regional air masses (excluding the influence of biomass burning). This ratio increased by 68% to 0.0084 ± 0.0004 μg m-3/ppbv after excluding the influence of wet deposition. Accounting further for the impact of atmospheric processes on the observation, we derived an average top-down BC/CO emission ratio of 0.0095 ± 0.002 μg m-3/ppbv for the source region of Beijing and NCP that is 18%-21% lower than the average emission ratio from the bottom-up inventory of Zhang et al. (2009), whereas the difference is substantially lower than the uncertainty of emissions for either species. The difference between the mean bottom-up and top-down emission ratios is most likely to be attributed to the residential sector, which needs to have a lower share in the total emissions of BC or a much lower BC/CO emission ratio. The industry and transportation sectors are found to be dominant sources of BC from Beijing and the NCP rather than from the residential sector as suggested by the bottom-up inventory.

  19. Nucleate boiling of water from plain and structured surfaces

    SciTech Connect

    Das, A.K.; Das, P.K.; Saha, P.

    2007-08-15

    Heat transfer from plain surface and from surfaces with distinct nucleation sites has been investigated under saturated pool boiling condition. Surfaces have been prepared with regular array of discrete nucleation sites formed by micro-drilling. Distilled water has been used as the boiling liquid. Out of various available correlations, Rohsenow correlation [W.M. Rohsenow, A method of correlating heat transfer data for surface boiling of liquids, Trans. ASME 74 (1952) 969-976] gives best agreement with the experimental data from plain surface at low degree of superheat. A mechanistic model also provides a good trend matching with the same experimental data. With the introduction of artificial nucleation sites substantial augmentation in heat transfer for distilled water compared to the plane surface has been noted. Continuous increase in nucleation site density increases the rate of heat transfer with a diminishing trend of enhancement. A correlation similar to that of Yamagata et al. [K. Yamagata, F. Hirano, K. Nishiwaka, H. Matsouka, Nucleate boiling of water on the horizontal heating surface, Mem. Fac. Eng. Kyushu 15 (1955) 98] has been developed to fit the experimental data of plane surface. Modification of the same correlation to take care of the nucleation site density has been developed and used to predict the experimental data from augmented surfaces. (author)

  20. Correcting for Incomplete Saturation and Off-Resonance Effects in Multiple-Site Saturation-Transfer Kinetic Measurements

    NASA Astrophysics Data System (ADS)

    Kingsley, Peter B.; Monahan, W. Gordon

    2000-09-01

    The effects of incomplete saturation and off-resonance irradiation on nuclear magnetic resonance saturation-transfer measurements of three-site chemical-exchange rates are discussed. A new method that uses double-saturation measurements is compared with two published methods, one that uses single-saturation measurements and one that uses a single-saturation measurement and a double-saturation measurement. Several formulas are compared for measuring the exchange rate constant kDE for exchange from a detected spin D to an exchanging spin E in the presence of exchange from spin D to a competing spin C. For each method, formulas are derived with corrections for incomplete saturation or off-resonance effects, with both corrections, and with neither correction. Exact formulas are available for three exchanging sites with incomplete saturation if there are no off-resonance effects. Off-resonance corrections are imperfect even with complete saturation.

  1. Savannah River Region: Transition between the Gulf and Atlantic Coastal Plains. Proceedings

    SciTech Connect

    Zullo, V.A.; Harris, W.B.; Price, V.

    1990-12-31

    The focus of the this conference of Coastal Plains geologists was on the Savannah River region of Georgia and South Carolina, and particularly on the geology of the US Department of Energy`s 300 square mile Savannah River Site (SRS) in western South Carolina. Current geological studies indicate that the Mesozoic-Cenozoic section in the Savannah River region is transitional between that of the Gulf Coastal Plain to the southwest and that of the Atlantic Coastal Plain to the northeast. With the transitional aspect of the region as its theme, the first session was devoted to overviews of Cretaceous and Paleogene geology in the Gulf and Atlantic Coastal Plains. Succeeding presentations and resulting discussions dealt with more specific problems in structural, lithostratigraphic, hydrological, biostratigraphic, and cyclostratigraphic analysis, and of correlation to standard stratigraphic frameworks. For these conference proceedings, individual papers have been processed separately for the Energy Data Base.

