Science.gov

Sample records for planar microfluidic interconnections

  1. Microfluidic interconnects

    DOEpatents

    Benett, William J.; Krulevitch, Peter A.

    2001-01-01

    A miniature connector for introducing microliter quantities of solutions into microfabricated fluidic devices. The fluidic connector, for example, joins standard high pressure liquid chromatography (HPLC) tubing to 1 mm diameter holes in silicon or glass, enabling ml-sized volumes of sample solutions to be merged with .mu.l-sized devices. The connector has many features, including ease of connect and disconnect; a small footprint which enables numerous connectors to be located in a small area; low dead volume; helium leak-tight; and tubing does not twist during connection. Thus the connector enables easy and effective change of microfluidic devices and introduction of different solutions in the devices.

  2. Microfluidic interconnects

    DOEpatents

    Benett, William J.; Krulevitch, Peter A.

    2001-01-01

    A miniature connector for introducing microliter quantities of solutions into microfabricated fluidic devices, and which incorporates a molded ring or seal set into a ferrule cartridge, with or without a compression screw. The fluidic connector, for example, joins standard high pressure liquid chromatography (HPLC) tubing to 1 mm diameter holes in silicon or glass, enabling ml-sized volumes of sample solutions to be merged with .mu.l-sized devices. The connector has many features, including ease of connect and disconnect; a small footprint which enables numerous connectors to be located in a small area; low dead volume; helium leak-tight; and tubing does not twist during connection. Thus the connector enables easy and effective change of microfluidic devices and introduction of different solutions in the devices.

  3. Micro-fluidic interconnect

    DOEpatents

    Okandan, Murat; Galambos, Paul C.; Benavides, Gilbert L.; Hetherington, Dale L.

    2006-02-28

    An apparatus for simultaneously aligning and interconnecting microfluidic ports is presented. Such interconnections are required to utilize microfluidic devices fabricated in Micro-Electromechanical-Systems (MEMS) technologies, that have multiple fluidic access ports (e.g. 100 micron diameter) within a small footprint, (e.g. 3 mm.times.6 mm). Fanout of the small ports of a microfluidic device to a larger diameter (e.g. 500 microns) facilitates packaging and interconnection of the microfluidic device to printed wiring boards, electronics packages, fluidic manifolds etc.

  4. Manufacturing of planar ceramic interconnects

    SciTech Connect

    Armstrong, B.L.; Coffey, G.W.; Meinhardt, K.D.; Armstrong, T.R.

    1996-12-31

    The fabrication of ceramic interconnects for solid oxide fuel cells (SOFC) and separator plates for electrochemical separation devices has been a perennial challenge facing developers. Electrochemical vapor deposition (EVD), plasma spraying, pressing, tape casting and tape calendering are processes that are typically utilized to fabricate separator plates or interconnects for the various SOFC designs and electrochemical separation devices. For sake of brevity and the selection of a planar fuel cell or gas separation device design, pressing will be the only fabrication technique discussed here. This paper reports on the effect of the characteristics of two doped lanthanum manganite powders used in the initial studies as a planar porous separator for a fuel cell cathode and as a dense interconnect for an oxygen generator.

  5. Formation of interconnections to microfluidic devices

    DOEpatents

    Matzke, Carolyn M.; Ashby, Carol I. H.; Griego, Leonardo

    2003-07-29

    A method is disclosed to form external interconnections to a microfluidic device for coupling of a fluid or light or both into a microchannel of the device. This method can be used to form optical or fluidic interconnections to microchannels previously formed on a substrate, or to form both the interconnections and microchannels during the same process steps. The optical and fluidic interconnections are formed parallel to the plane of the substrate, and are fluid tight.

  6. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1989-03-21

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration. 6 figs.

  7. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1985-08-23

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  8. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1985-06-24

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping lase pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  9. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, David B.

    1987-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is anarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  10. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, David B.

    1989-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is anarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  11. A low-cost, manufacturable method for fabricating capillary and optical fiber interconnects for microfluidic devices.

    PubMed

    Hartmann, Daniel M; Nevill, J Tanner; Pettigrew, Kenneth I; Votaw, Gregory; Kung, Pang-Jen; Crenshaw, Hugh C

    2008-04-01

    Microfluidic chips require connections to larger macroscopic components, such as light sources, light detectors, and reagent reservoirs. In this article, we present novel methods for integrating capillaries, optical fibers, and wires with the channels of microfluidic chips. The method consists of forming planar interconnect channels in microfluidic chips and inserting capillaries, optical fibers, or wires into these channels. UV light is manually directed onto the ends of the interconnects using a microscope. UV-curable glue is then allowed to wick to the end of the capillaries, fibers, or wires, where it is cured to form rigid, liquid-tight connections. In a variant of this technique, used with light-guiding capillaries and optical fibers, the UV light is directed into the capillaries or fibers, and the UV-glue is cured by the cone of light emerging from the end of each capillary or fiber. This technique is fully self-aligned, greatly improves both the quality and the manufacturability of the interconnects, and has the potential to enable the fabrication of interconnects in a fully automated fashion. Using these methods, including a semi-automated implementation of the second technique, over 10,000 interconnects have been formed in almost 2000 microfluidic chips made of a variety of rigid materials. The resulting interconnects withstand pressures up to at least 800psi, have unswept volumes estimated to be less than 10 femtoliters, and have dead volumes defined only by the length of the capillary. PMID:18369517

  12. Construction of programmable interconnected 3D microfluidic networks

    NASA Astrophysics Data System (ADS)

    Hunziker, Patrick R.; Wolf, Marc P.; Wang, Xueya; Zhang, Bei; Marsch, Stephan; Salieb-Beugelaar, Georgette B.

    2015-02-01

    Microfluidic systems represent a key-enabling platform for novel diagnostic tools for use at the point-of-care in clinical contexts as well as for evolving single cell diagnostics. The design of 3D microfluidic systems is an active field of development, but construction of true interconnected 3D microfluidic networks is still a challenge, in particular when the goal is rapid prototyping, accurate design and flexibility. We report a novel approach for the construction of programmable 3D microfluidic systems consisting of modular 3D template casting of interconnected threads to allow user-programmable flow paths and examine its structural characteristics and its modular function. To overcome problems with thread template casting reported in the literature, low-surface-energy polymer threads were used, that allow solvent-free production. Connected circular channels with excellent roundness and low diameter variability were created. Variable channel termination allowed programming a flow path on-the-fly, thus rendering the resulting 3D microfluidic systems highly customizable even after production. Thus, construction of programmable/reprogrammable fully 3D microfluidic systems by template casting of a network of interconnecting threads is feasible, leads to high-quality and highly reproducible, complex 3D geometries.

  13. In-Plane Biocompatible Microfluidic Interconnects for Implantable Microsystems

    PubMed Central

    Johnson, Dean G.; Frisina, Robert D.; Borkholder, David A.

    2011-01-01

    Small mammals, particularly mice, are very useful animal models for biomedical research. Extremely small anatomical dimensions, however, make design of implantable microsystems quite challenging. A method for coupling external fluidic systems to microfluidic channels via in-plane interconnects is presented. Capillary tubing is inserted into channels etched in the surface of a Si wafer with a seal created by Parylene-C deposition. Prediction of Parylene-C deposition into tapered channels based on Knudsen diffusion and deposition characterizations allows for design optimization. Low-volume interconnects using biocompatible, chemical resistant materials have been demonstrated and shown to withstand pressure as high as 827 kPa (120 psi) with an average pull test strength of 2.9 N. Each interconnect consumes less than 0.018 mm3 (18 nL) of volume. The low added volume makes this an ideal interconnect technology for medical applications where implant volume is critical. PMID:21147591

  14. Reusable, adhesiveless and arrayed in-plane microfluidic interconnects

    NASA Astrophysics Data System (ADS)

    Lo, R.; Meng, E.

    2011-05-01

    A reusable, arrayed interconnect capable of providing multiple simultaneous connections to and from a microfluidic device in an in-plane manner without the use of adhesives is presented. This method uses a 'pin-and-socket' design in which an SU-8 anchor houses multiple polydimethysiloxane septa (the socket) that each receive a syringe needle (the pin). A needle array containing multiple commercially available 33G (203 µm outer diameter) needles (up to eight) spaced either 2.54 or 1 mm (center-to-center) pierces the septa to access the microfluidic device interior. Finite element modeling and photoelastic stress experiments were used to determine the stress distribution during needle insertion; these results guided the SU-8 septa housing and septa design. The impact of needle diameter, needle tip style, insertion rate and number of needles on pre-puncture, post-puncture and removal forces was characterized. Pressurized connections to SU-8 channel systems withstood up to 62 kPa of pressurized water and maintained 25 kPa of pressurized water for over 24 h. The successful integration and functionality of the interconnect design with surface micromachined Parylene C microchannels was verified using Rhodamine B dye. Dual septa systems to access a single microchannel were demonstrated. Arrayed interconnects were compatible with integrated microfluidic systems featuring electrochemical sensors and actuators.

  15. Planar microfluidic drop splitting and merging.

    PubMed

    Collignon, Sean; Friend, James; Yeo, Leslie

    2015-04-21

    Open droplet microfluidic platforms offer attractive alternatives to closed microchannel devices, including lower fabrication cost and complexity, significantly smaller sample and reagent volumes, reduced surface contact and adsorption, as well as drop scalability, reconfigurability, and individual addressability. For these platforms to be effective, however, they require efficient schemes for planar drop transport and manipulation. While there are many methods that have been reported for drop transport, it is far more difficult to carry out other drop operations such as dispensing, merging and splitting. In this work, we introduce a novel alternative to merge and, more crucially, split drops using laterally-offset modulated surface acoustic waves (SAWs). The energy delivery into the drop is divided into two components: a small modulation amplitude excitation to initiate weak rotational flow within the drop followed by a short burst in energy to induce it to stretch. Upon removal of the SAW energy, capillary forces at the center of the elongated drop cause the liquid in this capillary bridge region to drain towards both ends of the drop, resulting in its collapse and therefore the splitting of the drop. This however occurs only below a critical Ohnesorge number, which is a balance between the viscous forces that retard the drainage and the sufficiently large capillary forces that cause the liquid bridge to pinch. We show the possibility of reliably splitting drops into two equal sized droplets with an average deviation in their volumes of only around 4% and no greater than 10%, which is comparable to the 7% and below splitting deviation obtained with electrowetting drop splitting techniques. In addition, we also show that it is possible to split the drop asymmetrically to controllably and reliably produce droplets of different volumes. Such potential as well as the flexibility in tuning the device to operate on drops of different sizes without requiring electrode

  16. Tuning of the droplet motion in interconnected microfluidic devices

    NASA Astrophysics Data System (ADS)

    Hu, Guoqing; Song, Kui; Zhang, Li

    2010-11-01

    The problem of controlling the droplet motions in multiphase flows on the microscale has gained increasing attention because the droplet-based microfluidic devices provide great potentials for chemical/biological applications such as drug discovery, chemical kinetics study, material synthesis, and DNA/cell assays. It is critical to understand the relevant physics on droplet hydrodynamics and thus control the generation, motion, splitting, and coalescence of droplets in complex microfluidic networks. The operation of those applications sometimes requires the arrival of droplets from different branch microchannels at a designated location within a transit time. We propose a simple design for interconnected microfluidic devices that implement the feedback mechanism to synchronize the droplet motion via a passive way. Numerical simulations using the Volume of Fluid (VOF) algorithm are conducted to investigate the time-dependent dynamics of droplets in both gas-liquid and liquid-liquid systems. An analytical mode based on the electronic-hydraulic analogy is also developed to describe the transit behavior of the droplet traffic. Both the numerical and theoretical results agree well with the corresponding experimental results. Furthermore, we optimize the microfluidic networks to control the motion of a series of droplets.

  17. Embedded planar glass waveguide optical interconnect for data centre applications

    NASA Astrophysics Data System (ADS)

    Pitwon, Richard; Schröder, Henning; Brusberg, Lars; Graham-Jones, Jasper; Wang, Kai

    2013-02-01

    Electro-optical printed circuit boards (EOCB) based on planar multimode polymer channels are limited by dispersion in the step-index waveguide structures and increased optical absorption at the longer telecom wavelengths [1]. We present a promising technology for large panel EOCB based on holohedrally integrated glass foils. The planar multimode glass waveguides patterned into these glass foils have a graded-index structure, thereby giving rise to a larger bandwidthlength product compared to their polymer waveguide counterparts and lower absorbtion at the longer telecom wavelengths. This will allow glass waveguide based EOCBs to support the future bandwidth requirements inherent to large scale data centre and high performance computer subsystems while not incurring the same dispersion driven penalties on interconnect length or loss dependence on wavelength. To this end glass foil structuring technologies have been developed that are compatible with industrial PCB manufacturing processes. Established processes as well as new approaches were analysed for their eligibility and have been applied to the EOCB process. In addition a connector system has been designed, which would allow optical pluggability to glass waveguide EOCBs.

  18. Planarization of metal films for multilevel interconnects by pulsed laser heating

    DOEpatents

    Tuckerman, David B.

    1987-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  19. A process chain for integrating microfluidic interconnection elements by micro-overmoulding of thermoplastic elastomers

    NASA Astrophysics Data System (ADS)

    Attia, U. M.; Alcock, J. R.

    2010-05-01

    This paper presents a process chain for in-line integration of microfluidic interconnection elements by a variant of micro-injection moulding (µIM). A SEBS-based thermoplastic elastomer (TPE) was moulded over polymethylmethacrylate (PMMA) to produce a hybrid microfluidic structure with an aspect ratio of 2. The process chain implemented micro-milling for fabricating micro-structured tool inserts, and µIM and micro-overmoulding was used for replication. A two-plate mould was used for moulding the substrate, whilst a three-plate mould with a replaceable insert was used for TPE overmoulding. The presented application was an interconnect system for a microfluidic device, which enabled direct fitting of standard tubes into microfluidic substrates. A leakage test showed that the interconnection was leak-proof within a range of flow rates between 0.32 and 0.62 ml min-1.

  20. An easy-to-use microfluidic interconnection system to create quick and reversibly interfaced simple microfluidic devices

    NASA Astrophysics Data System (ADS)

    Pfreundt, Andrea; Brandt Andersen, Karsten; Dimaki, Maria; Svendsen, Winnie E.

    2015-11-01

    The presented microfluidic interconnection system provides an alternative for the individual interfacing of simple microfluidic devices fabricated in polymers such as polymethylmethacrylate, polycarbonate and cyclic olefin polymer. A modification of the device inlet enables the direct attachment of tubing (such as polytetrafluoroethylene tubing) secured and sealed by using a small plug, without the need for additional assembly, glue or o-rings. This provides a very clean connection that does not require additional, potentially incompatible, materials. The tightly sealed connection can withstand pressures above 250 psi and therefore supports applications with high flow rates or highly viscous fluids. The ease of incorporation, configuration, fabrication and use make this interconnection system ideal for the rapid prototyping of simple microfluidic devices or other integrated systems that require microfluidic interfaces. It provides a valuable addition to the toolbox of individual and small arrays of connectors suitable for micromachined or template-based injection molded devices since it does not require protruding, threaded or glued modifications on the inlet and avoids bulky and expensive fittings.

  1. 96-well format-based microfluidic platform for parallel interconnection of multiple multicellular spheroids.

    PubMed

    Kim, Jin-Young; Fluri, David A; Kelm, Jens M; Hierlemann, Andreas; Frey, Olivier

    2015-06-01

    In this article, we present a microfluidic platform, compatible with conventional 96-well formats, that enables facile and parallelized culturing and testing of spherical microtissues in a standard incubator. The platform can accommodate multiple microtissues (up to 66) of different cell types, formed externally by using the hanging-drop method, and enables microtissue interconnection through microfluidic channels for continuous media perfusion or dosage of substances. The platform contains 11 separate channels, and each channel has six tissue compartments. Primary rat liver tissues were cultured over 8 days, and multiple tumor tissues (HCT116) were exposed to various concentrations of 5-fluorouracil for platform characterization. PMID:25524491

  2. Reduction in microparticle adsorption using a lateral interconnection method in a PDMS-based microfluidic device.

    PubMed

    Lee, Do-Hyun; Park, Je-Kyun

    2013-12-01

    Microparticle adsorption on microchannel walls occurs frequently due to nonspecific interactions, decreasing operational performance in pressure-driven microfluidic systems. However, it is essential for delicate manipulation of microparticles or cells to maintain smooth fluid traffic. Here, we report a novel microparticle injection technique, which prevents particle loss, assisted by sample injection along the direction of fluid flow. Sample fluids, including microparticles, mammalian (U937), and green algae (Chlorella vulgaris) cells, were injected directly via a through hole drilled in the lateral direction, resulting in a significant reduction in microparticle attachment. For digital microfluidic application, the proposed regime achieved a twofold enhancement of single-cell encapsulation compared to the conventional encapsulation rate, based on a Poisson distribution, by reducing the number of empty droplets. This novel interconnection method can be straightforwardly integrated as a microparticle or cell injection component in integrated microfluidic systems. PMID:24105848

  3. Guiding neuron development with planar surface gradients of substrate cues deposited using microfluidic devices

    PubMed Central

    Millet, Larry J.; Stewart, Matthew E.; Nuzzo, Ralph G.

    2010-01-01

    Wiring the nervous system relies on the interplay of intrinsic and extrinsic signaling molecules that control neurite extension, neuronal polarity, process maturation and experience-dependent refinement. Extrinsic signals establish and enrich neuron-neuron interactions during development. Understanding how such extrinsic cues direct neurons to establish neural connections in vitro will facilitate the development of organised neural networks for investigating the development and function of nervous system networks. Producing ordered networks of neurons with defined connectivity in vitro presents special technical challenges because the results must be compliant with the biological requirements of rewiring neural networks. Here we demonstrate the ability to form stable, instructive surface-bound gradients of laminin that guide postnatal hippocampal neuron development in vitro. Our work uses a three-channel, interconnected microfluidic device that permits the production of adlayers of planar substrates through the combination of laminar flow, diffusion and physisorption. Through simple flow modifications, a variety of patterns and gradients of laminin (LN) and flourescein-conjugated poly-lysine (FITC-PLL) were deposited to present neurons with an instructive substratum to guide neuronal development. We present three variations in substrate design that produce distinct growth regimens for postnatal neurons in dispersed cell cultures. In the first approach, diffusion-mediated gradients of LN were formed on coverslips to guide neurons toward increasing LN concentrations. In the second approach, a combined gradient of LN and FITC-PLL was produced using aspiration-driven laminar flow to restrict neuronal growth to a 15 μm-wide growth zone at the center of the two superimposed gradients. The last approach demonstrates the capacity to combine binary lines of FITC-PLL in conjunction with surface gradients of LN and bovine serum albumin (BSA) to produce substrate adlayers

  4. LaCrO{sub 3}-dispersed Cr for metallic interconnect of planar SOFC

    SciTech Connect

    Song, Rak-Hyun; Shin, Dong Ryul; Dokiya, Masayuki

    1996-12-31

    In the planar SOFC, the interconnect materials plays two roles as an electrical connection and as a gas separation plate in a cell stack. The interconnect materials must be chemically stable in reducing and oxidizing environments, and have high electronic conductivity, high thermal conductivity, matching thermal expansion with an electrolyte, high mechanical strength, good fabricability, and gas tightness. Lanthanum chromite so far has been mainly used as interconnect materials in planar SOFC. However, the ceramic materials are very weak in mechanical strength and have poor machining property as compared with metal. Also the metallic materials have high electronic conductivity and high thermal conductivity. Recently some researchers have studied metallic interconnects such as Al{sub 2}O{sub 3}/Inconel 600 cermet, Ni-20Cr coated with (LaSr)CoO{sub 3}, and Y{sub 2}O{sub 3-} or La{sub 2}O{sub 3}-dispersed Cr alloy. These alloys have still some problems because Ni-based alloys have high thermal expansion, the added Al{sub 2}O{sub 3}, Y{sub 2}O{sub 3} and La{sub 2}O{sub 3} to metals have no electronic conductivity, and the oxide formed on the surface of Cr alloy has high volatility. To solve these problems, in this study, LaCrO{sub 3}-dispersed Cr for metallic interconnect of planar SOFC was investigated. The LaCrO{sub 3}-dispersed Cr can be one candidate of metallic interconnect because LaCrO{sub 3} possesses electronic conductivity and Cr metal has relatively low thermal expansion. The content of 25 vol.% LaCrO{sub 3} Was selected on the basis of a theoretically calculated thermal expansion. The thermal expansion, electrical and oxidation properties were examined and the results were discussed as related to SOFC requirements.

  5. Operational parameters of an opto-electronic neural network employing fixed planar holographic interconnects

    SciTech Connect

    Keller, P.E.; Gmitro, A.F.

    1993-07-01

    A prototype neutral network system of multifaceted, planar interconnection holograms and opto-electronic neurons is analyzed. This analysis shows that a hologram fabricated with electron-beam lithography has the capacity to connect 6700 neuron outputs to 6700 neuron inputs and that the encoded synaptic weights have a precision of approximately 5 bits. Higher interconnection densities can be achieved by accepting a lower synaptic weight accuracy. For systems employing laser diodes at the outputs of the neurons, processing rates in the range of 45 to 720 trillion connections per second can potentially be achieve.

  6. Design methodology of focusing elements for multilevel planar optical systems in optical interconnects

    NASA Astrophysics Data System (ADS)

    Al Hafiz, Md. Abdullah; MacKenzie, Mark R.; Kwok, Chee-Yee

    2009-12-01

    We present a simple technique to determine the design parameters of an optical interconnect system that uses integral planar lenses. The technique is based on the ABCD transformation matrix method. This analysis technique is significantly simpler and more efficient than the previously published methods for finding the design parameters and predicting the coupling efficiency of the system. The proposed method is applied to compute the coupling efficiency of single- and two-level optical systems.

  7. A Planar Microfluidic Mixer Based on Logarithmic Spirals

    PubMed Central

    Scherr, Thomas; Quitadamo, Christian; Tesvich, Preston; Park, Daniel Sang-Won; Tiersch, Terrence; Hayes, Daniel; Choi, Jin-Woo; Nandakumar, Krishnaswamy

    2013-01-01

    A passive, planar micromixer design based on logarithmic spirals is presented. The device was fabricated using polydimethylsiloxane soft photolithography techniques, and mixing performance was characterized via numerical simulation and fluorescent microscopy. Mixing efficiency initially declined as Reynolds number increased, and this trend continued until a Reynolds number of 15 where a minimum was reached at 53%. Mixing efficiency then began to increase reaching a maximum mixing efficiency of 86% at Re = 67. Three-dimensional simulations of fluid mixing in this design were compared to other planar geometries such as the Archimedes spiral and Meandering-S mixers. The implementation of logarithmic curvature offers several unique advantages that enhance mixing, namely a variable cross-sectional area and a logarithmically varying radius of curvature that creates 3-D Dean vortices. These flow phenomena were observed in simulations with multilayered fluid folding and validated with confocal microscopy. This design provides improved mixing performance over a broader range of Reynolds numbers than other reported planar mixers, all while avoiding external force fields, more complicated fabrication processes, and the introduction of flow obstructions or cavities that may unintentionally affect sensitive or particulate-containing samples. Due to the planar design requiring only single-step lithographic features, this compact geometry could be easily implemented into existing micro-total analysis systems requiring effective rapid mixing. PMID:23956497

  8. Multichip module with planar-integrated free-space optical vector-matrix-type interconnects

    NASA Astrophysics Data System (ADS)

    Gruber, Matthias

    2004-01-01

    Even in the semiconductor industry, free-space optical technology is nowadays seen as a prime option for solving the continually aggravating problem with VLSI chips, namely, that the interconnect technology has failed to keep pace with the increase in communication volume. To make free-space optics compatible with established lithography-based design and fabrication techniques the concept of planar integration was proposed approximately a decade ago. Here its evolution into a photonic microsystems engineering concept is described. For demonstration, a multichip module with planar-integrated free-space optical vector-matrix-type interconnects was designed and built. It contains flip-chip-bonded vertical-cavity surface emitting laser arrays and a hybrid chip with an array of multiple-quantum-well p-i-n diodes on top of a standard complementary metal-oxide semiconductor circuit as key optoelectronic hardware components. The optical system is integrated into a handy fused-silica substrate and fabricated with surface-relief diffractive phase elements. It has been optimized for the given geometrical and technological constraints and provides a good interconnection performance, as was verified in computer simulations on the basis of ray tracing and in practical experiments.

  9. Fluorescence particle detection using microfluidics and planar optoelectronic elements

    NASA Astrophysics Data System (ADS)

    Kettlitz, Siegfried W.; Moosmann, Carola; Valouch, Sebastian; Lemmer, Uli

    2014-05-01

    Detection of fluorescent particles is an integral part of flow cytometry for analysis of selectively stained cells. Established flow cytometer designs achieve great sensitivity and throughput but require bulky and expensive components which prohibit mass production of small single-use point-of-care devices. The use of a combination of innovative technologies such as roll-to-roll printed microuidics with integrated optoelectronic components such as printed organic light emitting diodes and printed organic photodiodes enables tremendous opportunities in cost reduction, miniaturization and new application areas. In order to harvest these benefits, the optical setup requires a redesign to eliminate the need for lenses, dichroic mirrors and lasers. We investigate the influence of geometric parameters on the performance of a thin planar design which uses a high power LED as planar light source and a PIN-photodiode as planar detector. Due to the lack of focusing optics and inferior optical filters, the device sensitivity is not yet on par with commercial state of the art flow cytometer setups. From noise measurements, electronic and optical considerations we deduce possible pathways of improving the device performance. We identify that the sensitivity is either limited by dark noise for very short apertures or by noise from background light for long apertures. We calculate the corresponding crossover length. For the device design we conclude that a low device thickness, low particle velocity and short aperture length are necessary to obtain optimal sensitivity.

  10. Integrated optical interconnection for polymeric planar lightwave circuit device using roll-to-roll ultraviolet imprint

    NASA Astrophysics Data System (ADS)

    Cho, Sang Uk; Kang, Ho Ju; Chang, Sunghwan; Choi, Doo-sun; Kim, Chang-Seok; Jeong, Myung Yung

    2014-08-01

    We propose an integrated structure that combines chip and fiber array blocks for optical interconnection with a polymeric planar lightwave circuit (PLC) device using the roll-to-roll imprint process. The fiber array blocks and PLC chip of the integrated structure are fabricated on the same substrate, and the alignments in the three spatial directions were established with the insertion of an optical fiber. The characteristics of the integrated structure were evaluated by fabricating a 1×2 optical splitter device. The structure had an insertion loss of 3.9 dB, and the optical uniformity of the channel was 0.1 dB, indicating that the same performance for an active alignment can be expected.

  11. Planar lens integrated capillary action microfluidic immunoassay device for the optical detection of troponin I

    PubMed Central

    Mohammed, Mazher-Iqbal; Desmulliez, Marc P. Y.

    2013-01-01

    Optical based analysis in microfluidic and lab-on-a-chip systems are currently considered the gold standard methodology for the determination of end point reactions for various chemical and biological reaction processes. Typically, assays are performed using bulky ancillary apparatus such as microscopes and complex optical excitation and detection systems. Such instrumentation negates many of the advantages offered by device miniaturisation, particularly with respect to overall portability. In this article, we present a CO2 laser ablation technique for rapidly prototyping on-chip planar lenses, in conjunction with capillary action based autonomous microfluidics, to create a miniaturised and fully integrated optical biosensing platform. The presented self-aligned on-chip optical components offer an efficient means to direct excitation light within microfluidics and to directly couple light from a LED source. The device has been used in conjunction with a miniaturised and bespoke fluorescence detection platform to create a complete, palm sized system (≈60 × 80 × 60 mm) capable of performing fluoro-immunoassays. The system has been applied to the detection of cardiac Troponin I, one of the gold standard biomarkers for the diagnosis of acute myocardial infarction, achieving a lower detection limit of 0.08 ng/ml, which is at the threshold of clinically applicable concentrations. The portable nature of the complete system and the biomarker detection capabilities demonstrate the potential of the devised instrumentation for use as a medical diagnostics device at the point of care. PMID:24396546

  12. Fusion of single proteoliposomes with planar, cushioned bilayers in microfluidic flow cells

    PubMed Central

    Karatekin, Erdem; Rothman, James E.

    2013-01-01

    Many biological processes rely on membrane fusion, therefore assays to study its mechanisms are necessary. Here we report an assay with sensitivity to single-vesicle, even to single-molecule events using fluorescently labeled vesicle-associated v-SNARE liposomes and target-membrane-associated t-SNARE-reconstituted planar, supported bilayers (SBLs). Docking and fusion events can be detected using conventional far-field epifluorescence or total internal reflection fluorsecence microscopy. Unlike most previous attempts, fusion here is dependent on SNAP25, one of the t-SNARE subunits that is required for fusion in vivo. The success of the assay is due to the use of (i) bilayers covered with a thin layer of poly(ethylene glycol) to control bilayer-bilayer and bilayer-substrate interactions, (ii) microfluidic flow channels which presents many advantages such as the removal of non-specifically bound liposomes by flow. The protocol takes 6–8 days to complete. Analysis can take up to two weeks. PMID:22517259

  13. Selection and Evaluation of Heat-Resistant Alloys for Planar SOFC Interconnect Applications

    SciTech Connect

    Yang, Z Gary; Weil, K. Scott; Paxton, Dean M.; Stevenson, Jeffry W.

    2002-11-21

    Over the past several years, the steady reduction in SOFC operating temperatures to the intermediate range of 700~850oC [1] has made it feasible for lanthanum chromite to be supplanted by metals or alloys as the interconnect materials. Compared to doped lanthanum chromite, metals or alloys offer significantly lower raw material and fabrication costs. However, to be a durable and reliable, a metal or alloy has to satisfy several functional requirements specific to the interconnect under SOFC operating conditions. Specifically, the interconnect metal or alloy should possess the following properties: (i) Good surface stability (resistance to oxidation, hot corrosion, and carburization) in both cathodic (air) and anodic (fuel) atmospheres; (ii) Thermal expansion matching to the ceramic PEN (positive cathode-electrolyte-negative anode) and seal materials (as least for a rigid seal design); (iii) High electrical conductivity through both the bulk material and in-situ formed oxide scales; (iv) Bulk and interfacial thermal mechanical reliability and durability at the operating temperature; (v) Compatibility with other materials in contact with interconnects such as seals and electrical contact materials.

  14. Electrochemical planarization

    DOEpatents

    Bernhardt, A.F.; Contolini, R.J.

    1993-10-26

    In a process for fabricating planarized thin film metal interconnects for integrated circuit structures, a planarized metal layer is etched back to the underlying dielectric layer by electropolishing, ion milling or other procedure. Electropolishing reduces processing time from hours to minutes and allows batch processing of multiple wafers. The etched back planarized thin film interconnect is flush with the dielectric layer. 12 figures.

  15. Electrochemical planarization

    DOEpatents

    Bernhardt, Anthony F.; Contolini, Robert J.

    1993-01-01

    In a process for fabricating planarized thin film metal interconnects for integrated circuit structures, a planarized metal layer is etched back to the underlying dielectric layer by electropolishing, ion milling or other procedure. Electropolishing reduces processing time from hours to minutes and allows batch processing of multiple wafers. The etched back planarized thin film interconnect is flush with the dielectric layer.

  16. Power module packaging with double sided planar interconnection and heat exchangers

    DOEpatents

    Liang, Zhenxian; Marlino, Laura D.; Ning, Puqi; Wang, Fei

    2015-05-26

    A double sided cooled power module package having a single phase leg topology includes two IGBT and two diode semiconductor dies. Each IGBT die is spaced apart from a diode semiconductor die, forming a switch unit. Two switch units are placed in a planar face-up and face-down configuration. A pair of DBC or other insulated metallic substrates is affixed to each side of the planar phase leg semiconductor dies to form a sandwich structure. Attachment layers are disposed on outer surfaces of the substrates and two heat exchangers are affixed to the substrates by rigid bond layers. The heat exchangers, made of copper or aluminum, have passages for carrying coolant. The power package is manufactured in a two-step assembly and heating process where direct bonds are formed for all bond layers by soldering, sintering, solid diffusion bonding or transient liquid diffusion bonding, with a specially designed jig and fixture.

  17. Three-dimensional silicone microfluidic interconnection scheme using sacrificial wax filaments

    NASA Astrophysics Data System (ADS)

    Dharmatilleke, Saman; Henderson, H. Thurman; Bhansali, Shekhar; Ahn, Chong H.

    2000-08-01

    A very simple room-temperature procedure is presented herein for formation of true three-dimensionality of microplumbing in plastic (silicone elastomer in this case), by molding the plastic to simply encapsulate a pre-formed network of sacrificial wax threads or other connected wax configurations which are ultimately to become micro channels and cavities in the plastic motherboard. When these wax sacrificial areas are etched away with acetone, precise cavities, channels, and capillaries results with direct arbitrary three- dimensionality for the first time. This method leads also to a simple and effective external interconnect scheme where ordinary fused silica tubes may be press-fitted into the surface opening to withstand high pressure. This method may be extended for connection of multiple levels of silicone motherboards together using small sections of fused silica tubing, with no loss of stacking volume because of the lack of any connector lips or bosses. An array of micro channels having circular cross sections with diameters of 100, 150 and 200 microns were molded on silicone elastomer using wax thread. The wax thread was dissolved in acetone after the silicon elastometer became components (motherboards) while being able to control the channel lengths within the stacks as desired. Mixing chambers were also molded in a single silicone elastomer layer, because true three-dimensionality is trivially possible without the complexity of multi stacked lithography.

  18. Planarization effect evaluation of acid and alkaline slurries in the copper interconnect process

    NASA Astrophysics Data System (ADS)

    Yi, Hu; Yan, Li; Yuling, Liu; Yangang, He

    2015-03-01

    We observed and analyzed the acid and HEBUT alkaline of Cu chemical mechanical polishing (CMP) slurry to evaluate their effects. Material analysis has shown that the planarity surfaces and the removal rate of alkaline slurry are better than the acid slurry during metal CMP processes. The global surface roughness and the small-scale surface roughness by 10 × 10 μm2 of copper film polished by the SVTC slurry are 1.127 nm and 2.49 nm. However, it is found that the surface roughnesses of copper films polished by the HEBUT slurry are 0.728 nm and 0.215 nm. All other things being equal, the remaining step heights of copper films polished by the SVTC slurry and HEBUT slurry are respectively 150 nm and 50 nm. At the end of the polishing process, the dishing heights of the HEBUT slurry and the SVTC slurry are approximately both 30 nm, the erosion heights of the HEBUT slurry and the SVTC slurry are approximately both 20 nm. The surface states of the copper film after CMP are tested, and the AFM results of two samples are obviously seen. The surface polished by SVTC slurry shows many spikes. This indicates that the HEBUT alkaline slurry is promising for inter-level dielectric (ILD) applications in ultra large-scale integrated circuits (ULSI) technology. Project supported by the Special Project Items No. 2 in National Long-Term Technology Development Plan (No. 2009ZX02308), the Doctoral Program Foundation of Xinjiang Normal University Plan (No. XJNUBS1226), the Key Laboratory of Coal Gasification, Ministry of Education, and the Inorganic Chemistry Key Disciplines of Xinjiang Normal University.

  19. Tribological Effects of Brush Scrubbing in Post Chemical Mechanical Planarization Cleaning on Electrical Characteristics in Novel Non-porous Low-k Dielectric Fluorocarbon on Cu Interconnects

    NASA Astrophysics Data System (ADS)

    Gu, Xun; Nemoto, Takenao; Tomita, Yugo; Teramoto, Akinobu; Sugawa, Shigetoshi; Ohmi, Tadahiro

    2011-05-01

    Damage reduction during planarization is strongly required to avoid scratch generation and the variation in the electrical properties of low-k dielectrics leading to yield loss in an integrated circuit after the implementation of an ultralow-k dielectric in Cu damascene interconnects. An optimum process condition to reduce damage on brush scrubbing in post-chemical-mechanical-planarization (post-CMP) cleaning was proposed for advanced nonporous organic ultralow-k dielectric fluorocarbon/Cu interconnects. Increasing brush rotation rate by decreasing down pressures results in the improvement in both electric properties and particle removal efficiency. The tribological effects of brush scrubbing in post-CMP cleaning on the electrical characteristics were explored. The brush scrubbing condition of a high brush rotation rate at low down pressures contributes to the suppression of damage generation.

  20. Looking into Living Cell Systems: Planar Waveguide Microfluidic NMR Detector for in Vitro Metabolomics of Tumor Spheroids.

    PubMed

    Kalfe, Ayten; Telfah, Ahmad; Lambert, Jörg; Hergenröder, Roland

    2015-07-21

    The complex cell metabolism and its link to oncogenic signaling pathways have received huge interest within the last few years. But the lack of advanced analytical tools for the investigation of living cell metabolism is still a challenge to be faced. Therefore, we designed and fabricated a novel miniaturized microslot NMR detector with on-board heater integrated with a microfluidic device as NMR sample holder. For the first time, a tumor spheroid of 500 μm diameter and consisting of 9000 cells has been studied noninvasively and online for 24 h. The dynamic processes of production and degradation of 23 intra- and extracellular metabolites were monitored. Remarkably high concentrations of lactate and alanine were observed, being an indicator for a shift from oxidative to glycolytic metabolism. In summary, this methodical development has proven to be a successful analytical tool for the elucidation of cellular functions and their corresponding biochemical pathways. Additionally, the planar geometry of the microslot NMR detector allows the hyphenation with versatile lab-on-a chip (LOC) technology. This opens a new window for metabolomics studies on living cells and can be implemented into new application fields in biotechnology and life sciences. PMID:26121119

  1. Tandem sulfur chemiluminescence and flame ionization detection with planar microfluidic devices for the characterization of sulfur compounds in hydrocarbon matrices.

    PubMed

    Luong, J; Gras, R; Shellie, R A; Cortes, H J

    2013-07-01

    The detection of sulfur compounds in different hydrocarbon matrices, from light hydrocarbon feedstocks to medium synthetic crude oil feeds provides meaningful information for optimization of refining processes as well as demonstration of compliance with petroleum product specifications. With the incorporation of planar microfluidic devices in a novel chromatographic configuration, sulfur compounds from hydrogen sulfide to alkyl dibenzothiophenes and heavier distributions of sulfur compounds over a wide range of matrices spanning across a boiling point range of more than 650°C can be characterized, using one single analytical configuration in less than 25min. In tandem with a sulfur chemiluminescence detector for sulfur analysis is a flame ionization detector. The flame ionization detector can be used to establish the boiling point range of the sulfur compounds in various hydrocarbon fractions for elemental specific simulated distillation analysis as well as profiling the hydrocarbon matrices for process optimization. Repeatability of less than 3% RSD (n=20) over a range of 0.5-1000 parts per million (v/v) was obtained with a limit of detection of 50 parts per billion and a linear range of 0.5-1000 parts per million with a correlation co-efficient of 0.998. PMID:23726084

  2. Wettability patterning for high-rate, pumpless fluid transport on open, non-planar microfluidic platforms.

    PubMed

    Ghosh, Aritra; Ganguly, Ranjan; Schutzius, Thomas M; Megaridis, Constantine M

    2014-05-01

    Surface tension driven transport of liquids on open substrates offers an enabling tool for open micro total analysis systems that are becoming increasingly popular for low-cost biomedical diagnostic devices. The present study uses a facile wettability patterning method to produce open microfluidic tracks that - due to their shape, surface texture and chemistry - are capable of transporting a wide range of liquid volumes (~1-500 μL) on-chip, overcoming viscous and other opposing forces (e.g., gravity) at the pertinent length scales. Small volumes are handled as individual droplets, while larger volumes require repeated droplet transport. The concept is developed and demonstrated with coatings based on TiO2 filler particles, which, when present in adequate (~80 wt.%) quantities within a hydrophobic fluoroacrylic polymer matrix, form composites that are intrinsically superhydrophobic. Such composite coatings become superhydrophilic upon exposure to UV light (390 nm). A commercial laser printer-based photo-masking approach is used on the coating for spatially selective wettability conversion from superhydrophobic to superhydrophilic. Carefully designed wedge-patterned surface tension confined tracks on the open-air devices move liquid on them without power input, even when acting against gravity. Simple designs of wettability patterning are used on versatile substrates (e.g., metals, polymers, paper) to demonstrate complex droplet handling tasks, e.g., merging, splitting and metered dispensing, some of which occur in 3-D geometries. Fluid transport rates of up to 350 μL s(-1) are attained. Applicability of the design on metal substrates allows these devices to be used also for other microscale engineering applications, e.g., water management in fuel cells. PMID:24622962

  3. Influence of channel position on sample confinement in two-dimensional planar microfluidic devices.

    PubMed

    Lerch, Margaret A; Hoffman, Michelle D; Jacobson, Stephen C

    2008-02-01

    We report enhanced sample confinement on microfluidic devices using a combination of electrokinetic flow from adjacent control channels and electric field shaping with an array of channels perpendicular to the sample stream. The basic device design consisted of a single first dimension (1D) channel, intersecting an array of 32 or 96 parallel second dimension (2D) channels. To minimize sample dispersion and leakage into the parallel channels as the sample traversed the sample transfer region, control channels were placed to the left and right of the 1D and waste channels. The electrokinetic flow from the control channels confined the sample stream and acted as a buffer between the sample stream and the 2D channels. To further enhance sample confinement, the electric field was shaped parallel to the sample stream by placing the channel array in close proximity to the sample transfer region. Using COMSOL Multiphysics, initial work focused on simulating the electric fields and fluid flows in various device geometries, and the results guided device design. Following the design phase, we fabricated devices with 40, 80, and 120 microm wide control channels and evaluated the sample stream width as a function of the electric field strength ratio in the control and 1D channels (E(C)/E(1D)). For the 32 channel design, the 40 and 80 microm wide control channels produced the most effective sample confinement with stream widths as narrow as 75 microm, and for the 96 channel design, all three control channel widths generated comparable sample stream widths. Comparison of the 32 and 96 channel designs showed sample confinement scaled easily with the length of the sample transfer region. PMID:18231672

  4. Chemiluminescence detector based on a single planar transparent digital microfluidic device.

    PubMed

    Zeng, Xiangyu; Zhang, Kaidi; Pan, Jian; Chen, Guoping; Liu, Ai-Qun; Fan, Shih-Kang; Zhou, Jia

    2013-07-21

    We report on a compact and portable prototype of chemiluminescence detector based on a single planar single polar transparent electrowetting-on-dielectrics (EWOD) device. The coupling ground model was proposed to build the EWOD device, which could be driven under a single polar voltage. Such a design not only simplified the chip construction and control circuit, but also had the potential for the ball-like droplet to focus the fluorescence and enhance the detection sensitivity. Simulations and experiments both confirmed that the greater the contact angle, the stronger the detected optical signal, and thus the higher the sensitivity. The sensitivity of the prototype detector to H2O2 was 5.45 mV (mmol L(-1))(-1) and the detection limit was 0.01 mmol L(-1) when the contact angle of the EWOD surface was 120°. To further increase the sensitivity and decrease the detection limit, the contact angle of the EWOD device could be increased and the dark current of the photomultiplier decreased. The prototype shows potential applications as highly sensitive, cost effective and portable immuno-detectors, especially as a blood glucose monitor. PMID:23674102

  5. Multi-dimensional gas chromatography with a planar microfluidic device for the characterization of volatile oxygenated organic compounds.

    PubMed

    Luong, J; Gras, R; Cortes, H; Shellie, R A

    2012-09-14

    Oxygenated compounds like methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, acetaldehyde, crotonaldehyde, ethylene oxide, tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, and 2-chloromethyl-1,3-dioxolane are commonly encountered in industrial manufacturing processes. Despite the availability of a variety of column stationary phases for chromatographic separation, it is difficult to separate these solutes from their respective matrices using single dimension gas chromatography. Implemented with a planar microfluidic device, conventional two-dimensional gas chromatography and the employment of chromatographic columns using dissimilar separation mechanisms like that of a selective wall-coated open tubular column and an ionic sorbent column have been successfully applied to resolve twelve industrially significant volatile oxygenated compounds in both gas and aqueous matrices. A Large Volume Gas Injection System (LVGIS) was also employed for sample introduction to enhance system automation and precision. By successfully integrating these concepts, in addition to having the capability to separate all twelve components in one single analysis, features associated with multi-dimensional gas chromatography like dual retention time capability, and the ability to quarantine undesired chromatographic contaminants or matrix components in the first dimension column to enhance overall system cleanliness were realized. With this technique, a complete separation for all the compounds mentioned can be carried out in less than 15 min. The compounds cited can be analyzed over a range of 250 ppm (v/v) to 100 ppm (v/v) with a relative standard deviation of less than 5% (n=20) with high degree of reliability. PMID:22410155

  6. Back-flushing and heart cut capillary gas chromatography using planar microfluidic Deans' switching for the separation of benzene and alkylbenzenes in industrial samples.

    PubMed

    Jacobs, Matthew R; Gras, Ronda; Nesterenko, Pavel N; Luong, Jim; Shellie, Robert A

    2015-11-20

    Planar microfluidic devices coupled with modern electronic pressure control have allowed gas chromatography (GC) practitioners to easily manipulate chromatographic systems to achieve heart cut and back-flushing configurations. These planar microfluidic devices have enhanced the connectivity between different components of GC instrumentation and have improved the inertness and minimised system dead volumes compared to classical chromatographic unions and valves. In the present contribution the setup and configuration of two multidimensional GC (MDGC) platforms is described for achieving the separation and quantification of trace level target C6-C8 alkylbenzenes in styrene monomer and Isoparaffin™ solvents, using flame ionisation detection (FID). The performance of these MDGC platforms indicated excellent retention time (0.2% relative standard deviation, RSD) and peak area repeatability (1% RSD) for all analytes of interest. The limit of detection (LOD) was 0.8 mg kg(-1) for benzene in styrene monomer, and 2.4-2.8 mg kg(-1) for C6-C8 alkylbenzenes such as benzene, toluene, ethylbenzene and xylene in Isoparaffin™ solvent. PMID:26592465

  7. Three-dimensional focusing of particles using negative dielectrophoretic force in a microfluidic chip with insulating microstructures and dual planar microelectrodes.

    PubMed

    Jen, Chun-Ping; Weng, Cheng-Hsin; Huang, Ching-Te

    2011-09-01

    The focusing of biological and synthetic particles in microfluidic devices is a prerequisite for the construction of microstructured materials, as well as for medical applications. In the present study, a microdevice that can effectively focus particles in three dimensions using a combination of insulator-based and metal-electrode dielectrophoresis (DEP) has been designed and fabricated. The DEP force is employed to confine the particles using a negative DEP response. Four insulating microstructures, which form an X-pattern in the microchannel, were employed to distort the electric field between the insulators in a conducting solution, thereby generating regions with a high electric-field gradient. Two strips of microelectrodes on the top and bottom surfaces were placed in the middle of the microchannel and connected to an electric pole. Two sets of dual-planar electrodes connected to the opposite pole were placed at the sides of the microchannel at the top and bottom surfaces. The results of a transient simulation of tracks of polystyrene particles, which was performed using the commercial software package CFD-ACE⁺ (ESI Group, France), demonstrate that the three-dimensional focusing of particles was achieved when the applied voltage was larger than 35 V at a frequency of 1 MHz. Furthermore, the focusing performance increased with the increased strength of the applied electric field and decreased inlet flow rate. Experiments on particle focusing, employing polystyrene particles 10 μm in diameter, were conducted to demonstrate the feasibility of the proposed design; the results agree with the trend predicted by numerical simulations. PMID:21874653

  8. Lab-on-CMOS Integration of Microfluidics and Electrochemical Sensors

    PubMed Central

    Huang, Yue; Mason, Andrew J.

    2013-01-01

    This paper introduces a CMOS-microfluidics integration scheme for electrochemical microsystems. A CMOS chip was embedded into a micro-machined silicon carrier. By leveling the CMOS chip and carrier surface to within 100 nm, an expanded obstacle-free surface suitable for photolithography was achieved. Thin film metal planar interconnects were microfabricated to bridge CMOS pads to the perimeter of the carrier, leaving a flat and smooth surface for integrating microfluidic structures. A model device containing SU-8 microfluidic mixers and detection channels crossing over microelectrodes on a CMOS integrated circuit was constructed using the chip-carrier assembly scheme. Functional integrity of microfluidic structures and on-CMOS electrodes was verified by a simultaneous sample dilution and electrochemical detection experiment within multi-channel microfluidics. This lab-on-CMOS integration process is capable of high packing density, is suitable for wafer-level batch production, and opens new opportunities to combine the performance benefits of on-CMOS sensors with lab-on-chip platforms. PMID:23939616

  9. Alignability of Optical Interconnects

    NASA Astrophysics Data System (ADS)

    Beech, Russell Scott

    With the continuing drive towards higher speed, density, and functionality in electronics, electrical interconnects become inadequate. Due to optics' high speed and bandwidth, freedom from capacitive loading effects, and freedom from crosstalk, optical interconnects can meet more stringent interconnect requirements. But, an optical interconnect requires additional components, such as an optical source and detector, lenses, holographic elements, etc. Fabrication and assembly of an optical interconnect requires precise alignment of these components. The successful development and deployment of optical interconnects depend on how easily the interconnect components can be aligned and/or how tolerant the interconnect is to misalignments. In this thesis, a method of quantitatively specifying the relative difficulty of properly aligning an optical interconnect is described. Ways of using this theory of alignment to obtain design and packaging guidelines for optical interconnects are examined. The measure of the ease with which an optical interconnect can be aligned, called the alignability, uses the efficiency of power transfer as a measure of alignment quality. The alignability is related to interconnect package design through the overall cost measure, which depends upon various physical parameters of the interconnect, such as the cost of the components and the time required for fabrication and alignment. Through a mutual dependence on detector size, the relationship between an interconnect's alignability and its bandwidth, signal-to-noise ratio, and bit-error -rate is examined. The results indicate that a range of device sizes exists for which given performance threshold values are satisfied. Next, the alignability of integrated planar-optic backplanes is analyzed in detail. The resulting data show that the alignability can be optimized by varying the substrate thickness or the angle of reflection. By including the effects of crosstalk, in a multi-channel backplane, the

  10. Microfluidic fuel cells

    NASA Astrophysics Data System (ADS)

    Kjeang, Erik

    Microfluidic fuel cell architectures are presented in this thesis. This work represents the mechanical and microfluidic portion of a microfluidic biofuel cell project. While the microfluidic fuel cells developed here are targeted to eventual integration with biocatalysts, the contributions of this thesis have more general applicability. The cell architectures are developed and evaluated based on conventional non-biological electrocatalysts. The fuel cells employ co-laminar flow of fuel and oxidant streams that do not require a membrane for physical separation, and comprise carbon or gold electrodes compatible with most enzyme immobilization schemes developed to date. The demonstrated microfluidic fuel cell architectures include the following: a single cell with planar gold electrodes and a grooved channel architecture that accommodates gaseous product evolution while preventing crossover effects; a single cell with planar carbon electrodes based on graphite rods; a three-dimensional hexagonal array cell based on multiple graphite rod electrodes with unique scale-up opportunities; a single cell with porous carbon electrodes that provides enhanced power output mainly attributed to the increased active area; a single cell with flow-through porous carbon electrodes that provides improved performance and overall energy conversion efficiency; and a single cell with flow-through porous gold electrodes with similar capabilities and reduced ohmic resistance. As compared to previous results, the microfluidic fuel cells developed in this work show improved fuel cell performance (both in terms of power density and efficiency). In addition, this dissertation includes the development of an integrated electrochemical velocimetry approach for microfluidic devices, and a computational modeling study of strategic enzyme patterning for microfluidic biofuel cells with consecutive reactions.

  11. A novel low Cr-containing Fe-Cr-Co alloy for metallic interconnects in planar intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Wenying; Yan, Dong; Yang, Jie; Chen, Jing; Chi, Bo; Pu, Jian; Li, Jian

    2014-12-01

    A newly developed low-Cr containing Fe-Cr-Co alloy, named as FeCro, is evaluated as a candidate material of metallic interconnects for intermediate temperature solid oxide fuel cells (IT-SOFCs). This alloy possesses excellent oxidation resistance and adequate electrical conductivity at 750 °C in air, and shows slight Cr deposition in/around La0.72Sr0.18MnO3(LSM) electrode under a harsh accelerating condition of 400 mA cm-2 and 850 °C. The thickness of the oxide scale thermally grown at 750 °C in air for 1000 his less than 1 μm, presenting a double-layered structure with dense (Mn, Cr)3O4 on the top of Cr2O3. The oxidation kinetics at 750 °C obeys the parabolic law with a low rate constant of1.42 × 10-15 g2 cm-4 s-1. The Cr deposition in/around the LSM electrode in the presence of the FeCro alloy is remarkably reduced, compared to the commercial Crofer 22H alloy. The measured area specific resistance (ASR) at 750 °C in air after 1000 h isothermal oxidation is 14 mΩ cm2. It is the unique microstructure of the formed oxide scale that significantly enhances the resistances of the FeCro alloy to oxidation and Cr volatilization.

  12. Carbon Nanotube Interconnect

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Meyyappan, Meyya (Inventor)

    2006-01-01

    Method and system for fabricating an electrical interconnect capable of supporting very high current densities ( 10(exp 6)-10(exp 10) Amps/sq cm), using an array of one or more carbon nanotubes (CNTs). The CNT array is grown in a selected spaced apart pattern, preferably with multi-wall CNTs, and a selected insulating material, such as SiOw, or SiuNv is deposited using CVD to encapsulate each CNT in the array. An exposed surface of the insulating material is planarized to provide one or more exposed electrical contacts for one or more CNTs.

  13. Design and fabrication of optical polymer waveguide devices for optical interconnects and integrated optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jiang, Guomin

    Optical interconnects is a promising technique to boost the speed of electronic systems through replacing high speed electrical data buses using optical ones. Optical coherence tomography is an attractive imaging technique that has been widely used in medical imaging applications with capability of high resolution subsurface cross sectional imaging in living tissues. Both the optical interconnects and the optical coherence tomography imaging may benefit from the use of integrated optics technology in particular polymer waveguides that can be designed and fabricated to improve the device capability, system compactness, and performance reliability. In this dissertation, we first present our innovative design and realization on the polymer waveguides with 45° integrated mirrors for optical interconnects using the vacuum assisted microfluidic (VAM) soft lithography. VAM is a new microfluidic based replication technique which can be utilized to improve the performance of imprinted devices by eliminating the residue planar layer and accomplish complex devices incorporating different materials in the same layer. A prism-assisted inclined UV lithography technique is introduced to increase the slanted angles of the side walls of the microstructures and to fabricate multidirectional slanted microstructures. It is also used to fabricate 45° integrated mirrors in polymer waveguides to support surface normal optical coupling for optical interconnects. A dynamic card-to-backplane optical interconnects system has also been demonstrated based on polymer waveguides with tunable optofluidic couplers. The operation of the tunable optofluidic coupler is accomplished by controlling the position of air bubbles and index matching liquid in the perpendicular microfluidic channel for refractive index modulation. The dynamic activation and deactivation of the backplane optofluidic couplers can save the optical signal power. 10 Gbps eye diagrams of the dynamic optical interconnect link

  14. Suspended microfluidics

    PubMed Central

    Casavant, Benjamin P.; Berthier, Erwin; Theberge, Ashleigh B.; Berthier, Jean; Montanez-Sauri, Sara I.; Bischel, Lauren L.; Brakke, Kenneth; Hedman, Curtis J.; Bushman, Wade; Keller, Nancy P.; Beebe, David J.

