Science.gov

Sample records for planarians platyhelminthes tricladida

  1. Biogeography and karyotypes of freshwater planarians (Platyhelminthes, Tricladida, Paludicola) in southern Brazil.

    PubMed

    Knakievicz, Tanise; Lau, Adriana Helena; Prá, Daniel; Erdtmann, Bernardo

    2007-02-01

    In the Tricladida (Platyhelminthes), the incidence of different biotypes identified by several ploidy levels is very common. Planarians collected in the State of Rio Grande do Sul were identified using cytogenetics. Different species distributions were observed with respect to Rio Grande do Sul's geomorphology, which could have been caused by their different microhabitats. Girardia tigrina and G. anderlani consisted of diploid and triploid individuals, whereas G. schubarti showed diploids, triploids, and mixoploids; for all these species, individuals of different ploidies were sympatric. Only for diploid G. anderlani were B chromosomes observed. These B chromosomes seem to have an irregular segregational behavior during mitosis, and possibly also during meiosis. However the processes (e.g., selection, mutation) of maintaining 2n, 3n, and 2n/3n individuals within natural populations of G. schubarti remain to be clarified. PMID:17409725

  2. Molecular phylogeny of land and freshwater planarians (Tricladida, Platyhelminthes): from freshwater to land and back.

    PubMed

    Alvarez-Presas, Marta; Baguñà, Jaume; Riutort, Marta

    2008-05-01

    The suborder Tricladida (phylum Platyhelminthes) comprises the well-known free-living flatworms, taxonomically grouped into three infraorders according to their ecology: Maricola (marine planarians), Paludicola (freshwater planarians), and Terricola (land planarians). Molecular analyses have demonstrated that the Paludicola are paraphyletic, the Terricola being the sister group of one of the three paludicolan families, the Dugesiidae. However, neither 18S rDNA nor COI based trees have been able to resolve the relationships among species of Terricola and Dugesiidae, particularly the monophyly of Terricola. Here, we present new molecular data including sequences of nuclear genes (18S rDNA, 28S rDNA) and a mitochondrial gene (COI) of a wider sample of dugesiid and terricolan species. The new sequences have been analyzed, together with those previously obtained, in independent and concatenated analyses using maximum likelihood and bayesian methods. The results show that, although some parts of the trees remain poorly resolved, they support a monophyletic origin for Terricola followed by a likely return of some species to freshwater habitats. Relationships within the monophyletic group of Dugesiidae are clearly resolved, and relationships among some terricolan subfamilies are also clearly established and point to the need for a thorough revision of Terricola taxonomy. PMID:18359250

  3. Tracking and predation on earthworms by the invasive terrestrial planarian Bipalium adventitium (Tricladida, Platyhelminthes).

    PubMed

    Fiore, Cara; Tull, Jamie L; Zehner, Sean; Ducey, Peter K

    2004-11-30

    The potential ecological impact of exotic terrestrial planarians will be determined in part by their sensory abilities and predatory behavior. It has been suggested that these flatworms may only encounter their earthworm prey by chance, hence restricting the breadth of species they will feed upon and the number of microhabitats in which predator-prey interactions occur. We hypothesized that those flatworms that have already successfully invaded North America (genus Bipalium) actually detect and follow chemical trails of earthworms and possess the behavioral repertoire needed to feed on the prey in a range of microhabitats. We examined: (1) the tendency of Bipalium adventitium to follow chemical trails left by injured and un-injured earthworms; (2) the behavioral repertoire and predatory success of B. adventitium feeding on three earthworm species in subterranean tunnels; and (3) the response of flatworms to the reportedly defensive secretions of the earthworm Eisenia fetida in tunnels. B. adventitium detected and followed trails of earthworm mucus and secretions left by injured and un-injured earthworms. Flatworms followed trails on a range of substrates and pursued and captured three species of earthworms in subterranean tunnels, including individuals many times their mass. Although most behavior exhibited during underground attacks was similar to that reported for surface encounters, the flatworms also behaved in ways that blocked earthworm escape from tunnels. The flatworms were less successful at preying on E. fetida than on Lumbricus rubellus and Lumbricus terrestris in underground tunnels and showed some aversion to the secretions from E. fetida. PMID:15518983

  4. Occurrence and abundance of a mariner-like element in freshwater and terrestrial planarians (Platyhelminthes, Tricladida) from southern Brazil

    PubMed Central

    2009-01-01

    Transposable elements are DNA sequences present in all the large phylogenetic groups, both capable of changing position within the genome and constituting a significant part of eukaryotic genomes. The mariner family of transposons is one of the few which occurs in a wide variety of taxonomic groups, including freshwater planarians. Nevertheless, so far only five planarian species have been reported to carry mariner-like elements (MLEs), although several different species have been investigated. Regarding the number of copies of MLEs, Girardia tigrina is the only planarian species in which this has been evaluated, with an estimation of 8,000 copies of the element per haploid genome. Preliminary results obtained in our laboratory demonstrated that MLE is found in a large number of different species of planarians, including terrestrial. With this in mind, the aim was to evaluate the occurrence and estimate the number of MLE copies in different planarian species collected in south Brazil. Twenty-eight individuals from 15 planarian species were analyzed. By using PCR and the hybridization of nucleic acids, it was found that MLE was present in all the analyzed species, the number of copies being high, probably over 103 per haploid genome. PMID:21637447

  5. Occurrence and abundance of a mariner-like element in freshwater and terrestrial planarians (Platyhelminthes, Tricladida) from southern Brazil.

    PubMed

    Sperb, Fernanda; Schuck, Desirée Cigaran; Rodrigues, Jaqueline Josi Samá

    2009-10-01

    Transposable elements are DNA sequences present in all the large phylogenetic groups, both capable of changing position within the genome and constituting a significant part of eukaryotic genomes. The mariner family of transposons is one of the few which occurs in a wide variety of taxonomic groups, including freshwater planarians. Nevertheless, so far only five planarian species have been reported to carry mariner-like elements (MLEs), although several different species have been investigated. Regarding the number of copies of MLEs, Girardia tigrina is the only planarian species in which this has been evaluated, with an estimation of 8,000 copies of the element per haploid genome. Preliminary results obtained in our laboratory demonstrated that MLE is found in a large number of different species of planarians, including terrestrial. With this in mind, the aim was to evaluate the occurrence and estimate the number of MLE copies in different planarian species collected in south Brazil. Twenty-eight individuals from 15 planarian species were analyzed. By using PCR and the hybridization of nucleic acids, it was found that MLE was present in all the analyzed species, the number of copies being high, probably over 10(3) per haploid genome. PMID:21637447

  6. Anatomical deviation of male organs of land planarians from Rio de Janeiro, Brazil, with description of two new species of Cratera (Platyhelminthes, Tricladida).

    PubMed

    Carbayo, Fernando

    2015-01-01

    Two new land planarian species, collected in the State of Rio de Janeiro, Brazil, are described. Their external aspect is similar to that of Imbira marcusi Carbayo et al., 2013 and Pseudogeoplana theresopolitana (Schirch, 1929), respectively. The analysis of the internal organs, however, revealed they belong to the genus Cratera. The male copulatory organs of one species is very different from any other geoplaninid, for the penis papilla holds a large, distal cavity receiving the ejaculatory duct and, furthermore, the papilla projects vertically downwards from the roof of the male atrium. Thus we consider it as a new species, Cratera cuarassu sp. nov. The second species differs from its congeners in that the dorsal insertion of the penis papilla is anterior to the ventral one, and in that the female atrium is narrowed in the anterior portion. The species was found in the type locality of Pseudogeoplana theresopolitana (Schirch, 1929) and compares well with it in the external features. However, since its internal organs are unknown and the type material of the species is seemingly lost, we describe it as Cratera anamariae Carbayo, sp. nov. PMID:25781812

  7. Molecular barcoding and phylogeography of sexual and asexual freshwater planarians of the genus Dugesia in the Western Mediterranean (Platyhelminthes, Tricladida, Dugesiidae).

    PubMed

    Lázaro, Eva M; Sluys, Ronald; Pala, Maria; Stocchino, Giacinta Angela; Baguñà, Jaume; Riutort, Marta

    2009-09-01

    Planarians of the genus Dugesia have a worldwide distribution with high species diversity in the Mediterranean area. In this area, populations with a triploid karyotype that reproduce by fissiparity are exceptionally frequent, outnumbering the sexual populations. This situation poses interesting questions, such as the age of these asexual lineages, whether they all belong to the same species or whether the triploidization event is recurrent, and what factors (climatic, geographical, historical...) explain the prevalence of these asexual forms. However, asexual populations cannot be assigned to a species due to the lack of copulatory apparatus--the main structure used in species identification. In this study, we have developed a DNA barcoding method, based on COI and ITS-1 sequences, which allows the assignment of the fissiparous forms to sexual species. At the same time, phylogenetic analysis from species of the western Mediterranean have unveiled the presence of species with highly differentiated populations alongside species with a wide distribution and almost no genetic variation. The roles of habitat instability, dispersal capacity and human activities are briefly discussed. PMID:19435604

  8. An ultrastructural study of oogenesis and cell dynamics during cocoon shell secretion in the subterranean freshwater planarian Dendrocoelum constrictum (Platyhelminthes, Tricladida).

    PubMed

    Harrath, A H; Ahmed, M; Sayed, S R; Saifi, M A; Alwasel, S H

    2013-02-01

    The ultrastructure of the ovary and the female atrium during cocoon formation was investigated in the subterranean freshwater planarian Dendrocoelum constrictum. In the peripheral portion of the ovary, the oogonia are recognized as undifferentiated germ cells, which are morphologically similar to neoblasts that have a high nucleus/cytoplasm ratio. Oocyte maturation is characterized by a marked growth of the cytoplasm because of the accumulation of cytoplasmic organelles and inclusions. The Golgi complexes begin to increase within the ooplasm and produce vesicles with an electron-dense content that fuse to produce larger spherical globules with homogeneous and electron-dense material. In the mature oocyte, the spherical globules migrate toward the cortical ooplasm, forming a continuous monolayer. We confirm that these spherical globules, which represent cortical granules rather than eggshell globules, vary in size up to 2?m and their electron-dense content shows concentric thin bands. After leaving the ovary through the oviduct, the mature and fertilized oocytes reach the female atrium where they are packaged with thousands of vitelline cells in the cocoon shell. Based on our ultrastructural analysis, we demonstrate that the wall of the cocoon shell is composed of two layers, each of which has a different origin. The shell granules extruded from the vitelline cells are involved in the secretion of the inner layer of the cocoon shell, whereas the outer layer of the cocoon shell is synthesized by the epithelial cells in the genital atrium. PMID:23107980

  9. Evolutionary history of the Tricladida and the Platyhelminthes: an up-to-date phylogenetic and systematic account.

    PubMed

    Riutort, Marta; Álvarez-Presas, Marta; Lázaro, Eva; Solà, Eduard; Paps, Jordi

    2012-01-01

    Within the free-living platyhelminths, the triclads, or planarians, are the best-known group, largely as a result of long-standing and intensive research on regeneration, pattern formation and Hox gene expression. However, the group's evolutionary history has been long debated, with controversies ranging from their phyletic structure and position within the Metazoa to the relationships among species within the Tricladida. Over the the last decade, with the advent of molecular phylogenies, some of these issues have begun to be resolved. Here, we present an up-to-date summary of the main phylogenetic changes and novelties with some comments on their evolutionary implications. The phylum has been split into two groups, and the position of the main group (the Rhabdithophora and the Catenulida), close to the Annelida and the Mollusca within the Lophotrochozoa, is now clear. Their internal relationships, although not totally resolved, have been clarified. Tricladida systematics has also experienced a revolution since the implementation of molecular data. The terrestrial planarians have been demonstrated to have emerged from one of the freshwater families, giving a different view of their evolution and greatly altering their classification. The use of molecular data is also facilitating the identification of Tricladida species by DNA barcoding, allowing better knowledge of their distribution and genetic diversity. Finally, molecular phylogenetic and phylogeographical analyses, taking advantage of recent data, are beginning to give a clear picture of the recent history of the Dugesia and Schmidtea species in the Mediterranean. PMID:22450992

  10. Origin and Evolution of Paralogous rRNA Gene Clusters Within the Flatworm Family Dugesiidae (Platyhelminthes, Tricladida)

    E-print Network

    Carranza, Salvador

    (Platyhelminthes, Tricladida) Salvador Carranza,* Jaume Bagun~a`, Marta Riutort Departament de Gene`tica, Facultat -- Platyhelminthes -- Variability -- Multigene fam- ily -- Metazoan -- Phylogeny Introduction The ribosomal DNA (rDNA polymorphism within the genome of a metazoan species, Schmidtea mediterranea, a free-living platyhelminth

  11. The taxonomic status of Dugesia biblica from Israel and Turkey (Platyhelminthes, Tricladida, Dugesiidae)

    PubMed Central

    Solà, Eduard; Sluys, Ronald; Segev, Ori; Blaustein, Leon; Riutort, Marta

    2015-01-01

    Abstract The taxonomic status of Dugesia biblica (Platyhelminthes, Tricladida, Dugesiidae) from Israel and Turkey is problematic due to its morphological similarity with Dugesia sicula since these nominal species present overlapping characters. In this study we analyzed histological preparations of specimens of these two nominal species and also compared mitochondrial COI gene sequences from Israeli populations to the already known haplotype composition of Dugesia sicula. We concluded that these animals belong to the same species and therefore we consider Dugesia biblica to be a junior synonym of Dugesia sicula. This implies that the distribution range of Dugesia sicula is even wider than previously thought, and that the species is present all around the Mediterranean Basin and on many of its islands. PMID:26085791

  12. Investigation of the ultrastructure of Dendrocoelum constrictum (Platyhelminthes, Tricladida) spermatogenesis and mature spermatozoa.

    PubMed

    Harrath, Abdel Halim; Gammoudi, Mehrez; Mansour, Lamjed; Ahmed, Mukhtar; Sirotkin, Alexander V; Al Omar, Suliman Y; Ibrahim, Khalid E; Alwasel, Saleh H

    2014-09-01

    To add to our understanding of dendrocoelid spermatozoa and to describe additional phylogenetic characters, the ultrastructure of the testis was investigated in the subterranean freshwater planarian Dendrocoelum constrictum. This is the first study investigating spermatogenesis and spermatozoon ultrastructure in a subterranean freshwater planarian species. We found that the basic structure of spermatozoa in D. constrictum is similar to that of other Tricladida that have been studied previously. In fact, D. constrictum spermatozoa possess an elongated nucleus, one giant mitochondrion, and two subterminal flagella with a 9+'1' pattern. The flagella emerge together from one side of the spermatozoon. However, D. constrictum has some characteristics that have not yet been described for other freshwater planarians. In fact, the number of cortical microtubules reaches the maximum number in the anterior and middle part of region I, and then decrease until they disappear towards the posterior extremity of the spermatozoon. The extreme tip of the anterior region of the spermatozoon exhibits a specific external ornamentation of the plasma membrane. PMID:25242690

  13. The female gonad in two species of Microplana (Platyhelminthes, Tricladida, Rhynchodemidae): ultrastructural and cytochemical investigations.

    PubMed

    Falleni, Alessandra; Lucchesi, Paolo; Ghezzani, Claudio; McDonald, Jillian C; Jones, Hugh D

    2009-09-01

    The female gonad of the land planarians Microplana scharffi and Microplana terrestris consists of two small germaria located ventrally in the anterior third of the body and of two ventro-lateral rows of oblong vitelline follicles distributed between the intestinal pouches. Both these structures are enveloped by a tunica composed of an outer extracellular lamina and an inner sheath of accessory cells. Oocyte maturation is characterized by the appearance of chromatoid bodies and the development of endoplasmic reticulum and Golgi complexes. These organelles appear to be correlated with the production of egg granules with a fenestrated/granular content of medium electron density, about 4-5 mum in diameter, which remain dispersed in the ooplasm of mature oocytes. On the basis of cytochemical tests showing their glycoprotein composition, and their localization in mature oocytes, these egg granules have been interpreted as yolk. In the vitelline follicles, vitellocytes show the typical features of secretory cells with well-developed rough endoplasmic reticulum and Golgi complexes involved in the production of eggshell globules and yolk. The eggshell globules, which appear to arise from repeated coalescences of two types of Golgi-derived vesicles, contain polyphenols and, when completely mature, they measure about 1-1,2 mum in diameter and show a meandering/concentric content pattern as is typical of the situation observed in most Proseriata and Tricladida. Mature vitellocytes also contain a large amount of glycogen and lipids as further reserve material. On the basis of the ultrastructural features of the female gonad and in relation to the current literature the two species of rhynchodemids investigated appear to be closely related to the freshwater planarians belonging to the family Dugesiidae. PMID:19291671

  14. A new and aberrant species of Dugesia (Platyhelminthes, Tricladida, Dugesiidae) from Madagascar

    PubMed Central

    Stocchino, Giacinta Angela; Sluys, Ronald; Manconi, Renata

    2014-01-01

    Abstract In this paper we report a new species of Dugesia of the family Dugesiidae from Madagascar, representing the fourth species of freshwater planarian known from this global biodiversity hotspot. In some respects the new species is aberrant, when compared with its congeners, being characterized by a head with smoothly rounded auricles, a peculiar course of the oviducts, including the presence of a common posterior extension, and by the asymmetrical openings of the vasa deferentia at about halfway along the seminal vesicle. Further, it is characterized by a ventral course of the ejaculatory duct with a terminal opening, very long spermiducal vesicles and unstalked cocoons. Its diploid chromosome complement with 18 chromosomes represents an uncommon feature among fissiparous species of Dugesia. PMID:25147450

  15. Fine-scale differences in diel activity among nocturnal freshwater planarias (Platyhelminthes: Tricladida)

    PubMed Central

    2011-01-01

    Background Although most freshwater planarias are well known photonegative organisms, their diel rhythms have never been quantified. Differences in daily activity rhythms may be particularly important for temperate-climate, freshwater planarias, which tend to overlap considerably in spatial distribution and trophic requirements. Methods Activity of stress-free, individually tested young adults of three common planarian species was recorded at 3-h intervals in a 10-d experiment under natural sunlight and photoperiod during autumnal equinox (D:L ~12:12). Individual activity status was averaged over the 10-d experiment, each tested individual thus serving as a true replicate. Twelve individuals per species were tested. Food was provided every 36 h, resulting in alternating day- and nighttime feeding events. Activity during the first post-feeding h was recorded and analyzed separately. Statistical procedures included ANOVAs, correlations, and second-order analyses of angles. Results Dugesia (= Girardia) tigrina Girard 1850 exhibited clear nocturnal behavior, Dugesia (= Schmidtea) polychroa Schmidt 1861 was predominantly but not exclusively nocturnal, and Polycelis tenuis Ijima 1884 was relatively more active from midnight through noon. Species-specific activity peaks were statistically similar, with peaks at dawn for P. tenuis and just before midnight for the two dugesiids; however, D. tigrina was comparatively more active in the early night hours, while D. polychroa was more active than D. tigrina during daytime. D. tigrina also responded less readily to daytime food addition. P. tenuis remained poorly active and unresponsive throughout the experiment. Individual variability in diel behavior was highest for D. polychroa and lowest for D. tigrina. P. tenuis's general low degree of activity and late activity peak in the experiment may be related to a strong reliance on external stimuli. Conclusions The tested species are mainly nocturnal, consistent with their photonegative characteristics. The fine-scale differences in diel behavior among these three triclad species may not be sufficient to allow coexistence in the wild, with the nonnative D. tigrina eventually displacing D. polychroa and P. tenuis in many European waters. The link between planarian diel rhythms and ecological characteristics are worth of further, detailed investigation. PMID:21477354

  16. Prey-tracking behavior in the invasive terrestrial planarian Platydemus manokwari (Platyhelminthes, Tricladida)

    NASA Astrophysics Data System (ADS)

    Iwai, Noriko; Sugiura, Shinji; Chiba, Satoshi

    2010-11-01

    Platydemus manokwari is a broadly distributed invasive terrestrial flatworm that preys heavily on land snails and has been credited with the demise of numerous threatened island faunas. We examined whether P. manokwari tracks the mucus trails of land snail prey, investigated its ability to determine trail direction, and evaluated prey preference among various land snail species. A plastic treatment plate with the mucus trail of a single species and a control plate without the trail were placed side by side at the exit of cages housing P. manokwari. All trials were then videotaped overnight. The flatworms moved along plates with mucus trails, but did not respond to plates without trails, blank control (distilled water), or with conspecific flatworm trails. When presented at the midpoint of a snail mucus trail, the flatworms followed the trail in a random direction. The flatworms showed a preference when choosing between two plates, each with a mucus trail of different land snail species. Our results suggest that P. manokwari follows snail mucus trails based on chemical cues to increase the chance of encountering prey; however, trail-tracking behavior showed no directionality.

  17. Prey-tracking behavior in the invasive terrestrial planarian Platydemus manokwari (Platyhelminthes, Tricladida).

    PubMed

    Iwai, Noriko; Sugiura, Shinji; Chiba, Satoshi

    2010-11-01

    Platydemus manokwari is a broadly distributed invasive terrestrial flatworm that preys heavily on land snails and has been credited with the demise of numerous threatened island faunas. We examined whether P. manokwari tracks the mucus trails of land snail prey, investigated its ability to determine trail direction, and evaluated prey preference among various land snail species. A plastic treatment plate with the mucus trail of a single species and a control plate without the trail were placed side by side at the exit of cages housing P. manokwari. All trials were then videotaped overnight. The flatworms moved along plates with mucus trails, but did not respond to plates without trails, blank control (distilled water), or with conspecific flatworm trails. When presented at the midpoint of a snail mucus trail, the flatworms followed the trail in a random direction. The flatworms showed a preference when choosing between two plates, each with a mucus trail of different land snail species. Our results suggest that P. manokwari follows snail mucus trails based on chemical cues to increase the chance of encountering prey; however, trail-tracking behavior showed no directionality. PMID:20853096

  18. Dugesia sicula (Platyhelminthes, Tricladida): the colonizing success of an asexual Planarian

    PubMed Central

    2013-01-01

    Background Dugesia sicula is the only species of its genus not presenting an endemic or restricted distribution within the Mediterranean area. It mostly comprises fissiparous populations (asexual reproduction by body division and regeneration), most likely sexually sterile, and characterized by an extremely low genetic diversity interpreted as the consequence of a recent anthropic expansion. However, its fissiparous reproduction can result in an apparent lack of diversity within the species, since genetic variation within individuals can be as large as between them because most individuals within a population are clones. We have estimated haplotype and nucleotide diversity of cytochrome oxidase I within and among individuals along the species distribution of a broad sample of D. sicula, including asexual and the two only sexual populations known today; and predicted its potential distribution based on climatic variables. Our aim was to determine the centre of colonisation origin, whether the populations are recent, and whether the species is expanding. Results The species presents 3 most frequent haplotypes, differing in a maximum of 11 base pairs. As expected from their fissiparous mode of reproduction, in half of all the analysed localities many individuals have multiple heteroplasmic haplotypes. The distribution of haplotypes is not geographically structured; however, the distribution of haplotypes and heteroplasmic populations shows higher diversity in the central Mediterranean region. The potential distribution predicted by climatic variables based modelling shows a preference for coastal areas and fits well with the observed data. Conclusions The distribution and frequency of the most frequent haplotypes and the presence of heteroplasmic individuals allow us to gain an understanding of the recent history of the species, together with previous knowledge on its phylogenetic relationships and age: The species most probably originated in Africa and dispersed through the central Mediterranean. After one or multiple populations became triploid and fissiparous, the species colonized the Mediterranean basin, likely both by its own means and helped by human activities. Its present distribution practically fulfils its potential distribution as modelled with climatic variables. Its prevalence in coastal regions with higher water temperatures predicts a likely future expansion to northern and more interior areas following the increase in temperatures due to climate change. PMID:24330464

  19. Reproductive strategies, karyology, parasites, and taxonomic status of Dugesia populations from Yemen (Platyhelminthes: Tricladida: Dugesiidae).

    PubMed

    Harrath, Abdul Halim; Sluys, Ronald; Aldahmash, Waleed; Al-Razaki, Abdulkarim; Alwasel, Saleh

    2013-06-01

    We present new data on the distribution, reproductive strategies, karyology, and taxonomic status of populations of freshwater planarians from Yemen. Nine populations were sampled and significant differences in their reproductive strategies and karyology are reported. The present study presents the first fully documented record of a naturally sexual, diploid (2n = 18) population of a Dugesia species in the eastern part of the Afrotropical region. Morphological characters combined with karyological data suggest that these Dugesia populations from Yemen represent a new species, which is herein described as Dugesia arabica Harrath and Sluys, sp. nov. This new species is mainly distinguishable from other Dugesia species that are distributed exclusively in the Mediterranean basin and in the eastern part of the Afrotropical region by the presence of the following features: well-developed and cone-shaped penis papilla, housing an ejaculatory duct that runs ventrally and has a subterminal and ventral opening; a considerably expanded and folded section of the bursal canal at the level of the oviducal openings; absence of a layer of longitudinal muscles on the copulatory bursa and the bursal canal. Specimens from two populations from Yemen were infested with a gregarine Protozoon. PMID:23721474

  20. INTRODUCTION The phylum Platyhelminthes (flatworms) consists of

    E-print Network

    Alvarado, Alejandro Sánchez

    (Newmark and Sánchez Alvarado, 2002). For example, the ability of freshwater planarians to regenerate the freshwater planarian as an experimental model. We report the establishment of a clonal line of a diploid, asexual form of the planarian Schmidtea mediterranea (Turbellaria, Tricladida), along with the isolation

  1. Fluvial basin history in the northeastern Mediterranean region underlies dispersal and speciation patterns in the genus Dugesia (Platyhelminthes, Tricladida, Dugesiidae).

    PubMed

    Solà, Eduard; Sluys, Ronald; Gritzalis, Konstantinos; Riutort, Marta

    2013-03-01

    In this study we analyzed the phylogenetic relationships of eastern Mediterranean freshwater planarians of the genus Dugesia, estimated divergence times for the various clades, and correlated their phylogeographic patterns with geological and paleoclimatic events, in order to discover which evolutionary processes have shaped the present-day distribution of these animals. Specimens were collected from freshwater courses and lakes in continental and insular Greece. Genetic divergences and phylogenetic relationships were inferred by using the mitochondrial gene subunit I of cytochrome oxidase (COI) and the nuclear ribosomal internal transcribed spacer-1 (ITS-1) from 74 newly collected individuals from Greece. Divergence time estimates were obtained under a Bayesian framework, using the COI sequences. Two alternative geological dates for the isolation of Crete from the mainland were tested as calibration points. A clear phylogeographic pattern was present for Dugesia lineages in the Eastern Mediterranean. Morphological data, combined with information on genetic divergences, revealed that eight out of the nine known species were represented in the samples, while additional new, and still undescribed species were detected. Divergence time analyses suggested that Dugesia species became isolated in Crete after the first geological isolation of the island, and that their present distribution in the Eastern Mediterranean has been shaped mainly by vicariant events but also by dispersal. During the Messinian salinity crisis these freshwater planarians apparently were not able to cross the sea barrier between Crete and the mainland, while they probably did disperse between islands in the Aegean Sea. Their dependence on freshwater to survive suggests the presence of contiguous freshwater bodies in those regions. Our results also suggest a major extinction of freshwater planarians on the Peloponnese at the end of the Pliocene, while about 2Mya ago, when the current Mediterranean climate was established, these Peloponnese populations probably began to disperse again. At the end of the Pliocene or during the Pleistocene, mainland populations of Dugesia colonized the western coast, including the Ionian Islands, which were then part of the continent. PMID:23182762

  2. Planarians.

    ERIC Educational Resources Information Center

    Hummer, Paul J.

    1991-01-01

    Describes the easy collection procedures and classroom uses of live planarians. Suggests that the use of live animals in the classroom will allow students to observe different biological processes exhibited by living organisms. (ZWH)

  3. [Interspecific variability of telomeric DNA length in some Siberian and endemic Ba?kal planarians (Plathelminthes, Tricladida)].

    PubMed

    Koroleva, A G; Kiril'chik, S V; Timoshkin, O A

    2010-09-01

    The length of the telomeric DNA in nine species of planarians inhabiting Lake Baikal and one Siberian species from Baikal rivers was determined using Southern hybridization. According to preliminary estimations, it varied in the range of 25-30 kb (Rimacephalus arecepta, Rimacephalus pulvinar, Sorocelis hepatizon, Sorocelis nigrofasciata, Protocotylus sp., Baikalobia guttata, Bdellocephala baikalensis, Phagocata sibirica) and 50 kb (Baikaloplana valida, Baikalobia copulatrix). It is the first estimation of the values of telomeric region lengths for Baikal free-living flat worms. PMID:21061625

  4. [An ultrastructural study of oogenesis in the planarian Schmidtea mediterranea (Platyhelminthe, Paludicola)].

    PubMed

    Harrath, Abdul Halim; Alwasal, Saleh H; Alhazza, Ibrahim; Zghal, Fathia; Tekaya, Saida

    2011-07-01

    The ovary of the freshwater planarian Schmidtea mediterranea has been studied for the first time using both light and electron microscopy methods. The ultrastructure of the ovary revealed two types of cells: accessory cells and germinal cells at various stages of differentiation, distributed along a maturation axis. Initially, oogonia underwent cytoplasm growth due to the development of organelles, such as endoplasmic reticulum, Golgi complex, and mitochondria, which are all involved in the production of cytoplasmic inclusions or yolk globules. It is shown that the chromatoid body and fibrogranular aggregates may participate in the synthesis of vitelline inclusions. When completely mature, the oocytes have become larger, due to the accumulation of nutritive inclusions, which are round in shape and have a paracrystalline structure. These inclusions are interpreted as being yolk globules and may represent a kind of nutritive material for the developing embryo. These ultrastructural features of the ovary agree with the available phylogenetic tree, based on morphological and karyological characters that considers Schmidtea group as a genus and not a subgenus. The presence of sperm between the oocytes suggests that fertilization may occur within the ovary, representing an uncommon condition within the Triclads, in which fertilization usually takes places outside of the ovaries. PMID:21784361

  5. The preferential accumulation of cadmium in the head portion of the freshwater planarian, Dugesia japonica (Platyhelminthes: Turbellaria).

    PubMed

    Wu, Jui-Pin; Chen, Hon-Cheng; Li, Mei-Hui

    2011-12-01

    Free-living freshwater planarians are considered to have the potential for development as an experimental model for toxicological studies on xenobiotics, including metals. However, little was known about the distribution patterns of metals in the body of treated planarians. This study was conducted to determine the tissue distribution patterns of cadmium (Cd) in different body portions of the treated planarian, Dugesia japonica. Results showed that Cd accumulated in the head of planarians at a significantly higher concentration than in the tail. After examining the level of metallothionein (MT), we suggested that the tissue distribution pattern of Cd might be related to MT induction patterns. In contrast, in planarians treated with copper (Cu), neither the tissue accumulation of Cu nor the multiples of induction of MTs significantly differed between different portions. Furthermore, a higher Cd accumulation rate in the head of planarians caused more-severe oxidative stress to appear in this portion and also a higher susceptibility to a lethal concentration of Cd. Finally, both in vitro and in vivo acetylcholinesterase activities in both body portions of planarians were inhibited by Cd. The present study provides the first report that different metals are distributed in various body portions with different patterns in the planarian. PMID:21960039

  6. The invasive land planarian Platydemus manokwari (Platyhelminthes, Geoplanidae): records from six new localities, including the first in the USA.

    PubMed

    Justine, Jean-Lou; Winsor, Leigh; Barrière, Patrick; Fanai, Crispus; Gey, Delphine; Han, Andrew Wee Kien; La Quay-Velázquez, Giomara; Lee, Benjamin Paul Yi-Hann; Lefevre, Jean-Marc; Meyer, Jean-Yves; Philippart, David; Robinson, David G; Thévenot, Jessica; Tsatsia, Francis

    2015-01-01

    The land planarian Platydemus manokwari de Beauchamp, 1963 or "New Guinea flatworm" is a highly invasive species, mainly in the Pacific area, and recently in Europe (France). We report specimens from six additional countries and territories: New Caledonia (including mainland and two of the Loyalty Islands, Lifou and Maré), Wallis and Futuna Islands, Singapore, Solomon Islands, Puerto Rico, and Florida, USA. We analysed the COI gene (barcoding) in these specimens with two sets of primers and obtained 909 bp long sequences. In addition, specimens collected in Townsville (Australia) were also sequenced. Two haplotypes of the COI sequence, differing by 3.7%, were detected: the "World haplotype" found in France, New Caledonia, French Polynesia, Singapore, Florida and Puerto Rico; and the "Australian haplotype" found in Australia. The only locality with both haplotypes was in the Solomon Islands. The country of origin of Platydemus manokwari is New Guinea, and Australia and the Solomon Islands are the countries closest to New Guinea from which we had specimens. These results suggest that two haplotypes exist in the area of origin of the species, but that only one of the two haplotypes (the "World haplotype") has, through human agency, been widely dispersed. However, since P. manokwari is now recorded from 22 countries in the world and we have genetic information from only 8 of these, with none from New Guinea, this analysis provides only partial knowledge of the genetic structure of the invasive species. Morphological analysis of specimens from both haplotypes has shown some differences in ratio of the genital structures but did not allow us to interpret the haplotypes as different species. The new reports from Florida and Puerto Rico are firsts for the USA, for the American continent, and the Caribbean. P. manokwari is a known threat for endemic terrestrial molluscs and its presence is a matter of concern. While most of the infected territories reported until now were islands, the newly reported presence of the species in mainland US in Florida should be considered a potential major threat to the whole US and even the Americas. PMID:26131377

  7. The invasive land planarian Platydemus manokwari (Platyhelminthes, Geoplanidae): records from six new localities, including the first in the USA

    PubMed Central

    Winsor, Leigh; Barrière, Patrick; Fanai, Crispus; Gey, Delphine; Han, Andrew Wee Kien; La Quay-Velázquez, Giomara; Lee, Benjamin Paul Yi-Hann; Lefevre, Jean-Marc; Meyer, Jean-Yves; Philippart, David; Robinson, David G.; Thévenot, Jessica; Tsatsia, Francis

    2015-01-01

    The land planarian Platydemus manokwari de Beauchamp, 1963 or “New Guinea flatworm” is a highly invasive species, mainly in the Pacific area, and recently in Europe (France). We report specimens from six additional countries and territories: New Caledonia (including mainland and two of the Loyalty Islands, Lifou and Maré), Wallis and Futuna Islands, Singapore, Solomon Islands, Puerto Rico, and Florida, USA. We analysed the COI gene (barcoding) in these specimens with two sets of primers and obtained 909 bp long sequences. In addition, specimens collected in Townsville (Australia) were also sequenced. Two haplotypes of the COI sequence, differing by 3.7%, were detected: the “World haplotype” found in France, New Caledonia, French Polynesia, Singapore, Florida and Puerto Rico; and the “Australian haplotype” found in Australia. The only locality with both haplotypes was in the Solomon Islands. The country of origin of Platydemus manokwari is New Guinea, and Australia and the Solomon Islands are the countries closest to New Guinea from which we had specimens. These results suggest that two haplotypes exist in the area of origin of the species, but that only one of the two haplotypes (the “World haplotype”) has, through human agency, been widely dispersed. However, since P. manokwari is now recorded from 22 countries in the world and we have genetic information from only 8 of these, with none from New Guinea, this analysis provides only partial knowledge of the genetic structure of the invasive species. Morphological analysis of specimens from both haplotypes has shown some differences in ratio of the genital structures but did not allow us to interpret the haplotypes as different species. The new reports from Florida and Puerto Rico are firsts for the USA, for the American continent, and the Caribbean. P. manokwari is a known threat for endemic terrestrial molluscs and its presence is a matter of concern. While most of the infected territories reported until now were islands, the newly reported presence of the species in mainland US in Florida should be considered a potential major threat to the whole US and even the Americas. PMID:26131377

  8. [Regeneration of planarians: experimental object].

    PubMed

    She?man, I M; Kreshchenko, I D

    2015-01-01

    We discuss the expediency of using invertebrates, such as flatworms and planarians, as experimental objects. Free-living planarian flatworms (phylum Platyhelminthes, class Turbellaria) are invertebrate animals in which a bilateral symmetry appears for the first time in evolution and organs and tissues form. As the highest ecological link of the food chain--predators--these animals are characterized by a set of behavioral reactions controlled by a differentiated central nervous system. Planarians have unsurpassed ability to regenerate lost or damaged body parts. Owing to the ease of their breeding and their convenience for manipulations, these animals are used to study the influence of chemical and physical factors on the processes of life, growth, and reproduction. Currently, planarians are recognized as a model for biological research in the field of regeneration, stem cell biology, study of their proliferation and differentiation, as well as the regulatory mechanisms of morphogenetic processes. The genome of the planarian Schmidtea mediterranea was fully sequenced, which opened up the opportunity to work with this object at the molecular biological level. Furthermore, planarians are used in neurobiological and toxicological studies, in studying the evolutionary aspects of centralization of the nervous system, mechanisms of muscle contraction, and in the development of new antiparasitic drugs. This review aims to demonstrate the relevance and diversity of research conducted on simple biological objects--planarians--to awider audience to show the historical continuity of these studies and their wide geographical distribution and to focus on the studies carried out in Russia, which, as a rule, are not included in the foreign reviews on planarian regeneration. PMID:25898529

  9. Embryonic development of Girardia tigrina (Girard, 1850) (Platyhelminthes, Tricladida, Paludicola).

    PubMed

    Vara, D C; Leal-Zanchet, A M; Lizardo-Daudt, H m

    2008-11-01

    The embryonic development of freshwater triclads is mainly known from studies of species of Dendrocoelum, Planaria, Polycelis, and, more recently, Schmidtea. The present study characterizes the development of Girardia tigrina (Girard, 1850) by means of optical microcopy using glycol methacrylate semi-thin sections. 94 cocoons were collected in the period from laying to hatching, with intervals of up to twenty-four hours. The sequence of morphological changes occurring in the embryo permitted the identification of nine embryonic stages. At the time of cocoon laying, numerous embryos were dispersed among many yolk cells, with a rigid capsule covering the entire cocoon. In the first stage (approx. up to 6 hours after cocoon laying), yolk cells and embryonic cells showed random distribution. Stage II (between 12 and 24 hours after cocoon laying) is characterized by aggregates of blastomeres, which later aggregate forming an enteroblastula. Approximately 2 days after cocoon laying (stage III), formation of the embryonic epidermis and embryonic digestive system took place, the latter degenerating during the subsequent stage. Stage V (until the fourth day) is characterized by the formation of the definitive epidermis. Between 4 and 6 days after laying, organogenesis of the definitive inner organs starts (stage VI). Approximately 14 days after laying (stage IX), formation of the nervous system is completed. At this stage, the embryo shows similar characteristics to those of newly hatched juveniles. The hatching of Girardia tigrina occurs in the period between twelve to twenty-two days after cocoon laying. PMID:19197510

  10. Planarians Sense Simulated Microgravity and Hypergravity

    PubMed Central

    Adell, Teresa; Saló, Emili; van Loon, Jack J. W. A.