  2. Simultaneous measurements of HONO and NO2 at a rural site in Northern China by IBBCEAS

    NASA Astrophysics Data System (ADS)

    Qin, Min; Duan, Jun; Fang, Wu; Hu, Renzi; Lu, Xue; Shen, Lanlan; Li, Ang; Xie, Pinhua; Liu, Wenqing

    2016-04-01

    HONO arose the interests for its photolysis is an important source of OH radical. However, its source, especially the daytime source is still unclear. With high primary pollutants and aerosol concentrations, the characteristics of air pollutions in China can be expected to be sometimes quite different from the one observed in developed countries. HONO shows high level not only in urban areas but also in rural areas in China. The temporal behavior of HONO and NO2 was investigated at a rural site in Wangdu, Hebei Province, China, by using incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) during the CAREBEIJING-NCP Campaign from June 26th to July 9th 2014. The concentrations of HONO and NO2 measured by IBBCEAS were compared with a LOPAP (Long Path Absorption Photometer) instrument and a commercial NOx analyzer (Thermo 42i), and the results showed the well correlations for the correlation coefficient (R2) of HONO and NO2 were up to 0.878 and 0.989, respectively. During the measurements, the daytime rapid variations of HONO were found. The peak values of HONO at around noon even unexpected exceed 3ppb and the unknown daytime HONO source strength (PM) reached up to 14 ppb/h, while the concentrations of NO2 were very low (< 5ppb) and the peaks of HONO/NO2 even exceed 100%, which were different from the previous field observations. The possible formations were discussed in this paper, the so high value of daytime HONO could not be explained by the known direct emissions or reactions related to NO2 and might come from soils much possible or the other unknown sources.

  3. Measured energy savings of light colored roofs: Results from three California demonstration sites

    SciTech Connect

    Akbari, H.; Gartland, L.; Konopacki, S.

    1998-06-01

    Measured data and computer simulations have demonstrated the impact of roof albedo in reducing cooling energy use in buildings. Savings are a function of both climate and the amount of roof insulation. The cooling energy savings for reflective roofs are highest in hot climates. A reflective roof may also lead to higher heating energy use. Reflective coatings are also used in commercial buildings to protect the roofing membrane, and hence, maintain and prolong the useful life of the roof. Reflectivity of coatings changes with weathering and aging which in turn could have an effect on building cooling-energy savings. For that reason, reflective roof coatings are not primarily marketed for their energy savings potential. To monitor the field performance of reflective coatings, the authors initiated a demonstration project where three commercial buildings in California were painted with light-colored roof coatings. The buildings are two medical care centers and one drug store. At all sites, the roof reflectance, both fresh and aged, and cooling energy use were monitored. In addition, they measured temperature throughout the roof systems and inside the conditioned space. In the monitored buildings, increasing the roof reflectance from an initial value of about 20% to 60%, dropped the roof temperature on hot summer afternoons by about 45 F. Summertime standard-weekday average daily air-conditioning savings were 18% (198 kWh) in the first medical office building, 13% (86 kWh) in the second medical office building, and 2% (13 kWh) in the drug store. The overall u-value of the roofs had dictated the impact of roof reflectance.

  4. Geostatistical analysis of fault and joint measurements in Austin Chalk, Superconducting Super Collider Site, Texas

    SciTech Connect

    Mace, R.E.; Nance, H.S.; Laubach, S.E.

    1995-06-01

    Faults and joints are conduits for ground-water flow and targets for horizontal drilling in the petroleum industry. Spacing and size distribution are rarely predicted accurately by current structural models or documented adequately by conventional borehole or outcrop samples. Tunnel excavations present opportunities to measure fracture attributes in continuous subsurface exposures. These fracture measurements ran be used to improve structural models, guide interpretation of conventional borehole and outcrop data, and geostatistically quantify spatial and spacing characteristics for comparison to outcrop data or for generating distributions of fracture for numerical flow and transport modeling. Structure maps of over 9 mi of nearly continuous tunnel excavations in Austin Chalk at the Superconducting Super Collider (SSC) site in Ellis County, Texas, provide a unique database of fault and joint populations for geostatistical analysis. Observationally, small faults (<10 ft. throw) occur in clusters or swarms that have as many as 24 faults, fault swarms are as much as 2,000 ft. wide and appear to be on average 1,000 ft. apart, and joints are in swarms spaced 500 to more than 2l,000 ft. apart. Semi-variograms show varying degrees of spatial correlation. These variograms have structured sills that correlate directly to highs and lows in fracture frequency observed in the tunnel. Semi-variograms generated with respect to fracture spacing and number also have structured sills, but tend to not show any near-field correlation. The distribution of fault spacing can be described with a negative exponential, which suggests a random distribution. However, there is clearly some structure and clustering in the spacing data as shown by running average and variograms, which implies that a number of different methods should be utilized to characterize fracture spacing.