    2013-01-01

    Although the field of microfluidics has made significant progress in bringing new tools to address biological questions, the accessibility and adoption of microfluidics within the life sciences are still limited. Open microfluidic systems have the potential to lower the barriers to adoption, but the absence of robust design rules has hindered their use. Here, we present an open microfluidic platform, suspended microfluidics, that uses surface tension to fill and maintain a fluid in microscale structures devoid of a ceiling and floor. We developed a simple and ubiquitous model predicting fluid flow in suspended microfluidic systems and show that it encompasses many known capillary phenomena. Suspended microfluidics was used to create arrays of collagen membranes, mico Dots (μDots), in a horizontal plane separating two fluidic chambers, demonstrating a transwell platform able to discern collective or individual cellular invasion. Further, we demonstrated that μDots can also be used as a simple multiplexed 3D cellular growth platform. Using the μDot array, we probed the combined effects of soluble factors and matrix components, finding that laminin mitigates the growth suppression properties of the matrix metalloproteinase inhibitor GM6001. Based on the same fluidic principles, we created a suspended microfluidic metabolite extraction platform using a multilayer biphasic system that leverages the accessibility of open microchannels to retrieve steroids and other metabolites readily from cell culture. Suspended microfluidics brings the high degree of fluidic control and unique functionality of closed microfluidics into the highly accessible and robust platform of open microfluidics. PMID:23729815

  15. Microfluidic electronics.

    PubMed

    Cheng, Shi; Wu, Zhigang

    2012-08-21

    Microfluidics, a field that has been well-established for several decades, has seen extensive applications in the areas of biology, chemistry, and medicine. However, it might be very hard to imagine how such soft microfluidic devices would be used in other areas, such as electronics, in which stiff, solid metals, insulators, and semiconductors have previously dominated. Very recently, things have radically changed. Taking advantage of native properties of microfluidics, advances in microfluidics-based electronics have shown great potential in numerous new appealing applications, e.g. bio-inspired devices, body-worn healthcare and medical sensing systems, and ergonomic units, in which conventional rigid, bulky electronics are facing insurmountable obstacles to fulfil the demand on comfortable user experience. Not only would the birth of microfluidic electronics contribute to both the microfluidics and electronics fields, but it may also shape the future of our daily life. Nevertheless, microfluidic electronics are still at a very early stage, and significant efforts in research and development are needed to advance this emerging field. The intention of this article is to review recent research outcomes in the field of microfluidic electronics, and address current technical challenges and issues. The outlook of future development in microfluidic electronic devices and systems, as well as new fabrication techniques, is also discussed. Moreover, the authors would like to inspire both the microfluidics and electronics communities to further exploit this newly-established field. PMID:22711057

  16. Microfluidic device for drug delivery

    NASA Technical Reports Server (NTRS)

    Beebe, David J. (Inventor); MacDonald, Michael J. (Inventor); Eddington, David T. (Inventor); Mensing, Glennys A. (Inventor)

    2010-01-01

    A microfluidic device is provided for delivering a drug to an individual. The microfluidic device includes a body that defines a reservoir for receiving the drug therein. A valve interconnects the reservoir to an output needle that is insertable into the skin of an individual. A pressure source urges the drug from the reservoir toward the needle. The valve is movable between a closed position preventing the flow of the drug from the reservoir to the output needle and an open position allowing for the flow of the drug from the reservoir to the output needle in response to a predetermined condition in the physiological fluids of the individual.

  17. Polymer-based platform for microfluidic systems

    DOEpatents

    Benett, William; Krulevitch, Peter; Maghribi, Mariam; Hamilton, Julie; Rose, Klint; Wang, Amy W.

    2009-10-13

    A method of forming a polymer-based microfluidic system platform using network building blocks selected from a set of interconnectable network building blocks, such as wire, pins, blocks, and interconnects. The selected building blocks are interconnectably assembled and fixedly positioned in precise positions in a mold cavity of a mold frame to construct a three-dimensional model construction of a microfluidic flow path network preferably having meso-scale dimensions. A hardenable liquid, such as poly (dimethylsiloxane) is then introduced into the mold cavity and hardened to form a platform structure as well as to mold the microfluidic flow path network having channels, reservoirs and ports. Pre-fabricated elbows, T's and other joints are used to interconnect various building block elements together. After hardening the liquid the building blocks are removed from the platform structure to make available the channels, cavities and ports within the platform structure. Microdevices may be embedded within the cast polymer-based platform, or bonded to the platform structure subsequent to molding, to create an integrated microfluidic system. In this manner, the new microfluidic platform is versatile and capable of quickly generating prototype systems, and could easily be adapted to a manufacturing setting.

  18. Polymer waveguide with tunable optofluidic couplers for card-to-backplane optical interconnects

    NASA Astrophysics Data System (ADS)

    Jiang, Guomin; Baig, Sarfaraz; Wang, Michael R.

    2014-03-01

    Polymeric waveguides with tunable optofluidic couplers are fabricated by the vacuum assisted microfluidic technique for card-to-backplane optical interconnect applications. The optofluidic coupler on a backplane consists of polymer waveguides and a perpendicular microfluidic channel with inclined sidewalls. An index matching liquid and air bubbles are located in the microfluidic hollow channel. The activation or deactivation of the surface normal coupling of the optofluidic coupler is accomplished by setting air bubbles or index matching liquid to be in contact with the waveguide mirrors. 10 Gbps eye diagrams of the card-to-backplane optical interconnect link have been demonstrated showing the high performance of the interconnect system.

  19. Acoustically-driven microfluidic systems

    SciTech Connect

    Wang, A W; Benett, W J; Tarte, L R

    2000-06-23

    We have demonstrated a non-contact method of concentrating and mixing particles in a plastic microfluidic chamber employing acoustic radiation pressure. A flaw cell package has also been designed that integrates liquid sample interconnects, electrical contacts and a removable sample chamber. Experiments were performed on 1, 3, 6, and 10 {micro}m polystyrene beads. Increased antibody binding to a solid-phase substrate was observed in the presence of acoustic mixing due to improve mass transport.

  20. Method for making electro-fluidic connections in microfluidic devices

    DOEpatents

    Frye-Mason, Gregory C.; Martinez, David; Manginell, Ronald P.; Heller, Edwin J.; Chanchani, Rajen

    2004-08-10

    A method for forming electro-fluidic interconnections in microfluidic devices comprises forming an electrical connection between matching bond pads on a die containing an active electrical element and a microfluidic substrate and forming a fluidic seal ring that circumscribes the active electrical element and a fluidic feedthrough. Preferably, the electrical connection and the seal ring are formed in a single bonding step. The simple method is particularly useful for chemical microanalytical systems wherein a plurality of microanalytical components, such as a chemical preconcentrator, a gas chromatography column, and a surface acoustic wave detector, are fluidically interconnected on a hybrid microfluidic substrate having electrical connection to external support electronics.

  1. Electrical interconnect

    DOEpatents

    Frost, John S.; Brandt, Randolph J.; Hebert, Peter; Al Taher, Omar

    2015-10-06

    An interconnect includes a first set of connector pads, a second set of connector pads, and a continuous central portion. A first plurality of legs extends at a first angle from the continuous central portion. Each leg of the first plurality of legs is connected to a connector pad of a first set of connector pads. A second plurality of legs extends at a second angle from the continuous central portion. Each leg of the second plurality of legs is connected to a connector pad of the second set of connector pads. Gaps are defined between legs. The gaps enable movement of the first set of connector pads relative to the second set of connector pads.

  2. High-pressure microfluidics

    NASA Astrophysics Data System (ADS)

    Hjort, K.

    2015-03-01

    When using appropriate materials and microfabrication techniques, with the small dimensions the mechanical stability of microstructured devices allows for processes at high pressures without loss in safety. The largest area of applications has been demonstrated in green chemistry and bioprocesses, where extraction, synthesis and analyses often excel at high densities and high temperatures. This is accessible through high pressures. Capillary chemistry has been used since long but, just like in low-pressure applications, there are several potential advantages in using microfluidic platforms, e.g., planar isothermal set-ups, large local variations in geometries, dense form factors, small dead volumes and precisely positioned microstructures for control of reactions, catalysis, mixing and separation. Other potential applications are in, e.g., microhydraulics, exploration, gas driven vehicles, and high-pressure science. From a review of the state-of-art and frontiers of high pressure microfluidics, the focus will be on different solutions demonstrated for microfluidic handling at high pressures and challenges that remain.

  3. Flexible packaging and integration of CMOS IC with elastomeric microfluidics

    NASA Astrophysics Data System (ADS)

    Zhang, Bowei; Dong, Quan; Korman, Can E.; Li, Zhenyu; Zaghloul, Mona E.

    2013-05-01

    We have demonstrated flexible packaging and integration of CMOS IC chips with PDMS microfluidics. Microfluidic channels are used to deliver both liquid samples and liquid metals to the CMOS die. The liquid metals are used to realize electrical interconnects to the CMOS chip. As a demonstration we integrated a CMOS magnetic sensor die and matched PDMS microfluidic channels in a flexible package. The packaged system is fully functional under 3cm bending radius. The flexible integration of CMOS ICs with microfluidics enables previously unavailable flexible CMOS electronic systems with fluidic manipulation capabilities, which hold great potential for wearable health monitoring, point-of-care diagnostics and environmental sensing.

  4. Planar electrochemical device assembly

    DOEpatents

    Jacobson; Craig P. , Visco; Steven J. , De Jonghe; Lutgard C.

    2010-11-09

    A pre-fabricated electrochemical device having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films is bonded to a porous electrically conductive support. A second porous electrically conductive support may be bonded to a counter electrode of the electrochemical device. Multiple electrochemical devices may be bonded in parallel to a single porous support, such as a perforated sheet to provide a planar array. Planar arrays may be arranged in a stacked interconnected array. A method of making a supported electrochemical device is disclosed wherein the method includes a step of bonding a pre-fabricated electrochemical device layer to an existing porous metal or porous metal alloy layer.

  5. Planar electrochemical device assembly

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2007-06-19

    A pre-fabricated electrochemical device having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films is bonded to a porous electrically conductive support. A second porous electrically conductive support may be bonded to a counter electrode of the electrochemical device. Multiple electrochemical devices may be bonded in parallel to a single porous support, such as a perforated sheet to provide a planar array. Planar arrays may be arranged in a stacked interconnected array. A method of making a supported electrochemical device is disclosed wherein the method includes a step of bonding a pre-fabricated electrochemical device layer to an existing porous metal or porous metal alloy layer.

  6. Advanced Interconnect Development

    SciTech Connect

    Yang, Z.G.; Maupin, G.; Simner, S.; Singh, P.; Stevenson, J.; Xia, G.

    2005-01-27

    The objectives of this project are to develop cost-effective, optimized materials for intermediate temperature SOFC interconnect and interconnect/electrode interface applications and identify and understand degradation processes in interconnects and at their interfaces with electrodes.

  7. Interconnected semiconductor devices

    DOEpatents

    Grimmer, Derrick P.; Paulson, Kenneth R.; Gilbert, James R.

    1990-10-23

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  8. Interconnection networks

    DOEpatents

    Faber, V.; Moore, J.W.

    1988-06-20

    A network of interconnected processors is formed from a vertex symmetric graph selected from graphs GAMMA/sub d/(k) with degree d, diameter k, and (d + 1)exclamation/ (d /minus/ k + 1)exclamation processors for each d greater than or equal to k and GAMMA/sub d/(k, /minus/1) with degree d /minus/ 1, diameter k + 1, and (d + 1)exclamation/(d /minus/ k + 1)exclamation processors for each d greater than or equal to k greater than or equal to 4. Each processor has an address formed by one of the permutations from a predetermined sequence of letters chosen a selected number of letters at a time, and an extended address formed by appending to the address the remaining ones of the predetermined sequence of letters. A plurality of transmission channels is provided from each of the processors, where each processor has one less channel than the selected number of letters forming the sequence. Where a network GAMMA/sub d/(k, /minus/1) is provided, no processor has a channel connected to form an edge in a direction delta/sub 1/. Each of the channels has an identification number selected from the sequence of letters and connected from a first processor having a first extended address to a second processor having a second address formed from a second extended address defined by moving to the front of the first extended address the letter found in the position within the first extended address defined by the channel identification number. The second address is then formed by selecting the first elements of the second extended address corresponding to the selected number used to form the address permutations. 9 figs.

  9. Fabrication, Metrology, and Transport Characteristics of Single Polymeric Nanopores in Three-Dimensional Hybrid Microfluidic/Nanofluidic Devices

    ERIC Educational Resources Information Center

    King, Travis L.

    2009-01-01

    The incorporation of nanofluidic elements between microfluidic channels to form hybrid microfluidic/nanofluidic architectures allows the extension of microfluidic systems into the third dimension, thus removing the constraints imposed by planarity. Measuring and understanding the behavior of these devices creates new analytical challenges due to…

  10. Planar micromixer

    DOEpatents

    Fiechtner, Gregory J.; Singh, Anup K.; Wiedenman, Boyd J.

    2008-03-18

    The present embodiment describes a laminar-mixing embodiment that utilizes simple, three-dimensional injection. Also described is the use of the embodiment in combination with wide and shallow sections of channel to affect rapid mixing in microanalytical systems. The shallow channel sections are constructed using all planar micromachining techniques, including those based on isotropic etching. The planar construction enables design using minimum dispersion concepts that, in turn, enable simultaneous mixing and injection into subsequent chromatography channels.

  11. Fabrication of plastic microfluidic components

    NASA Astrophysics Data System (ADS)

    Martin, Peter M.; Matson, Dean W.; Bennett, Wendy D.; Hammerstrom, D. J.

    1998-09-01

    Plastic components have many advantages, including ease of fabrication, low cost, chemical inertness, lightweight, and disposability. We report on the fabrication of three plastics-based microfluidic components: a motherboard, a dialysis unit, and a metal sensor. Microchannels, headers, and interconnects were produced in thin sheets (>=50 microns) of polyimide, PMMA, polyethylene, and polycarbonate using a direct-write excimer laser micromachining system. Machined sheets were laminated by thermal and adhesive bonding to form leak-tight microfluidic components. The microfluidic motherboard borrowed the `functionality on a chip' concept from the electronics industry and was the heart of a complex microfluidic analytical device. The motherboard platform was designed to be tightly integrated and self-contained (i.e., liquid flows are all confined within machined microchannels), reducing the need for tubing with fluid distribution and connectivity. This concept greatly facilitated system integration and miniaturization. As fabricated, the motherboard consisted of three fluid reservoirs connected to micropumps by microchannels. The fluids could either be pumped independently or mixed in microchannels prior to being directed to exterior analytical components via outlet ports. The microdialysis device was intended to separate electrolytic solutes from low volume samples prior to mass spectrometric analysis. The device consisted of a dialysis membrane laminated between opposed serpentine microchannels containing the sample fluid and a buffer solution. The laminated metal sensor consisted of fluid reservoirs, micro-flow channels, micropumps, mixing channels, reaction channels, and detector circuitry.

  12. Compact planar microwave blocking filters

    NASA Technical Reports Server (NTRS)

    U-Yen, Kongpop (Inventor); Wollack, Edward J. (Inventor)

    2012-01-01

    A compact planar microwave blocking filter includes a dielectric substrate and a plurality of filter unit elements disposed on the substrate. The filter unit elements are interconnected in a symmetrical series cascade with filter unit elements being organized in the series based on physical size. In the filter, a first filter unit element of the plurality of filter unit elements includes a low impedance open-ended line configured to reduce the shunt capacitance of the filter.

  13. Digital Microfluidic Cell Culture.

    PubMed

    Ng, Alphonsus H C; Li, Bingyu Betty; Chamberlain, M Dean; Wheeler, Aaron R

    2015-01-01

    Digital microfluidics (DMF) is a droplet-based liquid-handling technology that has recently become popular for cell culture and analysis. In DMF, picoliter- to microliter-sized droplets are manipulated on a planar surface using electric fields, thus enabling software-reconfigurable operations on individual droplets, such as move, merge, split, and dispense from reservoirs. Using this technique, multistep cell-based processes can be carried out using simple and compact instrumentation, making DMF an attractive platform for eventual integration into routine biology workflows. In this review, we summarize the state-of-the-art in DMF cell culture, and describe design considerations, types of DMF cell culture, and cell-based applications of DMF. PMID:26643019

  14. Microfluidics in amino acid analysis.

    PubMed

    Pumera, Martin

    2007-07-01

    Microfluidic devices have been widely used to derivatize, separate, and detect amino acids employing many different strategies. Virtually zero-dead volume interconnections and fast mass transfer in small volume microchannels enable dramatic increases in on-chip derivatization reaction speed, while only minute amounts of sample and reagent are needed. Due to short channel path, fast subsecond separations can be carried out. With sophisticated miniaturized detectors, the whole analytical process can be integrated on one platform. This article reviews developments of lab-on-chip technology in amino acid analysis, it shows important design features such as sample preconcentration, precolumn and postcolumn amino acid derivatization, and unlabeled and labeled amino acid detection with focus on advanced designs. The review also describes important biomedical and space exploration applications of amino acid analysis on microfluidic devices. PMID:17542043

  15. Micro-Fluidic Device for Drug Delivery

    NASA Technical Reports Server (NTRS)

    Beebe, David J. (Inventor); MacDonald, Michael J. (Inventor); Eddington, David T. (Inventor); Mensing, Glennys A. (Inventor)

    2014-01-01

    A microfluidic device is provided for delivering a drug to an individual. The microfluidic device includes a body that defines a reservoir for receiving the drug therein. A valve interconnects the reservoir to an output needle that is insertable into the skin of an individual. A pressure source urges the drug from the reservoir toward the needle. The valve is movable between a closed position preventing the flow of the drug from the reservoir to the output needle and an open position allowing for the flow of the drug from the reservoir to the output needle in response to a predetermined condition in the physiological fluids of the individual.

  16. Integrated Microfluidic Gas Sensors for Water Monitoring

    NASA Technical Reports Server (NTRS)

    Zhu, L.; Sniadecki, N.; DeVoe, D. L.; Beamesderfer, M.; Semancik, S.; DeVoe, D. L.

    2003-01-01

    A silicon-based microhotplate tin oxide (SnO2) gas sensor integrated into a polymer-based microfluidic system for monitoring of contaminants in water systems is presented. This device is designed to sample a water source, control the sample vapor pressure within a microchannel using integrated resistive heaters, and direct the vapor past the integrated gas sensor for analysis. The sensor platform takes advantage of novel technology allowing direct integration of discrete silicon chips into a larger polymer microfluidic substrate, including seamless fluidic and electrical interconnects between the substrate and silicon chip.

  17. Digital Microfluidic Logic Gates

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Xu, Tao; Chakrabarty, Krishnendu

    Microfluidic computing is an emerging application for microfluidics technology. We propose microfluidic logic gates based on digital microfluidics. Using the principle of electrowetting-on-dielectric, AND, OR, NOT and XOR gates are implemented through basic droplet-handling operations such as transporting, merging and splitting. The same input-output interpretation enables the cascading of gates to create nontrivial computing systems. We present a potential application for microfluidic logic gates by implementing microfluidic logic operations for on-chip HIV test.

  18. Printed Module Interconnects

    SciTech Connect

    Stockert, Talysa R.; Fields, Jeremy D.; Pach, Gregory F.; Mauger, Scott A.; van Hest, Maikel F. A. M.

    2015-06-14

    Monolithic interconnects in photovoltaic modules connect adjacent cells in series, and are typically formed sequentially involving multiple deposition and scribing steps. Interconnect widths of 500 um every 10 mm result in 5% dead area, which does not contribute to power generation in an interconnected solar panel. This work expands on previous work that introduced an alternative interconnection method capable of producing interconnect widths less than 100 um. The interconnect is added to the module in a single step after deposition of the photovoltaic stack, eliminating the need for scribe alignment. This alternative method can be used for all types of thin film photovoltaic modules. Voltage addition with copper-indium-gallium-diselenide (CIGS) solar cells using a 2-scribe printed interconnect approach is demonstrated. Additionally, interconnect widths of 250 um are shown.

  19. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey (Inventor)

    2015-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  20. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey L. (Inventor)

    2016-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  1. Microfluidic waves.

    PubMed

    Utz, Marcel; Begley, Matthew R; Haj-Hariri, Hossein

    2011-11-21

    The propagation of pressure waves in fluidic channels with elastic covers is discussed in view of applications to flow control in microfluidic devices. A theory is presented which describes pressure waves in the fluid that are coupled to bending waves in the elastic cover. At low frequencies, the lateral bending of the cover dominates over longitudinal bending, leading to propagating, non-dispersive longitudinal pressure waves in the channel. The theory addresses effects due to both the finite viscosity and compressibility of the fluid. The coupled waves propagate without dispersion, as long as the wave length is larger than the channel width. It is shown that in channels of typical microfluidic dimensions, wave velocities in the range of a few 10 m s(-1) result if the channels are covered by films of a compliant material such as PDMS. The application of this principle to design microfluidic band pass filters based on standing waves is discussed. Characteristic frequencies in the range of a few kHz are readily achieved with quality factors above 30. PMID:21966667

  2. Single-mode and tunable microfluidic dye lasers

    NASA Astrophysics Data System (ADS)

    Kristensen, A.; Balslev, S.; Gersborg-Hansen, M.; Bilenberg, B.; Rasmussen, T.; Nilsson, D.

    2006-08-01

    We present a technology for miniaturized, chip-based liquid dye lasers, which may be integrated with microfluidic networks and planar waveguides without addition of further process steps. The microfluidic dye lasers consist of a microfluidic channel with an embedded optical resonator. The lasers are operated with Rhodamine 6G laser dye dissolved in a suitable solvent, such as ethanol or ethylene glycol, and optically pumped at 532 nm with a pulsed, frequency doubled Nd:YAG laser. Both vertically and laterally emitting devices are realized. A vertically emitting Fabry-Perot microcavity laser is integrated with a microfluidic mixer, to demonstrate realtime wavelength tunability. Two major challenges of this technology are addressed: lasing threshold and fluidic handling. Low threshold, in-plane emission and integration with polymer waveguides and microfluidic networks is demonstrated with distributed feed-back lasers. The challenge of fluidic handling is addressed by hybridization with mini-dispensers, and by applying capillary filling of the laser devices.

  3. Perforation patterned electrical interconnects

    SciTech Connect

    Frey, Jonathan

    2014-01-28

    This disclosure describes systems and methods for increasing the usable surface area of electrical contacts within a device, such as a thin film solid state device, through the implementation of electrically conductive interconnects. Embodiments described herein include the use of a plurality of electrically conductive interconnects that penetrate through a top contact layer, through one or more multiple layers, and into a bottom contact layer. The plurality of conductive interconnects may form horizontal and vertical cross-sectional patterns. The use of lasers to form the plurality of electrically conductive interconnects from reflowed layer material further aids in the manufacturing process of a device.

  4. Bio-functionalized silk hydrogel microfluidic systems.

    PubMed

    Zhao, Siwei; Chen, Ying; Partlow, Benjamin P; Golding, Anne S; Tseng, Peter; Coburn, Jeannine; Applegate, Matthew B; Moreau, Jodie E; Omenetto, Fiorenzo G; Kaplan, David L

    2016-07-01

    Bio-functionalized microfluidic systems were developed based on a silk protein hydrogel elastomeric materials. A facile multilayer fabrication method using gelatin sacrificial molding and layer-by-layer assembly was implemented to construct interconnected, three dimensional (3D) microchannel networks in silk hydrogels at 100 μm minimum feature resolution. Mechanically activated valves were implemented to demonstrate pneumatic control of microflow. The silk hydrogel microfluidics exhibit controllable mechanical properties, long-term stability in various environmental conditions, tunable in vitro and in vivo degradability in addition to optical transparency, providing unique features for cell/tissue-related applications than conventional polydimethylsiloxane (PDMS) and existing hydrogel-based microfluidic options. As demonstrated in the work here, the all aqueous-based fabrication process at ambient conditions enabled the incorporation of active biological substances in the bulk phase of these new silk microfluidic systems during device fabrication, including enzymes and living cells, which are able to interact with the fluid flow in the microchannels. These silk hydrogel-based microfluidic systems offer new opportunities in engineering active diagnostic devices, tissues and organs that could be integrated in vivo, and for on-chip cell sensing systems. PMID:27077566

  5. Microfluidic electrochemical reactors

    DOEpatents

    Nuzzo, Ralph G.; Mitrovski, Svetlana M.

    2011-03-22

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  6. Solar cell array interconnects

    DOEpatents

    Carey, P.G.; Thompson, J.B.; Colella, N.J.; Williams, K.A.

    1995-11-14

    Electrical interconnects are disclosed for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value. 4 figs.

  7. Solar cell array interconnects

    DOEpatents

    Carey, Paul G.; Thompson, Jesse B.; Colella, Nicolas J.; Williams, Kenneth A.

    1995-01-01

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  8. Multiphase flows with digital and traditional microfluidics

    NASA Astrophysics Data System (ADS)

    Nilsson, Michael A.

    Multi-phase fluid systems are an important concept in fluid mechanics, seen every day in how fluids interact with solids, gases, and other fluids in many industrial, medical, agricultural, and other regimes. In this thesis, the development of a two-dimensional digital microfluidic device is presented, followed by the development of a two-phase microfluidic diagnostic tool designed to simulate sandstone geometries in oil reservoirs. In both instances, it is possible to take advantage of the physics involved in multiphase flows to affect positive outcomes in both. In order to make an effective droplet-based digital microfluidic device, one must be able to precisely control a number of key processes including droplet positioning, motion, coalescence, mixing, and sorting. For planar or open microfluidic devices, many of these processes have yet to be demonstrated. A suitable platform for an open system is a superhydrophobic surface, as suface characteristics are critical. Great efforts have been spent over the last decade developing hydrophobic surfaces exhibiting very large contact angles with water, and which allow for high droplet mobility. We demonstrate that sanding Teflon can produce superhydrophobic surfaces with advancing contact angles of up to 151° and contact angle hysteresis of less than 4°. We use these surfaces to characterize droplet coalescence, mixing, motion, deflection, positioning, and sorting. This research culminates with the presentation of two digital microfluidic devices: a droplet reactor/analyzer and a droplet sorter. As global energy usage increases, maximizing oil recovery from known reserves becomes a crucial multiphase challenge in order to meet the rising demand. This thesis presents the development of a microfluidic sandstone platform capable of quickly and inexpensively testing the performance of fluids with different rheological properties on the recovery of oil. Specifically, these microfluidic devices are utilized to examine how

  9. Polydimethylsiloxane-based conducting composites and their applications in microfluidic chip fabrication

    PubMed Central

    Gong, Xiuqing; Wen, Weijia

    2009-01-01

    This paper reviews the design and fabrication of polydimethylsiloxane (PDMS)-based conducting composites and their applications in microfluidic chip fabrication. Owing to their good electrical conductivity and rubberlike elastic characteristics, these composites can be used variously in soft-touch electronic packaging, planar and three-dimensional electronic circuits, and in-chip electrodes. Several microfluidic components fabricated with PDMS-based composites have been introduced, including a microfluidic mixer, a microheater, a micropump, a microdroplet controller, as well as an all-in-one microfluidic chip. PMID:19693388

  10. Microfluidic sieve valves

    SciTech Connect

    Quake, Stephen R; Marcus, Joshua S; Hansen, Carl L

    2015-01-13

    Sieve valves for use in microfluidic device are provided. The valves are useful for impeding the flow of particles, such as chromatography beads or cells, in a microfluidic channel while allowing liquid solution to pass through the valve. The valves find particular use in making microfluidic chromatography modules.

  11. Rapid fabrication of supercapacitor electrodes using bionanoscaffolds in capillary microfluidics

    NASA Astrophysics Data System (ADS)

    Zang, F.; Chu, S.; Gerasopoulos, K.; Culver, J. N.; Ghodssi, R.

    2015-12-01

    This paper reports the utilization of capillary microfluidics to rapidly create nanostructure-patterned electrodes for energy storage applications. Using patterned photoresist as open-channel capillary microfluidics, Tobacco mosaic virus (TMV) bio-nanoscaffolds suspended in solution are autonomously delivered onto planar gold electrodes over a 1 cm2 area. The TMVs assemble on the electrode and form a dense bio-nanoscaffold layer due to enhanced evaporation-assisted assembly in the open-channel capillary microfluidic device within an hour. The TMV structures are coated with Ni/NiO through electroless plating and thermal oxidation to form supercapacitor electrodes. The galvanostatic charge/discharge cycle showed a 3.6-fold increase in areal capacitance for the nanostructured electrode compared to planar structures.

  12. Laser printing of 3D metallic interconnects

    NASA Astrophysics Data System (ADS)

    Beniam, Iyoel; Mathews, Scott A.; Charipar, Nicholas A.; Auyeung, Raymond C. Y.; Piqué, Alberto

    2016-04-01

    The use of laser-induced forward transfer (LIFT) techniques for the printing of functional materials has been demonstrated for numerous applications. The printing gives rise to patterns, which can be used to fabricate planar interconnects. More recently, various groups have demonstrated electrical interconnects from laser-printed 3D structures. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or of pastes containing dispersed metallic particles. However, the generated 3D structures do not posses the same metallic conductivity as a bulk metal interconnect of the same cross-section and length as those formed by wire bonding or tab welding. An alternative is to laser transfer entire 3D structures using a technique known as lase-and-place. Lase-and-place is a LIFT process whereby whole components and parts can be transferred from a donor substrate onto a desired location with one single laser pulse. This paper will describe the use of LIFT to laser print freestanding, solid metal foils or beams precisely over the contact pads of discrete devices to interconnect them into fully functional circuits. Furthermore, this paper will also show how the same laser can be used to bend or fold the bulk metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief for the circuits under flexing or during motion from thermal mismatch. These interconnect "ridges" can span wide gaps (on the order of a millimeter) and accommodate height differences of tens of microns between adjacent devices. Examples of these laser printed 3D metallic bridges and their role in the development of next generation electronics by additive manufacturing will be presented.

  13. Microfab-less Microfluidic Capillary Electrophoresis Devices

    PubMed Central

    Segato, Thiago P.; Bhakta, Samir A.; Gordon, Matthew; Carrilho, Emanuel; Willis, Peter A.; Jiao, Hong; Garcia, Carlos D.

    2013-01-01

    Compared to conventional bench-top instruments, microfluidic devices possess advantageous characteristics including great portability potential, reduced analysis time (minutes), and relatively inexpensive production, putting them on the forefront of modern analytical chemistry. Fabrication of these devices, however, often involves polymeric materials with less-than-ideal surface properties, specific instrumentation, and cumbersome fabrication procedures. In order to overcome such drawbacks, a new hybrid platform is proposed. The platform is centered on the use of 5 interconnecting microfluidic components that serve as the injector or reservoirs. These plastic units are interconnected using standard capillary tubing, enabling in-channel detection by a wide variety of standard techniques, including capacitively-coupled contactless conductivity detection (C4D). Due to the minimum impact on the separation efficiency, the plastic microfluidic components used for the experiments discussed herein were fabricated using an inexpensive engraving tool and standard Plexiglas. The presented approach (named 52-platform) offers a previously unseen versatility: enabling the assembly of the platform within minutes using capillary tubing that differs in length, diameter, or material. The advantages of the proposed design are demonstrated by performing the analysis of inorganic cations by capillary electrophoresis on soil samples from the Atacama Desert. PMID:23585815

  14. Robust fluidic connections to freestanding microfluidic hydrogels

    PubMed Central

    Baer, Bradly B.; Larsen, Taylor S. H.

    2015-01-01

    Biomimetic scaffolds approaching physiological scale, whose size and large cellular load far exceed the limits of diffusion, require incorporation of a fluidic means to achieve adequate nutrient/metabolite exchange. This need has driven the extension of microfluidic technologies into the area of biomaterials. While construction of perfusable scaffolds is essentially a problem of microfluidic device fabrication, functional implementation of free-standing, thick-tissue constructs depends upon successful integration of external pumping mechanisms through optimized connective assemblies. However, a critical analysis to identify optimal materials/assembly components for hydrogel substrates has received little focus to date. This investigation addresses this issue directly by evaluating the efficacy of a range of adhesive and mechanical fluidic connection methods to gelatin hydrogel constructs based upon both mechanical property analysis and cell compatibility. Results identify a novel bioadhesive, comprised of two enzymatically modified gelatin compounds, for connecting tubing to hydrogel constructs that is both structurally robust and non-cytotoxic. Furthermore, outcomes from this study provide clear evidence that fluidic interconnect success varies with substrate composition (specifically hydrogel versus polydimethylsiloxane), highlighting not only the importance of selecting the appropriately tailored components for fluidic hydrogel systems but also that of encouraging ongoing, targeted exploration of this issue. The optimization of such interconnect systems will ultimately promote exciting scientific and therapeutic developments provided by microfluidic, cell-laden scaffolds. PMID:26045731

  15. LTCC interconnects in microsystems

    NASA Astrophysics Data System (ADS)

    Rusu, Cristina; Persson, Katrin; Ottosson, Britta; Billger, Dag

    2006-06-01

    Different microelectromechanical system (MEMS) packaging strategies towards high packaging density of MEMS devices and lower expenditure exist both in the market and in research. For example, electrical interconnections and low stress wafer level packaging are essential for improving device performance. Hybrid integration of low temperature co-fired ceramics (LTCC) with Si can be a way for an easier packaging system with integrated electrical interconnection, and as well towards lower costs. Our research on LTCC-Si integration is reported in this paper.

  16. MECHANICAL PROPERTIES OF CATHODE-INTERCONNECT INTERFACES IN PLANAR SOFCs

    SciTech Connect

    Wang, Yanli; Armstrong, Beth L; Trejo, Rosa M; Bai, Jianming; Watkins, Thomas R; Lara-Curzio, Edgar

    2010-01-01

    The residual stresses in manganese cobaltite, i.e., Mn1.5Co1.5O4, coatings applied onto alloys 441 and Crofer 22 APU were determined by X-Ray Diffraction. The residual stresses were found to be tensile at 800 C for both systems. The residual stress for spinel-coated AL441 relaxed with time and reached a value of 0.16 0.02 GPa after 300 minutes. The stress relaxation process was slower for spinel-coated Crofer and reached a value of 0.23 0.01 GPa after 500 minutes. Four-point bend SENB testing technique was used to evaluate the toughness of the interfaces between LSM10, i.e., (La0.9Sr0.1)0.98MnO3+δ, and spinel-coated AL441 and Crofer. Sandwich test specimens were prepared by sintering the LSM10 layer at 900 C for four hours in air or under PO2 cyclic conditions. The strain energy release rate was found to be 1.52 0.11 J/m2 for regular sintering and 1.47 0.15 J/m2 for sintering with cyclic PO2 treatment. This difference was found to be statistically insignificant.

  17. Zee electrical interconnect

    NASA Technical Reports Server (NTRS)

    Rust, Thomas M. (Inventor); Gaddy, Edward M. (Inventor); Herriage, Michael J. (Inventor); Patterson, Robert E. (Inventor); Partin, Richard D. (Inventor)

    2001-01-01

    An interconnect, having some length, that reliably connects two conductors separated by the length of the interconnect when the connection is made but in which one length if unstressed would change relative to the other in operation. The interconnect comprises a base element an intermediate element and a top element. Each element is rectangular and formed of a conducting material and has opposed ends. The elements are arranged in a generally Z-shape with the base element having one end adapted to be connected to one conductor. The top element has one end adapted to be connected to another conductor and the intermediate element has its ends disposed against the other end of the base and the top element. Brazes mechanically and electrically interconnect the intermediate element to the base and the top elements proximate the corresponding ends of the elements. When the respective ends of the base and the top elements are connected to the conductors, an electrical connection is formed therebetween, and when the conductors are relatively moved or the interconnect elements change length the elements accommodate the changes and the associated compression and tension forces in such a way that the interconnect does not mechanically fatigue.

  18. Microfluidic systems for electrochemical and biological studies

    SciTech Connect

    Ackler, H., LLNL

    1998-05-01

    Microfluidic devices with microelectrodes have the potential to enable studies of phenomena at size scales where behavior may be dominated by different mechanisms than at macroscales. Through our work developing microfluidic devices for dielectrophoretic separation and sensing of cells and particles, we have fabricated devices from which general or more specialized research devices may be derived. Fluid channels from 80 {micro}m wide X 20 {micro}m deep to 1 mm wide to 200 {micro}m deep have been fabricated in glass, with lithographically patterned electrodes from 10 to 80 {micro}m wide on one or both sides on the channels and over topographies tens of microns in heights. the devices are designed to easily interface to electronic and fluidic interconnect packages that permit reuse of devices, rather than one-time use, crude glue-based methods. Such devices may be useful for many applications of interest to the electrochemical and biological community.

  19. Discrete elements for 3D microfluidics

    PubMed Central

    Bhargava, Krisna C.; Thompson, Bryant; Malmstadt, Noah

    2014-01-01

    Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly complex systems by placing unnecessary emphasis on complete functional integration of operational elements in a planar environment. Here, we present a solution based on discrete elements that liberates designers to build large-scale microfluidic systems in three dimensions that are modular, diverse, and predictable by simple network analysis techniques. We develop a sample library of standardized components and connectors manufactured using stereolithography. We predict and validate the flow characteristics of these individual components to design and construct a tunable concentration gradient generator with a scalable number of parallel outputs. We show that these systems are rapidly reconfigurable by constructing three variations of a device for generating monodisperse microdroplets in two distinct size regimes and in a high-throughput mode by simple replacement of emulsifier subcircuits. Finally, we demonstrate the capability for active process monitoring by constructing an optical sensing element for detecting water droplets in a fluorocarbon stream and quantifying their size and frequency. By moving away from large-scale integration toward standardized discrete elements, we demonstrate the potential to reduce the practice of designing and assembling complex 3D microfluidic circuits to a methodology comparable to that found in the electronics industry. PMID:25246553

  20. SOFC INTERCONNECT DEVELOPMENT

    SciTech Connect

    Diane M. England

    2004-03-16

    An interconnect for an SOFC stack is used to connect fuel cells into a stack. SOFC stacks are expected to run for 40,000 hours and 10 thermal cycles for the stationary application and 10,000 hours and 7000 thermal cycles for the transportation application. The interconnect of a stack must be economical and robust enough to survive the SOFC stack operation temperature of 750 C and must maintain the electrical connection to the fuel cells throughout the lifetime and under thermal cycling conditions. Ferritic and austenitic stainless steels, and nickel-based superalloys were investigated as possible interconnect materials for solid oxide fuel cell (SOFC) stacks. The alloys were thermally cycled in air and in a wet nitrogen-argon-hydrogen (N2-Ar-H2-H2O) atmosphere. Thermogravimetry was used to determine the parabolic oxidation rate constants of the alloys in both atmospheres. The area-specific resistance of the oxide scale and metal substrates were measured using a two-probe technique with platinum contacts. The study identifies two new interconnect designs which can be used with both bonded and compressive stack sealing mechanisms. The new interconnect designs offer a solution to chromium vaporization, which can lead to degradation of some (chromium-sensitive) SOFC cathodes.

  1. Optically interconnected phased arrays

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Kunath, Richard R.

    1988-01-01

    Phased-array antennas are required for many future NASA missions. They will provide agile electronic beam forming for communications and tracking in the range of 1 to 100 GHz. Such phased arrays are expected to use several hundred GaAs monolithic integrated circuits (MMICs) as transmitting and receiving elements. However, the interconnections of these elements by conventional coaxial cables and waveguides add weight, reduce flexibility, and increase electrical interference. Alternative interconnections based on optical fibers, optical processing, and holography are under evaluation as possible solutions. In this paper, the current status of these techniques is described. Since high-frequency optical components such as photodetectors, lasers, and modulators are key elements in these interconnections, their performance and limitations are discussed.

  2. SOFC INTERCONNECT DEVELOPMENT

    SciTech Connect

    Diane M. England

    2003-06-06

    This report summarizes the interconnect work being performed at Delphi. Materials were chosen for this interconnect project were chosen from ferritic and austenitic stainless steels, and nickel-based superalloys. The alloys are thermally cycled in air and a wet hydrogen atmosphere. The oxide scale adherence, electrical resistance and oxidation resistance are determined after long-term oxidation of each alloy. The oxide scale adherence will be observed using a scanning electron microscope. The electrical resistance of the oxidized alloys will be determined using an electrical resistance measurement apparatus which has been designed and is currently being built. Data from the electrical resistance measurement is expected to be provided in the second quarter.

  3. Central American electrical interconnection

    SciTech Connect

    Not Available

    1988-12-01

    A technical cooperation grant of $2.25 million, designed to strengthen the capacity of Central American countries to operate their regional interconnected electrical system, was announced by the Inter-American Development Bank (IDB). The grant, extended from the banks Fund for Special Operations, will help improve the capacity of the regions electric power companies to achieve economical, safe operation of the interconnected electric power systems. The funds will also be used to finance regional studies of the accords, procedures, regulations, and supervisory mechanisms for the system, as well as program development and data bases.

  4. Corrosion Performance of Ferritic Steel for SOFC Interconnect Applications

    SciTech Connect

    Ziomek-Moroz, M.; Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Jablonski, P.D.; Alman, D.E.

    2006-11-01

    Ferritic stainless steels have been identified as potential candidates for interconnects in planar-type solid oxide fuel cells (SOFC) operating below 800ºC. Crofer 22 APU was selected for this study. It was studied under simulated SOFC-interconnect dual environment conditions with humidified air on one side of the sample and humidified hydrogen on the other side at 750ºC. The surfaces of the oxidized samples were studied by scanning electron microscopy (SEM) equipped with microanalytical capabilities. X-ray diffraction (XRD) analysis was also used in this study.

  5. Open Systems Interconnection.

    ERIC Educational Resources Information Center

    Denenberg, Ray

    1985-01-01

    Discusses the need for standards allowing computer-to-computer communication and gives examples of technical issues. The seven-layer framework of the Open Systems Interconnection (OSI) Reference Model is explained and illustrated. Sidebars feature public data networks and Recommendation X.25, OSI standards, OSI layer functions, and a glossary.…

  6. Interconnecting with VIPs

    ERIC Educational Resources Information Center

    Collins, Robert

    2013-01-01

    Interconnectedness changes lives. It can even save lives. Recently the author got to witness and be part of something in his role as a teacher of primary science that has changed lives: it may even have saved lives. It involved primary science teaching--and the climate. Robert Collins describes how it is all interconnected. The "Toilet…

  7. Capillary interconnect device

    SciTech Connect

    Renzi, Ronald F

    2013-11-19

    An interconnecting device for connecting a plurality of first fluid-bearing conduits to a corresponding plurality of second fluid-bearing conduits thereby providing fluid communication between the first fluid-bearing conduits and the second fluid-bearing conduits. The device includes a manifold and one or two ferrule plates that are held by compressive axial forces.

  8. CAISSON: Interconnect Network Simulator

    NASA Technical Reports Server (NTRS)

    Springer, Paul L.

    2006-01-01

    Cray response to HPCS initiative. Model future petaflop computer interconnect. Parallel discrete event simulation techniques for large scale network simulation. Built on WarpIV engine. Run on laptop and Altix 3000. Can be sized up to 1000 simulated nodes per host node. Good parallel scaling characteristics. Flexible: multiple injectors, arbitration strategies, queue iterators, network topologies.

  9. Flexible packaging of solid-state integrated circuit chips with elastomeric microfluidics

    NASA Astrophysics Data System (ADS)

    Zhang, Bowei; Dong, Quan; Korman, Can E.; Li, Zhenyu; Zaghloul, Mona E.

    2013-01-01

    A flexible technology is proposed to integrate smart electronics and microfluidics all embedded in an elastomer package. The microfluidic channels are used to deliver both liquid samples and liquid metals to the integrated circuits (ICs). The liquid metals are used to realize electrical interconnects to the IC chip. This avoids the traditional IC packaging challenges, such as wire-bonding and flip-chip bonding, which are not compatible with current microfluidic technologies. As a demonstration we integrated a CMOS magnetic sensor chip and associate microfluidic channels on a polydimethylsiloxane (PDMS) substrate that allows precise delivery of small liquid samples to the sensor. Furthermore, the packaged system is fully functional under bending curvature radius of one centimetre and uniaxial strain of 15%. The flexible integration of solid-state ICs with microfluidics enables compact flexible electronic and lab-on-a-chip systems, which hold great potential for wearable health monitoring, point-of-care diagnostics and environmental sensing among many other applications.

  10. SmartBuild-a truly plug-n-play modular microfluidic system.

    PubMed

    Yuen, Po Ki

    2008-08-01

    In this Technical Note, for the first time, a truly "plug-n-play" modular microfluidic system (SmartBuild Plug-n-Play Modular Microfluidic System) is presented for designing and building integrated modular microfluidic systems for biological and chemical applications. The modular microfluidic system can be built by connecting multiple microfluidic components together to form a larger integrated system. The SmartBuild System comprises of a motherboard with interconnect channels/grooves, fitting components, microchannel inserts with different configurations and microchips/modules with different functionalities. Also, heaters, micropumps and valving systems can be designed and used in the system. Examples of an integrated mixing system and reaction systems are presented here to demonstrate the versatility of the SmartBuild System. PMID:18651081

  11. Quasi-toric planar microlenses for oblique-incidence light beams

    NASA Astrophysics Data System (ADS)

    Kurita, Hisakazu; Kawai, Shigeru

    1997-02-01

    Novel quasi-toric planar microlenses (PML s) suitable for planar optics are proposed. The PML s have elliptical apertures, and they are astigmatism free for oblique-incidence light beams. A simple PML model is proposed for designing the quasi-toric PML. Fabricated quasi-toric PML s were evaluated to demonstrate their chip-to-chip interconnection probability.

  12. Unconventional microfluidics: expanding the discipline

    PubMed Central

    Nawaz, Ahmad Ahsan; Mao, Xiaole; Stratton, Zackary S.; Huang, Tony Jun

    2014-01-01

    Since its inception, the discipline of microfluidics has been harnessed for innovations in the biomedicine/chemistry fields—and to great effect. This success has had the natural side-effect of stereotyping microfluidics as a platform for medical diagnostics and miniaturized lab processes. But microfluidics has more to offer. And very recently, some researchers have successfully applied microfluidics to fields outside its traditional domains. In this Focus article, we highlight notable examples of such “unconventional” microfluidics applications (e.g., robotics, electronics). It is our hope that these early successes in unconventional microfluidics prompt further creativity, and inspire readers to expand the microfluidics discipline. PMID:23478651

  13. Unconventional microfluidics: expanding the discipline.

    PubMed

    Nawaz, Ahmad Ahsan; Mao, Xiaole; Stratton, Zackary S; Huang, Tony Jun

    2013-04-21

    Since its inception, the discipline of microfluidics has been harnessed for innovations in the biomedicine/chemistry fields-and to great effect. This success has had the natural side-effect of stereotyping microfluidics as a platform for medical diagnostics and miniaturized lab processes. But microfluidics has more to offer. And very recently, some researchers have successfully applied microfluidics to fields outside its traditional domains. In this Focus article, we highlight notable examples of such "unconventional" microfluidics applications (e.g., robotics, electronics). It is our hope that these early successes in unconventional microfluidics prompt further creativity, and inspire readers to expand the microfluidics discipline. PMID:23478651

  14. Optical Interconnection Networks

    NASA Astrophysics Data System (ADS)

    Bergman, Keren; Hughes, Gary

    2004-07-01

    In current high-performance computing and communications systems an emerging need for ultra-high-capacity, low-latency interconnection networks has led investigators to consider insertion of optical-domain switching fabrics. The use of optical technology for the physical switching layer within data communication systems is clearly advantageous in providing maximum bandwidth per cable particularly through the exploitation of DWDM. Furthermore, the transparency offered in the optical domain allows potentially wide flexibility in the data encoding and protocols. However, many key challenges remain to the successful implementation of optical packet routing, as optical signals cannot be processed efficiently or buffered for an arbitrary time. Clearly, innovative architectures, switching fabrics, and packet processing subsystems that employ optical technologies in synergetic fashions with powerful electronic techniques would be poised to harvest the immense transmission bandwidth of optics creating the ultimate "unlimited-capacity" interconnection network.

  15. Optical Interconnection Networks

    NASA Astrophysics Data System (ADS)

    Bergman, Keren; Hughes, Gary

    2004-05-01

    In current high-performance computing and communications systems an emerging need for ultra-high-capacity, low-latency interconnection networks has led investigators to consider insertion of optical-domain switching fabrics. The use of optical technology for the physical switching layer within data communication systems is clearly advantageous in providing maximum bandwidth per cable particularly through the exploitation of DWDM. Furthermore, the transparency offered in the optical domain allows potentially wide flexibility in the data encoding and protocols. However, many key challenges remain to the successful implementation of optical packet routing, as optical signals cannot be processed efficiently or buffered for an arbitrary time. Clearly, innovative architectures, switching fabrics, and packet processing subsystems that employ optical technologies in synergetic fashions with powerful electronic techniques would be poised to harvest the immense transmission bandwidth of optics creating the ultimate "unlimited-capacity" interconnection network.

  16. Optical Interconnection Networks

    NASA Astrophysics Data System (ADS)

    Bergman, Keren; Hughes, Gary

    2004-06-01

    In current high-performance computing and communications systems an emerging need for ultra-high-capacity, low-latency interconnection networks has led investigators to consider insertion of optical-domain switching fabrics. The use of optical technology for the physical switching layer within data communication systems is clearly advantageous in providing maximum bandwidth per cable particularly through the exploitation of DWDM. Furthermore, the transparency offered in the optical domain allows potentially wide flexibility in the data encoding and protocols. However, many key challenges remain to the successful implementation of optical packet routing, as optical signals cannot be processed efficiently or buffered for an arbitrary time. Clearly, innovative architectures, switching fabrics, and packet processing subsystems that employ optical technologies in synergetic fashions with powerful electronic techniques would be poised to harvest the immense transmission bandwidth of optics creating the ultimate "unlimited-capacity" interconnection network.

  17. Capillary interconnect device

    DOEpatents

    Renzi, Ronald F.

    2007-12-25

    A manifold for connecting external capillaries to the inlet and/or outlet ports of a microfluidic device for high pressure applications is provided. The fluid connector for coupling at least one fluid conduit to a corresponding port of a substrate that includes: (i) a manifold comprising one or more channels extending therethrough wherein each channel is at least partially threaded, (ii) one or more threaded ferrules each defining a bore extending therethrough with each ferrule supporting a fluid conduit wherein each ferrule is threaded into a channel of the manifold, (iii) a substrate having one or more ports on its upper surface wherein the substrate is positioned below the manifold so that the one or more ports is aligned with the one or more channels of the manifold, and (iv) means for applying an axial compressive force to the substrate to couple the one or more ports of the substrate to a corresponding proximal end of a fluid conduit.

  18. Microfluidic chemical reaction circuits

    DOEpatents

    Lee, Chung-cheng; Sui, Guodong; Elizarov, Arkadij; Kolb, Hartmuth C.; Huang, Jiang; Heath, James R.; Phelps, Michael E.; Quake, Stephen R.; Tseng, Hsian-rong; Wyatt, Paul; Daridon, Antoine

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  19. Using Adhesive Patterning to Construct 3D Paper Microfluidic Devices.

    PubMed

    Kalish, Brent; Tsutsui, Hideaki

    2016-01-01

    We demonstrate the use of patterned aerosol adhesives to construct both planar and nonplanar 3D paper microfluidic devices. By spraying an aerosol adhesive through a metal stencil, the overall amount of adhesive used in assembling paper microfluidic devices can be significantly reduced. We show on a simple 4-layer planar paper microfluidic device that the optimal adhesive application technique and device construction style depends heavily on desired performance characteristics. By moderately increasing the overall area of a device, it is possible to dramatically decrease the wicking time and increase device success rates while also reducing the amount of adhesive required to keep the device together. Such adhesive application also causes the adhesive to form semi-permanent bonds instead of permanent bonds between paper layers, enabling single-use devices to be non-destructively disassembled after use. Nonplanar 3D origami devices also benefit from the semi-permanent bonds during folding, as it reduces the likelihood that unrelated faces may accidently stick together. Like planar devices, nonplanar structures see reduced wicking times with patterned adhesive application vs uniformly applied adhesive. PMID:27077551

  20. Electro-Microfluidic Packaging

    SciTech Connect

    BENAVIDES, GILBERT L.; GALAMBOS, PAUL C.

    2002-06-01

    Electro-microfluidics is experiencing explosive growth in new product developments. There are many commercial applications for electro-microfluidic devices such as chemical sensors, biological sensors, and drop ejectors for both printing and chemical analysis. The number of silicon surface micromachined electro-microfluidic products is likely to increase. Manufacturing efficiency and integration of microfluidics with electronics will become important. Surface micromachined microfluidic devices are manufactured with the same tools as IC's (integrated circuits) and their fabrication can be incorporated into the IC fabrication process. In order to realize applications for devices must be developed. An Electro-Microfluidic Dual In-line Package (EMDIP{trademark}) was developed surface micromachined electro-microfluidic devices, a practical method for getting fluid into these to be a standard solution that allows for both the electrical and the fluidic connections needed to operate a great variety of electro-microfluidic devices. The EMDIP{trademark} includes a fan-out manifold that, on one side, mates directly with the 200 micron diameter Bosch etched holes found on the device, and, on the other side, mates to lager 1 mm diameter holes. To minimize cost the EMDIP{trademark} can be injection molded in a great variety of thermoplastics which also serve to optimize fluid compatibility. The EMDIP{trademark} plugs directly into a fluidic printed wiring board using a standard dual in-line package pattern for the electrical connections and having a grid of multiple 1 mm diameter fluidic connections to mate to the underside of the EMDIP{trademark}.

  1. Electrochromatography Methods: Planar Electrochromatography

    NASA Astrophysics Data System (ADS)

    Chomicki, Adam; Dzido, Tadeusz H.; Płocharz, Paweł; Polak, Beata

    Planar electrochromatography is a technique in which mixture components are separated in adsorbent layer of a chromatographic plate placed in electric field. In such separation system a mobile phase movement stems from electroosmosis phenomenon. Partition and electrophoresis mechanisms are involved in separation of mixture components with this technique. Two principal modes of planar electrochromatography are described: planar electrochromatography in an open system (PEC) and planar electrochromatography in a closed system (pressurized planar electrochromatography, PPEC). The development of both modes is presented beginning with the first paper on electrochromatography by Pretorius et al. in 1974 and finishing with the last papers by Dzido et al. in 2010. Constructional development of equipment to planar electrochromatography is provided and influence of operating variables on separation efficiency as well. The advantages and challenges of PPEC technique are especially discussed.

  2. Surface acoustic wave microfluidics

    PubMed Central

    Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S.; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun

    2014-01-01

    The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering, and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting, and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next. PMID:23900527

  3. MEMS in microfluidic channels.

    SciTech Connect

    Ashby, Carol Iris Hill; Okandan, Murat; Michalske, Terry A.; Sounart, Thomas L.; Matzke, Carolyn M.

    2004-03-01

    Microelectromechanical systems (MEMS) comprise a new class of devices that include various forms of sensors and actuators. Recent studies have shown that microscale cantilever structures are able to detect a wide range of chemicals, biomolecules or even single bacterial cells. In this approach, cantilever deflection replaces optical fluorescence detection thereby eliminating complex chemical tagging steps that are difficult to achieve with chip-based architectures. A key challenge to utilizing this new detection scheme is the incorporation of functionalized MEMS structures within complex microfluidic channel architectures. The ability to accomplish this integration is currently limited by the processing approaches used to seal lids on pre-etched microfluidic channels. This report describes Sandia's first construction of MEMS instrumented microfluidic chips, which were fabricated by combining our leading capabilities in MEMS processing with our low-temperature photolithographic method for fabricating microfluidic channels. We have explored in-situ cantilevers and other similar passive MEMS devices as a new approach to directly sense fluid transport, and have successfully monitored local flow rates and viscosities within microfluidic channels. Actuated MEMS structures have also been incorporated into microfluidic channels, and the electrical requirements for actuation in liquids have been quantified with an elegant theory. Electrostatic actuation in water has been accomplished, and a novel technique for monitoring local electrical conductivities has been invented.

  4. Polymeric optoelectronic interconnects

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.

    2000-04-01

    Electrical interconnects are reaching their fundamental limits and are becoming the speed bottleneck as processor speeds are increasing. A polymer-based interconnect technology was developed for affordable integrated optical circuits that address the optical signal processing needs in the telecom, datacom, and performance computing industries. We engineered organic polymers that can be readily made into single-mode, multimode, and micro-optical waveguide structures of controlled numerical apertures and geometries. These materials are formed from highly-crosslinked acrylate monomers with specific linkages that determine properties such as flexibility, robustness, optical loss, thermal stability, and humidity resistance. These monomers are intermiscible, providing for precise continuous adjustment of the refractive index over a wide range. In polymer form, they exhibit state-of-the-art loss values and exceptional environmental stability, enabling use in a variety of demanding applications. A wide range of rigid and flexible substrates can be used, including glass, quartz, silicon, glass-filled epoxy printed circuit board substrates, and flexible plastic films. The devices we describe include a variety of routing elements that can be sued as part of a massively parallel photonic integrated circuit on the MCM, board, or backplane level.