    2014-01-01

    Planarians are flatworms, which belong to the phylum Platyhelminthes. They have been a classical subject of study due to their amazing regenerative ability, which relies on the existence of adult totipotent stem cells. Nowadays they are an emerging model system in the field of developmental, regenerative, and stem cell biology. In this study we analyze the effect of a simulated microgravity and a hypergravity environment during the process of planarian regeneration and embryogenesis. We demonstrate that simulated microgravity by means of the random positioning machine (RPM) set at a speed of 60?°/s but not at 10?°/s produces the dead of planarians. Under hypergravity of 3?g and 4?g in a large diameter centrifuge (LDC) planarians can regenerate missing tissues, although a decrease in the proliferation rate is observed. Under 8?g hypergravity small planarian fragments are not able to regenerate. Moreover, we found an effect of gravity alterations in the rate of planarian scission, which is its asexual mode of reproduction. No apparent effects of altered gravity were found during the embryonic development. PMID:25309918

  11. Protostomia: Lophotrochozoa: Annelida Platyhelminthes

    E-print Network

    Annelida Protostomia: Lophotrochozoa: Annelida Porifera Cnidaria Platyhelminthes Other Lophotrochozoa Deuterostomes Ecdysozoa Annelida #12;Annelida Protostomia: Lophotrochozoa: Annelida · Segmented muscle · Phylogeny unclear #12;Annelida Protostomia: Lophotrochozoa: Annelida Oligochaeta ­ earthworms

  12. Protostomia: Ecdysozoa: Nematoda Platyhelminthes

    E-print Network

    Deuterostomes Other Ecdysozoa Annelida Mollusca Nematoda #12;Nematoda Protostomia: Ecdysozoa: Nematoda · Round Platyhelminthes Other Lophotrochozoa Deuterostomes Other Ecdysozoa Annelida Mollusca Nematoda Arthropoda #12

  13. Planarians, stem cells and

    E-print Network

    Skop, Ahna

    Planarians, stem cells and transcriptomics Presentation by Tony Cortez and Kelly Morgan http://www.nature.com/nrg/journal/v3/n3/pdf/nrg759.pdf #12;What will be discussed? Planarians as model organisms Importance of stem cells Transcriptomics RNA interference RNA sequencing #12;What is a Planarian? Non-parasitic flatworm

  14. Neurobehavioral toxicity of cadmium sulfate to the planarian Dugesia dorotocephala

    SciTech Connect

    Grebe, E.; Schaeffer, D.J. )

    1991-05-01

    The authors are developing bioassays which use planarians (free-living platyhelminthes) for the rapid determination of various types of toxicity, including acute mortality, tumorigenicity, and short-term neurobehavioral responses. Their motivation for using these animals is due to their importance as components of the aquatic ecology of unpolluted streams their sensitivity to low concentrations of environmental toxicants and the presence of a sensitive neurological system with a true brain which allows for complex social behavior. A previous paper described the results of a neurobehavioral bioassay using phenol in a crossover study. This paper reports a similar crossover study using cadmium sulfate.

  15. Linked thioredoxin-glutathione systems in platyhelminths

    E-print Network

    Linked thioredoxin-glutathione systems in platyhelminths Gustavo Salinas1 , Murray E. Selkirk2 have recently been characterized in platyhelminth parasites, and the emerging biochemical scenario in platyhelminths [4­6]. Selenocysteine (Sec, see Box 1)-containing TGR appears to be the major oxido

  16. Autophagy meets planarians.

    PubMed

    González-Estévez, Cristina

    2009-04-01

    This review aims to demonstrate the importance of freshwater planarians as model organisms, particularly emphasizing those characteristics of the animal that make them a good model to study autophagy. The aim of this review is to provide a better understanding of autophagy in this model for the nonplanarian reader, and elucidate the relevance of autophagy research in this peculiar model organism. Furthermore, I will try to synthesize the evidence showing the importance of autophagy in planarian body remodeling, and I will discuss some ideas about the role of autophagy in stem cell biology. In light of these new developments, it is likely that the planarian field will make an important contribution to the study of the molecular mechanisms involved in autophagy in the future. PMID:19164934

  17. Alterations in polyamine levels of nematode, earthworm, leech and planarian during regeneration, temperature and osmotic stresses.

    PubMed

    Hamana, K; Hamana, H; Shinozawa, T

    1995-05-01

    Free-living nematodes, Caenorhabditis elegans and Dorylaimus fodori, contain putrescine and spermidine. Putrescine, spermidine and spermine occur in the parasitic Nematoda, Ascaris suum, Anisakis simplex and Dirofilaria immitis. Earthworms, Eisenia foetida, Tubifex hattai and Pheretima communissima and the leech, Hirudo nipponia (belonging to Annelida) and the planarian, Dugesia japonica (belonging to Platyhelminthes) contain homospermidine and spermine in addition to putrescine and spermidine. Regenerated heads of E. foetida and D. japonica are rich in putrescine indicating the stimulation of its synthesis during regeneration. Putrescine and spermidine levels temporarily increase after heat shock in C. elegans, E. foetida and D. japonica and cold shock and hypertonic osmotic shock treatments in D. japonica. PMID:7749639

  18. Triploid planarian reproduces truly bisexually with euploid gametes produced through a different meiotic system between sex.

    PubMed

    Chinone, Ayako; Nodono, Hanae; Matsumoto, Midori

    2014-06-01

    Although polyploids are common among plants and some animals, polyploidization often causes reproductive failure. Triploids, in particular, are characterized by the problems of chromosomal pairing and segregation during meiosis, which may cause aneuploid gametes and results in sterility. Thus, they are generally considered to reproduce only asexually. In the case of the Platyhelminthes Dugesia ryukyuensis, populations with triploid karyotypes are normally found in nature as both fissiparous and oviparous triploids. Fissiparous triploids can also be experimentally sexualized if they are fed sexual planarians, developing both gonads and other reproductive organs. Fully sexualized worms begin reproducing by copulation rather than fission. In this study, we examined the genotypes of the offspring obtained by breeding sexualized triploids and found that the offspring inherited genes from both parents, i.e., they reproduced truly bisexually. Furthermore, meiotic chromosome behavior in triploid sexualized planarians differed significantly between male and female germ lines, in that female germ line cells remained triploid until prophase I, whereas male germ line cells appeared to become diploid before entry into meiosis. Oocytes at the late diplotene stage contained not only paired bivalents but also unpaired univalents that were suggested to produce diploid eggs if they remained in subsequent processes. Triploid planarians may therefore form euploid gametes by different meiotic systems in female and male germ lines and thus are be able to reproduce sexually in contrast to many other triploid organisms. PMID:24402417

  19. The freshwater planarian Schmidtea mediterranea: embryogenesis, stem cells and regeneration

    E-print Network

    Alvarado, Alejandro Sánchez

    The freshwater planarian Schmidtea mediterranea: embryogenesis, stem cells and regeneration Commentary Alejandro Sa´ nchez Alvarado Planarians have been used as a model to study development and pharmacological manipulations. Recently, the dissection of planarians has become more molecular in nature

  20. Phylogeny of the Monopisthocotylea and Polyopisthocotylea (Platyhelminthes) inferred from 28S rDNA sequencesp

    E-print Network

    Phylogeny of the Monopisthocotylea and Polyopisthocotylea (Platyhelminthes) inferred from 28S r of monopisthocotyleans, 26 polyopisthocotyleans including six polystomatids, and other Platyhelminthes (61 species. Keywords: Monogenea; Monopisthocotylea; Phylogenetic analysis; Platyhelminthes; Polyopisthocotylea; 28S r

  1. A quantitative metabolomics peek into planarian regeneration.

    PubMed

    Natarajan, Nivedita; Ramakrishnan, Padma; Lakshmanan, Vairavan; Palakodeti, Dasaradhi; Rangiah, Kannan

    2015-05-21

    The fresh water planarian species Schmidtea mediterranea is an emerging stem cell model because of its capability to regenerate a whole animal from a small piece of tissue. It is one of the best model systems to address the basic mechanisms essential for regeneration. Here, we are interested in studying the roles of various amines, thiols and nucleotides in planarian regeneration, stem cell function and growth. We developed mass spectrometry based quantitative methods and validated the differential enrichment of 35 amines, 7 thiol metabolites and 4 nucleotides from both intact and regenerating planarians. Among the amines, alanine in sexual and asparagine in asexual are the highest (>1000 ng/mg) in the intact planarians. The levels of thiols such as cysteine and GSH are 651 and 1107 ng mg(-1) in planarians. Among the nucleotides, the level of cGMP is the lowest (0.03 ng mg(-1)) and the level of AMP is the highest (187 ng mg(-1)) in both of the planarian strains. We also noticed increasing levels of amines in both anterior and posterior regenerating planarians. The blastema from day 3 regenerating planarians also showed higher amounts of many amines. Interestingly, the thiol (cysteine and GSH) levels are well maintained during planarian regeneration. This suggests an inherent and effective mechanism to control induced oxidative stress because of the robust regeneration and stem cell proliferation. Like in intact planarians, the level of cGMP is also very low in regenerating planarians. Surprisingly, the levels of amines and thiols in head regenerating blastemas are ?3 times higher compared to those for tail regenerating blastemas. Thus our results strongly indicate the potential roles of amines, thiols and nucleotides in planarian regeneration. PMID:25815385

  2. Planarian resistance to blades and bugs.

    PubMed

    Petersen, Christian P

    2014-09-10

    Planarians famously can regenerate after decapitation. In this issue, Abnave et al. (2014) find they resist infection by multiple bacterial species pathogenic to humans, Drosophila and C. elegans, including M. tuberculosis. These results identify a conserved gene controlling phagocytosis and establish planarians as a powerful system for analyzing host-pathogen interactions. PMID:25211069

  3. Lipid binding proteins from parasitic platyhelminthes

    PubMed Central

    Alvite, Gabriela; Esteves, Adriana

    2012-01-01

    Two main families of lipid binding proteins have been identified in parasitic Platyhelminthes: hydrophobic ligand binding proteins (HLBPs) and fatty acid binding proteins (FABPs). Members of the former family of proteins are specific to the Cestoda class, while FABPs are conserved across a wide range of animal species. Because Platyhelminthes are unable to synthesize their own lipids, these lipid-binding proteins are important molecules in these organisms. HLBPs are a high molecular mass complex of proteins and lipids. They are composed of subunits of low molecular mass proteins and a wide array of lipid molecules ranging from CoA esters to cholesterol. These proteins are excretory-secretory molecules and are key serological tools for diagnosis of diseases caused by cestodes. FABPs are mainly intracellular proteins of low molecular weight. They are also vaccine candidates. Despite that the knowledge of their function is scarce, the differences in their molecular organization, ligand preferences, intra/extracellular localization, evolution, and phylogenetic distribution, suggest that platyhelminths HLBPs and FABPs should play different functions. FABPs might be involved in the removal of fatty acids from the inner surface of the cell membrane and in their subsequent targeting to specific cellular destinations. In contrast, HLBPs might be involved in fatty acid uptake from the host environment. PMID:22988444

  4. Cadmium neurotoxicity to a freshwater planarian.

    PubMed

    Wu, Jui-Pin; Lee, Hui-Ling; Li, Mei-Hui

    2014-11-01

    Although freshwater planarians are evolutionarily primitive, they are some of the simplest bilateral animals possessing integrated neural networks similar to those in vertebrates. We attempted to develop planarian Dugesia japonica as a model for investigating the neurotoxicity of environmental pollutants such as cadmium (Cd). This study was therefore designed to study the effects of Cd on the locomotor activity, neurobehavior, and neurological enzymes of D. japonica. After planarians were exposed to Cd at high concentrations, altered neurobehavior was observed that exhibited concentration-dependent patterns. Morphological alterations in Cd-treated planarians included irregular shape, body elongation, screw-like hyperkinesia, and bridge-like position. To study the direct effects of Cd on neurological enzymes, tissue homogenates of planarians were incubated in vitro with Cd before their activity was measured. Results showed that acetylcholinesterase (AChE), adenosine triphosphatase (ATPase), and monoamine oxidase A (MAO-A) activities were inhibited in a concentration-dependent manner. MAO-B activity was significantly induced by Cd at low concentrations and inhibited at high concentrations. Changes in the in vivo activity of AChE and ATPase were also found after planarians were treated with Cd at a sublethal concentration (5.56 ?M). These observations indicate that neurotransmission systems in planarians are disturbed after Cd exposure. PMID:24996536

  5. [Resources of regeneration in planarians].

    PubMed

    She?man, I M; Sedel'nikov, Z V; Kreshchenko, N D

    2006-01-01

    We studied the intensity of blastema growth in operated planarians at an early stage of regeneration as a function of the following factors: area of regenerate and its function and number of regeneration foci (volume of regeneration). There was no direct dependence between the intensity of regeneration and the size of regenerating fragment, as well as the volume of regeneration. Some specific features of the early stage of regeneration have been described, which suggest its determinate character. The behavior of neoblasts during formation of blastemas with different localization is discussed. PMID:16523655

  6. Muscle Cells Provide Instructions for Planarian Regeneration

    E-print Network

    Witchley, Jessica N.

    Regeneration requires both potential and instructions for tissue replacement. In planarians, pluripotent stem cells have the potential to produce all new tissue. The identities of the cells that provide regeneration ...

  7. Nociception and escape behavior in planarians

    NASA Astrophysics Data System (ADS)

    Schoetz Collins, Eva-Maria

    2015-03-01

    Planarians are famous and widely studied for their regenerative capabilities. When a moving planarian is cut through the middle, the resulting head and tail pieces instantaneously retract and exhibit a characteristic escape response that differs from normal locomotion. In asexual animals, a similar reaction is observed when the planarian undergoes fission, suggesting that reproduction through self-tearing is a rather traumatic event for the animal. Using a multiscale approach, we unravel the dynamics, mechanics, and functional aspects of the planarian escape response. This musculature-driven gait was found to be a dominating response that supersedes the urge to feed or reproduce and quantitatively differs from other modes of planarian locomotion (gliding, peristalsis). We show that this escape gait constitutes the animal's pain response mediated by TRP like receptors and the neurotransmitter histamine, and that it can be induced through adverse thermal, mechanical, electrical or chemical stimuli. Ultimately, we will examine the neuronal subpopulations involved in mediating escape reflexes in planarians and how they are functionally restored during regeneration, thereby gaining mechanistic insight into the neuronal circuits required for specific behaviors. Supported by BWF CASI and Sloan Foundation.

  8. Dynamics of asexual reproduction in planarians

    NASA Astrophysics Data System (ADS)

    Schoetz, Eva-Maria; Lincoln, Bryan; Quinodoz, Sofia

    2011-03-01

    Planaria research is experiencing a resurgence due to the development of molecular tools, the Planarian genome project and database resources. Despite the resulting progress in planarian biology research, an extensive study of their physical properties remains to be undertaken. We developed a method to collect a large amount of data on the dynamics of clonal reproduction in the freshwater planarian S.mediterranea. The capability of planarians to regenerate an entire organism from a minuscule body part is based on a homogeneously distributed stem cell population that comprises 25-30% of all cells. Due to this stem cell contingent, planarians can reproduce spontaneously by dividing into a larger head and a smaller tail piece, which then will rebuild the missing body parts, including a central nervous system, within about a week. Time-lapse imaging allows us to characterize the fission process in detail, revealing the stages of the process as well as capturing the nature of the rupture itself. A traction force measurement setup is being developed to allow us to quantify the forces planarians exert on the substrate during reproduction, a macroscopic analog to the Traction Force Microscopy setups used to determine local cellular forces. We are particularly interested in the molecular processes during division and the interplay between tissue mechanics and cell signaling.

  9. Comparative Analysis of Cystatin Superfamily in Platyhelminths

    PubMed Central

    Guo, Aijiang

    2015-01-01

    The cystatin superfamily is comprised of cysteine proteinase inhibitors and encompasses at least 3 subfamilies: stefins, cystatins and kininogens. In this study, the platyhelminth cystatin superfamily was identified and grouped into stefin and cystatin subfamilies. The conserved domain of stefins (G, QxVxG) was observed in all members of platyhelminth stefins. The three characteristics of cystatins, the cystatin-like domain (G, QxVxG, PW), a signal peptide, and one or two conserved disulfide bonds, were observed in platyhelminths, with the exception of cestodes, which lacked the conserved disulfide bond. However, it is noteworthy that cestode cystatins had two tandem repeated domains, although the second tandem repeated domain did not contain a cystatin-like domain, which has not been previously reported. Tertiary structure analysis of Taenia solium cystatin, one of the cestode cystatins, demonstrated that the N-terminus of T. solium cystatin formed a five turn ?-helix, a five stranded ?-pleated sheet and a hydrophobic edge, similar to the structure of chicken cystatin. Although no conserved disulfide bond was found in T. solium cystatin, the models of T. solium cystatin and chicken cystatin corresponded at the site of the first disulfide bridge of the chicken cystatin. However, the two models were not similar regarding the location of the second disulfide bridge of chicken cystatin. These results showed that T. solium cystatin and chicken cystatin had similarities and differences, suggesting that the biochemistry of T. solium cystatin could be similar to chicken cystatin in its inhibitory function and that it may have further functional roles. The same results were obtained for other cestode cystatins. Phylogenetic analysis showed that cestode cystatins constituted an independent clade and implied that cestode cystatins should be considered to have formed a new clade during evolution. PMID:25853513

  10. Bromodeoxyuridine Specifically Labels the Regenerative Stem Cells of Planarians

    E-print Network

    Alvarado, Alejandro Sánchez

    Bromodeoxyuridine Specifically Labels the Regenerative Stem Cells of Planarians Phillip A. Newmark1 University Parkway, Baltimore, Maryland 21210 The singular regenerative abilities of planarians require of these pluripotent stem cells and their role in planarian regeneration has been severely hampered by the reported

  11. Sperm transfer in monogenean (platyhelminth) parasites.

    PubMed

    Kearn, Graham; Whittington, Ian

    2015-12-01

    There are three major groups of parasitic platyhelminths (flatworms). The digeneans and cestodes are endoparasites, while the monogeneans are ectoparasites mostly on the gills or skin of fishes. Monogeneans are hermaphrodite and, with the exception of the gyrodactylids, mostly protandrous, the male reproductive system maturing before the female system. Their ectoparasitic life-style provides unique opportunities to observe the reproductive biology of living platyhelminths, opportunities restricted in digeneans and cestodes by their endoparasitic habits. Moreover, the male copulatory organs (MCOs) of monogeneans are of special interest because of their perplexing diversity, ranging from sclerotised penis tubes, many with accessory sclerites, to cirruses and genital atrium armature (hooks and spines). The relatively few accounts in the literature of mating in monogeneans are reproduced in this review, together with consideration of the following aspects of sperm transfer: structure and function of MCOs; self-insemination; spermatophores and pseudospermatophores; "hypodermic" and transtegumental insemination; tissue fusion; glands associated with MCOs and vaginae; finding a mating partner. PMID:26408576

  12. Germ cell specification and regeneration in planarians.

    PubMed

    Newmark, P A; Wang, Y; Chong, T

    2008-01-01

    In metazoans, two apparently distinct mechanisms specify germ cell fate: Determinate specification (observed in animals including Drosophila, Caenorhabditis elegans, zebra fish, and Xenopus) uses cytoplasmic factors localized to specific regions of the egg, whereas epigenetic specification (observed in many basal metazoans, urodeles, and mammals) involves inductive interactions between cells. Much of our understanding of germ cell specification has emerged from studies of model organisms displaying determinate specification. In contrast, our understanding of epigenetic/inductive specification is less advanced and would benefit from studies of additional organisms. Freshwater planarians--widely known for their remarkable powers of regeneration--are well suited for studying the mechanisms by which germ cells can be induced. Classic experiments showed that planarians can regenerate germ cells from body fragments entirely lacking reproductive structures, suggesting that planarian germ cells could be specified by inductive signals. Furthermore, the availability of the genome sequence of the planarian Schmidtea mediterranea, coupled with the animal's susceptibility to systemic RNA interference (RNAi), facilitates functional genomic analyses of germ cell development and regeneration. Here, we describe recent progress in studies of planarian germ cells and frame some of the critical unresolved questions for future work. PMID:19022767

  13. Evolution of Developmental Control Mechanisms Cell death and tissue remodeling in planarian regeneration

    E-print Network

    Alvarado, Alejandro Sánchez

    Evolution of Developmental Control Mechanisms Cell death and tissue remodeling in planarian 18 September 2009 Keywords: Planaria Planarian Cell death Apoptosis Regeneration Tissue remodeling during regeneration in the planarian Schmidtea mediterranea. Specifically, we developed a whole

  14. [Own Chemiluminescence of Planarian Neoblasts during Regeneration].

    PubMed

    Tiras, H P; Gudkov, S V; Emelyanenko, V I; Aslanidi, K B

    2015-01-01

    We investigated the kinetics of the luminescence induced by reactive oxygen species in planarians during regeneration process. It was found that regeneration is accompanied with changes in the concentration of reactive oxygen species correlating with energy-intensive processes such as oxidative stress, caused by damage to cell membranes in the dissection of the planarian, phagocytosis of dying cells and mitosis of neoblasts. We showed for the first time that there is an opportunity of registering the physiological state of pluripotent stem cells at the level of the organism in vivo. PMID:26591608

  15. Scrunching: a novel escape gait in planarians.

    PubMed

    Cochet-Escartin, Olivier; Mickolajczyk, Keith J; Collins, Eva-Maria S

    2015-10-01

    The ability to escape a predator or other life-threatening situations is central to animal survival. Different species have evolved unique strategies under anatomical and environmental constraints. In this study, we describe a novel musculature-driven escape gait in planarians, 'scrunching', which is quantitatively different from other planarian gaits, such as gliding and peristalsis. We show that scrunching is a conserved gait among different flatworm species, underlying its importance as an escape mechanism. We further demonstrate that it can be induced by a variety of physical stimuli, including amputation, high temperature, electric shock and low pH. We discuss the functional basis for scrunching as the preferential gait when gliding is impaired due to a disruption of mucus production. Finally, we show that the key mechanical features of scrunching are adequately captured by a simple biomechanical model that is solely based on experimental data from traction force microscopy and tissue rheology without fit parameters. Together, our results form a complete description of this novel form of planarian locomotion. Because scrunching has distinct dynamics, this gait can serve as a robust behavioral readout for studies of motor neuron and muscular functions in planarians and in particular the restoration of these functions during regeneration. PMID:26356147

  16. Scrunching: a novel escape gait in planarians

    NASA Astrophysics Data System (ADS)

    Cochet-Escartin, Olivier; Mickolajczyk, Keith J.; Collins, Eva-Maria S.

    2015-10-01

    The ability to escape a predator or other life-threatening situations is central to animal survival. Different species have evolved unique strategies under anatomical and environmental constraints. In this study, we describe a novel musculature-driven escape gait in planarians, ‘scrunching’, which is quantitatively different from other planarian gaits, such as gliding and peristalsis. We show that scrunching is a conserved gait among different flatworm species, underlying its importance as an escape mechanism. We further demonstrate that it can be induced by a variety of physical stimuli, including amputation, high temperature, electric shock and low pH. We discuss the functional basis for scrunching as the preferential gait when gliding is impaired due to a disruption of mucus production. Finally, we show that the key mechanical features of scrunching are adequately captured by a simple biomechanical model that is solely based on experimental data from traction force microscopy and tissue rheology without fit parameters. Together, our results form a complete description of this novel form of planarian locomotion. Because scrunching has distinct dynamics, this gait can serve as a robust behavioral readout for studies of motor neuron and muscular functions in planarians and in particular the restoration of these functions during regeneration.

  17. A low percent ethanol method for immobilizing planarians.

    PubMed

    Stevenson, Claire G; Beane, Wendy Scott

    2010-01-01

    Planarians have recently become a popular model system for the study of adult stem cells, regeneration and polarity. The system is attractive for both undergraduate and graduate research labs, since planarian colonies are low cost and easy to maintain. Also in situ hybridization, immunofluorescence and RNA-interference (RNAi) gene knockdown techniques have been developed for planarian studies. However, imaging of live worms (particularly at high magnifications) is difficult because animals are strongly photophobic; they quickly move away from light sources and out of frame. The current methods available to inhibit movement in planarians include RNAi injection and exposure to cold temperatures. The former is labor and time intensive, while the latter precludes the use of many fluorescent reporter dyes. Here, we report a simple, inexpensive and reversible method to immobilize planarians for live imaging. Our data show that a short 1 hour treatment with 3% ethanol (EtOH) is sufficient to inhibit both the fine and gross movements of Schmidtea mediterranea planarians, of the typical size used (4-6 mm), with full recovery of movement within 3-4 hours. Importantly, EtOH treatment did not interfere with regeneration, even after repeated exposure, nor lyse epithelial cells (as assayed by H&E staining). We demonstrate that a short exposure to a low concentration of EtOH is a quick and effective method of immobilizing planarians, one that is easily adaptable to planarians of all sizes and will increase the accessibility of live imaging assays to planarian researchers. PMID:21179478

  18. Characterization of innexin gene expression and functional roles of gap-junctional communication in planarian regeneration

    E-print Network

    Levin, Michael

    in planarian regeneration Taisaku Nogi, Michael Levin * Department of Cytokine Biology, The Forsyth Institute family during planarian regeneration. Planarian innexins fall into 3 groups according to both sequence ancestral innexin genes into the large family of planarian innexins. Innexin expression was detected

  19. Planarian Immobilization, Partial Irradiation, and Tissue Transplantation

    PubMed Central

    Guedelhoefer IV, Otto C.; Sánchez Alvarado, Alejandro

    2012-01-01

    The planarian, a freshwater flatworm, has proven to be a powerful system for dissecting metazoan regeneration and stem cell biology1,2. Planarian regeneration of any missing or damaged tissues is made possible by adult stem cells termed neoblasts3. Although these stem cells have been definitively shown to be pluripotent and singularly capable of reconstituting an entire animal4, the heterogeneity within the stem cell population and the dynamics of their cellular behaviors remain largely unresolved. Due to the large number and wide distribution of stem cells throughout the planarian body plan, advanced methods for manipulating subpopulations of stem cells for molecular and functional study in vivo are needed. Tissue transplantation and partial irradiation are two methods by which a subpopulation of planarian stem cells can be isolated for further study. Each technique has distinct advantages. Tissue transplantation allows for the introduction of stem cells, into a naïve host, that are either inherently genetically distinct or have been previously treated pharmacologically. Alternatively, partial irradiation allows for the isolation of stem cells within a host, juxtaposed to tissue devoid of stem cells, without the introduction of a wound or any breech in tissue integrity. Using these two methods, one can investigate the cell autonomous and non-autonomous factors that control stem cell functions, such as proliferation, differentiation, and migration. Both tissue transplantation5,6 and partial irradiation7 have been used historically in defining many of the questions about planarian regeneration that remain under study today. However, these techniques have remained underused due to the laborious and inconsistent nature of previous methods. The protocols presented here represent a large step forward in decreasing the time and effort necessary to reproducibly generate large numbers of grafted or partially irradiated animals with efficacies approaching 100 percent. We cover the culture of large animals, immobilization, preparation for partial irradiation, tissue transplantation, and the optimization of animal recovery. Furthermore, the work described here demonstrates the first application of the partial irradiation method for use with the most widely studied planarian, Schmidtea mediterranea. Additionally, efficient tissue grafting in planaria opens the door for the functional testing of subpopulations of naïve or treated stem cells in repopulation assays, which has long been the gold-standard method of assaying adult stem cell potential in mammals8. Broad adoption of these techniques will no doubt lead to a better understanding of the cellular behaviors of adult stem cells during tissue homeostasis and regeneration. PMID:23007410

  20. Planarian immobilization, partial irradiation, and tissue transplantation.

    PubMed

    Guedelhoefer, Otto C; Sánchez Alvarado, Alejandro

    2012-01-01

    The planarian, a freshwater flatworm, has proven to be a powerful system for dissecting metazoan regeneration and stem cell biology. Planarian regeneration of any missing or damaged tissues is made possible by adult stem cells termed neoblasts. Although these stem cells have been definitively shown to be pluripotent and singularly capable of reconstituting an entire animal, the heterogeneity within the stem cell population and the dynamics of their cellular behaviors remain largely unresolved. Due to the large number and wide distribution of stem cells throughout the planarian body plan, advanced methods for manipulating subpopulations of stem cells for molecular and functional study in vivo are needed. Tissue transplantation and partial irradiation are two methods by which a subpopulation of planarian stem cells can be isolated for further study. Each technique has distinct advantages. Tissue transplantation allows for the introduction of stem cells, into a naïve host, that are either inherently genetically distinct or have been previously treated pharmacologically. Alternatively, partial irradiation allows for the isolation of stem cells within a host, juxtaposed to tissue devoid of stem cells, without the introduction of a wound or any breech in tissue integrity. Using these two methods, one can investigate the cell autonomous and non-autonomous factors that control stem cell functions, such as proliferation, differentiation, and migration. Both tissue transplantation and partial irradiation have been used historically in defining many of the questions about planarian regeneration that remain under study today. However, these techniques have remained underused due to the laborious and inconsistent nature of previous methods. The protocols presented here represent a large step forward in decreasing the time and effort necessary to reproducibly generate large numbers of grafted or partially irradiated animals with efficacies approaching 100 percent. We cover the culture of large animals, immobilization, preparation for partial irradiation, tissue transplantation, and the optimization of animal recovery. Furthermore, the work described here demonstrates the first application of the partial irradiation method for use with the most widely studied planarian, Schmidtea mediterranea. Additionally, efficient tissue grafting in planaria opens the door for the functional testing of subpopulations of naïve or treated stem cells in repopulation assays, which has long been the gold-standard method of assaying adult stem cell potential in mammals. Broad adoption of these techniques will no doubt lead to a better understanding of the cellular behaviors of adult stem cells during tissue homeostasis and regeneration. PMID:23007410

  1. Planarian Phototactic Assay Reveals Differential Behavioral Responses Based on Wavelength

    PubMed Central

    Paskin, Taylor R.; Jellies, John; Bacher, Jessica; Beane, Wendy S.

    2014-01-01

    Planarians are free-living aquatic flatworms that possess a well-documented photophobic response to light. With a true central nervous system and simple cerebral eyes (ocelli), planarians are an emerging model for regenerative eye research. However, comparatively little is known about the physiology of their photoreception or how their behavior is affected by various wavelengths. Most phototactic studies have examined planarian behavior using white light. Here, we describe a novel planarian behavioral assay to test responses to small ranges of visible wavelengths (red, blue, green), as well as ultraviolet (UV) and infrared (IR) which have not previously been examined. Our data show that planarians display behavioral responses across a range of wavelengths. These responses occur in a hierarchy, with the shortest wavelengths (UV) causing the most intense photophobic responses while longer wavelengths produce no effect (red) or an apparent attraction (IR). In addition, our data reveals that planarian photophobia is comprised of both a general photophobic response (that drives planarians to escape the light source regardless of wavelength) and wavelength-specific responses that encompass specific behavioral reactions to individual wavelengths. Our results serve to improve the understanding of planarian phototaxis and suggest that behavioral studies performed with white light mask a complex behavioral interaction with the environment. PMID:25493551

  2. Collecting Planarians: A Good Choice for a Field Trip.

    ERIC Educational Resources Information Center

    Cha, Heeyoung

    2001-01-01

    Describes a field trip to collect planarians as successful in generating interest in the sciences. This activity is suitable for all grade levels as a field trip or biology lab. Planarians can be easily collected from streams across the United States. Once in the classroom, planaria are easily fed and cared for. (SAH)

  3. Planarian Phototactic Assay Reveals Differential Behavioral Responses Based on Wavelength.

    PubMed

    Paskin, Taylor R; Jellies, John; Bacher, Jessica; Beane, Wendy S

    2014-01-01

    Planarians are free-living aquatic flatworms that possess a well-documented photophobic response to light. With a true central nervous system and simple cerebral eyes (ocelli), planarians are an emerging model for regenerative eye research. However, comparatively little is known about the physiology of their photoreception or how their behavior is affected by various wavelengths. Most phototactic studies have examined planarian behavior using white light. Here, we describe a novel planarian behavioral assay to test responses to small ranges of visible wavelengths (red, blue, green), as well as ultraviolet (UV) and infrared (IR) which have not previously been examined. Our data show that planarians display behavioral responses across a range of wavelengths. These responses occur in a hierarchy, with the shortest wavelengths (UV) causing the most intense photophobic responses while longer wavelengths produce no effect (red) or an apparent attraction (IR). In addition, our data reveals that planarian photophobia is comprised of both a general photophobic response (that drives planarians to escape the light source regardless of wavelength) and wavelength-specific responses that encompass specific behavioral reactions to individual wavelengths. Our results serve to improve the understanding of planarian phototaxis and suggest that behavioral studies performed with white light mask a complex behavioral interaction with the environment. PMID:25493551

  4. Planarian neoblast micronucleus assay for evaluating genotoxicity.

    PubMed

    Knakievicz, Tanise; Alves da Silveira, Priscila; Ferreira, Henrique Bunselmeyer

    2008-07-01

    Planarian neoblasts are somatic stem cells that have the potential to be used in genotoxicity assays due to their proliferative nature, sensitivity to genotoxic agents, and experimental accessibility. Two freshwater planarian species, Girardia tigrina and Girardia schubarti, were used to develop a neoblast-based micronucleus (MN) assay to assess genotoxicity. Intact or regenerating planarians were exposed to gamma-rays, methyl methanesulphonate (MMS), or cyclophosphamide (CP), and neoblast MN frequency was measured. Exposure to the clastogens had no detectable effect on the MN frequency of intact planarian neoblasts. However, for regenerating individuals, active neoblast proliferation was induced by decapitation, and gamma-ray doses as low as 0.5 Gy, and MMS and CP concentrations as low as 0.8 microM and 100 mM, respectively, induced a significant increase in MN frequency. Exposure to higher doses of gamma-rays consistently resulted in detectable increases in MN frequency. For MMS and CP, concentrations of up to 1.6 microM and 200 mM, respectively, resulted in significant increases in MN frequency, but exposures to higher concentrations led to a decrease to non-significant levels, possibly due to cytotoxic effects of MMS and CP. After completion of regeneration, the MN frequencies returned to those of non-exposed controls, indicating that the neoblast MN assay for regenerating G. tigrina or G. schubarti reflects chromosomal damage caused by acute exposure to clastogenic agents. Upon standardization, this assay may represent an interesting alternative that allows damage caused to freshwater organisms by potentially genotoxic environmental pollutants to be monitored. PMID:18534660

  5. Organizing the DV axis during planarian regeneration.

    PubMed

    Molina, Ma Dolores; Saló, Emili; Cebrià, Francesc

    2011-07-01

    During regeneration, lost structures are rebuilt and perfectly integrated within the remaining non-injured tissues. This fascinating process captured the attention of one of the founders of modern genetics, T.H. Morgan. He was particularly interested in understanding regeneration in freshwater planarians, which can regenerate a whole animal from a small piece of their bodies. He performed numerous experiments to understand how polarity is re-established such that an anterior-facing wound regenerates a head whereas a posterior-facing wound regenerates a tail. However, it has not been until more than 100 years later that the molecules required to determine axial polarity have been identified. Several studies have now shown that the Wnt/?-catenin and Hedgehog pathways are required for anteroposterior axis specification, whereas the establishment of the planarian dorsoventral (DV) axis relies on the Bone Morphogenetic Protein (BMP) pathway. Two recent papers have now uncovered additional conserved (anti-dorsalizing morphogenetic protein) and novel (noggin-like genes) elements that regulate planarian DV axis regeneration. Here, we summarize those results and present new data and hypotheses to explain the role that noggin-like genes might play. PMID:21966583

  6. Recent identification of an ERK signal gradient governing planarian regeneration.

    PubMed

    Agata, Kiyokazu; Tasaki, Junichi; Nakajima, Elizabeth; Umesono, Yoshihiko

    2014-06-01

    Planarians have strong regenerative abilities derived from their adult pluripotent stem cell (neoblast) system. However, the molecular mechanisms involved in planarian regeneration have long remained a mystery. In particular, no anterior-specifying factor(s) could be found, although Wnt family proteins had been successfully identified as posterior-specifying factors during planarian regeneration (Gurley et al., 2008; Petersen and Reddien, 2008). A recent textbook of developmental biology therefore proposes a Wnt antagonist as a putative anterior factor (Gilbert, 2013). That is, planarian regeneration was supposed to be explained by a single decreasing gradient of the ?-catenin signal from tail to head. However, recently we succeeded in demonstrating that in fact the extracellular-signal regulated kinases (ERK) form a decreasing gradient from head to tail to direct the reorganization of planarian body regionality after amputation (Umesono et al., 2013). PMID:24854393

  7. Eumetazoa: Bilateria Bilateral symmetry

    E-print Network

    Free-living species ("Planarians") #12;Platyhelminthes Free-living species ("Planarians") #12;Figure 33 planarian ­ Dugesia #12;Platyhelminthes Parasitic species ­ "Trematoda" (Flukes) #12;Figure 33.11 Human host

  8. On-chip immobilization of planarians for in vivo imaging.

    PubMed

    Dexter, Joseph P; Tamme, Mary B; Lind, Christine H; Collins, Eva-Maria S

    2014-01-01

    Planarians are an important model organism for regeneration and stem cell research. A complete understanding of stem cell and regeneration dynamics in these animals requires time-lapse imaging in vivo, which has been difficult to achieve due to a lack of tissue-specific markers and the strong negative phototaxis of planarians. We have developed the Planarian Immobilization Chip (PIC) for rapid, stable immobilization of planarians for in vivo imaging without injury or biochemical alteration. The chip is easy and inexpensive to fabricate, and worms can be mounted for and removed after imaging within minutes. We show that the PIC enables significantly higher-stability immobilization than can be achieved with standard techniques, allowing for imaging of planarians at sub-cellular resolution in vivo using brightfield and fluorescence microscopy. We validate the performance of the PIC by performing time-lapse imaging of planarian wound closure and sequential imaging over days of head regeneration. We further show that the device can be used to immobilize Hydra, another photophobic regenerative model organism. The simple fabrication, low cost, ease of use, and enhanced specimen stability of the PIC should enable its broad application to in vivo studies of stem cell and regeneration dynamics in planarians and Hydra. PMID:25227263

  9. On-chip immobilization of planarians for in vivo imaging

    PubMed Central

    Dexter, Joseph P.; Tamme, Mary B.; Lind, Christine H.; Collins, Eva-Maria S.