  5. Leaf area index measurements at the middle reaches of Heihe River forest sites

    NASA Astrophysics Data System (ADS)

    Zou, Jie; Yan, Guang-jian; Zhang, Wu-ming; Zhu, Ling; Chen, Ling

    2008-12-01

    Leaf area index (LAI) is one of the most important parameters of canopy structure as it related to many biophysical and physiological processes, including photosynthesis, respiration, transpiration, carbon cycling, rain intercepting, net primary productivity, energy exchanging etc. Rapid, accurate and reliable estimations of LAI are required in these studies above. There are two main categories of procedures to estimate LAI: direct and indirect methods. The objective of this study is to evaluate LAI estimations obtained by different methods in HeiHe River forest sites. These methods include the LAI-2000 plant canopy analyzer, HemiView, fifty-seven degree photography method, fisheye photography method, the tracing radiation and architecture of canopies (TRAC), and Multi-Purpose Canopy Observation System (MCOS). HemiView shows a large variation on gap fraction measurements compared to LAI-2000, fifty-seven degree photography method is the superior choice to provide initial LAI values compared to other methods. To determine the non-photosynthesis elements and foliage clumping effects for optical methods, a new device named MCOS (Multi- Purpose Canopy Observation System) and TRAC were used. Finally, the results show that with the combination of MCOS or TRAC and LAI-2000 or hemispherical photography can provide accurate and efficient LAI values.

  6. Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual

    SciTech Connect

    Neary, Vincent S; Gunawan, Budi

    2011-09-01

    In this report, existing data collection techniques and protocols for characterizing open channel flows are reviewed and refined to further address the needs of the MHK industry. The report provides an overview of the hydrodynamics of river and tidal channels, and the working principles of modern acoustic instrumentation, including best practices in remote sensing methods that can be applied to hydrokinetic energy site characterization. Emphasis is placed upon acoustic Doppler velocimeter (ADV) and acoustic-Doppler current profiler (ADCP) instruments, as these represent the most practical and economical tools for use in the MHK industry. Incorporating the best practices as found in the literature, including the parameters to be measured, the instruments to be deployed, the instrument deployment strategy, and data post-processing techniques. The data collected from this procedure aims to inform the hydro-mechanical design of MHK systems with respect to energy generation and structural loading, as well as provide reference hydrodynamics for environmental impact studies. The standard metrics and protocols defined herein can be utilized to guide field experiments with MHK systems.

  7. Measurements of Ice Nuclei at a Remote Coastal Site in Western Canada

    NASA Astrophysics Data System (ADS)

    Si, M.; Mason, R.; Li, J.; Dickie, R.; Chou, C.; Ladino Moreno, L.; Yakobi-Hancock, J.; Schiller, C. L.; Jones, K.; Leaitch, W. R.; Desiree, T. S.; Abbatt, J.; Huffman, J. A.; Bertram, A. K.

    2014-12-01

    Aerosol particles are abundant in the atmosphere, and they can influence climate by modifying the formation of ice clouds and mixed-phase clouds. Understanding the sources of ice nuclei (IN) should lead to better predictions of climate. Many current instruments for measuring atmospheric concentrations of IN are not capable of providing size-resolved information. Such knowledge is useful in identifying the sources of IN. The recently developed micro-orifice uniform deposit impactor-droplet freezing technique (MOUDI-DFT) provides size-resolved information by combining an established immersion freezing apparatus with a cascade impactor for sample collection. Here we show results from a field study undertaken at a remote coastal site in Western Canada in August, 2013 using this technique. The size distributions of IN will be presented. A recent study suggested that the IN population in remote marine regions might be dominated by primary biogenic particles. To address the sources of IN from this campaign, correlations between IN concentrations and biological aerosols, carbonaceous aerosols, and other possible IN sources will be discussed.