  5. Constant field gradient planar cavity structure

    SciTech Connect

    Kang, Yoon W.; Kustom, R.L.

    1997-12-01

    A cavity structure is described having at least two opposing planar housing members spaced apart to accommodate the passage of a particle beam through the structure between the members. Each of the housing members have a plurality of serially aligned hollows defined therein, and also passages, formed in the members, which interconnect serially adjacent hollows to provide communication between the hollows. The opposing planar housing members are spaced and aligned such that the hollows in one member cooperate with corresponding hollows in the other member to form a plurality of resonant cavities aligned along the particle beam within the cavity structure. To facilitate the obtaining of a constant field gradient within the cavity structure, the passages are configured so as to be incrementally narrower in the direction of travel of the particle beam. In addition, the spacing distance between the opposing housing members is configured to be incrementally smaller in the direction of travel of the beam.

  6. Constant field gradient planar coupled cavity structure

    DOEpatents

    Kang, Yoon W.; Kustom, Robert L.

    1999-01-01

    A cavity structure having at least two opposing planar housing members spaced apart to accommodate the passage of a particle beam through the structure between the members. Each of the housing members have a plurality of serially aligned hollows defined therein, and also passages, formed in the members, which interconnect serially adjacent hollows to provide communication between the hollows. The opposing planar housing members are spaced and aligned such that the hollows in one member cooperate with corresponding hollows in the other member to form a plurality of resonant cavities aligned along the particle beam within the cavity structure. To facilitate the obtaining of a constant field gradient within the cavity structure, the passages are configured so as to be incrementally narrower in the direction of travel of the particle beam. In addition, the spacing distance between the opposing housing members is configured to be incrementally smaller in the direction of travel of the beam.

  7. Constant field gradient planar coupled cavity structure

    DOEpatents

    Kang, Y.W.; Kustom, R.L.

    1999-07-27

    A cavity structure is disclosed having at least two opposing planar housing members spaced apart to accommodate the passage of a particle beam through the structure between the members. Each of the housing members have a plurality of serially aligned hollows defined therein, and also passages, formed in the members, which interconnect serially adjacent hollows to provide communication between the hollows. The opposing planar housing members are spaced and aligned such that the hollows in one member cooperate with corresponding hollows in the other member to form a plurality of resonant cavities aligned along the particle beam within the cavity structure. To facilitate the obtaining of a constant field gradient within the cavity structure, the passages are configured so as to be incrementally narrower in the direction of travel of the particle beam. In addition, the spacing distance between the opposing housing members is configured to be incrementally smaller in the direction of travel of the beam. 16 figs.

  8. Smart and functional polymer materials for smart and functional microfluidic instruments

    NASA Astrophysics Data System (ADS)

    Gray, Bonnie L.

    2014-04-01

    As microfluidic systems evolve from "chip-in-the-lab" to true portable lab-on-a-chip (LoC) or lab-in-a-package (LiP) microinstrumentation, there is a need for increasingly miniaturized sensors, actuators, and integration/interconnect technologies with high levels of functionality and self-direction. Furthermore, as microfluidic instruments are increasingly realized in polymer-based rather than glass- or silicon- based platforms, there is a need to realize these highly functional components in materials that are polymer-compatible. Polymers that are altered to possess basic functionality, and even higher-functioning "smart" polymer materials, may help to realize high-functioning and selfdirecting portable microinstrumentation. Stimuli-responsive hydrogels have been recognized for over a decade as beneficial to the development of smart microfluidics systems and instrumentation. In addition, functional materials such as conductive and magnetic composite polymers are being increasingly employed to push microfluidics systems to greater degrees of functionality, portability, and/or flexibility for wearable/implantable systems. Functional and smart polymer materials can be employed to realize electrodes, electronic routing, heaters, mixers, valves, pumps, sensors, and interconnect structures in polymer-based microfluidic systems. Stimuli for such materials can be located on-chip or in a small package, thus greatly increasing the degree of portability and the potential for mechanical flexibility of such systems. This paper will examine the application of functional polymer materials to the development of high-functioning microfluidics instruments with a goal towards self-direction.

  9. Policy issues in interconnecting networks

    NASA Technical Reports Server (NTRS)

    Leiner, Barry M.

    1989-01-01

    To support the activities of the Federal Research Coordinating Committee (FRICC) in creating an interconnected set of networks to serve the research community, two workshops were held to address the technical support of policy issues that arise when interconnecting such networks. The workshops addressed the required and feasible technologies and architectures that could be used to satisfy the desired policies for interconnection. The results of the workshop are documented.

  10. Fuel cell system with interconnect

    SciTech Connect

    Liu, Zhien; Goettler, Richard

    2015-09-29

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  11. Fuel cell system with interconnect

    SciTech Connect

    Goettler, Richard; Liu, Zhien

    2015-08-11

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  12. Fuel cell system with interconnect

    SciTech Connect

    Goettler, Richard; Liu, Zhien

    2015-03-10

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  13. Punch card programmable microfluidics.

    PubMed

    Korir, George; Prakash, Manu

    2015-01-01

    Small volume fluid handling in single and multiphase microfluidics provides a promising strategy for efficient bio-chemical assays, low-cost point-of-care diagnostics and new approaches to scientific discoveries. However multiple barriers exist towards low-cost field deployment of programmable microfluidics. Incorporating multiple pumps, mixers and discrete valve based control of nanoliter fluids and droplets in an integrated, programmable manner without additional required external components has remained elusive. Combining the idea of punch card programming with arbitrary fluid control, here we describe a self-contained, hand-crank powered, multiplex and robust programmable microfluidic platform. A paper tape encodes information as a series of punched holes. A mechanical reader/actuator reads these paper tapes and correspondingly executes operations onto a microfluidic chip coupled to the platform in a plug-and-play fashion. Enabled by the complexity of codes that can be represented by a series of holes in punched paper tapes, we demonstrate independent control of 15 on-chip pumps with enhanced mixing, normally-closed valves and a novel on-demand impact-based droplet generator. We demonstrate robustness of operation by encoding a string of characters representing the word "PUNCHCARD MICROFLUIDICS" using the droplet generator. Multiplexing is demonstrated by implementing an example colorimetric water quality assays for pH, ammonia, nitrite and nitrate content in different water samples. With its portable and robust design, low cost and ease-of-use, we envision punch card programmable microfluidics will bring complex control of microfluidic chips into field-based applications in low-resource settings and in the hands of children around the world. PMID:25738834

  14. Three-dimensional planar-integrated optics: a comparative view with free-space optics

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Song, Seok Ho

    2000-04-01

    This paper reports on the viability, effectiveness, versatility, and the utility of the concept of the planar integrated optical interconnection scheme with respect to the concept of the free-space interconnection scheme in realizing multiple integration of various micro/nano- photonic devices and components for applications in optical interconnection, optical circuits, optical switching, optical communication and information processing. Several planar optics schemes to detect parallel optical packet addresses in WDM switching networks, to perform a space- variant processing such as fractional correlation, and to construct multistage interconnection networks, have been successfully demonstrated in the 3D glass blocks. Using a gradient-index (GRIN) substrate as a signal propagation medium in the planar optics is a unique advantage, when compared to the free-space optics. We have demonstrated the GRIN-substrate concept by using six 1/4-pitch GRIN rod lenses and a vertical cavity surface emitting laser (VCSEL). The GRIN planar optics can be further extended to the use of 2D array of VCSEL microlasers and modulators in making massively parallel interconnects. A critical comparison between the planar integrated optics scheme and the free- space integrated scheme is given in terms of physics, engineering and technological concept.

  15. A microfluidic tubing method and its application for controlled synthesis of polymeric nanoparticles.

    PubMed

    Wang, Jidong; Chen, Wenwen; Sun, Jiashu; Liu, Chao; Yin, Qifang; Zhang, Lu; Xianyu, Yunlei; Shi, Xinghua; Hu, Guoqing; Jiang, Xingyu

    2014-05-21

    This report describes a straightforward but robust tubing method for connecting polydimethylsiloxane (PDMS) microfluidic devices to external equipment. The interconnection is irreversible and can sustain a pressure of up to 4.5 MPa that is characterized experimentally and theoretically. To demonstrate applications of this high-pressure tubing technique, we fabricate a semicircular microfluidic channel to implement a high-throughput, size-controlled synthesis of poly(lactic-co-glycolic acid) (PLGA) nanoparticles ranging from 55 to 135 nm in diameter. This microfluidic device allows for a total flow rate of 410 mL h(-1), resulting in enhanced convective mixing which can be utilized to precipitate small size nanoparticles with a good dispersion. We expect that this tubing technique would be widely used in microfluidic chips for nanoparticle synthesis, cell manipulation, and potentially nanofluidic applications. PMID:24675980

  16. Process for electrically interconnecting electrodes

    DOEpatents

    Carey, Paul G.; Thompson, Jesse B.; Colella, Nicolas J.; Williams, Kenneth A.

    2002-01-01

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb--Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb--Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  17. Microfluidic platforms for mechanobiology

    PubMed Central

    Polacheck, William J.; Li, Ran; Uzel, Sebastien G. M.

    2013-01-01

    Mechanotransduction has been a topic of considerable interest since early studies demonstrated a link between mechanical force and biological response. Until recently, studies of fundamental phenomena were based either on in vivo experiments with limited control or direct access, or on large-scale in vitro studies lacking many of the potentially important physiological factors. With the advent of microfluidics, many of the previous limitations of in vitro testing were eliminated or reduced through greater control or combined functionalities. At the same time, imaging capabilities were tremendously enhanced. In this review, we discuss how microfluidics has transformed the study of mechanotransduction. This is done in the context of the various cell types that exhibit force-induced responses and the new biological insights that have been elucidated. We also discuss new microfluidic studies that could produce even more realistic models of in vivo conditions by combining multiple stimuli or creating a more realistic microenvironment. PMID:23649165

  18. Microfluidic Mixing: A Review

    PubMed Central

    Lee, Chia-Yen; Chang, Chin-Lung; Wang, Yao-Nan; Fu, Lung-Ming

    2011-01-01

    The aim of microfluidic mixing is to achieve a thorough and rapid mixing of multiple samples in microscale devices. In such devices, sample mixing is essentially achieved by enhancing the diffusion effect between the different species flows. Broadly speaking, microfluidic mixing schemes can be categorized as either “active”, where an external energy force is applied to perturb the sample species, or “passive”, where the contact area and contact time of the species samples are increased through specially-designed microchannel configurations. Many mixers have been proposed to facilitate this task over the past 10 years. Accordingly, this paper commences by providing a high level overview of the field of microfluidic mixing devices before describing some of the more significant proposals for active and passive mixers. PMID:21686184

  19. Punch Card Programmable Microfluidics

    PubMed Central

    Korir, George; Prakash, Manu

    2015-01-01

    Small volume fluid handling in single and multiphase microfluidics provides a promising strategy for efficient bio-chemical assays, low-cost point-of-care diagnostics and new approaches to scientific discoveries. However multiple barriers exist towards low-cost field deployment of programmable microfluidics. Incorporating multiple pumps, mixers and discrete valve based control of nanoliter fluids and droplets in an integrated, programmable manner without additional required external components has remained elusive. Combining the idea of punch card programming with arbitrary fluid control, here we describe a self-contained, hand-crank powered, multiplex and robust programmable microfluidic platform. A paper tape encodes information as a series of punched holes. A mechanical reader/actuator reads these paper tapes and correspondingly executes operations onto a microfluidic chip coupled to the platform in a plug-and-play fashion. Enabled by the complexity of codes that can be represented by a series of holes in punched paper tapes, we demonstrate independent control of 15 on-chip pumps with enhanced mixing, normally-closed valves and a novel on-demand impact-based droplet generator. We demonstrate robustness of operation by encoding a string of characters representing the word “PUNCHCARD MICROFLUIDICS” using the droplet generator. Multiplexing is demonstrated by implementing an example colorimetric water quality assays for pH, ammonia, nitrite and nitrate content in different water samples. With its portable and robust design, low cost and ease-of-use, we envision punch card programmable microfluidics will bring complex control of microfluidic chips into field-based applications in low-resource settings and in the hands of children around the world. PMID:25738834

  20. Experimental Microfluidic System

    NASA Technical Reports Server (NTRS)

    Culbertson, Christopher; Gonda, Steve; Ramsey, John Michael

    2005-01-01

    The ultimate goal of this project is to integrate microfluidic devices with NASA's space bioreactor systems. In such a system, the microfluidic device would provide realtime feedback control of the bioreactor by monitoring pH, glucose, and lactate levels in the cell media; and would provide an analytical capability to the bioreactor in exterrestrial environments for monitoring bioengineered cell products and health changes in cells due to environmental stressors. Such integrated systems could be used as biosentinels both in space and on planet surfaces. The objective is to demonstrate the ability of microfabricated devices to repeatedly and reproducibly perform bead cytometry experiments in micro, lunar, martian, and hypergravity (1.8g).

  1. Microfluidic CARS cytometry

    PubMed Central

    Wang, Han-Wei; Bao, Ning; Le, Thuc T.; Lu, Chang; Cheng, Ji-Xin

    2009-01-01

    Coherent anti-stokes Raman scattering (CARS) flow cytometry was demonstrated by combining a laser-scanning CARS microscope with a polydimethylsiloxane (PDMS) based microfluidic device. Line-scanning across the hydrodynamically focused core stream was performed for detection of flowing objects. Parameters were optimized by utilizing polystyrene beads as flowing particles. Population measurements of adipocytes isolated from mouse fat tissues demonstrated the viability of microfluidic CARS cytometry for quantitation of adipocyte size distribution. CARS cytometry could be a new modality for quantitative analysis with vibrational selectivity. PMID:18542688

  2. Microfluidic Flame Barrier

    NASA Technical Reports Server (NTRS)

    Mungas, Gregory S. (Inventor); Fisher, David J. (Inventor); Mungas, Christopher (Inventor)

    2013-01-01

    Propellants flow through specialized mechanical hardware that is designed for effective and safe ignition and sustained combustion of the propellants. By integrating a micro-fluidic porous media element between a propellant feed source and the combustion chamber, an effective and reliable propellant injector head may be implemented that is capable of withstanding transient combustion and detonation waves that commonly occur during an ignition event. The micro-fluidic porous media element is of specified porosity or porosity gradient selected to be appropriate for a given propellant. Additionally the propellant injector head design integrates a spark ignition mechanism that withstands extremely hot running conditions without noticeable spark mechanism degradation.

  3. Interconnecting heterogeneous database management systems

    NASA Technical Reports Server (NTRS)

    Gligor, V. D.; Luckenbaugh, G. L.

    1984-01-01

    It is pointed out that there is still a great need for the development of improved communication between remote, heterogeneous database management systems (DBMS). Problems regarding the effective communication between distributed DBMSs are primarily related to significant differences between local data managers, local data models and representations, and local transaction managers. A system of interconnected DBMSs which exhibit such differences is called a network of distributed, heterogeneous DBMSs. In order to achieve effective interconnection of remote, heterogeneous DBMSs, the users must have uniform, integrated access to the different DBMs. The present investigation is mainly concerned with an analysis of the existing approaches to interconnecting heterogeneous DBMSs, taking into account four experimental DBMS projects.

  4. Interconnect resistance of photovoltaic submodules

    NASA Technical Reports Server (NTRS)

    Volltrauer, H.; Eser, E.; Delahoy, A. E.

    1985-01-01

    Small area amorphous silicon solar cells generally have higher efficiencies than large interconnected submodules. Among the reasons for the differences in performance are the lack of large area uniformity, the effect of nonzero tin oxide sheet resistance, and possibly pinholes in the various layers. Another and usually small effect that can contribute to reduced performance of interconnected cells is the resistance of the interconnection i.e., the series resistance introduced by the metal to tin oxide contact through silicon. Proper processing problems to avoid poor contacts are discussed.

  5. Chemistry in Microfluidic Channels

    ERIC Educational Resources Information Center

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  6. Microfluidic bead suspension hopper.

    PubMed

    Price, Alexander K; MacConnell, Andrew B; Paegel, Brian M

    2014-05-20

    Many high-throughput analytical platforms, from next-generation DNA sequencing to drug discovery, rely on beads as carriers of molecular diversity. Microfluidic systems are ideally suited to handle and analyze such bead libraries with high precision and at minute volume scales; however, the challenge of introducing bead suspensions into devices before they sediment usually confounds microfluidic handling and analysis. We developed a bead suspension hopper that exploits sedimentation to load beads into a microfluidic droplet generator. A suspension hopper continuously delivered synthesis resin beads (17 μm diameter, 112,000 over 2.67 h) functionalized with a photolabile linker and pepstatin A into picoliter-scale droplets of an HIV-1 protease activity assay to model ultraminiaturized compound screening. Likewise, trypsinogen template DNA-coated magnetic beads (2.8 μm diameter, 176,000 over 5.5 h) were loaded into droplets of an in vitro transcription/translation system to model a protein evolution experiment. The suspension hopper should effectively remove any barriers to using suspensions as sample inputs, paving the way for microfluidic automation to replace robotic library distribution. PMID:24761972

  7. Learning planar ising models

    SciTech Connect

    Johnson, Jason K; Chertkov, Michael; Netrapalli, Praneeth

    2010-11-12

    Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus our attention on the class of planar Ising models, for which inference is tractable using techniques of statistical physics [Kac and Ward; Kasteleyn]. Based on these techniques and recent methods for planarity testing and planar embedding [Chrobak and Payne], we propose a simple greedy algorithm for learning the best planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. We present the results of numerical experiments evaluating the performance of our algorithm.

  8. Modular microfluidics for point-of-care protein purifications.

    PubMed

    Millet, L J; Lucheon, J D; Standaert, R F; Retterer, S T; Doktycz, M J

    2015-04-21

    Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured to suit a variety of fluidic operations or biochemical processes. We demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules. PMID:25740172

  9. Modular microfluidics for point-of-care protein purifications

    SciTech Connect

    Millet, L. J.; Lucheon, J. D.; Standaert, R. F.; Retterer, S. T.; Doktycz, M. J.

    2015-01-01

    Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured to suit a variety of fluidic operations or biochemical processes. In conclusion, we demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules.

  10. Renewable Systems Interconnection: Executive Summary

    SciTech Connect

    Kroposki, B.; Margolis, R.; Kuswa, G.; Torres, J.; Bower, W.; Key, T.; Ton, D.

    2008-02-01

    The U.S. Department of Energy launched the Renewable Systems Interconnection (RSI) study in 2007 to address the challenges to high penetrations of distributed renewable energy technologies. The RSI study consists of 14 additional reports.

  11. Chemical Mechanical Polishing with Nanocolloidal Ceria Slurry for Low-Damage Planarization of Dielectric Films

    NASA Astrophysics Data System (ADS)

    Ryuzaki, Daisuke; Hoshi, Yosuke; Machii, Yoichi; Koyama, Naoyuki; Sakurai, Haruaki; Ashizawa, Toranosuke

    2012-03-01

    New chemical mechanical polishing processes using nanocolloidal ceria slurry are proposed for high-precision and low-damage planarization of silicon-dioxide-based dielectric films. In the polishing process of a shallow trench isolation structure, a hard pad and a cationic polymer additive are used in combination with the slurry. The new process is effective in improving the planarity and reducing the microscratch count in comparison with a conventional polishing process with calcined ceria slurry and a standard pad. In the polishing process of an interconnect structure with ultralow-k interlayer dielectrics (ULK-ILDs), the standard pad should be used since the ULK-ILDs are easily damaged. By employing a spin-on-type ULK-ILD having a self-planarizing effect, a high planarity is obtained when using the nanocolloidal ceria slurry with the standard pad. The electrical measurement of the interconnect structure indicates that dielectric damage due to the process is successfully suppressed.

  12. Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels.

    PubMed

    Wang, Xiaolin; Phan, Duc T T; Sobrino, Agua; George, Steven C; Hughes, Christopher C W; Lee, Abraham P

    2016-01-21

    This paper reports a method for generating an intact and perfusable microvascular network that connects to microfluidic channels without appreciable leakage. This platform incorporates different stages of vascular development including vasculogenesis, endothelial cell (EC) lining, sprouting angiogenesis, and anastomosis in sequential order. After formation of a capillary network inside the tissue chamber via vasculogenesis, the adjacent microfluidic channels are lined with a monolayer of ECs, which then serve as the high-pressure input ("artery") and low pressure output ("vein") conduits. To promote a tight interconnection between the artery/vein and the capillary network, sprouting angiogenesis is induced, which promotes anastomosis of the vasculature inside the tissue chamber with the EC lining along the microfluidic channels. Flow of fluorescent microparticles confirms the perfusability of the lumenized microvascular network, and minimal leakage of 70 kDa FITC-dextran confirms physiologic tightness of the EC junctions and completeness of the interconnections between artery/vein and the capillary network. This versatile device design and its robust construction methodology establish a physiological transport model of interconnected perfused vessels from artery to vascularized tissue to vein. The system has utility in a wide range of organ-on-a-chip applications as it enables the physiological vascular interconnection of multiple on-chip tissue constructs that can serve as disease models for drug screening. PMID:26616908

  13. Flexible optical interconnects based on silicon-containing polymers

    NASA Astrophysics Data System (ADS)

    Anzures, Ed; Dangel, Roger; Beyeler, Rene; Cannon, Allie; Horst, Folkert; Kiarie, Cecilia; Knudsen, Phil; Meier, Norbert; Moynihan, Matt; Offrein, Bert Jan

    2009-02-01

    Formulations containing silicon-based polymers have been used for the formation of planar waveguides on flexible substrates. The substrate of choice is compatible with the flexible waveguide and is made of materials commonly utilized in the printed circuit board industry. When the flexible waveguide material is combined with the chosen substrate using processes compatible with printed circuit board manufacturing techniques, the resultant optical interconnects display sufficient flexibility, low optical loss (<0.05 dB/cm at 850 nm), and high reliability.

  14. Planar high density sodium battery

    DOEpatents

    Lemmon, John P.; Meinhardt, Kerry D.

    2016-03-01

    A method of making a molten sodium battery is disclosed. A first metallic interconnect frame having a first interconnect vent hole is provided. A second metallic interconnect frame having a second interconnect vent hole is also provided. An electrolyte plate having a cathode vent hole and an anode vent hole is interposed between the metallic interconnect frames. The metallic interconnect frames and the electrolyte plate are sealed thereby forming gaseous communication between an anode chamber through the anode vent hole and gaseous communication between a cathode chamber through the cathode vent hole.

  15. PREFACE: Nano- and microfluidics Nano- and microfluidics

    NASA Astrophysics Data System (ADS)

    Jacobs, Karin

    2011-05-01

    The field of nano- and microfluidics emerged at the end of the 1990s parallel to the demand for smaller and smaller containers and channels for chemical, biochemical and medical applications such as blood and DNS analysis [1], gene sequencing or proteomics [2, 3]. Since then, new journals and conferences have been launched and meanwhile, about two decades later, a variety of microfluidic applications are on the market. Briefly, 'the small flow becomes mainstream' [4]. Nevertheless, research in nano- and microfluidics is more than downsizing the spatial dimensions. For liquids on the nanoscale, surface and interface phenomena grow in importance and may even dominate the behavior in some systems. The studies collected in this special issue all concentrate on these type of systems and were part ot the priority programme SPP1164 'Nano- and Microfluidics' of the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG). The priority programme was initiated in 2002 by Hendrik Kuhlmann and myself and was launched in 2004. Friction between a moving liquid and a solid wall may, for instance, play an important role so that the usual assumption of a no-slip boundary condition is no longer valid. Likewise, the dynamic deformations of soft objects like polymers, vesicles or capsules in flow arise from the subtle interplay between the (visco-)elasticity of the object and the viscous stresses in the surrounding fluid and, potentially, the presence of structures confining the flow like channels. Consequently, new theories were developed ( see articles in this issue by Münch and Wagner, Falk and Mecke, Bonthuis et al, Finken et al, Almenar and Rauscher, Straube) and experiments were set up to unambiguously demonstrate deviations from bulk, or 'macro', behavior (see articles in this issue by Wolff et al, Vinogradova and Belyaev, Hahn et al, Seemann et al, Grüner and Huber, Müller-Buschbaum et al, Gutsche et al, Braunmüller et al, Laube et al, Brücker, Nottebrock et al

  16. Microfluidic device, and related methods

    NASA Technical Reports Server (NTRS)

    Wong, Eric W. (Inventor)

    2010-01-01

    A method of making a microfluidic device is provided. The method features patterning a permeable wall on a substrate, and surrounding the permeable wall with a solid, non-permeable boundary structure to establish a microfluidic channel having a cross-sectional dimension less than 5,000 microns and a cross-sectional area at least partially filled with the permeable wall so that fluid flowing through the microfluidic channel at least partially passes through the permeable wall.

  17. Misalignment corrections in optical interconnects

    NASA Astrophysics Data System (ADS)

    Song, Deqiang

    Optical interconnects are considered a promising solution for long distance and high bitrate data transmissions, outperforming electrical interconnects in terms of loss and dispersion. Due to the bandwidth and distance advantage of optical interconnects, longer links have been implemented with optics. Recent studies show that optical interconnects have clear advantages even at very short distances---intra system interconnects. The biggest challenge for such optical interconnects is the alignment tolerance. Many free space optical components require very precise assembly and installation, and therefore the overall cost could be increased. This thesis studied the misalignment tolerance and possible alignment correction solutions for optical interconnects at backplane or board level. First the alignment tolerance for free space couplers was simulated and the result indicated the most critical alignments occur between the VCSEL, waveguide and microlens arrays. An in-situ microlens array fabrication method was designed and experimentally demonstrated, with no observable misalignment with the waveguide array. At the receiver side, conical lens arrays were proposed to replace simple microlens arrays for a larger angular alignment tolerance. Multilayer simulation models in CodeV were built to optimized the refractive index and shape profiles of the conical lens arrays. Conical lenses fabricated with micro injection molding machine and fiber etching were characterized. Active component VCSOA was used to correct misalignment in optical connectors between the board and backplane. The alignment correction capability were characterized for both DC and AC (1GHz) optical signal. The speed and bandwidth of the VCSOA was measured and compared with a same structure VCSEL. Based on the optical inverter being studied in our lab, an all-optical flip-flop was demonstrated using a pair of VCSOAs. This memory cell with random access ability can store one bit optical signal with set or

  18. Wafer-level packaging and direct interconnection technology based on hybrid bonding and through silicon vias

    NASA Astrophysics Data System (ADS)

    Kühne, Stéphane; Hierold, Christofer

    2011-08-01

    The presented wafer-level packaging technology enables the direct integration of electrical interconnects during low-temperature wafer bonding of a cap substrate featuring through silicon vias (TSVs) onto a MEMS device wafer. The hybrid bonding process is based on hydrophilic direct bonding of plasma-activated Si/SiO2 surfaces and the simultaneous interconnection of the device metallization layers with Cu TSVs by transient liquid phase (TLP) bonding of ultra-thin AuSn connects. The direct bond enables precise geometry definition between device and cap substrate, whereas the TLP bonding does not require a planarization of the interconnect metallization before bonding. The complete process flow is successfully validated and the fabricated devices' characterization evidenced ohmic interconnects without interfacial voids in the TLP bond.

  19. Microfluidic large-scale integration.

    PubMed

    Thorsen, Todd; Maerkl, Sebastian J; Quake, Stephen R

    2002-10-18

    We developed high-density microfluidic chips that contain plumbing networks with thousands of micromechanical valves and hundreds of individually addressable chambers. These fluidic devices are analogous to electronic integrated circuits fabricated using large-scale integration. A key component of these networks is the fluidic multiplexor, which is a combinatorial array of binary valve patterns that exponentially increases the processing power of a network by allowing complex fluid manipulations with a minimal number of inputs. We used these integrated microfluidic networks to construct the microfluidic analog of a comparator array and a microfluidic memory storage device whose behavior resembles random-access memory. PMID:12351675

  20. Microfluidic binary phase flow

    NASA Astrophysics Data System (ADS)

    Angelescu, Dan; Menetrier, Laure; Wong, Joyce; Tabeling, Patrick; Salamitou, Philippe

    2004-03-01

    We present a novel binary phase flow regime where the two phases differ substantially in both their wetting and viscous properties. Optical tracking particles are used in order to investigate the details of such multiphase flow inside capillary channels. We also describe microfluidic filters we have developed, capable of separating the two phases based on capillary pressure. The performance of the filters in separating oil-water emulsions is discussed. Binary phase flow has been previously used in microchannels in applications such as emulsion generation, enhancement of mixing and assembly of custom colloidal paticles. Such microfluidic systems are increasingly used in a number of applications spanning a diverse range of industries, such as biotech, pharmaceuticals and more recently the oil industry.

  1. Microfluidic colloid filtration

    PubMed Central

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias

    2016-01-01

    Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” – often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level. PMID:26927706

  2. The Microfluidic Jukebox

    NASA Astrophysics Data System (ADS)

    Tan, Say Hwa; Maes, Florine; Semin, Benoît; Vrignon, Jérémy; Baret, Jean-Christophe

    2014-04-01

    Music is a form of art interweaving people of all walks of life. Through subtle changes in frequencies, a succession of musical notes forms a melody which is capable of mesmerizing the minds of people. With the advances in technology, we are now able to generate music electronically without relying solely on physical instruments. Here, we demonstrate a musical interpretation of droplet-based microfluidics as a form of novel electronic musical instruments. Using the interplay of electric field and hydrodynamics in microfluidic devices, well controlled frequency patterns corresponding to musical tracks are generated in real time. This high-speed modulation of droplet frequency (and therefore of droplet sizes) may also provide solutions that reconciles high-throughput droplet production and the control of individual droplet at production which is needed for many biochemical or material synthesis applications.

  3. Surface Acoustic Wave Microfluidics

    NASA Astrophysics Data System (ADS)

    Yeo, Leslie Y.; Friend, James R.

    2014-01-01

    Fluid manipulations at the microscale and beyond are powerfully enabled through the use of 10-1,000-MHz acoustic waves. A superior alternative in many cases to other microfluidic actuation techniques, such high-frequency acoustics is almost universally produced by surface acoustic wave devices that employ electromechanical transduction in wafer-scale or thin-film piezoelectric media to generate the kinetic energy needed to transport and manipulate fluids placed in adjacent microfluidic structures. These waves are responsible for a diverse range of complex fluid transport phenomena - from interfacial fluid vibration and drop and confined fluid transport to jetting and atomization - underlying a flourishing research literature spanning fundamental fluid physics to chip-scale engineering applications. We highlight some of this literature to provide the reader with a historical basis, routes for more detailed study, and an impression of the field's future directions.

  4. Microfluidic channel fabrication method

    DOEpatents

    Arnold, Don W.; Schoeniger, Joseph S.; Cardinale, Gregory F.

    2001-01-01

    A new channel structure for microfluidic systems and process for fabricating this structure. In contrast to the conventional practice of fabricating fluid channels as trenches or grooves in a substrate, fluid channels are fabricated as thin walled raised structures on a substrate. Microfluidic devices produced in accordance with the invention are a hybrid assembly generally consisting of three layers: 1) a substrate that can or cannot be an electrical insulator; 2) a middle layer, that is an electrically conducting material and preferably silicon, forms the channel walls whose height defines the channel height, joined to and extending from the substrate; and 3) a top layer, joined to the top of the channels, that forms a cover for the channels. The channels can be defined by photolithographic techniques and are produced by etching away the material around the channel walls.

  5. Microfluidic colloid filtration.

    PubMed

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J C; Wessling, Matthias

    2016-01-01

    Filtration of natural and colloidal matter is an essential process in today's water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a "cake layer" - often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level. PMID:26927706

  6. Microfluidic colloid filtration

    NASA Astrophysics Data System (ADS)

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias

    2016-03-01

    Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” - often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level.

  7. The Microfluidic Jukebox

    PubMed Central

    Tan, Say Hwa; Maes, Florine; Semin, Benoît; Vrignon, Jérémy; Baret, Jean-Christophe

    2014-01-01

    Music is a form of art interweaving people of all walks of life. Through subtle changes in frequencies, a succession of musical notes forms a melody which is capable of mesmerizing the minds of people. With the advances in technology, we are now able to generate music electronically without relying solely on physical instruments. Here, we demonstrate a musical interpretation of droplet-based microfluidics as a form of novel electronic musical instruments. Using the interplay of electric field and hydrodynamics in microfluidic devices, well controlled frequency patterns corresponding to musical tracks are generated in real time. This high-speed modulation of droplet frequency (and therefore of droplet sizes) may also provide solutions that reconciles high-throughput droplet production and the control of individual droplet at production which is needed for many biochemical or material synthesis applications. PMID:24781785

  8. Microfluidics with Gel Emulsions

    NASA Astrophysics Data System (ADS)

    Priest, Craig; Surenjav, Enkhtuul; Herminghaus, Stephan; Seemann, Ralf

    2006-03-01

    Microfluidic processing is usually achieved using single phase liquids. Instead, we use monodisperse emulsions to compartment liquids within microchannel geometries. At low continuous phase volume fractions, droplets self-organize to form well-defined arrangements, analogous to foam. While it is well-known that confined geometries can induce rearrangement of foam compartments at the millimeter-scale, similar dynamics are also expected for gel emulsions. We have studied online generation, organization and manipulation of gel emulsions using a variety of microchannel geometries. ``Passive'' reorganization, based on fixed channel geometries, can be supplemented by ``active'' manipulation by incorporating a ferrofluid phase. A ferromagnetic phase facilitates reorganization of liquid compartments on demand using an electromagnetic trigger. Moreover, coalescence between adjacent compartments within a gel emulsion can be induced using electrical potential. Microfluidics using gel emulsions will be well-suited for combinatorial chemistry, DNA sequencing, drug screening and protein crystallizations.

  9. AC magnetohydrodynamic microfluidic switch

    SciTech Connect

    Lemoff, A V; Lee, A P

    2000-03-02

    A microfluidic switch has been demonstrated using an AC Magnetohydrodynamic (MHD) pumping mechanism in which the Lorentz force is used to pump an electrolytic solution. By integrating two AC MHD pumps into different arms of a Y-shaped fluidic circuit, flow can be switched between the two arms. This type of switch can be used to produce complex fluidic routing, which may have multiple applications in {micro}TAS.

  10. Microfluidic Biochip Design

    NASA Technical Reports Server (NTRS)

    Panzarella, Charles

    2004-01-01

    As humans prepare for the exploration of our solar system, there is a growing need for miniaturized medical and environmental diagnostic devices for use on spacecrafts, especially during long-duration space missions where size and power requirements are critical. In recent years, the biochip (or Lab-on-a- Chip) has emerged as a technology that might be able to satisfy this need. In generic terms, a biochip is a miniaturized microfluidic device analogous to the electronic microchip that ushered in the digital age. It consists of tiny microfluidic channels, pumps and valves that transport small amounts of sample fluids to biosensors that can perform a variety of tests on those fluids in near real time. It has the obvious advantages of being small, lightweight, requiring less sample fluids and reagents and being more sensitive and efficient than larger devices currently in use. Some of the desired space-based applications would be to provide smaller, more robust devices for analyzing blood, saliva and urine and for testing water and food supplies for the presence of harmful contaminants and microorganisms. Our group has undertaken the goal of adapting as well as improving upon current biochip technology for use in long-duration microgravity environments. In addition to developing computational models of the microfluidic channels, valves and pumps that form the basis of every biochip, we are also trying to identify potential problems that could arise in reduced gravity and develop solutions to these problems. One such problem is due to the prevalence of bubbly sample fluids in microgravity. A bubble trapped in a microfluidic channel could be detrimental to the operation of a biochip. Therefore, the process of bubble formation in microgravity needs to be studied, and a model of this process has been developed and used to understand how bubbles develop and move through biochip components. It is clear that some type of bubble filter would be necessary in Space, and

  11. A new UV-curing elastomeric substrate for rapid prototyping of microfluidic devices

    NASA Astrophysics Data System (ADS)

    Alvankarian, Jafar; Yeop Majlis, Burhanuddin

    2012-03-01

    Rapid prototyping in the design cycle of new microfluidic devices is very important for shortening time-to-market. Researchers are facing the challenge to explore new and suitable substrates with simple and efficient microfabrication techniques. In this paper, we introduce and characterize a UV-curing elastomeric polyurethane methacrylate (PUMA) for rapid prototyping of microfluidic devices. The swelling and solubility of PUMA in different chemicals is determined. Time-dependent measurements of water contact angle show that the native PUMA is hydrophilic without surface treatment. The current monitoring method is used for measurement of the electroosmotic flow mobility in the microchannels made from PUMA. The optical, physical, thermal and mechanical properties of PUMA are evaluated. The UV-lithography and molding process is used for making micropillars and deep channel microfluidic structures integrated to the supporting base layer. Spin coating is characterized for producing different layer thicknesses of PUMA resin. A device is fabricated and tested for examining the strength of different bonding techniques such as conformal, corona treating and semi-curing of two PUMA layers in microfluidic application and the results show that the bonding strengths are comparable to that of PDMS. We also report fabrication and testing of a three-layer multi inlet/outlet microfluidic device including a very effective fluidic interconnect for application demonstration of PUMA as a promising new substrate. A simple micro-device is developed and employed for observing the pressure deflection of membrane made from PUMA as a very effective elastomeric valve in microfluidic devices.

  12. Microfluidics on compliant substrates: recent developments in foldable and bendable devices and system packaging

    NASA Astrophysics Data System (ADS)

    Gray, Bonnie L.

    2012-04-01

    Microfluidics is revolutionizing laboratory methods and biomedical devices, offering new capabilities and instrumentation in multiple areas such as DNA analysis, proteomics, enzymatic analysis, single cell analysis, immunology, point-of-care medicine, personalized medicine, drug delivery, and environmental toxin and pathogen detection. For many applications (e.g., wearable and implantable health monitors, drug delivery devices, and prosthetics) mechanically flexible polymer devices and systems that can conform to the body offer benefits that cannot be achieved using systems based on conventional rigid substrate materials. However, difficulties in implementing active devices and reliable packaging technologies have limited the success of flexible microfluidics. Employing highly compliant materials such as PDMS that are typically employed for prototyping, we review mechanically flexible polymer microfluidic technologies based on free-standing polymer substrates and novel electronic and microfluidic interconnection schemes. Central to these new technologies are hybrid microfabrication methods employing novel nanocomposite polymer materials and devices. We review microfabrication methods using these materials, along with demonstrations of example devices and packaging schemes that employ them. We review these recent developments and place them in the context of the fields of flexible microfluidics and conformable systems, and discuss cross-over applications to conventional rigid-substrate microfluidics.

  13. Microfluidic conductimetric bioreactor.

    PubMed

    Limbut, Warakorn; Loyprasert, Suchera; Thammakhet, Chongdee; Thavarungkul, Panote; Tuantranont, Adisorn; Asawatreratanakul, Punnee; Limsakul, Chusak; Wongkittisuksa, Booncharoen; Kanatharana, Proespichaya

    2007-06-15

    A microfluidic conductimetric bioreactor has been developed. Enzyme was immobilized in the microfluidic channel on poly-dimethylsiloxane (PDMS) surface via covalent binding method. The detection unit consisted of two gold electrodes and a laboratory-built conductimetric transducer to monitor the increase in the conductivity of the solution due to the change of the charges generated by the enzyme-substrate catalytic reaction. Urea-urease was used as a representative analyte-enzyme system. Under optimum conditions urea could be determined with a detection limit of 0.09 mM and linearity in the range of 0.1-10 mM (r=0.9944). The immobilized urease on the microchannel chip provided good stability (>30 days of operation time) and good repeatability with an R.S.D. lower than 2.3%. Good agreement was obtained when urea concentrations of human serum samples determined by the microfluidic flow injection conductimetric bioreactor system were compared to those obtained using the Berthelot reaction (P<0.05). After prolong use the immobilized enzyme could be removed from the PDMS microchannel chip enabling new active enzyme to be immobilized and the chip to be reused. PMID:17289366

  14. Backplane photonic interconnect modules with optical jumpers

    NASA Astrophysics Data System (ADS)

    Glebov, Alexei L.; Lee, Michael G.; Yokouchi, Kishio

    2005-03-01

    Prototypes of optical interconnect (OI) modules for backplane applications are presented. The transceivers attached to the linecards E/O convert the signals that are passed to and from the backplane by optical jumpers terminated with MTP-type connectors. The connectors plug into adaptors attached to the backplane and the microlens arrays mounted in the adaptors couple the light between the fibers and waveguides. Planar polymer channel waveguides with 30-50 μm cross-sections route the optical signals across the board with propagation losses as low as 0.05 dB/cm @ 850 nm. The 45¦-tapered integrated micromirrors reflect the light in and out of the waveguide plane with the loss of 0.8 dB per mirror. The connector displacement measurements indicate that the adaptor lateral assembly accuracy can be at least +/-10 μm for the excess loss not exceeding 1 dB. Insertion losses of the test modules with integrated waveguides, 45¦ mirrors, and pluggable optical jumper connectors are about 5 dB. Eye diagrams at 10.7 Gb/s have typical width and height of 70 ps and 400 mV, respectively, and jitter of about 20 ps.

  15. Monolithic microfluidic concentrators and mixers

    DOEpatents

    Frechet, Jean M.; Svec, Frantisek; Yu, Cong; Rohr, Thomas

    2005-05-03

    Microfluidic devices comprising porous monolithic polymer for concentration, extraction or mixing of fluids. A method for in situ preparation of monolithic polymers by in situ initiated polymerization of polymer precursors within microchannels of a microfluidic device and their use for solid phase extraction (SPE), preconcentration, concentration and mixing.

  16. Monolithical integration of polymer-based microfluidic structures on application-specific integrated circuits

    NASA Astrophysics Data System (ADS)

    Chemnitz, Steffen; Schafer, Heiko; Schumacher, Stephanie; Koziy, Volodymyr; Fischer, Alexander; Meixner, Alfred J.; Ehrhardt, Dietmar; Bohm, Markus

    2003-04-01

    In this paper, a concept for a monolithically integrated chemical lab on microchip is presented. It contains an ASIC (Application Specific Integrated Circuit), an interface to the polymer based microfluidic layer and a Pyrex glass cap. The top metal layer of the ASIC is etched off and replaced by a double layer metallization, more suitable to microfluidic and electrophoresis systems. The metallization consists of an approximately 50 nm gold layer and a 10 nm chromium layer, acting as adhesion promoter. A necessary prerequisite is a planarized ASIC topography. SU-8 is used to serve as microfluidic structure because of its excellent aspect ratio. This polymer layer contains reservoirs, channels, mixers and electrokinetic micro pumps. The typical channel cross section is 10μm"10μm. First experimental results on a microfluidic pump, consisting of pairs of interdigitated electrodes on the bottom of the channel and without any moving parts show a flow of up to 50μm per second for low AC-voltages in the range of 5 V for aqueous fluids. The microfluidic system is irreversibly sealed with a 150μm thick Pyrex glass plate bonded to the SU-8-layer, supported by oxygen plasma. Due to capillary forces and surfaces properties of the walls the system is self-priming. The technologies for the fabrication of the microfluidic system and the preparation of the interface between the lab layer and the ASIC are presented.

  17. Fully Automated Quantification of Insulin Concentration Using a Microfluidic-Based Chemiluminescence Immunoassay.

    PubMed

    Yao, Ping; Liu, Zhu; Tung, Steve; Dong, Zaili; Liu, Lianqing

    2016-06-01

    A fully automated microfluidic-based detection system for the rapid determination of insulin concentration through a chemiluminescence immunoassay has been developed. The microfluidic chip used in the system is a double-layered polydimethylsiloxane device embedded with interconnecting micropumps, microvalves, and a micromixer. At a high injection rate of the developing solution, the chemiluminescence signal can be excited and measured within a short period of time. The integral value of the chemiluminescence light signal is used to determine the insulin concentration of the samples, and the results indicate that the measurement is accurate in the range from 1.5 pM to 391 pM. The entire chemiluminescence assay can be completed in less than 10 min. The fully automated microfluidic-based insulin detection system provides a useful platform for rapid determination of insulin in clinical diagnostics for diabetes, which is expected to become increasingly important for future point-of-care applications. PMID:25824205

  18. A metallic interconnect for a solid oxide fuel cell stack

    NASA Astrophysics Data System (ADS)

    England, Diane Mildred

    A solid oxide fuel cell (SOFC) electrochemically converts the chemical energy of reaction into electrical energy. The commercial success of planar, SOFC stack technology has a number of challenges, one of which is the interconnect that electrically and physically connects the cathode of one cell to the anode of an adjacent cell in the SOFC stack and in addition, separates the anodic and cathodic gases. An SOFC stack operating at intermediate temperatures, between 600°C and 800°C, can utilize a metallic alloy as an interconnect material. Since the interconnect of an SOFC stack must operate in both air and fuel environments, the oxidation kinetics, adherence and electronic resistance of the oxide scales formed on commercial alloys were investigated in air and wet hydrogen under thermal cycling conditions to 800°C. The alloy, Haynes 230, exhibited the slowest oxidation kinetics and the lowest area-specific resistance as a function of oxidation time of all the alloys in air at 800°C. However, the area-specific resistance of the oxide scale formed on Haynes 230 in wet hydrogen was unacceptably high after only 500 hours of oxidation, which was attributed to the high resistivity of Cr2O3 in a reducing atmosphere. A study of the electrical conductivity of the minor phase manganese chromite, MnXCr3-XO4, in the oxide scale of Haynes 230, revealed that a composition closer to Mn2CrO4 had significantly higher electrical conductivity than that closer to MnCr 2O4. Haynes 230 was coated with Mn to form a phase closer to the Mn2CrO4 composition for application on the fuel side of the interconnect. U.S. Patent No. 6,054,231 is pending. Although coating a metallic alloy is inexpensive, the stringent economic requirements of SOFC stack technology required an alloy without coating for production applications. As no commercially available alloy, among the 41 alloys investigated, performed to the specifications required, a new alloy was created and designated DME-A2. The oxide scale

  19. Chromium Vaporization Reduction by Nickel Coatings For SOEC Interconnect Materials

    SciTech Connect

    Michael V. Glazoff; Sergey N. Rashkeev; J. Stephen Herring

    2014-09-01

    The vaporization of Cr-rich volatile species from interconnect materials is a major source of degradation that limits the lifetime of planar solid oxide devices systems with metallic interconnects, including Solid Oxide Electrolysis Cells, or SOECs. Some metallic coatings (Ni, Co, and Cu) significantly reduce the Cr release from interconnects and slow down the oxide scale growth on the steel substrate. To shed additional light upon the mechanisms of such protection and find a suitable coating material for ferritic stainless steel materials, we used a combination of first-principles calculations, thermodynamics, and diffusion modeling to investigate which factors determine the quality of the Ni metallic coating at stainless steel interconnector. We found that the Cr migration in Ni coating is determined by a delicate combination of the nickel oxidation, Cr diffusion, and phase transformation processes. Although the formation of Cr2O3 oxide is more exothermic than that of NiO, the kinetic rate of the chromia formation in the coating layer and its surface is significantly reduced by the low mobility of Cr in nickel oxide and in NiCr2O4 spinel. These results are in a good agreement with diffusion modeling for Cr diffusion through Ni coating layer on the ferritic 441 steel substrate.

  20. Enjoyment of Euclidean Planar Triangles

    ERIC Educational Resources Information Center

    Srinivasan, V. K.

    2013-01-01

    This article adopts the following classification for a Euclidean planar [triangle]ABC, purely based on angles alone. A Euclidean planar triangle is said to be acute angled if all the three angles of the Euclidean planar [triangle]ABC are acute angles. It is said to be right angled at a specific vertex, say B, if the angle ?ABC is a right angle…

  1. Active Microfluidic Devices for Single-Molecule Experiments

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Meiners, Jens-Christian

    2003-03-01

    Microfluidic chips have become an increasingly powerful and versatile tool in the life sciences. Multilayer devices fabricated from soft silicone elastomers in a replication molding technique are especially promising, because they permit flexible integration of active elements such as valves and pumps. In addition, they are fairly easy and inexpensive to produce. In a wide range of applications, microfluidic chips are used in conjunction with optical detection and manipulation techniques. However their widespread use has been hampered due to problems with interconnect stability, optical accessibility, and ability to perform surface chemistry. We have developed a packaging technique that encapsulates the elastomer in an epoxy resin of high optical quality. This stabilizes the interconnects so that a chip can be repeatedly plugged in and out of a socket. Our technique also eliminates the need for a baking step that is conventionally used to attach a glass cover slip to the elastomer surface. This allows us to assemble devices that contain a cover slip coated with proteins, thereby permitting subsequent in situ attachment of DNA molecules to the bottom of the flow channels. We demonstrate the utility of our chips in single-molecule applications involving tethered-particles and optical tweezers. Support: NIH R01 GM065934 & Research Corporation

  2. Microfluidic and biosensor applications of fluoropolymer films

    NASA Astrophysics Data System (ADS)

    McLaughlin, Glen Wallace

    2001-07-01

    Deposition of fluoropolymer films in microfluidic and biosensor applications enables the fabrication and miniaturization of several new integrated sensor devices that could provide a method for measuring oxygen consumption at the cellular level, providing an unique measurement device to be incorporated in cell based sensors. Fluoropolymer films have several properties that make them an excellent candidate for microfluidic and biosensor applications. These films are chemically inert, biocompatible, selectively gas permeable, have a low friction coefficient, are non-polarizable, and are capable of being processed using standard integrated circuit fabrication techniques. This allows for the seamless incorporation of these films into many different sensor applications, ranging from coating fluid interconnect channels to minimize protein absorption, to the realization of different miniaturized sensors which are capable of making point specific measurements. Film deposition is accomplished using an industrial standard plasma enhanced chemical vapor deposition (PECVD) chamber, customized with the capability of producing a pulsed plasma. The film deposition process has been characterised in situ using real time power measurement techniques, ultra violet optical emission spectroscopy (OES) measurements, and Langmuir probe measurements. These measurements along with post processing measurements of the films properties utilizing X-ray photoelectron spectroscopy (XPS) measurements, fourier transform infra-red spectroscopy (FTIR), ellipsometric measurements, contact angle measurements, and electrical characterization methods have been utilized to optimize the films properties for various applications. This thesis presents the characterization and optimization of the pulsed plasma deposited polytetrafluoroethylene (PTFE) film process along with the development of a solid state dissolved oxygen sensor using the PTFE film as the oxygen permeable membrane. The plasma deposition

  3. DIELECTROPHORESIS-BASED MICROFLUIDIC SEPARATION AND DETECTION SYSTEMS

    PubMed Central

    Yang, Jun; Vykoukal, Jody; Noshari, Jamileh; Becker, Frederick; Gascoyne, Peter; Krulevitch, Peter; Fuller, Chris; Ackler, Harold; Hamilton, Julie; Boser, Bernhard; Eldredge, Adam; Hitchens, Duncan; Andrews, Craig

    2009-01-01

    Diagnosis and treatment of human diseases frequently requires isolation and detection of certain cell types from a complex mixture. Compared with traditional separation and detection techniques, microfluidic approaches promise to yield easy-to-use diagnostic instruments tolerant of a wide range of operating environments and capable of accomplishing automated analyses. These approaches will enable diagnostic advances to be disseminated from sophisticated clinical laboratories to the point-of-care. Applications will include the separation and differential analysis of blood cell subpopulations for host-based detection of blood cell changes caused by disease, infection, or exposure to toxins, and the separation and analysis of surface-sensitized, custom dielectric beads for chemical, biological, and biomolecular targets. Here we report a new particle separation and analysis microsystem that uses dielectrophoretic field-flow fractionation (DEP-FFF). The system consists of a microfluidic chip with integrated sample injector, a DEP-FFF separator, and an AC impedance sensor. We show the design of a miniaturized impedance sensor integrated circuit (IC) with improved sensitivity, a new packaging approach for micro-flumes that features a slide-together compression package and novel microfluidic interconnects, and the design, control, integration and packaging of a fieldable prototype. Illustrative applications will be shown, including the separation of different sized beads and different cell types, blood cell differential analysis, and impedance sensing results for beads, spores and cells. PMID:22025905

  4. Microfluidic Cell Culture Device

    NASA Technical Reports Server (NTRS)

    Takayama, Shuichi (Inventor); Cabrera, Lourdes Marcella (Inventor); Heo, Yun Seok (Inventor); Smith, Gary Daniel (Inventor)

    2014-01-01

    Microfluidic devices for cell culturing and methods for using the same are disclosed. One device includes a substrate and membrane. The substrate includes a reservoir in fluid communication with a passage. A bio-compatible fluid may be added to the reservoir and passage. The reservoir is configured to receive and retain at least a portion of a cell mass. The membrane acts as a barrier to evaporation of the bio-compatible fluid from the passage. A cover fluid may be added to cover the bio-compatible fluid to prevent evaporation of the bio-compatible fluid.

  5. Spatial Manipulation with Microfluidics

    PubMed Central

    Lin, Benjamin; Levchenko, Andre

    2015-01-01

    Biochemical gradients convey information through space, time, and concentration, and are ultimately capable of spatially resolving distinct cellular phenotypes, such as differentiation, proliferation, and migration. How these gradients develop, evolve, and function during development, homeostasis, and various disease states is a subject of intense interest across a variety of disciplines. Microfluidic technologies have become essential tools for investigating gradient sensing in vitro due to their ability to precisely manipulate fluids on demand in well-controlled environments at cellular length scales. This review will highlight their utility for studying gradient sensing along with relevant applications to biology. PMID:25905100

  6. Spatial manipulation with microfluidics.

    PubMed

    Lin, Benjamin; Levchenko, Andre

    2015-01-01

    Biochemical gradients convey information through space, time, and concentration, and are ultimately capable of spatially resolving distinct cellular phenotypes, such as differentiation, proliferation, and migration. How these gradients develop, evolve, and function during development, homeostasis, and various disease states is a subject of intense interest across a variety of disciplines. Microfluidic technologies have become essential tools for investigating gradient sensing in vitro due to their ability to precisely manipulate fluids on demand in well-controlled environments at cellular length scales. This review will highlight their utility for studying gradient sensing along with relevant applications to biology. PMID:25905100

  7. Planar plasmonic chiral nanostructures.

    PubMed

    Zu, Shuai; Bao, Yanjun; Fang, Zheyu

    2016-02-21

    A strong chiral optical response induced at a plasmonic Fano resonance in a planar Au heptamer nanostructure was experimentally and theoretically demonstrated. The scattering spectra show the characteristic narrow-band feature of Fano resonances for both left and right circular polarized lights, with a chiral response reaching 30% at the Fano resonance. Specifically, we systematically investigate the chiral response of planar heptamers with gradually changing the inter-particle rotation angles and separation distance. The chiral spectral characteristics clearly depend on the strength of Fano resonances and the associated near-field optical distributions. Finite element method simulations together with a multipole expansion method demonstrate that the enhanced chirality is caused by the excitation of magnetic quadrupolar and electric toroidal dipolar modes. Our work provides an effective method for the design of 2D nanostructures with a strong chiral response. PMID:26818746

  8. Dielectric Covered Planar Antennas

    NASA Technical Reports Server (NTRS)

    Llombart Juan, Nuria (Inventor); Lee, Choonsup (Inventor); Chattopadhyay, Goutam (Inventor); Gill, John J. (Inventor); Skalare, Anders J. (Inventor); Siegel, Peter H. (Inventor)

    2014-01-01

    An antenna element suitable for integrated arrays at terahertz frequencies is disclosed. The antenna element comprises an extended spherical (e.g. hemispherical) semiconductor lens, e.g. silicon, antenna fed by a leaky wave waveguide feed. The extended spherical lens comprises a substantially spherical lens adjacent a substantially planar lens extension. A couple of TE/TM leaky wave modes are excited in a resonant cavity formed between a ground plane and the substantially planar lens extension by a waveguide block coupled to the ground plane. Due to these modes, the primary feed radiates inside the lens with a directive pattern that illuminates a small sector of the lens. The antenna structure is compatible with known semiconductor fabrication technology and enables production of large format imaging arrays.

  9. Planar triode pulser socket

    DOEpatents

    Booth, R.