    2014-01-01

    Planarians are an important model organism for regeneration and stem cell research. A complete understanding of stem cell and regeneration dynamics in these animals requires time-lapse imaging in vivo, which has been difficult to achieve due to a lack of tissue-specific markers and the strong negative phototaxis of planarians. We have developed the Planarian Immobilization Chip (PIC) for rapid, stable immobilization of planarians for in vivo imaging without injury or biochemical alteration. The chip is easy and inexpensive to fabricate, and worms can be mounted for and removed after imaging within minutes. We show that the PIC enables significantly higher-stability immobilization than can be achieved with standard techniques, allowing for imaging of planarians at sub-cellular resolution in vivo using brightfield and fluorescence microscopy. We validate the performance of the PIC by performing time-lapse imaging of planarian wound closure and sequential imaging over days of head regeneration. We further show that the device can be used to immobilize Hydra, another photophobic regenerative model organism. The simple fabrication, low cost, ease of use, and enhanced specimen stability of the PIC should enable its broad application to in vivo studies of stem cell and regeneration dynamics in planarians and Hydra. PMID:25227263

  10. Regeneration and maintenance of the planarian nervous system

    E-print Network

    Lapan, Sylvain William

    2012-01-01

    Planarians can regenerate all tissues, including the central nervous system and the eyes. This process depends on a population of cells in the adult, the neoblasts, that includes pluripotent stem cells. Whether the neoblast ...

  11. Neoblast Specialization in Regeneration of the Planarian Schmidtea mediterranea

    E-print Network

    Scimone, M. Lucila

    Planarians can regenerate any missing body part in a process requiring dividing cells called neoblasts. Historically, neoblasts have largely been considered a homogeneous stem cell population. Most studies, however, analyzed ...

  12. Berberine exposure triggers developmental effects on planarian regeneration

    PubMed Central

    Balestrini, Linda; Isolani, Maria Emilia; Pietra, Daniele; Borghini, Alice; Bianucci, Anna Maria; Deri, Paolo; Batistoni, Renata

    2014-01-01

    The mechanisms of action underlying the pharmacological properties of the natural alkaloid berberine still need investigation. Planarian regeneration is instrumental in deciphering developmental responses following drug exposure. Here we report the effects of berberine on regeneration in the planarian Dugesia japonica. Our findings demonstrate that this compound perturbs the regenerative pattern. By real-time PCR screening for the effects of berberine exposure on gene expression, we identified alterations in the transcriptional profile of genes representative of different tissues, as well as of genes involved in extracellular matrix (ECM) remodeling. Although berberine does not influence cell proliferation/apoptosis, our experiments prove that this compound causes abnormal regeneration of the planarian visual system. Potential berberine-induced cytotoxic effects were noticed in the intestine. Although we were unable to detect abnormalities in other structures, our findings, sustained by RNAi-based investigations, support the possibility that berberine effects are critically linked to anomalous ECM remodeling in treated planarians. PMID:24810466

  13. Berberine exposure triggers developmental effects on planarian regeneration.

    PubMed

    Balestrini, Linda; Isolani, Maria Emilia; Pietra, Daniele; Borghini, Alice; Bianucci, Anna Maria; Deri, Paolo; Batistoni, Renata

    2014-01-01

    The mechanisms of action underlying the pharmacological properties of the natural alkaloid berberine still need investigation. Planarian regeneration is instrumental in deciphering developmental responses following drug exposure. Here we report the effects of berberine on regeneration in the planarian Dugesia japonica. Our findings demonstrate that this compound perturbs the regenerative pattern. By real-time PCR screening for the effects of berberine exposure on gene expression, we identified alterations in the transcriptional profile of genes representative of different tissues, as well as of genes involved in extracellular matrix (ECM) remodeling. Although berberine does not influence cell proliferation/apoptosis, our experiments prove that this compound causes abnormal regeneration of the planarian visual system. Potential berberine-induced cytotoxic effects were noticed in the intestine. Although we were unable to detect abnormalities in other structures, our findings, sustained by RNAi-based investigations, support the possibility that berberine effects are critically linked to anomalous ECM remodeling in treated planarians. PMID:24810466

  14. Stem cells and regeneration in planarians.

    PubMed

    Handberg-Thorsager, Mette; Fernandez, Enrique; Salo, Emili

    2008-01-01

    Understanding stem cells is a major goal of current research because of its potential medical applications. Although great advances have been made, such as the culturing and differentiation of embryonic stem cells and reprogramming of cell fates, many basic questions remain unanswered. Describing the mechanisms underlying regeneration will help to understand the biology of stem cells and therefore to control their behavior. While regeneration is being studied in a variety of models, the planarian is particularly noteworthy. In this model system a fragment as small as 1/279 of the animal can regenerate completely within a few weeks. These animals can also grow and degrow--specifically degenerating certain tissues--according to environmental conditions, thus demonstrating a complete control of their stem cell dynamics. However, one of the most interesting aspects of the planarian model system is the presence of a unique type of stem cell that can differentiate into all cell types found in the organism, including the germ line. This represents a simple, extremely powerful, and accessible stem cell system in which to address a variety of important questions. In the last ten years, molecular, cellular, and bioinformatics tools have been established for use in this model, making it ideally placed for in vivo analysis of stem cells in their natural environment without ethical complications. PMID:18508666

  15. Planarians in pharmacology: parthenolide is a specific behavioral antagonist of cocaine in the planarian Girardia tigrina.

    PubMed

    Pagán, Oné R; Baker, Debra; Deats, Sean; Montgomery, Erica; Tenaglia, Matthew; Randolph, Clinita; Kotturu, Dharini; Tallarida, Christopher; Bach, Daniel; Wilk, Galia; Rawls, Scott; Raffa, Robert B

    2012-01-01

    Planarians are traditional animal models in developmental and regeneration biology. Recently, these organisms are arising as vertebrate-relevant animal models in neuropharmacology. Using an adaptation of published behavioral protocols, we have described the alleviation of cocaine-induced planarian seizure-like movements (pSLM) by a naturally-occurring sesquiterpene lactone, parthenolide. Interestingly, parthenolide does not prevent the expression of pSLM induced by amphetamines; in vertebrates, amphetamines interact with the same protein target as cocaine. Parthenolide is also unable to prevent pSLM elicited by the cholinergic com-pounds nicotine and cytisine or by the glutamatergic agents L- or D- glutamic acid or NMDA. Thus, we conclude that parthenolide is a specific anti-cocaine agent in this experimental organism. PMID:22451007

  16. The Retinoblastoma pathway regulates stem cell proliferation in freshwater planarians.

    PubMed

    Zhu, Shu Jun; Pearson, Bret J

    2013-01-15

    Freshwater planarians are flatworms of the Lophotrochozoan superphylum and are well known for their regenerative abilities, which rely on a large population of pluripotent adult stem cells. However, the mechanisms by which planarians maintain a precise population of adult stem cells while balancing proliferation and cell death, remain to be elucidated. Here we have identified, characterized, and functionally tested the core Retinoblastoma (Rb) pathway components in planarian adult stem cell biology. The Rb pathway is an ancient and conserved mechanism of proliferation control from plants to animals and is composed of three core components: an Rb protein, and a transcription factor heterodimer of E2F and DP proteins. Although the planarian genome contains all components of the Rb pathway, we found that they have undergone gene loss from the ancestral state, similar to other species in their phylum. The single Rb homolog (Smed-Rb) was highly expressed in planarian stem cells and was required for stem cell maintenance, similar to the Rb-homologs p107 and p130 in vertebrates. We show that planarians and their phylum have undergone the most severe reduction in E2F genes observed thus far, and the single remaining E2F was predicted to be a repressive-type E2F (Smed-E2F4-1). Knockdown of either Smed-E2F4-1 or its dimerization partner Dp (Smed-Dp) by RNAi resulted in temporary hyper-proliferation. Finally, we showed that known Rb-interacting genes in other systems, histone deacetylase 1 and cyclinD (Smed-HDAC1; Smed-cycD), were similar to Rb in expression and phenotypes when knocked down by RNAi, suggesting that these established interactions with Rb may also be conserved in planarians. Together, these results showed that planarians use the conserved components of the Rb tumor suppressor pathway to control proliferation and cell survival. PMID:23123964

  17. Gene nomenclature guidelines for the planarian Schmidtea mediterranea.

    PubMed

    Reddien, Peter W; Newmark, Phillip A; Sánchez Alvarado, Alejandro

    2008-11-01

    We describe a gene nomenclature system for the freshwater planarian Schmidtea mediterranea. Guidelines are specified for designating names for genes and proteins, as well as for describing RNA-mediated genetic interference (RNAi) experiments. The proposed conventions aim to avoid multiple names being ascribed to single genes and to establish a uniform, simple method for naming genes in S. mediterranea that is readily understood by researchers working on planarians and other organisms. PMID:18627099

  18. Bioaccumulation and toxicodynamics of cadmium to freshwater planarian and the protective effect of N-acetylcysteine.

    PubMed

    Wu, Jui-Pin; Chen, Hon-Cheng; Li, Mei-Hui

    2012-08-01

    Although toxic responses of freshwater planarians after exposure to environmental toxicants can be observed through external toxicological end points, physiological responses inside the bodies of treated planarians have rarely been investigated. The present study was designed, using cadmium (Cd) as a reference toxicant, to determine its bioaccumulation and toxicodynamics in the freshwater planarian, Dugesia japonica, after acute toxicity was obtained. Accumulated Cd concentrations, metallothionein levels, and the oxidative status in planarians were determined after exposure to Cd. Furthermore, we hypothesized that the acute death of Cd-treated planarians was associated with increased oxidative stress. After Cd-treated planarians were coexposed to antioxidant, N-acetylcysteine (NAC), we found that NAC protected planarians from Cd lethality by maintaining the oxidative status and decreasing the bioaccumulation of Cd. The results of the present study support planarians being used as a practical model for toxicological studies of environmental contaminants in the future. PMID:22481525

  19. Neuropharmacology and behavior in planarians: translations to mammals.

    PubMed

    Buttarelli, Francesca R; Pellicano, Clelia; Pontieri, Francesco E

    2008-05-01

    Planarians are the simplest animals to exhibit a body plan common to all vertebrates and many invertebrates, characterized by bilateral rather than radial symmetry, dorsal and ventral surfaces, and a rostrocaudal axis with a head and a tail, including specialized sense organs and an aggregate of nerve cells in the head. Neurons in planarian more closely resemble those of vertebrates than those of advanced invertebrates, exhibiting typical vertebrate features of multipolar shape, dendritic spines with synaptic boutons, a single axon, expression of vertebrate-like neural proteins, and relatively low spontaneously generated electrical activity. Here we report the most relevant contribution to the knowledge of the neuropharmacology of planarians, with particular reference to the behavioral consequences of the exposure to drugs acting on neural transmission. Neurochemical and histochemical data indicate the presence of several neurotransmitter-receptor systems in planarians. Moreover, a variety of experimental studies characterized specific behavioral patterns of these animals following the exposure to drugs acting on neural transmission. There is also evidence of the interactions between discrete neurotransmitter-receptor systems in modulating behavior in planarians. Finally, the model has proved efficacy for investigating the neurotoxicology of the dopamine neurons, and for the initial screening of the neuroprotective potential of drugs. In conclusion, these findings indicate that interactions between discrete neurotransmitter-receptor systems occur very early along phylogeny, although they may have evolved from very fundamental behaviors, such as motor activity in planarian, to more complex and integrated functions in vertebrates. PMID:18294919

  20. Multicellularity, stem cells, and the neoblasts of the planarian Schmidtea mediterranea

    E-print Network

    Alvarado, Alejandro Sánchez

    Review Multicellularity, stem cells, and the neoblasts of the planarian Schmidtea mediterranea unexplored, yet experimentally accessible population of stem cells found in the planarian Schmidtea to be addressed in order to better resolve the relationship between planarian somatic stem cells and those found

  1. High-resolution profiling and discovery of planarian Marc R. Friedlandera,1

    E-print Network

    Alvarado, Alejandro Sánchez

    High-resolution profiling and discovery of planarian small RNAs Marc R. Friedla¨ndera,1 , Catherine Hospital, Boston, MA, May 15, 2009 (received for review March 17, 2009) Freshwater planarian flatworms on PIWI, a molecule re- quired for Piwi-interacting RNA (piRNA) expression in planarians. Nevertheless

  2. The use of planarians to dissect the molecular basis of metazoan regeneration

    E-print Network

    Alvarado, Alejandro Sánchez

    The use of planarians to dissect the molecular basis of metazoan regeneration ALEJANDRO SANCHEZALVARADO, PhD, PHILLIP A. NEWMARK, PhD Freshwater planarians possess remarkable regenerative abilities symmetry and cephalization . Furthermore, planarians occupy an important position in the evolution

  3. Ingestion of bacterially expressed double-stranded RNA inhibits gene expression in planarians

    E-print Network

    Alvarado, Alejandro Sánchez

    in planarians Phillip A. Newmark* , Peter W. Reddien , Francesc Cebria`*, and Alejandro Sa´nchez Alvarado Lake City, UT 84132 Freshwater planarian flatworms are capable of regenerating com- plete organisms accessible stem cell population that is present in the adult planarian. The study of these organisms, classic

  4. Allometric Scaling and Proportion Regulation in the Freshwater Planarian Schmidtea mediterranea

    E-print Network

    Oviedo, Néstor J.

    ARTICLE Allometric Scaling and Proportion Regulation in the Freshwater Planarian Schmidtea relationships. We chose to investigate the freshwater planarian, a commonly used model system for the study mechanisms in metazoans. Here, we report on the cloning and discrete expression pattern of a novel planarian

  5. [The molecular genetic typification of planarians in the genus Bdellocephala (Dendrocoelidae, Tricladida, Turbellaria) from Lake Baikal with an assessment of their species diversity].

    PubMed

    Kuznedelov, K D; Novikova, O A; Naumova, T V

    2000-01-01

    Baikal planaria from genus Bdellocephala were typified using rDNA locus coding 5'--end domain of 18S ribosome RNA. Five colour forms of 24 possible variants that differ in diapason 0-1.3% of genotype were determined by comparative analysis of nucleotide sequences. The authors use back colour--one of the most variable and typical character in the given group--to collect material for investigation. It allows to minimize the size of investigation sample and at the same time to cover maximum variability of Bdellocephala. One of the positive result of molecular typification of colour forms was a discovery of unique individuals that belong to new species. Karyological analysis of colour forms shows variations in chromosome numbers that divide planaria into 3 groups (2n = 20, 24, 26). Comparative analysis of morphological and ecological characters and karyotypes of some forms united by the same genotype allows to distinguish them as separate species. Criteria of modern phenetic system of Baikal planaria are discussed. PMID:10863369

  6. Toxic effects of selenium and copper on the planarian, Dugesia dorotocephala

    SciTech Connect

    Rauscher, J.D.

    1988-01-01

    Aquatic toxicologists have become increasingly concerned with the effects of sublethal concentrations of toxicants on aquatic organisms. Sublethal effects of toxicants on freshwater invertebrates were reviewed. Selenium (Se) and copper (Cu) are both essential trace elements and toxicants. Se has been reported to alter the toxicity of heavy metals. Planarians, Dugesia dorotocephala, were used as test animals. The objectives of this study were to determine: (1) acute toxicity of Se on planarians and the effect of the number of planarians per test chamber, (2) interaction of the acute toxicity of Se and Cu on planarians, and (3) sublethal effects of Se and Cu on planarians.

  7. Mitochondrial genome data support the basal position of acoelomorpha and the polyphyly of the platyhelminthes

    SciTech Connect

    Ruiz-Trillo, Inaki; Riutort, Marta; Fourcade, H. Matthew; Baguna, Jaume; Boore, Jeffrey L.

    2004-05-01

    We determined 9.7, 5.2, and 6.8 kb, respectively, of the mitochondrial genomes of the acoel Paratomella rubra, the nemertodermatid Nemertoderma westbladi and the free-living rhabditophoran platyhelminth Microstomum lineare. The identified gene arrangements are unique among metazoans, including each other, sharing no more than one or two single gene boundaries with a few distantly related taxa. Phylogenetic analysis of the amino acid sequences inferred from the sequenced genes confirms that the acoelomorph flatworms (acoels + nemertodermatids) do not belong to the Platyhelminthes, but are, instead, the most basal extant bilaterian group. Therefore, the Platyhelminthes, as traditionally constituted, is a polyphyletic phylum.

  8. Optical coherence tomography: a new strategy to image planarian regeneration.

    PubMed

    Lin, Yu-Sheng; Chu, Chin-Chou; Lin, Jen-Jen; Chang, Chien-Cheng; Wang, Chun-Chieh; Wang, Chiao-Yin; Tsui, Po-Hsiang

    2014-01-01

    The planarian is widely used as a model for studying tissue regeneration. In this study, we used optical coherence tomography (OCT) for the real-time, high-resolution imaging of planarian tissue regeneration. Five planaria were sliced transversely to produce 5 head and 5 tail fragments. During a 2-week regeneration period, OCT images of the planaria were acquired to analyze the signal attenuation rates, intensity ratios, and image texture features (including contrast, correlation, homogeneity, energy, and entropy) to compare the primitive and regenerated tissues. In the head and tail fragments, the signal attenuation rates of the regenerated fragments decreased from -0.2?dB/?m to -0.05?dB/?m, between Day 1 and Day 6, and then increased to -0.2?dB/?m on Day 14. The intensity ratios decreased to approximately 0.8 on Day 6, and increased to between 0.8 and 0.9 on Day 14. The texture parameters of contrast, correlation, and homogeneity exhibited trends similar to the signal attenuation rates and intensity ratios during the planarian regeneration. The proposed OCT parameters might provide biological information regarding cell apoptosis and the formation of a mass of new cells during planarian regeneration. Therefore, OCT imaging is a potentially effective method for planarian studies. PMID:25204535

  9. Optical coherence tomography: A new strategy to image planarian regeneration

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Sheng; Chu, Chin-Chou; Lin, Jen-Jen; Chang, Chien-Cheng; Wang, Chun-Chieh; Wang, Chiao-Yin; Tsui, Po-Hsiang

    2014-09-01

    The planarian is widely used as a model for studying tissue regeneration. In this study, we used optical coherence tomography (OCT) for the real-time, high-resolution imaging of planarian tissue regeneration. Five planaria were sliced transversely to produce 5 head and 5 tail fragments. During a 2-week regeneration period, OCT images of the planaria were acquired to analyze the signal attenuation rates, intensity ratios, and image texture features (including contrast, correlation, homogeneity, energy, and entropy) to compare the primitive and regenerated tissues. In the head and tail fragments, the signal attenuation rates of the regenerated fragments decreased from -0.2 dB/?m to -0.05 dB/?m, between Day 1 and Day 6, and then increased to -0.2 dB/?m on Day 14. The intensity ratios decreased to approximately 0.8 on Day 6, and increased to between 0.8 and 0.9 on Day 14. The texture parameters of contrast, correlation, and homogeneity exhibited trends similar to the signal attenuation rates and intensity ratios during the planarian regeneration. The proposed OCT parameters might provide biological information regarding cell apoptosis and the formation of a mass of new cells during planarian regeneration. Therefore, OCT imaging is a potentially effective method for planarian studies.

  10. Optical coherence tomography: A new strategy to image planarian regeneration

    PubMed Central

    Lin, Yu-Sheng; Chu, Chin-Chou; Lin, Jen-Jen; Chang, Chien-Cheng; Wang, Chun-Chieh; Wang, Chiao-Yin; Tsui, Po-Hsiang

    2014-01-01

    The planarian is widely used as a model for studying tissue regeneration. In this study, we used optical coherence tomography (OCT) for the real-time, high-resolution imaging of planarian tissue regeneration. Five planaria were sliced transversely to produce 5 head and 5 tail fragments. During a 2-week regeneration period, OCT images of the planaria were acquired to analyze the signal attenuation rates, intensity ratios, and image texture features (including contrast, correlation, homogeneity, energy, and entropy) to compare the primitive and regenerated tissues. In the head and tail fragments, the signal attenuation rates of the regenerated fragments decreased from ?0.2?dB/?m to ?0.05?dB/?m, between Day 1 and Day 6, and then increased to ?0.2?dB/?m on Day 14. The intensity ratios decreased to approximately 0.8 on Day 6, and increased to between 0.8 and 0.9 on Day 14. The texture parameters of contrast, correlation, and homogeneity exhibited trends similar to the signal attenuation rates and intensity ratios during the planarian regeneration. The proposed OCT parameters might provide biological information regarding cell apoptosis and the formation of a mass of new cells during planarian regeneration. Therefore, OCT imaging is a potentially effective method for planarian studies. PMID:25204535

  11. High-resolution profiling and discovery of planarian small RNAs.

    PubMed

    Friedländer, Marc R; Adamidi, Catherine; Han, Ting; Lebedeva, Svetlana; Isenbarger, Thomas A; Hirst, Martin; Marra, Marco; Nusbaum, Chad; Lee, William L; Jenkin, James C; Sánchez Alvarado, Alejandro; Kim, John K; Rajewsky, Nikolaus

    2009-07-14

    Freshwater planarian flatworms possess uncanny regenerative capacities mediated by abundant and collectively totipotent adult stem cells. Key functions of these cells during regeneration and tissue homeostasis have been shown to depend on PIWI, a molecule required for Piwi-interacting RNA (piRNA) expression in planarians. Nevertheless, the full complement of piRNAs and microRNAs (miRNAs) in this organism has yet to be defined. Here we report on the large-scale cloning and sequencing of small RNAs from the planarian Schmidtea mediterranea, yielding altogether millions of sequenced, unique small RNAs. We show that piRNAs are in part organized in genomic clusters and that they share characteristic features with mammalian and fly piRNAs. We further identify 61 novel miRNA genes and thus double the number of known planarian miRNAs. Sequencing, as well as quantitative PCR of small RNAs, uncovered 10 miRNAs enriched in planarian stem cells. These miRNAs are down-regulated in animals in which stem cells have been abrogated by irradiation, and thus constitute miRNAs likely associated with specific stem-cell functions. Altogether, we present the first comprehensive small RNA analysis in animals belonging to the third animal superphylum, the Lophotrochozoa, and single out a number of miRNAs that may function in regeneration. Several of these miRNAs are deeply conserved in animals. PMID:19564616

  12. Pharmacological assessment of methamphetamine-induced behavioral hyperactivity mediated by dopaminergic transmission in planarian Dugesia japonica.

    PubMed

    Tashiro, Natsuka; Nishimura, Kaneyasu; Daido, Kanako; Oka, Tomoe; Todo, Mio; Toshikawa, Asami; Tsushima, Jun; Takata, Kazuyuki; Ashihara, Eishi; Yoshimoto, Kanji; Agata, Kiyokazu; Kitamura, Yoshihisa

    2014-07-11

    The freshwater planarian Dugesia japonica has a simple central nervous system (CNS) and can regenerate complete organs, even a functional brain. Recent studies demonstrated that there is a great variety of neuronal-related genes, specifically expressed in several domains of the planarian brain. We identified a planarian dat gene, named it D. japonica dopamine transporter (Djdat), and analyzed its expression and function. Both in situ hybridization and immunofluorescence revealed that localization of Djdat mRNA and protein was the same as that of D. japonica tyrosine hydroxylase (DjTH). Although, dopamine (DA) content in Djdat(RNAi) planarians was not altered, Djdat(RNAi) planarians showed increased spontaneous locomotion. The hyperactivity in the Djdat(RNAi) planarians was significantly suppressed by SCH23390 or sulpiride pretreatment, which are D1 or D2 receptor antagonists, respectively. These results suggest that planarians have a Djdat ortholog and the ability to regulate dopaminergic neurotransmission and association with spontaneous locomotion. PMID:24858686

  13. Contributions to the systematics, comparative morphology, and interrelationships of selected lecanicephalidean tapeworms (Platyhelminthes: Cestoda: Lecanicephalidea)

    E-print Network

    Cielocha, Joanna J.

    2013-05-31

    The Lecanicephalidea (Platyhelminthes: Cestoda) are a morphologically diverse group of elasmobranch (Chondrichthyes: Elasmobranchii) tapeworms. Currently, 95 species in 16 genera are recognized as valid. However, nine genera have previously been...

  14. Planarian regeneration under micro- and hyper-gravity simulated contexts

    NASA Astrophysics Data System (ADS)

    Auletta, Gennaro; Van Loon, ing.. Jack J. W. A.; Adell, Teresa; Salo, Emili

    Planarians are non-parasitic flatworms of the Turbellaria class, some of which show the striking ability to regenerate any part of their body, even the head, in few days. Planarians are common to many parts of the world, living in both saltwater and freshwater, as well as in terrestrial areas. Due to their plasticity Planarians have been a classical model for the study of the mechanisms of regeneration. Currently, their cheap and easy maintenance, as well as the establishment of robust genetic tools, have converted them into an essential system in the field of stem cells and regenerative medicine. The aim of our project is to study the effect that micro- and hyper- gravity could exert during the process of planarians regeneration. The reason for planarians extreme regenerative capability is the maintenance until adulthood of a population of totipotent stem cells as well as the continuous activation of the cell-cell communication molecular pathways. Our prediction is that the alteration of the forces could affect planarians regeneration at different levels: 1) To regenerate, planarians must activate both proliferative and apoptotic responses, in order to create new tissue and to remodel the pre-existing one, respectively. Both cellular processes have been reported to be altered in several models under differential gravitational forces; 2) In planarians, the main intercellular signalling pathways (Wnt, TGFb, BMP, Hh, EGF) must control the process of differentiation and determination of each cell. For instances, it has been demonstrated that the differential activity of the wnt/beta-catenin pathway specifies the posterior (tail) versus the anterior (head) identity. Those pathways rely on the distance that secreted molecules (morphogens) are able to reach. Either this mechanism consist in a passive diffusion or an active transport through phyllopodia, it could sense the magnitude of the gravitational force; 3) The epidermis of planarians is covered by cilia, which beat collectively and in synchrony to propel the mucus and allow the locomotion. The assembly of ciliary structures could be affected by gravity changes. Our strategy consists in the histological, immunological and transcriptomic analysis of planarians that have completely regenerated head and tail structures under different gravity conditions: earth gravity (1g), micro-gravity (in the random positioning machine) and hyper-gravity (in a large diameter centrifuge, at 4g and 8g). Our data shows that planarians regenerate properly head and tail structures, including the eyes and the brain, in all those conditions. However some differences between the groups could be detected: 1) a slight decrease in the number of mitotic cells is observed in hyper-gravity conditions with respect to normal and micro- gravity conditions; 2) an increase in the number of animals that fissioned the tail, which is a mechanism to reproduce asexually for planarians, was observed in hyper-gravity conditions with respect to the rest; 3) although trunk fragments regenerate head and tail properly, smaller fragments, that is, head or tail pieces, could not regenerate the missing tissues under 8g conditions, and they died. Under 4g conditions they could regenerate but not properly; 4) defects in the density and length of the cilia were observed under micro- and hyper- gravity. A transcriptomic analysis is being conducted with samples from all the groups, with the aim to detect gene categories differentially regulated under micro- and hyper- gravity contexts.

  15. [Regeneration in two freshwater planarian species exposed to methylmercury compounds].

    PubMed

    Medvedev, I V

    2008-01-01

    The regeneration rate was studied by the morphometric method in planarians Polycelis tenuis and Dugesia lugubris after different periods of exposure on food substrates with high (0.30-0.50 mg/kg wet weight) and low (0.02-0.07 mg/kg) concentration of methylmercury compounds. The planarian growth and the ratio of regenerating tissue area to the total fragment area after transverse cutting were evaluated. The rate of size increment was lower in animals with high level than with low level of methylmercury than with low level of methylmercury. The highest relative and absolute body area increment after amputation was observed in D. lugubris and P. tenius, respectively. Thus, natural methylmercury compounds were shown to inhibit tissue regeneration in planarians in a dose-dependent manner. PMID:18792641

  16. Planarians: an In Vivo Model for Regenerative Medicine

    PubMed Central

    Karami, Ali; Tebyanian, Hamid; Goodarzi, Vahabodin; Shiri, Sajad

    2015-01-01

    The emergence of regenerative medicine has raised the hope of treating an extraordinary range of disease and serious injuries. Understanding the processes of cell proliferation, differentiation and pattern formation in regenerative organisms could help find ways to enhance the poor regenerative abilities shown by many other animals, including humans. Recently, planarians have emerged as an attractive model in which to study regeneration. These animals are considering as in vivo plate, during which we can study the behavior and characristics of stem cells in their own niche. A variety of characteristic such as: simplicity, easy to manipulate experimentally, the existence of more than 100 years of literature, makes these animals an extraordinary model for regenerative medicine researches. Among planarians free-living freshwater hermaphrodite Schmidtea mediterranea has emerged as a suitable model system because it displays robust regenerative properties and, unlike most other planarians, it is a stable diploid with a genome size of about 4.8×108 base pairs, nearly half that of other common planarians. Planarian regeneration involves two highly flexible systems: pluripotent neoblasts that can generate any new cell type and muscle cells that provide positional instructions for the regeneration of anybody region. neoblasts represent roughly 25~30 percent of all planarian cells and are scattered broadly through the parenchyma, being absent only from the animal head tips and the pharynx. Two models for neo-blast specification have been proposed; the naive model posits that all neoblasts are stem cells with the same potential and are a largely homogeneous population. PMID:26634061

  17. Planarians: an In Vivo Model for Regenerative Medicine.

    PubMed

    Karami, Ali; Tebyanian, Hamid; Goodarzi, Vahabodin; Shiri, Sajad

    2015-11-01

    The emergence of regenerative medicine has raised the hope of treating an extraordinary range of disease and serious injuries. Understanding the processes of cell proliferation, differentiation and pattern formation in regenerative organisms could help find ways to enhance the poor regenerative abilities shown by many other animals, including humans. Recently, planarians have emerged as an attractive model in which to study regeneration. These animals are considering as in vivo plate, during which we can study the behavior and characristics of stem cells in their own niche. A variety of characteristic such as: simplicity, easy to manipulate experimentally, the existence of more than 100 years of literature, makes these animals an extraordinary model for regenerative medicine researches. Among planarians free-living freshwater hermaphrodite Schmidtea mediterranea has emerged as a suitable model system because it displays robust regenerative properties and, unlike most other planarians, it is a stable diploid with a genome size of about 4.8×10(8) base pairs, nearly half that of other common planarians. Planarian regeneration involves two highly flexible systems: pluripotent neoblasts that can generate any new cell type and muscle cells that provide positional instructions for the regeneration of anybody region. neoblasts represent roughly 25~30 percent of all planarian cells and are scattered broadly through the parenchyma, being absent only from the animal head tips and the pharynx. Two models for neo-blast specification have been proposed; the naive model posits that all neoblasts are stem cells with the same potential and are a largely homogeneous population. PMID:26634061

  18. Disturbances to neurotransmitter levels and their metabolic enzyme activity in a freshwater planarian exposed to cadmium.

    PubMed

    Wu, Jui-Pin; Li, Mei-Hui; Chen, Jhih-Sheng; Chung, Szu-Yao; Lee, Hui-Ling

    2015-03-01

    Using specific neurobehaviors as endpoints, previous studies suggested that planarian neurotransmission systems could be targets of Cd neurotoxicity. However, direct evidence for disturbed neurotransmission systems by Cd in treated planarians is still lacking. In planarians, dopamine (DA) and serotonin (5-HT) play critical roles in neuromuscular function, but little is known about their metabolic degradation. Therefore, in this study, we attempted to determine the appearances of DA, 5-HT, and their metabolic products in the freshwater planarian Dugesia japonica, characterize the activity of enzymes involved in their metabolism, and investigate the effects of Cd on planarian 5-HTergic and DAergic neurotransmission systems. Only DA, 5-HT, and 5-hydroxyindole-3-acetic acid (5-HIAA) were found in planarian tissues. Further enzymatic study revealed the activity of planarian monoamine oxidase (MAO) but not catechol-O-methyl transferase (COMT). These findings suggest that planarian MAO catalyzes the metabolism of 5-HT into 5-HIAA. However, DA metabolites from the MAO-involved metabolic pathway were not found, which might be due to a lack of COMT activity. Finally, in Cd-treated planarians, tissue levels of 5-HT and DA were decreased and MAO activity altered, suggesting that planarian neurotransmission systems are disturbed following Cd treatment. PMID:25644215

  19. Reconstruction of dopaminergic neural network and locomotion function in planarian regenerates.

    PubMed

    Nishimura, Kaneyasu; Kitamura, Yoshihisa; Inoue, Takeshi; Umesono, Yoshihiko; Sano, Shozo; Yoshimoto, Kanji; Inden, Masatoshi; Takata, Kazuyuki; Taniguchi, Takashi; Shimohama, Shun; Agata, Kiyokazu

    2007-07-01

    Planarian, an invertebrate flatworm, has a high capacity for regeneration when compared with other worms and animals. We show here for the first time that the reconstructed dopamine (DA) neural network regulates locomotion and behavior in planarian regenerates. The gene encoding tyrosine hydroxylase in the planarian Dugesia japonica (DjTH) was identified. DjTH protein was coexpressed with aromatic amino acid decarboxylase-like A (DjAADCA) in the planarian central nervous system (CNS). In addition, DjTH-knockdown planarians lost the ability to synthesize DA, but showed no change in 5-hydroxytryptamine synthesis. When the planarian body was amputated, DjTH-positive neurons were regenerated in the brain newly rebuilt from the tail piece at Day 3, and the DjTH-positive axonal and dendritic neural network in the CNS (dopaminergic tiara) was reconstructed at Days 5-7. At that time, autonomic locomotion and methamphetamine-induced hyperkinesia were also suppressed in DjTH-knockdown planarians. Planarian locomotion and behavior seem to be regulated in both cilia- and muscle-dependent manners. In DjTH-knockdown planarians, muscle-mediated locomotion and behavior were significantly attenuated. These results suggest that DA neurons play a key role in the muscle-mediated movement in planarians. PMID:17565705

  20. Expression of Nephrin Homologue in the Freshwater Planarian, Dugesia japonica.

    PubMed

    Nakamura, Tomomi; Takagi, Sota; Matsumoto, Midori; Tashiro, Fumio; Sakai, Tatsuo; Ichimura, Koichiro

    2014-01-01

    Excretory organs contain epithelial cells that form a filtration membrane specialized for ultrafiltration to produce primary urine. In vertebrates, the filtration membrane is made up of slit diaphragm (SD) formed by glomerular podocytes. Basal metazoans such as flatworms are also known have filtration epithelial cells, called flame cells, which exhibit SD-like structures. The molecular components of podocyte SD have been studied in detail, while those of the SD-like structures in basal metazoans including flatworms remain to be clarified. To determine whether the SD-like structures in flatworms have molecular components common to the SD in vertebrate podocytes, we examined the expression of gene homologue for mammalian nephrin, which encodes an essential transmembrane protein that participates in the formation of the SD, in a species of flatworms, planarian (Dugesia japonica). Flame cells were distributed throughout the entire body of the planarian, but the nephrin-expressing cells identified by in situ hybridization were mainly detected at body periphery excluding head region. The distribution pattern of nephrin-expressing cells was similar to that of proliferating cell nuclear antigen-expressing neoblasts, which are pluripotent stem cells characteristic to planarians. These findings indicated that the SD-like structures can be formed without the Nephrin protein in planarian flame cells. PMID:25859064

  1. A regulatory program for excretory system regeneration in planarians

    PubMed Central

    Scimone, M. Lucila; Srivastava, Mansi; Bell, George W.; Reddien, Peter W.