  8. Measurements of endosteal surface areas in human long bones: relationship to sites of occurrence of osteosarcoma.

    PubMed

    Spiers, F W; King, S D; Beddoe, A H

    1977-11-01

    Using techniques of bone scanning and ashing, the areas of the endosteal surfaces in cortical and trabecular bone have been determined for the proximal, mid and distal thirds of each of the six long bones of an adult human subject. The relative frequency of occurrence of bone sarcomas, scored as to site, has been analysed in relation to these measured areas. Data on tumour occurrence have been drawn from three sources: radium-case data from Rowland and Keane (33 cases), naturally-occurring cases from series by Sissons (139 cases) and by Dahlin (473 cases). A strong correlation is demonstrated between tumour frequency and trabecular area, but correlation with cortical area is poor. By comparing the tumour frequency in the mid thirds of the bones with the total recorded it has been possible to show that the probability of tumour occurrence per unit area of cortical bone, relative to that of trabecular bone, is 0.16 +/- 0.06. Analysis of the available dose data for the radium cases shows that in this instance dose has not contributed to the observed correlations. The results lend support to the thesis that tumour occurrence depends on surface area, i.e. on the number of cells at risk. PMID:271029

  9. Passive hyporheic flux meter - measuring nitrate flux to the reactive sites in the river bed

    NASA Astrophysics Data System (ADS)

    Kunz, Julia Vanessa; Borchardt, Dietrich; Rode, Michael; Annable, Michael

    2015-04-01

    Most European lowland rivers are afflicted by high nitrate loads, modified morphology and discharge regulations, resulting in restricted capacity to retain nitrate. In those nutrient saturated rivers, sediment bound denitrification is the only process by which nitrate is removed from the system. Despite the importance of the hyporheic zone in nutrient reduction we are lacking detailed information on the transport to and retention at those reactive sites. Passive flux meters have successfully been used to measure contaminant transport to aquifers (eg Cho and Annable 2007). Here we present how a modification of those samplers can be used to quantify nitrate flux to and intermediate storage patterns in the interstices of an agriculturally impacted river. Installed in the river bed sediments, water flux and nutrient quantities passing through the device are recorded. While the amount of water flux serves as an index for connectivity of the hyporheic zone (exchange surface-subsurface water) the nitrate flux through the device can be seen as the portion of nitrate subjected to denitrification. The generated data on solute behavior in hyporheic zones are the missing puzzle to in-stream nitrate dynamics. Complementing flume and tracer experiments our approach depicts how discharge, morphology and sediment characteristics control the denitrification rate via the connectivity of the hyporheic zone. Passive hyporheic flux meter are a novel method to directly asses the quantity of removed nitrate by an in situ experiment.

  10. An Analysis of Seacions Ozonesonde Measurements from St. Louis MO: Providing Insight into How Cross Country Wildfires and Descending Stratospheric Air over the Great Plains Impact Regional Air Quality

    NASA Astrophysics Data System (ADS)

    Wilkins, J. L.; Morris, G.; de Foy, B.; Fishman, J.

    2014-12-01

    As part of the SouthEast American Consortium for Intensive Ozone Network Study (SEACIONS) mission, 32 ozonesondes were launched from Forest Park in mid-town St. Louis between 8 Aug and 23 Sept 2013. These launches were supported by concurrent co-located continuous ground level ozone measurements at Saint Louis University's St. Louis Ozone Garden. During the operation of this site, wildfires from both Idaho's Beaver Creek (~115K acres) and California's RIM fire (~258k acres) generated copious amounts of pollution. In addition, widespread agricultural fires in the Midwest were also taking place. To interpret our observations over St. Louis, we used multiple satellite-derived products and retrievals in conjunction with trajectory calculations from the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. We examined a blocking high pressure event [Aug 26-30] which led to ozonesonde profile changes resulting from Stratospheric-Troposphere Exchange (STE) in addition to the smoke from the fires. This case study involved two mixed layer O3 enhancements, which could be spotted at multiple sites within the SEACIONS ozonesonde network. Our findings illustrate how satellite measurements can be used to assess the contribution of the transport of pollution from various sources to local air quality.

  11. METRIC Estimated ET Evaluation on the Semiarid Southern High Plains

    NASA Astrophysics Data System (ADS)

    Chavez, J. L.; Gowda, P. H.; Colaizzi, P. D.; Evett, S. R.; Howell, T. A.; Copeland, K.