    1994-10-25

    A planar triode is mounted in a PC board orifice by means of a U-shaped capacitor housing and anode contact yoke removably attached to cathode leg extensions passing through and soldered to the cathode side of the PC board by means of a PC cathode pad. A pliant/flexible contact attached to the orifice make triode grid contact with a grid pad on the grid side of the PC board, permitting quick and easy replacement of bad triodes. 14 figs.

  10. Planar triode pulser socket

    DOEpatents

    Booth, Rex

    1994-01-01

    A planar triode is mounted in a PC board orifice by means of a U-shaped capacitor housing and anode contact yoke removably attached to cathode leg extensions passing through and soldered to the cathode side of the PC board by means of a PC cathode pad. A pliant/flexible contact attached to the orifice make triode grid contact with a grid pad on the grid side of the PC board, permitting quick and easy replacement of bad triodes.

  11. Planar waveguide optical immunosensors

    NASA Astrophysics Data System (ADS)

    Choquette, Steven J.; Locascio-Brown, Laurie E.; Durst, Richard A.

    1991-03-01

    Monoclonal antibodies were covalently bonded to the surfaces of planar waveguides to confer immunoreacth''ity. Silver-ion diffused waveguides were used to measure theophylline concentrations in a fluorescence immunoassay and silicon nitride waveguides were used to detect theophylline in an absorbance-based immunoassay. Liposomes were employed in both assays as the optically detectable label in a competitive reaction to monitor antigen-antibody complexation. Regeneration of the active antibody site will be discussed.

  12. Optofluidic planar reactors for photocatalytic water treatment using solar energy

    PubMed Central

    Lei, Lei; Wang, Ning; Zhang, X. M.; Tai, Qidong; Tsai, Din Ping; Chan, Helen L. W.

    2010-01-01

    Optofluidics may hold the key to greater success of photocatalytic water treatment. This is evidenced by our findings in this paper that the planar microfluidic reactor can overcome the limitations of mass transfer and photon transfer in the previous photocatalytic reactors and improve the photoreaction efficiency by more than 100 times. The microreactor has a planar chamber (5 cm×1.8 cm×100 μm) enclosed by two TiO2-coated glass slides as the top cover and bottom substrate and a microstructured UV-cured NOA81 layer as the sealant and flow input∕output. In experiment, the microreactor achieves 30% degradation of 3 ml 3×10−5M methylene blue within 5 min and shows a reaction rate constant two orders higher than the bulk reactor. Under optimized conditions, a reaction rate of 8% s−1 is achieved under solar irradiation. The average apparent quantum efficiency is found to be only 0.25%, but the effective apparent quantum efficiency reaches as high as 25%. Optofluidic reactors inherit the merits of microfluidics, such as large surface∕volume ratio, easy flow control, and rapid fabrication and offer a promising prospect for large-volume photocatalytic water treatment. PMID:21267436

  13. 47 CFR 64.1401 - Expanded interconnection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission... interconnectors' fiber optic systems or microwave radio transmission facilities (where reasonably feasible) with... interconnection of fiber optic facilities, local exchange carriers shall provide: (1) An interconnection point...

  14. 47 CFR 64.1401 - Expanded interconnection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission... interconnectors' fiber optic systems or microwave radio transmission facilities (where reasonably feasible) with... interconnection of fiber optic facilities, local exchange carriers shall provide: (1) An interconnection point...

  15. 47 CFR 64.1401 - Expanded interconnection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission... interconnectors' fiber optic systems or microwave radio transmission facilities (where reasonably feasible) with... interconnection of fiber optic facilities, local exchange carriers shall provide: (1) An interconnection point...

  16. 47 CFR 64.1401 - Expanded interconnection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission... interconnectors' fiber optic systems or microwave radio transmission facilities (where reasonably feasible) with... interconnection of fiber optic facilities, local exchange carriers shall provide: (1) An interconnection point...

  17. 47 CFR 64.1401 - Expanded interconnection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission... interconnectors' fiber optic systems or microwave radio transmission facilities (where reasonably feasible) with... interconnection of fiber optic facilities, local exchange carriers shall provide: (1) An interconnection point...

  18. Immortality of Cu damascene interconnects

    NASA Astrophysics Data System (ADS)

    Hau-Riege, Stefan P.

    2002-04-01

    We have studied short-line effects in fully-integrated Cu damascene interconnects through electromigration experiments on lines of various lengths and embedded in different dielectric materials. We compare these results with results from analogous experiments on subtractively-etched Al-based interconnects. It is known that Al-based interconnects exhibit three different behaviors, depending on the magnitude of the product of current density, j, and line length, L: For small values of (jL), no void nucleation occurs, and the line is immortal. For intermediate values, voids nucleate, but the line does not fail because the current can flow through the higher-resistivity refractory-metal-based shunt layers. Here, the resistance of the line increases but eventually saturates, and the relative resistance increase is proportional to (jL/B), where B is the effective elastic modulus of the metallization system. For large values of (jL/B), voiding leads to an unacceptably high resistance increase, and the line is considered failed. By contrast, we observed only two regimes for Cu-based interconnects: Either the resistance of the line stays constant during the duration of the experiment, and the line is considered immortal, or the line fails due to an abrupt open-circuit failure. The absence of an intermediate regime in which the resistance saturates is due to the absence of a shunt layer that is able to support a large amount of current once voiding occurs. Since voids nucleate much more easily in Cu- than in Al-based interconnects, a small fraction of short Cu lines fails even at low current densities. It is therefore more appropriate to consider the probability of immortality in the case of Cu rather than assuming a sharp boundary between mortality and immortality. The probability of immortality decreases with increasing amount of material depleted from the cathode, which is proportional to (jL2/B) at steady state. By contrast, the immortality of Al-based interconnects is

  19. Interfacial tension based on-chip extraction of microparticles confined in microfluidic Stokes flows

    NASA Astrophysics Data System (ADS)

    Huang, Haishui; He, Xiaoming

    2014-10-01

    Microfluidics involving two immiscible fluids (oil and water) has been increasingly used to produce hydrogel microparticles with wide applications. However, it is difficult to extract the microparticles out of the microfluidic Stokes flows of oil that have a Reynolds number (the ratio of inertia to viscous force) much less than one, where the dominant viscous force tends to drive the microparticles to move together with the surrounding oil. Here, we present a passive method for extracting hydrogel microparticles in microfluidic Stokes flow from oil into aqueous extracting solution on-chip by utilizing the intrinsic interfacial tension between oil and the microparticles. We further reveal that the thickness of an "extended confining layer" of oil next to the interface between oil and aqueous extracting solution must be smaller than the radius of microparticles for effective extraction. This method uses a simple planar merging microchannel design that can be readily fabricated and further integrated into a fluidic system to extract microparticles for wide applications.

  20. Patterned adhesive enables construction of nonplanar three-dimensional paper microfluidic circuits.

    PubMed

    Kalish, Brent; Tsutsui, Hideaki

    2014-11-21

    This article discusses the fabrication of planar and nonplanar 3D paper microfluidic circuits through the use of patterned spray adhesive application and origami techniques. The individual paper layers are held together via semi-permanent adhesive bonds without the need for external clamps. Semi-permanent bonds accommodate the repeated folding and unfolding required by complex origami device structures and allow the device to be unfolded post-use to view internally displayed results. Combinations of adhesive patterns and fluid channel widths were identified that did not prevent the fluid from traveling between layers and through the entire circuit. Further, this method was extended to nonplanar 3D paper microfluidic circuits, demonstrated via multi-fluid wicking within a modified origami peacock. Such nonplanar 3D paper microfluidic circuits are expected to offer an entirely new platform for exploring new designs and functions of paper analytical devices. PMID:25222567

  1. Integrated microfluidic systems for DNA analysis.

    PubMed

    Njoroge, Samuel K; Chen, Hui-Wen; Witek, Małgorzata A; Soper, Steven A

    2011-01-01

    The potential utility of genome-related research in terms of evolving basic discoveries in biology has generated widespread use of DNA diagnostics and DNA forensics and driven the accelerated development of fully integrated microfluidic systems for genome processing. To produce a microsystem with favorable performance characteristics for genetic-based analyses, several key operational elements must be strategically chosen, including device substrate material, temperature control, fluidic control, and reaction product readout. As a matter of definition, a microdevice is a chip that performs a single processing step, for example microchip electrophoresis. Several microdevices can be integrated to a single wafer, or combined on a control board as separate devices to form a microsystem. A microsystem is defined as a chip composed of at least two microdevices. Among the many documented analytical microdevices, those focused on the ability to perform the polymerase chain reaction (PCR) have been reported extensively due to the importance of this processing step in most genetic-based assays. Other microdevices that have been detailed in the literature include those for solid-phase extractions, microchip electrophoresis, and devices composed of DNA microarrays used for interrogating DNA primary structure. Great progress has also been made in the areas of chip fabrication, bonding and sealing to enclose fluidic networks, evaluation of different chip substrate materials, surface chemistries, and the architecture of reaction conduits for basic processing steps such as mixing. Other important elements that have been developed to realize functional systems include miniaturized readout formats comprising optical or electrochemical transduction and interconnect technologies. These discoveries have led to the development of fully autonomous and functional integrated systems for genome processing that can supply "sample in/answer out" capabilities. In this chapter, we focus on

  2. Electro-Microfluidic Packaging

    NASA Astrophysics Data System (ADS)

    Benavides, G. L.; Galambos, P. C.

    2002-06-01

    There are many examples of electro-microfluidic products that require cost effective packaging solutions. Industry has responded to a demand for products such as drop ejectors, chemical sensors, and biological sensors. Drop ejectors have consumer applications such as ink jet printing and scientific applications such as patterning self-assembled monolayers or ejecting picoliters of expensive analytes/reagents for chemical analysis. Drop ejectors can be used to perform chemical analysis, combinatorial chemistry, drug manufacture, drug discovery, drug delivery, and DNA sequencing. Chemical and biological micro-sensors can sniff the ambient environment for traces of dangerous materials such as explosives, toxins, or pathogens. Other biological sensors can be used to improve world health by providing timely diagnostics and applying corrective measures to the human body. Electro-microfluidic packaging can easily represent over fifty percent of the product cost and, as with Integrated Circuits (IC), the industry should evolve to standard packaging solutions. Standard packaging schemes will minimize cost and bring products to market sooner.

  3. Microfluidic Biochip Design

    NASA Technical Reports Server (NTRS)

    Panzarella, Charles

    2004-01-01

    As humans prepare for the exploration of our solar system, there is a growing need for miniaturized medical and environmental diagnostic devices for use on spacecrafts, especially during long-duration space missions where size and power requirements are critical. In recent years, the biochip (or Lab-on-a-Chip) has emerged as a technology that might be able to satisfy this need. In generic terms, a biochip is a miniaturized microfluidic device analogous to the electronic microchip that ushered in the digital age. It consists of tiny microfluidic channels, pumps and valves that transport small amounts of sample fluids to biosensors that can perform a variety of tests on those fluids in near real time. It has the obvious advantages of being small, lightweight, requiring less sample fluids and reagents and being more sensitive and efficient than larger devices currently in use. Some of the desired space-based applications would be to provide smaller, more robust devices for analyzing blood, saliva and urine and for testing water and food supplies for the presence of harmful contaminants and microorganisms. Our group has undertaken the goal of adapting as well as improving upon current biochip technology for use in long-duration microgravity environments.

  4. Reciprocating flow-based centrifugal microfluidics mixer

    NASA Astrophysics Data System (ADS)

    Noroozi, Zahra; Kido, Horacio; Micic, Miodrag; Pan, Hansheng; Bartolome, Christian; Princevac, Marko; Zoval, Jim; Madou, Marc

    2009-07-01

    Proper mixing of reagents is of paramount importance for an efficient chemical reaction. While on a large scale there are many good solutions for quantitative mixing of reagents, as of today, efficient and inexpensive fluid mixing in the nanoliter and microliter volume range is still a challenge. Complete, i.e., quantitative mixing is of special importance in any small-scale analytical application because the scarcity of analytes and the low volume of the reagents demand efficient utilization of all available reaction components. In this paper we demonstrate the design and fabrication of a novel centrifugal force-based unit for fast mixing of fluids in the nanoliter to microliter volume range. The device consists of a number of chambers (including two loading chambers, one pressure chamber, and one mixing chamber) that are connected through a network of microchannels, and is made by bonding a slab of polydimethylsiloxane (PDMS) to a glass slide. The PDMS slab was cast using a SU-8 master mold fabricated by a two-level photolithography process. This microfluidic mixer exploits centrifugal force and pneumatic pressure to reciprocate the flow of fluid samples in order to minimize the amount of sample and the time of mixing. The process of mixing was monitored by utilizing the planar laser induced fluorescence (PLIF) technique. A time series of high resolution images of the mixing chamber were analyzed for the spatial distribution of light intensities as the two fluids (suspension of red fluorescent particles and water) mixed. Histograms of the fluorescent emissions within the mixing chamber during different stages of the mixing process were created to quantify the level of mixing of the mixing fluids. The results suggest that quantitative mixing was achieved in less than 3 min. This device can be employed as a stand alone mixing unit or may be integrated into a disk-based microfluidic system where, in addition to mixing, several other sample preparation steps may be

  5. 18 CFR 292.306 - Interconnection costs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Interconnection costs... § 292.306 Interconnection costs. (a) Obligation to pay. Each qualifying facility shall be obligated to pay any interconnection costs which the State regulatory authority (with respect to any...

  6. 47 CFR 90.477 - Interconnected systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Interconnected systems. 90.477 Section 90.477 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control Interconnected Systems § 90.477 Interconnected systems. (a) Applicants for new land stations to...

  7. 47 CFR 90.477 - Interconnected systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Interconnected systems. 90.477 Section 90.477 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control Interconnected Systems § 90.477 Interconnected systems. (a) Applicants for new land stations to...

  8. 47 CFR 90.477 - Interconnected systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Interconnected systems. 90.477 Section 90.477... MOBILE RADIO SERVICES Transmitter Control Interconnected Systems § 90.477 Interconnected systems. (a... switched telephone network only after modifying their license. See § 1.929 of this chapter. In all cases...

  9. 47 CFR 90.477 - Interconnected systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Interconnected systems. 90.477 Section 90.477... MOBILE RADIO SERVICES Transmitter Control Interconnected Systems § 90.477 Interconnected systems. (a... switched telephone network only after modifying their license. See § 1.929 of this chapter. In all cases...

  10. 18 CFR 292.306 - Interconnection costs.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Interconnection costs... § 292.306 Interconnection costs. (a) Obligation to pay. Each qualifying facility shall be obligated to pay any interconnection costs which the State regulatory authority (with respect to any...

  11. 18 CFR 292.306 - Interconnection costs.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Interconnection costs... § 292.306 Interconnection costs. (a) Obligation to pay. Each qualifying facility shall be obligated to pay any interconnection costs which the State regulatory authority (with respect to any...

  12. 47 CFR 51.305 - Interconnection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Interconnection. 51.305 Section 51.305 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Additional Obligations of Incumbent Local Exchange Carriers § 51.305 Interconnection. (a) An incumbent LEC shall provide, for the...

  13. 47 CFR 51.305 - Interconnection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 3 2013-10-01 2013-10-01 false Interconnection. 51.305 Section 51.305 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Additional Obligations of Incumbent Local Exchange Carriers § 51.305 Interconnection. (a) An incumbent LEC shall provide, for the...

  14. 47 CFR 51.305 - Interconnection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false Interconnection. 51.305 Section 51.305 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Additional Obligations of Incumbent Local Exchange Carriers § 51.305 Interconnection. (a) An incumbent LEC shall provide, for the...

  15. 47 CFR 51.305 - Interconnection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 3 2012-10-01 2012-10-01 false Interconnection. 51.305 Section 51.305 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Additional Obligations of Incumbent Local Exchange Carriers § 51.305 Interconnection. (a) An incumbent LEC shall provide, for the...

  16. 14 CFR 29.674 - Interconnected controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Interconnected controls. 29.674 Section 29... Interconnected controls. Each primary flight control system must provide for safe flight and landing and operate independently after a malfunction, failure, or jam of any auxiliary interconnected control....

  17. 14 CFR 27.674 - Interconnected controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Interconnected controls. 27.674 Section 27... Interconnected controls. Each primary flight control system must provide for safe flight and landing and operate independently after a malfunction, failure, or jam of any auxiliary interconnected control....

  18. A microfluidic separation platform using an array of slanted ramps

    NASA Astrophysics Data System (ADS)

    Risbud, Sumedh; Bernate, Jorge; Drazer, German

    2013-03-01

    The separation of the different components of a sample is a crucial step in many micro- and nano-fluidic applications, including the detection of infections, the capture of circulating tumor cells, the isolation of proteins, RNA and DNA, to mention but a few. Vector chromatography, in which different species migrate in different directions in a planar microfluidic device thus achieving spatial as well as temporal resolution, offers the promise of high selectivity along with high throughput. In this work, we present a microfluidic vector chromatography platform consisting of slanted ramps in a microfluidic channel for the separation of suspended particles. We construct these ramps using inclined UV lithography, such that the inclined portion of the ramps is upstream. We show that particles of different size displace laterally to a different extent when driven by a flow field over a slanted ramp. The flow close to the ramp reorients along the ramp, causing the size-dependent deflection of the particles. The cumulative effect of an array of these ramps would cause particles of different size to migrate in different directions, thus allowing their passive and continuous separation.

  19. Inertial microfluidics for continuous separation of cells and particles

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arpita; Kuntaegowdanahalli, Sathyakumar S.; Papautsky, Ian

    2011-02-01

    In this work we describe the use of inertial microfluidics for continuous multi-particle separation in a simple spiral microchannel. The inertial forces coupled with the rotational Dean drag force in the spiral microchannel geometry cause neutrally-buoyant particles and cells to occupy a single equilibrium position near the inner microchannel wall. This position is strongly dependent on the particle/cell diameter. Based on this concept, a 5-loop Archimedean spiral microchannel chip was used to demonstrate for the first time focusing and separation of four particles simultaneously. The polystyrene particles (7.32 μm, 10 μm, 15 μm, 20 μm in diameter) were selected for this work since they are compatible to the size of blood cells. The device exhibited an average 87% separation efficiency, which is comparable to that of other microfluidic separation systems. The simple planar structure and high sample throughput offered by this passive microfluidic approach makes it attractive for lab-on-a-chip integration in hematology applications.

  20. Microfluidic hydrogel arrays for direct genotyping of clinical samples.

    PubMed

    Jung, Yun Kyung; Kim, Jungkyu; Mathies, Richard A

    2016-05-15

    A microfluidic hydrogel DNA microarray is developed to overcome the limitations of conventional planar microarrays such as low sensitivity, long overnight hybridization time, lack of a melting verification of proper hybrid, and complicated sample preparation process for genotyping of clinical samples. Unlike our previous prototype hydrogel array which can analyze only single-stranded DNA (ssDNA) targets, the device is the first of its type to allow direct multiplexed single nucleotide polymorphism (SNP) detection of human clinical samples comprising double-stranded DNA (dsDNA). This advance is made possible by incorporating a streptavidin (SA) hydrogel capture/purification element in a double T-junction at the start of the linear hydrogel array structure and fabricating ten different probe DNAs-entrapped hydrogels in microfluidic channels. The purified or unpurified polymerase chain reaction (PCR) products labeled with a fluorophore and a biotin are electrophoresed through the SA hydrogel for binding and purification. After electrophoretic washing, the fluorophore-labeled DNA strand is then thermally released for hybridization capture by its complementary probe gel element. We demonstrate the precise and rapid discrimination of the genotypes of five different clinical targets by melting curve analysis based on temperature-gradient electrophoresis within 3h, which is at least 3-fold decrease in incubation time compared to conventional microarrays. In addition, a 1.7 pg (0.024 femtomoles) limit of detection for clinical samples is achieved which is ~100-fold better sensitivity than planar microarrays. PMID:26735871

  1. Ultrafast microfluidics using surface acoustic waves

    PubMed Central

    Yeo, Leslie Y.; Friend, James R.

    2009-01-01

    We demonstrate that surface acoustic waves (SAWs), nanometer amplitude Rayleigh waves driven at megahertz order frequencies propagating on the surface of a piezoelectric substrate, offer a powerful method for driving a host of extremely fast microfluidic actuation and micro∕bioparticle manipulation schemes. We show that sessile drops can be translated rapidly on planar substrates or fluid can be pumped through microchannels at 1–10 cm∕s velocities, which are typically one to two orders quicker than that afforded by current microfluidic technologies. Through symmetry-breaking, azimuthal recirculation can be induced within the drop to drive strong inertial microcentrifugation for micromixing and particle concentration or separation. Similar micromixing strategies can be induced in the same microchannel in which fluid is pumped with the SAW by merely changing the SAW frequency to rapidly switch the uniform through-flow into a chaotic oscillatory flow by exploiting superpositioning of the irradiated sound waves from the sidewalls of the microchannel. If the flow is sufficiently quiescent, the nodes of the transverse standing wave that arises across the microchannel also allow for particle aggregation, and hence, sorting on nodal lines. In addition, the SAW also facilitates other microfluidic capabilities. For example, capillary waves excited at the free surface of a sessile drop by the SAW underneath it can be exploited for micro∕nanoparticle collection and sorting at nodal points or lines at low powers. At higher powers, the large accelerations off the substrate surface as the SAW propagates across drives rapid destabilization of the drop free surface giving rise to inertial liquid jets that persist over 1–2 cm in length or atomization of the entire drop to produce 1–10 μm monodispersed aerosol droplets, which can be exploited for ink-jet printing, mass spectrometry interfacing, or pulmonary drug delivery. The atomization of polymer∕protein solutions

  2. Fluidic communication between multiple vertically segregated microfluidic channels connected by nanocapillary array membranes.

    PubMed

    Gong, Maojun; Flachsbart, Bruce R; Shannon, Mark A; Bohn, Paul W; Sweedler, Jonathan V

    2008-03-01

    Hybrid microfluidic/nanofluidic devices offer unique capabilities for manipulating and analyzing minute volumes of expensive or hard-to-obtain samples. Here, multilayer poly-(methyl methacrylate) microchips, with multiple spatially isolated microfluidic channels interconnected by nanocapillary array membranes (NCAMs), are fabricated using an adhesive contact printing process. The NCAMs, positioned between the microfluidic channel layers, add functionality to the inter-microchannel fluid transfer unit operation. They do so because the transport of specific analytes through the NCAM can be controlled by adjusting the ionic strength, the polarity of the applied bias, the surface charge density, and the pore size. A simplified, floating injection technique for NCAM-coupled nanofluidic devices is described and compared with conventional biased injection. In the floating injection approach, a voltage is applied across the injection channel and the slight electric field extension at the cross-section is used to transfer analytes through the nanopores to the separation channel. Floating injection excels in plug reproducibility, separation resolution, and operation simplicity, although it decreases assay throughput relative to biased injection. Floating injection can avoid the uneven distribution of analytes in the microfluidic channel that sometimes results from biased injection because of the volume mismatch between NCAM nanopore transport capacity and the supply of fluid. Moreover, the pressure-driven flow caused by the mismatch of the EOFs in the microfluidic channels connected by an NCAM must be considered when using NCAMs with pore diameters below 50 nm. PMID:18288777

  3. Flexible interconnects for fuel cell stacks

    DOEpatents

    Lenz, David J.; Chung, Brandon W.; Pham, Ai Quoc

    2004-11-09

    An interconnect that facilitates electrical connection and mechanical support with minimal mechanical stress for fuel cell stacks. The interconnects are flexible and provide mechanically robust fuel cell stacks with higher stack performance at lower cost. The flexible interconnects replace the prior rigid rib interconnects with flexible "fingers" or contact pads which will accommodate the imperfect flatness of the ceramic fuel cells. Also, the mechanical stress of stacked fuel cells will be smaller due to the flexibility of the fingers. The interconnects can be one-sided or double-sided.

  4. Interconnects for nanoscale MOSFET technology: a review

    NASA Astrophysics Data System (ADS)

    Chaudhry, Amit

    2013-06-01

    In this paper, a review of Cu/low-k, carbon nanotube (CNT), graphene nanoribbon (GNR) and optical based interconnect technologies has been done. Interconnect models, challenges and solutions have also been discussed. Of all the four technologies, CNT interconnects satisfy most of the challenges and they are most suited for nanometer scale technologies, despite some minor drawbacks. It is concluded that beyond 32 nm technology, a paradigm shift in the interconnect material is required as Cu/low-k interconnects are approaching fundamental limits.

  5. Solvent resistant microfluidic DNA synthesizer.

    PubMed

    Huang, Yanyi; Castrataro, Piero; Lee, Cheng-Chung; Quake, Stephen R

    2007-01-01

    We fabricated a microfluidic DNA synthesizer out of perfluoropolyether (PFPE), an elastomer with excellent chemical compatibility which makes it possible to perform organic chemical reactions, and synthesized 20-mer oligonucleotides on chip. PMID:17180201

  6. Passive microfluidic array card and reader

    DOEpatents

    Dugan, Lawrence Christopher; Coleman, Matthew A.

    2011-08-09

    A microfluidic array card and reader system for analyzing a sample. The microfluidic array card includes a sample loading section for loading the sample onto the microfluidic array card, a multiplicity of array windows, and a transport section or sections for transporting the sample from the sample loading section to the array windows. The microfluidic array card reader includes a housing, a receiving section for receiving the microfluidic array card, a viewing section, and a light source that directs light to the array window of the microfluidic array card and to the viewing section.

  7. Towards printable open air microfluidics.

    SciTech Connect

    Collord, Andrew; Cook, Adam W.; Clem, Paul Gilbert; Fenton, Kyle Ross; Apblett, Christopher Alan; Branson, Eric D.

    2010-04-01

    We have demonstrated a novel microfluidic technique for aqueous media, which uses super-hydrophobic materials to create microfluidic channels that are open to the atmosphere. We have demonstrated the ability to perform traditional electrokinetic operations such as ionic separations and electrophoresis using these devices. The rate of evaporation was studied and found to increase with decreasing channel size, which places a limitation on the minimum size of channel that could be used for such a device.

  8. Electrodes for microfluidic applications

    DOEpatents

    Crocker, Robert W.; Harnett, Cindy K.; Rognlien, Judith L.

    2006-08-22

    An electrode device for high pressure applications. These electrodes, designed to withstand pressure of greater than 10,000 psi, are adapted for use in microfluidic devices that employ electrokinetic or electrophoretic flow. The electrode is composed, generally, of an outer electrically insulating tubular body having a porous ceramic frit material disposed in one end of the outer body. The pores of the porous ceramic material are filled with an ion conductive polymer resin. A conductive material situated on the upper surface of the porous ceramic frit material and, thus isolated from direct contact with the electrolyte, forms a gas diffusion electrode. A metal current collector, in contact with the gas diffusion electrode, provides connection to a voltage source.

  9. Microfluidic serial dilution ladder.

    PubMed

    Ahrar, Siavash; Hwang, Michelle; Duncan, Philip N; Hui, Elliot E

    2014-01-01

    Serial dilution is a fundamental procedure that is common to a large number of laboratory protocols. Automation of serial dilution is thus a valuable component for lab-on-a-chip systems. While a handful of different microfluidic strategies for serial dilution have been reported, approaches based on continuous flow mixing inherently consume larger amounts of sample volume and chip real estate. We employ valve-driven circulatory mixing to address these issues and also introduce a novel device structure to store each stage of the dilution process. The dilution strategy is based on sequentially mixing the rungs of a ladder structure. We demonstrate a 7-stage series of 1 : 1 dilutions with R(2) equal to 0.995 in an active device area of 1 cm(2). PMID:24231765

  10. Inertial Focusing in Microfluidics

    PubMed Central

    Martel, Joseph M.; Toner, Mehmet

    2015-01-01

    When Segré and Silberberg in 1961 witnessed particles in a laminar pipe flow congregating at an annulus in the pipe, scientists were perplexed and spent decades learning why such behavior occurred, finally understanding that it was caused by previously unknown forces on particles in an inertial flow. The advent of microfluidics opened a new realm of possibilities for inertial focusing in the processing of biological fluids and cellular suspensions and created a field that is now rapidly expanding. Over the past five years, inertial focusing has enabled high-throughput, simple, and precise manipulation of bodily fluids for a myriad of applications in point-of-care and clinical diagnostics. This review describes the theoretical developments that have made the field of inertial focusing what it is today and presents the key applications that will make inertial focusing a mainstream technology in the future. PMID:24905880

  11. Enhanced Microfluidic Electromagnetic Measurements

    NASA Technical Reports Server (NTRS)

    Giovangrandi, Laurent (Inventor); Ricco, Antonio J. (Inventor); Kovacs, Gregory (Inventor)

    2015-01-01

    Techniques for enhanced microfluidic impedance spectroscopy include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. Flow in the channel is laminar. A dielectric constant of a fluid constituting either sheath flow is much less than a dielectric constant of the core fluid. Electrical impedance is measured in the channel between at least a first pair of electrodes. In some embodiments, enhanced optical measurements include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. An optical index of refraction of a fluid constituting either sheath flow is much less than an optical index of refraction of the core fluid. An optical property is measured in the channel.

  12. Digital Microfluidics Sample Analyzer

    NASA Technical Reports Server (NTRS)

    Pollack, Michael G.; Srinivasan, Vijay; Eckhardt, Allen; Paik, Philip Y.; Sudarsan, Arjun; Shenderov, Alex; Hua, Zhishan; Pamula, Vamsee K.

    2010-01-01

    Three innovations address the needs of the medical world with regard to microfluidic manipulation and testing of physiological samples in ways that can benefit point-of-care needs for patients such as premature infants, for which drawing of blood for continuous tests can be life-threatening in their own right, and for expedited results. A chip with sample injection elements, reservoirs (and waste), droplet formation structures, fluidic pathways, mixing areas, and optical detection sites, was fabricated to test the various components of the microfluidic platform, both individually and in integrated fashion. The droplet control system permits a user to control droplet microactuator system functions, such as droplet operations and detector operations. Also, the programming system allows a user to develop software routines for controlling droplet microactuator system functions, such as droplet operations and detector operations. A chip is incorporated into the system with a controller, a detector, input and output devices, and software. A novel filler fluid formulation is used for the transport of droplets with high protein concentrations. Novel assemblies for detection of photons from an on-chip droplet are present, as well as novel systems for conducting various assays, such as immunoassays and PCR (polymerase chain reaction). The lab-on-a-chip (a.k.a., lab-on-a-printed-circuit board) processes physiological samples and comprises a system for automated, multi-analyte measurements using sub-microliter samples of human serum. The invention also relates to a diagnostic chip and system including the chip that performs many of the routine operations of a central labbased chemistry analyzer, integrating, for example, colorimetric assays (e.g., for proteins), chemiluminescence/fluorescence assays (e.g., for enzymes, electrolytes, and gases), and/or conductometric assays (e.g., for hematocrit on plasma and whole blood) on a single chip platform.

  13. Parallel Imaging Microfluidic Cytometer

    PubMed Central

    Ehrlich, Daniel J.; McKenna, Brian K.; Evans, James G.; Belkina, Anna C.; Denis, Gerald V.; Sherr, David; Cheung, Man Ching

    2011-01-01

    By adding an additional degree of freedom from multichannel flow, the parallel microfluidic cytometer (PMC) combines some of the best features of flow cytometry (FACS) and microscope-based high-content screening (HCS). The PMC (i) lends itself to fast processing of large numbers of samples, (ii) adds a 1-D imaging capability for intracellular localization assays (HCS), (iii) has a high rare-cell sensitivity and, (iv) has an unusual capability for time-synchronized sampling. An inability to practically handle large sample numbers has restricted applications of conventional flow cytometers and microscopes in combinatorial cell assays, network biology, and drug discovery. The PMC promises to relieve a bottleneck in these previously constrained applications. The PMC may also be a powerful tool for finding rare primary cells in the clinic. The multichannel architecture of current PMC prototypes allows 384 unique samples for a cell-based screen to be read out in approximately 6–10 minutes, about 30-times the speed of most current FACS systems. In 1-D intracellular imaging, the PMC can obtain protein localization using HCS marker strategies at many times the sample throughput of CCD-based microscopes or CCD-based single-channel flow cytometers. The PMC also permits the signal integration time to be varied over a larger range than is practical in conventional flow cytometers. The signal-to-noise advantages are useful, for example, in counting rare positive cells in the most difficult early stages of genome-wide screening. We review the status of parallel microfluidic cytometry and discuss some of the directions the new technology may take. PMID:21704835

  14. Microfluidic Technologies for Temporal Perturbations of Chemotaxis

    PubMed Central

    Irimia, Daniel

    2011-01-01

    Most cells in the body have the ability to change their physical locations during physiologic or pathologic events such as inflammation, wound healing, or cancer. When cell migration is directed toward sources of cue chemicals, the process is known as chemotaxis, and it requires linking the sensing of chemicals through receptors on the surfaces of the cells to the directional activation of the motility apparatus inside the cells. This link is supported by complex intracellular signaling pathways, and although details regarding the nature of the molecules involved in the signal transduction are well established, far less is known about how different signaling molecules and processes are dynamically interconnected and how slower and faster signaling events take place simultaneously inside moving cells. In this context, advances in microfluidic technologies are enabling the emergence of new tools that facilitate the development of experimental protocols in which the cellular microenvironment is precisely controlled in time and space and in which signaling-associated changes inside cells can be quantitatively measured and compared. These tools could enable new insights into the intricacies of the biological systems that participate in chemotaxis processes and could have the potential to accelerate the development of novel therapeutic strategies to control cell motility and enhance our abilities for medical intervention during health and disease. PMID:20450351

  15. A Programmable MicroFluidic Processor: Integrated and Hybrid Solutions

    SciTech Connect

    Rose, K A

    2002-05-10

    The Programmable Fluidic Processor (PFP), a device conceived of by researchers at MD Anderson Cancer Center, is a reconfigurable and programmable bio-chemical analysis system designed for handheld operation in a variety of applications. Unlike most microfluidic systems which utilize channels to control fluids, the PFP device is a droplet-based system. The device is based on dielectrophoresis; a fluid transport phenomenon that utilizes mismatched polarizability between a droplet and its medium to induce droplet mobility. In the device, sample carrying droplets are polarized by an array of electrodes, individually addressable by subsurface microelectronics. My research focused on the development of a polymer-based microfluidic injection system for injecting these droplets onto the electrode array. The first of two device generations fabricated at LLNL was designed using extensive research and modeling performed by MD Anderson and Coventor. Fabricating the first generation required several iterations and design changes in order to generate an acceptable device for testing. Difficulties in planar fabrication of the fluidic system and a narrow channel design necessitated these changes. The second generation device incorporated modifications of the previous generation and improved on deficiencies discovered during experimentation with the initial device. Extensive modeling of the injection channels and fluid storage chamber also aided in redesigning the device's microfluidic system. A micromolding technique with interlocking features enabled precise alignments and dimensional control, critical requirements for device optimization. Fabrication of a final device will be fully integrated with the polymer-based microfluidics bonded directly to the silicon-based microelectronics. The optimized design and process flow developed in the trial generations will readily transfer to this approach.

  16. Packaging of silicon sensors for microfluidic bio-analytical applications

    NASA Astrophysics Data System (ADS)

    Wimberger-Friedl, Reinhold; Nellissen, Ton; Weekamp, Wim; van Delft, Jan; Ansems, Will; Prins, Menno; Megens, Mischa; Dittmer, Wendy; de Witz, Christiane; van Iersel, Ben

    2009-01-01

    A new industrial concept is presented for packaging biosensor chips in disposable microfluidic cartridges to enable medical diagnostic applications. The inorganic electronic substrates, such as silicon or glass, are integrated in a polymer package which provides the electrical and fluidic interconnections to the world and provides mechanical strength and protection for out-of-lab use. The demonstrated prototype consists of a molded interconnection device (MID), a silicon-based giant magneto-resistive (GMR) biosensor chip, a flex and a polymer fluidic part with integrated tubing. The various processes are compatible with mass manufacturing and run at a high yield. The devices show a reliable electrical interconnection between the sensor chip and readout electronics during extended wet operation. Sandwich immunoassays were carried out in the cartridges with surface functionalized sensor chips. Biological response curves were determined for different concentrations of parathyroid hormone (PTH) on the packaged biosensor, which demonstrates the functionality and biocompatibility of the devices. The new packaging concept provides a platform for easy further integration of electrical and fluidic functions, as for instance required for integrated molecular diagnostic devices in cost-effective mass manufacturing.

  17. Double interconnection fuel cell array

    DOEpatents

    Draper, Robert; Zymboly, Gregory E.

    1993-01-01

    A fuel cell array (10) is made, containing number of tubular, elongated fuel cells (12) which are placed next to each other in rows (A, B, C, D), where each cell contains inner electrodes (14) and outer electrodes (18 and 18'), with solid electrolyte (16 and 16') between the electrodes, where the electrolyte and outer electrode are discontinuous, having two portions, and providing at least two opposed discontinuities which contain at least two oppositely opposed interconnections (20 and 20') contacting the inner electrode (14), each cell (12) having only three metallic felt electrical connectors (22) which contact surrounding cells, where each row is electrically connected to the other.

  18. Planar Submillimeter-Wave Mixer Technology with Integrated Antenna

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Gautam; Mehdi, Imran; Gill, John J.; Lee, Choonsup; lombart, Muria L.; Thomas, Betrand

    2010-01-01

    High-performance mixers at terahertz frequencies require good matching between the coupling circuits such as antennas and local oscillators and the diode embedding impedance. With the availability of amplifiers at submillimeter wavelengths and the need to have multi-pixel imagers and cameras, planar mixer architecture is required to have an integrated system. An integrated mixer with planar antenna provides a compact and optimized design at terahertz frequencies. Moreover, it leads to a planar architecture that enables efficient interconnect with submillimeter-wave amplifiers. In this architecture, a planar slot antenna is designed on a thin gallium arsenide (GaAs) membrane in such a way that the beam on either side of the membrane is symmetric and has good beam profile with high coupling efficiency. A coplanar waveguide (CPW) coupled Schottky diode mixer is designed and integrated with the antenna. In this architecture, the local oscillator (LO) is coupled through one side of the antenna and the RF from the other side, without requiring any beam sp litters or diplexers. The intermediate frequency (IF) comes out on a 50-ohm CPW line at the edge of the mixer chip, which can be wire-bonded to external circuits. This unique terahertz mixer has an integrated single planar antenna for coupling both the radio frequency (RF) input and LO injection without any diplexer or beamsplitters. The design utilizes novel planar slot antenna architecture on a 3- mthick GaAs membrane. This work is required to enable future multi-pixel terahertz receivers for astrophysics missions, and lightweight and compact receivers for planetary missions to the outer planets in our solar system. Also, this technology can be used in tera hertz radar imaging applications as well as for testing of quantum cascade lasers (QCLs).

  19. Multilayer Interconnects for Microfabricated Surface Electrode Ion Traps

    NASA Astrophysics Data System (ADS)

    Amini, Jason; Seidelin, Signe; Wesenberg, Janus; Britton, Joe; Blakestad, Brad; Brown, Kenton; Epstein, Ryan; Home, Jonathan; Jost, John; Langer, Chris; Leibfried, Dietrich; Ozeri, Roee; Wineland, David

    2007-06-01

    Microfabricated surface electrode traps for ions are a promising technology for building scalable trapping geometries for quantum information processing. We have expanded upon our single layer gold-on-fused-silica surface electrode trap [1] to include a second patterned conducting layer under the trapping electrodes and have demonstrated the fabrication of this architecture using standard microfabrication techniques. The multilayer approach allows for a significant increase in multi-zone trapping complexity and permits improved trapping structures that are otherwise unattainable in single layer designs without vertical interconnects through the wafer. Using improved calculational methods [2], we are in the process of optimizing the planar designs to create modular elements that can be joined into larger multi-zone trapping structures. Work supported by DTO and NIST. 1. S. Seidelin et al., Phys. Rev. Lett. 96, 253003 (2006). Also, see the abstract by S. Seidelin. 2. See the abstract by J. H. Wesenberg.

  20. Functional polymer sheet patterning using microfluidics.

    PubMed

    Li, Minggan; Humayun, Mouhita; Kozinski, Janusz A; Hwang, Dae Kun

    2014-07-22

    Poly(dimethylsiloxane) (PDMS)-based microfluidics provide a novel approach to advanced material synthesis. While PDMS has been successfully used in a wide range of industrial applications, due to the weak mechanical property channels generally possess low aspect ratios (AR) and thus produce microparticles with similarly low ARs. By increasing the channel width to nearly 1 cm, AR to 267, and implementing flow lithography, we were able to establish the slit-channel lithography. Not only does this allow us to synthesize sheet materials bearing multiscale features and tunable chemical anisotropy but it also allows us to fabricate functional layered sheet structures in a one-step, high-throughput fashion. We showcased the technique's potential role in various applications, such as the synthesis of planar material with micro- and nanoscale features, surface morphologies, construction of tubular and 3D layered hydrogel tissue scaffolds, and one-step formation of radio frequency identification (RFID) tags. The method introduced offers a novel route to functional sheet material synthesis and sheet system fabrication. PMID:24967616

  1. Microfluidic assembly of multiscale soft materials

    NASA Astrophysics Data System (ADS)

    Leng, Lian; Guenther, Axel

    2010-11-01

    The vast majority of materials found in nature are characterized by length scales that span several orders of magnitude. Material properties such as porosity, permeability and elasticity are therefore locally and directionally tuned to their (biological) function and adapted to local environmental conditions. We use a massively scaled microfluidic approach to synthetically define multiscale complex fluids and soft materials with precisely tunable, non-isentropic bulk properties. Two or more fluids are separately introduced to the device that consists of fifteen vertically bonded and fluidically connected substrate layers, and guided to an exit section that either consists of 23 equidistantly spaced channels or a 23 x 15 channel array. The flow rates through individual channels are computer-controlled. Upon entering a reservoir in a flow-focusing configuration, a spatially organized fluid with characteristic length scales of 250 microns and 10 mm was defined, and retained via a chemical reaction. To illustrate different soft material morphologies in one, two or three directions, we demonstrate the formation of isolated fibers (1D); planar graded and barcoded materials (2D); graded bulk materials and perfusable matrices (3D).

  2. Recent Progress of Microfluidics in Translational Applications

    PubMed Central

    Liu, Zongbin; Han, Xin

    2016-01-01

    Microfluidics, featuring microfabricated structures, is a technology for manipulating fluids at the micrometer scale. The small dimension and flexibility of microfluidic systems are ideal for mimicking molecular and cellular microenvironment, and show great potential in translational research and development. Here, the recent progress of microfluidics in biological and biomedical applications, including molecular analysis, cellular analysis, and chip-based material delivery and biomimetic design is presented. The potential future developments in the translational microfluidics field are also discussed. PMID:27091777

  3. Recent Progress of Microfluidics in Translational Applications.

    PubMed

    Liu, Zongbin; Han, Xin; Qin, Lidong

    2016-04-01

    Microfluidics, featuring microfabricated structures, is a technology for manipulating fluids at the micrometer scale. The small dimension and flexibility of microfluidic systems are ideal for mimicking molecular and cellular microenvironment, and show great potential in translational research and development. Here, the recent progress of microfluidics in biological and biomedical applications, including molecular analysis, cellular analysis, and chip-based material delivery and biomimetic design is presented. The potential future developments in the translational microfluidics field are also discussed. PMID:27091777

  4. IETI - Isogeometric Tearing and Interconnecting.

    PubMed

    Kleiss, Stefan K; Pechstein, Clemens; Jüttler, Bert; Tomar, Satyendra

    2012-11-01

    Finite Element Tearing and Interconnecting (FETI) methods are a powerful approach to designing solvers for large-scale problems in computational mechanics. The numerical simulation problem is subdivided into a number of independent sub-problems, which are then coupled in appropriate ways. NURBS- (Non-Uniform Rational B-spline) based isogeometric analysis (IGA) applied to complex geometries requires to represent the computational domain as a collection of several NURBS geometries. Since there is a natural decomposition of the computational domain into several subdomains, NURBS-based IGA is particularly well suited for using FETI methods. This paper proposes the new IsogEometric Tearing and Interconnecting (IETI) method, which combines the advanced solver design of FETI with the exact geometry representation of IGA. We describe the IETI framework for two classes of simple model problems (Poisson and linearized elasticity) and discuss the coupling of the subdomains along interfaces (both for matching interfaces and for interfaces with T-joints, i.e. hanging nodes). Special attention is paid to the construction of a suitable preconditioner for the iterative linear solver used for the interface problem. We report several computational experiments to demonstrate the performance of the proposed IETI method. PMID:24511167

  5. Planar elliptic growth

    SciTech Connect

    Mineev, Mark

    2008-01-01

    The planar elliptic extension of the Laplacian growth is, after a proper parametrization, given in a form of a solution to the equation for areapreserving diffeomorphisms. The infinite set of conservation laws associated with such elliptic growth is interpreted in terms of potential theory, and the relations between two major forms of the elliptic growth are analyzed. The constants of integration for closed form solutions are identified as the singularities of the Schwarz function, which are located both inside and outside the moving contour. Well-posedness of the recovery of the elliptic operator governing the process from the continuum of interfaces parametrized by time is addressed and two examples of exact solutions of elliptic growth are presented.

  6. Planar electroluminescent panel techniques

    NASA Technical Reports Server (NTRS)

    Kerr, C.; Kell, R. E.

    1973-01-01

    Investigations of planar electroluminescent multipurpose displays with latch-in memory are described. An 18 x 24 in. flat, thin address panel with elements spacing of 0.100 in. was constructed which demonstrated essentially uniform luminosity of 3-5 foot lamberts for each of its 43200 EL cells. A working model of a 4-bit EL-PC (electroluminescent photoconductive) electrooptical decoder was made which demonstrated the feasibility of this concept. A single-diagram electroluminescent display device with photoconductive-electroluminescent latch-in memory was constructed which demonstrated the conceptual soundness of this principle. Attempts to combine these principles in a single PEL multipurpose display with latch-in memory were unsuccessful and were judged to exceed the state-of-the-art for close-packed (0.10 in. centers) photoconductor-electroluminescent cell assembly.

  7. Interconnect fatigue design for terrestrial photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1982-01-01

    The results of comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable (1) the prediction of cumulative interconnect failures during the design life of an array field, and (2) the unambiguous--ie., quantitative--interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field.

  8. Interconnect fatigue design for terrestrial photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1982-03-01

    The results of comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable (1) the prediction of cumulative interconnect failures during the design life of an array field, and (2) the unambiguous--ie., quantitative--interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field.

  9. 47 CFR 90.477 - Interconnected systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Beach, California 34°03′15.0″ 118°14′31.3″ Chicago, Illinois-Northwestern Indiana 41°52′28.1″ 87°38′22.2... 47 Telecommunication 5 2012-10-01 2012-10-01 false Interconnected systems. 90.477 Section 90.477... MOBILE RADIO SERVICES Transmitter Control Interconnected Systems § 90.477 Interconnected systems....

  10. Cascade solar cell having conductive interconnects

    DOEpatents

    Borden, Peter G.; Saxena, Ram R.

    1982-10-26

    Direct ohmic contact between the cells in an epitaxially grown cascade solar cell is obtained by means of conductive interconnects formed through grooves etched intermittently in the upper cell. The base of the upper cell is directly connected by the conductive interconnects to the emitter of the bottom cell. The conductive interconnects preferably terminate on a ledge formed in the base of the upper cell.

  11. Machine vision for digital microfluidics.

    PubMed

    Shin, Yong-Jun; Lee, Jeong-Bong

    2010-01-01

    Machine vision is widely used in an industrial environment today. It can perform various tasks, such as inspecting and controlling production processes, that may require humanlike intelligence. The importance of imaging technology for biological research or medical diagnosis is greater than ever. For example, fluorescent reporter imaging enables scientists to study the dynamics of gene networks with high spatial and temporal resolution. Such high-throughput imaging is increasingly demanding the use of machine vision for real-time analysis and control. Digital microfluidics is a relatively new technology with expectations of becoming a true lab-on-a-chip platform. Utilizing digital microfluidics, only small amounts of biological samples are required and the experimental procedures can be automatically controlled. There is a strong need for the development of a digital microfluidics system integrated with machine vision for innovative biological research today. In this paper, we show how machine vision can be applied to digital microfluidics by demonstrating two applications: machine vision-based measurement of the kinetics of biomolecular interactions and machine vision-based droplet motion control. It is expected that digital microfluidics-based machine vision system will add intelligence and automation to high-throughput biological imaging in the future. PMID:20113117

  12. Microfluidic reflow pumps.

    PubMed

    Haslam, Bryan; Tsai, Long-Fang; Anderson, Ryan R; Kim, Seunghyun; Hu, Weisheng; Nordin, Gregory P

    2015-07-01

    A new microfluidic pump, termed a reflow pump, is designed to operate with a sub-μl sample volume and transport it back and forth between two pneumatically actuated reservoirs through a flow channel typically containing one or more sensor surfaces. The ultimate motivation is to efficiently use the small sample volume in conjunction with convection to maximize analyte flux to the sensor surface(s) in order to minimize sensor response time. In this paper, we focus on the operational properties of the pumps themselves (rather than the sensor surfaces), and demonstrate both two-layer and three-layer polydimethylsiloxane reflow pumps. For the three-layer pump, we examine the effects of reservoir actuation pressure and actuation period, and demonstrate average volumetric flow rates as high as 500 μl/min. We also show that the two-layer design can pump up to 93% of the sample volume during each half period and demonstrate integration of a reflow pump with a single-chip microcantilever array to measure maximum flow rate. PMID:26221199

  13. Microfluidic reflow pumps

    PubMed Central

    Haslam, Bryan; Tsai, Long-Fang; Anderson, Ryan R.; Kim, Seunghyun; Hu, Weisheng; Nordin, Gregory P.

    2015-01-01

    A new microfluidic pump, termed a reflow pump, is designed to operate with a sub-μl sample volume and transport it back and forth between two pneumatically actuated reservoirs through a flow channel typically containing one or more sensor surfaces. The ultimate motivation is to efficiently use the small sample volume in conjunction with convection to maximize analyte flux to the sensor surface(s) in order to minimize sensor response time. In this paper, we focus on the operational properties of the pumps themselves (rather than the sensor surfaces), and demonstrate both two-layer and three-layer polydimethylsiloxane reflow pumps. For the three-layer pump, we examine the effects of reservoir actuation pressure and actuation period, and demonstrate average volumetric flow rates as high as 500 μl/min. We also show that the two-layer design can pump up to 93% of the sample volume during each half period and demonstrate integration of a reflow pump with a single-chip microcantilever array to measure maximum flow rate. PMID:26221199

  14. Microfluidic sorting of microtissues.

    PubMed

    Buschke, D G; Resto, P; Schumacher, N; Cox, B; Tallavajhula, A; Vivekanandan, A; Eliceiri, K W; Williams, J C; Ogle, B M

    2012-03-01

    Increasingly, invitro culture of adherent cell types utilizes three-dimensional (3D) scaffolds or aggregate culture strategies to mimic tissue-like, microenvironmental conditions. In parallel, new flow cytometry-based technologies are emerging to accurately analyze the composition and function of these microtissues (i.e., large particles) in a non-invasive and high-throughput way. Lacking, however, is an accessible platform that can be used to effectively sort or purify large particles based on analysis parameters. Here we describe a microfluidic-based, electromechanical approach to sort large particles. Specifically, sheath-less asymmetric curving channels were employed to separate and hydrodynamically focus particles to be analyzed and subsequently sorted. This design was developed and characterized based on wall shear stress, tortuosity of the flow path, vorticity of the fluid in the channel, sorting efficiency and enrichment ratio. The large particle sorting device was capable of purifying fluorescently labelled embryoid bodies (EBs) from unlabelled EBs with an efficiency of 87.3% ± 13.5%, and enrichment ratio of 12.2 ± 8.4 (n = 8), while preserving cell viability, differentiation potential, and long-term function. PMID:22505992

  15. Visualizing interconnections among climate risks

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Yokohata, T.; Nishina, K.; Takahashi, K.; Emori, S.; Kiguchi, M.; Iseri, Y.; Honda, Y.; Okada, M.; Masaki, Y.; Yamamoto, A.; Shigemitsu, M.; Yoshimori, M.; Sueyoshi, T.; Hanasaki, N.; Ito, A.; Sakurai, G.; Iizumi, T.; Nishimori, M.; Lim, W. H.; Miyazaki, C.; Kanae, S.; Oki, T.

    2015-12-01

    It is now widely recognized that climate change is affecting various sectors of the world. Climate change impact on one sector may spread out to other sectors including those seemingly remote, which we call "interconnections of climate risks". While a number of climate risks have been identified in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5), there has been no attempt to explore their interconnections comprehensively. Here we present a first and most exhaustive visualization of climate risks drawn based on a systematic literature survey. Our risk network diagrams depict that changes in the climate system impact natural capitals (terrestrial water, crop, and agricultural land) as well as social infrastructures, influencing the socio-economic system and ultimately our access to food, water, and energy. Our findings suggest the importance of incorporating climate risk interconnections into impact and vulnerability assessments and call into question the widely used damage function approaches, which address a limited number of climate change impacts in isolation. Furthermore, the diagram is useful to educate decision makers, stakeholders, and general public about cascading risks that can be triggered by the climate change. Socio-economic activities today are becoming increasingly more inter-dependent because of the rapid technological progress, urbanization, and the globalization among others. Equally complex is the ecosystem that is susceptible to climate change, which comprises interwoven processes affecting one another. In the context of climate change, a number of climate risks have been identified and classified according to regions and sectors. These reports, however, did not fully address the inter-relations among risks because of the complexity inherent in this issue. Climate risks may ripple through sectors in the present inter-dependent world, posing a challenge ahead of us to maintain the resilience of the system. It is

  16. Identification of methicillin-resistant Staphylococcus aureus using an integrated and modular microfluidic system.

    PubMed

    Chen, Yi-Wen; Wang, Hong; Hupert, Mateusz; Soper, Steven A

    2013-02-21

    Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of hospital-acquired (HA-MRSA) infection worldwide. As a result, the rapid and specific detection of MRSA is crucial not only for early prevention of disease spread, but also for the effective treatment of these infections. We report here an integrated modular-based microfluidic system for MRSA identification, which can carry out the multi-step assay used for MRSA identification in a single disposable fluidic cartridge. The multi-step assay included PCR amplification of the mecA gene harboring methicillin resistance loci that can provide information on drug susceptibility, ligase detection reaction (LDR) to generate fluorescent ligation products appended with a zip-code complement that directs the ligation product to a particular address on a universal array containing zip-code probes and a universal DNA array, which consisted of a planar waveguide for evanescent excitation. The fluidic cartridge design was based on a modular format, in which certain steps of the molecular processing pipeline were poised on a module made from a thermoplastic. The cartridge was comprised of a module interconnected to a fluidic motherboard configured in a 3-dimensional network; the motherboard was made from polycarbonate, PC, and was used for PCR and LDR, while the module was made from poly(methylmethacrylate), PMMA, and contained an air-embedded waveguide serving as the support for the universal array. Fluid handling, thermal management and optical readout hardware were situated off-chip and configured into a small footprint instrument. In this work, the cartridge was used to carry out a multiplexed PCR/LDR coupled with the universal array allowed for simultaneous detection of five genes that encode for 16S ribosomal RNA (SG16S), protein A (spa), the femA protein of S. epidermidis (femA), the virulence factor of Panton-Valentine leukocidin (PVL) and the gene that confers methicillin resistance (mecA). Results

  17. 3D-Printed Microfluidics.

    PubMed

    Au, Anthony K; Huynh, Wilson; Horowitz, Lisa F; Folch, Albert

    2016-03-14

    The advent of soft lithography allowed for an unprecedented expansion in the field of microfluidics. However, the vast majority of PDMS microfluidic devices are still made with extensive manual labor, are tethered to bulky control systems, and have cumbersome user interfaces, which all render commercialization difficult. On the other hand, 3D printing has begun to embrace the range of sizes and materials that appeal to the developers of microfluidic devices. Prior to fabrication, a design is digitally built as a detailed 3D CAD file. The design can be assembled in modules by remotely collaborating teams, and its mechanical and fluidic behavior can be simulated using finite-element modeling. As structures are created by adding materials without the need for etching or dissolution, processing is environmentally friendly and economically efficient. We predict that in the next few years, 3D printing will replace most PDMS and plastic molding techniques in academia. PMID:26854878

  18. Evaporative cooling in microfluidic channels

    NASA Astrophysics Data System (ADS)

    Maltezos, George; Rajagopal, Aditya; Scherer, Axel

    2006-08-01

    Evaporative cooling is an effective and energy efficient way to rapidly remove heat from a system. Specifically, evaporative cooling in microfluidic channels can provide a cost-effective solution for the cooling of electronic devices and chemical reactors. Here we present microfluidic devices fabricated by using soft-lithography techniques to form simple fluidic junctions between channels carrying refrigerant and channels carrying N2 gas. The effects of channel geometry and delivery pressure on the performance of refrigeration through vaporization of acetone, isopropyl alcohol, and ethyl ether were characterized. By varying gas inlet pressures, refrigerants, and angles of the microfluidic junctions, optimal cooling conditions were found. Refrigeration rates in excess of 40°C/s were measured, and long lasting subzero cooling in the junction could be observed.