    2011-01-01

    Planarians can regenerate any missing body part, requiring mechanisms for the production of organ systems in the adult, including their prominent tubule-based filtration excretory system called protonephridia. Here, we identify a set of genes, Six1/2-2, POU2/3, hunchback, Eya and Sall, that encode transcription regulatory proteins that are required for planarian protonephridia regeneration. During regeneration, planarian stem cells are induced to form a cell population in regeneration blastemas expressing Six1/2-2, POU2/3, Eya, Sall and Osr that is required for excretory system formation. POU2/3 and Six1/2-2 are essential for these precursor cells to form. Eya, Six1/2-2, Sall, Osr and POU2/3-related genes are required for vertebrate kidney development. We determined that planarian and vertebrate excretory cells express homologous proteins involved in reabsorption and waste modification. Furthermore, we identified novel nephridia genes. Our results identify a transcriptional program and cellular mechanisms for the regeneration of an excretory organ and suggest that metazoan excretory systems are regulated by genetic programs that share a common evolutionary origin. PMID:21937596

  2. Expression of Nephrin Homologue in the Freshwater Planarian, Dugesia japonica

    PubMed Central

    Nakamura, Tomomi; Takagi, Sota; Matsumoto, Midori; Tashiro, Fumio; Sakai, Tatsuo; Ichimura, Koichiro

    2014-01-01

    Excretory organs contain epithelial cells that form a filtration membrane specialized for ultrafiltration to produce primary urine. In vertebrates, the filtration membrane is made up of slit diaphragm (SD) formed by glomerular podocytes. Basal metazoans such as flatworms are also known have filtration epithelial cells, called flame cells, which exhibit SD-like structures. The molecular components of podocyte SD have been studied in detail, while those of the SD-like structures in basal metazoans including flatworms remain to be clarified. To determine whether the SD-like structures in flatworms have molecular components common to the SD in vertebrate podocytes, we examined the expression of gene homologue for mammalian nephrin, which encodes an essential transmembrane protein that participates in the formation of the SD, in a species of flatworms, planarian (Dugesia japonica). Flame cells were distributed throughout the entire body of the planarian, but the nephrin-expressing cells identified by in situ hybridization were mainly detected at body periphery excluding head region. The distribution pattern of nephrin-expressing cells was similar to that of proliferating cell nuclear antigen-expressing neoblasts, which are pluripotent stem cells characteristic to planarians. These findings indicated that the SD-like structures can be formed without the Nephrin protein in planarian flame cells. PMID:25859064

  3. Agmatine: identification and inhibition of methamphetamine, kappa opioid, and cannabinoid withdrawal in planarians.

    PubMed

    Rawls, Scott M; Gerber, Kristin; Ding, Zhe; Roth, Christopher; Raffa, Robert B

    2008-12-01

    Agmatine blocks morphine physical dependence in mammals, but its effects on withdrawal signs caused by other abused drugs have been less studied. One of the reasons is that withdrawal to some of these drugs is difficult to quantify in mammals. An alternative to mammals is planarians, a type of flatworm. Planarians possess mammalian-like neurotransmitters and display withdrawal from amphetamines, benzodiazepines, cannabinoids, cocaine, and opioids. The withdrawal is manifested as a reduction in locomotor behavior following discontinuation of drug exposure. In the present study, our goal was to identify agmatine in planarians and to determine if planarians exposed to agmatine display withdrawal to methamphetamine, a cannabinoid receptor agonist (WIN 55,212-2), or a kappa-opioid receptor agonist (U-50,488H). Neurochemical experiments revealed that the concentration of agmatine in planarians was 185 +/- 33.7 pmol per mg of planarian weight (dry weight). In behavioral experiments, withdrawal (i.e., reduced locomotor activity) was observed when planarians exposed to each drug (10 microM) for 60 min were placed into water. The withdrawal was attenuated when methamphetamine- or U-50,488H-exposed planarians were tested in agmatine (100 microM). Withdrawal was inhibited similarly when planarians coexposed to agmatine (100 microM) plus methamphetamine (10 microM), WIN 55,212-2 (10 microM), or U-50,488H (10 microM) were tested in water. Arginine, the metabolic precursor to agmatine, was ineffective. Our results identify endogenous agmatine in planarians and demonstrate that agmatine exposure blocks withdrawal to three different drugs in planarians. This suggests that a change in agmatine signaling is a common mechanism in the withdrawal caused by these drugs, at least in planarians. PMID:18792993

  4. Parthenolide prevents the expression of cocaine-induced withdrawal behavior in planarians.

    PubMed

    Rowlands, Amanda L; Pagán, Oné R

    2008-03-31

    We recently reported that parthenolide and related sesquiterpene lactones are able to prevent and reverse behavioral responses in planarian worms induced by acute cocaine exposure. Previous reports indicate that when planarians are chronically exposed to microM concentrations of cocaine, they display stereotypical withdrawal-like behaviors when the cocaine is removed. Here we report that parthenolide prevents this cocaine-induced expression of planarian withdrawal-like behaviors. PMID:18275955

  5. Nociceptin attenuates methamphetamine abstinence-induced withdrawal-like behavior in planarians.

    PubMed

    Rawls, Scott M; Baron, Steven; Ding, Zhe; Roth, Christopher; Zaveri, Nurulain; Raffa, Robert B

    2008-06-01

    Planarians display a concentration-related reduction in locomotor activity when amphetamine, cocaine, cannabinoid, or benzodiazepine exposure is abruptly discontinued. In the present study, we tested the hypothesis that abrupt discontinuation of methamphetamine would also cause withdrawal-like behavior in planarians and that the withdrawal-like behavior would be prevented by nociceptin, which has been shown to modulate the effects of methamphetamine in mammals. We observed a concentration-related reduction of locomotor behavior when planarians exposed to methamphetamine (0.1-100 microM) were tested in drug-free water. The withdrawal-like behavior was abolished when methamphetamine (10 microM)-exposed planarians were placed into water containing nociceptin (10 microM) or when planarians co-exposed to methamphetamine (10 microM) and nociceptin (10 microM) were placed into drug-free water. The effects of nociceptin were abolished in the presence of a nociceptin receptor antagonist, JTC-801 (1 microM). Planarians did not display a change in locomotor behavior during exposure to nociceptin (10 microM) or JTC-801 (1 microM) by themselves. These results (1) reveal a functional interaction between nociceptin and methamphetamine in planarians and (2) provide evidence that nociceptin blocks methamphetamine-induced withdrawal-like behavior in planarians through a JTC-801-sensitive mechanism. PMID:18479746

  6. First evidence that drugs of abuse produce behavioral sensitization and cross sensitization in planarians.

    PubMed

    Rawls, Scott M; Patil, Tavni; Yuvasheva, Ekaternia; Raffa, Robert B

    2010-07-01

    Behavioral sensitization in mammals, including humans, is sensitive to factors such as administration route, testing environment, and pharmacokinetic confounds, unrelated to the drugs themselves that are difficult to eliminate. Simpler animals less susceptible to these confounding influences may be advantageous substitutes for studying sensitization. We tested this hypothesis by determining whether planarians display sensitization and cross sensitization to cocaine and glutamate. Planarian hyperactivity was quantified as the number of C-like hyperkinesias during a 1-min drug exposure. Planarians exposed initially to cocaine (or glutamate) on day 1 were challenged with cocaine (or glutamate) after 2 or 6 days of abstinence. Acute cocaine or glutamate produced concentration-related hyperactivity. Cocaine or glutamate challenge after 2 and 6 days of abstinence enhanced the hyperactivity, indicating the substances produced planarian behavioral sensitization. Cross-sensitization experiments showed that cocaine produced greater hyperactivity in planarians earlier exposed to glutamate than in glutamate-naive planarians, and vice versa. Behavioral responses were pharmacologically selective because neither scopolamine nor caffeine produced planarian behavioral sensitization despite causing hyperactivity after initial administration, and acute gamma-aminobutyric acid did not cause hyperactivity. Demonstration of pharmacologically selective behavioral sensitization in planarians suggests that these flatworms represent a sensitive in-vivo model to study cocaine behavioral sensitization and to screen potential abuse-deterrent therapeutics. PMID:20512030

  7. Freshwater Planarians as an Alternative Animal Model for Neurotoxicology.

    PubMed

    Hagstrom, Danielle; Cochet-Escartin, Olivier; Zhang, Siqi; Khuu, Cindy; Collins, Eva-Maria S

    2015-09-01

    Traditional toxicology testing has relied on low-throughput, expensive mammalian studies; however, timely testing of the large number of environmental toxicants requires new in vitro and in vivo platforms for inexpensive medium- to high-throughput screening. Herein, we describe the suitability of the asexual freshwater planarian Dugesia japonica as a new animal model for the study of developmental neurotoxicology. As these asexual animals reproduce by binary fission, followed by regeneration of missing body structures within approximately 1 week, development and regeneration occur through similar processes allowing us to induce neurodevelopment "at will" through amputation. This short time scale and the comparable sizes of full and regenerating animals enable parallel experiments in adults and developing worms to determine development-specific aspects of toxicity. Because the planarian brain, despite its simplicity, is structurally and molecularly similar to the mammalian brain, we are able to ascertain neurodevelopmental toxicity that is relevant to humans. As a proof of concept, we developed a 5-step semiautomatic screening platform to characterize the toxicity of 9 known neurotoxicants (consisting of common solvents, pesticides, and detergents) and a neutral agent, glucose, and quantified effects on viability, stimulated and unstimulated behavior, regeneration, and brain structure. Comparisons of our findings with other alternative toxicology animal models, such as zebrafish larvae and nematodes, demonstrated that planarians are comparably sensitive to the tested chemicals. In addition, we found that certain compounds induced adverse effects specifically in developing animals. We thus conclude that planarians offer new complementary opportunities for developmental neurotoxicology animal models. PMID:26116028

  8. Resistance of two planarian species to UV-irradiation.

    PubMed

    Kalafati?, Mirjana; Kovacevi?, Goran; Franjevi?, Damjan

    2006-01-01

    The aim of this work was to determine the effects of 20, 25 and 30 minute UV-irradiation periods lambda = 253.5 nm to two planarian species Dugesia tigrina (Gir.) and Polycelis felina (Daly.). In vivo, UV light effects have been reported to affect intracellular receptors and disrupt simple behaviour. The effects of UV-rays on mortality and behavior as well as morphological, cytological and histological changes in the two planarian species were assessed, and the course and the dynamics of regenerative processes were compared between them. Experimental populations of Dugesia tigrina and Polycelis felina species were maintained in laboratory conditions at room temperature. Mortality, behavioral and morphological changes were monitored daily by means of a light stereomicroscope. For cytological and histopathological analysis, planarians were fixed in Bouine fixative on the first, second, third, fifth and seventh day after exposure to UV-irradiation, respectively. They were embedded in paraffin, cut on a microtome, stained with toluidin blue and embedded in Canada-balsam. UV-rays caused mortality, behavioral, morphological, cytological and histological changes in each planarian species. In regeneration of damaged body parts reticular cells and neoblasts played the main role. Neoblasts as totipotent cells extremely increased in number in the area of damaged tissue, immediately after UV-exposure. Dugesia tigrina was more sensitive to UV-rays than Polycelis felina due to possession of less pigmented cells. The course of regeneration in both species was similar. Most individuals of both species regenerated in 5 to 12 days after UV-irradiation. PMID:17220004

  9. Histone modifications and regeneration in the planarian Schmidtea mediterranea.

    PubMed

    Robb, Sofia M C; Sánchez Alvarado, Alejandro

    2014-01-01

    The freshwater planarian Schmidtea mediterranea has emerged as a powerful model system for studying regeneration and adult stem cell (ASC) biology. This is largely due to the developmental plasticity of these organisms and the abundant distribution and experimental accessibility of their ASCs. Techniques such as whole mount in situ hybridization, dsRNA-mediated interference, halogenated thymidine analogs for defining cell lineages, and fluorescence-activated cell sorting among other methods, have allowed researchers to interrogate the biology and attendant pluripotent stem cells of these animals in great detail. Therefore, it has now become possible to interrogate and define the roles that epigenetic states may play in regulating ASCs, and by extension, regeneration proper. Here, we provide a primer on the types and number of histone families found in S. mediterranea, known as epigenetic marks of these molecules and a survey of epigenetic modifying enzymes encoded by the planarian genome. We also review experimental evidence indicating that such modifications may in fact play key roles in determining the activities of planarian stem cells. PMID:24512706

  10. Posterior Wnts Have Distinct Roles in Specification and Patterning of the Planarian Posterior Region.

    PubMed

    Sureda-Gómez, Miquel; Pascual-Carreras, Eudald; Adell, Teresa

    2015-01-01

    The wnt signaling pathway is an intercellular communication mechanism essential in cell-fate specification, tissue patterning and regional-identity specification. A ?catenin-dependent signal specifies the AP (Anteroposterior) axis of planarians, both during regeneration of new tissues and during normal homeostasis. Accordingly, four wnts (posterior wnts) are expressed in a nested manner in central and posterior regions of planarians. We have analyzed the specific role of each posterior wnt and the possible cooperation between them in specifying and patterning planarian central and posterior regions. We show that each posterior wnt exerts a distinct role during re-specification and maintenance of the central and posterior planarian regions, and that the integration of the different wnt signals (?catenin dependent and independent) underlies the patterning of the AP axis from the central region to the tip of the tail. Based on these findings and data from the literature, we propose a model for patterning the planarian AP axis. PMID:26556349

  11. Planarians in toxicology. Responses of asexual Dugesia dorotocephala to selected metals

    SciTech Connect

    Kapu, M.M.; Schaeffer, D.J. )

    1991-08-01

    The planarian Dugesia dorotocephala is a freshwater invertebrate found in unpolluted flowing surface waters. Planarians have a sensitive nervous system with synapses and true brain and evidence these in a variety of social and response behaviors. The inclusion of planarians in a screening battery would provide improved sensitivity in detecting toxicity because planarians commonly respond to lower levels of contamination than do other species. Numerous toxicity test have been conducted to determine the acute and chronic effects of toxicants to provide data necessary for the development of water quality criteria. The appropriateness of Illinois water quality standards for metals was investigated using a 1-hr behavioral test based on the responses of the planarian D. dorotocephala. One possible difficulty with water quality standards for metals is that the standard for each metal is usually established without regard to the effects of other metals present in the receiving water.

  12. Posterior Wnts Have Distinct Roles in Specification and Patterning of the Planarian Posterior Region

    PubMed Central

    Sureda-Gómez, Miquel; Pascual-Carreras, Eudald; Adell, Teresa

    2015-01-01

    The wnt signaling pathway is an intercellular communication mechanism essential in cell-fate specification, tissue patterning and regional-identity specification. A ?catenin-dependent signal specifies the AP (Anteroposterior) axis of planarians, both during regeneration of new tissues and during normal homeostasis. Accordingly, four wnts (posterior wnts) are expressed in a nested manner in central and posterior regions of planarians. We have analyzed the specific role of each posterior wnt and the possible cooperation between them in specifying and patterning planarian central and posterior regions. We show that each posterior wnt exerts a distinct role during re-specification and maintenance of the central and posterior planarian regions, and that the integration of the different wnt signals (?catenin dependent and independent) underlies the patterning of the AP axis from the central region to the tip of the tail. Based on these findings and data from the literature, we propose a model for patterning the planarian AP axis. PMID:26556349

  13. Effects of dimethylsulfoxide on behavior and antioxidant enzymes response of planarian Dugesia japonica.

    PubMed

    Yuan, Zuoqing; Zhao, Bosheng; Zhang, Yu

    2012-06-01

    In this study, the toxicity, behavioral and antioxidant activity effects of dimethylsulfoxide (DMSO) on planarian Dugesia japonica were investigated. The results showed that the mortality was directly proportional to the DMSO concentration, and planarian locomotor velocity decreased as the concentration of DMSO increased. The recovery of the motility for planarians pre-exposed to DMSO was found to be time- and dose-dependent, and only those pre-exposed to 0.1-3% DMSO resulted in full recovery. The antioxidant enzymes of planarians in response to long-term DMSO stress was also altered in a time- and dose-dependent manner. Planarians revealed more tolerance to DMSO toxicity at low DMSO (0.1%) level in short- and long-term DMSO stress, in which an efficient antioxidant system was involved and the motility was not affected. PMID:21976142

  14. Study of planarian stem cell proliferation by means of flow cytometry.

    PubMed

    Ermakov, Artem M; Ermakova, Olga N; Kudravtsev, Andrei A; Kreshchenko, Natalia D

    2012-03-01

    The stem cells in freshwater flatworms (planarian) are called neoblasts. Neoblasts are capable of proliferation and differentiation into every cell type, including the gametes. For the investigation of the mechanisms of stem cells proliferation and differentiation the proper evaluation of changes in the cell cycle of neoblasts in different physiological conditions of planarian is necessary. In the present study the possibility of qualitative and quantitative characteristics of the neoblasts population were investigated using flow cytometry. In the cell suspension prepared from planarian tissue proliferating neoblasts have been observed in heterogenic cell population. Quantitative estimation of the cell cycle related changes of planarian stem cells system have been performed in various physiological conditions (intact and regenerating animals) and under the influence of physical (ionizing radiation) and chemical (melatonin and colchicine) factors. The modified protocol for planarian stem cells isolation proved to be effective and reproducible and can be recommended for flow cytometry analyses of human and animal proliferating cells. PMID:21688150

  15. Spontaneous Behaviors and Wall-Curvature Lead to Apparent Wall Preference in Planarian.

    PubMed

    Akiyama, Yoshitaro; Agata, Kiyokazu; Inoue, Takeshi

    2015-01-01

    The planarian Dugesia japonica tends to stay near the walls of its breeding containers and experimental dishes in the laboratory, a phenomenon called "wall preference". This behavior is thought to be important for environmental adaptation, such as hiding by planarians in nature. However, the mechanisms regulating wall-preference behavior are not well understood, since this behavior occurs in the absence of any particular stimulation. Here we show the mechanisms of wall-preference behavior. Surprisingly, planarian wall-preference behavior was also shown even by the head alone and by headless planarians. These results indicate that planarian "wall-preference" behavior only appears to be a "preference" behavior, and is actually an outcome of spontaneous behaviors, rather than of brain function. We found that in the absence of environmental cues planarians moved basically straight ahead until they reached a wall, and that after reaching a wall, they changed their direction of movement to one tangential to the wall, suggesting that this spontaneous behavior may play a critical role in the wall preference. When we tested another spontaneous behavior, the wigwag movement of the planarian head, using computer simulation with various wigwag angles and wigwag intervals, large wigwag angle and short wigwag interval reduced wall-preference behavior. This indicated that wigwag movement may determine the probability of staying near the wall or leaving the wall. Furthermore, in accord with this simulation, when we tested planarian wall-preference behavior using several assay fields with different curvature of the wall, we found that concavity and sharp curvature of walls negatively impacted wall preference by affecting the permissible angle of the wigwag movement. Together, these results indicate that planarian wall preference may be involuntarily caused by the combination of two spontaneous planarian behaviors: moving straight ahead until reaching a wall and then moving along it in the absence of environmental cues, and wigwag movements of the head. PMID:26539715

  16. Spontaneous Behaviors and Wall-Curvature Lead to Apparent Wall Preference in Planarian

    PubMed Central

    Akiyama, Yoshitaro; Agata, Kiyokazu; Inoue, Takeshi

    2015-01-01

    The planarian Dugesia japonica tends to stay near the walls of its breeding containers and experimental dishes in the laboratory, a phenomenon called “wall preference”. This behavior is thought to be important for environmental adaptation, such as hiding by planarians in nature. However, the mechanisms regulating wall-preference behavior are not well understood, since this behavior occurs in the absence of any particular stimulation. Here we show the mechanisms of wall-preference behavior. Surprisingly, planarian wall-preference behavior was also shown even by the head alone and by headless planarians. These results indicate that planarian “wall-preference” behavior only appears to be a “preference” behavior, and is actually an outcome of spontaneous behaviors, rather than of brain function. We found that in the absence of environmental cues planarians moved basically straight ahead until they reached a wall, and that after reaching a wall, they changed their direction of movement to one tangential to the wall, suggesting that this spontaneous behavior may play a critical role in the wall preference. When we tested another spontaneous behavior, the wigwag movement of the planarian head, using computer simulation with various wigwag angles and wigwag intervals, large wigwag angle and short wigwag interval reduced wall-preference behavior. This indicated that wigwag movement may determine the probability of staying near the wall or leaving the wall. Furthermore, in accord with this simulation, when we tested planarian wall-preference behavior using several assay fields with different curvature of the wall, we found that concavity and sharp curvature of walls negatively impacted wall preference by affecting the permissible angle of the wigwag movement. Together, these results indicate that planarian wall preference may be involuntarily caused by the combination of two spontaneous planarian behaviors: moving straight ahead until reaching a wall and then moving along it in the absence of environmental cues, and wigwag movements of the head. PMID:26539715

  17. Comparative selenoproteome analysis reveals a reduced utilization of selenium in parasitic platyhelminthes

    PubMed Central

    Jiang, Liang; Zhu, Hua-Zhang; Xu, Yin-Zhen; Ni, Jia-Zuan

    2013-01-01

    Background. The selenocysteine(Sec)-containing proteins, selenoproteins, are an important group of proteins present in all three kingdoms of life. Although the selenoproteomes of many organisms have been analyzed, systematic studies on selenoproteins in platyhelminthes are still lacking. Moreover, comparison of selenoproteomes between free-living and parasitic animals is rarely studied. Results. In this study, three representative organisms (Schmidtea mediterranea, Schistosoma japonicum and Taenia solium) were selected for comparative analysis of selenoproteomes in Platyhelminthes. Using a SelGenAmic-based selenoprotein prediction algorithm, a total of 37 selenoprotein genes were identified in these organisms. The size of selenoproteomes and selenoprotein families were found to be associated with different lifestyles: free-living organisms have larger selenoproteome whereas parasitic lifestyle corresponds to reduced selenoproteomes. Five selenoproteins, SelT, Sel15, GPx, SPS2 and TR, were found to be present in all examined platyhelminthes as well as almost all sequenced animals, suggesting their essential role in metazoans. Finally, a new splicing form of SelW that lacked the first exon was found to be present in S. japonicum. Conclusions. Our data provide a first glance into the selenoproteomes of organisms in the phylum Platyhelminthes and may help understand function and evolutionary dynamics of selenium utilization in diversified metazoans. PMID:24255816

  18. Sucrose produces withdrawal and dopamine-sensitive reinforcing effects in planarians.

    PubMed

    Zhang, Charlie; Tallarida, Christopher S; Raffa, Robert B; Rawls, Scott M

    2013-03-15

    Sucrose produces physical dependence and reinforcing effects in rats. We hypothesized that similar effects could be demonstrated in planarians, the earliest animal with a centralized nervous system. We used two assays, one that quantifies withdrawal responses during drug absence as a reduction in motility and another that quantifies reinforcing effects using a conditioned place preference (CPP) design. In withdrawal experiments, planarians exposed to sucrose (1%) for 60 min and then tested in water for 5 min displayed reduced motility compared to water controls. Acute or continuous sucrose (1%) exposure did not affect motility. CPP experiments used a biased design to capitalize upon planarians' natural preference for the dark (pretest, sucrose conditioning in the light, posttest). Planarians conditioned with sucrose (1%) displayed a greater preference shift than sucrose-naïve planarians. Glucose (0.1, 1%), but not the non-digestible disaccharide lactulose (0.1, 1%), also produced a greater preference shift than water-exposed planarians. Development of sucrose-induced CPP was inhibited when sucrose (1%) conditioning was conducted in combination with dopamine receptor antagonists SCH 23390 (1 ?M) or sulpiride (1 ?M). These results suggest that the rewarding and reinforcing effects of sugar are highly conserved across species and that planarians offer an invertebrate model to provide insight into the pharmacological effects of sucrose and related sweeteners. PMID:23415661

  19. First evidence that drugs of abuse produce behavioral sensitization and cross-sensitization in planarians

    PubMed Central

    Rawls, Scott M.; Patil, Tavni; Yuvasheva, Ekaternia; Raffa, Robert B.

    2010-01-01

    Behavioral sensitization in mammals, including humans, is sensitive to factors such as administration route, testing environment, and pharmacokinetic confounds, unrelated to the drugs themselves, that are difficult to eliminate. Simpler animals less susceptible to these confounding influences may be advantageous substitutes for studying sensitization. We tested this hypothesis by determining if planarians display sensitization and cross-sensitization to cocaine and glutamate. Planarian hyperactivity was quantified as the number of C-like hyperkinesias during a 1-min drug exposure. Planarians exposed initially to cocaine (or glutamate) on day 1 were challenged with cocaine (or glutamate) after 2 or 6 days of abstinence. Acute cocaine or glutamate produced concentration-related hyperactivity. Cocaine or glutamate challenge after 2 and 6 days of abstinence enhanced the hyperactivity, indicating the substances produced planarian behavioral sensitization (pBS). Cross-sensitization experiments showed that cocaine produced greater hyperactivity in planarians previously exposed to glutamate than in glutamate-naïve planarians, and vice versa. Behavioral responses were pharmacologically selective because neither scopolamine nor caffeine produced pBS despite causing hyperactivity after initial administration, and acute GABA did not cause hyperactivity. Demonstration of pharmacologically-selective behavioral sensitization in planarians suggests these flatworms represent a sensitive in vivo model to study cocaine behavioral sensitization and to screen potential abuse-deterrent therapeutics. PMID:20512030

  20. Constitutive gene expression and the specification of tissue identity in adult planarian biology

    E-print Network

    Reddien, Peter

    Planarians are flatworms that constitutively maintain adult tissues through cell turnover and can regenerate entire organisms from tiny body fragments. In addition to requiring new cells (from neoblasts), these feats require ...

  1. On the organ trail: insights into organ regeneration in the planarian.

    PubMed

    Roberts-Galbraith, Rachel H; Newmark, Phillip A

    2015-06-01

    Advances in stem cell biology have led to the derivation of diverse cell types, yet challenges remain in creating complex tissues and functional organs. Unlike humans, some animals regenerate all missing tissues and organs successfully after dramatic injuries. Studies of organisms with exceptional regenerative capacity, like planarians, could complement in vitro studies and reveal mechanistic themes underlying regeneration on the scale of whole organs and tissues. In this review, we outline progress in understanding planarian organ regeneration, with focus on recent studies of the nervous, digestive, and excretory systems. We further examine molecular mechanisms underlying establishment of diverse cell fates from the planarian stem cell pool. Finally, we explore conceptual directions for future studies of organ regeneration in planarians. PMID:25703843

  2. miR-71b regulation of insulin/IGF-1 signaling during starvation in planarians.

    PubMed

    Wu, Y Y; Zhao, J M; Liu, Q; Guo, Q; Liu, Z; Wang, X X; Wang, C Y; Li, R Y; Zhang, Y Z; Zhang, S T

    2015-01-01

    Planarians, which have a large population of stem cells called neoblasts, are molecularly tractable model systems used in the study of regeneration. However, planarians have strong resistance to hunger and have developed growth arrest strategies. For example, they can change their size and undergo growth regression during starvation periods. The results of the current study show that the microRNA, miR-71b, and the insulin/IGF-1 signaling pathway have important functions in the development of starvation-induced planarians. We demonstrate tissue-specific expression of miR-71b using in situ hybridization. By employing real-time polymerase chain reaction, we provide evidence that miR-71b is upregulated in starvation-induced planarians. Furthermore, we validate and verify the target genes of miR-71b. PMID:26505338

  3. Identification of pluripotent stem cells and characterization of glia in the planarian Schmidtea mediterranea

    E-print Network

    Wang, Irving E

    2014-01-01

    Given their regenerative capacity, the planarian Schmidtea mediterranea has emerged as a model system for the study of stem cell biology, tissue specification, and axis formation. Many aspects of the regenerative machinery ...

  4. Transcriptome Analysis of the Planarian Eye Identifies ovo as a Specific Regulator of Eye Regeneration

    E-print Network

    Lapan, Sylvain W.

    Among the millions of invertebrate species with visual systems, the genetic basis of eye development and function is well understood only in Drosophila melanogaster. We describe an eye transcriptome for the planarian ...

  5. Molecular mechanisms of regeneration initiation and dorsal-ventral patterning in planarians

    E-print Network

    Gaviño, Michael A. (Michael Alexander)

    2013-01-01

    Regeneration is widespread among animals, yet very little is known about the molecular mechanisms that govern regenerative processes. Planarians have emerged in recent years as a powerful model for studying regeneration ...

  6. Cellular and genetic mechanisms of new tissue production in the regenerating planarian Schmidtea mediterranea

    E-print Network

    Wagner, Daniel Elger

    2012-01-01

    Regeneration of missing body parts is biologically fascinating, yet poorly understood. Many instances of regeneration, such as the replacement of amphibian limbs or planarian heads, require both a source for new cellular ...

  7. THE HISTORY AND ENDURING CONTRIBUTIONS OF PLANARIANS TO THE STUDY OF ANIMAL REGENERATION

    PubMed Central

    Elliott, Sarah A.; Sánchez Alvarado, Alejandro

    2012-01-01

    Having an almost unlimited capacity to regenerate tissues lost to age and injury, planarians have long fascinated naturalists. In the Western hemisphere alone, their documented history spans more than 200 years. Planarians were described in the early 19th century as being “immortal under the edge of the knife,” and initial investigation of these remarkable animals was significantly influenced by studies of regeneration in other organisms and from the flourishing field of experimental embryology in the late 19th and early 20th centuries. This review strives to place the study of planarian regeneration into a broader historical context by focusing on the significance and evolution of knowledge in this field. It also synthesizes our current molecular understanding of the mechanisms of planarian regeneration uncovered since this animal’s relatively recent entrance into the molecular-genetic age. PMID:23799578

  8. Innate immune system and tissue regeneration in planarians: an area ripe for exploration.

    PubMed

    Peiris, T Harshani; Hoyer, Katrina K; Oviedo, Néstor J

    2014-08-01

    The immune system has been implicated as an important modulator of tissue regeneration. However, the mechanisms driving injury-induced immune response and tissue repair remain poorly understood. For over 200 years, planarians have been a classical model for studies on tissue regeneration, but the planarian immune system and its potential role in repair is largely unknown. We found through comparative genomic analysis and data mining that planarians contain many potential homologs of the innate immune system that are activated during injury and repair of adult tissues. These findings support the notion that the relationship between adult tissue repair and the immune system is an ancient feature of basal Bilateria. Further analysis of the planarian immune system during regeneration could potentially add to our understanding of how the innate immune system and inflammatory responses interplay with regenerative signals to induce scar-less tissue repair in the context of the adult organism. PMID:25082737

  9. Innate immune system and tissue regeneration in Planarians: An area ripe for exploration

    PubMed Central

    Peiris, T. Harshani; Hoyer, Katrina K.; Oviedo, Néstor J.

    2014-01-01

    The immune system has been implicated as an important modulator of tissue regeneration. However, the mechanisms driving injury-induced immune response and tissue repair remain poorly understood. For over 200 years, planarians have been a classical model for studies on tissue regeneration, but the planarian immune system and its potential role in repair is largely unknown. We found through comparative genomic analysis and data mining that planarians contain many potential homologs of the innate immune system that are activated during injury and repair of adult tissues. These findings support the notion that the relationship between adult tissue repair and the immune system is an ancient feature of basal Bilateria. Further analysis of the planarian immune system during regeneration could potentially add to our understanding of how the innate immune system and inflammatory responses interplay with regenerative signals to induce scar-less tissue repair in the context of the adult organism. PMID:25082737

  10. Transcriptome analysis of the planarian eye identifies ovo as a specific regulator of eye regeneration

    PubMed Central

    Lapan, Sylvain W.; Reddien, Peter W.

    2013-01-01

    Summary Among the millions of invertebrate species with visual systems, the genetic basis of eye development and function is well understood only in Drosophila melanogaster. We describe an eye transcriptome for the planarian Schmidtea mediterranea. Planarian photoreceptors expressed orthologs of genes required for phototransduction and microvillus structure in Drosophila and vertebrates, and optic pigment cells expressed solute transporters and melanin synthesis enzymes similar to those active in the vertebrate retinal pigment epithelium. Orthologs of several planarian eye genes, such as bestrophin-1 and Usher syndrome genes, cause eye defects in mammals when perturbed and were not previously described to have roles in invertebrate eyes. Five previously undescribed planarian eye transcription factors were required for normal eye formation during head regeneration. In particular, a conserved, transcription factor-encoding ovo gene was expressed from the earliest stages of eye regeneration and was required for regeneration of all cell types of the eye. PMID:22884275

  11. Neoblast specialization in regeneration of the planarian Schmidtea mediterranea.

    PubMed

    Scimone, M Lucila; Kravarik, Kellie M; Lapan, Sylvain W; Reddien, Peter W

    2014-08-12

    Planarians can regenerate any missing body part in a process requiring dividing cells called neoblasts. Historically, neoblasts have largely been considered a homogeneous stem cell population. Most studies, however, analyzed neoblasts at the population rather than the single-cell level, leaving the degree of heterogeneity in this population unresolved. We combined RNA sequencing of neoblasts from wounded planarians with expression screening and identified 33 transcription factors transcribed in specific differentiated cells and in small fractions of neoblasts during regeneration. Many neoblast subsets expressing distinct tissue-associated transcription factors were present, suggesting candidate specification into many lineages. Consistent with this possibility, klf, pax3/7, and FoxA were required for the differentiation of cintillo-expressing sensory neurons, dopamine-?-hydroxylase-expressing neurons, and the pharynx, respectively. Together, these results suggest that specification of cell fate for most-to-all regenerative lineages occurs within neoblasts, with regenerative cells of blastemas being generated from a highly heterogeneous collection of lineage-specified neoblasts. PMID:25254346

  12. Neoblast Specialization in Regeneration of the Planarian Schmidtea mediterranea

    PubMed Central

    Scimone, M. Lucila; Kravarik, Kellie M.; Lapan, Sylvain W.; Reddien, Peter W.

    2014-01-01

    Summary Planarians can regenerate any missing body part in a process requiring dividing cells called neoblasts. Historically, neoblasts have largely been considered a homogeneous stem cell population. Most studies, however, analyzed neoblasts at the population rather than the single-cell level, leaving the degree of heterogeneity in this population unresolved. We combined RNA sequencing of neoblasts from wounded planarians with expression screening and identified 33 transcription factors transcribed in specific differentiated cells and in small fractions of neoblasts during regeneration. Many neoblast subsets expressing distinct tissue-associated transcription factors were present, suggesting candidate specification into many lineages. Consistent with this possibility, klf, pax3/7, and FoxA were required for the differentiation of cintillo-expressing sensory neurons, dopamine-?-hydroxylase-expressing neurons, and the pharynx, respectively. Together, these results suggest that specification of cell fate for most-to-all regenerative lineages occurs within neoblasts, with regenerative cells of blastemas being generated from a highly heterogeneous collection of lineage-specified neoblasts. PMID:25254346

  13. PlanMine – a mineable resource of planarian biology and biodiversity

    PubMed Central

    Brandl, Holger; Moon, HongKee; Vila-Farré, Miquel; Liu, Shang-Yun; Henry, Ian; Rink, Jochen C.

    2016-01-01

    Planarian flatworms are in the midst of a renaissance as a model system for regeneration and stem cells. Besides two well-studied model species, hundreds of species exist worldwide that present a fascinating diversity of regenerative abilities, tissue turnover rates, reproductive strategies and other life history traits. PlanMine (http://planmine.mpi-cbg.de/) aims to accomplish two primary missions: First, to provide an easily accessible platform for sharing, comparing and value-added mining of planarian sequence data. Second, to catalyze the comparative analysis of the phenotypic diversity amongst planarian species. Currently, PlanMine houses transcriptomes independently assembled by our lab and community contributors. Detailed assembly/annotation statistics, a custom-developed BLAST viewer and easy export options enable comparisons at the contig and assembly level. Consistent annotation of all transcriptomes by an automated pipeline, the integration of published gene expression information and inter-relational query tools provide opportunities for mining planarian gene sequences and functions. For inter-species comparisons, we include transcriptomes of, so far, six planarian species, along with images, expert-curated information on their biology and pre-calculated cross-species sequence homologies. PlanMine is based on the popular InterMine system in order to make the rich biology of planarians accessible to the general life sciences research community. PMID:26578570

  14. A cembranoid from tobacco prevents the expression of nicotine-induced withdrawal behavior in planarian worms.

    PubMed

    Pagán, Oné R; Rowlands, Amanda L; Fattore, Angela L; Coudron, Tamara; Urban, Kimberly R; Bidja, Apurva H; Eterovi?, Vesna A

    2009-08-01

    Using an adaptation of published behavioral protocols, we determined that acute exposure to the cholinergic compounds nicotine and carbamylcholine decreased planarian motility in a concentration-dependent manner. A tobacco cembranoid (1S,2E,4R,6R,7E,11E)-cembra-2,7,11-triene-4,6-diol (4R-cembranoid), also decreased planarian motility. Experiments in the presence of 1 microM 4R-cembranoid did increase the IC50 for nicotine- but not carbamylcholine-induced decrease in planarian motility. When planarians were exposed for 24 h to either nicotine or carbamylcholine at concentrations near their respective IC50 values and then transferred to plain media, nicotine-exposed, but not carbamylcholine- or cembranoid-exposed worms displayed withdrawal-like distress behaviors. In experiments where planarians were pre-exposed to 100 microM nicotine for 24 h in the presence of 1 microM 4R-cembranoid, the withdrawal-like effects were significantly reduced. These results indicate that the 4R-cembranoid might have valuable applications for tobacco abuse research. This experimental approach using planarians is useful for the initial screening of compounds relevant to drug abuse and dependence. PMID:19490913

  15. The use of lectins as markers for differentiated secretory cells in planarians.

    PubMed

    Zayas, Ricardo M; Cebrià, Francesc; Guo, Tingxia; Feng, Junjie; Newmark, Phillip A

    2010-11-01

    Freshwater planarians have reemerged as excellent models to investigate mechanisms underlying regeneration. The introduction of molecular tools has facilitated the study of planarians, but cell- and tissue-specific markers are still needed to examine differentiation of most cell types. Here we report the utility of fluorescent lectin-conjugates to label tissues in the planarian Schmidtea mediterranea. We show that 16 lectin-conjugates stain planarian cells or tissues; 13 primarily label the secretory cells, their cytoplasmic projections, and terminal pores. Thus, we examined regeneration of the secretory system using lectin markers and functionally characterized two genes expressed in the secretory cells: marginal adhesive gland-1 (mag-1) and Smed-reticulocalbin1 (Smed-rcn1). RNAi knockdown of these genes caused a dramatic reduction of secretory cell lectin staining, suggesting a role for mag-1 and Smed-rcn1 in secretory cell differentiation. Our results provide new insights into planarian secretory system regeneration and add new markers for labeling several planarian tissues. PMID:20865784

  16. PlanMine - a mineable resource of planarian biology and biodiversity.

    PubMed

    Brandl, Holger; Moon, HongKee; Vila-Farré, Miquel; Liu, Shang-Yun; Henry, Ian; Rink, Jochen C

    2016-01-01

    Planarian flatworms are in the midst of a renaissance as a model system for regeneration and stem cells. Besides two well-studied model species, hundreds of species exist worldwide that present a fascinating diversity of regenerative abilities, tissue turnover rates, reproductive strategies and other life history traits. PlanMine (http://planmine.mpi-cbg.de/) aims to accomplish two primary missions: First, to provide an easily accessible platform for sharing, comparing and value-added mining of planarian sequence data. Second, to catalyze the comparative analysis of the phenotypic diversity amongst planarian species. Currently, PlanMine houses transcriptomes independently assembled by our lab and community contributors. Detailed assembly/annotation statistics, a custom-developed BLAST viewer and easy export options enable comparisons at the contig and assembly level. Consistent annotation of all transcriptomes by an automated pipeline, the integration of published gene expression information and inter-relational query tools provide opportunities for mining planarian gene sequences and functions. For inter-species comparisons, we include transcriptomes of, so far, six planarian species, along with images, expert-curated information on their biology and pre-calculated cross-species sequence homologies. PlanMine is based on the popular InterMine system in order to make the rich biology of planarians accessible to the general life sciences research community. PMID:26578570

  17. Characterization of the complete mitochondrial genomes from Polycladida (Platyhelminthes) using next-generation sequencing.