    2007-05-01

    Declining groundwater levels in the Southern High Plains of the United States, and the fact that agriculture in this region uses more than 90% of groundwater withdrawals, combine to increase the demand for efficient agricultural water use. Accurate regional evapotranspiration (ET) maps would provide valuable information on crop water use. In this study, we applied METRIC (Mapping Evapotranspiration at High Resolution using Internalized Calibration), a remote sensing based ET algorithm, and micrometeorological data measured at a grass reference ET weather station maintained by the Texas High Plains Evapotranspiration Network (TXHPET). For this purpose, a Landsat Thematic Mapper image covering a major portion of the Southern High Plains (parts of Texas Panhandle and northeastern New Mexico) was acquired for 23 July 2006 at 11:26 AM CST. Comprehensive ground-truth data were collected to develop a detailed land use map showing major crops grown in the region. Performance of the METRIC model was evaluated using measured ET data on five weighing lysimeters at Bushland, TX [35 Deg. 11' N, 102 Deg. 06' W; 1,170 m elevation MSL] managed by the Conservation and Production Research Laboratory, USDA-ARS. Lysimeter-measured ET rates varied from 2.4 to 7.8 mm/d. Good agreement was found between the remote sensing based ET and measured ET. Comparison of estimated daily mapped ET values with lysimetric measurements had an accuracy within 9% of the measured ET (r2 = 0.89) with a mean square error of 0.9 mm/d. The use of METRIC for advective conditions of the Southern High Plains is promising; however, more evaluation is needed for different agroclimatological conditions.

  12. Estimation of groundwater recharge using the chloride mass-balance method, Pingtung Plain, Taiwan

    NASA Astrophysics Data System (ADS)

    Ting, Cheh-Shyh; Kerh, Tienfuan; Liao, Chiu-Jung

    Due to rapid economic growth in the Pingtung Plain of Taiwan, the use of groundwater resources has changed dramatically. Over-pumping of the groundwater reservoir, which lowers hydraulic heads in the aquifers, is not only affecting the coastal area negatively but has serious consequences for agriculture throughout the plain. In order to determine the safe yield of the aquifer underlying the plain, a reliable estimate of groundwater recharge is desirable. In the present study, for the first time, the chloride mass-balance method is adopted to estimate groundwater recharge in the plain. Four sites in the central part were chosen to facilitate the estimations using the ion-chromatograph and Thiessen polygon-weighting methods. Based on the measured and calculated results, in all sites, including the mountain and river boundaries, recharge to the groundwater is probably 15% of the annual rainfall, excluding recharge from additional irrigation water. This information can improve the accuracy of future groundwater-simulation and management models in the plain. Résumé Du fait de la croissance économique rapide de la plaine de Pingtung à Taiwan, l'utilisation des ressources en eau souterraine s'est considérablement modifié. La surexploitation des aquifères, qui a abaissé le niveau des nappes, n'affecte pas seulement la région côtière, mais a de sérieuses répercutions sur l'agriculture dans toute la plaine. Afin de déterminer les ressources renouvelables de l'aquifère sous la plaine, une estimation précise de la recharge de la nappe est nécessaire. Dans cette étude, le taux de recharge de la nappe a d'abord été estimé au moyen d'un bilan de matière de chlorure. Quatre sites de la partie centrale ont été sélectionnés pour réaliser ces estimations, à l'aide d'un chromatographe ionique et de la méthode des polygones de Thiessen. A partir des résultats mesurés et calculés, à chaque site, et en prenant comme limites les montagnes et les rivi

  13. Accuracy of satellite rainfall estimates in the Blue Nile Basin: Lowland plain versus highland mountain

    NASA Astrophysics Data System (ADS)

    Gebremichael, Mekonnen; Bitew, Menberu M.; Hirpa, Feyera A.; Tesfay, Gebrehiwot N.

    2014-11-01

    The demand for accurate satellite rainfall products is increasing particularly in Africa where ground-based data are mostly unavailable, timely inaccessible, and unreliable. In this study, the accuracy of three widely used, near-global, high-resolution satellite rainfall products (CMORPH, TMPA-RT v7, TMPA-RP v7), with a spatial resolution of 0.25° and a temporal resolution of 3 h, is assessed over the Blue Nile River Basin, a basin characterized by complex terrain and tropical monsoon. The assessment is made using relatively dense experimental networks of rain gauges deployed at two, 0.25° × 0.25°, sites that represent contrasting topographic features: lowland plain (mean elevation of 719 m.a.s.l.) and highland mountain (mean elevation of 2268 m.a.s.l.). The investigation period covers the summer seasons of 2012 and 2013. Compared to the highland mountain site, the lowland plain site exhibits marked extremes of rain intensity, higher mean rain intensity when it rains, lower frequency of rain occurrence, and smaller seasonal rainfall accumulation. All the satellite products considered tend to overestimate the mean rainfall rate at the lowland plain site, but underestimate it at the highland mountain site. The satellite products miss more rainfall at the highland mountain site than at the lowland plain site, and underestimate the heavy rain rates at both sites. Both sites have uncertainty (root mean square error) values greater than 100% for 3 h accumulations of <5 mm, or daily accumulations of <10 mm, and the uncertainty values decrease with increasing rainfall accumulation. Among the satellite products, CMORPH suffers from a large positive bias at the lowland plain site, and TMPA-RP and TMPA-RT miss a large number of rainfall events that contribute nearly half of the total rainfall at the highland mountain.