  19. Breathing synchronization in interconnected networks

    PubMed Central

    Louzada, V. H. P.; Araújo, N. A. M.; Andrade, J. S.; Herrmann, H. J.

    2013-01-01

    Global synchronization in a complex network of oscillators emerges from the interplay between its topology and the dynamics of the pairwise interactions among its numerous components. When oscillators are spatially separated, however, a time delay appears in the interaction which might obstruct synchronization. Here we study the synchronization properties of interconnected networks of oscillators with a time delay between networks and analyze the dynamics as a function of the couplings and communication lag. We discover a new breathing synchronization regime, where two groups appear in each network synchronized at different frequencies. Each group has a counterpart in the opposite network, one group is in phase and the other in anti-phase with their counterpart. For strong couplings, instead, networks are internally synchronized but a phase shift between them might occur. The implications of our findings on several socio-technical and biological systems are discussed. PMID:24256765

  20. A Microfluidic-based Hydrodynamic Trap for Single Particles

    PubMed Central

    Johnson-Chavarria, Eric M.; Tanyeri, Melikhan; Schroeder, Charles M.

    2011-01-01

    The ability to confine and manipulate single particles in free solution is a key enabling technology for fundamental and applied science. Methods for particle trapping based on optical, magnetic, electrokinetic, and acoustic techniques have led to major advancements in physics and biology ranging from the molecular to cellular level. In this article, we introduce a new microfluidic-based technique for particle trapping and manipulation based solely on hydrodynamic fluid flow. Using this method, we demonstrate trapping of micro- and nano-scale particles in aqueous solutions for long time scales. The hydrodynamic trap consists of an integrated microfluidic device with a cross-slot channel geometry where two opposing laminar streams converge, thereby generating a planar extensional flow with a fluid stagnation point (zero-velocity point). In this device, particles are confined at the trap center by active control of the flow field to maintain particle position at the fluid stagnation point. In this manner, particles are effectively trapped in free solution using a feedback control algorithm implemented with a custom-built LabVIEW code. The control algorithm consists of image acquisition for a particle in the microfluidic device, followed by particle tracking, determination of particle centroid position, and active adjustment of fluid flow by regulating the pressure applied to an on-chip pneumatic valve using a pressure regulator. In this way, the on-chip dynamic metering valve functions to regulate the relative flow rates in the outlet channels, thereby enabling fine-scale control of stagnation point position and particle trapping. The microfluidic-based hydrodynamic trap exhibits several advantages as a method for particle trapping. Hydrodynamic trapping is possible for any arbitrary particle without specific requirements on the physical or chemical properties of the trapped object. In addition, hydrodynamic trapping enables confinement of a "single" target object in

  1. Electrochemical planarization for microelectronic circuits

    SciTech Connect

    Contolini, R.J.; Mayer, S.T.; Bernhardt, A.F.

    1993-03-25

    The need for flatter and smoother surfaces (planarization) in microelectronic circuits increases as the number of metal levels in ultra large scale integrated (ULSI) circuits increases. At Lawrence Livermore National Laboratory, the authors have developed an electrochemical planarization process that fills vias and trenches with metal (without voids) and subsequently planarizes the surface. Use is made of plasma-enhanced chemical vapor deposition (PECVD) of SiO[sub 2] for the dielectric layers and electroplated copper for the metalization. This report describes the advantages of this process over existing techniques, possibilities for collaboration, and previous technology transfer.

  2. Electrochemical planarization for microelectronic circuits

    NASA Astrophysics Data System (ADS)

    Contolini, R. J.; Mayer, S. T.; Bernhardt, A. F.

    1993-03-01

    The need for flatter and smoother surfaces (planarization) in microelectronic circuits increases as the number of metal levels in ultra large scale integrated (ULSI) circuits increases. At Lawrence Livermore National Laboratory, the authors have developed an electrochemical planarization process that fills vias and trenches with metal (without voids) and subsequently planarizes the surface. Use is made of plasma-enhanced chemical vapor deposition (PECVD) of SiO2 for the dielectric layers and electroplated copper for the metalization. This report describes the advantages of this process over existing techniques, possibilities for collaboration, and previous technology transfer.

  3. Non-planar chemical preconcentrator

    DOEpatents

    Manginell, Ronald P.; Adkins, Douglas R.; Sokolowski, Sara S.; Lewis, Patrick R.

    2006-10-10

    A non-planar chemical preconcentrator comprises a high-surface area, low mass, three-dimensional, flow-through sorption support structure that can be coated or packed with a sorptive material. The sorptive material can collect and concentrate a chemical analyte from a fluid stream and rapidly release it as a very narrow temporal plug for improved separations in a microanalytical system. The non-planar chemical preconcentrator retains most of the thermal and fabrication benefits of a planar preconcentrator, but has improved ruggedness and uptake, while reducing sorptive coating concerns and extending the range of collectible analytes.

  4. 47 CFR 101.519 - Interconnection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SERVICES 24 GHz Service and Digital Electronic Message Service § 101.519 Interconnection. (a) All DEMS licensees must make available to the public all information necessary to allow the manufacture of user... the public all information necessary to allow interconnection of DEMS networks....

  5. 47 CFR 101.519 - Interconnection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SERVICES 24 GHz Service and Digital Electronic Message Service § 101.519 Interconnection. (a) All DEMS licensees must make available to the public all information necessary to allow the manufacture of user... the public all information necessary to allow interconnection of DEMS networks....

  6. 14 CFR 29.674 - Interconnected controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Interconnected controls. 29.674 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.674 Interconnected controls. Each primary flight control system must provide for safe flight and landing and...

  7. 14 CFR 27.674 - Interconnected controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Interconnected controls. 27.674 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.674 Interconnected controls. Each primary flight control system must provide for safe flight and landing and...

  8. 14 CFR 23.701 - Flap interconnection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flap interconnection. 23.701 Section 23.701... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.701 Flap interconnection. (a) The main wing flaps and related movable surfaces as a...

  9. 14 CFR 23.701 - Flap interconnection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flap interconnection. 23.701 Section 23.701... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.701 Flap interconnection. (a) The main wing flaps and related movable surfaces as a...

  10. 14 CFR 23.701 - Flap interconnection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flap interconnection. 23.701 Section 23.701... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.701 Flap interconnection. (a) The main wing flaps and related movable surfaces as a...

  11. 47 CFR 69.124 - Interconnection charge.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Interconnection charge. 69.124 Section 69.124 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) ACCESS CHARGES Computation of Charges § 69.124 Interconnection charge. (a) Until December 31, 2001, local exchange...

  12. 47 CFR 69.124 - Interconnection charge.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Interconnection charge. 69.124 Section 69.124 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) ACCESS CHARGES Computation of Charges § 69.124 Interconnection charge. (a) Until December 31, 2001, local exchange...

  13. Interconnect fatigue design for terrestrial photovoltaic modules

    SciTech Connect

    Mon, G. R.; Moore, D. M.; Ross, Jr., R. G.

    1982-03-01

    Fatigue of solar cell electrical interconnects due to thermal cycling has historically been a major failure mechanism in photovoltaic arrays; the results of a comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data gathered in this study indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable: (1) the prediction of cumulative interconnect failures during the design life of an array field; and (2) the unambiguous - i.e., quantitative - interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field. This procedure yields not only the minimum break-even cost of delivered energy, but also the required degree of interconnect redundancy and an estimate of array power degradation during the design life of the array field. The usefulness of the design algorithms is demonstrated with realistic examples of design optimization, prediction, and service qualification testing.

  14. Updating Technical Screens for PV Interconnection: Preprint

    SciTech Connect

    Coddington, M.; Ellis, A.; Lynn, K.; Razon, A.; Key, T.; Kroposki, B.; Mather, B.; Hill, R.; Nicole, K.; Smith, J.

    2012-08-01

    Solar photovoltaics (PV) is the dominant type of distributed generation (DG) technology interconnected to electric distribution systems in the United States, and deployment of PV systems continues to increase rapidly. Considering the rapid growth and widespread deployment of PV systems in United States electric distribution grids, it is important that interconnection procedures be as streamlined as possible to avoid unnecessary interconnection studies, costs, and delays. Because many PV interconnection applications involve high penetration scenarios, the process needs to allow for a sufficiently rigorous technical evaluation to identify and address possible system impacts. Existing interconnection procedures are designed to balance the need for efficiency and technical rigor for all DG. However, there is an implicit expectation that those procedures will be updated over time in order to remain relevant with respect to evolving standards, technology, and practical experience. Modifications to interconnection screens and procedures must focus on maintaining or improving safety and reliability, as well as accurately allocating costs and improving expediency of the interconnection process. This paper evaluates the origins and usefulness of the capacity penetration screen, offers potential short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen.

  15. 47 CFR 101.519 - Interconnection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Interconnection. 101.519 Section 101.519 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.519 Interconnection. (a) All...

  16. Durability of Metallic Interconnects and Protective Coatings

    SciTech Connect

    Yang, Zhenguo; Stevenson, Jeffry W.

    2009-12-15

    To build up a useful voltage, a number of solid oxide fuel cells (SOFCs) are electrically connected into series in a stack via interconnects, which are placed between adjacent cells. In addition to functioning as a bi-polar electrical connector, the interconnect also acts as a separator plate that separates the fuel at the anode side of one cell from the air at the cathode side on an adjacent cell. During SOFC operation at the high temperatures, the interconnects are thus simultaneously exposed to the oxidizing air at one side and a reducing fuel that can be either hydrogen or hydrocarbon at the other. Besides, they are in contact with adjacent components, such as electrodes or electrical contacts, seals, etc. With steady reduction in SOFC operating temperatures into the low or intermediate range 600-850oC, oxidation resistant alloys are often used to construct interconnects. However, the metallic interconnects may degrade via interactions at their interfaces with surrounding environments or adjacent components, potentially affecting the stability and performance of interconnects and the SOFC stacks. Thus protection layers are applied to metallic interconnects that also intend to mitigate or prevent chromium migration into cells and the cell poisoning. This chapter provides a comprehensive review of materials for metallic interconnects, their degradation and coating protection.

  17. Integrated microfluidic probe station.

    PubMed

    Perrault, C M; Qasaimeh, M A; Brastaviceanu, T; Anderson, K; Kabakibo, Y; Juncker, D

    2010-11-01

    The microfluidic probe (MFP) consists of a flat, blunt tip with two apertures for the injection and reaspiration of a microjet into a solution--thus hydrodynamically confining the microjet--and is operated atop an inverted microscope that enables live imaging. By scanning across a surface, the microjet can be used for surface processing with the capability of both depositing and removing material; as it operates under immersed conditions, sensitive biological materials and living cells can be processed. During scanning, the MFP is kept immobile and centered over the objective of the inverted microscope, a few micrometers above a substrate that is displaced by moving the microscope stage and that is flushed continuously with the microjet. For consistent and reproducible surface processing, the gap between the MFP and the substrate, the MFP's alignment, the scanning speed, the injection and aspiration flow rates, and the image capture need all to be controlled and synchronized. Here, we present an automated MFP station that integrates all of these functionalities and automates the key operational parameters. A custom software program is used to control an independent motorized Z stage for adjusting the gap, a motorized microscope stage for scanning the substrate, up to 16 syringe pumps for injecting and aspirating fluids, and an inverted fluorescence microscope equipped with a charge-coupled device camera. The parallelism between the MFP and the substrate is adjusted using manual goniometer at the beginning of the experiment. The alignment of the injection and aspiration apertures along the scanning axis is performed using a newly designed MFP screw holder. We illustrate the integrated MFP station by the programmed, automated patterning of fluorescently labeled biotin on a streptavidin-coated surface. PMID:21133501

  18. Integrated microfluidic probe station

    NASA Astrophysics Data System (ADS)

    Perrault, C. M.; Qasaimeh, M. A.; Brastaviceanu, T.; Anderson, K.; Kabakibo, Y.; Juncker, D.

    2010-11-01

    The microfluidic probe (MFP) consists of a flat, blunt tip with two apertures for the injection and reaspiration of a microjet into a solution—thus hydrodynamically confining the microjet—and is operated atop an inverted microscope that enables live imaging. By scanning across a surface, the microjet can be used for surface processing with the capability of both depositing and removing material; as it operates under immersed conditions, sensitive biological materials and living cells can be processed. During scanning, the MFP is kept immobile and centered over the objective of the inverted microscope, a few micrometers above a substrate that is displaced by moving the microscope stage and that is flushed continuously with the microjet. For consistent and reproducible surface processing, the gap between the MFP and the substrate, the MFP's alignment, the scanning speed, the injection and aspiration flow rates, and the image capture need all to be controlled and synchronized. Here, we present an automated MFP station that integrates all of these functionalities and automates the key operational parameters. A custom software program is used to control an independent motorized Z stage for adjusting the gap, a motorized microscope stage for scanning the substrate, up to 16 syringe pumps for injecting and aspirating fluids, and an inverted fluorescence microscope equipped with a charge-coupled device camera. The parallelism between the MFP and the substrate is adjusted using manual goniometer at the beginning of the experiment. The alignment of the injection and aspiration apertures along the scanning axis is performed using a newly designed MFP screw holder. We illustrate the integrated MFP station by the programmed, automated patterning of fluorescently labeled biotin on a streptavidin-coated surface.

  19. Modular microfluidics for point-of-care protein purifications

    DOE PAGESBeta

    Millet, L. J.; Lucheon, J. D.; Standaert, R. F.; Retterer, S. T.; Doktycz, M. J.

    2015-01-01

    Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured tomore » suit a variety of fluidic operations or biochemical processes. In conclusion, we demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules.« less

  20. Manufacturing of Three-dimensionally Microstructured Nanocomposites through Microfluidic Infiltration

    PubMed Central

    Dermanaki-Farahani, Rouhollah; Lebel, Louis Laberge; Therriault, Daniel

    2014-01-01

    Microstructured composite beams reinforced with complex three-dimensionally (3D) patterned nanocomposite microfilaments are fabricated via nanocomposite infiltration of 3D interconnected microfluidic networks. The manufacturing of the reinforced beams begins with the fabrication of microfluidic networks, which involves layer-by-layer deposition of fugitive ink filaments using a dispensing robot, filling the empty space between filaments using a low viscosity resin, curing the resin and finally removing the ink. Self-supported 3D structures with other geometries and many layers (e.g. a few hundreds layers) could be built using this method. The resulting tubular microfluidic networks are then infiltrated with thermosetting nanocomposite suspensions containing nanofillers (e.g. single-walled carbon nanotubes), and subsequently cured. The infiltration is done by applying a pressure gradient between two ends of the empty network (either by applying a vacuum or vacuum-assisted microinjection). Prior to the infiltration, the nanocomposite suspensions are prepared by dispersing nanofillers into polymer matrices using ultrasonication and three-roll mixing methods. The nanocomposites (i.e. materials infiltrated) are then solidified under UV exposure/heat cure, resulting in a 3D-reinforced composite structure. The technique presented here enables the design of functional nanocomposite macroscopic products for microengineering applications such as actuators and sensors. PMID:24686754

  1. Modular microfluidics for point-of-care biochemical purifications

    DOE PAGESBeta

    Millet, Larry J; Standaert, Robert F; Retterer, Scott T; Doktycz, Mitchel John

    2015-01-01

    Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured tomore » suit a variety of fluidic operations or biochemical processes. We demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules.« less

  2. Laminated plastic microfluidic components for biological and chemical systems

    SciTech Connect

    Martin, P.M.; Matson, D.W.; Bennett, W.D.; Lin, Y.; Hammerstrom, D.J.

    1999-07-01

    Laminated plastic microfluidic components are being developed for biological testing systems and chemical sensors. Applications include a DNA thermal cycler, DNA analytical systems, electrophoretic flow systems, dialysis systems, and metal sensors for ground water. This article describes fabrication processes developed for these plastic microfluidic components, and the fabrication of a chromium metal sensor and a microdialysis device. Most of the components have a stacked architecture. Using this architecture, the fluid flows, or is pumped through, as many as nine laminated functional levels. Functions include pumping, mixing, reaction, detection, reservoirs, separations, and electronics. Polyimide, poly(methylmethacrylate) (PMMA), and polycarbonate materials with thicknesses between 25 and 125 {mu}m are used to construct the components. This makes the components low cost, inert to many biological fluids and chemicals, and disposable. The components are fabricated by excimer laser micromachining the microchannel patterns and microstructures in the various laminates. In some cases, micropumps are integrated into these components to move the fluids. Vias and interconnects are also cut by the laser and integrated with micropumps. The laminates are sealed and bonded by adhesive and thermal processes and are leak tight. The parts withstand pressures as high as 790 kPa. Typical channel widths are 50 to 100 {mu}m, with aspect ratios near 5. {copyright} {ital 1999 American Vacuum Society.}

  3. African electricity infrastructure, interconnections and exchanges

    SciTech Connect

    Hammons, T.J.; Taher, F.; Gulstone, A.B.; Blyden, B.K.; Johnston, R.; Isekemanga, E.; Paluku, K.; Calitz, A.C.; Simanga, N.N.

    1997-01-01

    A 1996 IEEE PES Summer Meeting panel session focused on African Electricity Infrastructure, Interconnections, and Electricity Exchanges. The session was sponsored by the PES Energy Development and Power Generation Committee and organized/moderated by T.J. Hammons, chair of the International Practices Subcommittee. Panelists discussed energy resources, feasibility studies to interconnect power systems, the present state of the electric power sector, future expansion of African power systems, interconnections and power exchanges, and the impact of the private sector on electricity supply. The presentations were as follows: Prospects of the Evolution of a Unified Interconnection Power System in Africa, Fouad Taher; The World Bank`s Involvement with African Electricity Infrastructure, Alfred Gulstone; Towards the implementation of an Integrated African Grid, Bai K. Blyden, Raymond Johnston; Grand Inga Interconnection Projects, Elese Isekemanga, K. Paluku; The Innovative Southern African Kilowatt Hour, Andries C. Calitz; Report on Burundi, Rwanda, and Zaire, Ngove-Ngulu Simanga.

  4. Modeling interconnect corners under double patterning misalignment

    NASA Astrophysics Data System (ADS)

    Hyun, Daijoon; Shin, Youngsoo

    2016-03-01

    Publisher's Note: This paper, originally published on March 16th, was replaced with a corrected/revised version on March 28th. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. Interconnect corners should accurately reflect the effect of misalingment in LELE double patterning process. Misalignment is usually considered separately from interconnect structure variations; this incurs too much pessimism and fails to reflect a large increase in total capacitance for asymmetric interconnect structure. We model interconnect corners by taking account of misalignment in conjunction with interconnect structure variations; we also characterize misalignment effect more accurately by handling metal pitch at both sides of a target metal independently. Identifying metal space at both sides of a target metal.

  5. Development of cofired type planar SOFC

    SciTech Connect

    Taira, Hiroaki; Sakamoto, Sadaaki; Zhou, Hua-Bing

    1996-12-31

    We have developed fabrication process for planar SOFC fabricated with cofired anode/electrolyte/cathode multilayers and interconnects. By cofiring technique for the multilayers, we expect to reduce the thickness of the electrolyte layers, resulting in decrease of innerimpedance, and achieve low production cost. On the other hand, the cofiring technique requires that the sintering temperature, the shrinkage profiles and the thermal expansion characteristics of all component materials should be compatible with the other. It is, therefore, difficult to cofire the multilayers with large area. Using the multilayers with surface area of 150cm{sup 2}, we fabricated the multiple cell stacks. The maximum power of 5x4 multiple cell stack (5 planes of cells in series, 4 cells in parallel in each planes 484cm{sup 2} effective electrode area of each cell planes) was 601W (0.25Wcm{sup -2}, Uf=40%). However, the terminal voltage of the multiple cell stack decreased by the cause of cell cracking, gas leakage and degradation of cofired multilayers. This paper presents the improvements of cofired multilayers, and the performance of multiple cell stacks with the improved multilayers.

  6. Performance and scaling effects in a multilayer microfluidic extracorporeal lung oxygenation device

    PubMed Central

    Kniazeva, Tatiana; Epshteyn, Alla A.; Hsiao, James C.; Kim, Ernest S.; Kolachalama, Vijaya B.; Charest, Joseph L.

    2012-01-01

    Microfluidic fabrication technologies are emerging as viable platforms for extracorporeal lung assist devices and oxygenators for cardiac surgical support and critical care medicine, based in part on their ability to more closely mimic the architecture of the human vasculature than existing technologies. In comparison with current hollow fiber oxygenator technologies, microfluidic systems have more physiologically-representative blood flow paths, smaller cross section blood conduits and thinner gas transfer membranes. These features can enable smaller device sizes and a reduced blood volume in the oxygenator, enhanced gas transfer efficiencies, and may also reduce the tendency for clotting in the system. Several critical issues need to be addressed in order to advance this technology from its current state and implement it in an organ-scale device for clinical use. Here we report on the design, fabrication and characterization of multilayer microfluidic oxygenators, investigating scaling effects associated with fluid mechanical resistance, oxygen transfer efficiencies, and other parameters in multilayer devices. Important parameters such as the fluidic resistance of interconnects are shown to become more predominant as devices are scaled towards many layers, while other effects such as membrane distensibility become less significant. The present study also probes the relationship between blood channel depth and membrane thickness on oxygen transfer, as well as the rate of oxygen transfer on the number of layers in the device. These results contribute to our understanding of the complexity involved in designing three-dimensional microfluidic oxygenators for clinical applications. PMID:22418858

  7. Thermal stress analysis of a planar SOFC stack

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Kuang; Chen, Tsung-Ting; Chyou, Yau-Pin; Chiang, Lieh-Kwang

    The aim of this study is, by using finite element analysis (FEA), to characterize the thermal stress distribution in a planar solid oxide fuel cell (SOFC) stack during various stages. The temperature profiles generated by an integrated thermo-electrochemical model were applied to calculate the thermal stress distributions in a multiple-cell SOFC stack by using a three-dimensional (3D) FEA model. The constructed 3D FEA model consists of the complete components used in a practical SOFC stack, including positive electrode-electrolyte-negative electrode (PEN) assembly, interconnect, nickel mesh, and gas-tight glass-ceramic seals. Incorporation of the glass-ceramic sealant, which was never considered in previous studies, into the 3D FEA model would produce more realistic results in thermal stress analysis and enhance the reliability of predicting potential failure locations in an SOFC stack. The effects of stack support condition, viscous behavior of the glass-ceramic sealant, temperature gradient, and thermal expansion mismatch between components were characterized. Modeling results indicated that a change in the support condition at the bottom frame of the SOFC stack would not cause significant changes in thermal stress distribution. Thermal stress distribution did not differ significantly in each unit cell of the multiple-cell stack due to a comparable in-plane temperature profile. By considering the viscous characteristics of the glass-ceramic sealant at temperatures above the glass-transition temperature, relaxation of thermal stresses in the PEN was predicted. The thermal expansion behavior of the metallic interconnect/frame had a greater influence on the thermal stress distribution in the PEN than did that of the glass-ceramic sealant due to the domination of interconnect/frame in the volume of a planar SOFC assembly.

  8. Ultralow-loss waveguide crossings for the integration of microfluidics and optical waveguide sensors

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Yan, Hai; Wang, Zongxing; Zou, Yi; Yang, Chun-Ju; Chakravarty, Swapnajit; Subbaraman, Harish; Tang, Naimei; Xu, Xiaochuan; Fan, D. L.; Wang, Alan X.; Chen, Ray T.

    2015-03-01

    Integrating photonic waveguide sensors with microfluidics is promising in achieving high-sensitivity and cost-effective biological and chemical sensing applications. One challenge in the integration is that an air gap would exist between the microfluidic channel and the photonic waveguide when the micro-channel and the waveguide intersect. The air gap creates a path for the fluid to leak out of the micro-channel. Potential solutions, such as oxide deposition followed by surface planarization, would introduce additional fabrication steps and thus are ineffective in cost. Here we propose a reliable and efficient approach for achieving closed microfluidic channels on a waveguide sensing chip. The core of the employed technique is to add waveguide crossings, i.e., perpendicularly intersecting waveguides, to block the etched trenches and prevent the fluid from leaking through the air gap. The waveguide crossings offer a smooth interface for microfluidic channel bonding while bring negligible additional propagation loss (0.024 dB/crossing based on simulation). They are also efficient in fabrication, which are patterned and fabricated in the same step with waveguides. We experimentally integrated microfluidic channels with photonic crystal (PC) microcavity sensor chips on silicon-on-insulator substrate and demonstrated leak-free sensing measurement with waveguide crossings. The microfluidic channel was made from polydimethylsiloxane (PDMS) and pressure bonded to the silicon chip. The tested flow rates can be varied from 0.2 μL/min to 200 μL/min. Strong resonances from the PC cavity were observed from the transmission spectra. The spectra also show that the waveguide crossings did not induce any significant additional loss or alter the resonances.

  9. Process for forming planarized films

    DOEpatents

    Pang, Stella W.; Horn, Mark W.

    1991-01-01

    A planarization process and apparatus which employs plasma-enhanced chemical vapor deposition (PECVD) to form plarnarization films of dielectric or conductive carbonaceous material on step-like substrates.

  10. Object Classification via Planar Abstraction

    NASA Astrophysics Data System (ADS)

    Oesau, Sven; Lafarge, Florent; Alliez, Pierre

    2016-06-01

    We present a supervised machine learning approach for classification of objects from sampled point data. The main idea consists in first abstracting the input object into planar parts at several scales, then discriminate between the different classes of objects solely through features derived from these planar shapes. Abstracting into planar shapes provides a means to both reduce the computational complexity and improve robustness to defects inherent to the acquisition process. Measuring statistical properties and relationships between planar shapes offers invariance to scale and orientation. A random forest is then used for solving the multiclass classification problem. We demonstrate the potential of our approach on a set of indoor objects from the Princeton shape benchmark and on objects acquired from indoor scenes and compare the performance of our method with other point-based shape descriptors.

  11. Osteocyte culture in microfluidic devices.

    PubMed

    Wei, Chao; Fan, Beiyuan; Chen, Deyong; Liu, Chao; Wei, Yuanchen; Huo, Bo; You, Lidan; Wang, Junbo; Chen, Jian

    2015-01-01

    This paper presents a microfluidic device (poly-dimethylsiloxane micro channels bonded with glass slides) enabling culture of MLO-Y4 osteocyte like cells. In this study, on-chip collagen coating, cell seeding and culture, as well as staining were demonstrated in a tubing-free manner where gravity was used as the driving force for liquid transportation. MLO-Y4 cells were cultured in microfluidic channels with and without collagen coating where cellular images in a time sequence were taken and analyzed, confirming the positive effect of collagen coating on phenotype maintaining of MLO-Y4 cells. The proliferating cell nuclear antigen based proliferation assay was used to study cellular proliferation, revealing a higher proliferation rate of MLO-Y4 cells seeded in microfluidic channels without collagen coating compared to the substrates coated with collagen. Furthermore, the effects of channel dimensions (variations in width and height) on the viability of MLO-Y4 cells were explored based on the Calcein-AM and propidium iodide based live/dead assay and the Hoechst 33258 based apoptosis assay, locating the correlation between the decrease in channel width or height and the decrease in cell viability. As a platform technology, this microfluidic device may function as a new cell culture model enabling studies of osteocytes. PMID:25713691

  12. Osteocyte culture in microfluidic devices

    PubMed Central

    Wei, Chao; Fan, Beiyuan; Chen, Deyong; Wei, Yuanchen; Huo, Bo; You, Lidan; Wang, Junbo; Chen, Jian

    2015-01-01

    This paper presents a microfluidic device (poly-dimethylsiloxane micro channels bonded with glass slides) enabling culture of MLO-Y4 osteocyte like cells. In this study, on-chip collagen coating, cell seeding and culture, as well as staining were demonstrated in a tubing-free manner where gravity was used as the driving force for liquid transportation. MLO-Y4 cells were cultured in microfluidic channels with and without collagen coating where cellular images in a time sequence were taken and analyzed, confirming the positive effect of collagen coating on phenotype maintaining of MLO-Y4 cells. The proliferating cell nuclear antigen based proliferation assay was used to study cellular proliferation, revealing a higher proliferation rate of MLO-Y4 cells seeded in microfluidic channels without collagen coating compared to the substrates coated with collagen. Furthermore, the effects of channel dimensions (variations in width and height) on the viability of MLO-Y4 cells were explored based on the Calcein-AM and propidium iodide based live/dead assay and the Hoechst 33258 based apoptosis assay, locating the correlation between the decrease in channel width or height and the decrease in cell viability. As a platform technology, this microfluidic device may function as a new cell culture model enabling studies of osteocytes. PMID:25713691

  13. Microfluidic-integrated DNA nanobiosensors.

    PubMed

    Ansari, M I Haque; Hassan, Shabir; Qurashi, Ahsanulhaq; Khanday, Firdous Ahmad

    2016-11-15

    Over the last few decades, an increased demand has emerged for integrating biosensors with microfluidic- and nanofluidic-based lab-on-chip (LOC) devices for point-of-care (POC) diagnostics, in the medical industry and environmental monitoring of pathogenic threat agents. Such a merger of microfluidics with biosensing technologies allows for the precise control of volumes, as low as one nanolitre and the integration of various types of bioassays on a single miniaturized platform. This integration offers several favorable advantages, such as low reagent consumption, automation of sample preparation, reduction in processing time, low cost analysis, minimal handling of hazardous materials, high detection accuracy, portability and disposability. This review provides a synopsis of the most recent developments in the microfluidic-integrated biosensing field by delineating the fundamental theory of microfluidics, fabrication techniques and a detailed account of the various transduction methods that are employed. Lastly, the review discusses state-of-the-art DNA biosensors with a focus on optical DNA biosensors. PMID:27179566

  14. Sputtered coatings for microfluidic applications

    SciTech Connect

    Matson, Dean W.; Martin, Peter M.; Bennett, Wendy D.; Johnston, John W.; Stewart, Donald C.; Bonham, Charles C.

    2000-07-01

    Magnetron sputter-deposited features and coatings are finding a broad range of uses in microfluidic devices being developed at the Pacific Northwest National Laboratory. Such features are routinely incorporated into multilayer laminated microfluidic components where specific functionality is required, and where other methods for producing these features have been deemed unacceptable. Applications include electrochemical sensors, heaters and temperature probes, electrical leads and insulation layers, piezoelectric actuators and transducers, and chemical modification of surfaces. Small features, such as those required for the production of microsensor electrodes or miniature resistive heaters on microfluidic chips, were patterned using standard lithographic methods, or with masks produced by laser micromachining processes. Thin-film piezoelectric materials such as aluminum nitride have been deposited at low temperatures for use with temperature sensitive materials. Use of the coating technology and its application in the fabrication of specific microfluidic devices, including a groundwater sensor, miniature piezoelectric ultrasonic transducers and actuators, a polymerase chain reaction thermal cycler, and a microchannel flow diagnostic device, are discussed. Technical issues associated with these coatings, such as adhesion, chemical resistance, and surface defects are also addressed. (c) 2000 American Vacuum Society.

  15. Cavitation bubble dynamics in microfluidic gaps of variable height.

    PubMed

    Quinto-Su, Pedro A; Lim, Kang Y; Ohl, Claus-Dieter

    2009-10-01

    We study experimentally the dynamics of laser-induced cavitation bubbles created inside a narrow gap. The gap height, h , is varied from 15 to 400 microm and the resulting bubble dynamics is compared to a semiunbounded fluid. The cavitation bubbles are created with pulsed laser light at constant laser energy and are imaged with a high-speed camera. The bubble lifetime increases with decreasing gap height by up to 50% whereas the maximum projected bubble radius remains constant. Comparing the radial dynamics to potential flow models, we find that with smaller gaps, the bubble-induced flow becomes essentially planar, thus slower flows with reduced shear. These findings might have important consequences for microfluidic applications where it is desirable to tune the strength and range of the interactions such as in the case of cell lysis and cell membrane poration. PMID:19905487

  16. High accuracy particle analysis using sheathless microfluidic impedance cytometry.

    PubMed

    Spencer, Daniel; Caselli, Federica; Bisegna, Paolo; Morgan, Hywel

    2016-07-01

    This paper describes a new design of microfluidic impedance cytometer enabling accurate characterization of particles without the need for focusing. The approach uses multiple pairs of electrodes to measure the transit time of particles through the device in two simultaneous different current measurements, a transverse (top to bottom) current and an oblique current. This gives a new metric that can be used to estimate the vertical position of the particle trajectory through the microchannel. This parameter effectively compensates for the non-uniform electric field in the channel that is an unavoidable consequence of the use of planar parallel facing electrodes. The new technique is explained and validated using numerical modelling. Impedance data for 5, 6 and 7 μm particles are collected and compared with simulations. The method gives excellent coefficient of variation in (electrical) radius of particles of 1% for a sheathless configuration. PMID:27241585

  17. Flat panel planar optic display

    SciTech Connect

    Veligdan, J.T.

    1994-11-01

    A prototype 10 inch flat panel Planar Optic Display, (POD), screen has been constructed and tested. This display screen is comprised of hundreds of planar optic class sheets bonded together with a cladding layer between each sheet where each glass sheet represents a vertical line of resolution. The display is 9 inches wide by 5 inches high and approximately 1 inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  18. Practical Realization of Massively Parallel Fiber -Free-Space Optical Interconnects

    NASA Astrophysics Data System (ADS)

    Gruber, Matthias; Jahns, Jürgen; El Joudi, El Mehdi; Sinzinger, Stefan

    2001-06-01

    We propose a novel approach to realizing massively parallel optical interconnects based on commercially available multifiber ribbons with MT-type connectors and custom-designed planar-integrated free-space components. It combines the advantages of fiber optics, that is, a long range and convenient and flexible installation, with those of (planar-integrated) free-space optics, that is, a wide range of implementable functions and a high potential for integration and parallelization. For the interface between fibers and free-space optical systems a low-cost practical solution is presented. It consists of using a metal connector plate that was manufactured on a computer-controlled milling machine. Channel densities are of the order of 100 /mm2 between optoelectronic VLSI chips and the free-space optical systems and 1 /mm2 between the free-space optical systems and MT-type fiber connectors. Experiments in combination with specially designed planar-integrated test systems prove that multiple one-to-one and one-to-many interconnects can be established with not more than 10% uniformity error.

  19. Development of a biomimetic microfluidic oxygen transfer device.

    PubMed

    Gimbel, A A; Flores, E; Koo, A; García-Cardeña, G; Borenstein, J T

    2016-08-16

    Blood oxygenators provide crucial life support for patients suffering from respiratory failure, but their use is severely limited by the complex nature of the blood circuit and by complications including bleeding and clotting. We have fabricated and tested a multilayer microfluidic blood oxygenation prototype designed to have a lower blood prime volume and improved blood circulation relative to current hollow fiber cartridge oxygenators. Here we address processes for scaling the device toward clinically relevant oxygen transfer rates while maintaining a low prime volume of blood in the device, which is required for clinical applications in cardiopulmonary support and ultimately for chronic use. Approaches for scaling the device toward clinically relevant gas transfer rates, both by expanding the active surface area of the network of blood microchannels in a planar layer and by increasing the number of microfluidic layers stacked together in a three-dimensional device are addressed. In addition to reducing prime volume and enhancing gas transfer efficiency, the geometric properties of the microchannel networks are designed to increase device safety by providing a biomimetic and physiologically realistic flow path for the blood. Safety and hemocompatibility are also influenced by blood-surface interactions within the device. In order to further enhance device safety and hemocompatibility, we have demonstrated successful coating of the blood flow pathways with human endothelial cells, in order to confer the ability of the endothelium to inhibit coagulation and thrombus formation. Blood testing results provide confirmation of fibrin clot formation in non-endothelialized devices, while negligible clot formation was documented in cell-coated devices. Gas transfer testing demonstrates that the endothelial lining does not reduce the transfer efficiency relative to acellular devices. This process of scaling the microfluidic architecture and utilizing autologous cells to

  20. A world-to-chip socket for microfluidic prototype development.

    PubMed

    Yang, Zhen; Maeda, Ryutaro

    2002-10-01

    We report a prototype for a standard connector between a microfluidic chip and the macroworld. This prototype is the first to demonstrate a fully functioning socket for a microchip to access the outside world by means of fluids, data, and energy supply, as well as providing process visibility. It has 20 channels for the input and output of liquids or gases, as well as compressed air or vacuum lines for pneumatic power lines. It also contains 42 pins for electrical signals and power. All these connections were designed in a planar configuration with linear orthogonal arrays. The vertical space was opened for optical measurement and evaluation. The die (29.1 mm x 27.5 mm x 0.9 mm) can be easily mounted and dismounted from the socket. No adhesives or solders are used at any contact points. The pressure limit for the connection of working fluids was 0.2 MPa and the current limit for the electrical connections was 1 A. This socket supports both serial and parallel processing applications. It exhibits great potential for developing microfluidic systems efficiently. PMID:12412114

  1. An optical microfluidic platform for spatiotemporal biofilm treatment monitoring

    NASA Astrophysics Data System (ADS)

    Kim, Young Wook; Mosteller, Matthew P.; Subramanian, Sowmya; Meyer, Mariana T.; Bentley, William E.; Ghodssi, Reza

    2016-01-01

    Bacterial biofilms constitute in excess of 65% of clinical microbial infections, with the antibiotic treatment of biofilm infections posing a unique challenge due to their high antibiotic tolerance. Recent studies performed in our group have demonstrated that a bioelectric effect featuring low-intensity electric signals combined with antibiotics can significantly improve the efficacy of biofilm treatment. In this work, we demonstrate the bioelectric effect using sub-micron thick planar electrodes in a microfluidic device. This is critical in efforts to develop microsystems for clinical biofilm infection management, including both in vivo and in vitro applications. Adaptation of the method to the microscale, for example, can enable the development of localized biofilm infection treatment using microfabricated medical devices, while augmenting existing capabilities to perform biofilm management beyond the clinical realm. Furthermore, due to scale-down of the system, the voltage requirement for inducing the electric field is reduced further below the media electrolysis threshold. Enhanced biofilm treatment using the bioelectric effect in the developed microfluidic device elicited a 56% greater reduction in viable cell density and 26% further decrease in biomass growth compared to traditional antibiotic therapy. This biofilm treatment efficacy, demonstrated in a micro-scale device and utilizing biocompatible voltage ranges, encourages the use of this method for future clinical biofilm treatment applications.

  2. A lab-on-a-chip system for the development of complex assays using modular microfluidic components

    NASA Astrophysics Data System (ADS)

    Hlawatsch, Nadine; Klemm, Richard; Carstens, Cornelia; Brandst"tter, Thomas; Becker, Holger; Elbracht, Rudi; Gärtner, Claudia

    2012-03-01

    For complex biological or diagnostic assays, the development of an integrated microfluidic device can be difficult and error-prone. For this reason, a modular approach, using individual microfluidic functional modules for the different process steps, can be advantageous. However often the interconnection of the modules proves to be tedious and the peripheral instrumentation to drive the various modules is cumbersome and of large size. For this reason, we have developed an integrated instrument platform which has generic functionalities such as valves and pumps, heating zones for continuous-flow PCR, moveable magnets for bead-based assays and an optical detection unit build into the instrument. The instrument holds a titerplate-sized carrier in which up to four microscopy-slide sized microfluidic modules can be clipped in. This allows for developing and optimizing individual assay steps without the need to modify the instrument or generate a completely new microfluidic cartridge. As a proof-of-concept, the automated sample processing of liquor or blood culture in microfluidic structures for detection of currently occuring Neisseria meningitidis strains was carried out. This assay involves the extraction of bacterial DNA, the fluorescent labeling, amplification using PCR as well as the hybridization of the DNA molecules in three-dimensional capture sites spotted into a microchannel. To define the assay sensitivity, chip modules were tested with bacteria spiked samples of different origins and results were controlled by conventional techniques. For liquor or blood culture, the presence of 200 bacteria was detected within 1 hour.

  3. Crosstalk analysis of carbon nanotube bundle interconnects.

    PubMed

    Zhang, Kailiang; Tian, Bo; Zhu, Xiaosong; Wang, Fang; Wei, Jun

    2012-01-01

    Carbon nanotube (CNT) has been considered as an ideal interconnect material for replacing copper for future nanoscale IC technology due to its outstanding current carrying capability, thermal conductivity, and mechanical robustness. In this paper, crosstalk problems for single-walled carbon nanotube (SWCNT) bundle interconnects are investigated; the interconnect parameters for SWCNT bundle are calculated first, and then the equivalent circuit has been developed to perform the crosstalk analysis. Based on the simulation results using SPICE simulator, the voltage of the crosstalk-induced glitch can be reduced by decreasing the line length, increasing the spacing between adjacent lines, or increasing the diameter of SWCNT. PMID:22340628

  4. Gigabit optical interconnects for LAN applications

    NASA Astrophysics Data System (ADS)

    Boncek, Raymond K.; Krol, Mark F.; Johns, Steven T.; Stacy, John L.; Hayduk, Michael J.

    1994-06-01

    We report on the results of experiments performed in areas of technology required to develop gigabit optical interconnects for communication at 1.3 micrometers wavelength. The goal of this work was to develop interconnects not only with very high bandwidth, but with serve to multiple channels having multiple access and simple processing algorithms so as not to rely on high bandwidth electronics, as well. Optical correlation switches (i.e. optical `AND' gates) for use in time-division optical interconnects achieve these goals.

  5. Method for fabricating an interconnected array of semiconductor devices

    DOEpatents

    Grimmer, Derrick P.; Paulson, Kenneth R.; Gilbert, James R.

    1989-10-10

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  6. Applications of Microfluidics in Stem Cell Biology.

    PubMed

    Zhang, Qiucen; Austin, Robert H

    2012-12-01

    Stem cell research can significantly benefit from recent advances of microfluidics technology. In a rationally designed microfluidics device, analyses of stem cells can be done in a much deeper and wider way than in a conventional tissue culture dish. Miniaturization makes analyses operated in a high-throughput fashion, while controls of fluids help to reconstruct the physiological environments. Through integration with present characterization tools like fluorescent microscope, microfluidics offers a systematic way to study the decision-making process of stem cells, which has attractive medical applications. In this paper, recent progress of microfluidics devices on stem cell research are discussed. The purpose of this review is to highlight some key features of microfluidics for stem cell biologists, as well as provide physicists/engineers an overview of how microfluidics has been and could be used for stem cell research. PMID:23336098

  7. Ice matrix in reconfigurable microfluidic systems

    NASA Astrophysics Data System (ADS)

    Bossi, A. M.; Vareijka, M.; Piletska, E. V.; Turner, A. P. F.; Meglinski, I.; Piletsky, S. A.

    2013-07-01

    Microfluidic devices find many applications in biotechnologies. Here, we introduce a flexible and biocompatible microfluidic ice-based platform with tunable parameters and configuration of microfluidic patterns that can be changed multiple times during experiments. Freezing and melting of cavities, channels and complex relief structures created and maintained in the bulk of ice by continuous scanning of an infrared laser beam are used as a valve action in microfluidic systems. We demonstrate that pre-concentration of samples and transport of ions and dyes through the open channels created can be achieved in ice microfluidic patterns by IR laser-assisted zone melting. The proposed approach can be useful for performing separation and sensing processes in flexible reconfigurable microfluidic devices.

  8. Optical Backplane Interconnect Technology (OBIT)

    NASA Technical Reports Server (NTRS)

    Hammer, J. M.

    1988-01-01

    We describe and analyze a novel approach to implementing an Optical Backplane Interconnect Technology (OBIT) that is capable of optically connecting any row of a 32x32 backplane array to any row of a second 32x32 array. Each backplane array is formed monolithically on a wafer. The technology is based on the use of Grating Surface Emitting (GSE) waveguides formed on a wafer containing quantum-well and separate confinement waveguide layers. These layers are used for transverse guiding, gain, modulation, detection, and for the formation of wavelength tunable distributed-Bragg reflector lasers. The required surface structures are formed photolithographically. The GSE waveguides act as efficient antennae that radiate light at angles selected by tuning the wavelength of the lasers. The same waveguides may be used as the receiving antennae when the array is used in the receiving mode. Thus, wavelength tuning is used to direct each row of the transmitting array to the desired row of the receiving array. In summary: The optical backplane array will have the following characteristics: Any row of a 32x32 GSE array may be optically connected to any row of a second 32x32 array. Only one switch decision is required to switch 32 parallel connections to any one of 32 positions. Each monolithic array can be used as both transmitter and receiver by switching the bias on the quantum-well switch-detectors. Separate transmitting and receiving structures could be provided for duplex operation. For a bit error rate of 10 sup 9 at 100-MHz data rate, a required laser power of 12 mW is calculated based on an estimated total optical loss of 40 dB.

  9. Controlling the ionic current rectification factor of a nanofluidic/microfluidic interface with symmetric nanocapillary interconnects.

    PubMed

    Wang, Han; Nandigana, Vishal V R; Jo, Kyoo Dong; Aluru, Narayana R; Timperman, Aaron T

    2015-04-01

    The current rectification factor can be tailored by changing the degree of asymmetry between the fluid baths on opposite sides of a nanocapillary membrane (NCM). A symmetric device with symmetric fluid baths connected to opposite sides of the NCM did not rectify ionic current; while a NCM connected between fluid baths with a 32-fold difference in cross-sectional area produced a rectification factor of 75. The data suggests that the primary mechanism for the current rectification is the change in cross-sectional area of the fluid baths and the polarity dependent propagation of the enriched and depleted concentration polarization (CP) zones into these regions. An additional contribution to the increasing rectification factor with increasing bath asymmetry appears to be a result of electroconvection in the macropore, with inside diameters (IDs) of 625 and 850-μm. Power spectral density (PSD) analysis reveals chaotic oscillations that are consistent with electroconvection in the I-t data of the 625 and 850-μm ID macropore devices. In the ON state, current rectification keeps ionic transport toward the NCM high, increasing the speed of processes like sample enrichment. A simple means is provided to fabricate fluidic diodes with tailored current rectification factors. PMID:25803122

  10. Microfluidic Surface Plasmon Resonance Sensors: From Principles to Point-of-Care Applications.

    PubMed

    Wang, Da-Shin; Fan, Shih-Kang

    2016-01-01

    Surface plasmon resonance (SPR) is a label-free, highly-sensitive, and real-time sensing technique. Conventional SPR sensors, which involve a planar thin gold film, have been widely exploited in biosensing; various miniaturized formats have been devised for portability purposes. Another type of SPR sensor which utilizes localized SPR (LSPR), is based on metal nanostructures with surface plasmon modes at the structural interface. The resonance condition is sensitive to the refractive index change of the local medium. The principles of these two types of SPR sensors are reviewed and their integration with microfluidic platforms is described. Further applications of microfluidic SPR sensors to point-of-care (POC) diagnostics are discussed. PMID:27472340

  11. Liquid crystal dynamics in a photonic crystal cavity created by selective microfluidic infiltration.

    PubMed

    Casas Bedoya, A; Mahmoodian, S; Monat, C; Tomljenovic-Hanic, S; Grillet, C; Domachuk, P; Mägi, E C; Eggleton, B J; van der Heijden, R W

    2010-12-20

    A microfluidic double heterostructure cavity is created in a silicon planar photonic crystal waveguide by selective infiltration of a liquid crystal. The spectral evolution of the cavity resonances probed by evanescent coupling reveals that the liquid crystal evaporates, even at room temperature, despite its relatively low vapor pressure of 5 × 10(-3) Pa. We explore the infiltration and evaporation dynamics of the liquid crystal within the cavity using a Fabry-Perot model that accounts for the joint effects of liquid volume reduction and cavity length variation due to liquid evaporation. While discussing how the pattern of the infiltrated liquid can be optimized to restrict evaporation, we find that the experimental behavior is consistent with basic microfluidic relations considering the small volumes of liquids and large surface areas present in our structure. PMID:21197006

  12. Soft lithography fabricated polymer waveguides and 45° inclined mirrors for card-to-backplane optical interconnects

    NASA Astrophysics Data System (ADS)

    Jiang, Guomin; Baig, Sarfaraz; Wang, Michael R.

    2012-01-01

    Polymer waveguides with 45° mirrors are fabricated by vacuum assisted microfluidic (VAM) soft lithographic technique for card-to-backplane optical interconnect applications. Waveguide array structures with inclined surfaces in SU-8 photoresist for PDMS mold are fabricated by prism assisted UV exposure. Sample surface reflected UV light is utilized to eliminate undercut structures and to accomplish the inclined mirror surfaces on both ends of the straight waveguide segments by one-step UV exposure. Polymer waveguides with 45° embedded mirrors demonstrated about 0.49 dB/cm propagation loss and 67% mirror coupling efficiency.

  13. Planar photovoltaic solar concentrator module

    DOEpatents

    Chiang, Clement J.

    1992-01-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  14. Planar photovoltaic solar concentrator module

    DOEpatents

    Chiang, C.J.

    1992-12-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

  15. Implementation of optical interconnections for VLSI

    NASA Technical Reports Server (NTRS)

    Wu, Wennie H.; Bergman, Larry A.; Johnston, Alan R.; Guest, Clark C.; Esener, Sadik C.

    1987-01-01

    This paper reports on the progress in implementing optical interconnections for VLSI. Four areas are covered: (1) the holographic optical element (HOE), (2) the laser sources, (3) the detectors and associated circuits forming an optically addressed gate, and (4) interconnection experiments in which five gates are actuated from one source. A laser scanner system with a resolution of 12 x 20 microns has been utilized to generate the HOEs. Diffraction efficiency of the HOE and diffracted spot size have been measured. Stock lasers have been modified with a high-frequency package for interconnect experiments, and buried heterostructure fabrication techniques have been pursued. Measurements have been made on the fabricated photodetectors to determine dark current, responsivity, and response time. The optical gates and the overall chip have been driven successfully with an input light beam, as well as with the optical signal interconnected through the one to five holograms.

  16. INTERCONNECTIONS BETWEEN HUMAN HEALTH AND ECOLOGICAL INTEGRITY

    EPA Science Inventory

    Interconnections between Human Health and Ecological Integrity emanates from a June 2000 Pellston Workshop in Snowbird, Utah, USA. Jointly sponsored by the Society of Environmental Toxicology and Chemistry (SETAC) and the Society of Toxicology (SOT), the workshop was motivated by...

  17. Traffic congestion in interconnected complex networks

    NASA Astrophysics Data System (ADS)

    Tan, Fei; Wu, Jiajing; Xia, Yongxiang; Tse, Chi K.

    2014-06-01

    Traffic congestion in isolated complex networks has been investigated extensively over the last decade. Coupled network models have recently been developed to facilitate further understanding of real complex systems. Analysis of traffic congestion in coupled complex networks, however, is still relatively unexplored. In this paper, we try to explore the effect of interconnections on traffic congestion in interconnected Barabási-Albert scale-free networks. We find that assortative coupling can alleviate traffic congestion more readily than disassortative and random coupling when the node processing capacity is allocated based on node usage probability. Furthermore, the optimal coupling probability can be found for assortative coupling. However, three types of coupling preferences achieve similar traffic performance if all nodes share the same processing capacity. We analyze interconnected Internet autonomous-system-level graphs of South Korea and Japan and obtain similar results. Some practical suggestions are presented to optimize such real-world interconnected networks accordingly.

  18. Recent Development of SOFC Metallic Interconnect

    SciTech Connect

    Wu JW, Liu XB

    2010-04-01

    Interest in solid oxide fuel cells (SOFC) stems from their higher e±ciencies and lower levels of emitted pollu- tants, compared to traditional power production methods. Interconnects are a critical part in SOFC stacks, which connect cells in series electrically, and also separate air or oxygen at the cathode side from fuel at the anode side. Therefore, the requirements of interconnects are the most demanding, i:e:, to maintain high elec- trical conductivity, good stability in both reducing and oxidizing atmospheres, and close coe±cient of thermal expansion (CTE) match and good compatibility with other SOFC ceramic components. The paper reviewed the interconnect materials, and coatings for metallic interconnect materials.

  19. Removing Barriers to Utility Interconnected Photovoltaic Inverters

    SciTech Connect

    Gonzalez, S.; Bonn, R.H.; Ginn, J.W.

    2000-10-03

    The Million Solar Roofs Initiative has motivated a renewed interest in the development of utility interconnected photovoltaic (UIPV) inverters. Government-sponsored programs (PVMaT, PVBONUS) and competition among utility interconnected inverter manufacturers have stimulated innovations and improved the performance of existing technologies. With this resurgence, Sandia National Laboratories (SNL) has developed a program to assist industry initiatives to overcome barriers to UIPV inverters. In accordance with newly adopted IEEE 929-2000, the utility interconnected PV inverters are required to cease energizing the utility grid when either a significant disturbance occurs or the utility experiences an interruption in service. Compliance with IEEE 929-2000 is being widely adopted by utilities as a minimum requirement for utility interconnection. This report summarizes work done at the SNL balance-of-systems laboratory to support the development of IEEE 929-2000 and to assist manufacturers in meeting its requirements.

  20. An inter- and intra-chip optical interconnect using a hybrid plasmonic leaky-wave nano-antenna

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Vahid; Yousefi, Leila; Mohammad-Tahri, Mahmoud

    2014-05-01

    In this paper, a new method is proposed to provide an inter- and intra-chip optical interconnect at the standard telecommunication wavelength of 1550 nm. The proposed optical interconnect consists of two optical leaky- wave nano-antennas as transmitter and receiver. The leaky-wave antennas are fed through a hybrid plasmonic waveguide with low propagation loss. Since the propagation length of plasmonic waveguides is not so long, each plasmonic waveguide is coupled to a silicon waveguide through an optical coupler. In comparison with previously proposed method of optical interconnect, the most important advantage of our method is its planar structure which makes it fully integrable with the photonic integrated circuits (PIC). The Fluguet theorem and the theory of surface plasmons are used to obtain an analytical model for design purposes, and the accuracy of the proposed method is verified by a 3-dimensional full-wave numerical analysis.

  1. Nanofluidic interfaces in microfluidic networks

    DOE PAGESBeta

    Millet, Larry J.; Doktycz, Mitchel John; Retterer, Scott T.

    2015-09-24

    The integration of nano- and microfluidic technologies enables the construction of tunable interfaces to physical and biological systems across relevant length scales. The ability to perform chemical manipulations of miniscule sample volumes is greatly enhanced through these technologies and extends the ability to manipulate and sample the local fluidic environments at subcellular, cellular and community or tissue scales. Here we describe the development of a flexible surface micromachining process for the creation of nanofluidic channel arrays integrated within SU-8 microfluidic networks. The use of a semi-porous, silicon rich, silicon nitride structural layer allows rapid release of the sacrificial silicon dioxidemore » during the nanochannel fabrication. Nanochannel openings that form the interface to biological samples are customized using focused ion beam milling. The compatibility of these interfaces with on-chip microbial culture is demonstrated.« less

  2. Liquid dielectrophoresis and surface microfluidics

    PubMed Central

    Kaler, Karan V. I. S.; Prakash, Ravi; Chugh, Dipankar

    2010-01-01

    Liquid dielectrophoresis (L-DEP), when deployed at microscopic scales on top of hydrophobic surfaces, offers novel ways of rapid and automated manipulation of very small amounts of polar aqueous samples for microfluidic applications and development of laboratory-on-a-chip devices. In this article we highlight some of the more recent developments and applications of L-DEP in handling and processing of various types of aqueous samples and reagents of biological relevance including emulsions using such microchip based surface microfluidic (SMF) devices. We highlighted the utility of these devices for on-chip bioassays including nucleic acid analysis. Furthermore, the parallel sample processing capabilities of these SMF devices together with suitable on- or off-chip detection capabilities suggest numerous applications and utility in conducting automated multiplexed assays, a capability much sought after in the high throughput diagnostic and screening assays. PMID:20697595

  3. Nanofluidic interfaces in microfluidic networks

    SciTech Connect

    Millet, Larry J.; Doktycz, Mitchel John; Retterer, Scott T.