    PubMed

    Aguado, M Teresa; Grande, Cristina; Gerth, Michael; Bleidorn, Christoph; Noreña, Carolina

    2016-01-10

    The complete mitochondrial genomes of three polycladids, the acotylean Hoploplana elisabelloi and the cotyleans Enchiridium sp. and Prosthiostomum siphunculus have been assembled with high coverage from Illumina sequencing data. The mt genomes contain 36 genes including 12 of the 13 protein-coding genes characteristic for metazoan mitochondrial genomes, two ribosomal RNA genes, and 22 transfer RNA genes. Gene annotation, gene order, genetic code, start and stop codons and codon bias have been identified. In comparison with the well investigated parasitic Neodermata, our analysis reveals a great diversity of gene orders within Polycladida and Platyhelminthes in general. By analyzing representative genomes of the main groups of Platyhelminthes we explored the phylogenetic relationships of this group. The phylogenetic analyses strongly supported the monophyly of Polycladida, and based on a small taxon sampling suggest the monophyly of Acotylea and Cotylea. PMID:26325071

  18. Analysis of motor function modulated by cholinergic neurons in planarian Dugesia japonica.

    PubMed

    Nishimura, K; Kitamura, Y; Taniguchi, T; Agata, K

    2010-06-16

    Recent studies of the freshwater planarian Dugesia japonica have revealed fundamental mechanisms and unique aspects of neuroscience and neuroregeneration. Here, we identified the gene for planarian choline acetyltransferase (Djchat), which is essential for acetylcholine (ACh) biosynthesis. Immunofluorescence studies using anti-Dugesia japonica ChAT (DjChAT) antibody revealed that cholinergic neurons are widely distributed in the planarian nervous system, including the brain, ventral nerve cords, optic nerves, and pharyngeal nerve plexus. In order to investigate the function of cholinergic neurons in planarians, we used both pharmacological and RNA interference (RNAi) approaches. Administration of physostigmine (an acetylcholinesterase inhibitor) clearly elevated the amount of ACh, and then induced sudden muscle contraction behavior in a concentration-dependent manner. In addition, we found that pretreatment with tubocurarine (a muscle nicotinic ACh receptor antagonist) or atropine (a non-selective muscarinic ACh receptor antagonist), but not pretreatment with mecamylamine (a neural nicotinic ACh receptor antagonist), significantly extended the latency time for physostigmine-induced contraction behavior, suggesting that muscle nicotinic ACh receptors and muscarinic ACh receptors contribute to physostigmine-induced contraction behavior. We also confirmed that ACh biosynthesis ability and DjChAT-immunoreactivity were eliminated in Djchat(RNAi) planarians. Moreover, the decrease of the level of ACh induced by Djchat(RNAi) caused extension of the latency time for contraction behavior. Our findings support the possibility that the cholinergic functions of planarians are similar to those of vertebrates, suggesting that planarians are simple but useful model organisms for getting insight into the cholinergic nervous system in higher animals. PMID:20338223

  19. Evolutionary analysis of mitogenomes from parasitic and free-living flatworms.

    PubMed

    Solà, Eduard; Álvarez-Presas, Marta; Frías-López, Cristina; Littlewood, D Timothy J; Rozas, Julio; Riutort, Marta

    2015-01-01

    Mitochondrial genomes (mitogenomes) are useful and relatively accessible sources of molecular data to explore and understand the evolutionary history and relationships of eukaryotic organisms across diverse taxonomic levels. The availability of complete mitogenomes from Platyhelminthes is limited; of the 40 or so published most are from parasitic flatworms (Neodermata). Here, we present the mitogenomes of two free-living flatworms (Tricladida): the complete genome of the freshwater species Crenobia alpina (Planariidae) and a nearly complete genome of the land planarian Obama sp. (Geoplanidae). Moreover, we have reanotated the published mitogenome of the species Dugesia japonica (Dugesiidae). This contribution almost doubles the total number of mtDNAs published for Tricladida, a species-rich group including model organisms and economically important invasive species. We took the opportunity to conduct comparative mitogenomic analyses between available free-living and selected parasitic flatworms in order to gain insights into the putative effect of life cycle on nucleotide composition through mutation and natural selection. Unexpectedly, we did not find any molecular hallmark of a selective relaxation in mitogenomes of parasitic flatworms; on the contrary, three out of the four studied free-living triclad mitogenomes exhibit higher A+T content and selective relaxation levels. Additionally, we provide new and valuable molecular data to develop markers for future phylogenetic studies on planariids and geoplanids. PMID:25793530

  20. Evolutionary Analysis of Mitogenomes from Parasitic and Free-Living Flatworms

    PubMed Central

    Frías-López, Cristina; Littlewood, D. Timothy J.; Rozas, Julio; Riutort, Marta

    2015-01-01

    Mitochondrial genomes (mitogenomes) are useful and relatively accessible sources of molecular data to explore and understand the evolutionary history and relationships of eukaryotic organisms across diverse taxonomic levels. The availability of complete mitogenomes from Platyhelminthes is limited; of the 40 or so published most are from parasitic flatworms (Neodermata). Here, we present the mitogenomes of two free-living flatworms (Tricladida): the complete genome of the freshwater species Crenobia alpina (Planariidae) and a nearly complete genome of the land planarian Obama sp. (Geoplanidae). Moreover, we have reanotated the published mitogenome of the species Dugesia japonica (Dugesiidae). This contribution almost doubles the total number of mtDNAs published for Tricladida, a species-rich group including model organisms and economically important invasive species. We took the opportunity to conduct comparative mitogenomic analyses between available free-living and selected parasitic flatworms in order to gain insights into the putative effect of life cycle on nucleotide composition through mutation and natural selection. Unexpectedly, we did not find any molecular hallmark of a selective relaxation in mitogenomes of parasitic flatworms; on the contrary, three out of the four studied free-living triclad mitogenomes exhibit higher A+T content and selective relaxation levels. Additionally, we provide new and valuable molecular data to develop markers for future phylogenetic studies on planariids and geoplanids. PMID:25793530

  1. Thermosensory signaling by TRPM is processed by brain serotonergic neurons to produce planarian thermotaxis.

    PubMed

    Inoue, Takeshi; Yamashita, Taiga; Agata, Kiyokazu

    2014-11-19

    For most organisms, sensitive recognition of even slight changes in environmental temperature is essential for adjusting their behavioral strategies to ensure homeostasis and survival. However, much remains to be understood about the molecular and cellular processes that regulate thermosensation and the corresponding behavioral responses. Planarians display clear thermotaxis, although they have a relatively simple brain. Here, we devised a quantitative thermotaxis assay and unraveled a neural pathway involved in planarian thermotaxis by combinatory behavioral assays and RNAi analysis. We found that thermosensory neurons that expressed a planarian Dugesia japonica homolog of the Transient Receptor Potential Melastatin family a (DjTRPMa) gene were required for the thermotaxis. Interestingly, although these thermosensory neurons are distributed throughout their body, planarians with a dysfunctional brain due to regeneration-dependent conditional gene knockdown (Readyknock) of the synaptotagmin gene completely lost their thermotactic behavior. These results suggest that brain function is required as a central processor for the thermosensory response. Therefore, we investigated the type(s) of brain neurons involved in processing the thermal signals by gene knockdown of limiting enzymes for neurotransmitter biosynthesis in the brain. We found that serotonergic neurons with dendrites that were elongated toward DjTRPMa-expressing thermosensory neurons might be required for the processing of signals from thermosensory neurons that results in thermotaxis. These results suggest that serotonergic neurons in the brain may interact with thermosensory neurons activated by TRPM ion channels to produce thermotaxis in planarians. PMID:25411498

  2. iTRAQ-Based Quantitative Proteomic Analysis of the Initiation of Head Regeneration in Planarians.

    PubMed

    Geng, Xiaofang; Wang, Gaiping; Qin, Yanli; Zang, Xiayan; Li, Pengfei; Geng, Zhi; Xue, Deming; Dong, Zimei; Ma, Kexue; Chen, Guangwen; Xu, Cunshuan

    2015-01-01

    The planarian Dugesia japonica has amazing ability to regenerate a head from the anterior ends of the amputated stump with maintenance of the original anterior-posterior polarity. Although planarians present an attractive system for molecular investigation of regeneration and research has focused on clarifying the molecular mechanism of regeneration initiation in planarians at transcriptional level, but the initiation mechanism of planarian head regeneration (PHR) remains unclear at the protein level. Here, a global analysis of proteome dynamics during the early stage of PHR was performed using isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics strategy, and our data are available via ProteomeXchange with identifier PXD002100. The results showed that 162 proteins were differentially expressed at 2 h and 6 h following amputation. Furthermore, the analysis of expression patterns and functional enrichment of the differentially expressed proteins showed that proteins involved in muscle contraction, oxidation reduction and protein synthesis were up-regulated in the initiation of PHR. Moreover, ingenuity pathway analysis showed that predominant signaling pathways such as ILK, calcium, EIF2 and mTOR signaling which were associated with cell migration, cell proliferation and protein synthesis were likely to be involved in the initiation of PHR. The results for the first time demonstrated that muscle contraction and ILK signaling might played important roles in the initiation of PHR at the global protein level. The findings of this research provide a molecular basis for further unraveling the mechanism of head regeneration initiation in planarians. PMID:26131905

  3. Planarian myosin essential light chain is involved in the formation of brain lateral branches during regeneration.

    PubMed

    Yu, Shuying; Chen, Xuhui; Yuan, Zuoqing; Zhou, Luming; Pang, Qiuxiang; Mao, Bingyu; Zhao, Bosheng

    2015-08-01

    The myosin essential light chain (ELC) is a structure component of the actomyosin cross-bridge, however, the functions in the central nervous system (CNS) development and regeneration remain poorly understood. Planarian Dugesia japonica has revealed fundamental mechanisms and unique aspects of neuroscience and neuroregeneration. In this study, the cDNA DjElc, encoding a planarian essential light chain of myosin, was identified from the planarian Dugesia japonica cDNA library. It encodes a deduced protein with highly conserved functionally domains EF-Hand and Ca(2+) binding sites that shares significant similarity with other members of ELC. Whole mount in situ hybridization studies show that DjElc expressed in CNS during embryonic development and regeneration of adult planarians. Loss of function of DjElc by RNA interference during planarian regeneration inhibits brain lateral branches regeneration completely. In conclusion, these results demonstrated that DjElc is required for maintenance of neurons and neurite outgrowth, particularly for involving the brain later branch regeneration. PMID:25585662

  4. iTRAQ-Based Quantitative Proteomic Analysis of the Initiation of Head Regeneration in Planarians

    PubMed Central

    Geng, Xiaofang; Wang, Gaiping; Qin, Yanli; Zang, Xiayan; Li, Pengfei; Geng, Zhi; Xue, Deming; Dong, Zimei; Ma, Kexue; Chen, Guangwen; Xu, Cunshuan

    2015-01-01

    The planarian Dugesia japonica has amazing ability to regenerate a head from the anterior ends of the amputated stump with maintenance of the original anterior-posterior polarity. Although planarians present an attractive system for molecular investigation of regeneration and research has focused on clarifying the molecular mechanism of regeneration initiation in planarians at transcriptional level, but the initiation mechanism of planarian head regeneration (PHR) remains unclear at the protein level. Here, a global analysis of proteome dynamics during the early stage of PHR was performed using isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics strategy, and our data are available via ProteomeXchange with identifier PXD002100. The results showed that 162 proteins were differentially expressed at 2 h and 6 h following amputation. Furthermore, the analysis of expression patterns and functional enrichment of the differentially expressed proteins showed that proteins involved in muscle contraction, oxidation reduction and protein synthesis were up-regulated in the initiation of PHR. Moreover, ingenuity pathway analysis showed that predominant signaling pathways such as ILK, calcium, EIF2 and mTOR signaling which were associated with cell migration, cell proliferation and protein synthesis were likely to be involved in the initiation of PHR. The results for the first time demonstrated that muscle contraction and ILK signaling might played important roles in the initiation of PHR at the global protein level. The findings of this research provide a molecular basis for further unraveling the mechanism of head regeneration initiation in planarians. PMID:26131905

  5. Behavioural responses of freshwater planarians after short-term exposure to the insecticide chlorantraniliprole.

    PubMed

    Rodrigues, Andreia C M; Henriques, Jorge F; Domingues, Inês; Golovko, Oksana; Žlábek, Vladimír; Barata, Carlos; Soares, Amadeu M V M; Pestana, João L T

    2016-01-01

    Recent advances in video tracking technologies provide the tools for a sensitive and reproducible analysis of invertebrate activity under stressful conditions nurturing the field of behavioural ecotoxicology. This study aimed to evaluate behavioural responses of the freshwater planarian Dugesia subtentaculata exposed to a model compound, chlorantraniliprole (CAP). This compound is an anthranilic diamide insecticide and due to its neurotoxic action can, at low concentrations, impair behaviour of exposed organisms. Behavioural endpoints measured included feeding and locomotor activities. Feeding responses were based on planarian predatory behaviour using Chironomus riparius larvae as prey. Locomotion was measured by the traditional planarian locomotor velocity (pLMV) assay and additionally using an automated video tracking system using a Zebrabox(®) (Viewpoint, France) device. While feeding and pLMV were significantly impaired at 131.7?g/L CAP, the video tracking system showed that total distance covered by planarians was significantly reduced at concentrations as low as 26.2?g/L CAP. Our results show that more advanced automated video recording systems can be used in the development of sensitive bioassays allowing a reliable, time- and cost-effective quantification of behaviour in aquatic invertebrates. Due to their ecological relevance, behavioural responses should not be disregarded in risk assessment strategies and we advocate the suitability of planarians as suitable organisms for behavioural ecotoxicological studies. PMID:26561438

  6. Regeneration and maintenance of the planarian midline is regulated by a slit orthologue.

    PubMed

    Cebrià, Francesc; Guo, Tingxia; Jopek, Jessica; Newmark, Phillip A

    2007-07-15

    Several families of evolutionarily conserved axon guidance cues orchestrate the precise wiring of the nervous system during embryonic development. The remarkable plasticity of freshwater planarians provides the opportunity to study these molecules in the context of neural regeneration and maintenance. Here we characterize a homologue of the Slit family of guidance cues from the planarian Schmidtea mediterranea. Smed-slit is expressed along the planarian midline, in both dorsal and ventral domains. RNA interference (RNAi) targeting Smed-slit results in the collapse of many newly regenerated tissues at the midline; these include the cephalic ganglia, ventral nerve cords, photoreceptors, and the posterior digestive system. Surprisingly, Smed-slit RNAi knockdown animals also develop morphologically distinguishable, ectopic neural structures near the midline in uninjured regions of intact and regenerating planarians. These results suggest that Smed-slit acts not only as a repulsive cue required for proper midline formation during regeneration but that it may also act to regulate the behavior of neural precursors at the midline in intact planarians. PMID:17553481

  7. Effects of N,N-dimethylformamide on behaviour and regeneration of planarian Dugesia japonica.

    PubMed

    Zhang, Jianyong; Yuan, Zuoqing; Zheng, Mingyue; Sun, Yuqian; Wang, Youjun; Yang, Shudong

    2013-09-01

    In this study, the toxicity, behavioural and regeneration effects of dimethylformamide (DMF) on planarian Dugesia japonica were investigated. One control and six different concentrations of DMF (10 ppm, 100 ppm, 500 ppm, 1000 ppm, 5000 ppm and 10,000 ppm) were used in triplicate. The results showed that the mortality was directly proportional to the DMF concentration and planarian locomotor velocity (pLMV) was significantly reduced by increasing the exposure time and DMF concentration. pLMV of D. japonica was significantly reduced at a lower concentration of 10 ppm after 7 days of continuous exposure to DMF. The recovery of the motility of planarians pretreated with DMF was found to be time- and dose dependent, all planarians had complete recovery in their motility after 48 h. The appearance of auricles in regenerating animals was easily affected by DMF exposure in comparison with the appearance of eyespot. The present results suggest that the intact adult mobility in the aquatic planarian D. japonica is a more sensitive biomarker than mortality, and the appearance of auricles in regenerating animals is a more sensitive biomarker than eyespot. PMID:22495519

  8. Morphological and molecular development of the eyes during embryogenesis of the freshwater planarian Schmidtea polychroa.

    PubMed

    Martín-Durán, José María; Monjo, Francisco; Romero, Rafael

    2012-03-01

    Photoreception is one of the most primitive sensory functions in metazoans. Despite the diversity of forms and components of metazoan eyes, many studies have demonstrated the existence of a common cellular and molecular basis for their development. Genes like pax6, sine oculis, eyes absent, dachshund, otx, Rx and atonal are known to be associated with the specification and development of the eyes. In planarians, sine oculis, eyes absent and otxA play an essential role during the formation of the eye after decapitation, whereas pax6, considered by many authors as a master control gene for eye formation, does not seem to be involved in adult eye regeneration. Whether this is a peculiarity of adult planarians or, on the contrary, is also found in embryogenesis remains unknown. Herein, we characterize embryonic eye development in the planarian species Schmidtea polychroa using histological sections and molecular markers. Additionally, we analyse the expression pattern of the pax6-sine oculis-eyes absent-dachshund network, and the genes Rx, otxA, otxB and atonal. We demonstrate that eye formation in planarian embryos shows great similarities to adult eye regeneration, both at the cellular and molecular level. We thus conclude that planarian eyes exhibit divergent molecular patterning mechanisms compared to the prototypic ancestral metazoan eye. PMID:22327190

  9. EGFR signaling regulates cell proliferation, differentiation and morphogenesis during planarian regeneration and homeostasis.

    PubMed

    Fraguas, Susanna; Barberán, Sara; Cebrià, Francesc

    2011-06-01

    Similarly to development, the process of regeneration requires that cells accurately sense and respond to their external environment. Thus, intrinsic cues must be integrated with signals from the surrounding environment to ensure appropriate temporal and spatial regulation of tissue regeneration. Identifying the signaling pathways that control these events will not only provide insights into a fascinating biological phenomenon but may also yield new molecular targets for use in regenerative medicine. Among classical models to study regeneration, freshwater planarians represent an attractive system in which to investigate the signals that regulate cell proliferation and differentiation, as well as the proper patterning of the structures being regenerated. Recent studies in planarians have begun to define the role of conserved signaling pathways during regeneration. Here, we extend these analyses to the epidermal growth factor (EGF) receptor pathway. We report the characterization of three epidermal growth factor (EGF) receptors in the planarian Schmidtea mediterranea. Silencing of these genes by RNA interference (RNAi) yielded multiple defects in intact and regenerating planarians. Smed-egfr-1(RNAi) resulted in decreased differentiation of eye pigment cells, abnormal pharynx regeneration and maintenance, and the development of dorsal outgrowths. In contrast, Smed-egfr-3(RNAi) animals produced smaller blastemas associated with abnormal differentiation of certain cell types. Our results suggest important roles for the EGFR signaling in controlling cell proliferation, differentiation and morphogenesis during planarian regeneration and homeostasis. PMID:21458439

  10. Land Planarian Assemblages in Protected Areas of the Interior Atlantic Forest: Implications for Conservation

    PubMed Central

    Negrete, Lisandro; Colpo, Karine D.; Brusa, Francisco

    2014-01-01

    Land planarians are an interesting group of free-living flatworms that can be useful as bioindicators because of their high sensitivity to environmental changes and low dispersal capacity. In this study, we describe and compare assemblages of land planarians from areas with different conservation degrees of the Interior Atlantic Forest (Misiones, Argentina), and assess factors that could be related to their abundance and richness. Eight sites were tracked in search of land planarians in Reserva de Vida Silvestre Urugua-í (RVSU) and Campo Anexo Manuel Belgrano (CAMB). Diurnal and nocturnal surveys were performed in each site along nine sampling campaigns. We collected 237 individuals belonging to 18 species of the subfamily Geoplaninae. All sites were dominated by Geoplana sp. 1 and Pasipha hauseri. The richness estimators showed that there would be more species in RVSU than in CAMB. The abundance and richness of land planarians was high during the night and after rainfalls, suggesting an increased activity of flatworms under such conditions. The abundance and richness of land planarians were also related to the conservation condition of the sites. Disturbed sites showed less abundance and richness, and were segregated from non-disturbed ones by nmMDS analysis. Beta diversity between sites was higher than expected, indicating that the species turnover between sites contributed more to the total richness (gamma diversity) than the alpha diversity. PMID:24598934

  11. Egr-5 is a post-mitotic regulator of planarian epidermal differentiation.

    PubMed

    Tu, Kimberly C; Cheng, Li-Chun; Tk Vu, Hanh; Lange, Jeffrey J; McKinney, Sean A; Seidel, Chris W; Sánchez Alvarado, Alejandro

    2015-01-01

    Neoblasts are an abundant, heterogeneous population of adult stem cells (ASCs) that facilitate the maintenance of planarian tissues and organs, providing a powerful system to study ASC self-renewal and differentiation dynamics. It is unknown how the collective output of neoblasts transit through differentiation pathways to produce specific cell types. The planarian epidermis is a simple tissue that undergoes rapid turnover. We found that as epidermal progeny differentiate, they progress through multiple spatiotemporal transition states with distinct gene expression profiles. We also identified a conserved early growth response family transcription factor, egr-5, that is essential for epidermal differentiation. Disruption of epidermal integrity by egr-5 RNAi triggers a global stress response that induces the proliferation of neoblasts and the concomitant expansion of not only epidermal, but also multiple progenitor cell populations. Our results further establish the planarian epidermis as a novel paradigm to uncover the molecular mechanisms regulating ASC specification in vivo. PMID:26457503

  12. Quantitative characterization of planarian wild-type behavior as a platform for screening locomotion phenotypes.

    PubMed

    Talbot, Jared; Schötz, Eva-Maria

    2011-04-01

    Changes in animal behavior resulting from genetic or chemical intervention are frequently used for phenotype characterizations. The majority of these studies are qualitative in nature, especially in systems that go beyond the classical model organisms. Here, we introduce a quantitative method to characterize behavior in the freshwater planarian Schmidtea mediterranea. Wild-type locomotion in confinement was quantified using a wide set of parameters, and the influences of intrinsic intra-worm versus inter-worm variability on our measurements was studied. We also examined the effect of substrate, confinement geometry and the interactions with the boundary on planarian behavior. The method is based on a simple experimental setup, using automated center-of-mass tracking and image analysis, making it an easily implemented alternative to current methods for screening planarian locomotion phenotypes. As a proof of principle, two drug-induced behavioral phenotypes were generated to show the capacity of this method. PMID:21389189

  13. Formaldehyde-based whole-mount in situ hybridization method for planarians.

    PubMed

    Pearson, Bret J; Eisenhoffer, George T; Gurley, Kyle A; Rink, Jochen C; Miller, Diane E; Sánchez Alvarado, Alejandro

    2009-02-01

    Whole-mount in situ hybridization (WISH) is a powerful tool for visualizing gene expression patterns in specific cell and tissue types. Each model organism presents its own unique set of challenges for achieving robust and reproducible staining with cellular resolution. Here, we describe a formaldehyde-based WISH method for the freshwater planarian Schmidtea mediterranea developed by systematically comparing and optimizing techniques for fixation, permeabilization, hybridization, and postprocessing. The new method gives robust, high-resolution labeling in fine anatomical detail, allows co-labeling with fluorescent probes, and is sufficiently sensitive to resolve the expression pattern of a microRNA in planarians. Our WISH methodology not only provides significant advancements over current protocols that make it a valuable asset for the planarian community, but should also find wide applicability in WISH methods used in other systems. PMID:19161223

  14. Beta-catenin defines head versus tail identity during planarian regeneration and homeostasis.

    PubMed

    Gurley, Kyle A; Rink, Jochen C; Sánchez Alvarado, Alejandro

    2008-01-18

    After amputation, freshwater planarians properly regenerate a head or tail from the resulting anterior or posterior wound. The mechanisms that differentiate anterior from posterior and direct the replacement of the appropriate missing body parts are unknown. We found that in the planarian Schmidtea mediterranea, RNA interference (RNAi) of beta-catenin or dishevelled causes the inappropriate regeneration of a head instead of a tail at posterior amputations. Conversely, RNAi of the beta-catenin antagonist adenomatous polyposis coli results in the regeneration of a tail at anterior wounds. In addition, the silencing of beta-catenin is sufficient to transform the tail of uncut adult animals into a head. We suggest that beta-catenin functions as a molecular switch to specify and maintain anteroposterior identity during regeneration and homeostasis in planarians. PMID:18063757

  15. The molecular logic for planarian regeneration along the anterior-posterior axis.

    PubMed

    Umesono, Yoshihiko; Tasaki, Junichi; Nishimura, Yui; Hrouda, Martina; Kawaguchi, Eri; Yazawa, Shigenobu; Nishimura, Osamu; Hosoda, Kazutaka; Inoue, Takeshi; Agata, Kiyokazu

    2013-08-01

    The planarian Dugesia japonica can regenerate a complete individual from a head, trunk or tail fragment via activation of somatic pluripotent stem cells. About a century ago, Thomas Hunt Morgan attempted to explain the extraordinary regenerative ability of planarians by positing two opposing morphogenetic gradients of formative "head stuff" and "tail stuff" along the anterior-posterior axis. However, Morgan's hypothesis remains open to debate. Here we show that extracellular signal-related kinase (ERK) and Wnt/?-catenin signalling pathways establish a solid framework for planarian regeneration. Our data suggest that ERK signalling forms a spatial gradient in the anterior region during regeneration. The fibroblast growth factor receptor-like gene nou-darake (which serves as an output of ERK signalling in the differentiating head) and posteriorly biased ?-catenin activity negatively regulate ERK signalling along the anterior-posterior axis in distinct manners, and thereby posteriorize regenerating tissues outside the head region to reconstruct a complete head-to-tail axis. On the basis of this knowledge about D. japonica, we proposed that ?-catenin signalling is responsible for the lack of head-regenerative ability of tail fragments in the planarian Phagocata kawakatsui, and our confirmation thereof supports the notion that posterior ?-catenin signalling negatively modulates the ERK signalling involved in anteriorization across planarian species. These findings suggest that ERK signalling has a pivotal role in triggering globally dynamic differentiation of stem cells in a head-to-tail sequence through a default program that promotes head tissue specification in the absence of posteriorizing signals. Thus, we have confirmed the broad outline of Morgan's hypothesis, and refined it on the basis of our proposed default property of planarian stem cells. PMID:23883928

  16. Evidence of Nicotine-Induced, Curare-Insensitive, Behavior in Planarians.

    PubMed

    Pagán, Oné R; Montgomery, Erica; Deats, Sean; Bach, Daniel; Baker, Debra

    2015-10-01

    Planarians are rapidly developing into very useful research subjects in pharmacology and neuroscience research. Here we report that curare, a cholinergic nicotinic receptor antagonist, alleviates the nicotine-induced planarian seizure-like movements (pSLM) by up to 50 % at equimolar concentrations of nicotine and curare (1 mM), while curare alone does not induce significant pSLMs. The simplest interpretation of our data is that there are nicotine induced behaviors insensitive to curare in our experimental organism. To the best of our knowledge, this is the first report on curare-insensitive, nicotine-induced effects in any organism. PMID:25614180

  17. Bioelectrical regulation of cell cycle and the planarian model system.

    PubMed

    Barghouth, Paul G; Thiruvalluvan, Manish; Oviedo, Néstor J

    2015-10-01

    Cell cycle regulation through the manipulation of endogenous membrane potentials offers tremendous opportunities to control cellular processes during tissue repair and cancer formation. However, the molecular mechanisms by which biophysical signals modulate the cell cycle remain underappreciated and poorly understood. Cells in complex organisms generate and maintain a constant voltage gradient across the plasma membrane known as the transmembrane potential. This potential, generated through the combined efforts of various ion transporters, pumps and channels, is known to drive a wide range of cellular processes such as cellular proliferation, migration and tissue regeneration while its deregulation can lead to tumorigenesis. These cellular regulatory events, coordinated by ionic flow, correspond to a new and exciting field termed molecular bioelectricity. We aim to present a brief discussion on the biophysical machinery involving membrane potential and the mechanisms mediating cell cycle progression and cancer transformation. Furthermore, we present the planarian Schmidtea mediterranea as a tractable model system for understanding principles behind molecular bioelectricity at both the cellular and organismal level. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers. PMID:25749155

  18. Ammonia excretion in the freshwater planarian Schmidtea mediterranea.

    PubMed

    Weihrauch, Dirk; Chan, Ainsely C; Meyer, Heiko; Döring, Carmen; Sourial, Mary; O'Donnell, Michael J

    2012-09-15

    In aquatic invertebrates, metabolic nitrogenous waste is excreted predominately as ammonia. Very little is known, however, of the underlying mechanisms of ammonia excretion, particularly in freshwater species. Our results indicate that in the non-parasitic freshwater planarian Schmidtea mediterranea, ammonia excretion depends on acidification of the apical unstirred layer of the body surface and consequent ammonia trapping. Buffering of the environment to a pH of 7 or higher decreased the excretion rate. Inhibitor experiments suggested further that the excretion mechanism involves the participation of the V-type H(+)-ATPase and carbonic anhydrase and possibly also the Na(+)/K(+)-ATPase and Na(+)/H(+) exchangers. Alkalinization (pH 8.5, 2 days) of the environment led to a 1.9-fold increase in body ammonia levels and to a downregulation of V-ATPase (subunit A) and Rh-protein mRNA. Further, a 2 day exposure to non-lethal ammonia concentrations (1 mmol l(-1)) caused a doubling of body ammonia levels and led to an increase in Rh-protein and Na(+)/K(+)-ATPase (?-subunit) mRNA expression levels. In situ hybridization studies indicated a strong mRNA expression of the Rh-protein in the epidermal epithelium. The ammonia excretion mechanism proposed for S. mediterranea reveals striking similarities to the current model suggested to function in the gills of freshwater fish. PMID:22660782

  19. Making Heads or Tails: Planarian Stem Cells in the Classroom†

    PubMed Central

    Srougi, Melissa C.; Thomas-Swanik, Jackie; Chan, John D.; Marchant, Jonathan S.; Carson, Susan

    2014-01-01

    Stem cells hold great promise in the treatment of diseases ranging from cancer to dementia. However, as rapidly as the field of stem cell biology has emerged, heated political debate has followed, scrutinizing the ethical implications of stem cell use. It is therefore imperative to promote scientific literacy by educating students about stem cell biology. Yet, there is a definite lack of material to engage students in this subject at the basic science level. Therefore, we have developed and implemented a hands-on introductory laboratory module that introduces students to stem cell biology and can be easily incorporated into existing curricula. Students learn about stem cell biology using an in vivo planarian model system in which they down-regulate two genes important in stem cell differentiation using RNA interference and then observe the regenerative phenotype. The module was piloted at the high school, community college, and university levels. Here, we report that introductory biology students enrolled at a community college were able to demonstrate gains in learning after completion of a one-hour lecture and four 45-minute laboratory sessions over the course of three weeks. These gains in learning outcomes were objectively evaluated both before and after its execution using a student quiz and experimental results. Furthermore, students’ self-assessments revealed increases in perceived knowledge as well as a general interest in stem cells. Therefore, these data suggest that this module is a simple, useful way to engage and to teach students about stem cell biology. PMID:24839511

  20. Nuclear genomic signals of the ‘microturbellarian’ roots of platyhelminth evolutionary innovation

    PubMed Central

    Laumer, Christopher E; Hejnol, Andreas; Giribet, Gonzalo

    2015-01-01

    Flatworms number among the most diverse invertebrate phyla and represent the most biomedically significant branch of the major bilaterian clade Spiralia, but to date, deep evolutionary relationships within this group have been studied using only a single locus (the rRNA operon), leaving the origins of many key clades unclear. In this study, using a survey of genomes and transcriptomes representing all free-living flatworm orders, we provide resolution of platyhelminth interrelationships based on hundreds of nuclear protein-coding genes, exploring phylogenetic signal through concatenation as well as recently developed consensus approaches. These analyses robustly support a modern hypothesis of flatworm phylogeny, one which emphasizes the primacy of the often-overlooked ‘microturbellarian’ groups in understanding the major evolutionary transitions within Platyhelminthes: perhaps most notably, we propose a novel scenario for the interrelationships between free-living and vertebrate-parasitic flatworms, providing new opportunities to shed light on the origins and biological consequences of parasitism in these iconic invertebrates. DOI: http://dx.doi.org/10.7554/eLife.05503.001 PMID:25764302

  1. Discovery of Platyhelminth-Specific ?/?-Integrin Families and Evidence for Their Role in Reproduction in Schistosoma mansoni

    PubMed Central

    Beckmann, Svenja; Quack, Thomas; Dissous, Colette; Cailliau, Katia; Lang, Gabriele; Grevelding, Christoph G.

    2012-01-01

    In all metazoa, the response of cells to molecular stimuli from their environment represents a fundamental principle of regulatory processes controlling cell growth and differentiation. Among the membrane-linked receptors mediating extracellular communication processes are integrin receptors. Besides managing adhesion to the extracellular matrix or to other cells, they arrange information flow into the cells by activating intracellular signaling pathways often acting synergistically through cooperation with growth factor receptors. Although a wealth of information exists on integrins in different model organisms, there is a big gap of knowledge for platyhelminths. Here we report on the in silico detection and reconstruction of ? and ? integrins from free-living and parasitic platyhelminths, which according to structural and phylogenetic analyses form specific clades separate from each other and from further metazoan integrins. As representative orthologs of parasitic platyhelminths we have cloned one beta-integrin (Sm?-Int1) and four alpha-integrins (Sm?-Int1 - Sm?-Int4) from Schistosoma mansoni; they were characterized by molecular and biochemical analyses. Evidence is provided that Sm?-Int1 interacts and co-localizes in the reproductive organs with known schistosome cellular tyrosine kinases (CTKs), of which the Syk kinase SmTK4 appeared to be the strongest interaction partner as shown by yeast two-hybrid analyses and coimmunoprecipitation experiments. By a novel RNAi approach with adult schistosomes in vitro we demonstrate for the first time multinucleated oocytes in treated females, indicating a decisive role Sm?-Int1 during oogenesis as phenotypically analyzed by confocal laser scanning microscopy (CLSM). Our findings provide a first comprehensive overview about platyhelminth integrins, of which the parasite group exhibits unique features allowing a clear distinction from the free-living groups. Furthermore, we shed first lights on the functions of integrins in a trematode model parasite, revealing the complexity of molecular processes involved in its reproductive biology, which may be representative for other platyhelminths. PMID:23300694

  2. Infertility in the hyperplasic ovary of freshwater planarians: the role of programmed cell death.

    PubMed

    Harrath, Abdel Halim; Semlali, Abdelhabib; Mansour, Lamjed; Ahmed, Mukhtar; Sirotkin, Alexander V; Al Omar, Suliman Y; Arfah, Maha; Al Anazi, Mohamed S; Alhazza, Ibrahim M; Nyengaard, Jens R; Alwasel, Saleh

    2014-11-01

    Ex-fissiparous planarians produce infertile cocoons or, in very rare cases, cocoons with very low fertility. Here, we describe the features of programmed cell death (PCD) occurring in the hyperplasic ovary of the ex-fissiparous freshwater planarian Dugesia arabica that may explain this infertility. Based on TEM results, we demonstrate a novel extensive co-clustering of cytoplasmic organelles, such as lysosomes and microtubules, and their fusion with autophagosomes during the early stage of oocyte cell death occurring through an autophagic pattern. During a later stage of cell death, the generation of apoptotic vesicles in the cytoplasm can be observed. The immunohistochemical labeling supports the ultrastructural results because it has been shown that the proapoptotic protein bax was more highly expressed in the hyperplasic ovary than in the normal one, whereas the anti-apoptotic protein bcl2 was slightly more highly expressed in the normal ovary compared to the hyperplasic one. TUNEL analysis of the hyperplasic ovary confirmed that the nuclei of the majority of differentiating oocytes were TUNEL-positive, whereas the nuclei of oogonia and young oocytes were TUNEL-negative; in the normal ovary, oocytes are TUNEL-negative. Considering all of these data, we suggest that the cell death mechanism of differentiating oocytes in the hyperplasic ovary of freshwater planarians is one of the most important factors that cause ex-fissiparous planarian infertility. We propose that autophagy precedes apoptosis during oogenesis, whereas apoptotic features can be observed later. PMID:25107610

  3. Unusually Large Number of Mutations in Asexually Reproducing Clonal Planarian Dugesia japonica.

    PubMed

    Nishimura, Osamu; Hosoda, Kazutaka; Kawaguchi, Eri; Yazawa, Shigenobu; Hayashi, Tetsutaro; Inoue, Takeshi; Umesono, Yoshihiko; Agata, Kiyokazu

    2015-01-01

    We established a laboratory clonal strain of freshwater planarian (Dugesia japonica) that was derived from a single individual and that continued to undergo autotomous asexual reproduction for more than 20 years, and we performed large-scale genome sequencing and transcriptome analysis on it. Despite the fact that a completely clonal strain of the planarian was used, an unusually large number of mutations were detected. To enable quantitative genetic analysis of such a unique organism, we developed a new model called the Reference Gene Model, and used it to conduct large-scale transcriptome analysis. The results revealed large numbers of mutations not only outside but also inside gene-coding regions. Non-synonymous SNPs were detected in 74% of the genes for which valid ORFs were predicted. Interestingly, the high-mutation genes, such as metabolism- and defense-related genes, were correlated with genes that were previously identified as diverse genes among different planarian species. Although a large number of amino acid substitutions were apparently accumulated during asexual reproduction over this long period of time, the planarian maintained normal body-shape, behaviors, and physiological functions. The results of the present study reveal a unique aspect of asexual reproduction. PMID:26588467

  4. Distribution of the stem cells (neoblasts) in the planarian Dugesia japonica.

    PubMed

    Orii, Hidefumi; Sakurai, Takashige; Watanabe, Kenji

    2005-03-01

    It has been postulated that the high regeneration ability of planarians is supported by totipotent stem cells, called neoblasts. There have been a few reports showing the distribution of neoblasts in planarians. However, the findings were not completely consistent. To determine the distribution of neoblasts, we focused on proliferating cell nuclear antigen (PCNA), which is present in proliferative cells. We cloned and sequenced the cDNA of PCNA from the planarian Dugesia japonica and produced an antiserum recognizing the gene product. X-ray irradiation caused rapid loss of all PCNA-positive cells and loss of the neoblasts (which were morphologically defined by the presence of the chromatoid body), strongly suggesting that all PCNA-positive cells were true neoblasts. Using the antiserum, we were successful in identifying the neoblasts more clearly than any previous work. In addition to their dispersed distribution in the dorsal and ventral mesenchyme, the neoblasts were distributed as clusters along the midline and bilateral lines in the dorsal mesenchyme. We also examined the behavior of the neoblasts after decapitation. Decapitation did not seem to affect the migration of neoblasts far from the wound. We demonstrated here that DjPCNA is a powerful tool for identifying planarian neoblasts. PMID:15657737

  5. Reversal of cocaine-induced planarian behavior by parthenolide and related sesquiterpene lactones.

    PubMed

    Pagán, Oné R; Rowlands, Amanda L; Azam, Mahrukh; Urban, Kimberly R; Bidja, Apurva H; Roy, Danielle M; Feeney, Ryan B; Afshari, Lilly K

    2008-04-01

    Here we report the prevention and reversal of cocaine-induced behaviors in planarian worms by parthenolide and two related cyclic sesquiterpene lactones (SL), costunolide and santonin. Using established protocols, we studied two cocaine-induced behavioral effects in planaria; the induction of motility decrease and the induction of C-like hyperkinesia. Cocaine, parthenolide, costunolide, santonin, and a lactone-less cyclic sesquiterpene, beta-eudesmol, decreased planarian motility in a concentration-dependent manner. Only cocaine induced C-like hyperkinesia. At concentrations that did not show any motility decrease, parthenolide, costunolide and santonin, but not beta-eudesmol, significantly reduced the cocaine-induced motility decrease and C-like hyperkinesia, in a concentration-dependent manner. Furthermore, parthenolide, costunolide and santonin were able to rescue planaria from C-like hyperkinesia, after the worms were exposed to cocaine. Conversely, cocaine at a concentration that did not show any measurable effects (10 microM), was able to alleviate the SL-, but not the beta-eudesmol-induced motility decrease. Liquid Chromatography/Mass Spectrometry experiments demonstrated that cocaine does not interact directly with any of the cyclic sesquiterpenoids, which suggests specific biochemical targets for these compounds in planarians. Our data suggests a common binding site for cocaine and the sesquiterpene lactones in planarians. PMID:18222535

  6. Germ layer specification and axial patterning in the embryonic development of the freshwater planarian Schmidtea polychroa.