  14. Basins and Sedimentation Within the Martian Northern Plains

    NASA Astrophysics Data System (ADS)

    Tanaka, K. L.; MacKinnon, D. J.

    1999-03-01

    MOLA data show that six basins and sedimentary plains make up the northern plains of Mars. Four types of plains units are deposited in them, in the following stratigraphic order: marginal, level-top, basin-floor, and downslope units.

  15. Measuring the serotonin uptake site using (/sup 3/H)paroxetine--a new serotonin uptake inhibitor

    SciTech Connect

    Gleiter, C.H.; Nutt, D.J.

    1988-01-01

    Serotonin is an important neurotransmitter that may be involved in ethanol preference and dependence. It is possible to label the serotonin uptake site in brain using the tricyclic antidepressant imipramine, but this also binds to other sites. We have used the new high-affinity uptake blocker paroxetine to define binding to this site and report it to have advantages over imipramine as a ligand.

  16. Life on the Great Plains. [Lesson Plan].

    ERIC Educational Resources Information Center

    2000

    In this four-part lesson, students examine the concept of geographic region by exploring the history of the United States Great Plains. In Part I, students gather information about the location and environment of the Great Plains in order to produce a map outlining the region in formal terms. In Part II, students examine how the region has been…

  17. Implementing Plain Language: A Manager's Guide.

    ERIC Educational Resources Information Center

    Ontario Dept. of Education, Toronto.

    Drawn from the experience of various ministries and departments in governments across Canada, this guide is meant to be a practical guide in implementing plain language for managers in the Ontario (Canada) government. The guide describes how to use plain language in planning, writing, designing, and editing forms and documents, and how to set up…

  18. LAPS Lidar Measurements at the ARM Alaska Northslope Site (Support to FIRE Project)

    NASA Technical Reports Server (NTRS)

    Philbrick, C. Russell; Lysak, Daniel B., Jr.; Petach, Tomas M.; Esposito, Steven T.; Mulik, Karoline R.

    1998-01-01

    This report consists of data summaries of the results obtained during the May 1998 measurement period at Barrow Alaska. This report does not contain any data interpretation or analysis of the results which will follow this activity. This report is forwarded with a data set on magnetic media which contains the reduced data from the LAPS lidar in 15 minute intervals. The data was obtained during the period 15-30 May 1998. The measurement period overlapped with several aircraft flights conducted by NASA as part of the FIRE project. The report contains a summary list of the data obtained plus figures that have been prepared to help visualize the measurement periods. The order of the presentation is as follows: Section 1. A copy of the Statement of Work for the planned activity of the second measurement period at the ARM Northslope site is provided. Section 2. A list of the data collection periods shows the number of one minute data records stored during each hour of operation and the corresponding size (Mbytes) of the one hour data folders. The folder and file names are composed from the year, month, day, hour and minute. The date/time information is given in UTC for easier comparison with other data sets. Section 3. A set of 4 comparisons between the LAPS lidar results and the sondes released by the ARM scientists from a location nearby the lidar. The lidar results show the +/- 1 sigma statistical error on each of the independent 75 m altitude bins of the data. This set of 4 comparisons was used to set and validate the calibration value which was then used for the complete data set. Section 4. A set of false color figures with up to 10 hours of specific humidity measurements are shown in each graph. Two days of measurements are shown on each page. These plots are crude representations of the data and permit a survey which indicates when the clouds were very low or where interesting events may occur in the results. These plots are prepared using the real time sequence

  19. Hydraulic Fracture Measurements at Site C0009 of IODP Expedition 319, NanTroSEIZE

    NASA Astrophysics Data System (ADS)

    Kano, Y.; Ito, T.; Lin, W.; Flemings, P. B.; Boutt, D. F.; Doan, M.; McNeill, L. C.; Byrne, T.; Saffer, D. M.; Araki, E.; Eguchi, N. O.; Takahashi, K.; Toczko, S.; Scientists, E.