    2015-09-24

    The integration of nano- and microfluidic technologies enables the construction of tunable interfaces to physical and biological systems across relevant length scales. The ability to perform chemical manipulations of miniscule sample volumes is greatly enhanced through these technologies and extends the ability to manipulate and sample the local fluidic environments at subcellular, cellular and community or tissue scales. Here we describe the development of a flexible surface micromachining process for the creation of nanofluidic channel arrays integrated within SU-8 microfluidic networks. The use of a semi-porous, silicon rich, silicon nitride structural layer allows rapid release of the sacrificial silicon dioxide during the nanochannel fabrication. Nanochannel openings that form the interface to biological samples are customized using focused ion beam milling. The compatibility of these interfaces with on-chip microbial culture is demonstrated.

  4. Self-assembly via microfluidics

    PubMed Central

    Wang, Lei

    2015-01-01

    The self-assembly of amphiphilic building blocks has attracted extensive interest in myriad fields in recent years, due to their great potential in the nanoscale design of functional hybrid materials. Microfluidic techniques provide an intriguing method to control kinetic aspects of the self-assembly of molecular amphiphiles by the facile adjustment of the hydrodynamics of the fluids. Up to now, there have been several reports about one-step direct self-assembly of different building blocks with versatile and multi-shape products without templates, which demonstrated the advantages of microfluidics. These assemblies with different morphologies have great applications in various areas such as cancer therapy, micromotor fabrication, and controlled drug delivery. PMID:26486277

  5. Superhydrophobicity for antifouling microfluidic surfaces.

    PubMed

    Shirtcliffe, N J; Roach, P

    2013-01-01

    Fouling of surfaces is often problematic in microfluidic devices, particularly when using protein or -enzymatic solutions. Various coating methods have been investigated to reduce the tendency for protein molecules to adsorb, mostly relying on hydrophobic surface chemistry or the antifouling ability of -polyethylene glycol. Here we present the potential use of superhydrophobic surfaces to not only reduce the amount of surface contamination but also to induce self-cleaning under flow conditions. The methodology is presented in order to prepare superhydrophobic surface coatings having micro- and nanoscale feature dimensions, as well as a step-by-step guide to quantify adsorbed protein down to nanogram levels. The fabrication of these surfaces as coatings via silica sol-gel and copper nano-hair growth is presented, which can be applied within microfluidic devices manufactured from various materials. PMID:23329449

  6. Navigability of interconnected networks under random failures

    PubMed Central

    De Domenico, Manlio; Solé-Ribalta, Albert; Gómez, Sergio; Arenas, Alex

    2014-01-01

    Assessing the navigability of interconnected networks (transporting information, people, or goods) under eventual random failures is of utmost importance to design and protect critical infrastructures. Random walks are a good proxy to determine this navigability, specifically the coverage time of random walks, which is a measure of the dynamical functionality of the network. Here, we introduce the theoretical tools required to describe random walks in interconnected networks accounting for structure and dynamics inherent to real systems. We develop an analytical approach for the covering time of random walks in interconnected networks and compare it with extensive Monte Carlo simulations. Generally speaking, interconnected networks are more resilient to random failures than their individual layers per se, and we are able to quantify this effect. As an application––which we illustrate by considering the public transport of London––we show how the efficiency in exploring the multiplex critically depends on layers’ topology, interconnection strengths, and walk strategy. Our findings are corroborated by data-driven simulations, where the empirical distribution of check-ins and checks-out is considered and passengers travel along fastest paths in a network affected by real disruptions. These findings are fundamental for further development of searching and navigability strategies in real interconnected systems. PMID:24912174

  7. Novel Vertical Interconnects With 180 Degree Phase Shift for Amplifiers, Filters, and Integrated Antennas

    NASA Technical Reports Server (NTRS)

    Goverdhanam, Kavita; Simons, Rainee N.; Katehi, Linda P. B.; Burke, Thomas P. (Technical Monitor)

    2001-01-01

    In this paper, novel low loss, wide-band coplanar stripline technology for RF/microwave integrated circuits is demonstrated on high resistivity silicon wafer. In particular, the fabrication process for the deposition of spin-on-glass (SOG) as a dielectric layer, the etching of microvias for the vertical interconnects, the design methodology for the multiport circuits and their measured/simulated characteristics are graphically illustrated. The study shows that circuits with very low loss, large bandwidth and compact size are feasible using this technology. This multilayer planar technology has potential to significantly enhance RF/microwave IC performance when combined with semiconductor devices and microelectromechanical systems (MEMS).

  8. Cut set-based risk and reliability analysis for arbitrarily interconnected networks

    DOEpatents

    Wyss, Gregory D.

    2000-01-01

    Method for computing all-terminal reliability for arbitrarily interconnected networks such as the United States public switched telephone network. The method includes an efficient search algorithm to generate minimal cut sets for nonhierarchical networks directly from the network connectivity diagram. Efficiency of the search algorithm stems in part from its basis on only link failures. The method also includes a novel quantification scheme that likewise reduces computational effort associated with assessing network reliability based on traditional risk importance measures. Vast reductions in computational effort are realized since combinatorial expansion and subsequent Boolean reduction steps are eliminated through analysis of network segmentations using a technique of assuming node failures to occur on only one side of a break in the network, and repeating the technique for all minimal cut sets generated with the search algorithm. The method functions equally well for planar and non-planar networks.

  9. Planar immersion lens with metasurfaces

    NASA Astrophysics Data System (ADS)

    Ho, John S.; Qiu, Brynan; Tanabe, Yuji; Yeh, Alexander J.; Fan, Shanhui; Poon, Ada S. Y.

    2015-03-01

    The solid immersion lens is a powerful optical tool that allows light entering material from air or a vacuum to focus to a spot much smaller than the free-space wavelength. Conventionally, however, the lenses rely on semispherical topographies and are nonplanar and bulky, which limits their integration in many applications. Recently, there has been considerable interest in using planar structures, referred to as metasurfaces, to construct flat optical components for manipulating light in unusual ways. Here, we propose and demonstrate the concept of a planar immersion lens based on metasurfaces. The resulting planar device, when placed near an interface between air and dielectric material, can focus electromagnetic radiation incident from air to a spot in the material smaller than the free-space wavelength. As an experimental demonstration, we fabricate an ultrathin and flexible microwave lens and further show that it achieves wireless energy transfer in material mimicking biological tissue.

  10. Integrating plasmonic diagnostics and microfluidics.

    PubMed

    Niu, Lifang; Zhang, Nan; Liu, Hong; Zhou, Xiaodong; Knoll, Wolfgang

    2015-09-01

    Plasmonics is generally divided into two categories: surface plasmon resonance (SPR) of electromagnetic modes propagating along a (noble) metal/dielectric interface and localized SPRs (LSPRs) on nanoscopic metallic structures (particles, rods, shells, holes, etc.). Both optical transducer concepts can be combined with and integrated in microfluidic devices for biomolecular analyte detections, with the benefits of small foot-print for point-of-care detection, low-cost for one-time disposal, and ease of being integrated into an array format. The key technologies in such integration include the plasmonic chip, microfluidic channel fabrication, surface bio-functionalization, and selection of the detection scheme, which are selected according to the specifics of the targeting analytes. This paper demonstrates a few examples of the many versions of how to combine plasmonics and integrated microfluidics, using different plasmonic generation mechanisms for different analyte detections. One example is a DNA sensor array using a gold film as substrate and surface plasmon fluorescence spectroscopy and microscopy as the transduction method. This is then compared to grating-coupled SPR for poly(ethylene glycol) thiol interaction detected by angle interrogation, gold nanohole based LSPR chip for biotin-strepavidin detection by wavelength shift, and gold nanoholes/nanopillars for the detection of prostate specific antigen by quantum dot labels excited by the LSPR. Our experimental results exemplified that the plasmonic integrated microfluidics is a promising tool for understanding the biomolecular interactions and molecular recognition process as well as biosensing, especially for on-site or point-of-care diagnostics. PMID:26392832

  11. Multidimensional bioseparation with modular microfluidics

    DOEpatents

    Chirica, Gabriela S.; Renzi, Ronald F.

    2013-08-27

    A multidimensional chemical separation and analysis system is described including a prototyping platform and modular microfluidic components capable of rapid and convenient assembly, alteration and disassembly of numerous candidate separation systems. Partial or total computer control of the separation system is possible. Single or multiple alternative processing trains can be tested, optimized and/or run in parallel. Examples related to the separation and analysis of human bodily fluids are given.

  12. Integrating plasmonic diagnostics and microfluidics

    PubMed Central

    Niu, Lifang; Zhang, Nan; Liu, Hong; Zhou, Xiaodong; Knoll, Wolfgang

    2015-01-01

    Plasmonics is generally divided into two categories: surface plasmon resonance (SPR) of electromagnetic modes propagating along a (noble) metal/dielectric interface and localized SPRs (LSPRs) on nanoscopic metallic structures (particles, rods, shells, holes, etc.). Both optical transducer concepts can be combined with and integrated in microfluidic devices for biomolecular analyte detections, with the benefits of small foot-print for point-of-care detection, low-cost for one-time disposal, and ease of being integrated into an array format. The key technologies in such integration include the plasmonic chip, microfluidic channel fabrication, surface bio-functionalization, and selection of the detection scheme, which are selected according to the specifics of the targeting analytes. This paper demonstrates a few examples of the many versions of how to combine plasmonics and integrated microfluidics, using different plasmonic generation mechanisms for different analyte detections. One example is a DNA sensor array using a gold film as substrate and surface plasmon fluorescence spectroscopy and microscopy as the transduction method. This is then compared to grating-coupled SPR for poly(ethylene glycol) thiol interaction detected by angle interrogation, gold nanohole based LSPR chip for biotin-strepavidin detection by wavelength shift, and gold nanoholes/nanopillars for the detection of prostate specific antigen by quantum dot labels excited by the LSPR. Our experimental results exemplified that the plasmonic integrated microfluidics is a promising tool for understanding the biomolecular interactions and molecular recognition process as well as biosensing, especially for on-site or point-of-care diagnostics. PMID:26392832

  13. Continuous Flow Microfluidic Bioparticle Concentrator

    PubMed Central

    Martel, Joseph M.; Smith, Kyle C.; Dlamini, Mcolisi; Pletcher, Kendall; Yang, Jennifer; Karabacak, Murat; Haber, Daniel A.; Kapur, Ravi; Toner, Mehmet

    2015-01-01

    Innovative microfluidic technology has enabled massively parallelized and extremely efficient biological and clinical assays. Many biological applications developed and executed with traditional bulk processing techniques have been translated and streamlined through microfluidic processing with the notable exception of sample volume reduction or centrifugation, one of the most widely utilized processes in the biological sciences. We utilize the high-speed phenomenon known as inertial focusing combined with hydraulic resistance controlled multiplexed micro-siphoning allowing for the continuous concentration of suspended cells into pre-determined volumes up to more than 400 times smaller than the input with a yield routinely above 95% at a throughput of 240 ml/hour. Highlighted applications are presented for how the technology can be successfully used for live animal imaging studies, in a system to increase the efficient use of small clinical samples, and finally, as a means of macro-to-micro interfacing allowing large samples to be directly coupled to a variety of powerful microfluidic technologies. PMID:26061253

  14. Continuous Flow Microfluidic Bioparticle Concentrator.

    PubMed

    Martel, Joseph M; Smith, Kyle C; Dlamini, Mcolisi; Pletcher, Kendall; Yang, Jennifer; Karabacak, Murat; Haber, Daniel A; Kapur, Ravi; Toner, Mehmet

    2015-01-01

    Innovative microfluidic technology has enabled massively parallelized and extremely efficient biological and clinical assays. Many biological applications developed and executed with traditional bulk processing techniques have been translated and streamlined through microfluidic processing with the notable exception of sample volume reduction or centrifugation, one of the most widely utilized processes in the biological sciences. We utilize the high-speed phenomenon known as inertial focusing combined with hydraulic resistance controlled multiplexed micro-siphoning allowing for the continuous concentration of suspended cells into pre-determined volumes up to more than 400 times smaller than the input with a yield routinely above 95% at a throughput of 240 ml/hour. Highlighted applications are presented for how the technology can be successfully used for live animal imaging studies, in a system to increase the efficient use of small clinical samples, and finally, as a means of macro-to-micro interfacing allowing large samples to be directly coupled to a variety of powerful microfluidic technologies. PMID:26061253

  15. Design and fabrication of a microfluidic chip driven by dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Li, Bo; Chen, Hualing; Wu, Jiuhui; Zhu, Zicai; Xia, Dongmei; Jing, Sufang

    2009-07-01

    This paper presents a valveless microfluidic chip driven by dielectric elastomers (DEs). First, the planar DE actuator is designed and the diaphragm actuating performances were characterized. Then the micro chip, containing a pump chamber and a pair of nozzle/diffuser, is fabricated on SU-8 under exposure to UV-light with a mask. The diaphragm and the SU-8 is sealed and finally covered by a PMMA. The pumping and flow rate is tested and measured under high AC supply, and a maxim flow rate of 21.2μl is achieved under 3500V, 8Hz sine wave.

  16. Materials for microfluidic chip fabrication.

    PubMed

    Ren, Kangning; Zhou, Jianhua; Wu, Hongkai

    2013-11-19

    Through manipulating fluids using microfabricated channel and chamber structures, microfluidics is a powerful tool to realize high sensitive, high speed, high throughput, and low cost analysis. In addition, the method can establish a well-controlled microenivroment for manipulating fluids and particles. It also has rapid growing implementations in both sophisticated chemical/biological analysis and low-cost point-of-care assays. Some unique phenomena emerge at the micrometer scale. For example, reactions are completed in a shorter amount of time as the travel distances of mass and heat are relatively small; the flows are usually laminar; and the capillary effect becomes dominant owing to large surface-to-volume ratios. In the meantime, the surface properties of the device material are greatly amplified, which can lead to either unique functions or problems that we would not encounter at the macroscale. Also, each material inherently corresponds with specific microfabrication strategies and certain native properties of the device. Therefore, the material for making the device plays a dominating role in microfluidic technologies. In this Account, we address the evolution of materials used for fabricating microfluidic chips, and discuss the application-oriented pros and cons of different materials. This Account generally follows the order of the materials introduced to microfluidics. Glass and silicon, the first generation microfluidic device materials, are perfect for capillary electrophoresis and solvent-involved applications but expensive for microfabriaction. Elastomers enable low-cost rapid prototyping and high density integration of valves on chip, allowing complicated and parallel fluid manipulation and in-channel cell culture. Plastics, as competitive alternatives to elastomers, are also rapid and inexpensive to microfabricate. Their broad variety provides flexible choices for different needs. For example, some thermosets support in-situ fabrication of

  17. Temperature dependent stability model for graphene nanoribbon interconnects

    NASA Astrophysics Data System (ADS)

    Chanu, Waikhom Mona; Das, Debaprasad

    2016-04-01

    In this paper, a temperature dependent equivalent circuit model for graphene nanoribbon (GNR) interconnects is proposed. The stability analysis of GNR interconnects is performed using this proposed model and its performance is compared with respect to that of the copper based interconnects. The analysis is performed for different interconnect systems for 16nm ITRS technology node. With increase in the length of interconnects, the relative stability increases. GNR interconnect shows less increase of resistance with the increase in temperature as compared to Cu interconnects.

  18. Committed regional electrical interconnection projects in the Middle East

    SciTech Connect

    Azzam, M.; Al-Said, A.

    1994-12-01

    Due to the well-known advantages of electrical interconnections and their consequent benefits, Jordan considers the interconnection of its electrical network with the neighboring electrical networks as one of its main corporate strategies. At present the electrical interconnection project of the networks of Egypt, Iraq, Jordan, Syria, and Turkey is progressing. To achieve this interconnection project, two feasibility studies were conducted: interconnection of the Egyptian and Jordanian electrical power systems; interconnection of the electrical networks of Egypt, Iraq, Jordan, Syria, and Turkey (EIJST interconnection). This presentation reviews these studies and their results.

  19. Smartphone quantifies Salmonella from paper microfluidics.

    PubMed

    Park, Tu San; Li, Wenyue; McCracken, Katherine E; Yoon, Jeong-Yeol

    2013-12-21

    Smartphone-based optical detection is a potentially easy-to-use, handheld, true point-of-care diagnostic tool for the early and rapid detection of pathogens. Paper microfluidics is a low-cost, field-deployable, and easy-to-use alternative to conventional microfluidic devices. Most paper-based microfluidic assays typically utilize dyes or enzyme-substrate binding, while bacterial detection on paper microfluidics is rare. We demonstrate a novel application of smartphone-based detection of Salmonella on paper microfluidics. Each paper microfluidic channel was pre-loaded with anti-Salmonella Typhimurium and anti-Escherichia coli conjugated submicroparticles. Dipping the paper microfluidic device into the Salmonella solutions led to the antibody-conjugated particles that were still confined within the paper fibers to immunoagglutinate. The extent of immunoagglutination was quantified by evaluating Mie scattering from the digital images taken at an optimized angle and distance with a smartphone. A smartphone application was designed and programmed to allow the user to position the smartphone at an optimized angle and distance from the paper microfluidic device, and a simple image processing algorithm was implemented to calculate and display the bacterial concentration on the smartphone. The detection limit was single-cell-level and the total assay time was less than one minute. PMID:24162816

  20. Modular microfluidic system for biological sample preparation

    SciTech Connect

    Rose, Klint A.; Mariella, Jr., Raymond P.; Bailey, Christopher G.; Ness, Kevin Dean

    2015-09-29

    A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.

  1. Microfluidic tools for cell biological research

    PubMed Central

    Velve-Casquillas, Guilhem; Le Berre, Maël; Piel, Matthieu; Tran, Phong T.

    2010-01-01

    Summary Microfluidic technology is creating powerful tools for cell biologists to control the complete cellular microenvironment, leading to new questions and new discoveries. We review here the basic concepts and methodologies in designing microfluidic devices, and their diverse cell biological applications. PMID:21152269

  2. Principles, Techniques, and Applications of Tissue Microfluidics

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A.; Kartalov, Emil P.; Shibata, Darryl; Taylor, Clive

    2011-01-01

    The principle of tissue microfluidics and its resultant techniques has been applied to cell analysis. Building microfluidics to suit a particular tissue sample would allow the rapid, reliable, inexpensive, highly parallelized, selective extraction of chosen regions of tissue for purposes of further biochemical analysis. Furthermore, the applicability of the techniques ranges beyond the described pathology application. For example, they would also allow the posing and successful answering of new sets of questions in many areas of fundamental research. The proposed integration of microfluidic techniques and tissue slice samples is called "tissue microfluidics" because it molds the microfluidic architectures in accordance with each particular structure of each specific tissue sample. Thus, microfluidics can be built around the tissues, following the tissue structure, or alternatively, the microfluidics can be adapted to the specific geometry of particular tissues. By contrast, the traditional approach is that microfluidic devices are structured in accordance with engineering considerations, while the biological components in applied devices are forced to comply with these engineering presets.

  3. Opportunities for microfluidic technologies in synthetic biology

    PubMed Central

    Gulati, Shelly; Rouilly, Vincent; Niu, Xize; Chappell, James; Kitney, Richard I.; Edel, Joshua B.; Freemont, Paul S.; deMello, Andrew J.

    2009-01-01

    We introduce microfluidics technologies as a key foundational technology for synthetic biology experimentation. Recent advances in the field of microfluidics are reviewed and the potential of such a technological platform to support the rapid development of synthetic biology solutions is discussed. PMID:19474079

  4. Microfluidic opportunities in the field of nutrition

    PubMed Central

    Li, Sixing; Kiehne, Justin; Sinoway, Lawrence I.; Cameron, Craig E.

    2013-01-01

    Nutrition has always been closely related to human health, which is a constant motivational force driving research in a variety of disciplines. Over the years, the rapidly emerging field of microfluidics has been pushing forward the healthcare industry with the development of microfluidic-based, point-of-care (POC) diagnostic devices. Though a great deal of work has been done in developing microfluidic platforms for disease diagnoses, potential microfluidic applications in the field of nutrition remain largely unexplored. In this Focus article, we would like to investigate the potential chances for microfluidics in the field of nutrition. We will first highlight some of the recent advances in microfluidic blood analysis systems that have the capacity to detect biomarkers of nutrition. Then we will examine existing examples of microfluidic devices for the detection of specific biomarkers of nutrition or nutrient content in food. Finally, we will discuss the challenges in this field and provide some insight into the future of applied microfluidics in nutrition. PMID:24056522

  5. Planar reorientation maneuvers of space multibody systems using internal controls

    NASA Technical Reports Server (NTRS)

    Reyhanoglu, Mahmut; Mcclamroch, N. H.

    1992-01-01

    In this paper a reorientation maneuvering strategy for an interconnection of planar rigid bodies in space is developed. It is assumed that there are no exogeneous torques, and torques generated by joint motors are used as means of control so that the total angular momentum of the multibody system is a constant, assumed to be zero in this paper. The maneuver strategy uses the nonintegrability of the expression for the angular momentum. We demonstrate that large-angle maneuvers can be designed to achieve an arbitrary reorientation of the multibody system with respect to an inertial frame. The theoretical background for carrying out the required maneuvers is briefly summarized. Specifications and computer simulations of a specific reorientation maneuver, and the corresponding control strategies, are described.

  6. Principles, Techniques, and Applications of Tissue Microfluidics

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A.; Kartalov, Emil P.; Shibata, Darryl; Taylor, Clive

    2011-01-01

    The principle of tissue microfluidics and its resultant techniques has been applied to cell analysis. Building microfluidics to suit a particular tissue sample would allow the rapid, reliable, inexpensive, highly parallelized, selective extraction of chosen regions of tissue for purposes of further biochemical analysis. Furthermore, the applicability of the techniques ranges beyond the described pathology application. For example, they would also allow the posing and successful answering of new sets of questions in many areas of fundamental research. The proposed integration of microfluidic techniques and tissue slice samples is called tissue microfluidics because it molds the microfluidic architectures in accordance with each particular structure of each specific tissue sample. Thus, microfluidics can be built around the tissues, following the tissue structure, or alternatively, the microfluidics can be adapted to the specific geometry of particular tissues. By contrast, the traditional approach is that microfluidic devices are structured in accordance with engineering considerations, while the biological components in applied devices are forced to comply with these engineering presets. The proposed principles represent a paradigm shift in microfluidic technology in three important ways: Microfluidic devices are to be directly integrated with, onto, or around tissue samples, in contrast to the conventional method of off-chip sample extraction followed by sample insertion in microfluidic devices. Architectural and operational principles of microfluidic devices are to be subordinated to suit specific tissue structure and needs, in contrast to the conventional method of building devices according to fluidic function alone and without regard to tissue structure. Sample acquisition from tissue is to be performed on-chip and is to be integrated with the diagnostic measurement within the same device, in contrast to the conventional method of off-chip sample prep and

  7. Microfluidic desalination techniques and their potential applications.

    PubMed

    Roelofs, S H; van den Berg, A; Odijk, M

    2015-09-01

    In this review we discuss recent developments in the emerging research field of miniaturized desalination. Traditionally desalination is performed to convert salt water into potable water and research is focused on improving performance of large-scale desalination plants. Microfluidic desalination offers several new opportunities in comparison to macro-scale desalination, such as providing a platform to increase fundamental knowledge of ion transport on the nano- and microfluidic scale and new microfluidic sample preparation methods. This approach has also lead to the development of new desalination techniques, based on micro/nanofluidic ion-transport phenomena, which are potential candidates for up-scaling to (portable) drinking water devices. This review assesses microfluidic desalination techniques on their applications and is meant to contribute to further implementation of microfluidic desalination techniques in the lab-on-chip community. PMID:26226407

  8. Size-based microfluidic multimodal microparticle sorter.

    PubMed

    Wang, Xiao; Papautsky, Ian

    2015-03-01

    Microfluidic sorting of synthetic and biological microparticles has attracted much interest in recent years. Inertial microfluidics uses hydrodynamic forces to manipulate migration of such microparticles in microfluidic channels to achieve passive sorting based on size with high throughput. However, most inertial microfluidic devices are only capable of bimodal separation with a single cutoff diameter and a well-defined size difference. These limitations inhibit efficient separation of real-world samples that often include heterogeneous mixtures of multiple microparticle components. Our design overcomes these challenges to achieve continuous multimodal sorting of microparticles with high resolution and high tunability of separation cutoff diameters. We demonstrate separations with flexible modulation of the separation bandwidth and the passband location. Our approach offers a number of benefits, including straightforward system design, easily and precisely tuned cutoff diameters, high separation resolution, and high throughput. Ultimately, the unique multimodal separation functionality significantly broadens applications of inertial microfluidics in sorting of complex microparticle samples. PMID:25590954

  9. Design and fabrication of a microfluidic circuitboard

    NASA Astrophysics Data System (ADS)

    Schabmueller, C. G. J.; Koch, M.; Evans, A. G. R.; Brunnschweiler, A.

    1999-06-01

    This paper reports the design and fabrication of a micromachined microfluidic circuitboard. The circuitboard consists of a Pyrex wafer in which trenches and connection holes are etched. Channels are then formed by anodically bonding a silicon wafer to the Pyrex wafer. On top of this, various microfluidic devices can be mounted via the anodic bonding technique. This allows a simple way of mass production of different microfluidic systems. To realize other microfluidic systems only the mask layout for creating the channels in the Pyrex wafer has to be changed. The microfluidic circuitboard has been successfully fabricated and single devices have been surface mounted. A whole system has been tested and it proved to be functional and without any leakage.

  10. Hierarchical interconnection networks for multicomputer systems

    SciTech Connect

    Dandamudi, S.P. ); Eager, D.L. )

    1990-06-01

    Multicomputer systems are distributed-memory MIMD systems. Communication in these systems occurs through explicit message passing. Therefore, the underlying processor interconnection network plays an important and direct role in determining their performance. Several types f interconnection networks have been proposed. Unfortunately, no network is universally better. Ideally, therefore, systems should use more than one such network. Furthermore, systems that have large numbers of processors should be able to exploit locality in communication in order to obtain improved performance. This paper proposes the use of hierarchical interconnection networks to meet both these requirements. A performance analysis of a class of hierarchical interconnection networks is presented. This analysis includes both static analysis (queuing delays are neglected) and queuing analysis. In both cases, the hierarchical networks are shown to have better cost-benefit ratios. The queuing analysis is also validated (within our model) by several simulation experiments. The impact of two performance enhancement schemes---replication of links and improved routing algorithms---on hierarchical interconnection network performance is also presented.

  11. The motion of interconnected flexible bodies

    NASA Technical Reports Server (NTRS)

    Hopkins, A. S.

    1975-01-01

    The equations of motion for an arbitrarily interconnected collection of substructures are derived. The substructures are elastic bodies which may be idealized as finite element assemblies and are subject to small deformations relative to a nominal state. Interconnections between the elastic substructures permit large relative translations and rotations between substructures, governed by Pfaffian constraints describing the connections. Screw connections (permitting rotation about and translation along a single axis) eliminate constraint forces and incorporate modal coupling. The problem of flexible spacecraft simulation is discussed. Hurty's component mode approach is extended by permitting interconnected elastic substructures large motions relative to each other and relative to inertial space. The hybrid coordinate methods are generalized by permitting all substructures to be flexible (rather than only the terminal members of a topological tree of substructures). The basic relationships of continuum mechanics are developed.

  12. Interconnection Testing of Distributed Resources: Preprint

    SciTech Connect

    Kroposki, B.; Basso, T.; DeBlasio, R.

    2004-02-01

    With the publication of IEEE 1547-2003(TM) Standard for Interconnecting Distributed Resources With Electric Power Systems, the electric power industry has a need to develop tests and procedures to verify that interconnection equipment meets 1547 technical requirements. A new standard, IEEE P1547.1(TM), is being written to give detailed tests and procedures for confirming that equipment meets the interconnection requirements. The National Renewable Energy Laboratory has been validating test procedures being developed as part of IEEE P1547.1. As work progresses on the validation of those procedures, information and test reports are passed on to the working group of IEEE P1547.1 for future revisions.

  13. Optical transceivers for interconnections in satellite payloads

    NASA Astrophysics Data System (ADS)

    Karppinen, Mikko; Heikkinen, Veli; Juntunen, Eveliina; Kautio, Kari; Ollila, Jyrki; Sitomaniemi, Aila; Tanskanen, Antti

    2013-02-01

    The increasing data rates and processing on board satellites call for the use of photonic interconnects providing high-bitrate performance as well as valuable savings in mass and volume. Therefore, optical transmitter and receiver technology is developed for aerospace applications. The metal-ceramic-packaging with hermetic fiber pigtails enables robustness for the harsh spacecraft environment, while the 850-nm VCSEL-based transceiver technology meets the high bit-rate and low power requirements. The developed components include 6 Gbps SpaceFibre duplex transceivers for intra-satellite data links and 40 Gbps parallel optical transceivers for board-to-board interconnects. Also, integration concept of interchip optical interconnects for onboard processor ICs is presented.

  14. Automotion of domain walls for spintronic interconnects

    SciTech Connect

    Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.

    2014-06-07

    We simulate “automotion,” the transport of a magnetic domain wall under the influence of demagnetization and magnetic anisotropy, in nanoscale spintronic interconnects. In contrast to spin transfer driven magnetic domain wall motion, the proposed interconnects operate without longitudinal charge current transfer, with only a transient current pulse at domain wall creation and have favorable scaling down to the 20 nm dimension. Cases of both in-plane and out-of-plane magnetization are considered. Analytical dependence of the velocity of domain walls on the angle of magnetization are compared with full micromagnetic simulations. Deceleration, attenuation and disappearance, and reflection of domain walls are demonstrated through simulation. Dependences of the magnetization angle on the current pulse parameters are studied. The energy and delay analysis suggests that automotion is an attractive option for spintronic logic interconnects.

  15. Random walk centrality in interconnected multilayer networks

    NASA Astrophysics Data System (ADS)

    Solé-Ribalta, Albert; De Domenico, Manlio; Gómez, Sergio; Arenas, Alex

    2016-06-01

    Real-world complex systems exhibit multiple levels of relationships. In many cases they require to be modeled as interconnected multilayer networks, characterizing interactions of several types simultaneously. It is of crucial importance in many fields, from economics to biology and from urban planning to social sciences, to identify the most (or the less) influent nodes in a network using centrality measures. However, defining the centrality of actors in interconnected complex networks is not trivial. In this paper, we rely on the tensorial formalism recently proposed to characterize and investigate this kind of complex topologies, and extend two well known random walk centrality measures, the random walk betweenness and closeness centrality, to interconnected multilayer networks. For each of the measures we provide analytical expressions that completely agree with numerically results.

  16. Automotion of domain walls for spintronic interconnects

    NASA Astrophysics Data System (ADS)

    Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.

    2014-06-01

    We simulate "automotion," the transport of a magnetic domain wall under the influence of demagnetization and magnetic anisotropy, in nanoscale spintronic interconnects. In contrast to spin transfer driven magnetic domain wall motion, the proposed interconnects operate without longitudinal charge current transfer, with only a transient current pulse at domain wall creation and have favorable scaling down to the 20 nm dimension. Cases of both in-plane and out-of-plane magnetization are considered. Analytical dependence of the velocity of domain walls on the angle of magnetization are compared with full micromagnetic simulations. Deceleration, attenuation and disappearance, and reflection of domain walls are demonstrated through simulation. Dependences of the magnetization angle on the current pulse parameters are studied. The energy and delay analysis suggests that automotion is an attractive option for spintronic logic interconnects.

  17. Nanotrench for nano and microparticle electrical interconnects

    NASA Astrophysics Data System (ADS)

    Dayen, J.-F.; Faramarzi, V.; Pauly, M.; Kemp, N. T.; Barbero, M.; Pichon, B. P.; Majjad, H.; Begin-Colin, S.; Doudin, B.

    2010-08-01

    We present a simple and versatile patterning procedure for the reliable and reproducible fabrication of high aspect ratio (104) electrical interconnects that have separation distances down to 20 nm and lengths of several hundreds of microns. The process uses standard optical lithography techniques and allows parallel processing of many junctions, making it easily scalable and industrially relevant. We demonstrate the suitability of these nanotrenches as electrical interconnects for addressing micro and nanoparticles by realizing several circuits with integrated species. Furthermore, low impedance metal-metal low contacts are shown to be obtained when trapping a single metal-coated microsphere in the gap, emphasizing the intrinsic good electrical conductivity of the interconnects, even though a wet process is used. Highly resistive magnetite-based nanoparticles networks also demonstrate the advantage of the high aspect ratio of the nanotrenches for providing access to electrical properties of highly resistive materials, with leakage current levels below 1 pA.

  18. Engineering interconnected 3D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template.

    PubMed

    Wang, Xue-Ying; Jin, Zi-He; Gan, Bo-Wen; Lv, Song-Wei; Xie, Min; Huang, Wei-Hua

    2014-08-01

    Engineering 3D perfusable vascular networks in vitro and reproducing the physiological environment of blood vessels is very challenging for tissue engineering and investigation of blood vessel function. Here, we engineer interconnected 3D microfluidic vascular networks in hydrogels using molded sodium alginate lattice as sacrificial templates. The sacrificial templates are rapidly replicated in polydimethylsiloxane (PDMS) microfluidic chips via Ca⁺²-crosslinking and then fully encapsulated in hydrogels. Interconnected channels with well controlled size and morphology are obtained by dissolving the monolayer or multilayer templates with EDTA solution. The human umbilical vein endothelial cells (HUVECs) are cultured on the channel linings and proliferated to form vascular lumens. The strong cell adhesion capability and adaptive response to shear stress demonstrate the excellent cytocompatibility of both the template and template-sacrificing process. Furthermore, the barrier function of the endothelial layer is characterized and the results show that a confluent endothelial monolayer is fully developed. Taken together, we develop a facile and rapid approach to engineer a vascular model that could be potentially used in physiological studies of vascular functions and vascular tissue engineering. PMID:24887141

  19. Integrated elastomeric components for autonomous regulation of sequential and oscillatory flow switching in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Mosadegh, Bobak; Kuo, Chuan-Hsien; Tung, Yi-Chung; Torisawa, Yu-Suke; Bersano-Begey, Tommaso; Tavana, Hossein; Takayama, Shuichi

    2010-06-01

    A critical need for enhancing the usability and capabilities of microfluidic technologies is the development of standardized, scalable and versatile control systems. Electronically controlled valves and pumps typically used for dynamic flow regulation, although useful, can limit convenience, scalability and robustness. This shortcoming has motivated the development of device-embedded non-electrical flow-control systems. Existing approaches to regulate operation timing on-chip, however, still require external signals such as timed generation of fluid flow, bubbles, liquid plugs or droplets or an alteration of chemical compositions or temperature. Here, we describe a strategy to provide device-embedded flow switching and clocking functions. Physical gaps and cavities interconnected by holes are fabricated into a three-layer elastomer structure to form networks of fluidic gates that can spontaneously generate cascading and oscillatory flow output using only a constant flow of Newtonian fluids as the device input. The resulting microfluidic substrate architecture is simple, scalable and should be applicable to various materials. This flow-powered fluidic gating scheme brings the autonomous signal processing ability of microelectronic circuits to microfluidics where there is the added diversity in current information of having distinct chemical or particulate species and richness in current operation of having chemical reactions and physical interactions.

  20. Three-dimensional integrated microfluidic architectures enabled through electrically switchable nanocapillary array membranes

    PubMed Central

    Gatimu, E. N.; King, T. L.; Sweedler, J. V.; Bohn, P. W.

    2007-01-01

    The extension of microfluidic devices to three dimensions requires innovative methods to interface fluidic layers. Externally controllable interconnects employing nanocapillary array membranes (NCAMs) have been exploited to produce hybrid three-dimensional fluidic architectures capable of performing linked sequential chemical manipulations of great power and utility. Because the solution Debye length, κ−1, is of the order of the channel diameter, a, in the nanopores, fluidic transfer is controlled through applied bias, polarity and density of the immobile nanopore surface charge, solution ionic strength and the impedance of the nanopore relative to the microfluidic channels. Analyte transport between vertically separated microchannels can be saturated at two stable transfer levels, corresponding to reverse and forward bias. These NCAM-mediated integrated microfluidic architectures have been used to achieve highly reproducible and tunable injections down to attoliter volumes, sample stacking for preconcentration, preparative analyte band collection from an electrophoretic separation, and an actively-tunable size-dependent transport in hybrid structures with grafted polymers displaying thermally-regulated swelling behavior. The synthetic elaboration of the nanopore interior has also been used to great effect to realize molecular separations of high efficiency. All of these manipulations depend critically on the transport properties of individual nanocapillaries, and the study of transport in single nanopores has recently attracted significant attention. Both computation and experimental studies have utilized single nanopores as test beds to understand the fundamental chemical and physical properties of chemistry and fluid flow at nanometer length scales. PMID:19693375

  1. The MainSTREAM component platform: a holistic approach to microfluidic system design.

    PubMed

    Sabourin, David; Skafte-Pedersen, Peder; Søe, Martin Jensen; Hemmingsen, Mette; Alberti, Massimo; Coman, Vasile; Petersen, Jesper; Emnéus, Jenny; Kutter, Jörg P; Snakenborg, Detlef; Jørgensen, Flemming; Clausen, Christian; Holmstrøm, Kim; Dufva, Martin

    2013-06-01

    A microfluidic component library for building systems driving parallel or serial microfluidic-based assays is presented. The components are a miniaturized eight-channel peristaltic pump, an eight-channel valve, sample-to-waste liquid management, and interconnections. The library of components was tested by constructing various systems supporting perfusion cell culture, automated DNA hybridizations, and in situ hybridizations. The results showed that the MainSTREAM components provided (1) a rapid, robust, and simple method to establish numerous fluidic inputs and outputs to various types of reaction chips; (2) highly parallel pumping and routing/valving capability; (3) methods to interface pumps and chip-to-liquid management systems; (4) means to construct a portable system; (5) reconfigurability/flexibility in system design; (6) means to interface to microscopes; and (7) compatibility with tested biological methods. It was found that LEGO Mindstorms motors, controllers, and software were robust, inexpensive, and an accessible choice as compared with corresponding custom-made actuators. MainSTREAM systems could operate continuously for weeks without leaks, contamination, or system failures. In conclusion, the MainSTREAM components described here meet many of the demands on components for constructing and using microfluidics systems. PMID:23015520

  2. Graphene Nanoribbons (GNRs) for Future Interconnect

    NASA Astrophysics Data System (ADS)

    Saptono Duryat, Rahmat

    2016-05-01

    Selecting and developing materials for the future devices require a sound understanding of design requirements. Miniaturization of electronic devices, as commonly expressed by Moore Law, has involved the integration level. Increase of the level has caused some consequences in the design and selection of materials for interconnection. The present paper deals with the challenge of materials design and selection beyond the nanoscale limit and the ability of traditional materials to cope with. One of the emerging materials, i.e. Graphene, will be reviewed with particular reference to its characteristics and potentials for future interconnection.

  3. A planar lens based on the electrowetting of two immiscible liquids

    NASA Astrophysics Data System (ADS)

    Liu, Chao-Xuan; Park, Jihwan; Choi, Jin-Woo

    2008-03-01

    This paper reports the development and characterization of a planar liquid lens based on electrowetting. The working concept of electrowetting two immiscible liquids is demonstrated with measurement and characterization of contact angles with regard to externally applied electric voltages. Consequently, a planar liquid lens is designed and implemented based on this competitive electrowetting. A droplet of silicone oil confined in an aqueous solution (1% KCl) works as a liquid lens. Electrowetting then controls the shape of the confined silicone oil and the focal length of the liquid lens varies depending upon an applied dc voltage. A unique feature of this lens design is the double-ring planar electrodes beneath the hydrophobic substrate. While an outer ring electrode provides an initial boundary for the silicone oil droplet, an inner ring works as the actuation electrode for the lens. Further, the planar electrodes, instead of vertical or out-of-plane wall electrodes, facilitate the integration of liquid lenses into microfluidic systems. With the voltage applied in the range of 50-250 V, the confined silicone oil droplet changed its shape and the optical magnification of a 3 mm-diameter liquid lens was clearly demonstrated. Moreover, focal lengths of liquid lenses with diameters of 2 mm, 3 mm and 4 mm were characterized, respectively. The obtained results suggest that a larger lens diameter yields a longer focal length and a wider range of focal length change in response to voltage. The demonstrated liquid lens has a simple structure and is easy to fabricate.

  4. Microfluidic Applications of Soft Lithography

    SciTech Connect

    Rose, K A; Krulevitch, P; Hamilton, J

    2001-04-10

    The soft lithography fabrication technique was applied to three microfluidic devices. The method was used to create an original micropump design and retrofit to existing designs for a DNA manipulation device and a counter biological warfare sample preparation device. Each device presented unique and original challenges to the soft lithography application. AI1 design constraints of the retrofit devices were satisfied using PDMS devices created through variation of soft lithography methods. The micropump utilized the versatility of PDMS, creating design options not available with other materials. In all cases, the rapid processing of soft lithography reduced the fabrication time, creating faster turnaround for design modifications.

  5. Surface-micromachined microfluidic devices

    DOEpatents

    Galambos, Paul C.; Okandan, Murat; Montague, Stephen; Smith, James H.; Paul, Phillip H.; Krygowski, Thomas W.; Allen, James J.; Nichols, Christopher A.; Jakubczak, II, Jerome F.

    2003-01-01

    Microfluidic devices are disclosed which can be manufactured using surface-micromachining. These devices utilize an electroosmotic force or an electromagnetic field to generate a flow of a fluid in a microchannel that is lined, at least in part, with silicon nitride. Additional electrodes can be provided within or about the microchannel for separating particular constituents in the fluid during the flow based on charge state or magnetic moment. The fluid can also be pressurized in the channel. The present invention has many different applications including electrokinetic pumping, chemical and biochemical analysis (e.g. based on electrophoresis or chromatography), conducting chemical reactions on a microscopic scale, and forming hydraulic actuators.

  6. Magneto-Hydrodynamics Based Microfluidics

    PubMed Central

    Qian, Shizhi; Bau, Haim H.

    2009-01-01

    In microfluidic devices, it is necessary to propel samples and reagents from one part of the device to another, stir fluids, and detect the presence of chemical and biological targets. Given the small size of these devices, the above tasks are far from trivial. Magnetohydrodynamics (MHD) offers an elegant means to control fluid flow in microdevices without a need for mechanical components. In this paper, we review the theory of MHD for low conductivity fluids and describe various applications of MHD such as fluid pumping, flow control in fluidic networks, fluid stirring and mixing, circular liquid chromatography, thermal reactors, and microcoolers. PMID:20046890

  7. Active droplet generation in microfluidics.

    PubMed

    Chong, Zhuang Zhi; Tan, Say Hwa; Gañán-Calvo, Alfonso M; Tor, Shu Beng; Loh, Ngiap Hiang; Nguyen, Nam-Trung

    2016-01-01

    The reliable generation of micron-sized droplets is an important process for various applications in droplet-based microfluidics. The generated droplets work as a self-contained reaction platform in droplet-based lab-on-a-chip systems. With the maturity of this platform technology, sophisticated and delicate control of the droplet generation process is needed to address increasingly complex applications. This review presents the state of the art of active droplet generation concepts, which are categorized according to the nature of the induced energy. At the liquid/liquid interface, an energy imbalance leads to instability and droplet breakup. PMID:26555381

  8. Planar Multilayer Circuit Quantum Electrodynamics

    NASA Astrophysics Data System (ADS)

    Minev, Z. K.; Serniak, K.; Pop, I. M.; Leghtas, Z.; Sliwa, K.; Hatridge, M.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2016-04-01

    Experimental quantum information processing with superconducting circuits is rapidly advancing, driven by innovation in two classes of devices, one involving planar microfabricated (2D) resonators, and the other involving machined three-dimensional (3D) cavities. We demonstrate that circuit quantum electrodynamics can be implemented in a multilayer superconducting structure that combines 2D and 3D advantages. We employ standard microfabrication techniques to pattern each layer, and rely on a vacuum gap between the layers to store the electromagnetic energy. Planar qubits are lithographically defined as an aperture in a conducting boundary of the resonators. We demonstrate the aperture concept by implementing an integrated, two-cavity-mode, one-transmon-qubit system.

  9. Window defect planar mapping technique

    NASA Technical Reports Server (NTRS)

    Minton, F. R.; Minton, U. O. (Inventor)

    1976-01-01

    A method of planar mapping defects in a window having an edge surface and a planar surface. The method is comprised of steps for mounting the window on a support surface. Then a light sensitive paper is placed adjacent to the window surface. A light source is positioned adjacent to the window edge. The window is then illuminated with the source of light for a predetermined interval of time. Defects on the surface of the glass, as well as in the interior of the glass are detected by analyzing the developed light sensitive paper. The light source must be in the form of optical fibers or a light tube whose light transmitting ends are placed near the edge surface of the window.

  10. Summing Planar Bosonic Open Strings

    SciTech Connect

    Bardakci, Korkut

    2006-02-16

    In earlier work, planar graphs of massless {phi}{sup 3} theory were summed with the help of the light cone world sheet picture and the mean field approximation. In the present article, the same methods are applied to the problem of summing planar bosonic open strings. They find that in the ground state of the system, string boundaries form a condensate on the world sheet, and a new string emerges from this summation. Its slope is always greater than the initial slope, and it remains non-zero even when the initial slope is set equal to zero. If they assume the initial string tends to a field a theory in the zero slope limit, this result provides evidence for string formation in field theory.

  11. Simplified prototyping of perfusable polystyrene microfluidics

    PubMed Central

    Tran, Reginald; Ahn, Byungwook; R. Myers, David; Qiu, Yongzhi; Sakurai, Yumiko; Moot, Robert; Mihevc, Emma; Trent Spencer, H.; Doering, Christopher; A. Lam, Wilbur

    2014-01-01

    Cell culture in microfluidic systems has primarily been conducted in devices comprised of polydimethylsiloxane (PDMS) or other elastomers. As polystyrene (PS) is the most characterized and commonly used substrate material for cell culture, microfluidic cell culture would ideally be conducted in PS-based microsystems that also enable tight control of perfusion and hydrodynamic conditions, which are especially important for culture of vascular cell types. Here, we report a simple method to prototype perfusable PS microfluidics for endothelial cell culture under flow that can be fabricated using standard lithography and wet laboratory equipment to enable stable perfusion at shear stresses up to 300 dyn/cm2 and pumping pressures up to 26 kPa for at least 100 h. This technique can also be extended to fabricate perfusable hybrid PS-PDMS microfluidics of which one application is for increased efficiency of viral transduction in non-adherent suspension cells by leveraging the high surface area to volume ratio of microfluidics and adhesion molecules that are optimized for PS substrates. These biologically compatible microfluidic devices can be made more accessible to biological-based laboratories through the outsourcing of lithography to various available microfluidic foundries. PMID:25379106

  12. Laser Ablation of Polymer Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Killeen, Kevin

    2004-03-01

    Microfluidic technology is ideal for processing precious samples of limited volumes. Some of the most important classes of biological samples are both high in sample complexity and low in concentration. Combining the elements of sample pre-concentration, chemical separation and high sensitivity detection with chemical identification is essential for realizing a functional microfluidic based analysis system. Direct write UV laser ablation has been used to rapidly fabricate microfluidic devices capable of high performance liquid chromatography (HPLC)-MS. These chip-LC/MS devices use bio-compatible, solvent resistant and flexible polymer materials such as polyimide. A novel microfluidic to rotary valve interface enables, leak free, high pressure fluid switching between multiple ports of the microfluidic chip-LC/MS device. Electrospray tips with outer dimension of 50 um and inner of 15 um are formed by ablating the polymer material concentrically around a multilayer laminated channel structure. Biological samples of digested proteins were used to evaluate the performance of these microfluidic devices. Liquid chromatography separation and similar sample pretreatments have been performed using polymeric microfluidic devices with on-chip separation channels. Mass spectrometry was performed using an Agilent Technologies 1100 series ion trap mass spectrometer. Low fmol amounts of protein samples were positively and routinely identified by searching the MS/MS spectral data against protein databases. The sensitivity and separation performance of the chip-LC devices has been found to be comparable to state of the art nano-electrospray systems.

  13. Self-contained microfluidic systems: a review.

    PubMed

    Boyd-Moss, Mitchell; Baratchi, Sara; Di Venere, Martina; Khoshmanesh, Khashayar

    2016-08-16

    Microfluidic systems enable rapid diagnosis, screening and monitoring of diseases and health conditions using small amounts of biological samples and reagents. Despite these remarkable features, conventional microfluidic systems rely on bulky expensive external equipment, which hinders their utility as powerful analysis tools outside of research laboratories. 'Self-contained' microfluidic systems, which contain all necessary components to facilitate a complete assay, have been developed to address this limitation. In this review, we provide an in-depth overview of self-contained microfluidic systems. We categorise these systems based on their operating mechanisms into three major groups: passive, hand-powered and active. Several examples are provided to discuss the structure, capabilities and shortcomings of each group. In particular, we discuss the self-contained microfluidic systems enabled by active mechanisms, due to their unique capability for running multi-step and highly controllable diagnostic assays. Integration of self-contained microfluidic systems with the image acquisition and processing capabilities of smartphones, especially those equipped with accessory optical components, enables highly sensitive and quantitative assays, which are discussed. Finally, the future trends and possible solutions to expand the versatility of self-contained, stand-alone microfluidic platforms are outlined. PMID:27425637

  14. Enjoyment of Euclidean planar triangles

    NASA Astrophysics Data System (ADS)

    Srinivasan, V. K.

    2013-09-01

    This article adopts the following classification for a Euclidean planar ?, purely based on angles alone. A Euclidean planar triangle is said to be acute angled if all the three angles of the Euclidean planar ? are acute angles. It is said to be right angled at a specific vertex, say B, if the angle ? is a right angle with the two remaining angles as acute angles. It is said to be obtuse angled at the vertex B if ? is an obtuse angle, with the two remaining angles as acute angles. In spite of the availability of numerous text books that contain our human knowledge of Euclidean plane geometry, softwares can offer newer insights about the characterizations of planar geometrical objects. The author's characterizations of triangles involve points like the centroid G, the orthocentre H of the ?, the circumcentre S of the ?, the centre N of the nine-point circle of the ?. Also the radical centre rc of three involved diameter circles of the sides BC, AC and AB of the ? provides a reformulation of the orthocentre, resulting in an interesting theorem, dubbed by the author as 'Three Circles Theorem'. This provides a special result for a right-angled ?, again dubbed by the author as 'The Four Circles Theorem'. Apart from providing various inter connections between the geometrical points, the relationships between shapes of the triangle and the behaviour of the points are reasonably explored in this article. Most of these results will be useful to students that take courses in Euclidean Geometry at the college level and the high school level. This article will be useful to teachers in mathematics at the high school level and the college level.

  15. PANEL CODE FOR PLANAR CASCADES

    NASA Technical Reports Server (NTRS)

    Mcfarland, E. R.

    1994-01-01

    The Panel Code for Planar Cascades was developed as an aid for the designer of turbomachinery blade rows. The effective design of turbomachinery blade rows relies on the use of computer codes to model the flow on blade-to-blade surfaces. Most of the currently used codes model the flow as inviscid, irrotational, and compressible with solutions being obtained by finite difference or finite element numerical techniques. While these codes can yield very accurate solutions, they usually require an experienced user to manipulate input data and control parameters. Also, they often limit a designer in the types of blade geometries, cascade configurations, and flow conditions that can be considered. The Panel Code for Planar Cascades accelerates the design process and gives the designer more freedom in developing blade shapes by offering a simple blade-to-blade flow code. Panel, or integral equation, solution techniques have been used for several years by external aerodynamicists who have developed and refined them into a primary design tool of the aircraft industry. The Panel Code for Planar Cascades adapts these same techniques to provide a versatile, stable, and efficient calculation scheme for internal flow. The code calculates the compressible, inviscid, irrotational flow through a planar cascade of arbitrary blade shapes. Since the panel solution technique is for incompressible flow, a compressibility correction is introduced to account for compressible flow effects. The analysis is limited to flow conditions in the subsonic and shock-free transonic range. Input to the code consists of inlet flow conditions, blade geometry data, and simple control parameters. Output includes flow parameters at selected control points. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 590K of 8 bit bytes. This program was developed in 1982.

  16. NMR planar microcoil for microanalysis

    NASA Astrophysics Data System (ADS)

    Sorli, B.; Chateaux, J. F.; Quiquerez, L.; Bouchet-Fakri, L.; Briguet, A.; Morin, P.

    2006-11-01

    This article deals with the analysis of small sample volume by using a planar microcoil and a micromachined cavity. This microcoil is used as a nuclear magnetic resonance (NMR) radio frequency detection coil in order to perform in vitro NMR analysis of the sample introduced into the microcavity. It is a real challenging task to develop microsystem for NMR spectrum extraction for smaller and smaller sample volume. Moreover, it is advantageous that these microsystems could be integrated in a Micro Total Analysing System (μ -TAS) as an analysing tool. In this paper, NMR theory, description, fabrication process and electrical characterization of planar microcoils receiver are described. Results obtained on NMR microspectroscopy experiments have been performed on water and ethanol, using a 1 mm diameter planar coil. This microcoil is tuned and matched at 85.13 MHz which is the Larmor frequency of proton in a 2 T magnetic field. This paper has been presented at “3e colloque interdisciplinaire en instrumentation (C2I 2004)”, École Normale Supérieure de Cachan, 29 30 janvier 2004.

  17. All-aqueous multiphase microfluidics

    PubMed Central

    Song, Yang; Sauret, Alban; Cheung Shum, Ho

    2013-01-01

    Immiscible aqueous phases, formed by dissolving incompatible solutes in water, have been used in green chemical synthesis, molecular extraction and mimicking of cellular cytoplasm. Recently, a microfluidic approach has been introduced to generate all-aqueous emulsions and jets based on these immiscible aqueous phases; due to their biocompatibility, these all-aqueous structures have shown great promises as templates for fabricating biomaterials. The physico-chemical nature of interfaces between two immiscible aqueous phases leads to unique interfacial properties, such as an ultra-low interfacial tension. Strategies to manipulate components and direct their assembly at these interfaces needs to be explored. In this paper, we review progress on the topic over the past few years, with a focus on the fabrication and stabilization of all-aqueous structures in a multiphase microfluidic platform. We also discuss future efforts needed from the perspectives of fluidic physics, materials engineering, and biology for fulfilling potential applications ranging from materials fabrication to biomedical engineering. PMID:24454609

  18. Frontal photopolymerization for microfluidic applications.

    PubMed

    Cabral, João T; Hudson, Steven D; Harrison, Christopher; Douglas, Jack F

    2004-11-01

    Frontal photopolymerization (FPP) offers numerous advantages for the rapid prototyping of microfluidic devices. Quantitative utilization of this method, however, requires a control of the vertical dimensions of the patterned resist material. To address this fundamental problem, we study the ultraviolet (UV) photopolymerization of a series of multifunctional thiolene resists through a combination of experiments and analytical modeling of the polymerization fronts. We describe this nonlinear spatio-temporal growth process in terms of a "minimal" model involving an order parameter phi(x, t) characterizing the extent of monomer-to-polymer conversion, the optical attenuation T(x, t), and the solid front position h(t). The latter exhibits an induction time (or equivalent critical UV dose) characterizing the onset of frontal propagation. We also observe a novel transition between two logarithmic rates of growth, determined by the Beer-Lambert attenuation constants mu(0) and mu(infinity) of the monomer and fully polymerized material, respectively. The measured frontal kinetics and optical transmission of the thiolene resist materials are consistent with our photopolymerization model, exhibiting both "photodarkening" and "photoinvariant" polymerization. This is apparently the first observation of photodarkening reported in FPP. On the basis of these results, multilevel fluidic devices with controlled height are readily fabricated with modulated illumination. A representative two-level microfluidic device, incorporating a chaotic mixer, a T junction, and a series of controlled flow constrictions, illustrates the practical versatility of this fabrication method. PMID:15518489

  19. Microfluidic ion-sensing devices.

    PubMed

    Johnson, R Daniel; Gavalas, Vasilis G; Daunert, Sylvia; Bachas, Leonidas G

    2008-04-14

    Quantitative determinations of ions in a variety of media have been performed traditionally via one of three approaches: optical instrumental methods (e.g., atomic absorption, and inductively-coupled plasma-optical emission or mass spectrometry), "wet" methods, or ion-selective sensors. Each of the approaches, though, possesses limitations including: power/reagent consumption and lack of portability for instrumental techniques; laborious sample-treatment steps for wet methods; and lack of selectivity and sensitivity with sensors when employed with complex samples. Microfluidic device have emerged as a solution to some of these challenges associated with ion analysis. Such systems can integrate multiple sample handling, calibration, and detection steps ("lab-on-a-chip" concept) into a footprint amenable to portability, while requiring small amounts of sample and power. Furthermore, devices can be constructed for multi-analyte detection, either through multiple parallel fluidic architectures or by using arrays of detection elements. This paper reviews recent progress in the development of total-analysis systems for ionic species. Fabrication techniques and various fluid-handling operations are discussed briefly, followed by a number of more mature strategies for microfluidic ion analysis. A variety of approaches expected to comprise the next generation of devices are also presented. PMID:18374698

  20. A waveguide based microfluidic application

    NASA Astrophysics Data System (ADS)

    Taheri, Nooshin S.; Chan, Peggy; Friend, James R.; Yeo, Leslie

    2013-12-01

    Microfluidics is based on the performance of fluids in a microenvironment. As the microfluidics research advances in the cellular behaviour, the need for improved micro devices grows. This work introduces the design and fabrication of a micro ridge waveguide to be employed in fluids manipulations. Then it investigates the characteristics of the device in order to control the movement of the fluids on top of the ridge of the waveguide. The elastic vibration is excited along the ridge of the guide with the use of thickness poled lead zirconate titanate (PZT) elements attached to both sides of the waveguide. To excite anti-symmetric or flexural mode in the ridge of the guide, the propagation velocity has been kept significantly below the Rayleigh wave velocity. The velocity reduction of 15% is achieved with the high aspect ratio ridge (H/W =3) design. A three dimensional model of the micro waveguide has also been developed to determine the vibration characteristics; the natural frequency and the considered mode of the micro waveguide through finite element analysis using ANSYS. The travelling wave along the ridge of the guide is able to transmit strong vibration to the fluid atop of the substrate. The results represents a promising approach, through recasting the waveguide structure to be suitable in fluids and particle in fluids manipulations in one dimensional environment with the strong confined energy, at smaller scale with higher vibration displacement.