    PubMed

    Martín-Durán, José María; Amaya, Enrique; Romero, Rafael

    2010-04-01

    Although patterning during regeneration in adult planarians has been studied extensively, very little is known about how the initial planarian body plan arises during embryogenesis. Herein, we analyze the process of embryo patterning in the species Schmidtea polychroa by comparing the expression of genes involved in the establishment of the metazoan body plan. Planarians present a derived ectolecithic spiralian development characterized by dispersed cleavage within a yolk syncytium and an early transient embryo capable of feeding on the maternally supplied yolk cells. During this stage of development, we only found evidence of canonical Wnt pathway, mostly associated with the development of its transient pharynx. At these stages, genes involved in gastrulation (snail) and germ layer determination (foxA and twist) are specifically expressed in migrating blastomeres and those giving rise to the temporary gut and pharyngeal muscle. After yolk ingestion, the embryo expresses core components of the canonical Wnt pathway and the BMP pathway, suggesting that the definitive axial identities are established late. These data support the division of planarian development into two separate morphogenetic stages: a highly divergent gastrulation stage, which segregates the three germ layers and establishes the primary organization of the feeding embryo; and subsequent metamorphosis, based on totipotent blastomeres, which establishes the definitive adult body plan using mechanisms that are similar to those used during regeneration and homeostasis in the adult. PMID:20100474

  7. Memory and obesity affect the population dynamics of asexual freshwater planarians.

    PubMed

    Dunkel, Jörn; Talbot, Jared; Schötz, Eva-Maria

    2011-04-01

    Asexual reproduction in multicellular organisms is a complex biophysical process that is not yet well understood quantitatively. Here, we report a detailed population study for the asexual freshwater planarian Schmidtea mediterranea, which can reproduce via transverse fission due to a large stem cell contingent. Our long-term observations of isolated non-interacting planarian populations reveal that the characteristic fission waiting time distributions for head and tail fragments differ significantly from each other. The stochastic fission dynamics of tail fragments exhibits non-negligible memory effects, implying that an accurate mathematical description of future data should be based on non-Markovian tree models. By comparing the effective growth of non-interacting planarian populations with those of self-interacting populations, we are able to quantify the influence of interactions between flatworms and physical conditions on the population growth. A surprising result is the non-monotonic relationship between effective population growth rate and nutrient supply: planarians exhibit a tendency to become 'obese' if the feeding frequency exceeds a critical level, resulting in a decreased reproduction activity. This suggests that these flatworms, which possess many genes homologous to those of humans, could become a new model system for studying dietary effects on reproduction and regeneration in multicellular organisms. PMID:21263170

  8. Detection and changes in levels of testosterone during spermatogenesis in the freshwater planarian Bdellocephala brunnea.

    PubMed

    Fukushima, Makoto; Funabiki, Ikumi; Hashizume, Tsutomu; Osada, Kyoichi; Yoshida, Wataru; Ishida, Sachiko

    2008-07-01

    It was reported recently that vertebrate-type steroids exist and control reproduction in several groups of invertebrates, including molluscs. Sexually reproductive freshwater planarians of the species Bdellocephala brunnea have a limited breeding season in their natural habitat. This phenomenon suggests that some endogenous reproductive hormones might play a role in vivo. However, to date, sex steroids such as androgen, estrogen, and progesterone have not been found in planarians. The goal of the present study was to determine whether androgen is present in sexual planarians such as B. brunnea. The presence of testosterone was detected by high-pressure liquid chromatography and, in sexually reproductive individuals in which no seminal vesicles were visible, the level of testosterone was about twice than that in individuals with visible seminal vesicles. An enzyme-linked immunosorbent assay revealed that the levels of testosterone during terminal spermatogenesis were three times higher than during the spermatocyte-building phase. Our results indicate that sexually reproductive freshwater planarians such as B. brunnea might have vertebrate-type steroids and show variation in testosterone levels during spermatogenesis. PMID:18828664

  9. Organization of the nervous system in the model planarian Schmidtea mediterranea: an immunocytochemical study.

    PubMed

    Cebrià, Francesc

    2008-08-01

    Freshwater planarians are an emerging model in which to study regeneration at the molecular level. These animals can regenerate a complete central nervous system (CNS) in only a few days. In recent years, hundreds of genes expressed in the nervous system have been identified in two popular planarian species used by several laboratories: Dugesia japonica and Schmidtea mediterranea. Functional analyses of some of those neural genes have allowed the process of CNS regeneration to begin to be elucidated in those animals. However, additional work is required to characterize the different neuronal populations. Thus, the identification or generation of antibodies that act as markers for specific neuronal cell types would be extremely useful not only in obtaining a more detailed characterization of the planarian nervous system but also for the analysis of phenotypes obtained by RNA interference. Here, I have used five different antibodies to describe different neuronal populations in the freshwater planarian S. mediterranea. This study represents a first step in characterizing the organization of the nervous system of this species at the cellular level. PMID:18499291

  10. Unusually Large Number of Mutations in Asexually Reproducing Clonal Planarian Dugesia japonica

    PubMed Central

    Nishimura, Osamu; Hosoda, Kazutaka; Kawaguchi, Eri; Yazawa, Shigenobu; Hayashi, Tetsutaro; Inoue, Takeshi; Umesono, Yoshihiko; Agata, Kiyokazu

    2015-01-01

    We established a laboratory clonal strain of freshwater planarian (Dugesia japonica) that was derived from a single individual and that continued to undergo autotomous asexual reproduction for more than 20 years, and we performed large-scale genome sequencing and transcriptome analysis on it. Despite the fact that a completely clonal strain of the planarian was used, an unusually large number of mutations were detected. To enable quantitative genetic analysis of such a unique organism, we developed a new model called the Reference Gene Model, and used it to conduct large-scale transcriptome analysis. The results revealed large numbers of mutations not only outside but also inside gene-coding regions. Non-synonymous SNPs were detected in 74% of the genes for which valid ORFs were predicted. Interestingly, the high-mutation genes, such as metabolism- and defense-related genes, were correlated with genes that were previously identified as diverse genes among different planarian species. Although a large number of amino acid substitutions were apparently accumulated during asexual reproduction over this long period of time, the planarian maintained normal body-shape, behaviors, and physiological functions. The results of the present study reveal a unique aspect of asexual reproduction. PMID:26588467

  11. Memory and obesity affect the population dynamics of asexual freshwater planarians

    NASA Astrophysics Data System (ADS)

    Dunkel, Jörn; Talbot, Jared; Schötz, Eva-Maria

    2011-04-01

    Asexual reproduction in multicellular organisms is a complex biophysical process that is not yet well understood quantitatively. Here, we report a detailed population study for the asexual freshwater planarian Schmidtea mediterranea, which can reproduce via transverse fission due to a large stem cell contingent. Our long-term observations of isolated non-interacting planarian populations reveal that the characteristic fission waiting time distributions for head and tail fragments differ significantly from each other. The stochastic fission dynamics of tail fragments exhibits non-negligible memory effects, implying that an accurate mathematical description of future data should be based on non-Markovian tree models. By comparing the effective growth of non-interacting planarian populations with those of self-interacting populations, we are able to quantify the influence of interactions between flatworms and physical conditions on the population growth. A surprising result is the non-monotonic relationship between effective population growth rate and nutrient supply: planarians exhibit a tendency to become 'obese' if the feeding frequency exceeds a critical level, resulting in a decreased reproduction activity. This suggests that these flatworms, which possess many genes homologous to those of humans, could become a new model system for studying dietary effects on reproduction and regeneration in multicellular organisms.

  12. A forkhead Transcription Factor Is Wound-Induced at the Planarian Midline and Required for Anterior Pole Regeneration

    E-print Network

    Scimone, M. Lucila

    Planarian regeneration requires positional information to specify the identity of tissues to be replaced as well as pluripotent neoblasts capable of differentiating into new cell types. We found that wounding elicits rapid ...

  13. Protein expression profiling in head fragments during planarian regeneration after amputation.

    PubMed

    Chen, Xiaoguang; Xu, Cunshuan

    2015-04-01

    Following amputation, a planarian tail fragment can regrow into a complete organism including a well-organized brain within about 2-3 weeks, thus restoring the structure and function to presurgical levels. Despite the enormous potential of these animals for regenerative medicine, our understanding of the exact mechanism of planarian regeneration is incomplete. To better understand the molecular nature of planarian head regeneration, we applied two-dimensional electrophoresis (2-DE)/matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF)/time-of-flight mass spectrometry (TOF MS) technique to analyze the dynamic proteomic expression profiles over the course of 6 to 168 h post-decapitation. This approach identified a total of 141 differentially expressed proteins, 47 of which exhibited exceptionally high fold changes (?3-fold change). Of these, Rx protein, an important regulator of head and brain development, was considered to be closely related to planarian head regeneration because of its exceptional high expression almost throughout the time course of regeneration process. Functional annotation analysis classified the 141 proteins into eight categories: (1) signaling, (2) Ca(2+) binding and translocation, (3) transcription and translation, (4) cytoskeleton, (5) metabolism, (6) cell protection, (7) tissue differentiation, and (8) cell cycle. Signaling pathway analysis indicated that Wnt1/Ca(2+) signaling pathway was activated during head regeneration. Integrating the analyses of proteome expression profiling, functional annotation, and signaling pathway, amputation-induced head reformation requires some mechanisms to promote cell proliferation and differentiation, including differential regulation of proapoptotic and antiapoptotic proteins, and the regulation of proliferation and differentiation-related proteins. Importantly, Wnt1/Ca(2+) signaling pathway upregulates Rx expression, finally facilitating the differentiation of neoblasts into various cell types. Taken together, our study demonstrated that proteomic analysis approach used by us is a powerful tool in understanding molecular process related to head regeneration of planarian. PMID:25697422

  14. Withdrawal-like behavior in planarians is dependent on drug exposure duration.

    PubMed

    Sacavage, Steve; Patel, Hiren; Zielinski, Mike; Acker, Jeneane; Phillips, Austin G; Raffa, Robert B; Rawls, Scott M

    2008-07-01

    Planarians display a concentration-related reduction in locomotor activity following their spontaneous withdrawal from opioids, cannabinoids, stimulants and benzodiazepines. This suggests that planarians display a withdrawal-like behavior that can be quantified as a reduction in locomotor activity. Because withdrawal-like behavior in previous studies has been quantified only following the cessation of a 60-min drug exposure, it is unclear whether the withdrawal response varies with drug exposure duration. Therefore, the goal of this study is to determine if the duration of drug exposure (0, 5, 15, 30, 45, 60min and 24h) to three different drugs - methamphetamine, cocaine and caffeine - affects the magnitude of withdrawal-like behavior (i.e., reduced locomotor activity) in planarians. Experiments revealed that methamphetamine (10microM) produced significant withdrawal-like behavior regardless of the exposure time (P<0.05). An exposure time of only 5min resulted in a significant reduction in locomotor activity. The peak effect, although occurring following a 24-h exposure, was only slightly greater than that caused by a 30-min exposure. For cocaine (10microM), a longer exposure time (15min) was required for the manifestation of significant withdrawal-like behavior. The peak cocaine effect was observed following a 24-h exposure. Caffeine (10microM) did not produce significant changes in locomotor activity during withdrawal or alter locomotor activity during acute exposure. The present results suggest that the magnitude of withdrawal-like behavior in planarians is dependent on both the duration and type of drug exposure, and that planarians do not display withdrawal to caffeine. PMID:18511196

  15. Epigenetic regulation of planarian stem cells by the SET1/MLL family of histone methyltransferases.

    PubMed

    Hubert, Amy; Henderson, Jordana M; Ross, Kelly G; Cowles, Martis W; Torres, Jessica; Zayas, Ricardo M

    2013-01-01

    Chromatin regulation is a fundamental mechanism underlying stem cell pluripotency, differentiation, and the establishment of cell type-specific gene expression profiles. To examine the role of chromatin regulation in stem cells in vivo, we study regeneration in the freshwater planarian Schmidtea mediterranea. These animals possess a high concentration of pluripotent stem cells, which are capable of restoring any damaged or lost tissues after injury or amputation. Here, we identify the S. mediterranea homologs of the SET1/MLL family of histone methyltransferases and COMPASS and COMPASS-like complex proteins and investigate their role in stem cell function during regeneration. We identified six S. mediterranea homologs of the SET1/MLL family (set1, mll1/2, trr-1, trr-2, mll5-1 and mll5-2), characterized their patterns of expression in the animal, and examined their function by RNAi. All members of this family are expressed in the stem cell population and differentiated tissues. We show that set1, mll1/2, trr-1, and mll5-2 are required for regeneration and that set1, trr-1 and mll5-2 play roles in the regulation of mitosis. Most notably, knockdown of the planarian set1 homolog leads to stem cell depletion. A subset of planarian homologs of COMPASS and COMPASS-like complex proteins are also expressed in stem cells and implicated in regeneration, but the knockdown phenotypes suggest that some complex members also function in other aspects of planarian biology. This work characterizes the function of the SET1/MLL family in the context of planarian regeneration and provides insight into the role of these enzymes in adult stem cell regulation in vivo. PMID:23235145

  16. Decreased neoblast progeny and increased cell death during starvation-induced planarian degrowth.

    PubMed

    González-Estévez, Cristina; Felix, Daniel A; Rodríguez-Esteban, Gustavo; Aboobaker, A Aziz

    2012-01-01

    The development of a complex multicellular organism requires a careful coordination of growth, cell division, cell differentiation and cell death. All these processes must be under intricate and coordinated control, as they have to be integrated across all tissues. Freshwater planarians are especially plastic, in that they constantly replace somatic tissues from a pool of adult somatic stem cells and continuously undergo growth and degrowth as adult animals in response to nutrient availability. During these processes they appear to maintain perfect scale of tissues and organs. These life history traits make them an ideal model system to study growth and degrowth. We have studied the unique planarian process of degrowth. When food is not available, planarians are able to degrow to a minimum size, without any signs of adverse physiological outcomes. For example they maintain full regenerative capacity. Our current knowledge of how this is regulated at the molecular and cellular level is very limited. Planarian degrowth has been reported to result from a decrease in cell number rather than a decrease in cell size. Thus one obvious explanation for degrowth would be a decrease in stem cell proliferation. However evidence in the literature suggests this is not the case. We show that planarians maintain normal basal mitotic rates during degrowth but that the number of stem cell progeny decreases during starvation and degrowth. These observations are reversed upon feeding, indicating that they are dependent on nutritional status. An increase in cell death is also observed during degrowth, which is not rapidly reversed upon feeding. We conclude that degrowth is a result of cell death decreasing cell numbers and that the dynamics of neoblast self-renewal and differentiation adapt to nutrient conditions to allow maintenance of the neoblast population during the period of starvation. PMID:22252539

  17. Survival, mobility, and membrane-bound enzyme activities of freshwater planarian, Dugesia japonica, exposed to synthetic and natural surfactants.

    PubMed

    Li, Mei-Hui

    2012-04-01

    Surfactants are a major class of emerging pollutants widely used in large quantities in everyday life and commonly found in surface waters worldwide. Freshwater planarian was selected to examine the effects of different surfactants by measuring mortality, mobility, and membrane-bound enzyme activities. Among the 10 surfactants tested, the acute toxicities of betaine and polyethylene glycol (PEG-200) to planarians were relatively low, with a median lethal concentration (LC50) greater than 10,000 mg/L. The toxicity to planarians of the other eight surfactants based on 48-h LC50 could be arranged in the descending order of cetylpyridinum chloride (CPC)?>?4-tert-octylphenol (4-tert-OP)?>?ammonium lauryl sulfate?>?benzalkonium chloride?>?saponin?>?sodium lauroylsarcosinate?>?dioctyl sulfosuccinate?>?dodecyl trimethyl ammonium bromide (DTAB). Both CPC and 4-tert-OP were very toxic to planarians, with 48-h LC50 values <1 mg/L. The median effective concentrations (EC50s) of planarian mobility were in the 0.1 to 50 mg/L range and were in the same range as the 24-h LC50 of planarians exposed to different surfactants, except for DTAB. In addition, significant inhibition of cholinesterase activity activities was found in planarians exposed to 4-tert-OP at 2.5 and 5 mg/L and to saponin at 10 mg/L after 2-h treatments. This result suggests that planarian mobility responses can be used as an alternative indicator for acute toxicity of surfactants after a very short exposure period. PMID:22278771

  18. Knockdown of the coenzyme Q synthesis gene Smed-dlp1 affects planarian regeneration and tissue homeostasis

    PubMed Central

    Shiobara, Yumiko; Harada, Chiaki; Shiota, Takeshi; Sakamoto, Kimitoshi; Kita, Kiyoshi; Tanaka, Saeko; Tabata, Kenta; Sekie, Kiyoteru; Yamamoto, Yorihiro; Sugiyama, Tomoyasu

    2015-01-01

    The freshwater planarian is a model organism used to study tissue regeneration that occupies an important position among multicellular organisms. Planarian genomic databases have led to the identification of genes that are required for regeneration, with implications for their roles in its underlying mechanism. Coenzyme Q (CoQ) is a fundamental lipophilic molecule that is synthesized and expressed in every cell of every organism. Furthermore, CoQ levels affect development, life span, disease and aging in nematodes and mice. Because CoQ can be ingested in food, it has been used in preventive nutrition. In this study, we investigated the role of CoQ in planarian regeneration. Planarians synthesize both CoQ9 and rhodoquinone 9 (RQ9). Knockdown of Smed-dlp1, a trans-prenyltransferase gene that encodes an enzyme that synthesizes the CoQ side chain, led to a decrease in CoQ9 and RQ9 levels. However, ATP levels did not consistently decrease in these animals. Knockdown animals exhibited tissue regression and curling. The number of mitotic cells decreased in Smed-dlp1 (RNAi) animals. These results suggested a failure in physiological cell turnover and stem cell function. Accordingly, regenerating planarians died from lysis or exhibited delayed regeneration. Interestingly, the observed phenotypes were partially rescued by ingesting food supplemented with ?-tocopherol. Taken together, our results suggest that oxidative stress induced by reduced CoQ9 levels affects planarian regeneration and tissue homeostasis. PMID:26516985

  19. Knockdown of the coenzyme Q synthesis gene Smed-dlp1 affects planarian regeneration and tissue homeostasis.

    PubMed

    Shiobara, Yumiko; Harada, Chiaki; Shiota, Takeshi; Sakamoto, Kimitoshi; Kita, Kiyoshi; Tanaka, Saeko; Tabata, Kenta; Sekie, Kiyoteru; Yamamoto, Yorihiro; Sugiyama, Tomoyasu

    2015-12-01

    The freshwater planarian is a model organism used to study tissue regeneration that occupies an important position among multicellular organisms. Planarian genomic databases have led to the identification of genes that are required for regeneration, with implications for their roles in its underlying mechanism. Coenzyme Q (CoQ) is a fundamental lipophilic molecule that is synthesized and expressed in every cell of every organism. Furthermore, CoQ levels affect development, life span, disease and aging in nematodes and mice. Because CoQ can be ingested in food, it has been used in preventive nutrition. In this study, we investigated the role of CoQ in planarian regeneration. Planarians synthesize both CoQ9 and rhodoquinone 9 (RQ9). Knockdown of Smed-dlp1, a trans-prenyltransferase gene that encodes an enzyme that synthesizes the CoQ side chain, led to a decrease in CoQ9 and RQ9 levels. However, ATP levels did not consistently decrease in these animals. Knockdown animals exhibited tissue regression and curling. The number of mitotic cells decreased in Smed-dlp1 (RNAi) animals. These results suggested a failure in physiological cell turnover and stem cell function. Accordingly, regenerating planarians died from lysis or exhibited delayed regeneration. Interestingly, the observed phenotypes were partially rescued by ingesting food supplemented with ?-tocopherol. Taken together, our results suggest that oxidative stress induced by reduced CoQ9 levels affects planarian regeneration and tissue homeostasis. PMID:26516985

  20. Insights into the origin and distribution of biodiversity in the Brazilian Atlantic forest hot spot: a statistical phylogeographic study using a low-dispersal organism

    PubMed Central

    Álvarez-Presas, M; Sánchez-Gracia, A; Carbayo, F; Rozas, J; Riutort, M

    2014-01-01

    The relative importance of the processes that generate and maintain biodiversity is a major and controversial topic in evolutionary biology with large implications for conservation management. The Atlantic Forest of Brazil, one of the world's richest biodiversity hot spots, is severely damaged by human activities. To formulate an efficient conservation policy, a good understanding of spatial and temporal biodiversity patterns and their underlying evolutionary mechanisms is required. With this aim, we performed a comprehensive phylogeographic study using a low-dispersal organism, the land planarian species Cephaloflexa bergi (Platyhelminthes, Tricladida). Analysing multi-locus DNA sequence variation under the Approximate Bayesian Computation framework, we evaluated two scenarios proposed to explain the diversity of Southern Atlantic Forest (SAF) region. We found that most sampled localities harbour high levels of genetic diversity, with lineages sharing common ancestors that predate the Pleistocene. Remarkably, we detected the molecular hallmark of the isolation-by-distance effect and little evidence of a recent colonization of SAF localities; nevertheless, some populations might result from very recent secondary contacts. We conclude that extant SAF biodiversity originated and has been shaped by complex interactions between ancient geological events and more recent evolutionary processes, whereas Pleistocene climate changes had a minor influence in generating present-day diversity. We also demonstrate that land planarians are an advantageous biological model for making phylogeographic and, particularly, fine-scale evolutionary inferences, and propose appropriate conservation policies. PMID:24549112

  1. Insights into the origin and distribution of biodiversity in the Brazilian Atlantic forest hot spot: a statistical phylogeographic study using a low-dispersal organism.

    PubMed

    Álvarez-Presas, M; Sánchez-Gracia, A; Carbayo, F; Rozas, J; Riutort, M

    2014-06-01

    The relative importance of the processes that generate and maintain biodiversity is a major and controversial topic in evolutionary biology with large implications for conservation management. The Atlantic Forest of Brazil, one of the world's richest biodiversity hot spots, is severely damaged by human activities. To formulate an efficient conservation policy, a good understanding of spatial and temporal biodiversity patterns and their underlying evolutionary mechanisms is required. With this aim, we performed a comprehensive phylogeographic study using a low-dispersal organism, the land planarian species Cephaloflexa bergi (Platyhelminthes, Tricladida). Analysing multi-locus DNA sequence variation under the Approximate Bayesian Computation framework, we evaluated two scenarios proposed to explain the diversity of Southern Atlantic Forest (SAF) region. We found that most sampled localities harbour high levels of genetic diversity, with lineages sharing common ancestors that predate the Pleistocene. Remarkably, we detected the molecular hallmark of the isolation-by-distance effect and little evidence of a recent colonization of SAF localities; nevertheless, some populations might result from very recent secondary contacts. We conclude that extant SAF biodiversity originated and has been shaped by complex interactions between ancient geological events and more recent evolutionary processes, whereas Pleistocene climate changes had a minor influence in generating present-day diversity. We also demonstrate that land planarians are an advantageous biological model for making phylogeographic and, particularly, fine-scale evolutionary inferences, and propose appropriate conservation policies. PMID:24549112

  2. Then, in the early fifties, the World Health Organization

    E-print Network

    Alvarado, Alejandro Sánchez

    @helios.rai.umds.ac.uk Quick guide Planarians Alejandro Sánchez Alvarado What are planarians? As any high school student will tell you, planarians are flat, free-living worms, members of the phylum Platyhelminthes (Platy, flat 1). The regenerative prowess of planarians has been known for centuries: Dalyell wrote in 1814

  3. Planarians as a model to assess in vivo the role of matrix metalloproteinase genes during homeostasis and regeneration.

    PubMed

    Isolani, Maria Emilia; Abril, Josep F; Saló, Emili; Deri, Paolo; Bianucci, Anna Maria; Batistoni, Renata

    2013-01-01

    Matrix metalloproteinases (MMPs) are major executors of extracellular matrix remodeling and, consequently, play key roles in the response of cells to their microenvironment. The experimentally accessible stem cell population and the robust regenerative capabilities of planarians offer an ideal model to study how modulation of the proteolytic system in the extracellular environment affects cell behavior in vivo. Genome-wide identification of Schmidtea mediterranea MMPs reveals that planarians possess four mmp-like genes. Two of them (mmp1 and mmp2) are strongly expressed in a subset of secretory cells and encode putative matrilysins. The other genes (mt-mmpA and mt-mmpB) are widely expressed in postmitotic cells and appear structurally related to membrane-type MMPs. These genes are conserved in the planarian Dugesia japonica. Here we explore the role of the planarian mmp genes by RNA interference (RNAi) during tissue homeostasis and regeneration. Our analyses identify essential functions for two of them. Following inhibition of mmp1 planarians display dramatic disruption of tissues architecture and significant decrease in cell death. These results suggest that mmp1 controls tissue turnover, modulating survival of postmitotic cells. Unexpectedly, the ability to regenerate is unaffected by mmp1(RNAi). Silencing of mt-mmpA alters tissue integrity and delays blastema growth, without affecting proliferation of stem cells. Our data support the possibility that the activity of this protease modulates cell migration and regulates anoikis, with a consequent pivotal role in tissue homeostasis and regeneration. Our data provide evidence of the involvement of specific MMPs in tissue homeostasis and regeneration and demonstrate that the behavior of planarian stem cells is critically dependent on the microenvironment surrounding these cells. Studying MMPs function in the planarian model provides evidence on how individual proteases work in vivo in adult tissues. These results have high potential to generate significant information for development of regenerative and anti cancer therapies. PMID:23405188

  4. teashirt is required for head-versus-tail regeneration polarity in planarians.

    PubMed

    Owen, Jared H; Wagner, Daniel E; Chen, Chun-Chieh; Petersen, Christian P; Reddien, Peter W

    2015-03-15

    Regeneration requires that the identities of new cells are properly specified to replace missing tissues. The Wnt signaling pathway serves a central role in specifying posterior cell fates during planarian regeneration. We identified a gene encoding a homolog of the Teashirt family of zinc-finger proteins in the planarian Schmidtea mediterranea to be a target of Wnt signaling in intact animals and at posterior-facing wounds. Inhibition of Smed-teashirt (teashirt) by RNA interference (RNAi) resulted in the regeneration of heads in place of tails, a phenotype previously observed with RNAi of the Wnt pathway genes ?-catenin-1, wnt1, Dvl-1/2 or wntless. teashirt was required for ?-catenin-1-dependent activation of posterior genes during regeneration. These findings identify teashirt as a transcriptional target of Wnt signaling required for Wnt-mediated specification of posterior blastemas. PMID:25725068

  5. Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment.

    PubMed

    van Wolfswinkel, Josien C; Wagner, Daniel E; Reddien, Peter W

    2014-09-01

    Planarians are flatworms capable of regenerating any missing body region. This capacity is mediated by neoblasts, a proliferative cell population that contains pluripotent stem cells. Although population-based studies have revealed many neoblast characteristics, whether functionally distinct classes exist within this population is unclear. Here, we used high-dimensional single-cell transcriptional profiling from over a thousand individual neoblasts to directly compare gene expression fingerprints during homeostasis and regeneration. We identified two prominent neoblast classes that we named ? (zeta) and ? (sigma). Zeta-neoblasts encompass specified cells that give rise to an abundant postmitotic lineage, including epidermal cells, and are not required for regeneration. By contrast, sigma-neoblasts proliferate in response to injury, possess broad lineage capacity, and can give rise to zeta-neoblasts. These findings indicate that planarian neoblasts comprise two major and functionally distinct cellular compartments. PMID:25017721

  6. teashirt is required for head-versus-tail regeneration polarity in planarians

    PubMed Central

    Owen, Jared H.; Wagner, Daniel E.; Chen, Chun-Chieh; Petersen, Christian P.; Reddien, Peter W.

    2015-01-01

    Regeneration requires that the identities of new cells are properly specified to replace missing tissues. The Wnt signaling pathway serves a central role in specifying posterior cell fates during planarian regeneration. We identified a gene encoding a homolog of the Teashirt family of zinc-finger proteins in the planarian Schmidtea mediterranea to be a target of Wnt signaling in intact animals and at posterior-facing wounds. Inhibition of Smed-teashirt (teashirt) by RNA interference (RNAi) resulted in the regeneration of heads in place of tails, a phenotype previously observed with RNAi of the Wnt pathway genes ?-catenin-1, wnt1, Dvl-1/2 or wntless. teashirt was required for ?-catenin-1-dependent activation of posterior genes during regeneration. These findings identify teashirt as a transcriptional target of Wnt signaling required for Wnt-mediated specification of posterior blastemas. PMID:25725068

  7. ?-Catenin Defines Head Versus Tail Identity During Planarian Regeneration and Homeostasis

    PubMed Central

    Gurley, Kyle A.; Rink, Jochen C.; Alvarado, Alejandro Sánchez

    2009-01-01

    Following amputation, freshwater planarians properly regenerate a head or tail from the resulting anterior or posterior wound. The mechanisms that differentiate anterior from posterior and direct the replacement of the appropriate missing body parts are unknown. Here we report that RNA interference (RNAi) of ?-catenin or dishevelled causes the inappropriate regeneration of a head instead of a tail at posterior amputations. Conversely, RNAi of the ?-catenin antagonist adenomatous polyposis coli (APC) results in the regeneration of a tail at anterior wounds. In addition, the silencing of ?-catenin is sufficient to transform the tail of uncut adult animals into a head. We suggest that ?-catenin functions as a molecular switch to specify and maintain anteroposterior (A/P) identity during regeneration and homeostasis in planarians. PMID:18063757

  8. Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment

    PubMed Central

    van Wolfswinkel, Josien C.; Wagner, Daniel E.; Reddien, Peter W.

    2014-01-01

    Planarians are flatworms capable of regenerating any missing body region. This capacity is mediated by neoblasts, a proliferative cell population that contains pluripotent stem cells. Although population-based studies have revealed many neoblast characteristics, whether functionally distinct classes exist within this population is unclear. Here, we used high-dimensional single-cell transcriptional profiling from over a thousand individual neoblasts to directly compare gene expression fingerprints during homeostasis and regeneration. We identified two prominent neoblast classes that we named ? (zeta) and ? (sigma). Zeta-neoblasts encompass specified cells that give rise to an abundant postmitotic lineage including epidermal cells, and are not required for regeneration. By contrast, sigma-neoblasts proliferate in response to injury, possess broad lineage capacity, and can give rise to zeta-neoblasts. These findings present a new view of planarian neoblasts, in which the population is comprised of two major and functionally distinct cellular compartments. PMID:25017721

  9. The More the Merrier?. Entropy and Statistics of Asexual Reproduction in Freshwater Planarians

    NASA Astrophysics Data System (ADS)

    Quinodoz, Sofia; Thomas, Michael A.; Dunkel, Jörn; Schötz, Eva-Maria

    2011-04-01

    The trade-off between traits in life-history strategies has been widely studied for sexual and parthenogenetic organisms, but relatively little is known about the reproduction strategies of asexual animals. Here, we investigate clonal reproduction in the freshwater planarian Schmidtea mediterranea, an important model organism for regeneration and stem cell research. We find that these flatworms adopt a randomized reproduction strategy that comprises both asymmetric binary fission and fragmentation (generation of multiple offspring during a reproduction cycle). Fragmentation in planarians has primarily been regarded as an abnormal behavior in the past; using a large-scale experimental approach, we now show that about one third of the reproduction events in S. mediterranea are fragmentations, implying that fragmentation is part of their normal reproductive behavior. Our analysis further suggests that certain characteristic aspects of the reproduction statistics can be explained in terms of a maximum relative entropy principle.

  10. A taste for exotic food: Neotropical land planarians feeding on an invasive flatworm.

    PubMed

    Boll, Piter K; Rossi, Ilana; Amaral, Silvana V; Leal-Zanchet, Ana

    2015-01-01

    Invasive species establish successfully in new habitats especially due to their ability to include new species in their diet and due to the freedom from natural enemies. However, native species may also adapt to the use of new elements in their ecosystem. The planarian Endeavouria septemlineata, first recorded in Hawaii, was later found in Brazil. Recently, we found it in human-disturbed areas in southern Brazil and here we investigate its interactions with other invertebrates both in the field and in the laboratory. We observed the species in the field during collecting activities and hence maintained some specimens alive in small terraria in the laboratory, where we offered different invertebrate species as potential prey and also put them in contact with native land planarians in order to examine their interaction. Both in the field and in the laboratory, E. septemlineata showed a gregarious behavior and was found feeding on woodlice, millipedes, earwigs and gastropods. In the laboratory, specimens often did not attack live prey, but immediately approached dead specimens, indicating a scavenging behavior. In an experiment using the slug Deroceras laeve and the woodlouse Atlantoscia floridana, there was a higher consumption of dead specimens of woodlice and slugs compared to live specimens, as well as a higher consumption of dead woodlice over dead slugs. Four native land planarians of the genus Obama and one of the genus Paraba attacked and consumed E. septemlineata, which, after the beginning of the attack, tried to escape by tumbling or using autotomy. As a scavenger, E. septemlineata would have no impact on the populations of species used as food, but could possibly exclude native scavengers by competition. On the other hand, its consumption by native land planarians may control its spread and thus reduce its impact on the ecosystem. PMID:26500817

  11. A taste for exotic food: Neotropical land planarians feeding on an invasive flatworm

    PubMed Central

    Boll, Piter K.; Rossi, Ilana; Amaral, Silvana V.

    2015-01-01

    Invasive species establish successfully in new habitats especially due to their ability to include new species in their diet and due to the freedom from natural enemies. However, native species may also adapt to the use of new elements in their ecosystem. The planarian Endeavouria septemlineata, first recorded in Hawaii, was later found in Brazil. Recently, we found it in human-disturbed areas in southern Brazil and here we investigate its interactions with other invertebrates both in the field and in the laboratory. We observed the species in the field during collecting activities and hence maintained some specimens alive in small terraria in the laboratory, where we offered different invertebrate species as potential prey and also put them in contact with native land planarians in order to examine their interaction. Both in the field and in the laboratory, E. septemlineata showed a gregarious behavior and was found feeding on woodlice, millipedes, earwigs and gastropods. In the laboratory, specimens often did not attack live prey, but immediately approached dead specimens, indicating a scavenging behavior. In an experiment using the slug Deroceras laeve and the woodlouse Atlantoscia floridana, there was a higher consumption of dead specimens of woodlice and slugs compared to live specimens, as well as a higher consumption of dead woodlice over dead slugs. Four native land planarians of the genus Obama and one of the genus Paraba attacked and consumed E. septemlineata, which, after the beginning of the attack, tried to escape by tumbling or using autotomy. As a scavenger, E. septemlineata would have no impact on the populations of species used as food, but could possibly exclude native scavengers by competition. On the other hand, its consumption by native land planarians may control its spread and thus reduce its impact on the ecosystem. PMID:26500817

  12. Two distinct roles of the yorkie/yap gene during homeostasis in the planarian Dugesia japonica.

    PubMed

    Hwang, Byulnim; An, Yang; Agata, Kiyokazu; Umesono, Yoshihiko

    2015-04-01

    Adult planarians possess somatic pluripotent stem cells called neoblasts that give rise to all missing cell types during regeneration and homeostasis. Recent studies revealed that the Yorkie (Yki)/Yes-associated protein (YAP) transcriptional coactivator family plays an important role in the regulation of tissue growth during development and regeneration, and therefore we investigated the role of a planarian yki-related gene (termed Djyki) during regeneration and homeostasis of the freshwater planarian Dugesia japonica. We found that knockdown of the function of Djyki by RNA interference (RNAi) downregulated neoblast proliferation and caused regeneration defects after amputation. In addition, Djyki RNAi caused edema during homeostasis. These seemingly distinct defects induced by Djyki RNAi were rescued by simultaneous RNAi of a planarian mats-related gene (termed Djmats), suggesting an important role of Djmats in the negative regulation of Djyki, in accordance with the conservation of the functional relationship of these two genes during the course of evolution. Interestingly, Djyki RNAi did not prevent normal protonephridial structure, suggesting that Djyki RNAi induced the edema phenotype without affecting the excretory system. Further analyses revealed that increased expression of the D. japonica gene DjaquaporinA (DjaqpA), which belongs to a large gene family that encodes a water channel protein for the regulation of transcellular water flow, promoted the induction of edema, but not defects in neoblast dynamics, in Djyki(RNAi) animals. Thus, we conclude that Djyki plays two distinct roles in the regulation of active proliferation of stem cells and in osmotic water transport across the body surface in D. japonica. PMID:25708270

  13. [Effects of weak magnetic fields on different phases of planarian regeneration].