    2009-12-01

    The drilling vessel Chikyu completed the first riser-drilling in IODP history to a depth of 1603 mbsf (meter below seafloor) at Site C0009 in the landward Kumano forearc basin in the Nankai convergent margin, Japan.To measure in situ stress we performed two types of hydraulic fracturing: 1) as part of routine drilling operations, we estimated least principle stress from a leak off test (LOT); and 2) we used Schlumberger’s dual wireline packer, the Modular Dynamics Tester (MDT). Two LOT’s were performed at the base of 20 inch casing (703.9 mbsf) as a part of standard drilling operations; the outer annulus was closed by the blowout preventor (BOP), fluid was pumped at a constant rate of 2.3 m3/s, and pressure was measured at the cement pumps. The leak-off pressures were interpreted to lie at the break in slope in a graph of pressure vs volume-pumped. These values were found to be 30.22 and 30.25 MPa. These leak off pressure is interpreted to record fluids entering hydraulic fractures and is approximately the the least principal stress. There is considerable uncertainty in picking the slopes of the lines to determine the least principal stress (S3). The MDT dual packer tests were carried out at depth of 873.7 and 1532.7 mbsf. The dual packer module isolates a 1-m section of the borehole for testing. Zones free from pre-existing fractures and with near circular hole shape were chosen for the stress measurements. In the HF test at 873.7 m, the pressure cycle was repeated 5 times maintaining flow rate of 20 cm3/s. Periods of each cycles were 80-300 s. We determined the instantaneous shut in pressure to be 34.8 MPa. In the test at 1532.7 m, only one pressure cycle with a flow rate of 20 cm3/s was maintained, which yielded an instantaneous shut in pressure of 41.6 MPa. We interpret the shut-in pressure to record the least principal stress (S3). We do not know the orientation of fractures which were induced or activated by hydraulic fracturing, because no borehole

  20. HOLDUP MEASUREMENTS FOR THREE VISUAL EXAMINATION AND TRU REMEDIATION GLOVEBOX FACILITIES AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Dewberry, R; Donald Pak, D

    2007-05-04

    Visual Examination (VE) gloveboxes are used to remediate transuranic waste (TRU) drums at three separate facilities at the Savannah River Site. Noncompliant items are removed before the drums undergo further characterization in preparation for shipment to the Waste Isolation Pilot Plant (WIPP). Maintaining the flow of drums through the remediation process is critical to the program's seven-days-per-week operation. Conservative assumptions are used to ensure that glovebox contamination from this continual operation is below acceptable limits. Holdup measurements using cooled HPGe spectrometers are performed in order to confirm that these assumptions are conservative. {sup 239}Pu is the main nuclide of interest; however, {sup 241}Pu, equilibrium {sup 237}Np/{sup 233}Pa and {sup 238}Pu (if detected) are typically assayed. At the Savannah River National Laboratory (SRNL) facility {sup 243,244,245}Cm are also generally observed and are always reported at either finite levels or at limits of detection. A complete assay at each of the three facilities includes a measure of TRU content in the gloveboxes and HEPA filters in the glovebox exhaust. This paper includes a description of the {gamma}-PHA acquisitions, of the modeling, and of the calculations of nuclide content. Because each of the remediation facilities is unique and ergonomically unfavorable to {gamma}-ray acquisitions, we have constructed custom detector support devices specific to each set of acquisitions. This paper includes a description and photographs of these custom devices. The description of modeling and calculations include determination and application of container and matrix photon energy dependent absorption factors and also determination and application of geometry factors relative to our detector calibration geometry. The paper also includes a discussion of our measurements accuracy using off-line assays of two SRNL HEPA filters. The comparison includes assay of the filters inside of 55-gallon

  1. Water Levels In Major Artesian Aquifers Of The New Jersey Coastal Plain, 1988

    USGS Publications Warehouse

    Rosman, Robert; Lacombe, Pierre J.; Storck, Donald A.