  1. Surface-Micromachined Microfluidic Devices

    DOEpatents

    Galambos, Paul C.; Okandan, Murat; Montague, Stephen; Smith, James H.; Paul, Phillip H.; Krygowski, Thomas W.; Allen, James J.; Nichols, Christopher A.; Jakubczak, II, Jerome F.

    2004-09-28

    Microfluidic devices are disclosed which can be manufactured using surface-micromachining. These devices utilize an electroosmotic force or an electromagnetic field to generate a flow of a fluid in a microchannel that is lined, at least in part, with silicon nitride. Additional electrodes can be provided within or about the microchannel for separating particular constituents in the fluid during the flow based on charge state or magnetic moment. The fluid can also be pressurized in the channel. The present invention has many different applications including electrokinetic pumping, chemical and biochemical analysis (e.g. based on electrophoresis or chromatography), conducting chemical reactions on a microscopic scale, and forming hydraulic actuators. Microfluidic devices are disclosed which can be manufactured using surface-micromachining. These devices utilize an electroosmotic force or an electromagnetic field to generate a flow of a fluid in a microchannel that is lined, at least in part, with silicon nitride. Additional electrodes can be provided within or about the microchannel for separating particular constituents in the fluid during the flow based on charge state or magnetic moment. The fluid can also be pressurized in the channel. The present invention has many different applications including electrokinetic pumping, chemical and biochemical analysis (e.g. based on electrophoresis or chromatography), conducting chemical reactions on a microscopic scale, and forming hydraulic actuators.

  2. Optical interconnections to focal plane arrays

    SciTech Connect

    Rienstra, J.L.; Hinckley, M.K.

    2000-11-01

    The authors have successfully demonstrated an optical data interconnection from the output of a focal plane array to the downstream data acquisition electronics. The demonstrated approach included a continuous wave laser beam directed at a multiple quantum well reflectance modulator connected to the focal plane array analog output. The output waveform from the optical interconnect was observed on an oscilloscope to be a replica of the input signal. They fed the output of the optical data link to the same data acquisition system used to characterize focal plane array performance. Measurements of the signal to noise ratio at the input and output of the optical interconnection showed that the signal to noise ratio was reduced by a factor of 10 or more. Analysis of the noise and link gain showed that the primary contributors to the additional noise were laser intensity noise and photodetector receiver noise. Subsequent efforts should be able to reduce these noise sources considerably and should result in substantially improved signal to noise performance. They also observed significant photocurrent generation in the reflectance modulator that imposes a current load on the focal plane array output amplifier. This current loading is an issue with the demonstrated approach because it tends to negate the power saving feature of the reflectance modulator interconnection concept.

  3. Laser printed interconnects for flexible electronics

    NASA Astrophysics Data System (ADS)

    Pique, Alberto; Beniam, Iyoel; Mathews, Scott; Charipar, Nicholas

    Laser-induced forward transfer (LIFT) can be used to generate microscale 3D structures for interconnect applications non-lithographically. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or dispersed metallic nanoparticles. However, the resulting 3D structures do not achieve the bulk conductivity of metal interconnects of the same cross-section and length as those formed by wire bonding or tab welding. It is possible, however, to laser transfer entire structures using a LIFT technique known as lase-and-place. Lase-and-place allows whole components and parts to be transferred from a donor substrate onto a desired location with one single laser pulse. This talk will present the use of LIFT to laser print freestanding solid metal interconnects to connect individual devices into functional circuits. Furthermore, the same laser can bend or fold the thin metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief due to flexing or thermal mismatch. Examples of these laser printed 3D metallic bridges and their role in the development of next generation flexible electronics by additive manufacturing will be presented. This work was funded by the Office of Naval Research (ONR) through the Naval Research Laboratory Basic Research Program.

  4. Electric network interconnection of Mashreq Arab Countries

    SciTech Connect

    El-Amin, I.M.; Al-Shehri, A.M.; Opoku, G.; Al-Baiyat, S.A.; Zedan, F.M.

    1994-12-01

    Power system interconnection is a well established practice for a variety of technical and economical reasons. Several interconnected networks exist worldwide for a number of factors. Some of these networks cross international boundaries. This presentation discusses the future developments of the power systems of Mashreq Arab Countries (MAC). MAC consists of Bahrain, Egypt, Iraq, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, United Arab Emirates (UAE), and Yemen. Mac power systems are operated by government or semigovernment bodies. Many of these countries have national or regional electric grids but are generally isolated from each other. With the exception of Saudi Arabia power systems, which employ 60 Hz, all other MAC utilities use 50 Hz frequency. Each country is served by one utility, except Saudi Arabia, which is served by four major utilities and some smaller utilities serving remote towns and small load centers. The major utilities are the Saudi Consolidated electric Company in the Eastern Province (SCECO East), SCECO Center, SCECO West, and SCECO South. These are the ones considered in this study. The energy resources in MAC are varied. Countries such as Egypt, Iraq, and Syria have significant hydro resources.The gulf countries and Iraq have abundant fossil fuel, The variation in energy resources as well as the characteristics of the electric load make it essential to look into interconnections beyond the national boundaries. Most of the existing or planned interconnections involve few power systems. A study involving 12 countries and over 20 utilities with different characteristics represents a very large scale undertaking.

  5. 14 CFR 23.701 - Flap interconnection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flap interconnection. 23.701 Section 23.701 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.701 Flap...

  6. Electromigration of damascene copper of IC interconnect

    NASA Astrophysics Data System (ADS)

    Meyer, William Kevin

    Copper metallization patterned with multi-level damascene process is prone to electromigration failure, which affects the reliability and performance of IC interconnect. In typical products, interconnect that is not already constrained by I·R drop or Joule self-heating operates at 'near threshold' conditions. Measurement of electromigration damage near threshold is very difficult due to slow degradation requiring greatly extended stress times, or high currents that cause thermal anomalies. Software simulations of the electromigration mechanism combined with characterization of temperature profiles allows extracting material parameters and calculation of design rules to ensure reliable interconnect. Test structures capable of demonstrating Blech threshold effects while allowing thermal characterization were designed and processed. Electromigration stress tests at various conditions were performed to extract both shortline (threshold) and long-line (above threshold) performance values. The resistance increase time constant shows immortality below Je·L (product of current density and segment length) of 3200 amp/cm. Statistical analysis of times-to-failure show that long lines last 105 hours at 3.1 mA/mum2 (120°C). While this is more robust than aluminum interconnect, the semiconductor industry will be challenged to improve that performance as future products require.

  7. 14 CFR 23.701 - Flap interconnection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flap interconnection. 23.701 Section 23.701 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.701 Flap...

  8. Healing Voids In Interconnections In Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Cuddihy, Edward F.; Lawton, Russell A.; Gavin, Thomas

    1989-01-01

    Unusual heat treatment heals voids in aluminum interconnections on integrated circuits (IC's). Treatment consists of heating IC to temperature between 200 degrees C and 400 degrees C, holding it at that temperature, and then plunging IC immediately into liquid nitrogen. Typical holding time at evaluated temperature is 30 minutes.

  9. 47 CFR 51.305 - Interconnection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... interface or protocol standards shall constitute evidence of the substantial similarity of network..., interconnection with the incumbent LEC's network: (1) For the transmission and routing of telephone exchange...'s network including, at a minimum: (i) The line-side of a local switch; (ii) The trunk-side of...

  10. A continuum model for interconnected lattice trusses

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1992-01-01

    A continuum model for interconnected lattice trusses based on the 1D Timoshenko beam approximation is developed using the NASA-LRC Phase Zero Evolutionary Model. The continuum model dynamics is presented in the canonical wave-equation form in a Hilbert space.

  11. Vector Lyapunov Functions for Stochastic Interconnected Systems

    NASA Technical Reports Server (NTRS)

    Boussalis, D.

    1985-01-01

    Theoretical paper presents set of sufficient conditions for asymptotic and exponential stability with probability 1 for class of stochastic interconnected systems. Theory applicable to complicated, large-scale mechanical or electrical systems, and, for several design problems, it reduces computational difficulty by relating stability criteria to fundamental structural features of system.

  12. 47 CFR 95.1313 - Interconnection prohibited.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... prohibited. MURS stations are prohibited from interconnection with the public switched network... facilities of the public switched telephone network to permit the transmission of messages or signals between points in the wireline or radio network of a public telephone company and persons served by...

  13. Analogy among microfluidics, micromechanics, and microelectronics.

    PubMed

    Li, Sheng-Shian; Cheng, Chao-Min

    2013-10-01

    We wish to illuminate the analogous link between microfluidic-based devices, and the already established pairing of micromechanics and microelectronics to create a triangular/three-way scientific relationship as a means of interlinking familial disciplines and accomplishing two primary goals: (1) to facilitate the modeling of multidisciplinary domains; and, (2) to enable us to co-simulate the entire system within a compact circuit simulator (e.g., Cadence or SPICE). A microfluidic channel-like structure embedded in a micro-electro-mechanical resonator via our proposed CMOS-MEMS technology is used to illustrate the connections among microfluidics, micromechanics, and microelectronics. PMID:23963526

  14. Copper metallization for on-chip interconnects

    NASA Astrophysics Data System (ADS)

    Gelatos, A. V.; Nguyen, Bich-Yen; Perry, Kathleen A.; Marsh, R.; Peschke, J.; Filipiak, Stanley M.; Travis, Edward O.; Thompson, Matthew A.; Saaranen, T.; Tobin, Phil J.; Mogab, C. J.

    1996-09-01

    Continued dimensional scaling of the elements of integrated circuits places significant restrictions on the width, density and current carrying capability of metallic interconnects. It is expected that, by the year 2000, the transistor channel length will be at 0.l8piri [1], while microprocessors will pack more than 15 million transistors over an area of '-700mm2. To conserve area, interconnects will continue to be stacked at an increasing number of levels (6 by the year 2000, vs 4 in todays leading microprocessors) and the minimum spacing and width within an interconnect layer will shrink to 0.3.tm. In addition, it is expected that future interconnects will need to sustain increasingly higher current densities without electromigration failures [2]. Aluminum alloys are the conductors of choice in present-day interconnects, and much effort is focused n means to extend the usefulness of aluminum through improvements in reliability, either by new alloy formulations [3], or by the development of complicated multimetal stacks [4. A more radical approach, which is gaining increased attention, is the replacement of aluminum altogether by copper. The bulk resistivity of copper is significantly lower than that of aluminum (1.7.tW-cm for Cu vs. 3.0iW-cm for Al-Cu), which is expected to translate to interconnects of higher performance because of reduction in signal propagation delay. In addition, the significantly higher melting temperature of copper (.-1100°C vs. -600°C for Al-Cu alloys) and its higher atomic weight are expected to translate to improved resistance to electromigration [5]. However, as with any new process trying to break into the mainstream, significant improvement in reliability and performance over that achievable with aluminum alloys must be demonstrated first. Towards this purpose, processes need to be developed that deposit conformal copper films of high purity with acceptable throughput, and integration schemes need to be developed which produce

  15. 3-dimensional electrode patterning within a microfluidic channel using metal ion implantation.

    PubMed

    Choi, Jae-Woo; Rosset, Samuel; Niklaus, Muhamed; Adleman, James R; Shea, Herbert; Psaltis, Demetri

    2010-03-21

    The application of electrical fields within a microfluidic channel enables many forms of manipulation necessary for lab-on-a-chip devices. Patterning electrodes inside the microfluidic channel generally requires multi-step optical lithography. Here, we utilize an ion-implantation process to pattern 3D electrodes within a fluidic channel made of polydimethylsiloxane (PDMS). Electrode structuring within the channel is achieved by ion implantation at a 40 degrees angle with a metal shadow mask. The advantages of three-dimensional structuring of electrodes within a fluidic channel over traditional planar electrode designs are discussed. Two possible applications are presented: asymmetric particles can be aligned in any of the three axial dimensions with electro-orientation; colloidal focusing and concentration within a fluidic channel can be achieved through dielectrophoresis. Demonstrations are shown with E. coli, a rod shaped bacteria, and indicate the potential that ion-implanted microfluidic channels have for manipulations in the context of lab-on-a-chip devices. PMID:20221568

  16. Fluid displacement during droplet formation at microfluidic flow-focusing junctions.

    PubMed

    Huang, Haishui; He, Xiaoming

    2015-11-01

    Microdroplets and microcapsules have been widely produced using microfluidic flow-focusing junctions for biomedical and chemical applications. However, the multiphase microfluidic flow at the flow-focusing junction has not been well investigated. In this study, the displacement of two (core and shell) aqueous fluids that disperse into droplets altogether in a carrier oil emulsion was investigated both numerically and experimentally. It was found that extensive displacement of the two aqueous fluids within the droplet during its formation could occur as a result of the shear effect of the carrier fluid and the capillary effect of interfacial tension. We further identified that the two mechanisms of fluid displacement can be evaluated by two dimensionless parameters. The quantitative relationship between the degree of fluid displacement and these two dimensionless parameters was determined experimentally. Finally, we demonstrated that the degree of fluid displacement could be controlled to generate hydrogel microparticles of different morphologies using planar or nonplanar flow-focusing junctions. These findings should provide useful guidance to the microfluidic production of microscale droplets or capsules for various biomedical and chemical applications. PMID:26381220

  17. Interfacial tension based on-chip extraction of microparticles confined in microfluidic Stokes flows

    PubMed Central

    Huang, Haishui; He, Xiaoming

    2014-01-01

    Microfluidics involving two immiscible fluids (oil and water) has been increasingly used to produce hydrogel microparticles with wide applications. However, it is difficult to extract the microparticles out of the microfluidic Stokes flows of oil that have a Reynolds number (the ratio of inertia to viscous force) much less than one, where the dominant viscous force tends to drive the microparticles to move together with the surrounding oil. Here, we present a passive method for extracting hydrogel microparticles in microfluidic Stokes flow from oil into aqueous extracting solution on-chip by utilizing the intrinsic interfacial tension between oil and the microparticles. We further reveal that the thickness of an “extended confining layer” of oil next to the interface between oil and aqueous extracting solution must be smaller than the radius of microparticles for effective extraction. This method uses a simple planar merging microchannel design that can be readily fabricated and further integrated into a fluidic system to extract microparticles for wide applications. PMID:25378709

  18. Fluid displacement during droplet formation at microfluidic flow-focusing junction

    PubMed Central

    Huang, Haishui; He, Xiaoming

    2015-01-01

    Microdroplets and microcapsules have been widely produced using microfluidic flow-focusing junction for biomedical and chemical applications. However, the multiphase microfluidic flow at the flow-focusing junction has not been well investigated. In this study, the displacement of two (core and shell) aqueous fluids that disperse into droplets altogether in a carrier oil emulsion was investigated both numerically and experimentally. It was found that extensive displacement of the two aqueous fluids within the droplet during its formation could occur as a result of the shear effect of the carrier fluid and the capillary effect of interfacial tension. We further identified that the two mechanisms of fluid displacement can be evaluated by two dimensionless parameters. The quantitative relationship between the degree of fluid displacement and these two dimensionless parameters was determined experimentally. Finally, we demonstrated that the degree of fluid displacement could be controlled to generate hydrogel microparticles of different morphologies using planar or nonplanar flow-focusing junctions. These findings should provide useful guidance to the microfluidic production of microscale droplets or capsules for various biomedical and chemical applications. PMID:26381220

  19. Direct 3D-printing of cell-laden constructs in microfluidic architectures.

    PubMed

    Liu, Justin; Hwang, Henry H; Wang, Pengrui; Whang, Grace; Chen, Shaochen

    2016-04-21

    Microfluidic platforms have greatly benefited the biological and medical fields, however standard practices require a high cost of entry in terms of time and energy. The utilization of three-dimensional (3D) printing technologies has greatly enhanced the ability to iterate and build functional devices with unique functions. However, their inability to fabricate within microfluidic devices greatly increases the cost of producing several different devices to examine different scientific questions. In this work, a variable height micromixer (VHM) is fabricated using projection 3D-printing combined with soft lithography. Theoretical and flow experiments demonstrate that altering the local z-heights of VHM improved mixing at lower flow rates than simple geometries. Mixing of two fluids occurs as low as 320 μL min(-1) in VHM whereas the planar zigzag region requires a flow rate of 2.4 mL min(-1) before full mixing occurred. Following device printing, to further demonstrate the ability of this projection-based method, complex, user-defined cell-laden scaffolds are directly printed inside the VHM. The utilization of this unique ability to produce 3D tissue models within a microfluidic system could offer a unique platform for medical diagnostics and disease modeling. PMID:26980159

  20. Oxidation Resistant, Cr Retaining, Electrically Conductive Coatings on Metallic Alloys for SOFC Interconnects

    SciTech Connect

    Vladimir Gorokhovsky

    2008-03-31

    This report describes significant results from an on-going, collaborative effort to enable the use of inexpensive metallic alloys as interconnects in planar solid oxide fuel cells (SOFCs) through the use of advanced coating technologies. Arcomac Surface Engineering, LLC, under the leadership of Dr. Vladimir Gorokhovsky, is investigating filtered-arc and filtered-arc plasma-assisted hybrid coating deposition technologies to promote oxidation resistance, eliminate Cr volatility, and stabilize the electrical conductivity of both standard and specialty steel alloys of interest for SOFC metallic interconnect (IC) applications. Arcomac has successfully developed technologies and processes to deposit coatings with excellent adhesion, which have demonstrated a substantial increase in high temperature oxidation resistance, stabilization of low Area Specific Resistance values and significantly decrease Cr volatility. An extensive matrix of deposition processes, coating compositions and architectures was evaluated. Technical performance of coated and uncoated sample coupons during exposures to SOFC interconnect-relevant conditions is discussed, and promising future directions are considered. Cost analyses have been prepared based on assessment of plasma processing parameters, which demonstrate the feasibility of the proposed surface engineering process for SOFC metallic IC applications.

  1. Probabilistic immortality of Cu damascene interconnects

    NASA Astrophysics Data System (ADS)

    Hau-Riege, Stefan P.

    2002-02-01

    We have studied electromigration short-line effects in Cu damascene interconnects through experiments on lines of various lengths L, stressed at a variety of current densities j, and embedded in different dielectric materials. We observed two modes of resistance evolution: Either the resistance of the lines remains constant for the duration of the test, so that the lines are considered immortal, or the lines fail due to abrupt open-circuit failure. The resistance was not observed to gradually increase and then saturate, as commonly observed in Al-based interconnects, because the barrier is too thin and resistive to serve as a redundant current path should voiding occur. The critical stress for void nucleation was found to be smaller than 41 MPa, since voiding occurred even under the mildest test conditions of j=2 MA/cm2 and L=10.5 μm at 300 °C. A small fraction of short Cu lines failed even at low current densities, which deems necessary a concept of probabilistic immortality rather than deterministic immortality. Experiments and modeling suggest that the probability of immortality is described by (jL2/B), where B is the effective elastic modulus of the metallization scheme. By contrast, the immortality of Al-based interconnects with shunt layers is described by (jL) if no voids nucleate, and (jL/B) if voids do nucleate. Even though the phenomenology of short-line effects differs for Al- and Cu-based interconnects, the immortality of interconnects of either materials system can be explained by the phenomena of nucleation barriers for void formation and void-growth saturation. The differences are due solely to the absence of a shunt layer and the low critical stress for void nucleation in the case of Cu.

  2. Interconnect assembly for an electronic assembly and assembly method therefor

    DOEpatents

    Gerbsch, Erich William

    2003-06-10

    An interconnect assembly and method for a semiconductor device, in which the interconnect assembly can be used in lieu of wirebond connections to form an electronic assembly. The interconnect assembly includes first and second interconnect members. The first interconnect member has a first surface with a first contact and a second surface with a second contact electrically connected to the first contact, while the second interconnect member has a flexible finger contacting the second contact of the first interconnect member. The first interconnect member is adapted to be aligned and registered with a semiconductor device having a contact on a first surface thereof, so that the first contact of the first interconnect member electrically contacts the contact of the semiconductor device. Consequently, the assembly method does not require any wirebonds, but instead merely entails aligning and registering the first interconnect member with the semiconductor device so that the contacts of the first interconnect member and the semiconductor device make electrically contact, and then contacting the second contact of the first interconnect member with the flexible finger of the second interconnect member.

  3. A Fully Automated Microfluidic Femtosecond Laser Axotomy Platform for Nerve Regeneration Studies in C. elegans

    PubMed Central

    Gokce, Sertan Kutal; Guo, Samuel X.; Ghorashian, Navid; Everett, W. Neil; Jarrell, Travis; Kottek, Aubri; Bovik, Alan C.; Ben-Yakar, Adela

    2014-01-01

    Femtosecond laser nanosurgery has been widely accepted as an axonal injury model, enabling nerve regeneration studies in the small model organism, Caenorhabditis elegans. To overcome the time limitations of manual worm handling techniques, automation and new immobilization technologies must be adopted to improve throughput in these studies. While new microfluidic immobilization techniques have been developed that promise to reduce the time required for axotomies, there is a need for automated procedures to minimize the required amount of human intervention and accelerate the axotomy processes crucial for high-throughput. Here, we report a fully automated microfluidic platform for performing laser axotomies of fluorescently tagged neurons in living Caenorhabditis elegans. The presented automation process reduces the time required to perform axotomies within individual worms to ∼17 s/worm, at least one order of magnitude faster than manual approaches. The full automation is achieved with a unique chip design and an operation sequence that is fully computer controlled and synchronized with efficient and accurate image processing algorithms. The microfluidic device includes a T-shaped architecture and three-dimensional microfluidic interconnects to serially transport, position, and immobilize worms. The image processing algorithms can identify and precisely position axons targeted for ablation. There were no statistically significant differences observed in reconnection probabilities between axotomies carried out with the automated system and those performed manually with anesthetics. The overall success rate of automated axotomies was 67.4±3.2% of the cases (236/350) at an average processing rate of 17.0±2.4 s. This fully automated platform establishes a promising methodology for prospective genome-wide screening of nerve regeneration in C. elegans in a truly high-throughput manner. PMID:25470130

  4. Electrochemical velocimetry on centrifugal microfluidic platforms.

    PubMed

    Abi-Samra, Kameel; Kim, Tae-Hyeong; Park, Dong-Kyu; Kim, Nahui; Kim, Jintae; Kim, Hanshin; Cho, Yoon-Kyoung; Madou, Marc

    2013-08-21

    Expanding upon recent applications of interfacing electricity with centrifugal microfluidic platforms, we introduce electrochemical velocimetry to monitor flow in real-time on rotating fluidic devices. Monitoring flow by electrochemical techniques requires a simple, compact setup of miniaturized electrodes that are embedded within a microfluidic channel and are connected to a peripherally-located potentiostat. On-disc flow rates, determined by electrochemical velocimetry, agreed well with theoretically expected values and with optical measurements. As an application of the presented techniques, the dynamic process of droplet formation and release was recorded, yielding critical information about droplet frequency and volume. Overall, the techniques presented in this work advance the field of centrifugal microfluidics by offering a powerful tool, previously unavailable, to monitor flow in real-time on rotating microfluidic systems. PMID:23787459

  5. Microfluidic microarray systems and methods thereof

    DOEpatents

    West, Jay A. A.; Hukari, Kyle W.; Hux, Gary A.

    2009-04-28

    Disclosed are systems that include a manifold in fluid communication with a microfluidic chip having a microarray, an illuminator, and a detector in optical communication with the microarray. Methods for using these systems for biological detection are also disclosed.

  6. Overview of the microfluidic diagnostics commercial landscape.

    PubMed

    Kim, Lily

    2013-01-01

    Since its birth in the late 1980s, the field of microfluidics has continued to mature, with a growing number of companies pursuing diagnostic applications. In 2009 the worldwide in vitro diagnostics market was estimated at >$40 billion USD, and microfluidic diagnostics are poised to reap a significant part of this market across a range of areas including laboratory diagnostics, point-of-care diagnostics, cancer diagnostics, and others. The potential economic advantages of microfluidics are numerous and compelling: lower reagent and/or sample volumes, lower equipment costs, improved portability, increased automation, and increased measurement speed. All of these factors may help put more information in the hands of doctors and patients sooner, enabling earlier disease detection and more tailored, effective treatments. This chapter reviews the microfluidic diagnostics commercial landscape and discusses potential commercialization challenges and opportunities. PMID:23329436

  7. Replaceable Microfluidic Cartridges for a PCR Biosensor

    NASA Technical Reports Server (NTRS)

    Francis, Kevin; Sullivan, Ron

    2005-01-01

    The figure depicts a replaceable microfluidic cartridge that is a component of a miniature biosensor that detects target deoxyribonucleic acid (DNA) sequences. The biosensor utilizes (1) polymerase chain reactions (PCRs) to multiply the amount of DNA to be detected, (2) fluorogenic polynucleotide probe chemicals for labeling the target DNA sequences, and (3) a high-sensitivity epifluorescence-detection optoelectronic subsystem. Microfluidics is a relatively new field of device development in which one applies techniques for fabricating microelectromechanical systems (MEMS) to miniature systems for containing and/or moving fluids. Typically, microfluidic devices are microfabricated, variously, from silicon or polymers. The development of microfluidic devices for applications that involve PCR and fluorescence-based detection of PCR products poses special challenges

  8. Microfluidic Tools for Protein Crystallography

    NASA Astrophysics Data System (ADS)

    Abdallah, Bahige G.

    X-ray crystallography is the most widely used method to determine the structure of proteins, providing an understanding of their functions in all aspects of life to advance applications in fields such as drug development and renewable energy. New techniques, namely serial femtosecond crystallography (SFX), have unlocked the ability to unravel the structures of complex proteins with vital biological functions. A key step and major bottleneck of structure determination is protein crystallization, which is very arduous due to the complexity of proteins and their natural environments. Furthermore, crystal characteristics govern data quality, thus need to be optimized to attain the most accurate reconstruction of the protein structure. Crystal size is one such characteristic in which narrowed distributions with a small modal size can significantly reduce the amount of protein needed for SFX. A novel microfluidic sorting platform was developed to isolate viable ~200 nm -- ~600 nm photosystem I (PSI) membrane protein crystals from ~200 nm -- ~20 ?m crystal samples using dielectrophoresis, as confirmed by fluorescence microscopy, second-order nonlinear imaging of chiral crystals (SONICC), and dynamic light scattering. The platform was scaled-up to rapidly provide 100s of microliters of sorted crystals necessary for SFX, in which similar crystal size distributions were attained. Transmission electron microscopy was used to view the PSI crystal lattice, which remained well-ordered postsorting, and SFX diffraction data was obtained, confirming a high-quality, viable crystal sample. Simulations indicated sorted samples provided accurate, complete SFX datasets with 3500-fold less protein than unsorted samples. Microfluidic devices were also developed for versatile, rapid protein crystallization screening using nanovolumes of sample. Concentration gradients of protein and precipitant were generated to crystallize PSI, phycocyanin, and lysozyme using modified counterdiffusion

  9. National Offshore Wind Energy Grid Interconnection Study Full Report

    SciTech Connect

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Gregory; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  10. High temperature solid electrolyte fuel cell configurations and interconnections

    DOEpatents

    Isenberg, Arnold O.

    1984-01-01

    High temperature fuel cell configurations and interconnections are made including annular cells having a solid electrolyte sandwiched between thin film electrodes. The cells are electrically interconnected along an elongated axial outer surface.

  11. National Offshore Wind Energy Grid Interconnection Study Executive Summary

    SciTech Connect

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Gregory; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  12. Microfluidics and Cancer: Are we there yet?

    PubMed Central

    Zhang, Jennifer Zhuo; Nagrath, Sunitha

    2013-01-01

    More than two decades ago, microfluidics began to show its impact in biological research. Since then, the field of microfluidics has evolving rapidly. Cancer is one of the leading causes of death worldwide. Microfluidics holds great promise in cancer diagnosis and also serves as an emerging tool for understanding cancer biology. Microfluidics can be valuable for cancer investigation due to its high sensitivity, high throughput, less material-consumption, low cost, and enhanced spatio-temporal control. The physical laws on microscale offer an advantage enabling the control of physics, biology, chemistry and physiology at cellular level. Furthermore, microfluidic based platforms are portable and can be easily designed for point-of-care diagnostics. Developing and applying the state of the art microfluidic technologies to address the unmet challenges in cancer can expand the horizons of not only fundamental biology but also the management of disease and patient care. Despite the various microfluidic technologies available in the field, few have been tested clinically, which can be attributed to the various challenges existing in bridging the gap between the emerging technology and real world applications. We present a review of role of microlfuidcs in cancer research, including the history, recent advances and future directions to explore where the field stand currently in addressing complex clinical challenges and future of it. This review identifies four critical areas in cancer research, in which microfluidics can change the current paradigm. These include cancer cell isolation, molecular diagnostics, tumor biology and high-throughput screening for therapeutics. In addition, some of our lab’s current research is presented in the corresponding sections. PMID:23358873

  13. Transport Phenomena and Interfacial Kinetics in Planar Microfluidic Membraneless Fuel Cells

    SciTech Connect

    Abruna, Hector Daniel

    2013-08-01

    Our work is focused on membraneless laminar flow fuel cells, an unconventional fuel cell technology, intended to create a system that not only avoids most typical fuel cell drawbacks, but also achieves the highest power density yet recorded for a non-H{sub 2} fuel cell. We have employed rigorous electrochemistry to characterize the high-energy- density fuel BH4-, providing important mechanistic insight for anode catalyst choice and avoiding deleterious side reactions. Numerous fuel cell oxidants, used in place of O{sub 2}, are compared in a detailed, uniform manner, and a powerful new oxidant, cerium ammonium nitrate (CAN), is described. The high-voltage BH{sub 4}{sup -}/CAN fuel/oxidant combination is employed in a membraneless, room temperature, laminar-flow fuel cell, with herringbone micromixers which provide chaotic-convective flow which, in turn, enhances both the power output and efficiency of the device. We have also been involved in the design of a scaled-up version of the membraneless laminar flow fuel cell intended to provide a 10W output.

  14. Planar Microfluidic System Based on Electrophoresis for Detection of 130-nm Magnetic Labels for Biosensing

    NASA Astrophysics Data System (ADS)

    Takamura, Tsukasa; Morimoto, Yoshitaka; Sandhu, Adarsh

    2011-04-01

    Superparamagnetic beads (SPBs) used as magnetic labels offer potential for the realization of high sensitivity and low cost biosensors for point of care treatment (POCT). For better biomolecular affinity and higher sensitivity, it is desirable to use sub-200-nm-diameter SPBs comparable in size to actual biomolecules. However, the detection of small concentrations of such SPBs by magnetoresistive devices is extremely challenging due to small magnetic response of SPBs. As a solution to these limitations, we describe a simple detecting procedure where the capture of micro-SPBs by immobilized nano-target SPBs due to self-assembly induced by an external magnetic field, which was monitored under an optical microscope. Here we describe biosensing system based on self-assembly of micro-SPBs by nanoSPBs targets using a system without external pumps, thereby enabling greater miniaturization and portability.

  15. Integrated silicon photonic interconnect with surface-normal optical interface

    NASA Astrophysics Data System (ADS)

    Zhang, Zanyun; Huang, Beiju; Zhang, Zan; Cheng, Chuantong; Liu, Hongwei; Li, Hongqiang; Chen, Hongda

    2016-05-01

    An integrated silicon photonic interconnect with surface-normal optical interface is demonstrated by connecting a bidirectional grating based E-O modulator and a germanium waveguide photodetector. To investigate this photonic interconnect, both static and dynamic performance of the discrete devices are characterized respectively. Based on the characterization work, data transmission experiment is carried out for the photonic interconnect. Eye diagram results indicate the photonic interconnect can operate up to 7 Gb/s.

  16. Pointed drawings of planar graphs☆

    PubMed Central

    Aichholzer, Oswin; Rote, Günter; Schulz, André; Vogtenhuber, Birgit

    2012-01-01

    We study the problem how to draw a planar graph crossing-free such that every vertex is incident to an angle greater than π. In general a plane straight-line drawing cannot guarantee this property. We present algorithms which construct such drawings with either tangent-continuous biarcs or quadratic Bézier curves (parabolic arcs), even if the positions of the vertices are predefined by a given plane straight-line drawing of the graph. Moreover, the graph can be drawn with circular arcs if the vertices can be placed arbitrarily. The topic is related to non-crossing drawings of multigraphs and vertex labeling. PMID:23471372

  17. Terahertz super thin planar lenses

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Ye, Jiasheng; Hu, Dan; Wang, Xinke; Feng, Shengfei; Sun, Wenfeng

    2012-12-01

    Terahertz (THz) radiation is an under developing range in the electromagnetic spectrum. It has attracted a lot of attentions due to its various potential applications. However, THz systems are difficult to be integrated into a smart size due to the limitation of its long wavelength. In this presentation, we propose a new approach to design planar lenses with a thickness of several hundred nanometers in the THz range. The fabricated lenses are characterized with a focal plane imaging system and it is found that they can focus the THz light and image an object well. It is expected that this new approach can pave a way for smart THz systems integration.

  18. 3D printed microfluidics for biological applications.

    PubMed

    Ho, Chee Meng Benjamin; Ng, Sum Huan; Li, King Ho Holden; Yoon, Yong-Jin

    2015-01-01

    The term "Lab-on-a-Chip," is synonymous with describing microfluidic devices with biomedical applications. Even though microfluidics have been developing rapidly over the past decade, the uptake rate in biological research has been slow. This could be due to the tedious process of fabricating a chip and the absence of a "killer application" that would outperform existing traditional methods. In recent years, three dimensional (3D) printing has been drawing much interest from the research community. It has the ability to make complex structures with high resolution. Moreover, the fast building time and ease of learning has simplified the fabrication process of microfluidic devices to a single step. This could possibly aid the field of microfluidics in finding its "killer application" that will lead to its acceptance by researchers, especially in the biomedical field. In this paper, a review is carried out of how 3D printing helps to improve the fabrication of microfluidic devices, the 3D printing technologies currently used for fabrication and the future of 3D printing in the field of microfluidics. PMID:26237523

  19. Microfluidic dielectrophoretic sorter using gel vertical electrodes

    PubMed Central

    Luo, Jason; Nelson, Edward L.; Li, G. P.; Bachman, Mark

    2014-01-01

    We report the development and results of a two-step method for sorting cells and small particles in a microfluidic device. This approach uses a single microfluidic channel that has (1) a microfabricated sieve which efficiently focuses particles into a thin stream, followed by (2) a dielectrophoresis (DEP) section consisting of electrodes along the channel walls for efficient continuous sorting based on dielectric properties of the particles. For our demonstration, the device was constructed of polydimethylsiloxane, bonded to a glass surface, and conductive agarose gel electrodes. Gold traces were used to make electrical connections to the conductive gel. The device had several novel features that aided performance of the sorting. These included a sieving structure that performed continuous displacement of particles into a single stream within the microfluidic channel (improving the performance of downstream DEP, and avoiding the need for additional focusing flow inlets), and DEP electrodes that were the full height of the microfluidic walls (“vertical electrodes”), allowing for improved formation and control of electric field gradients in the microfluidic device. The device was used to sort polymer particles and HeLa cells, demonstrating that this unique combination provides improved capability for continuous DEP sorting of particles in a microfluidic device. PMID:24926390

  20. Microfluidic Devices in Advanced Caenorhabditis elegans Research.

    PubMed

    Muthaiyan Shanmugam, Muniesh; Subhra Santra, Tuhin

    2016-01-01

    The study of model organisms is very important in view of their potential for application to human therapeutic uses. One such model organism is the nematode worm, Caenorhabditis elegans. As a nematode, C. elegans have ~65% similarity with human disease genes and, therefore, studies on C. elegans can be translated to human, as well as, C. elegans can be used in the study of different types of parasitic worms that infect other living organisms. In the past decade, many efforts have been undertaken to establish interdisciplinary research collaborations between biologists, physicists and engineers in order to develop microfluidic devices to study the biology of C. elegans. Microfluidic devices with the power to manipulate and detect bio-samples, regents or biomolecules in micro-scale environments can well fulfill the requirement to handle worms under proper laboratory conditions, thereby significantly increasing research productivity and knowledge. The recent development of different kinds of microfluidic devices with ultra-high throughput platforms has enabled researchers to carry out worm population studies. Microfluidic devices primarily comprises of chambers, channels and valves, wherein worms can be cultured, immobilized, imaged, etc. Microfluidic devices have been adapted to study various worm behaviors, including that deepen our understanding of neuromuscular connectivity and functions. This review will provide a clear account of the vital involvement of microfluidic devices in worm biology. PMID:27490525

  1. Predicting Droplet Formation on Centrifugal Microfluidic Platforms

    NASA Astrophysics Data System (ADS)

    Moebius, Jacob Alfred

    Centrifugal microfluidics is a widely known research tool for biological sample and water quality analysis. Currently, the standard equipment used for such diagnostic applications include slow, bulky machines controlled by multiple operators. These machines can be condensed into a smaller, faster benchtop sample-to-answer system. Sample processing is an important step taken to extract, isolate, and convert biological factors, such as nucleic acids or proteins, from a raw sample to an analyzable solution. Volume definition is one such step. The focus of this thesis is the development of a model predicting monodispersed droplet formation and the application of droplets as a technique for volume definition. First, a background of droplet microfluidic platforms is presented, along with current biological analysis technologies and the advantages of integrating such technologies onto microfluidic platforms. Second, background and theories of centrifugal microfluidics is given, followed by theories relevant to droplet emulsions. Third, fabrication techniques for centrifugal microfluidic designs are discussed. Finally, the development of a model for predicting droplet formation on the centrifugal microfluidic platform are presented for the rest of the thesis. Predicting droplet formation analytically based on the volumetric flow rates of the continuous and dispersed phases, the ratios of these two flow rates, and the interfacial tension between the continuous and dispersed phases presented many challenges, which will be discussed in this work. Experimental validation was completed using continuous phase solutions of different interfacial tensions. To conclude, prospective applications are discussed with expected challenges.

  2. Microfluidic control of axonal guidance

    NASA Astrophysics Data System (ADS)

    Gu, Ling; Black, Bryan; Ordonez, Simon; Mondal, Argha; Jain, Ankur; Mohanty, Samarendra

    2014-10-01

    The precision of axonal pathfinding and the accurate formation of functional neural circuitry are crucial for an organism during development as well as during adult central and peripheral nerve regeneration. While chemical cues are believed to be primarily responsible for axonal pathfinding, we hypothesize that forces due to localized fluid flow may directly affect neuronal guidance during early organ development. Here, we report direct evidence of fluid flow influencing axonal migration, producing turning angles of up to 90°. Microfluidic flow simulations indicate that an axon may experience significant bending force due to cross-flow, which may contribute to the observed axonal turning. This method of flow-based guidance was successfully used to fasciculate one advancing axon onto another, showcasing the potential of this technique to be used for the formation of in vitro neuronal circuits.

  3. Bistable diverter valve in microfluidics

    NASA Astrophysics Data System (ADS)

    Tesař, V.; Bandalusena, H. C. H.

    2011-05-01

    Bistable diverter valves are useful for a large number of no-moving-part flow control applications, and there is a considerable interest in using them also in microfluidics, especially for handling small pressure-driven flows. However, with decreasing Reynolds number, the Coanda effect—on which the flow diverting effect depends—becomes less effective. Authors performed a study, involving flow visualisation, PIV experiments, measurements of the flow rates, and numerical flowfield computations, aimed at clarifying behaviour of a typical fluidic valve at low Reynolds numbers. A typical fluidic valve originally developed for high Re operation was demonstrated to be useful, though with progressively limited efficiency, down to surprisingly low Re values as small as Re = 800. Also observed was a previously not reported discontinuation in the otherwise monotonic decrease in performance at Re between 1,500 and 2,000.

  4. Microfluidic organs-on-chips.

    PubMed

    Bhatia, Sangeeta N; Ingber, Donald E

    2014-08-01

    An organ-on-a-chip is a microfluidic cell culture device created with microchip manufacturing methods that contains continuously perfused chambers inhabited by living cells arranged to simulate tissue- and organ-level physiology. By recapitulating the multicellular architectures, tissue-tissue interfaces, physicochemical microenvironments and vascular perfusion of the body, these devices produce levels of tissue and organ functionality not possible with conventional 2D or 3D culture systems. They also enable high-resolution, real-time imaging and in vitro analysis of biochemical, genetic and metabolic activities of living cells in a functional tissue and organ context. This technology has great potential to advance the study of tissue development, organ physiology and disease etiology. In the context of drug discovery and development, it should be especially valuable for the study of molecular mechanisms of action, prioritization of lead candidates, toxicity testing and biomarker identification. PMID:25093883

  5. Microfluidic Separation of Chiral Particles

    NASA Astrophysics Data System (ADS)

    Marcos; Fu, Henry; Powers, Thomas; Stocker, Roman

    2008-11-01

    We present a combined theoretical and experimental investigation of the fluid mechanics of a helix exposed to a shear flow. In addition to classic Jeffery orbits, Resistive Force Theory predicts a drift of the helix across streamlines, perpendicular to the shear plane. The direction of the drift is determined by the direction of the shear and the chirality of the helix. We verify this prediction experimentally using microfluidics, by exposing Leptospira biflexa, a non-motile strain of helical-shaped bacteria, to a plane parabolic flow. As the shear in the top and bottom halves of the microchannel has opposite sign, we predict and observe the bacteria in these two regions to drift in opposite directions. The magnitude of the separation is in good quantitative agreement with theory. This setup can be used to separate microscale chiral objects.

  6. Microfluidic Sample Preparation for Immunoassays

    SciTech Connect

    Visuri, S; Benett, W; Bettencourt, K; Chang, J; Fisher, K; Hamilton, J; Krulevitch, P; Park, C; Stockton, C; Tarte, L; Wang, A; Wilson, T

    2001-08-09

    Researchers at Lawrence Livermore National Laboratory are developing means to collect and identify fluid-based biological pathogens in the forms of proteins, viruses, and bacteria. to support detection instruments, they are developing a flexible fluidic sample preparation unit. The overall goal of this Microfluidic Module is to input a fluid sample, containing background particulates and potentially target compounds, and deliver a processed sample for detection. They are developing techniques for sample purification, mixing, and filtration that would be useful to many applications including immunologic and nucleic acid assays. Many of these fluidic functions are accomplished with acoustic radiation pressure or dielectrophoresis. They are integrating these technologies into packaged systems with pumps and valves to control fluid flow through the fluidic circuit.

  7. Acoustic Microfluidics for Bioanalytical Application

    NASA Astrophysics Data System (ADS)

    Lopez, Gabriel

    2013-03-01

    This talk will present new methods the use of ultrasonic standing waves in microfluidic systems to manipulate microparticles for the purpose of bioassays and bioseparations. We have recently developed multi-node acoustic focusing flow cells that can position particles into many parallel flow streams and have demonstrated the potential of such flow cells in the development of high throughput, parallel flow cytometers. These experiments show the potential for the creation of high throughput flow cytometers in applications requiring high flow rates and rapid detection of rare cells. This talk will also present the development of elastomeric capture microparticles and their use in acoustophoretic separations. We have developed simple methods to form elastomeric particles that are surface functionalized with biomolecular recognition reagents. These compressible particles exhibit negative acoustic contrast in ultrasound when suspended in aqueous media, blood serum or diluted blood. These particles can be continuously separated from cells by flowing them through a microfluidic device that uses an ultrasonic standing wave to align the blood cells, which exhibit positive acoustic contrast, at a node in the acoustic pressure distribution while aligning the negative acoustic contrast elastomeric particles at the antinodes. Laminar flow of the separated particles to downstream collection ports allows for collection of the separated negative contrast particles and cells. Separated elastomeric particles were analyzed via flow cytometry to demonstrate nanomolar detection for prostate specific antigen in aqueous buffer and picomolar detection for IgG in plasma and diluted blood samples. This approach has potential applications in the development of rapid assays that detect the presence of low concentrations of biomarkers (including biomolecules and cells) in a number of biological sample types. We acknowledge support through the NSF Research Triangle MRSEC.

  8. 14 CFR 29.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flow between interconnected tanks. 29.957... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.957 Flow between interconnected tanks. (a) Where tank outlets are interconnected and allow fuel to flow...

  9. 14 CFR 23.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flow between interconnected tanks. 23.957... Fuel System § 23.957 Flow between interconnected tanks. (a) It must be impossible, in a gravity feed system with interconnected tank outlets, for enough fuel to flow between the tanks to cause an...

  10. Correlation between porous texture and cell seeding efficiency of gas foaming and microfluidic foaming scaffolds.

    PubMed

    Costantini, Marco; Colosi, Cristina; Mozetic, Pamela; Jaroszewicz, Jakub; Tosato, Alessia; Rainer, Alberto; Trombetta, Marcella; Święszkowski, Wojciech; Dentini, Mariella; Barbetta, Andrea

    2016-05-01

    In the design of scaffolds for tissue engineering applications, morphological parameters such as pore size, shape, and interconnectivity, as well as transport properties, should always be tailored in view of their clinical application. In this work, we demonstrate that a regular and ordered porous texture is fundamental to achieve an even cell distribution within the scaffold under perfusion seeding. To prove our hypothesis, two sets of alginate scaffolds were fabricated using two different technological approaches of the same method: gas-in-liquid foam templating. In the first one, foam was obtained by insufflating argon in a solution of alginate and a surfactant under stirring. In the second one, foam was generated inside a flow-focusing microfluidic device under highly controlled and reproducible conditions. As a result, in the former case the derived scaffold (GF) was characterized by polydispersed pores and interconnects, while in the latter (μFL), the porous structure was highly regular both with respect to the spatial arrangement of pores and interconnects and their monodispersity. Cell seeding within perfusion bioreactors of the two scaffolds revealed that cell population inside μFL scaffolds was quantitatively higher than in GF. Furthermore, seeding efficiency data for μFL samples were characterized by a lower standard deviation, indicating higher reproducibility among replicates. Finally, these results were validated by simulation of local flow velocity (CFD) inside the scaffolds proving that μFL was around one order of magnitude more permeable than GF. PMID:26952471

  11. Development of Interconnect Technologies for Particle Detectors

    SciTech Connect

    Tripathi, Mani

    2015-01-29

    This final report covers the three years of this grant, for the funding period 9/1/2010 - 8/31/2013. The project consisted of generic detector R&D work at UC Davis, with an emphasis on developing interconnect technologies for applications in HEP. Much of the work is done at our Facility for Interconnect Technologies (FIT) at UC Davis. FIT was established using ARRA funds, with further studies supported by this grant. Besides generic R&D work at UC Davis, FIT is engaged in providing bump bonding help to several DOE supported detector R&D efforts. Some of the developmental work was also supported by funding from other sources: continuing CMS project funds and the Linear Collider R&D funds. The latter program is now terminated. The three year program saw a good deal of progress on several fronts, which are reported here.

  12. Release Resistant Electrical Interconnections For Mems Devices

    DOEpatents

    Peterson, Kenneth A.; Garrett, Stephen E.; Reber, Cathleen A.

    2005-02-22

    A release resistant electrical interconnection comprising a gold-based electrical conductor compression bonded directly to a highly-doped polysilicon bonding pad in a MEMS, IMEMS, or MOEMS device, without using any intermediate layers of aluminum, titanium, solder, or conductive adhesive disposed in-between the conductor and polysilicon pad. After the initial compression bond has been formed, subsequent heat treatment of the joint above 363 C creates a liquid eutectic phase at the bondline comprising gold plus approximately 3 wt % silicon, which, upon re-solidification, significantly improves the bond strength by reforming and enhancing the initial bond. This type of electrical interconnection is resistant to chemical attack from acids used for releasing MEMS elements (HF, HCL), thereby enabling the use of a "package-first, release-second" sequence for fabricating MEMS devices. Likewise, the bond strength of an Au--Ge compression bond may be increased by forming a transient liquid eutectic phase comprising Au-12 wt % Ge.

  13. Epidemic spread on interconnected metapopulation networks

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Tanaka, Gouhei; Suzuki, Hideyuki; Aihara, Kazuyuki

    2014-09-01

    Numerous real-world networks have been observed to interact with each other, resulting in interconnected networks that exhibit diverse, nontrivial behavior with dynamical processes. Here we investigate epidemic spreading on interconnected networks at the level of metapopulation. Through a mean-field approximation for a metapopulation model, we find that both the interaction network topology and the mobility probabilities between subnetworks jointly influence the epidemic spread. Depending on the interaction between subnetworks, proper controls of mobility can efficiently mitigate epidemics, whereas an extremely biased mobility to one subnetwork will typically cause a severe outbreak and promote the epidemic spreading. Our analysis provides a basic framework for better understanding of epidemic behavior in related transportation systems as well as for better control of epidemics by guiding human mobility patterns.

  14. Epidemic spread on interconnected metapopulation networks.

    PubMed

    Wang, Bing; Tanaka, Gouhei; Suzuki, Hideyuki; Aihara, Kazuyuki

    2014-09-01

    Numerous real-world networks have been observed to interact with each other, resulting in interconnected networks that exhibit diverse, nontrivial behavior with dynamical processes. Here we investigate epidemic spreading on interconnected networks at the level of metapopulation. Through a mean-field approximation for a metapopulation model, we find that both the interaction network topology and the mobility probabilities between subnetworks jointly influence the epidemic spread. Depending on the interaction between subnetworks, proper controls of mobility can efficiently mitigate epidemics, whereas an extremely biased mobility to one subnetwork will typically cause a severe outbreak and promote the epidemic spreading. Our analysis provides a basic framework for better understanding of epidemic behavior in related transportation systems as well as for better control of epidemics by guiding human mobility patterns. PMID:25314481

  15. Architecture for on-die interconnect

    DOEpatents

    Khare, Surhud; More, Ankit; Somasekhar, Dinesh; Dunning, David S.

    2016-03-15

    In an embodiment, an apparatus includes: a plurality of islands configured on a semiconductor die, each of the plurality of islands having a plurality of cores; and a plurality of network switches configured on the semiconductor die and each associated with one of the plurality of islands, where each network switch includes a plurality of output ports, a first set of the output ports are each to couple to the associated network switch of an island via a point-to-point interconnect and a second set of the output ports are each to couple to the associated network switches of a plurality of islands via a point-to-multipoint interconnect. Other embodiments are described and claimed.

  16. Interconnection of bundled solid oxide fuel cells

    SciTech Connect

    Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S

    2014-01-14

    A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.

  17. Copper Nanowire Production for Interconnect Applications

    NASA Technical Reports Server (NTRS)

    Han, Jin-Woo (Inventor); Meyyappan, Meyya (Inventor)

    2014-01-01

    A method of fabricating metallic Cu nanowires with lengths up to about 25 micrometers and diameters in a range 20-100 nanometers, or greater if desired. Vertically oriented or laterally oriented copper oxide structures (CuO and/or Cu2O) are grown on a Cu substrate. The copper oxide structures are reduced with 99+ percent H or H2, and in this reduction process the lengths decrease (to no more than about 25 micrometers), the density of surviving nanostructures on a substrate decreases, and the diameters of the surviving nanostructures have a range, of about 20-100 nanometers. The resulting nanowires are substantially pure Cu and can be oriented laterally (for local or global interconnects) or can be oriented vertically (for standard vertical interconnects).

  18. A covariance analysis algorithm for interconnected systems

    NASA Technical Reports Server (NTRS)

    Cheng, Victor H. L.; Curley, Robert D.; Lin, Ching-An

    1987-01-01

    A covariance analysis algorithm for propagation of signal statistics in arbitrarily interconnected nonlinear systems is presented which is applied to six-degree-of-freedom systems. The algorithm uses statistical linearization theory to linearize the nonlinear subsystems, and the resulting linearized subsystems are considered in the original interconnection framework for propagation of the signal statistics. Some nonlinearities commonly encountered in six-degree-of-freedom space-vehicle models are referred to in order to illustrate the limitations of this method, along with problems not encountered in standard deterministic simulation analysis. Moreover, the performance of the algorithm shall be numerically exhibited by comparing results using such techniques to Monte Carlo analysis results, both applied to a simple two-dimensional space-intercept problem.

  19. Ultralight Interconnected Metal Oxide Nanotube Networks.

    PubMed

    Stano, Kelly L; Faraji, Shaghayegh; Hodges, Ryan; Yildiz, Ozkan; Wells, Brian; Akyildiz, Halil I; Zhao, Junjie; Jur, Jesse; Bradford, Philip D

    2016-05-01

    Record-breaking ultralow density aluminum oxide structures are prepared using a novel templating technique. The alumina structures are unique in that they are comprised by highly aligned and interconnected nanotubes yielding anisotropic behavior. Large-scale network structures with complex form-factors can easily be made using this technique. The application of the low density networks as humidity sensing materials as well as thermal insulation is demonstrated. PMID:26969860

  20. Folded fibre bus interconnects with distributed amplification

    NASA Astrophysics Data System (ADS)

    Lorenzo, Raul Hernandez; Urquhart, Paul; Lopez-Amo, Manuel

    1998-06-01

    An optical fibre network for application as an interconnect within major nodes is investigated theoretically. The network is configured as a folded bus in which the spine consists of erbium doped fibre to overcome the power division at the couplers. It is argued that high received powers with a narrow dynamic range can be obtained simultaneously with bit rates in the order of 10 Gbit/s and bit error rates of 10 -12 or less.