    PubMed

    Tiras, Kh P; Petrova, O N; Miakisheva, S N; Popova, S S; Aslanidi, K B

    2015-01-01

    We analyzed the effects of weak combined magnetic fields, tuned to the cyclotron resonance condition for calcium ions, obtained in different phases of planarian regeneration. We showed that the result of regeneration in 72 hours after decapitation depends on the length of exposure, and the time between decapitation and initiation of a half-hour exposure. The experimental dependence can be explained by a multiplicity of enzymatic targets activated in different phases of the regeneration process. PMID:25868354

  14. The planarian P2X homolog in the regulation of asexual reproduction.

    PubMed

    Sakurai, Toshihide; Lee, Hayoung; Kashima, Makoto; Saito, Yumi; Hayashi, Tetsutaro; Kudome-Takamatsu, Tomomi; Nishimura, Osamu; Agata, Kiyokazu; Shibata, Norito

    2012-01-01

    The growth in size of freshwater planarians in response to nutrient intake is limited by the eventual separation of tail and body fragments in a process called fission. The resulting tail fragment regenerates the entire body as an artificially amputated tail fragment would do, and the body fragment regenerates a tail, resulting in two whole planarians. This regenerative ability is supported by pluripotent somatic stem cells, called neoblasts, which are distributed throughout almost the entire body of the planarian. Neoblasts are the only planarian cells with the ability to continuously proliferate and give rise to all types of cells during regeneration, asexual reproduction, homeostasis, and growth. In order to investigate the molecular characteristics of neoblasts, we conducted an extensive search for neoblast-specific genes using the High Coverage Expression Profiling (HiCEP) method, and tested the function of the resulting candidates by RNAi. Disruption of the expression of one candidate gene, DjP2X-A (Dugesia japonica membrane protein P2X homologue), resulted in a unique phenotype. DjP2X-A RNAi leads to an increase of fission events upon feeding. We confirmed by immunohistochemistry that DjP2X-A is a membrane protein, and elucidated its role in regulating neoblast proliferation, thereby explaining its unique phenotype. We found that DjP2X-A decreases the burst of neoblast proliferation that normally occurs after feeding. We also found that DjP2X-A is required for normal proliferation in starved animals. We propose that DjP2X-A modulates stem cell proliferation in response to the nutritional condition. PMID:22451005

  15. The use of planarians as in vivo animal model to study laser biomodulation effects

    NASA Astrophysics Data System (ADS)

    Munin, Egberto; Garcia, Neila Maria Rocha; Braz, Allison Gustavo; de Souza, Sandra Cristina; Alves, Leandro Procópio; Salgado, Miguel Angel Castillo; Pilla, Viviane

    2007-02-01

    A variety of effects is attributed to the photo stimulation of tissues, such as improved healing of ulcers, analgesic and anti-inflammatory effects, stimulation of the proliferation of cells of different origins and stimulation of bone repair. Some investigations that make qualitative evaluations, like wound healing and evaluation of pain and edema, can be conducted in human subjects. However, deeper investigations on the mechanisms of action of the light stimulus and other quantitative works that requires biopsies or destructive analysis has to be carried out in animal models or in cell cultures. In this work, we propose the use of planarians as a model to study laser-tissue interaction. Contrasting with cell cultures and unicellular organisms, planarians are among the simplest organism having tissue layers, central nerve system, digestive and excretory system that might have been platforms for the evolution of the complex and highly organized tissues and organs found in higher organisms. For the present study, 685 nm laser radiation was employed. Planarians were cut transversally, in a plane posterior to the auricles. The body fragments were left to regenerate and the proliferation dynamics of stem cells was studied by using histological analysis. Maximum cell count was obtained for the laser treated group at the 4 th experimental day. At that experimental time, we also had the largest difference between the irradiated and the non-irradiated control group. We concluded that the studied flatworm could be an interesting animal model for in vivo studies of laser-tissue interactions.

  16. Tryptophan hydroxylase Is Required for Eye Melanogenesis in the Planarian Schmidtea mediterranea.

    PubMed

    Lambrus, Bramwell G; Cochet-Escartin, Olivier; Gao, Jiarong; Newmark, Phillip A; Collins, Eva-Maria S; Collins, James J

    2015-01-01

    Melanins are ubiquitous and biologically important pigments, yet the molecular mechanisms that regulate their synthesis and biochemical composition are not fully understood. Here we present a study that supports a role for serotonin in melanin synthesis in the planarian Schmidtea mediterranea. We characterize the tryptophan hydroxylase (tph) gene, which encodes the rate-limiting enzyme in serotonin synthesis, and demonstrate by RNA interference that tph is essential for melanin production in the pigment cups of the planarian photoreceptors. We exploit this phenotype to investigate the biological function of pigment cups using a quantitative light-avoidance behavioral assay. Planarians lacking eye pigment remain phototactic, indicating that eye pigmentation is not essential for light avoidance in S. mediterranea, though it improves the efficiency of the photophobic response. Finally, we show that the eye pigmentation defect observed in tph knockdown animals can be rescued by injection of either the product of TPH, 5-hydroxytryptophan (5-HTP), or serotonin. Together, these results highlight a role for serotonin in melanogenesis, perhaps as a regulatory signal or as a pigment substrate. To our knowledge, this is the first example of this relationship to be reported outside of mammalian systems. PMID:26017970

  17. Tryptophan hydroxylase Is Required for Eye Melanogenesis in the Planarian Schmidtea mediterranea

    PubMed Central

    Lambrus, Bramwell G.; Cochet-Escartin, Olivier; Gao, Jiarong; Newmark, Phillip A.; Collins, Eva-Maria S.; Collins, James J.

    2015-01-01

    Melanins are ubiquitous and biologically important pigments, yet the molecular mechanisms that regulate their synthesis and biochemical composition are not fully understood. Here we present a study that supports a role for serotonin in melanin synthesis in the planarian Schmidtea mediterranea. We characterize the tryptophan hydroxylase (tph) gene, which encodes the rate-limiting enzyme in serotonin synthesis, and demonstrate by RNA interference that tph is essential for melanin production in the pigment cups of the planarian photoreceptors. We exploit this phenotype to investigate the biological function of pigment cups using a quantitative light-avoidance behavioral assay. Planarians lacking eye pigment remain phototactic, indicating that eye pigmentation is not essential for light avoidance in S. mediterranea, though it improves the efficiency of the photophobic response. Finally, we show that the eye pigmentation defect observed in tph knockdown animals can be rescued by injection of either the product of TPH, 5-hydroxytryptophan (5-HTP), or serotonin. Together, these results highlight a role for serotonin in melanogenesis, perhaps as a regulatory signal or as a pigment substrate. To our knowledge, this is the first example of this relationship to be reported outside of mammalian systems. PMID:26017970

  18. Guarana provides additional stimulation over caffeine alone in the planarian model.

    PubMed

    Moustakas, Dimitrios; Mezzio, Michael; Rodriguez, Branden R; Constable, Mic Andre; Mulligan, Margaret E; Voura, Evelyn B

    2015-01-01

    The stimulant effect of energy drinks is primarily attributed to the caffeine they contain. Many energy drinks also contain other ingredients that might enhance the tonic effects of these caffeinated beverages. One of these additives is guarana. Guarana is a climbing plant native to the Amazon whose seeds contain approximately four times the amount of caffeine found in coffee beans. The mix of other natural chemicals contained in guarana seeds is thought to heighten the stimulant effects of guarana over caffeine alone. Yet, despite the growing use of guarana as an additive in energy drinks, and a burgeoning market for it as a nutritional supplement, the science examining guarana and how it affects other dietary ingredients is lacking. To appreciate the stimulant effects of guarana and other natural products, a straightforward model to investigate their physiological properties is needed. The planarian provides such a system. The locomotor activity and convulsive response of planarians with substance exposure has been shown to provide an excellent system to measure the effects of drug stimulation, addiction and withdrawal. To gauge the stimulant effects of guarana we studied how it altered the locomotor activity of the planarian species Dugesia tigrina. We report evidence that guarana seeds provide additional stimulation over caffeine alone, and document the changes to this stimulation in the context of both caffeine and glucose. PMID:25880065

  19. Guarana Provides Additional Stimulation over Caffeine Alone in the Planarian Model

    PubMed Central

    Moustakas, Dimitrios; Mezzio, Michael; Rodriguez, Branden R.; Constable, Mic Andre; Mulligan, Margaret E.; Voura, Evelyn B.

    2015-01-01

    The stimulant effect of energy drinks is primarily attributed to the caffeine they contain. Many energy drinks also contain other ingredients that might enhance the tonic effects of these caffeinated beverages. One of these additives is guarana. Guarana is a climbing plant native to the Amazon whose seeds contain approximately four times the amount of caffeine found in coffee beans. The mix of other natural chemicals contained in guarana seeds is thought to heighten the stimulant effects of guarana over caffeine alone. Yet, despite the growing use of guarana as an additive in energy drinks, and a burgeoning market for it as a nutritional supplement, the science examining guarana and how it affects other dietary ingredients is lacking. To appreciate the stimulant effects of guarana and other natural products, a straightforward model to investigate their physiological properties is needed. The planarian provides such a system. The locomotor activity and convulsive response of planarians with substance exposure has been shown to provide an excellent system to measure the effects of drug stimulation, addiction and withdrawal. To gauge the stimulant effects of guarana we studied how it altered the locomotor activity of the planarian species Dugesia tigrina. We report evidence that guarana seeds provide additional stimulation over caffeine alone, and document the changes to this stimulation in the context of both caffeine and glucose. PMID:25880065

  20. A Comparative Transcriptomic Analysis Reveals Conserved Features of Stem Cell Pluripotency in Planarians and Mammals

    PubMed Central

    Labbé, Roselyne M.; Irimia, Manuel; Currie, Ko W.; Lin, Alexander; Zhu, Shu Jun; Brown, David D.R.; Ross, Eric J.; Voisin, Veronique; Bader, Gary D.; Blencowe, Benjamin J.; Pearson, Bret J.

    2014-01-01

    Many long-lived species of animals require the function of adult stem cells throughout their lives. However, the transcriptomes of stem cells in invertebrates and vertebrates have not been compared, and consequently, ancestral regulatory circuits that control stem cell populations remain poorly defined. In this study, we have used data from high-throughput RNA sequencing to compare the transcriptomes of pluripotent adult stem cells from planarians with the transcriptomes of human and mouse pluripotent embryonic stem cells. From a stringently defined set of 4,432 orthologs shared between planarians, mice and humans, we identified 123 conserved genes that are ?5-fold differentially expressed in stem cells from all three species. Guided by this gene set, we used RNAi screening in adult planarians to discover novel stem cell regulators, which we found to affect the stem cell-associated functions of tissue homeostasis, regeneration, and stem cell maintenance. Examples of genes that disrupted these processes included the orthologs of TBL3, PSD12, TTC27, and RACK1. From these analyses, we concluded that by comparing stem cell transcriptomes from diverse species, it is possible to uncover conserved factors that function in stem cell biology. These results provide insights into which genes comprised the ancestral circuitry underlying the control of stem cell self-renewal and pluripotency. PMID:22696458

  1. PIWI homologs mediate histone H4 mRNA localization to planarian chromatoid bodies.

    PubMed

    Rouhana, Labib; Weiss, Jennifer A; King, Ryan S; Newmark, Phillip A

    2014-07-01

    The well-known regenerative abilities of planarian flatworms are attributed to a population of adult stem cells called neoblasts that proliferate and differentiate to produce all cell types. A characteristic feature of neoblasts is the presence of large cytoplasmic ribonucleoprotein granules named chromatoid bodies, the function of which has remained largely elusive. This study shows that histone mRNAs are a common component of chromatoid bodies. Our experiments also demonstrate that accumulation of histone mRNAs, which is typically restricted to the S phase of eukaryotic cells, is extended during the cell cycle of neoblasts. The planarian PIWI homologs SMEDWI-1 and SMEDWI-3 are required for proper localization of germinal histone H4 (gH4) mRNA to chromatoid bodies. The association between histone mRNA and chromatoid body components extends beyond gH4 mRNA, since transcripts of other core histone genes were also found in these structures. Additionally, piRNAs corresponding to loci of every core histone type have been identified. Altogether, this work provides evidence that links PIWI proteins and chromatoid bodies to histone mRNA regulation in planarian stem cells. The molecular similarities between neoblasts and undifferentiated cells of other organisms raise the possibility that PIWI proteins might also regulate histone mRNAs in stem cells and germ cells of other metazoans. PMID:24903754

  2. Gap junction proteins: master regulators of the planarian stem cell response to tissue maintenance and injury.

    PubMed

    Peiris, T Harshani; Oviedo, Néstor J

    2013-01-01

    Gap junction (GJ) proteins are crucial mediators of cell-cell communication during embryogenesis, tissue regeneration and disease. GJ proteins form plasma membrane channels that facilitate passage of small molecules across cells and modulate signaling pathways and cellular behavior in different tissues. These properties have been conserved throughout evolution, and in most invertebrates GJ proteins are known as innexins. Despite their critical relevance for physiology and disease, the mechanisms by which GJ proteins modulate cell behavior are poorly understood. This review summarizes findings from recent work that uses planarian flatworms as a paradigm to analyze GJ proteins in the complexity of the whole organism. The planarian model allows access to a large pool of adult somatic stem cells (known as neoblasts) that support physiological cell turnover and tissue regeneration. Innexin proteins are present in planarians and play a fundamental role in controlling neoblast behavior. We discuss the possibility that GJ proteins participate as cellular sensors that inform neoblasts about local and systemic physiological demands. We believe that functional analyses of GJ proteins will bring a complementary perspective to studies that focus on the temporal expression of genes. Finally, integrating functional studies along with molecular genetics and epigenetic approaches would expand our understanding of cellular regulation in vivo and greatly enhance the possibilities for rationally modulating stem cell behavior in their natural environment. This article is part of a Special Issue entitled: The communicating junctions, roles and dysfunctions. PMID:22450236

  3. Topiramate antagonizes NMDA- and AMPA-induced seizure-like activity in planarians.

    PubMed

    Rawls, Scott M; Thomas, Timmy; Adeola, Mobilaji; Patil, Tanvi; Raymondi, Natalie; Poles, Asha; Loo, Michael; Raffa, Robert B

    2009-10-01

    The mechanism of anticonvulsant action of topiramate includes inhibition of glutamate-activated ion channels. The evidence is most convincing for direct inhibitory action at the ionotropic AMPA (alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid) and kainate ((2S,3S,4S)-3-(Carboxymethyl)-4-prop-1-en-2-ylpyrrolidine-2-carboxylic acid) glutamate receptor subtypes. Less direct connection has been made to the NMDA (N-Methyl-d-aspartate) subtype. In the present study, we demonstrate that NMDA and AMPA produce concentration-dependent seizure-like activity in planarians, a type of flatworm which possesses mammalian-like neurotransmitters. In contrast, planarians exposed to the inhibitory amino acid, glycine, did not display pSLA. For combination experiments, topiramate significantly reduced planarian seizure-like activity (pSLA) produced by NMDA or AMPA. Additionally, NMDA-induced pSLA was antagonized by either an NMDA receptor antagonist (MK-801) or AMPA receptor antagonist (DNQX), thus suggesting that NMDA-induced pSLA was mediated by NMDA and non-NMDA receptors. The present results provide pharmacologic evidence of a functional inhibitory action of topiramate on glutamate receptor activity in invertebrates and provide a sensitive, quantifiable end-point for studying anti-seizure pharmacology. PMID:19447129

  4. PIWI homologs mediate Histone H4 mRNA localization to planarian chromatoid bodies

    PubMed Central

    Rouhana, Labib; Weiss, Jennifer A.; King, Ryan S.; Newmark, Phillip A.

    2014-01-01

    The well-known regenerative abilities of planarian flatworms are attributed to a population of adult stem cells called neoblasts that proliferate and differentiate to produce all cell types. A characteristic feature of neoblasts is the presence of large cytoplasmic ribonucleoprotein granules named chromatoid bodies, the function of which has remained largely elusive. This study shows that histone mRNAs are a common component of chromatoid bodies. Our experiments also demonstrate that accumulation of histone mRNAs, which is typically restricted to the S phase of eukaryotic cells, is extended during the cell cycle of neoblasts. The planarian PIWI homologs SMEDWI-1 and SMEDWI-3 are required for proper localization of germinal histone H4 (gH4) mRNA to chromatoid bodies. The association between histone mRNA and chromatoid body components extends beyond gH4 mRNA, since transcripts of other core histone genes were also found in these structures. Additionally, piRNAs corresponding to loci of every core histone type have been identified. Altogether, this work provides evidence that links PIWI proteins and chromatoid bodies to histone mRNA regulation in planarian stem cells. The molecular similarities between neoblasts and undifferentiated cells of other organisms raise the possibility that PIWI proteins might also regulate histone mRNAs in stem cells and germ cells of other metazoans. PMID:24903754

  5. Identification of small non-coding RNAs in the planarian Dugesia japonica via deep sequencing.

    PubMed

    Qin, Yun-Fei; Zhao, Jin-Mei; Bao, Zhen-Xia; Zhu, Zhao-Yu; Mai, Jia; Huang, Yi-Bo; Li, Jian-Biao; Chen, Ge; Lu, Ping; Chen, San-Jun; Su, Lin-Lin; Fang, Hui-Min; Lu, Ji-Ke; Zhang, Yi-Zhe; Zhang, Shou-Tao

    2012-05-01

    Freshwater planarian flatworm possesses an extraordinary ability to regenerate lost body parts after amputation; it is perfect organism model in regeneration and stem cell biology. Recently, small RNAs have been an increasing concern and studied in many aspects, including regeneration and stem cell biology, among others. In the current study, the large-scale cloning and sequencing of sRNAs from the intact and regenerative planarian Dugesia japonica are reported. Sequence analysis shows that sRNAs between 18nt and 40nt are mainly microRNAs and piRNAs. In addition, 209 conserved miRNAs and 12 novel miRNAs are identified. Especially, a better screening target method, negative-correlation relationship of miRNAs and mRNA, is adopted to improve target prediction accuracy. Similar to miRNAs, a diverse population of piRNAs and changes in the two samples are also listed. The present study is the first to report on the important role of sRNAs during planarian Dugesia japonica regeneration. PMID:22425900

  6. Cellular and molecular dissection of pluripotent adult somatic stem cells in planarians.

    PubMed

    Shibata, Norito; Rouhana, Labib; Agata, Kiyokazu

    2010-01-01

    Freshwater planarians, Plathelminthes, have been an intriguing model animal of regeneration studies for more than 100 years. Their robust regenerative ability is one of asexual reproductive capacity, in which complete animals develop from tiny body fragments within a week. Pluripotent adult somatic stem cells, called neoblasts, assure this regenerative ability. Neoblasts give rise to not only all types of somatic cells, but also germline cells. During the last decade, several experimental techniques for the analysis of planarian neoblasts at the molecular level, such as in situ hybridization, RNAi and fluorescence activated cell sorting, have been established. Moreover, information about genes involved in maintenance and differentiation of neoblasts has been accumulated. One of the molecular features of neoblasts is the expression of many RNA regulators, which are involved in germline development in other animals, such as vasa and piwi family genes. In this review, we introduce physiological and molecular features of the neoblast, and discuss how germline genes regulate planarian neoblasts and what differences exist between neoblasts and germline cells. PMID:20078652

  7. Smed-dynA-1 is a planarian nervous system specific dynamin 1 homolog required for normal locomotion

    PubMed Central

    Talbot, Jared A.; Currie, Ko W.; Pearson, Bret J.; Collins, Eva-Maria S.

    2014-01-01

    ABSTRACT Dynamins are GTPases that are required for separation of vesicles from the plasma membrane and thus are key regulators of endocytosis in eukaryotic cells. This role for dynamin proteins is especially crucial for the proper function of neurons, where they ensure that synaptic vesicles and their neurotransmitter cargo are recycled in the presynaptic cell. Here we have characterized the dynamin protein family in the freshwater planarian Schmidtea mediterranea and showed that it possesses six dynamins with tissue specific expression profiles. Of these six planarian homologs, two are necessary for normal tissue homeostasis, and the loss of another, Smed-dynA-1, leads to an abnormal behavioral phenotype, which we have quantified using automated center of mass tracking. Smed-dynA-1 is primarily expressed in the planarian nervous system and is a functional homolog of the mammalian Dynamin I. The distinct expression profiles of the six dynamin genes makes planarians an interesting new system to reveal novel dynamin functions, which may be determined by their differential tissue localization. The observed complexity of neurotransmitter regulation combined with the tools of quantitative behavioral assays as a functional readout for neuronal activity, renders planarians an ideal system for studying how the nervous system controls behavior. PMID:24950970

  8. Smed-dynA-1 is a planarian nervous system specific dynamin 1 homolog required for normal locomotion.

    PubMed

    Talbot, Jared A; Currie, Ko W; Pearson, Bret J; Collins, Eva-Maria S

    2014-01-01

    Dynamins are GTPases that are required for separation of vesicles from the plasma membrane and thus are key regulators of endocytosis in eukaryotic cells. This role for dynamin proteins is especially crucial for the proper function of neurons, where they ensure that synaptic vesicles and their neurotransmitter cargo are recycled in the presynaptic cell. Here we have characterized the dynamin protein family in the freshwater planarian Schmidtea mediterranea and showed that it possesses six dynamins with tissue specific expression profiles. Of these six planarian homologs, two are necessary for normal tissue homeostasis, and the loss of another, Smed-dynA-1, leads to an abnormal behavioral phenotype, which we have quantified using automated center of mass tracking. Smed-dynA-1 is primarily expressed in the planarian nervous system and is a functional homolog of the mammalian Dynamin I. The distinct expression profiles of the six dynamin genes makes planarians an interesting new system to reveal novel dynamin functions, which may be determined by their differential tissue localization. The observed complexity of neurotransmitter regulation combined with the tools of quantitative behavioral assays as a functional readout for neuronal activity, renders planarians an ideal system for studying how the nervous system controls behavior. PMID:24950970

  9. Structure and function of primitive immunoglobulin superfamily neural cell adhesion molecules: a lesson from studies on planarian.

    PubMed

    Fusaoka, Eri; Inoue, Takeshi; Mineta, Katsuhiko; Agata, Kiyokazu; Takeuchi, Kosei

    2006-05-01

    Precise wiring and proper remodeling of the neural network are essential for its normal function. The freshwater planarian is an attractive animal in which to study the formation and maintenance of the neural network due to its high regenerative capability and developmental plasticity. Although a recent study revealed that homologs of netrin and its receptors are required for regeneration and maintenance of the planarian central nervous system (CNS), the roles of cell adhesion in the formation and maintenance of the planarian neural network remain poorly understood. In the present study, we found primitive immunoglobulin superfamily cell adhesion molecules (IgCAMs) in a planarian that are homologous to vertebrate neural IgCAMs. We identified planarian orthologs of NCAM, L1CAM, contactin and DSCAM, and designated them DjCAM, DjLCAM, DjCTCAM and DjDSCAM, respectively. We further confirmed that they function as cell adhesion molecules using cell aggregation assays. DjCAM and DjDSCAM were found to be differentially expressed in the CNS. Functional analyses using RNA interference revealed that DjCAM is partly involved in axon formation, and that DjDSCAM plays crucial roles in neuronal cell migration, axon outgrowth, fasciculation and projection. PMID:16629906

  10. An automated training paradigm reveals long-term memory in planarians and its persistence through head regeneration.

    PubMed

    Shomrat, Tal; Levin, Michael

    2013-10-15

    Planarian flatworms are a popular system for research into the molecular mechanisms that enable these complex organisms to regenerate their entire body, including the brain. Classical data suggest that they may also be capable of long-term memory. Thus, the planarian system may offer the unique opportunity to study brain regeneration and memory in the same animal. To establish a system for the investigation of the dynamics of memory in a regenerating brain, we developed a computerized training and testing paradigm that avoided the many issues that confounded previous, manual attempts to train planarians. We then used this new system to train flatworms in an environmental familiarization protocol. We show that worms exhibit environmental familiarization, and that this memory persists for at least 14 days - long enough for the brain to regenerate. We further show that trained, decapitated planarians exhibit evidence of memory retrieval in a savings paradigm after regenerating a new head. Our work establishes a foundation for objective, high-throughput assays in this molecularly tractable model system that will shed light on the fundamental interface between body patterning and stored memories. We propose planarians as key emerging model species for mechanistic investigations of the encoding of specific memories in biological tissues. Moreover, this system is lik ely to have important implications for the biomedicine of stem-cell-derived treatments of degenerative brain disorders in human adults. PMID:23821717

  11. Minimal structural requirements of alkyl ?-lactones capable of antagonizing the cocaine-induced motility decrease in planarians.

    PubMed

    Baker, Debra; Deats, Sean; Boor, Peter; Pruitt, James; Pagán, Oné R

    2011-11-01

    We recently reported that the natural cyclic lactone, parthenolide, and related analogs prevent the expression of behavioral effects induced by cocaine in planarians and that parthenolide's ?-lactone ring is required for this effect. In the present work, we tested a series of alkyl ?-lactones with varying chain length (1-8 carbons) to determine their ability to antagonize the planarian motility decrease induced by 200 ?M cocaine. Alkyl lactones with up to a 4-carbon alkyl chain did not affect planarian motility or antagonized the cocaine-induced motility decrease; only the compound ?-nonalactone (a ?-lactone with a 5-carbon chain) was able to prevent the cocaine-induced behavioral patterns, while alkyl lactones with longer carbon chains failed to prevent the cocaine-induced effects. Thus, we conclude that the optimal structural features of this family of compounds to antagonize cocaine's effect in this experimental system is a ?-lactone ring with at a 5-carbon long functional group. PMID:21878350

  12. Spoltud-1 is a chromatoid body component required for planarian long-term stem cell self-renewal.

    PubMed

    Solana, Jordi; Lasko, Paul; Romero, Rafael

    2009-04-15

    Freshwater planarians exhibit a striking power of regeneration, based on a population of undifferentiated totipotent stem cells, called neoblasts. These somatic stem cells have several characteristics resembling those of germ line stem cells in other animals, such as the presence of perinuclear RNA granules (chromatoid bodies). We have isolated a Tudor domain-containing gene in the planarian species Schmidtea polychroa, Spoltud-1, and show that it is expressed in neoblast cells, germ line cells and central nervous system, and during embryonic development. Within the neoblasts, Spoltud-1 protein is enriched in chromatoid bodies. Spoltud-1 RNAi eliminates protein expression after 3 weeks, and abolishes the power of regeneration of planarians after 7 weeks. Neoblast cells are eliminated by the RNAi treatment, disappearing at the end rather than gradually during the process. Neoblasts with no detectable Spoltud-1 protein are able to proliferate and differentiate. These results suggest that Spoltud-1 is required for long term stem cell self renewal. PMID:19389344

  13. ImagePlane: An Automated Image Analysis Pipeline for High-Throughput Screens Using the Planarian Schmidtea mediterranea

    PubMed Central

    Flygare, Steven; Campbell, Michael; Ross, Robert Mars; Moore, Barry

    2013-01-01

    Abstract ImagePlane is a modular pipeline for automated, high-throughput image analysis and information extraction. Designed to support planarian research, ImagePlane offers a self-parameterizing adaptive thresholding algorithm; an algorithm that can automatically segment animals into anterior–posterior/left–right quadrants for automated identification of region-specific differences in gene and protein expression; and a novel algorithm for quantification of morphology of animals, independent of their orientations and sizes. ImagePlane also provides methods for automatic report generation, and its outputs can be easily imported into third-party tools such as R and Excel. Here we demonstrate the pipeline's utility for identification of genes involved in stem cell proliferation in the planarian Schmidtea mediterranea. Although designed to support planarian studies, ImagePlane will prove useful for cell-based studies as well. PMID:23822514

  14. Problematic barcoding in flatworms: A case-study on monogeneans and rhabdocoels (Platyhelminthes)

    PubMed Central

    Vanhove, Maarten P. M.; Tessens, Bart; Schoelinck, Charlotte; Jondelius, Ulf; Littlewood, D. Tim J.; Artois, Tom; Huyse, Tine

    2013-01-01

    Abstract Some taxonomic groups are less amenable to mitochondrial DNA barcoding than others. Due to the paucity of molecular information of understudied groups and the huge molecular diversity within flatworms, primer design has been hampered. Indeed, all attempts to develop universal flatworm-specific COI markers have failed so far. We demonstrate how high molecular variability and contamination problems limit the possibilities for barcoding using standard COI-based protocols in flatworms. As a consequence, molecular identification methods often rely on other widely applicable markers. In the case of Monogenea, a very diverse group of platyhelminth parasites, and Rhabdocoela, representing one-fourth of all free-living flatworm taxa, this has led to a relatively high availability of nuclear ITS and 18S/28S rDNA sequences on GenBank. In a comparison of the effectiveness in species assignment we conclude that mitochondrial and nuclear ribosomal markers perform equally well. In case intraspecific information is needed, rDNA sequences can guide the selection of the appropriate (i.e. taxon-specific) COI primers if available. PMID:24453567

  15. Comparative study of adaptive radiations with an example using parasitic flatworms (Platyhelminthes): Cercomeria

    SciTech Connect

    Brooks, D.R.; McLennan, D.A. )

    1993-11-01

    Studies of adaptive radiations require robust phylogenies, estimates of species numbers for monophyletic groups within clades, assessments of the adaptive value of putative key innovations, and estimates of the frequency of speciation modes. Four criteria are necessary to identify an adaptive radiation within the parasitic platyhelminths: (1) a group contains significantly more species than its sister group, (2) species richness is apomorphic, (3) apomorphic traits enhance the potential for adaptively driven modes of speciation (sympatric speciation and speciation by peripheral isolation via host switching), and (4) the frequency of adaptively driven speciation modes is high within the group when compared with data from free-living groups. Only the species-rich Monogenea fulfill all four criteria. The Digenea and Eucestoda also are more species rich than their sister groups, their species richness is derived, and they possess unique characters that increase the potential for host switching to occur. However, because there is not enough information to determine whether the frequency of adaptive modes of speciation is high for those groups, we cannot yet assert that their radiations have been adaptive. 102 refs., 3 figs., 1 tab.

  16. Planarians: a versatile and powerful model system for molecular studies of regeneration, adult stem cell regulation, aging, and behavior.

    PubMed

    Oviedo, Néstor J; Nicolas, Cindy L; Adams, Dany S; Levin, Michael

    2008-01-01

    INTRODUCTIONIn recent years, planarians have been increasingly recognized as an emerging model organism amenable to molecular genetic techniques aimed at understanding complex biological tasks commonly observed among metazoans. Growing evidence suggests that this model organism is uniquely poised to inform us about the mechanisms of tissue regeneration, stem cell regulation, tissue turnover, pharmacological action of diverse drugs, cancer, and aging. This article provides an overview of the planarian model system with special attention to the species Schmidtea mediterranea. Additionally, information is provided about the most popular use of this organism, together with modern genomic resources and technical approaches. PMID:21356684

  17. An NMDA antagonist (LY 235959) attenuates abstinence-induced withdrawal of planarians following acute exposure to a cannabinoid agonist (WIN 55212-2).

    PubMed

    Rawls, Scott M; Gomez, Teresa; Raffa, Robert B

    2007-03-01

    The mechanisms that facilitate the development and expression of cannabinoid physical dependence in humans and other mammals are poorly understood. The present experiments used a planarian model to provide evidence that pharmacological antagonism of NMDA receptors significantly attenuates the development of cannabinoid physical dependence. Abstinence-induced withdrawal from the cannabinoid agonist WIN 55212-2 (10 microM) was manifested as a significant (P<0.05) decrease in the rate of planarian spontaneous locomotor velocity (pLMV) when WIN 55212-2 (10 microM)-exposed planarians were placed into drug-free water. No change in pLMV occurred when WIN 55212-2 (10 microM)-exposed planarians were placed into water containing WIN 55212-2 (10 microM). WIN 55212-2 (10 microM)-exposed planarians placed into water containing LY 235959 (1 or 10 microM) did not display withdrawal (no significant difference, P>0.05, in pLMV). In addition, withdrawal was not observed (no significant difference, P>0.05, in pLMV) in planarians that were co-exposed to a solution containing WIN 55212-2 (10 microM) and LY 235959 (10 microM). The present results reveal that NMDA receptor activation mediates the development of cannabinoid physical dependence and the expression of cannabinoid withdrawal in planarians. PMID:17306870

  18. [Study of possible involvement of MEK mitogen-activated protein kinase and TGF-? receptor in planarian regeneration processes using pharmacological inhibition analysis].

    PubMed

    Ermakov, A M; Ermakova, O N; Ermolaeva, S A

    2014-01-01

    Possible involvement of MEK mitogen-activated protein kinase and TGF-? receptor in the processes of regeneration and morphogenesis in freshwater planarian flatworms Schmidtea mediterranea was studied using a pharmacological inhibitor analysis. It was found that pharmacological inhibitors of these kinases significantly inhibit the regeneration of the head end of the animals and that this effect is realized due to inhibition of proliferative activity of neoblasts, planarian stem cells. It is shown that that the inhibition of the studied protein kinases in regenerating planarians markedly disturbs stem cell differentiation and morphogenesis. PMID:25752153

  19. Inferring Regulatory Networks from Experimental Morphological Phenotypes: A Computational Method Reverse-Engineers Planarian Regeneration

    PubMed Central

    Lobo, Daniel; Levin, Michael

    2015-01-01

    Transformative applications in biomedicine require the discovery of complex regulatory networks that explain the development and regeneration of anatomical structures, and reveal what external signals will trigger desired changes of large-scale pattern. Despite recent advances in bioinformatics, extracting mechanistic pathway models from experimental morphological data is a key open challenge that has resisted automation. The fundamental difficulty of manually predicting emergent behavior of even simple networks has limited the models invented by human scientists to pathway diagrams that show necessary subunit interactions but do not reveal the dynamics that are sufficient for complex, self-regulating pattern to emerge. To finally bridge the gap between high-resolution genetic data and the ability to understand and control patterning, it is critical to develop computational tools to efficiently extract regulatory pathways from the resultant experimental shape phenotypes. For example, planarian regeneration has been studied for over a century, but despite increasing insight into the pathways that control its stem cells, no constructive, mechanistic model has yet been found by human scientists that explains more than one or two key features of its remarkable ability to regenerate its correct anatomical pattern after drastic perturbations. We present a method to infer the molecular products, topology, and spatial and temporal non-linear dynamics of regulatory networks recapitulating in silico the rich dataset of morphological phenotypes resulting from genetic, surgical, and pharmacological experiments. We demonstrated our approach by inferring complete regulatory networks explaining the outcomes of the main functional regeneration experiments in the planarian literature; By analyzing all the datasets together, our system inferred the first systems-biology comprehensive dynamical model explaining patterning in planarian regeneration. This method provides an automated, highly generalizable framework for identifying the underlying control mechanisms responsible for the dynamic regulation of growth and form. PMID:26042810

  20. Inferring regulatory networks from experimental morphological phenotypes: a computational method reverse-engineers planarian regeneration.

    PubMed

    Lobo, Daniel; Levin, Michael

    2015-06-01

    Transformative applications in biomedicine require the discovery of complex regulatory networks that explain the development and regeneration of anatomical structures, and reveal what external signals will trigger desired changes of large-scale pattern. Despite recent advances in bioinformatics, extracting mechanistic pathway models from experimental morphological data is a key open challenge that has resisted automation. The fundamental difficulty of manually predicting emergent behavior of even simple networks has limited the models invented by human scientists to pathway diagrams that show necessary subunit interactions but do not reveal the dynamics that are sufficient for complex, self-regulating pattern to emerge. To finally bridge the gap between high-resolution genetic data and the ability to understand and control patterning, it is critical to develop computational tools to efficiently extract regulatory pathways from the resultant experimental shape phenotypes. For example, planarian regeneration has been studied for over a century, but despite increasing insight into the pathways that control its stem cells, no constructive, mechanistic model has yet been found by human scientists that explains more than one or two key features of its remarkable ability to regenerate its correct anatomical pattern after drastic perturbations. We present a method to infer the molecular products, topology, and spatial and temporal non-linear dynamics of regulatory networks recapitulating in silico the rich dataset of morphological phenotypes resulting from genetic, surgical, and pharmacological experiments. We demonstrated our approach by inferring complete regulatory networks explaining the outcomes of the main functional regeneration experiments in the planarian literature; By analyzing all the datasets together, our system inferred the first systems-biology comprehensive dynamical model explaining patterning in planarian regeneration. This method provides an automated, highly generalizable framework for identifying the underlying control mechanisms responsible for the dynamic regulation of growth and form. PMID:26042810

  1. Amphetamine-induced increase in planarian locomotor activity and block by UV light.

    PubMed

    Raffa, Robert B; Martley, Andrea F

    2005-01-01

    The dopamine D2-receptor antagonist sulpiride decreases spontaneous locomotor velocity of planarians (pLMV) in an enantiomeric-selective and dose-dependent manner and is significantly attenuated by UV light (254 and 366 nm). We now report that amphetamine (10 microM) produced the opposite effect and was also reversed by UV light. These findings strengthen the hypothesis that the effects of dopaminergic ligands and UV light on pLMV relate to interaction with neurotransmitter transduction process(es). PMID:15621023

  2. Whole-mount in situ hybridization using DIG-labeled probes in planarian.

    PubMed

    Rybak-Wolf, Agnieszka; Solana, Jordi

    2014-01-01

    In recent years freshwater flatworms (planarian) have become a powerful model for studies of regeneration and stem cell biology. Whole-mount in situ hybridization (WISH) and fluorescent in situ hybridization (FISH) are key and most commonly used techniques to determine and visualize gene expression patterns in planaria. Here, we present the established version of whole-mount in situ hybridization (WISH) and whole-mount fluorescence in situ hybridization (WFISH) protocol optimized over the last years by several labs from the rapidly growing planaria field and give an overview of recently introduced modifications which can be critical in the study of low abundant transcripts. PMID:25218375

  3. Elucidating the phylogenetic position of Gnathostomulida and first mitochondrial genomes of Gnathostomulida, Gastrotricha and Polycladida (Platyhelminthes).

    PubMed

    Golombek, Anja; Tobergte, Sarah; Struck, Torsten H

    2015-05-01

    Gnathostomulida is a taxon of small marine worms, which exclusively inhabit the interstitium. The evolution of Gnathostomulida has been discussed for decades. Originally regarded as primitive animals with affinities to flatworms, the phylogenetic position of Gnathostomulida has been debated. Given the lack of an anus a close relationship to Platyhelminthes has been maintained (i.e., Plathelminthomorpha hypothesis). Alternative hypotheses proposed Gnathostomulida as being close to Gastrotricha due to the presence of a monociliary epidermis (i.e., Monokonta/Neotrichozoa hypothesis) or to Syndermata based on the complicated jaw apparatus (i.e., Gnathifera hypothesis). Molecular analyses using only few genes were inconclusive. Recent phylogenomic studies brought some progress by placing Gnathostomulida as sister to Syndermata, but support for this relationship was low and depended on the analytical strategy. Herein we present the first data of complete or nearly complete mitochondrial genomes for two gnathostomulids (Gnathostomula paradoxa &G. armata), one gastrotrich (Lepidodermella squamata) and one polyclad flatworm (Stylochoplana maculata) to address the uncertain phylogenetic affinity of Gnathostomulida. Our analyses found Gnathostomulida as sister to Syndermata (Gnathifera hypothesis). Thorough sensitivity analyses addressing taxon instability, branch length heterogeneity (also known as long branch attraction) and base composition heterogeneity showed that the position of Gnathostomulida is consistent across the different analyses and, hence, independent of potential misleading biases. Moreover, by ameliorating these different biases nodal support values could be increased to maximum values. Thus, our data support the hypothesis that the different jaw apparatuses of Syndermata and Gnathostomulida are indeed homologous structures as proposed by the Gnathifera hypothesis. PMID:25796325

  4. ?-catenin-dependent control of positional information along the AP body axis in planarians involves a teashirt family member.