    1995-01-01

    Water levels in 1,251 wells in the New Jersey Coastal Plain, Philadelphia County, Pennsylvania, and Kent and New Castle Counties, Delaware, were measured from October 1988 to February 1989 and compared with 1,071 water levels measured from September 1983 to May 1984. Water levels in 916 of the wells measured in the 1983 study were remeasured in the 1988 study. Alternate wells were selected to replace wells used in 1983 that were inaccessible at the time of the water-level measurements in 1988 or had been destroyed. New well sites were added in strategic locations to increase coverage where possible. Large cones of depression have formed or expanded in the nine major artesian aquifers that underlie the New Jersey Coastal Plain. Water levels are shown on nine potentiometric-surface maps. Hydrographs for observation wells typically show water-level declines for 1983, through 1989. In the confined Cohansey aquifer, the lowest water level, 20 feet below sea level, was measured in a well located at Cape May City Water Department, Cape May County. Water levels in the Atlantic City 800-foot sand declined as much as 21 feet at Ventnor, Atlantic County, over the 6-year period from the 1983 study to this study for 1988. Water levels in the Piney Point aquifer were as low as 56 feet below sea level at Seaside Park, Ocean County; 45 feet below sea level in southern Cumberland County; and 28 feet below sea level at Margate, Atlantic County. Water levels in the Vincentown aquifer did not change over the 6-year period. The lowest water levels in the Wenonah-Mount Laurel aquifer and the Englishtown aquifer system were 218 feet and 256 feet below sea level, respectively. Large cones of depression in the Potomac- Raritan-Magothy aquifer system are centered in the Camden County area and the Middlesex and Monmouth County area. Water levels declined as much as 46 feet in these areas over the 6-year period.

  2. A Study of Geological Formation on Different Sites in Batu Pahat, Malaysia Based On HVSR Method Using Microtremor Measurement

    NASA Astrophysics Data System (ADS)

    Noor, M. A. M.; Madun, A.; Kamarudin, A. F.; Daud, M. E.

    2016-07-01

    Geological formation is a one of information need to know during site reconnaissance. Conventional method like borehole has been known is very accurate to identify the formation of geology of a site. However, the problem of this technique is very expensive and not economical for large area. In the last decade, microtremor measurement has been introduced as an alternative technique and widely used in the geological formation study. Therefore, the aim in this study is to determine the geological formation underneath of surface in Batu Pahat district using microtremor measurement. There are two parameters have been carried out from microtremor measurement in term of natural frequency and HVSR curves images. Microtremor measurements are done conducted at 15 sites surrounding of Batu Pahat. Horizontal to vertical spectral ratio (HVSR) method was used for analyzing microtermor measurement data, to determine the natural frequency and also HVSR curves image. In this study, values of natural frequencies are used to classify the soil types with range in the between 0.93 to 5.35 Hz, meanwhile the pattern of HVSR curve images has been shown exists a few groups of soil types surrounding Batu Pahat district. Hence, microtremor measurement indirectly can be used as a one technique to add value in the site reconnaissance in the future.

  3. Aerosol measurements at 60 m during April 1994 remote cloud study intensive operating period (RCS/IOP)

    SciTech Connect

    Leifer, R.; Albert, B.; Lee, N.; Knuth, R.H.

    1996-04-01

    Aerosol measurements were made at the Southern Great Plains Site of the Atmospheric Radiation Measurement (ARM) program. Many types of air masses pass over this area, and on the data acquisition day, extremly low aerosol scattering coefficients were seen. A major effort was placed on providing some characterization of the aerosol size distribution. Data is currently available from the experimental center.

  4. Mixing state of atmospheric particles over the North China Plain

    NASA Astrophysics Data System (ADS)

    Zhang, S. L.; Ma, N.; Kecorius, S.; Wang, P. C.; Hu, M.; Wang, Z. B.; Größ, J.; Wu, Z. J.; Wiedensohler, A.

    2016-01-01

    In this unique processing study, the mixing state of ambient submicron aerosol particles in terms of hygroscopicity and volatility was investigated with a Hygroscopicity Tandem Differential Mobility Analyzer and a Volatility Tandem Differential Mobility Analyzer. The measurements were conducted at a regional atmospheric observational site in the North China Plain (NCP) from 8 July to 9 August, 2013. Multimodal patterns were observed in the probability density functions of the hygroscopicity parameter κ and the shrink factor, indicating that ambient particles are mostly an external mixture of particles with different hygroscopicity and volatility. Linear relationships were found between the number fraction of hydrophobic and non-volatile populations, reflecting the dominance of soot in hydro