  1. Bioactive macroporous titanium implants highly interconnected.

    PubMed

    Caparrós, Cristina; Ortiz-Hernandez, Mónica; Molmeneu, Meritxell; Punset, Miguel; Calero, José Antonio; Aparicio, Conrado; Fernández-Fairén, Mariano; Perez, Román; Gil, Francisco Javier

    2016-10-01

    Intervertebral implants should be designed with low load requirements, high friction coefficient and low elastic modulus in order to avoid the stress shielding effect on bone. Furthermore, the presence of a highly interconnected porous structure allows stimulating bone in-growth and enhancing implant-bone fixation. The aim of this study was to obtain bioactive porous titanium implants with highly interconnected pores with a total porosity of approximately 57 %. Porous Titanium implants were produced by powder sintering route using the space holder technique with a binder phase and were then evaluated in an in vivo study. The size of the interconnection diameter between the macropores was about 210 μm in order to guarantee bone in-growth through osteblastic cell penetration. Surface roughness and mechanical properties were analyzed. Stiffness was reduced as a result of the powder sintering technique which allowed the formation of a porous network. Compression and fatigue tests exhibited suitable properties in order to guarantee a proper compromise between mechanical properties and pore interconnectivity. Bioactivity treatment effect in novel sintered porous titanium materials was studied by thermo-chemical treatments and were compared with the same material that had undergone different bioactive treatments. Bioactive thermo-chemical treatment was confirmed by the presence of sodium titanates on the surface of the implants as well as inside the porous network. Raman spectroscopy results suggested that the identified titanate structures would enhance in vivo apatite formation by promoting ion exchange for the apatite formation process. In vivo results demonstrated that the bioactive titanium achieved over 75 % tissue colonization compared to the 40 % value for the untreated titanium. PMID:27582071

  2. Viewing Integrated-Circuit Interconnections By SEM

    NASA Technical Reports Server (NTRS)

    Lawton, Russel A.; Gauldin, Robert E.; Ruiz, Ronald P.

    1990-01-01

    Back-scattering of energetic electrons reveals hidden metal layers. Experiment shows that with suitable operating adjustments, scanning electron microscopy (SEM) used to look for defects in aluminum interconnections in integrated circuits. Enables monitoring, in situ, of changes in defects caused by changes in temperature. Gives truer picture of defects, as etching can change stress field of metal-and-passivation pattern, causing changes in defects.

  3. Liftings and stresses for planar periodic frameworks

    PubMed Central

    Borcea, Ciprian; Streinu, Ileana

    2015-01-01

    We formulate and prove a periodic analog of Maxwell’s theorem relating stressed planar frameworks and their liftings to polyhedral surfaces with spherical topology. We use our lifting theorem to prove deformation and rigidity-theoretic properties for planar periodic pseudo-triangulations, generalizing features known for their finite counterparts. These properties are then applied to questions originating in mathematical crystallography and materials science, concerning planar periodic auxetic structures and ultrarigid periodic frameworks. PMID:26973370

  4. Theory of non-planar orbits

    SciTech Connect

    Antillon, A.; Month, M.

    1985-01-01

    The basic dynamics of a planar accelerator is extended to the non-planar case. This is done using the geometrical concept of torsion and extending the Hamiltonian formalism. A generalized non-planar reference orbit is adopted which introduces torsion in appropriately chosen drift spaces. The parameters of the reference orbit are associated with uncoupled and coupled betatron parameters currently in use. 6 refs.

  5. Scan registration using planar features

    NASA Astrophysics Data System (ADS)

    Previtali, M.; Barazzetti, L.; Brumana, R.; Scaioni, M.

    2014-06-01

    Point cloud acquisition by using laser scanners provides an efficient way for 3D as-built modelling of indoor/outdoor urban environments. In the case of large structures, multiple scans may be required to cover the entire scene and registration is needed to merge them together. In general, the identification of corresponding geometric features among a series of scans can be used to compute the 3D rigid-body transformation useful for the registration of each scan into the reference system of the final point cloud. Different automatic or semi-automatic methods have been developed to this purpose. Several solutions based on artificial targets are available, which however may not be suitable in any situations. Methods based on surface matching (like ICP and LS3D) can be applied if the scans to align have a proper geometry and surface texture. In the case of urban and architectural scenes that present the prevalence of a few basic geometric shapes ("Legoland" scenes) the availability of many planar features is exploited here for registration. The presented technique does not require artificial targets to be added to the scanned scene. In addition, unlike other surface-based techniques (like ICP) the planar feature-based registration technique is not limited to work in a pairwise manner but it can handle the simultaneous alignment of multiple scans. Finally, some applications are presented and discussed to show how this technique can achieve accuracy comparable to a consolidated registration method.

  6. Planar waveguide sensor of ammonia

    NASA Astrophysics Data System (ADS)

    Rogoziński, Roman; Tyszkiewicz, Cuma; Karasiński, Paweł; Izydorczyk, Weronika

    2015-12-01

    The paper presents the concept of forming ammonia sensor based on a planar waveguide structure. It is an amplitude sensor produced on the basis of the multimode waveguide. The technological base for this kind of structure is the ion exchange method and the sol-gel method. The planar multimode waveguide of channel type is produced in glass substrate (soda-lime glass of Menzel-Glaser company) by the selective Ag+↔Na+ ion exchange. On the surface of the glass substrate a porous (~40%) silica layer is produced by the sol-gel method. This layer is sensitized to the presence of ammonia in the surrounding atmosphere by impregnation with Bromocresol Purple (BCP) dye. Therefore it constitutes a sensor layer. Spectrophotometric tests carried out showed about 50% reduction of cross-transmission changes of such sensor layer for a wave λ=593 nm caused by the presence of 25% ammonia water vapor in its ambience. The radiation source used in this type of sensor structure is a light emitting diode LED. The gradient channel waveguide is designed for frontal connection (optical glue) with a standard multimode telecommunications waveguide 62.5/125μm.

  7. Development of an Efficient Quasi-3D Microfluidic Flow Model and Fabrication and Characterization of an All-PDMS Opto-Microfluidic Flow Cytometer

    NASA Astrophysics Data System (ADS)

    Islam, Md Zahurul

    In this thesis, development of a novel microfluidic flow model, and, fabrication and testing of microfluidic cytometer for potential cell detection and sorting applications are described. The model is formulated by decomposing the flow profile along the height of microfluidic device into a Fourier series that converts the 3D flow equations into a series of coupled 2D equations and is applicable to planar microfluidic devices only. It is validated against the analytical solution for flow in a straight rectangular channel and the full 3D solution of a commercial Navier-Stokes solver for flow in a T-channel. Comparable accuracy to the full 3D numerical solution is achieved by using only three Fourier terms with significant decrease in computation time. The model is also extended to the problems with time-varying boundary conditions. We fabricated two first generation miniaturized cytometer prototypes and used them for preliminary proof-of-concepts experiments. They were built by cutting fluidic channels into two different polymer materials and bonding them between two standard glass slides with epoxy and fusion bonding. We fabricated a second generation of flow cytometer chip consisting of an integrated 2D hydrodynamic focusing system, solid-core optical waveguides and a hydrodynamic side-flow switching system on an all-PDMS platform. Optical propagation losses of the integrated waveguides and signal-to-noise ratio (SNR) of its detection system were characterized. The propagation losses were found to be 1.6 and 1.5 dB/cm for the green and red light, respectively. Detection of fluorescent signal through the waveguide yielded improved SNR than the conventional method of under-chip detection. Fluid flow speeds were estimated from volumetric flow measurements and fluorescent particle tracking experiments and the width of the hydrodynamically focused stream was extracted from microscope flow images. The results were compared to the simulation values obtained from the Q3D

  8. Laser-assisted direct ink writing of planar and 3D metal architectures

    PubMed Central

    Skylar-Scott, Mark A.; Gunasekaran, Suman; Lewis, Jennifer A.

    2016-01-01

    The ability to pattern planar and freestanding 3D metallic architectures at the microscale would enable myriad applications, including flexible electronics, displays, sensors, and electrically small antennas. A 3D printing method is introduced that combines direct ink writing with a focused laser that locally anneals printed metallic features “on-the-fly.” To optimize the nozzle-to-laser separation distance, the heat transfer along the printed silver wire is modeled as a function of printing speed, laser intensity, and pulse duration. Laser-assisted direct ink writing is used to pattern highly conductive, ductile metallic interconnects, springs, and freestanding spiral architectures on flexible and rigid substrates. PMID:27185932

  9. Laser-assisted direct ink writing of planar and 3D metal architectures.

    PubMed

    Skylar-Scott, Mark A; Gunasekaran, Suman; Lewis, Jennifer A

    2016-05-31

    The ability to pattern planar and freestanding 3D metallic architectures at the microscale would enable myriad applications, including flexible electronics, displays, sensors, and electrically small antennas. A 3D printing method is introduced that combines direct ink writing with a focused laser that locally anneals printed metallic features "on-the-fly." To optimize the nozzle-to-laser separation distance, the heat transfer along the printed silver wire is modeled as a function of printing speed, laser intensity, and pulse duration. Laser-assisted direct ink writing is used to pattern highly conductive, ductile metallic interconnects, springs, and freestanding spiral architectures on flexible and rigid substrates. PMID:27185932

  10. Laser-assisted direct ink writing of planar and 3D metal architectures

    NASA Astrophysics Data System (ADS)

    Skylar-Scott, Mark A.; Gunasekaran, Suman; Lewis, Jennifer A.

    2016-05-01

    The ability to pattern planar and freestanding 3D metallic architectures at the microscale would enable myriad applications, including flexible electronics, displays, sensors, and electrically small antennas. A 3D printing method is introduced that combines direct ink writing with a focused laser that locally anneals printed metallic features “on-the-fly.” To optimize the nozzle-to-laser separation distance, the heat transfer along the printed silver wire is modeled as a function of printing speed, laser intensity, and pulse duration. Laser-assisted direct ink writing is used to pattern highly conductive, ductile metallic interconnects, springs, and freestanding spiral architectures on flexible and rigid substrates.

  11. Nonlinear Attitude Control of Planar Structures in Space Using Only Internal Controls

    NASA Technical Reports Server (NTRS)

    Reyhanoglu, Mahmut; Mcclamroch, N. Harris

    1993-01-01

    An attitude control strategy for maneuvers of an interconnection of planar bodies in space is developed. It is assumed that there are no exogeneous torques and that torques generated by joint motors are used as means of control so that the total angular momentum of the multibody system is a constant, assumed to be zero. The control strategy utilizes the nonintegrability of the expression for the angular momentum. Large angle maneuvers can be designed to achieve an arbitrary reorientation of the multibody system with respect to an inertial frame. The theoretical background for carrying out the required maneuvers is summarized.

  12. Implementation of interconnect simulation tools in spice

    NASA Technical Reports Server (NTRS)

    Satsangi, H.; Schutt-Aine, J. E.

    1993-01-01

    Accurate computer simulation of high speed digital computer circuits and communication circuits requires a multimode approach to simulate both the devices and the interconnects between devices. Classical circuit analysis algorithms (lumped parameter) are needed for circuit devices and the network formed by the interconnected devices. The interconnects, however, have to be modeled as transmission lines which incorporate electromagnetic field analysis. An approach to writing a multimode simulator is to take an existing software package which performs either lumped parameter analysis or field analysis and add the missing type of analysis routines to the package. In this work a traditionally lumped parameter simulator, SPICE, is modified so that it will perform lossy transmission line analysis using a different model approach. Modifying SPICE3E2 or any other large software package is not a trivial task. An understanding of the programming conventions used, simulation software, and simulation algorithms is required. This thesis was written to clarify the procedure for installing a device into SPICE3E2. The installation of three devices is documented and the installations of the first two provide a foundation for installation of the lossy line which is the third device. The details of discussions are specific to SPICE, but the concepts will be helpful when performing installations into other circuit analysis packages.

  13. Modeling and synthesis of multicomputer interconnection networks

    NASA Technical Reports Server (NTRS)

    Standley, Hilda M.; Auxter, D. Steve

    1990-01-01

    The type of interconnection network employed has a profound effect on the performance of a multicomputer and multiprocessor design. Adequate models are needed to aid in the design and development of interconnection networks. A novel modeling approach using statistical and optimization techniques is described. This method represents an attempt to compare diverse interconnection network designs in a way that allows not only the best of existing designs to be identified but to suggest other, perhaps hybrid, networks that may offer better performance. Stepwise linear regression is used to develop a polynomial surface representation of performance in a (k+1) space with a total of k quantitative and qualitative independent variables describing graph-theoretic characteristics such as size, average degree, diameter, radius, girth, node-connectivity, edge-connectivity, minimum dominating set size, and maximum number of prime node and edge cutsets. Dependent variables used to measure performance are average message delay and the ratio of message completion rate to network connection cost. Response Surface Methodology (RSM) optimizes a response variable from a polynomial function of several independent variables. Steepest ascent path may also be used to approach optimum points.

  14. Resistive synaptic interconnects for electronic neural networks

    NASA Technical Reports Server (NTRS)

    Lamb, J. L.; Thakoor, A. P.; Moopenn, A.; Khanna, S. K.

    1987-01-01

    The use of the alpha-Ge(1-x):Al(x) and alpha-Ge(1-x):Cu(x) alloys and Pt/Al2O3 cermet thin films as resistive interconnects for binary synaptic memory arrays is evaluated. The fabrication of the 10-20 microns long, 10 microns wide, and 0.1 micron thick interconnects from the alloys and cermet is described. The current-voltage and switching characteristics of the as-deposited films and the patterned test structure are studied. The resistivity, uniformity, stability, and compatibility of the interconnects are examined. It is observed that alpha-Ge(1-x):Cu(x) alloys have a wide resistivity range and low temperature coefficients of resistance; however, their long-term stability is limited due to their low crystallization temperature. It is detected that the alpha-Ge(1-x):Al(x) alloys have higher crystallization temperatures and their resistivity is not greatly affected by large changes in metal content. The Pt/Al2O3 samples display excellent stability, easy fabrication, and control of resistivity with metal content.

  15. Optical interconnections on printed circuit boards

    NASA Astrophysics Data System (ADS)

    Griese, Elmar

    2000-05-01

    In this paper an optical interconnection technology for high-speed printed circuit board application is presented. This technology is widely compatible with the existing design and manufacturing technologies of conventional multi- layer pc boards and it combines electrical and optical interconnects on pc board level. Using this interconnection technology on-board bandwidth of several Gbps can be realized. As conventional pc board technology provides sufficient performance characteristics for the majority of all on-board signals only a hybrid technology which is compatible to the existing printed circuit board design and manufacturing processes is able to lead to a practical solution at reasonable cost. This compatibility demand results in different technological, functional, and economic requirements which also consider potential application for high performance computing and telecommunication hardware. In this paper an overview is given on the requirements, on the basic technologies for manufacturing electrical-optical pc boards as well as on the extended design process with its modeling and simulation methodologies and strategies.

  16. Dimensioning of nearby substations interconnected ground system

    SciTech Connect

    Sobral, S.T. ); Costa, V.S. ); Campos, M.S.; Goldman, B. ); Mukhedkar, D. )

    1988-10-01

    This paper deals with the ground mat dimensioning of two or more neighbor interconnected substations, a situation that is very common in the Electrical Industry. The paper recalls that the external ground circuits connected to the ground grid of each substation can drastically reduce the percentage of total ground current injected into the soil through the mat (from 40% up to 2% of the total fault current). The paper presents a set of specific calculation procedures to deal with nearby interconnected ground mats. These procedures correspond to a particular illustration of the general ''Decoupled Method'' (3,4,5), showing how to apply its 8 sequencial steps to solve this type of circuit. The paper shows that the electric neighborhood of nearby substations depends on the ''Space Constant'' (or ''Characteristic Length'') of the ground circuits interconnecting them such as transmission line ground-wires, power cable sheaths, etc. This paper complements also Ref. (3,4), introducing the complete derivation of useful expressions used to solve lumped parameter ladder circuits of any size (from one pi to an infinite number of pis). The derivation of these expressions also used in (3,4) were not included in these References due to lack of space. In the paper it is also shown a simple procedure to determine the suitable number of ACSR ground-wire spans near a substation necessary to allow a reduction of the ground grid conductor extension.

  17. Multi-100kW: Planar low cost solar array development

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Seven low cost multi-100 kW planar solar array modules were fabricated and tested. Two different designs were used, demonstrating advanced solar array construction practices. Both module types utilized second generation gridded back cells featuring high efficiency and IR transparency. A silicon dioxide AR coating optimized for transmission at gamma = 1.7 microns was applied to the back surface. Two interconnect types, a single sheet printed circuit and a roll type, with alternate approaches to increasing transparency and reducing cost were designed and fabricated. Hinge stress and electrical power optimization were also examined. Two point designs were studied. The first design used a coilage longeron mast and is autonomously deployable. The second design used a Stac Beam for high natural frequency response and required astronaut assistance and assembly on orbit. It was conclusively demonstrated that planar arrays are the most cost effective design for use on the space station or other high power applications.

  18. Planar Hall effect bridge magnetic field sensors

    SciTech Connect

    Henriksen, A. D.; Dalslet, B. T.; Skieller, D. H.; Lee, K. H.; Okkels, F.; Hansen, M. F.

    2010-07-05

    Until now, the planar Hall effect has been studied in samples with cross-shaped Hall geometry. We demonstrate theoretically and experimentally that the planar Hall effect can be observed for an exchange-biased ferromagnetic material in a Wheatstone bridge topology and that the sensor signal can be significantly enhanced by a geometric factor. For the samples in the present study, we demonstrate an enhancement of the sensor output by a factor of about 100 compared to cross-shaped sensors. The presented construction opens a new design and application area of the planar Hall effect, which we term planar Hall effect bridge sensors.

  19. Planarized fiber-FHD optical composite

    NASA Astrophysics Data System (ADS)

    Holmes, C.; Carpenter, L. G.; Gates, J. C.; Gawith, C. B. E.; Smith, P. G. R.

    2015-03-01

    We demonstrate the fabrication of a mechanically robust planarised fibre-FHD optical composite. Fabrication is achieved through deposition and consolidation of optical grade silica soot on to both an optical fibre and planar substrate. The consolidated silica acts in joining the fibre and planar substrate both mechanically and optically. The concept lends itself to applications where long interaction lengths (order of tens of centimetres) and optical interaction via a planar waveguide are required, such as pump schemes, precision layup of fibre optics and hybrid fibre-planar devices. This paper considers the developments in fabrication process that enable component development.

  20. Helical axis stellarator with noninterlocking planar coils

    DOEpatents

    Reiman, Allan; Boozer, Allen H.

    1987-01-01

    A helical axis stellarator using only noninterlocking planar, non-circular coils, generates magnetic fields having a magnetic well and large rotational transform with resultant large equilibrium beta.

  1. Potential roles of optical interconnections within broadband switching modules

    NASA Astrophysics Data System (ADS)

    Lalk, Gail R.; Habiby, Sarry F.; Hartman, Davis H.; Krchnavek, Robert R.; Wilson, Donald K.; Young, Kenneth C., Jr.

    1991-04-01

    An investigation of potential physical design bottlenecks in future broadband telecommunication switches has led to the identification of several areas where optical interconnections may play a role in the practical realization of required system performance. In the model used the speed and interconnection densities as well as requirements for ease-of-access and efficient power utilization challenge conventional partitioning and packaging strategies. Potential areas where optical interconnections may relieve some of the physical design bottlenecks include fiber management at the customer interface to the switch routing and distribution of high-density interconnections within the fabric of the switch and backplane interconnections to increase system throughput.

  2. Rapid microfluidic thermal cycler for nucleic acid amplification

    SciTech Connect

    Beer, Neil Reginald; Vafai, Kambiz

    2015-10-27

    A system for thermal cycling a material to be thermal cycled including a microfluidic heat exchanger; a porous medium in the microfluidic heat exchanger; a microfluidic thermal cycling chamber containing the material to be thermal cycled, the microfluidic thermal cycling chamber operatively connected to the microfluidic heat exchanger; a working fluid at first temperature; a first system for transmitting the working fluid at first temperature to the microfluidic heat exchanger; a working fluid at a second temperature, a second system for transmitting the working fluid at second temperature to the microfluidic heat exchanger; a pump for flowing the working fluid at the first temperature from the first system to the microfluidic heat exchanger and through the porous medium; and flowing the working fluid at the second temperature from the second system to the heat exchanger and through the porous medium.

  3. Polymer optical interconnect technology (POINT): optoelectronic packaging and interconnect for board and backplane applications

    NASA Astrophysics Data System (ADS)

    Liu, Yung S.; Wojnarowski, R. J.; Hennessy, W. A.; Bristow, Julian P.; Liu, Yue; Peczalski, Andrzej; Rowlette, John R.; Plotts, Alan; Stack, Jared D.; Yardley, James T.; Eldada, L.; Osgood, Richard M.; Scarmozzino, Robert; Lee, Sing H.; Ozguz, Volkan H.

    1996-01-01

    The polymer optical interconnect technology (POINT) represents a major collaborative effort among GE, Honeywell, AMP, AlliedSignal, Columbia University and the University of California at San Diego (UCSD), sponsored by ARPA, in developing affordable optoelectronic module packaging and interconnect technologies for board- and backplane-level optical interconnect applications for a wide range of military and commercial applications. The POINT program takes a novel development approach by fully leveraging the existing electronic design, processing, fabrication, and module packaging technologies to optoelectronic module packaging. The POINT program further incorporates several state-of- the-art optoelectronic technologies that include high-speed VCSEL for multichannel array data transmission; flexible optical polymers such as PolyguideTM or coupling of device-to- fiber using a passive alignment process; a low-loss polymer for backplane interconnect to provide a high I/O density; low-cost diffractive optical elements (DOE) for board-to-backplane interconnect; and use of molded MT array ferrule to reduce overall system size, weight, and cost. In addition to further reducing design and fabrication cycle times, computer simulation tools for optical waveguide and mechanical modeling will be advanced under the POINT program.

  4. Development of planar solid oxide fuel cells for power generation applications

    SciTech Connect

    Minh, N.Q.

    1996-04-01

    Planar solid oxide fuel cells (SOFCs) are presently being developed for a variety of electric power generation application. The planar design offers simple cell geometry, high power density, and multiple fabrication and gas manifolding options. Planar SOFC technology has received much attention recently, and significant progress has been made in this area. Recent effort at AlliedSignal has focused on the development of high-performance, lightweight planar SOFCs, having thin-electrolyte films, that can be operated efficiently at reduced temperatures (< 1000{degrees}C). The advantages of reduced-temperature operation include wider material choice (including use of metallic interconnects), expected longer cell life, reduced thermal stress, improved reliability, and reduced fuel cell cost. The key aspect in the development of thin-film SIFCs is to incorporate the thin electrolyte layer into the desired structure of cells in a manner that yields the required characteristics. AlliedSignal has developed a simple and cost-effective method based on tape calendering for the fabrication of thin-electrolyte SOFCs. Thin-electrolyte cells made by tape calendering have shown extraordinary performance, e.g., producing more than 500mW/cm{sup 2} at 700{degrees}C and 800mW/cm{sup 2} at 800{degrees}C with hydrogen as fuel and air is oxidant. thin-electrolyte single cells have been incorporated into a compliant metallic stack structure and operated at reduced and operated at reduced-temperature conditions.

  5. Quantitative magnetometry of ferromagnetic nanorods by microfluidic analytical magnetophoresis

    NASA Astrophysics Data System (ADS)

    Balk, A. L.; Mair, L. O.; Guo, F.; Hangarter, C.; Mathai, P. P.; McMichael, R. D.; Stavis, S. M.; Unguris, J.

    2015-09-01

    We introduce an implementation of magnetophoresis to measure the absolute magnetization of ferromagnetic nanorods dispersed in fluids, by analyzing the velocity of single nanorods under an applied magnetic field gradient. A microfluidic guideway prevents aggregation of nanorods, isolates them, and confines their motion for analysis. We use a three-dimensional imaging system to precisely track nanorod velocity and particle-surface proximity. We test the effect of the guideway on nanorod velocity under field gradient application, finding that it guides magnetophoresis, but imposes insignificant drag beyond that of a planar surface. This result provides insight into the transport of magnetic nanorods at microstructured interfaces and allows the use of an analytical model to accurately determine the reacted viscous drag in the force balance needed for quantitative magnetometry. We also estimate the confining potential of the guideway with Brownian motion measurements and Boltzmann statistics. We use our technique to measure the magnetization of ferromagnetic nanorods with a noise floor of 8.5 × 10-20 A.m2.Hz-½. Our technique is quantitative, rapid, and scalable for determining the absolute magnetization of ferromagnetic nanoparticles with high throughput.

  6. Microfluidic devices with thick-film electrochemical detection

    DOEpatents

    Wang, Joseph; Tian, Baomin; Sahlin, Eskil

    2005-04-12

    An apparatus for conducting a microfluidic process and analysis, including at least one elongated microfluidic channel, fluidic transport means for transport of fluids through the microfluidic channel, and at least one thick-film electrode in fluidic connection with the outlet end of the microfluidic channel. The present invention includes an integrated on-chip combination reaction, separation and thick-film electrochemical detection microsystem, for use in detection of a wide range of analytes, and methods for the use thereof.

  7. 15-µm-pitch Cu/Au interconnections relied on self-aligned low-temperature thermosonic flip-chip bonding technique for advanced chip stacking applications

    NASA Astrophysics Data System (ADS)

    Thanh Tung, Bui; Kato, Fumiki; Watanabe, Naoya; Nemoto, Shunsuke; Kikuchi, Katsuya; Aoyagi, Masahiro

    2014-01-01

    In this paper, we report the development of reliable fine-pitch micro bump interconnections that used a high-precision room-temperature bonding approach. The accuracy of the bonding process is improved by modifying conventional bump/planar-bonding-pad interconnections to form self-aligned micro bumps/truncated inverted pyramid (TIP) bonding pads, i.e., misalignment self-correction elements (MSCEs). Thermosonic flip-chip bonding (FCB) is utilized to form reliable bonds between these MSCEs at acceptable low temperatures. By applying the proposed bonding approach, the demonstration of fine-pitch Cu bump to Au bonding pad interconnects chip stacking has been realized. Microstructure analyses reveal that 15-µm-pitch micro bump joints are fabricated at room temperature.

  8. Biomimetic microchannels of planar reactors for optimized photocatalytic efficiency of water purification.

    PubMed

    Liao, Wuxia; Wang, Ning; Wang, Taisheng; Xu, Jia; Han, Xudong; Liu, Zhenyu; Zhang, Xuming; Yu, Weixing

    2016-01-01

    This paper reports a biomimetic design of microchannels in the planar reactors with the aim to optimize the photocatalytic efficiency of water purification. Inspired from biology, a bifurcated microchannel has been designed based on the Murray's law to connect to the reaction chamber for photocatalytic reaction. The microchannels are designed to have a constant depth of 50 μm but variable aspect ratios ranging from 0.015 to 0.125. To prove its effectiveness for photocatalytic water purification, the biomimetic planar reactors have been tested and compared with the non-biomimetic ones, showing an improvement of the degradation efficiency by 68%. By employing the finite element method, the flow process of the designed microchannel reactors has been simulated and analyzed. It is found that the biomimetic design owns a larger flow velocity fluctuation than that of the non-biomimetic one, which in turn results in a faster photocatalytic reaction speed. Such a biomimetic design paves the way for the design of more efficient planar reactors and may also find applications in other microfluidic systems that involve the use of microchannels. PMID:26958102

  9. A bioinspired planar superhydrophobic microboat

    NASA Astrophysics Data System (ADS)

    Yong, Jiale; Yang, Qing; Chen, Feng; Zhang, Dongshi; Du, Guangqing; Si, Jinhai; Yun, Feng; Hou, Xun

    2014-03-01

    In nature, a frog can easily rest on a lotus leaf even though the frog's weight is several times the weight of the lotus leaf. Inspired by the lotus leaf, we fabricated a planar superhydrophobic microboat (SMB) with a superhydrophobic upper surface on a PDMS sheet which was irradiated by a focused femtosecond laser. The SMB can not only float effortlessly over the water surface but can also hold up some heavy objects, exhibiting an excellent loading capacity. The water surface is curved near the edge of the upper surface and the SMB's upper edge is below the water level, greatly enhancing the displacement. Experimental results and theoretical analysis demonstrate that the superhydrophobicity on the edge of the upper surface is responsible for the SMB's large loading capacity. Here, we call it the ‘superhydrophobic edge effect’.

  10. Ten inch Planar Optic Display

    SciTech Connect

    Beiser, L.; Veligdan, J.

    1996-04-01

    A Planar Optic Display (POD) is being built and tested for suitability as a high brightness replacement for the cathode ray tube, (CRT). The POD display technology utilizes a laminated optical waveguide structure which allows a projection type of display to be constructed in a thin (I to 2 inch) housing. Inherent in the optical waveguide is a black cladding matrix which gives the display a black appearance leading to very high contrast. A Digital Micromirror Device, (DMD) from Texas Instruments is used to create video images in conjunction with a 100 milliwatt green solid state laser. An anamorphic optical system is used to inject light into the POD to form a stigmatic image. In addition to the design of the POD screen, we discuss: image formation, image projection, and optical design constraints.

  11. The simplicity of planar networks

    NASA Astrophysics Data System (ADS)

    Viana, Matheus P.; Strano, Emanuele; Bordin, Patricia; Barthelemy, Marc

    2013-12-01

    Shortest paths are not always simple. In planar networks, they can be very different from those with the smallest number of turns - the simplest paths. The statistical comparison of the lengths of the shortest and simplest paths provides a non trivial and non local information about the spatial organization of these graphs. We define the simplicity index as the average ratio of these lengths and the simplicity profile characterizes the simplicity at different scales. We measure these metrics on artificial (roads, highways, railways) and natural networks (leaves, slime mould, insect wings) and show that there are fundamental differences in the organization of urban and biological systems, related to their function, navigation or distribution: straight lines are organized hierarchically in biological cases, and have random lengths and locations in urban systems. In the case of time evolving networks, the simplicity is able to reveal important structural changes during their evolution.

  12. Planar microresonators for EPR experiments.

    PubMed

    Narkowicz, R; Suter, D; Stonies, R

    2005-08-01

    EPR resonators on the basis of standing-wave cavities are optimised for large samples. For small samples it is possible to design different resonators that have much better power handling properties and higher sensitivity. Other parameters being equal, the sensitivity of the resonator can be increased by minimising its size and thus increasing the filling factor. Like in NMR, it is possible to use lumped elements; coils can confine the microwave field to volumes that are much smaller than the wavelength. We discuss the design and evaluation of EPR resonators on the basis of planar microcoils. Our test resonators, which operate at a frequency of 14 GHz, have excellent microwave efficiency factors, achieving 24 ns pi/2 EPR pulses with an input power of 17 mW. The sensitivity tests with DPPH samples resulted in the sensitivity value 2.3 x 10(9) spins.G(-1) Hz(-1/2) at 300 K. PMID:15939642

  13. Planar microresonators for EPR experiments

    NASA Astrophysics Data System (ADS)

    Narkowicz, R.; Suter, D.; Stonies, R.

    2005-08-01

    EPR resonators on the basis of standing-wave cavities are optimised for large samples. For small samples it is possible to design different resonators that have much better power handling properties and higher sensitivity. Other parameters being equal, the sensitivity of the resonator can be increased by minimising its size and thus increasing the filling factor. Like in NMR, it is possible to use lumped elements; coils can confine the microwave field to volumes that are much smaller than the wavelength. We discuss the design and evaluation of EPR resonators on the basis of planar microcoils. Our test resonators, which operate at a frequency of 14 GHz, have excellent microwave efficiency factors, achieving 24 ns π/2 EPR pulses with an input power of 17 mW. The sensitivity tests with DPPH samples resulted in the sensitivity value 2.3 × 10 9 spins · G -1Hz -1/2 at 300 K.

  14. Improved double planar probe data analysis technique

    SciTech Connect

    Ghim, Young-chul; Hershkowitz, Noah

    2009-03-15

    Plasma electron number density and ion number density in a dc multidipole weakly collisional Ar plasma are measured with a single planar Langmuir probe and a double planar probe, respectively. A factor of two discrepancy between the two density measurements is resolved by applying Sheridan's empirical formula [T. E. Sheridan, Phys. Plasmas 7, 3084 (2000)] for sheath expansion to the double probe data.

  15. Positron Emission Mammotomography with Dual Planar Detectors

    SciTech Connect

    Mark Smith; Raymond Raylman; Stanislaw Majewski

    2003-06-29

    Positron emission mammography (PEM) is usually performed with two stationary planar detectors above and below a compressed breast. There is image blurring normal to the detectors due to the limited angular range of the lines of response. Positron emission mammotomography (PEM-T) with dual planar detectors rotating about the breast can obtain complete angular sampling and has the potential to improve activity estimation.

  16. Mechanically activated artificial cell by using microfluidics.

    PubMed

    Ho, Kenneth K Y; Lee, Lap Man; Liu, Allen P

    2016-01-01

    All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology. PMID:27610921

  17. Mechanically activated artificial cell by using microfluidics

    PubMed Central

    Ho, Kenneth K. Y.; Lee, Lap Man; Liu, Allen P.

    2016-01-01

    All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology. PMID:27610921

  18. Microfluidic devices for cell cultivation and proliferation

    PubMed Central

    Tehranirokh, Masoomeh; Kouzani, Abbas Z.; Francis, Paul S.; Kanwar, Jagat R.

    2013-01-01

    Microfluidic technology provides precise, controlled-environment, cost-effective, compact, integrated, and high-throughput microsystems that are promising substitutes for conventional biological laboratory methods. In recent years, microfluidic cell culture devices have been used for applications such as tissue engineering, diagnostics, drug screening, immunology, cancer studies, stem cell proliferation and differentiation, and neurite guidance. Microfluidic technology allows dynamic cell culture in microperfusion systems to deliver continuous nutrient supplies for long term cell culture. It offers many opportunities to mimic the cell-cell and cell-extracellular matrix interactions of tissues by creating gradient concentrations of biochemical signals such as growth factors, chemokines, and hormones. Other applications of cell cultivation in microfluidic systems include high resolution cell patterning on a modified substrate with adhesive patterns and the reconstruction of complicated tissue architectures. In this review, recent advances in microfluidic platforms for cell culturing and proliferation, for both simple monolayer (2D) cell seeding processes and 3D configurations as accurate models of in vivo conditions, are examined. PMID:24273628

  19. Microfluidic CODES: a scalable multiplexed electronic sensor for orthogonal detection of particles in microfluidic channels.

    PubMed

    Liu, Ruxiu; Wang, Ningquan; Kamili, Farhan; Sarioglu, A Fatih

    2016-04-21

    Numerous biophysical and biochemical assays rely on spatial manipulation of particles/cells as they are processed on lab-on-a-chip devices. Analysis of spatially distributed particles on these devices typically requires microscopy negating the cost and size advantages of microfluidic assays. In this paper, we introduce a scalable electronic sensor technology, called microfluidic CODES, that utilizes resistive pulse sensing to orthogonally detect particles in multiple microfluidic channels from a single electrical output. Combining the techniques from telecommunications and microfluidics, we route three coplanar electrodes on a glass substrate to create multiple Coulter counters producing distinct orthogonal digital codes when they detect particles. We specifically design a digital code set using the mathematical principles of Code Division Multiple Access (CDMA) telecommunication networks and can decode signals from different microfluidic channels with >90% accuracy through computation even if these signals overlap. As a proof of principle, we use this technology to detect human ovarian cancer cells in four different microfluidic channels fabricated using soft lithography. Microfluidic CODES offers a simple, all-electronic interface that is well suited to create integrated, low-cost lab-on-a-chip devices for cell- or particle-based assays in resource-limited settings. PMID:27021807

  20. Supramolecular Organic Nanowires as Plasmonic Interconnects.

    PubMed

    Armao, Joseph J; Domoto, Yuya; Umehara, Teruhiko; Maaloum, Mounir; Contal, Christophe; Fuks, Gad; Moulin, Emilie; Decher, Gero; Javahiraly, Nicolas; Giuseppone, Nicolas

    2016-02-23

    Metallic nanostructures are able to interact with an incident electromagnetic field at subwavelength scales by plasmon resonance which involves the collective oscillation of conduction electrons localized at their surfaces. Among several possible applications of this phenomenon, the theoretical prediction is that optical circuits connecting multiple plasmonic elements will surpass classical electronic circuits at nanoscale because of their much faster light-based information processing. However, the placement and coupling of metallic elements smaller than optical wavelengths currently remain a formidable challenge by top-down manipulations. Here, we show that organic supramolecular triarylamine nanowires of ≈1 nm in diameter are able to act as plasmonic waveguides. Their self-assembly into plasmonic interconnects between arrays of gold nanoparticles leads to the bottom-up construction of basic optical nanocircuits. When the resonance modes of these metallic nanoparticles are coupled through the organic nanowires, the optical conductivity of the plasmonic layer dramatically increases from 259 to 4271 Ω(-1)·cm(-1). We explain this effect by the coupling of a hot electron/hole pair in the nanoparticle antenna with the half-filled polaronic band of the organic nanowire. We also demonstrate that the whole hybrid system can be described by using the abstraction of the lumped circuit theory, with a far field optical response which depends on the number of interconnects. Overall, our supramolecular bottom-up approach opens the possibility to implement processable, soft, and low cost organic plasmonic interconnects into a large number of applications going from sensing to metamaterials and information technologies. PMID:26814600

  1. Development of Ceramic Interconnect Materials for SOFC

    SciTech Connect

    Yoon, Kyung J.; Stevenson, Jeffry W.; Marina, Olga A.

    2010-08-05

    Currently, acceptor-doped lanthanum chromite is the state-of-the-art ceramic interconnect material for high temperature solid oxide fuel cells (SOFCs) due to its fairly good electronic conductivity and chemical stability in both oxidizing and reducing atmospheres, and thermal compatibility with other cell components. The major challenge for acceptor-doped lanthanum chromite for SOFC interconnect applications is its inferior sintering behavior in air, which has been attributed to the development of a thin layer of Cr2O3 at the interparticle necks during the initial stages of sintering. In addition, lanthanum chromite is reactive with YSZ electrolyte at high temperatures, forming a highly resistive lanthanum zirconate phase (La2Zr2O7), which further complicates co-firing processes. Acceptor-doped yttrium chromite is considered to be one of the promising alternatives to acceptor-doped lanthanum chromite because it is more stable with respect to the formation of hydroxides in SOFC operating conditions, and the formation of impurity phases can be effectively avoided at co-firing temperatures. In addition, calcium-doped yttrium chromite exhibits higher mechanical strength than lanthanum chromite-based materials. The major drawback of yttrium chromite is considered to be its lower electrical conductivity than lanthanum chromite. The properties of yttrium chromites could possibly be improved and optimized by partial substitution of chromium with various transition metals. During FY10, PNNL investigated the effect of various transition metal doping on chemical stability, sintering and thermal expansion behavior, microstructure, electronic and ionic conductivity, and chemical compatibility with other cell components to develop the optimized ceramic interconnect material.

  2. Microfluidics of soft granular gels

    NASA Astrophysics Data System (ADS)

    Nixon, Ryan; Bhattacharjee, Tapomoy; Sawyer, W. Gregory; Angelini, Thomas E.

    Microfluidic methods for encapsulating cells and particles typically involve drop making with two immiscible fluids. The main materials constraint in this approach is surface tension, creating inherent instability between the two fluids. We can eliminate this instability by using miscible inner and outer phases. This is achieved by using granular micro gels which are chemically miscible but physically do not mix. These microgels are yield stress materials, so they flow as solid plugs far from shear gradients, and fluidize where gradients are generated - near an injection nozzle for example. We have found that tuning the yield stress of the material by varying polymer concentration, device performance can be controlled. The solid like behavior of the gel allows us to produces infinitely stable jets that maintain their integrity and configuration over long distances and times. These properties can be combined and manipulated to produce discrete particulate bunches of an inner phase, flowing inside of an outer phase, well enough even to print a Morse code message suspended within flow chambers about a millimeter in diameter moving at millimeters a second.

  3. Droplet Microfluidics for Virus Discovery

    NASA Astrophysics Data System (ADS)

    Rotem, Assaf; Cockrell, Shelley; Guo, Mira; Pipas, James; Weitz, David

    2012-02-01

    The ability to detect, isolate, and characterize an infectious agent is important for diagnosing and curing infectious diseases. Detecting new viral diseases is a challenge because the number of virus particles is often low and/or localized to a small subset of cells. Even if a new virus is detected, it is difficult to isolate it from clinical or environmental samples where multiple viruses are present each with very different properties. Isolation is crucial for whole genome sequencing because reconstructing a genome from fragments of many different genomes is practically impossible. We present a Droplet Microfluidics platform that can detect, isolate and sequence single viral genomes from complex samples containing mixtures of many viruses. We use metagenomic information about the sample of mixed viruses to select a short genomic sequence whose genome we are interested in characterizing. We then encapsulate single virions from the same sample in picoliter volume droplets and screen for successful PCR amplification of the sequence of interest. The selected drops are pooled and their contents sequenced to reconstruct the genome of interest. This method provides a general tool for detecting, isolating and sequencing genetic elements in clinical and environmental samples.

  4. Spatial-light-modulator interconnected computers

    SciTech Connect

    Mc Aulay, A.D.

    1987-10-01

    Optical technologies perform the basic computer operations of communications, switching, and storage, have already proven superior to electronics for many communications situations, and advances in devices and materials suggest that optics are important for switching and storage. The spatial light modulator (SLM) is one of the devices expected to play an important role in optical computing. An SLM acts as a piece of film whose transmittance or reflectance may be varied spatially and temporally by electronic or optical means. Types of SLMs, the use of optics for computation and three proposed, as well as diverse optical computing systems that use SLMs for interconnections are described in this article.

  5. Repairable chip bonding/interconnect process

    DOEpatents

    Bernhardt, Anthony F.; Contolini, Robert J.; Malba, Vincent; Riddle, Robert A.

    1997-01-01

    A repairable, chip-to-board interconnect process which addresses cost and testability issues in the multi-chip modules. This process can be carried out using a chip-on-sacrificial-substrate technique, involving laser processing. This process avoids the curing/solvent evolution problems encountered in prior approaches, as well is resolving prior plating problems and the requirements for fillets. For repairable high speed chip-to-board connection, transmission lines can be formed on the sides of the chip from chip bond pads, ending in a gull wing at the bottom of the chip for subsequent solder.

  6. Repairable chip bonding/interconnect process

    DOEpatents

    Bernhardt, A.F.; Contolini, R.J.; Malba, V.; Riddle, R.A.

    1997-08-05

    A repairable, chip-to-board interconnect process which addresses cost and testability issues in the multi-chip modules is disclosed. This process can be carried out using a chip-on-sacrificial-substrate technique, involving laser processing. This process avoids the curing/solvent evolution problems encountered in prior approaches, as well is resolving prior plating problems and the requirements for fillets. For repairable high speed chip-to-board connection, transmission lines can be formed on the sides of the chip from chip bond pads, ending in a gull wing at the bottom of the chip for subsequent solder. 10 figs.

  7. Environmental Regulation Impacts on Eastern Interconnection Performance

    SciTech Connect

    Markham, Penn N; Liu, Yilu; Young II, Marcus Aaron

    2013-07-01

    In the United States, recent environmental regulations will likely result in the removal of nearly 30 GW of oil and coal-fired generation from the power grid, mostly in the Eastern Interconnection (EI). The effects of this transition on voltage stability and transmission line flows have previously not been studied from a system-wide perspective. This report discusses the results of power flow studies designed to simulate the evolution of the EI over the next few years as traditional generation sources are replaced with environmentally friendlier ones such as natural gas and wind.

  8. Updating Interconnection Screens for PV System Integration

    SciTech Connect

    Coddington, M.; Mather, B.; Kroposki, B.; Lynn, K.; Razon, A.; Ellis, A.; Hill, R.; Key, T.; Nicole, K.; Smith, J.

    2012-02-01

    This white paper evaluates the origins and usefulness of the capacity penetration screen, offer short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen. Short-term and longer-term alternatives approaches are offered as examples; however, specific modifications to screening procedures should be discussed with stakeholders and must ultimately be adopted by state and federal regulatory bodies.

  9. The metal interconnected cascade solar cell

    SciTech Connect

    LaRue, R.A.; Borden, P.G.; Dietze, W.T.; Gregory, P.E.; Ludowise, M.J.

    1982-09-01

    A cascade cell employing a new type of interconnect is described. It uses a groove etch and metallization process to connect the base of the top cell to the emitter of the bottom cell. The best cell yielded 21.3% efficiency under conditions of AM3, 130 suns, 50/sup 0/C, with the result not corrected for grid coverage. Other features include a 1.2-micron thick 1.82-eV ALGaAs top cell with a BSF under the base and an n/p heteroface GaAs bottom cell that is stable during top cell growth.

  10. Optical Interconnection Via Computer-Generated Holograms

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Zhou, Shaomin

    1995-01-01

    Method of free-space optical interconnection developed for data-processing applications like parallel optical computing, neural-network computing, and switching in optical communication networks. In method, multiple optical connections between multiple sources of light in one array and multiple photodetectors in another array made via computer-generated holograms in electrically addressed spatial light modulators (ESLMs). Offers potential advantages of massive parallelism, high space-bandwidth product, high time-bandwidth product, low power consumption, low cross talk, and low time skew. Also offers advantage of programmability with flexibility of reconfiguration, including variation of strengths of optical connections in real time.

  11. Metallic Nanowire Interconnections for Integrated Circuit Fabrication

    NASA Technical Reports Server (NTRS)

    Ng, Hou Tee (Inventor); Li, Jun (Inventor); Meyyappan, Meyya (Inventor)

    2007-01-01

    A method for fabricating an electrical interconnect between two or more electrical components. A conductive layer is provided on a substarte and a thin, patterned catalyst array is deposited on an exposed surface of the conductive layer. A gas or vapor of a metallic precursor of a metal nanowire (MeNW) is provided around the catalyst array, and MeNWs grow between the conductive layer and the catalyst array. The catalyst array and a portion of each of the MeNWs are removed to provide exposed ends of the MeNWs.

  12. Advanced alternate planar geometry solid oxide fuel cells

    SciTech Connect

    Elangovan, S.; Prouse, D.; Khandkar, A.; Donelson, R.; Marianowski, L. )

    1992-11-01

    The potential of high temperature Solid Oxide Fuel Cells as high performance, high efficiency energy conversion device is well known. Investigation of several cell designs have been undertaken by various researchers to derive the maximum performance benefit from the device while maintaining a lower cost of production to meet the commercialization cost target. The present investigation focused on the planar SOFC design which allows for the use of mature low cost production processes to be employed. A novel design concept was investigated which allows for improvements in performance through increased interface stability, and lowering of cost through enhanced structural integrity and the use of low cost metal interconnects. The new cell design consisted of a co-sintered porous/dense/porous zirconia layer with the electrode material infiltrated into the porous layers. The two year program conducted by a team involving Ceramatec and the Institute of Gas Technology, culminated in a multi-cell stack test that exhibited high performance. Considerable progress was achieved in the selection of cell components, and establishing and optimizing the cell and stack fabrication parameters. It was shown that the stack components exhibited high conductivities and low creep at the operating temperature. The inter-cell resistive losses were shown to be small through out-of-cell characterization. The source of performance loss was identified to be the anode electrolyte interface. This loss however can be minimized by improving the anode infiltration technique. Manifolding and sealing of the planar devices posed considerable challenge. Even though the open circuit voltage was 250 mV/cell lower than theoretical, the two cell stack had a performance of 300 mA/cm[sup 2] at 0.4V/cell with an area specific resistance of 1 [Omega]-cm[sup 2]/cell. improvements in manifolding are expected to provide much higher performance.

  13. Advanced alternate planar geometry solid oxide fuel cells. Final report

    SciTech Connect

    Elangovan, S.; Prouse, D.; Khandkar, A.; Donelson, R.; Marianowski, L.

    1992-11-01

    The potential of high temperature Solid Oxide Fuel Cells as high performance, high efficiency energy conversion device is well known. Investigation of several cell designs have been undertaken by various researchers to derive the maximum performance benefit from the device while maintaining a lower cost of production to meet the commercialization cost target. The present investigation focused on the planar SOFC design which allows for the use of mature low cost production processes to be employed. A novel design concept was investigated which allows for improvements in performance through increased interface stability, and lowering of cost through enhanced structural integrity and the use of low cost metal interconnects. The new cell design consisted of a co-sintered porous/dense/porous zirconia layer with the electrode material infiltrated into the porous layers. The two year program conducted by a team involving Ceramatec and the Institute of Gas Technology, culminated in a multi-cell stack test that exhibited high performance. Considerable progress was achieved in the selection of cell components, and establishing and optimizing the cell and stack fabrication parameters. It was shown that the stack components exhibited high conductivities and low creep at the operating temperature. The inter-cell resistive losses were shown to be small through out-of-cell characterization. The source of performance loss was identified to be the anode electrolyte interface. This loss however can be minimized by improving the anode infiltration technique. Manifolding and sealing of the planar devices posed considerable challenge. Even though the open circuit voltage was 250 mV/cell lower than theoretical, the two cell stack had a performance of 300 mA/cm{sup 2} at 0.4V/cell with an area specific resistance of 1 {Omega}-cm{sup 2}/cell. improvements in manifolding are expected to provide much higher performance.

  14. Hybrid planar lightwave circuits for defense and aerospace applications

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Bidnyk, Serge; Yang, Shiquan; Balakrishnan, Ashok; Pearson, Matt; O'Keefe, Sean

    2010-04-01

    We present innovations in Planar Lightwave Circuits (PLCs) that make them ideally suited for use in advanced defense and aerospace applications. We discuss PLCs that contain no micro-optic components, no moving parts, pose no spark or fire hazard, are extremely small and lightweight, and are capable of transporting and processing a range of optical signals with exceptionally high performance. This PLC platform is designed for on-chip integration of active components such as lasers and detectors, along with transimpedance amplifiers and other electronics. These active components are hybridly integrated with our silica-on-silicon PLCs using fully-automated robotics and image recognition technology. This PLC approach has been successfully applied to the design and fabrication of multi-channel transceivers for aerospace applications. The chips contain hybrid DFB lasers and high-efficiency detectors, each capable of running over 10 Gb/s, with mixed digital and analog traffic multiplexed to a single optical fiber. This highlyintegrated functionality is combined onto a silicon chip smaller than 4 x 10 mm, weighing < 5 grams. These chip-based transceivers have been measured to withstand harsh g-forces, including sinusoidal vibrations with amplitude of 20 g acceleration, followed by mechanical shock of 500 g acceleration. The components operate over a wide range of temperatures, with no device failures after extreme temperature cycling through a range of > 125 degC, and more than 2,000 hours operating at 95 degC ambient air temperature. We believe that these recent advancements in planar lightwave circuits are poised to revolutionize optical communications and interconnects in the aerospace and defense industries.

  15. Uniform yeast cell assembly via microfluidics.

    PubMed

    Chang, Ya-Wen; He, Peng; Marquez, Samantha M; Cheng, Zhengdong

    2012-06-01

    This paper reports the use of microfluidic approaches for the fabrication of yeastosomes (yeast-celloidosomes) based on self-assembly of yeast cells onto liquid-solid or liquid-gas interfaces. Precise control over fluidic flows in droplet- and bubble-forming microfluidic devices allows production of monodispersed, size-selected templates. The general strategy to organize and assemble living cells is to tune electrostatic attractions between the template (gel or gas core) and the cells via surface charging. Layer-by-Layer (LbL) polyelectrolyte deposition was employed to invert or enhance charges of solid surfaces. We demonstrated the ability to produce high-quality, monolayer-shelled yeastosome structures under proper conditions when sufficient electrostatic driving forces are present. The combination of microfluidic fabrication with cell self-assembly enables a versatile platform for designing synthetic hierarchy bio-structures. PMID:22655026

  16. Molecular Imaging Probe Development using Microfluidics

    PubMed Central

    Liu, Kan; Wang, Ming-Wei; Lin, Wei-Yu; Phung, Duy Linh; Girgis, Mark D.; Wu, Anna M.; Tomlinson, James S.; Shen, Clifton K.-F.

    2012-01-01

    In this manuscript, we review the latest advancement of microfluidics in molecular imaging probe development. Due to increasing needs for medical imaging, high demand for many types of molecular imaging probes will have to be met by exploiting novel chemistry/radiochemistry and engineering technologies to improve the production and development of suitable probes. The microfluidic-based probe synthesis is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional systems. Numerous chemical reactions have been successfully performed in micro-reactors and the results convincingly demonstrate with great benefits to aid synthetic procedures, such as purer products, higher yields, shorter reaction times compared to the corresponding batch/macroscale reactions, and more benign reaction conditions. Several ‘proof-of-principle’ examples of molecular imaging probe syntheses using microfluidics, along with basics of device architecture and operation, and their potential limitations are discussed here. PMID:22977436

  17. Microfluidics for miniaturized laboratories on a chip.

    PubMed

    Franke, Thomas A; Wixforth, Achim

    2008-10-24

    Microfluidic systems promise solutions for high throughput and highly specific analysis for biology, medicine and chemistry while consuming only tiny amounts of reactants and space. On these lab-on-a-chip platforms often multiple physical effects such as electrokinetic, acoustic or capillary phenomena from various disciplines are exploited to gain the optimal functionality. The fluidics on these small length scales differ significantly from our experience of the macroscopic world. In this Review we survey some of the approaches and techniques to handle minute amounts of fluid volumes in microfluidic systems with special focus on surface acoustic wave driven fluidics, a technique developed in our laboratory. Here, we outline the basics of this technique and demonstrate, for example, how acoustic mixing and fluid actuation is realized. Furthermore we discuss the interplay of different physical effects in microfluidic systems and illustrate their usefulness for several applications. PMID:18932153

  18. Microfluidic Pumps Containing Teflon [Trademark] AF Diaphragms

    NASA Technical Reports Server (NTRS)

    Willis, Peter; White, Victor; Grunthaner, Frank; Ikeda, Mike; Mathies, Richard A.

    2009-01-01

    Microfluidic pumps and valves based on pneumatically actuated diaphragms made of Teflon AF polymers are being developed for incorporation into laboratory-on-a-chip devices that must perform well over temperature ranges wider than those of prior diaphragm-based microfluidic pumps and valves. Other potential applications include implanted biomedical microfluidic devices, wherein the biocompatability of Teflon AF polymers would be highly advantageous. These pumps and valves have been demonstrated to function stably after cycling through temperatures from -125 to 120 C. These pumps and valves are intended to be successors to similar prior pumps and valves containing diaphragms made of polydimethylsiloxane (PDMS) [commonly known as silicone rubber]. The PDMS-containing valves ae designed to function stably only within the temperature range from 5 to 80 C. Undesirably, PDMS membranes are somwehat porous and retain water. PDMS is especially unsuitable for use at temperatures below 0 C because the formation of ice crystals increases porosity and introduces microshear.

  19. 3D-Printed Microfluidic Automation

    PubMed Central

    Au, Anthony K.; Bhattacharjee, Nirveek; Horowitz, Lisa F.; Chang, Tim C.; Folch, Albert

    2015-01-01

    Microfluidic automation – the automated routing, dispensing, mixing, and/or separation of fluids through microchannels – generally remains a slowly-spreading technology because device fabrication requires sophisticated facilities and the technology’s use demands expert operators. Integrating microfluidic automation in devices has involved specialized multi-layering and bonding approaches. Stereolithography is an assembly-free, 3D-printing technique that is emerging as an efficient alternative for rapid prototyping of biomedical devices. Here we describe fluidic valves and pumps that can be stereolithographically printed in optically-clear, biocompatible plastic and integrated within microfluidic devices at low cost. User-friendly fluid automation devices can be printed and used by non-engineers as replacement for costly robotic pipettors or tedious manual pipetting. Engineers can manipulate the designs as digital modules into new devices of expanded functionality. Printing these devices only requires the digital file and electronic access to a printer. PMID:25738695

  20. A microfluidics cytometer for mice anemia detection.

    PubMed

    Ju, Yanrui; Song, Jian; Geng, Zhaoxin; Zhang, Hongze; Wang, Wei; Xie, Lide; Yao, Weijuan; Li, Zhihong

    2012-11-01

    The design and fabrication of a microfluidic cytometer system and its application for reticulocyte detection are described. This chip can count the target cells, which are focused at the detection window without sheath flow. This cytometer system based on optimized epifluoresence has a competitive advantage in the signal-to-noise ratio. Induced fluorescence from the reticulocyte binded with antibody is detected by the optical module and then transformed into the electronic signal by a photo multiplier tube. After signal processing, the results are automatically read out by a digital module and displayed on the system. To evaluate this microfluidic cytometer system, experiments employing polystyrene (PS) micro beads and induced reticulocyte of mice anemia are carried out, respectively, and the results illustrate that the microfluidic cytometer system is effective in detecting the reticulocyte. PMID:22907472