    PubMed

    Reuter, Hanna; März, Martin; Vogg, Matthias C; Eccles, David; Grífol-Boldú, Laura; Wehner, Daniel; Owlarn, Suthira; Adell, Teresa; Weidinger, Gilbert; Bartscherer, Kerstin

    2015-01-13

    Wnt/?-catenin signaling regulates tissue homeostasis and regeneration in metazoans. In planarians-flatworms with high regenerative potential-Wnt ligands are thought to control tissue polarity by shaping a ?-catenin activity gradient along the anterior-posterior axis, yet the downstream mechanisms are poorly understood. We performed an RNA sequencing (RNA-seq)-based screen and identified hundreds of ?-catenin-dependent transcripts, of which several were expressed in muscle tissue and stem cells in a graded fashion. In particular, a teashirt (tsh) ortholog was induced in a ?-catenin-dependent manner during regeneration in planarians and zebrafish, and RNAi resulted in two-headed planarians. Strikingly, intact planarians depleted of tsh induced anterior markers and slowly transformed their tail into a head, reminiscent of ?-catenin RNAi phenotypes. Given that ?-catenin RNAi enhanced the formation of muscle cells expressing anterior determinants in tail regions, our study suggests that this pathway controls tissue polarity through regulating the identity of differentiating cells during homeostasis and regeneration. PMID:25558068

  5. Planarian yorkie/YAP functions to integrate adult stem cell proliferation, organ homeostasis and maintenance of axial patterning.

    PubMed

    Lin, Alexander Y T; Pearson, Bret J

    2014-03-01

    During adult homeostasis and regeneration, the freshwater planarian must accomplish a constant balance between cell proliferation and cell death, while also maintaining proper tissue and organ size and patterning. How these ordered processes are precisely modulated remains relatively unknown. Here we show that planarians use the downstream effector of the Hippo signaling cascade, yorkie (yki; YAP in vertebrates) to control a diverse set of pleiotropic processes in organ homeostasis, stem cell regulation, regeneration and axial patterning. We show that yki functions to maintain the homeostasis of the planarian excretory (protonephridial) system and to limit stem cell proliferation, but does not affect the differentiation process or cell death. Finally, we show that Yki acts synergistically with WNT/?-catenin signaling to repress head determination by limiting the expression domains of posterior WNT genes and that of the WNT-inhibitor notum. Together, our data show that yki is a key gene in planarians that integrates stem cell proliferation control, organ homeostasis, and the spatial patterning of tissues. PMID:24523458

  6. Size Matters!. Birth Size and a Size-Independent Stochastic Term Determine Asexual Reproduction Dynamics in Freshwater Planarians

    NASA Astrophysics Data System (ADS)

    Thomas, Michael A.; Quinodoz, Sofia; Schötz, Eva-Maria

    2012-09-01

    Asexual reproduction by division in higher organisms is rare, because a prerequisite is the ability to regenerate an entire organism from a piece of the original body. Freshwater planarians are one of the few animals that can reproduce this way, but little is known about the regulation of their reproduction cycles or strategies. We have previously shown that a planarian's reproduction strategy is randomized to include fragmentations, producing multiple offspring, as well as binary fissions, and can be partially explained by a maximum relative entropy principle. In this study we attempt to decompose the factors controlling their reproduction cycle. Based on recent studies on the cell cycle of budding yeast, which suggest that molecular noise in gene expression and cell size at birth together control cell cycle variability, we investigated whether the variability in planarian reproduction waiting times could be similarly regulated. We find that such a model can indeed explain the observed distribution of waiting times between birth and next reproductive event, suggesting that birth size and a stochastic noise term govern the reproduction dynamics of asexual planarians.

  7. Analysis of Stem Cell Motility In Vivo Based on Immunodetection of Planarian Neoblasts and Tracing of BrdU-Labeled Cells After Partial Irradiation.

    PubMed

    Tasaki, Junichi; Uchiyama-Tasaki, Chihiro; Rouhana, Labib

    2016-01-01

    Planarian flatworms have become an important system for the study of stem cell behavior and regulation in vivo. These organisms are able to regenerate any part of their body upon damage or amputation. A crucial cellular event in the process of planarian regeneration is the migration of pluripotent stem cells (known as neoblasts) to the site of injury. Here we describe two approaches for analyzing migration of planarian stem cells to an area where these have been ablated by localized X-ray irradiation. The first approach involves immunolabeling of mitotic neoblasts, while the second is based on tracing stem cells and their progeny after BrdU incorporation. The use of planarians in studies of cell motility is suitable for the identification of factors that influence stem cell migration in vivo and is amenable to RNA interference or pharmacological screening. PMID:26498794

  8. COE loss-of-function analysis reveals a genetic program underlying maintenance and regeneration of the nervous system in planarians.

    PubMed

    Cowles, Martis W; Omuro, Kerilyn C; Stanley, Brianna N; Quintanilla, Carlo G; Zayas, Ricardo M

    2014-10-01

    Members of the COE family of transcription factors are required for central nervous system (CNS) development. However, the function of COE in the post-embryonic CNS remains largely unknown. An excellent model for investigating gene function in the adult CNS is the freshwater planarian. This animal is capable of regenerating neurons from an adult pluripotent stem cell population and regaining normal function. We previously showed that planarian coe is expressed in differentiating and mature neurons and that its function is required for proper CNS regeneration. Here, we show that coe is essential to maintain nervous system architecture and patterning in intact (uninjured) planarians. We took advantage of the robust phenotype in intact animals to investigate the genetic programs coe regulates in the CNS. We compared the transcriptional profiles of control and coe RNAi planarians using RNA sequencing and identified approximately 900 differentially expressed genes in coe knockdown animals, including 397 downregulated genes that were enriched for nervous system functional annotations. Next, we validated a subset of the downregulated transcripts by analyzing their expression in coe-deficient planarians and testing if the mRNAs could be detected in coe+ cells. These experiments revealed novel candidate targets of coe in the CNS such as ion channel, neuropeptide, and neurotransmitter genes. Finally, to determine if loss of any of the validated transcripts underscores the coe knockdown phenotype, we knocked down their expression by RNAi and uncovered a set of coe-regulated genes implicated in CNS regeneration and patterning, including orthologs of sodium channel alpha-subunit and pou4. Our study broadens the knowledge of gene expression programs regulated by COE that are required for maintenance of neural subtypes and nervous system architecture in adult animals. PMID:25356635

  9. The freshwater planarian Polycelis felina as a sensitive species to assess the long-term toxicity of ammonia.

    PubMed

    Alonso, Alvaro; Camargo, Julio A

    2011-07-01

    Behavioural endpoints are a good link between physiological and ecological effects. However long-term behavioural endpoints are not uniformly studied over all different organism groups. For example behaviour has been scarcely studied in planarians. Unionized ammonia (NH(3)) is one of the most widespread pollutants in developed countries, and is known to alter animal behaviour. In this study a long-term (30 d) bioassay was conducted to assess the effect of this pollutant on survival and behavioural activity (e.g. locomotion activity) of the freshwater planarian Polycelis felina. One control and three environmentally-realistic concentrations of unionized ammonia (treatments of 0.02, 0.05, and 0.09 mg N-NH(3) L(-1)) were used in quintuplicate. The behaviour of planarians was measured after 0, 10, 20 and 30 d of ammonia exposure. Mortality was recorded every 2 d. Unionized ammonia increased mortality in the two highest NH(3) concentrations and the locomotory activity was depressed in all treatments after 20 d of exposure. Behavioural effect was observed at concentrations 20 times lower than the short-term LC50 for this species. Previous studies proposed safe concentrations of unionized ammonia of 0.01-0.10 mg N-NH(3) L(-1) to aquatic ecosystems, but our study has shown that these concentrations will affect planarians. Because planarians play a key role in streams (as predator/scavenger), safe concentrations should be below 0.02 mg N-NH(3) L(-1) to protect this species in the freshwater community. Our results can contribute to improve the knowledge about ammonia toxicity to freshwater ecosystems, we recommend that safe concentrations of unionized ammonia should be based on very sensitive species. PMID:21546058

  10. COE Loss-of-Function Analysis Reveals a Genetic Program Underlying Maintenance and Regeneration of the Nervous System in Planarians

    PubMed Central

    Cowles, Martis W.; Omuro, Kerilyn C.; Stanley, Brianna N.; Quintanilla, Carlo G.; Zayas, Ricardo M.

    2014-01-01

    Members of the COE family of transcription factors are required for central nervous system (CNS) development. However, the function of COE in the post-embryonic CNS remains largely unknown. An excellent model for investigating gene function in the adult CNS is the freshwater planarian. This animal is capable of regenerating neurons from an adult pluripotent stem cell population and regaining normal function. We previously showed that planarian coe is expressed in differentiating and mature neurons and that its function is required for proper CNS regeneration. Here, we show that coe is essential to maintain nervous system architecture and patterning in intact (uninjured) planarians. We took advantage of the robust phenotype in intact animals to investigate the genetic programs coe regulates in the CNS. We compared the transcriptional profiles of control and coe RNAi planarians using RNA sequencing and identified approximately 900 differentially expressed genes in coe knockdown animals, including 397 downregulated genes that were enriched for nervous system functional annotations. Next, we validated a subset of the downregulated transcripts by analyzing their expression in coe-deficient planarians and testing if the mRNAs could be detected in coe+ cells. These experiments revealed novel candidate targets of coe in the CNS such as ion channel, neuropeptide, and neurotransmitter genes. Finally, to determine if loss of any of the validated transcripts underscores the coe knockdown phenotype, we knocked down their expression by RNAi and uncovered a set of coe-regulated genes implicated in CNS regeneration and patterning, including orthologs of sodium channel alpha-subunit and pou4. Our study broadens the knowledge of gene expression programs regulated by COE that are required for maintenance of neural subtypes and nervous system architecture in adult animals. PMID:25356635

  11. Prohibitin 2 regulates cell proliferation and mitochondrial cristae morphogenesis in planarian stem cells.

    PubMed

    Rossi, Leonardo; Bonuccelli, Lucia; Iacopetti, Paola; Evangelista, Monica; Ghezzani, Claudio; Tana, Luigi; Salvetti, Alessandra

    2014-12-01

    Prohibitins are pleiotropic proteins, whose multiple roles are emerging as key elements in the regulation of cell survival and proliferation. Indeed, prohibitins interact with several intracellular proteins strategically involved in the regulation of cell cycle progression in response to extracellular growth signals. Prohibitins also have regulatory functions in mitochondrial fusion and cristae morphogenesis, phenomena related to the ability of self-renewing embryonic stem cells to undergo differentiation, during which mitochondria develop numerous cristae, increase in number, and generate an extensive reticular network. We recently identified a Prohibitin 2 homolog (DjPhb2) that is expressed in adult stem cells (neoblasts) of planarians, a well-known model system for in vivo studies on stem cells and tissue regeneration. Here, we show that in DjPhb2 silenced planarians, most proliferating cells disappear, with the exception of a subpopulation of neoblasts localized along the dorsal body midline. Neoblast depletion impairs regeneration and, finally, leads animals to death. Our in vivo findings demonstrate that prohibitin 2 plays an important role in regulating stem cell biology, being involved in both the control of cell cycle progression and mitochondrial cristae morphogenesis. PMID:24974103

  12. Identification and expression analysis of a Spsb gene in planarian Dugesia japonica.

    PubMed

    Dong, Zimei; Cheng, Fangfang; Yuwen, Yanqing; Chen, Jing; Li, Xiaoyan; Dou, He; Zhang, Haixia; Chen, Guangwen; Liu, Dezeng

    2015-06-15

    The SPSB family is comprised of four highly conserved proteins, each containing a C-terminal SOCS box motif and a central SPRY domain. Presently, Spsb genes have been found in mammals and in a few invertebrates, however, the specific functions of these genes are still unknown. In this study, we identified a Spsb gene from the planarian Dugesia japonica and termed it DjSpsb. The temporal and spatial expression patterns of DjSpsb were examined in both intact and regenerative animals, and expression levels were also quantified in response to various stressors. The results show that (1) DjSpsb is highly conserved in evolutionary history in metazoans and is at closer relationship to Spsb1, Spsb2 and Spsb4; (2) DjSpsb mRNA is mainly expressed in the head and also throughout head regeneration processes, particularly, its expression up-regulated observably on day 5 after amputation; (3) DjSpsb is also expressed in the testes and yolk glands; (4) DjSpsb expression is induced by high temperature and ethanol but inhibited by high doses of ionic liquids. The date suggests that the DjSpsb gene might be active in central nervous system (CNS) formation and functional recovery during head regeneration, and it is also involved in the development of germ cells and stress responses in the planarians. PMID:25827717

  13. The planarian Schmidtea mediterranea as a model for studying motile cilia and multiciliated cells.

    PubMed

    Basquin, Cyril; Orfila, Anne-Marie; Azimzadeh, Juliette

    2015-01-01

    In the past few years, the freshwater planarian Schmidtea mediterranea has emerged as a powerful model system to study the assembly and function of cilia. S. mediterranea is a free-living flatworm that uses the beating of cilia on its ventral epidermis for locomotion. The ventral epidermis is composed of a single layer of multiciliated cells highly similar to the multiciliated cells that line the airway, the brain ventricles, and the oviducts in humans. The genome of S. mediterranea has been sequenced and efficient methods for targeting gene expression by RNA interference (RNAi) are available. Locomotion defects induced by perturbing the expression of ciliary genes can be often detected by simple visual screening, and more subtle defects can be detected by measuring locomotion speed. Cilia are present in large numbers and are directly accessible, which facilitates analyses by immunofluorescence and electron microscopy. Here we describe a set of methods for maintaining planarians in the lab. These include gene knockout by RNAi, cilia visualization by immunofluorescence, transmission electron microscopy, and live imaging. PMID:25837395

  14. A mex3 homolog is required for differentiation during planarian stem cell lineage development.

    PubMed

    Zhu, Shu Jun; Hallows, Stephanie E; Currie, Ko W; Xu, ChangJiang; Pearson, Bret J

    2015-01-01

    Neoblasts are adult stem cells (ASCs) in planarians that sustain cell replacement during homeostasis and regeneration of any missing tissue. While numerous studies have examined genes underlying neoblast pluripotency, molecular pathways driving postmitotic fates remain poorly defined. In this study, we used transcriptional profiling of irradiation-sensitive and irradiation-insensitive cell populations and RNA interference (RNAi) functional screening to uncover markers and regulators of postmitotic progeny. We identified 32 new markers distinguishing two main epithelial progenitor populations and a planarian homolog to the MEX3 RNA-binding protein (Smed-mex3-1) as a key regulator of lineage progression. mex3-1 was required for generating differentiated cells of multiple lineages, while restricting the size of the stem cell compartment. We also demonstrated the utility of using mex3-1(RNAi) animals to identify additional progenitor markers. These results identified mex3-1 as a cell fate regulator, broadly required for differentiation, and suggest that mex3-1 helps to mediate the balance between ASC self-renewal and commitment. PMID:26114597

  15. A lophotrochozoan-specific nuclear hormone receptor is required for reproductive system development in the planarian.

    PubMed

    Tharp, Marla E; Collins, James J; Newmark, Phillip A

    2014-12-01

    Germ cells of sexually reproducing organisms receive an array of cues from somatic tissues that instruct developmental processes. Although the nature of these signals differs amongst organisms, the importance of germline-soma interactions is a common theme. Recently, peptide hormones from the nervous system have been shown to regulate germ cell development in the planarian Schmidtea mediterranea; thus, we sought to investigate a second class of hormones with a conserved role in reproduction, the lipophilic hormones. In order to study these signals, we identified a set of putative lipophilic hormone receptors, known as nuclear hormone receptors, and analyzed their functions in reproductive development. We found one gene, nhr-1, belonging to a small class of functionally uncharacterized lophotrochozoan-specific receptors, to be essential for the development of differentiated germ cells. Upon nhr-1 knockdown, germ cells in the testes and ovaries fail to mature, and remain as undifferentiated germline stem cells. Further analysis revealed that nhr-1 mRNA is expressed in the accessory reproductive organs and is required for their development, suggesting that this transcription factor functions cell non-autonomously in regulating germ cell development. Our studies identify a role for nuclear hormone receptors in planarian reproductive maturation and reinforce the significance of germline-soma interactions in sexual reproduction across metazoans. PMID:25278423

  16. TOR signaling regulates planarian stem cells and controls localized and organismal growth.

    PubMed

    Peiris, T Harshani; Weckerle, Frank; Ozamoto, Elyse; Ramirez, Daniel; Davidian, Devon; García-Ojeda, Marcos E; Oviedo, Néstor J

    2012-04-01

    Target of Rapamycin (TOR) controls an evolutionarily conserved signaling pathway that modulates cellular growth and division by sensing levels of nutrients, energy and stress. As such, TOR signaling is a crucial component of tissues and organs that translates systemic signals into cellular behavior. The ubiquitous nature of TOR signaling, together with the difficulty of analyzing tissue during cellular turnover and repair, have limited our understanding of how this kinase operates throughout the body. Here, we use the planarian model system to address TOR regulation at the organismal level. The planarian TOR homolog (Smed-TOR) is ubiquitously expressed, including stem cells (neoblasts) and differentiated tissues. Inhibition of TOR with RNA interference severely restricts cell proliferation, allowing the study of neoblasts with restricted proliferative capacity during regeneration and systemic cell turnover. Strikingly, TOR signaling is required for neoblast response to amputation and localized growth (blastema). However, in the absence of TOR signaling, regeneration takes place only within differentiated tissues. In addition, TOR is essential for maintaining the balance between cell division and cell death, and its dysfunction leads to tissue degeneration and lack of organismal growth in the presence of nutrients. Finally, TOR function is likely to be mediated through TOR Complex 1 as its disruption recapitulates signs of the TOR phenotype. Our data reveal novel roles for TOR signaling in controlling adult stem cells at a systemic level and suggest a new paradigm for studying TOR function during physiological turnover and regeneration. PMID:22427692

  17. Proteomic profiling of the planarian Schmidtea mediterranea and its mucous reveals similarities with human secretions and those predicted for parasitic flatworms.

    PubMed

    Bocchinfuso, Donald G; Taylor, Paul; Ross, Eric; Ignatchenko, Alex; Ignatchenko, Vladimir; Kislinger, Thomas; Pearson, Bret J; Moran, Michael F

    2012-09-01

    The freshwater planarian Schmidtea mediterranea has been used in research for over 100 years, and is an emerging stem cell model because of its capability of regenerating large portions of missing body parts. Exteriorly, planarians are covered in mucous secretions of unknown composition, implicated in locomotion, predation, innate immunity, and substrate adhesion. Although the planarian genome has been sequenced, it remains mostly unannotated, challenging both genomic and proteomic analyses. The goal of the current study was to annotate the proteome of the whole planarian and its mucous fraction. The S. mediterranea proteome was analyzed via mass spectrometry by using multidimensional protein identification technology with whole-worm tryptic digests. By using a proteogenomics approach, MS data were searched against an in silico translated planarian transcript database, and by using the Swiss-Prot BLAST algorithm to identify proteins similar to planarian queries. A total of 1604 proteins were identified. The mucous subproteome was defined through analysis of a mucous trail fraction and an extract obtained by treating whole worms with the mucolytic agent N-acetylcysteine. Gene Ontology analysis confirmed that the mucous fractions were enriched with secreted proteins. The S. mediterranea proteome is highly similar to that predicted for the trematode Schistosoma mansoni associated with intestinal schistosomiasis, with the mucous subproteome particularly highly conserved. Remarkably, orthologs of 119 planarian mucous proteins are present in human mucosal secretions and tear fluid. We suggest planarians have potential to be a model system for the characterization of mucous protein function and relevant to parasitic flatworm infections and diseases underlined by mucous aberrancies, such as cystic fibrosis, asthma, and other lung diseases. PMID:22653920

  18. Proteomic Profiling of the Planarian Schmidtea mediterranea and Its Mucous Reveals Similarities with Human Secretions and Those Predicted for Parasitic Flatworms*

    PubMed Central

    Bocchinfuso, Donald G.; Taylor, Paul; Ross, Eric; Ignatchenko, Alex; Ignatchenko, Vladimir; Kislinger, Thomas; Pearson, Bret J.; Moran, Michael F.

    2012-01-01

    The freshwater planarian Schmidtea mediterranea has been used in research for over 100 years, and is an emerging stem cell model because of its capability of regenerating large portions of missing body parts. Exteriorly, planarians are covered in mucous secretions of unknown composition, implicated in locomotion, predation, innate immunity, and substrate adhesion. Although the planarian genome has been sequenced, it remains mostly unannotated, challenging both genomic and proteomic analyses. The goal of the current study was to annotate the proteome of the whole planarian and its mucous fraction. The S. mediterranea proteome was analyzed via mass spectrometry by using multidimensional protein identification technology with whole-worm tryptic digests. By using a proteogenomics approach, MS data were searched against an in silico translated planarian transcript database, and by using the Swiss-Prot BLAST algorithm to identify proteins similar to planarian queries. A total of 1604 proteins were identified. The mucous subproteome was defined through analysis of a mucous trail fraction and an extract obtained by treating whole worms with the mucolytic agent N-acetylcysteine. Gene Ontology analysis confirmed that the mucous fractions were enriched with secreted proteins. The S. mediterranea proteome is highly similar to that predicted for the trematode Schistosoma mansoni associated with intestinal schistosomiasis, with the mucous subproteome particularly highly conserved. Remarkably, orthologs of 119 planarian mucous proteins are present in human mucosal secretions and tear fluid. We suggest planarians have potential to be a model system for the characterization of mucous protein function and relevant to parasitic flatworm infections and diseases underlined by mucous aberrancies, such as cystic fibrosis, asthma, and other lung diseases. PMID:22653920

  19. New Acotylea (Polycladida, Platyhelminthes) from the east coast of the North Atlantic Ocean with special mention of the Iberian littoral.

    PubMed

    Noreña, Carolina; Rodríguez, Jorge; Pérez, Jacinto; Almon, Bruno

    2015-01-01

    Polyclad species diversity, although generally well known for European North Atlantic waters, is nearly unknown for the Iberian Peninsula. The "Ría de Arousa", located on the Atlantic coast of Galicia (Spain), is a place where many positive biological factors for species biodiversity converge. Therefore, it is an ideal location to study polyclad diversity. This research, which describes new records and new species, contributes to the knowledge of the distribution of Polycladida (Platyhelminthes), particularly of the suborder Acotylea, in the Atlantic waters of the Iberian Peninsula. The new records include the re-descriptions of Cryptocelis compacta Lang, 1884, Stylochus neapolitanus (Delle Chiaje, 1841-1844) and Discocelis tigrina (Blanchard, 1847), while the two newly described species are Hoploplana elisabelloi n. sp. and Armatoplana celta n. sp. PMID:26624472

  20. Preparation of the planarian Schmidtea mediterranea for high-resolution histology and transmission electron microscopy

    PubMed Central

    Brubacher, John L.; Vieira, Ana P.; Newmark, Phillip A.

    2014-01-01

    The flatworm Schmidtea mediterranea is an emerging model species in such fields as stem-cell biology, regeneration, and evolutionary biology. Excellent molecular tools have been developed for S. mediterranea, but ultrastructural techniques have received far less attention. Processing specimens for histology and transmission electron microscopy is notoriously idiosyncratic for particular species or specimen types. Unfortunately however, most methods for S. mediterranea described in the literature lack numerous essential details, and those few that do provide them rely on specialized equipment that may not be readily available. Here we present an optimized protocol for ultrastructural preparation of S. mediterranea. The protocol can be completed in six days, much of which is “hands-off” time. To aid with troubleshooting, we also illustrate the significant effects of seemingly minor variations in fixative, buffer concentration, and dehydration steps. This procedure will be useful for all planarian researchers, particularly those with relatively little experience in tissue processing. PMID:24556788

  1. Cloning of fragments of novel homeobox genes expressed during regeneration in planarians

    SciTech Connect

    Lukyanov, K.A.; Tarabykin, V.S.; Potapov, V.K.

    1994-11-01

    The polymerase chain reaction with degenerate primers corresponding to the most conservative amino acids 16-21 (ELEKEF) and 49-54 (WPQNRR) of the Antennapedia class homeodomains was used for the amplification of cDNA from regenerating planarians (asexual race of Dugesia tigrina). A total of six new Antennapedia-like homeobox sequences, designated Dutarh-1-Dutarh-6 (Dugesia tigrina asexual race homeobox gene), have been identified. Their comparison with other homeobox genes using a Genebee software (the EMBL Data Library) showed that all sequences except Dutarh-6 belong to the Antennapedia class. Dutarh-6 is closely related to a recently described novel homeobox gene subfamily which includes mouse mesodermal homeobox genes Max-1 and Max-2 and rat homeobox gene Gax. 17 refs., 2 figs.

  2. Long-range neural and gap junction protein-mediated cues control polarity during planarian regeneration.

    PubMed

    Oviedo, Néstor J; Morokuma, Junji; Walentek, Peter; Kema, Ido P; Gu, Man Bock; Ahn, Joo-Myung; Hwang, Jung Shan; Gojobori, Takashi; Levin, Michael

    2010-03-01

    Having the ability to coordinate the behavior of stem cells to induce regeneration of specific large-scale structures would have far-reaching consequences in the treatment of degenerative diseases, acute injury, and aging. Thus, identifying and learning to manipulate the sequential steps that determine the fate of new tissue within the overall morphogenetic program of the organism is fundamental. We identified novel early signals, mediated by the central nervous system and 3 innexin proteins, which determine the fate and axial polarity of regenerated tissue in planarians. Modulation of gap junction-dependent and neural signals specifically induces ectopic anterior regeneration blastemas in posterior and lateral wounds. These ectopic anterior blastemas differentiate new brains that establish permanent primary axes re-established during subsequent rounds of unperturbed regeneration. These data reveal powerful novel controls of pattern formation and suggest a constructive model linking nervous inputs and polarity determination in early stages of regeneration. PMID:20026026

  3. Topiramate-antagonism of L-glutamate-induced paroxysms in planarians.

    PubMed

    Raffa, Robert B; Finno, Kristin E; Tallarida, Christopher S; Rawls, Scott M

    2010-12-15

    We recently reported that NMDA (N-methyl-D-aspartate) and AMPA (?-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) induce concentration-dependent paroxysms in planarians (Dugesia dorotocephala). Since the postulated mechanisms of action of the sulfamate-substituted monosaccharide antiepileptic drug topiramate include inhibition of glutamate-activated ion channels, we tested the hypothesis that topiramate would inhibit glutamate-induced paroxysms in our model. We demonstrate that: (1) L-glutamate (1-10 mM), but not D-glutamate, induced dose-related paroxysms, and that (2) topiramate dose-relatedly (0.3-3 mM) inhibited L-glutamate-induced paroxysms. These results provide further evidence of a topiramate-sensitive glutamate receptor-mediated activity in this model. PMID:20863783

  4. Detection and characterization of phenoloxidase in the freshwater planarian Dugesia japonica.

    PubMed

    Pang, Qiuxiang; Liu, Xuemei; Zhao, Bosheng; Jiang, Yongsheng; Su, Feng; Zhang, Xiufang; Nie, Min; Zhang, Meng; Sun, Huanhuan

    2010-09-01

    Freshwater planarians have traditionally been favored animal models in regenerative and developmental biology. Little is known about the immunological research in these animals. Here, we provide spectrophotometric, electrophoretic and histochemical evidence demonstrating the presence and characterization of phenoloxidase (EC 1.14.18.1; PO) activity in the planaria Dugenia japonica. PO activity was optimal at pH 7.5 and at a temperature of 45 degrees C. ProPO in the humoral fluid was readily activated by trypsin and zymosan, and was susceptible to phenylthiourea. Two bands of PO activity in the humoral fluid with 150 and 300 kDa by native PAGE and a single band with 150 kDa after SDS-PAGE were resolved. Enzyme histochemical staining demonstrated the presence of PO in the epidermal cell and pharyngeal epithelium, which indicate that PO could serve as a protecting agent against environmental pathogens in D. japonica. PMID:20462518

  5. Toxicity profiles and solvent-toxicant interference in the planarian Schmidtea mediterranea after dimethylsulfoxide (DMSO) exposure.

    PubMed

    Stevens, An-Sofie; Pirotte, Nicky; Plusquin, Michelle; Willems, Maxime; Neyens, Thomas; Artois, Tom; Smeets, Karen

    2015-03-01

    To investigate hydrophobic test compounds in toxicological studies, solvents like dimethylsulfoxide (DMSO) are inevitable. However, using these solvents, the interpretation of test compound-induced responses can be biased. DMSO concentration guidelines are available, but are mostly based on acute exposures involving one specific toxicity endpoint. Hence, to avoid solvent-toxicant interference, we use multiple chronic test endpoints for additional interpretation of DMSO concentrations and propose a statistical model to assess possible synergistic, antagonistic or additive effects of test compounds and their solvents. In this study, the effects of both short- (1?day) and long-term (2?weeks) exposures to low DMSO concentrations (up to 1000?µl?l(-1) ) were studied in the planarian Schmidtea mediterranea. We measured different biological levels in both fully developed and developing animals. In a long-term exposure set-up, a concentration of 500?µl?l(-1) DMSO interfered with processes on different biological levels, e.g. behaviour, stem cell proliferation and gene expression profiles. After short exposure times, 500?µl?l(-1) DMSO only affected motility, whereas the most significant changes on different parameters were observed at a concentration of 1000?µl?l(-1) DMSO. As small sensitivity differences exist between biological levels and developmental stages, we advise the use of this solvent in concentrations below 500?µl?l(-1) in this organism. In the second part of our study, we propose a statistical approach to account for solvent-toxicant interactions and discuss full-scale solvent toxicity studies. In conclusion, we reassessed DMSO concentration limits for different experimental endpoints in the planarian S. mediterranea. PMID:24964768

  6. Ammonia toxicity to the freshwater planarian Polycelis felina: contrasting effects of continuous versus discontinuous exposures.

    PubMed

    Alonso, Álvaro; Camargo, Julio A

    2015-05-01

    Aquatic animals can be exposed to fluctuating concentrations of toxicants. In fact, for some toxicants (i.e., pesticides, ammonia), discontinuous exposure is more environmentally relevant than constant exposure. Responses of aquatic animals to each type of exposure may be different. However, despite the high ecological relevance of behaviour, there is still scarce information on the effects of discontinuous exposure on behaviour. Our study focused on the assessment of unionized ammonia toxicity on the behaviour of a freshwater planarian under continuous exposure (3 days of exposure and 18 days of recovery) versus discontinuous exposure (3 pulses of 1 day with 6 days of recovery between pulses = total 3 days of exposure and 18 days of recovery). Behaviour was assessed as locomotion activity. Bioassays with continuous and discontinuous exposure were performed with one control and five unionized ammonia concentrations (0.14-0.35 mg N-NH3/L). Unionized ammonia in continuous exposure caused less impact on behaviour than equivalent concentrations provided in a discontinuous exposure. By contrast, continuous exposures caused more impact on survival. The discontinuous exposure may allow detoxification during recovery periods, thus increasing the probability of survival in the next pulse. Under continuous exposure, the mortality threshold could be exceeded, and animals could die in greater proportion during exposure as well as the recovery period. We conclude that behavioural activity was a sensitive endpoint to assess the contrasting effects of continuous versus discontinuous exposure and that the response of planarians to discontinuous exposure is different to its response to continuous exposure. PMID:25604922

  7. Global irradiation effects, stem cell genes and rare transcripts in the planarian transcriptome.

    PubMed

    Galloni, Mireille

    2012-01-01

    Stem cells are the closest relatives of the totipotent primordial cell, which is able to spawn millions of daughter cells and hundreds of cell types in multicellular organisms. Stem cells are involved in tissue homeostasis and regeneration, and may play a major role in cancer development. Among animals, planarians host a model stem cell type, called the neoblast, which essentially confers immortality. Gaining insights into the global transcriptional landscape of these exceptional cells takes an unprecedented turn with the advent of Next Generation Sequencing methods. Two Digital Gene Expression transcriptomes of Schmidtea mediterranea planarians, with or without neoblasts lost through irradiation, were produced and analyzed. Twenty one bp NlaIII tags were mapped to transcripts in the Schmidtea and Dugesia taxids. Differential representation of tags in normal versus irradiated animals reflects differential gene expression. Canonical and non-canonical tags were included in the analysis, and comparative studies with human orthologs were conducted. Transcripts fell into 3 categories: invariant (including housekeeping genes), absent in irradiated animals (potential neoblast-specific genes, IRDOWN) and induced in irradiated animals (potential cellular stress response, IRUP). Different mRNA variants and gene family members were recovered. In the IR-DOWN class, almost all of the neoblast-specific genes previously described were found. In irradiated animals, a larger number of genes were induced rather than lost. A significant fraction of IRUP genes behaved as if transcript versions of different lengths were produced. Several novel potential neoblast-specific genes have been identified that varied in relative abundance, including highly conserved as well as novel proteins without predicted orthologs. Evidence for a large body of antisense transcripts, for example regulated antisense for the Smed-piwil1 gene, and evidence for RNA shortening in irradiated animals is presented. Novel neoblast-specific candidates include a peroxiredoxin protein that appears to be preferentially expressed in human embryonic stem cells. PMID:22450998

  8. Evaluation of copper effects upon Girardia tigrina freshwater planarians based on a set of biomarkers.

    PubMed

    Knakievicz, Tanise; Ferreira, Henrique Bunselmeyer

    2008-03-01

    Copper is a common environmental contaminant, which is particularly toxic to living organisms when in high concentrations. To monitor environmental contamination by Cu2+ and other heavy metals, well characterized bioindicator organisms and standardized assays are needed. As a first step toward this end, we have analysed Cu2+ effects upon Girardia tigrina freshwater planarians, based on the assessment of mobility, regeneration performance, micronucleus (MN) frequency in regenerating animals, and reproductive performance. These four biomarkers provided complementary information on Cu2+ toxicity, teratogenicity, mutagenicity and chronic (>96 h of exposure) effects, respectively. The LC50 was calculated for newborn, adult and regenerating planarians, and values of 12+/-0.02 mg l(-1), 42+/-0.08 mg l(-1), 48+/-0.13 mg l(-1), respectively, were obtained after 96 h of exposure. Mobility, for intact adults, and time of regeneration and MN frequency, for regenerating animals, were significantly affected by Cu2+ concentrations as low as 0.10 mg l(-1). MN assay for regenerating G. tigrina neoblasts showed higher sensitivities than MN assays performed with other bioindicator freshwater organisms, such as moluscs or fish. Chronic exposure effects were clearly evidenced by assessment of reproductive performance, with significant reduction in fecundity and fertility rates upon exposure to Cu2+ concentrations as low as 0.05 mg l(-1). Therefore, G. tigrina can be regarded as a useful bioindicator species for the detection and evaluation of Cu2+ effects upon freshwater invertebrates, allowing insights on the effects of Cu2+ (and possibly other heavy metals) in a freshwater environment. PMID:18078977

  9. Two distinct roles of the yorkie/yap gene during homeostasis in the planarian Dugesia japonica

    PubMed Central

    Hwang, Byulnim; An, Yang; Agata, Kiyokazu; Umesono, Yoshihiko

    2015-01-01

    Adult planarians possess somatic pluripotent stem cells called neoblasts that give rise to all missing cell types during regeneration and homeostasis. Recent studies revealed that the Yorkie (Yki)/Yes-associated protein (YAP) transcriptional coactivator family plays an important role in the regulation of tissue growth during development and regeneration, and therefore we investigated the role of a planarian yki-related gene (termed Djyki) during regeneration and homeostasis of the freshwater planarian Dugesia japonica. We found that knockdown of the function of Djyki by RNA interference (RNAi) downregulated neoblast proliferation and caused regeneration defects after amputation. In addition, Djyki RNAi caused edema during homeostasis. These seemingly distinct defects induced by Djyki RNAi were rescued by simultaneous RNAi of a planarian mats-related gene (termed Djmats), suggesting an important role of Djmats in the negative regulation of Djyki, in accordance with the conservation of the functional relationship of these two genes during the course of evolution. Interestingly, Djyki RNAi did not prevent normal protonephridial structure, suggesting that Djyki RNAi induced the edema phenotype without affecting the excretory system. Further analyses revealed that increased expression of the D. japonica gene DjaquaporinA (DjaqpA), which belongs to a large gene family that encodes a water channel protein for the regulation of transcellular water flow, promoted the induction of edema, but not defects in neoblast dynamics, in Djyki(RNAi) animals. Thus, we conclude that Djyki plays two distinct roles in the regulation of active proliferation of stem cells and in osmotic water transport across the body surface in D. japonica. PMID:25708270

  10. Planarians as a model of aging to study the interaction between stem cells and senescent cells in vivo.

    PubMed

    Perrigue, Patrick M; Najbauer, Joseph; Jozwiak, Agnieszka A; Barciszewski, Jan; Aboody, Karen S; Barish, Michael E

    2015-01-01

    The depletion of stem cell pools and the accumulation of senescent cells in animal tissues are linked to aging. Planarians are invertebrate flatworms and are unusual in that their stem cells, called neoblasts, are constantly replacing old and dying cells. By eliminating neoblasts in worms via irradiation, the biological principles of aging are exposed in the absence of wound healing and regeneration, making planaria a powerful tool for aging research. PMID:26654402

  11. Specific features of the planarian Dugesia tigrina regeneration and mollusk Helix albescens nociception under weak electromagnetic shielding

    NASA Astrophysics Data System (ADS)

    Temur'yants, N. A.; Demtsun, N. A.; Kostyuk, A. S.; Yarmolyuk, N. S.

    2012-12-01

    It has been demonstrated that weak electromagnetic shielding stimulates regeneration in the planarian Dugesia tigrina, the stimulating intensity being dependent on both the initial state of the animals, which is determined by season, and their functional asymmetry. As has been shown, the effect of a weak electromagnetic field induces phasic changes in the nociceptive sensitivity of the mollusk Helix albescens: an increase in the sensitivity to a thermal stimulus is replaced by the development of the hypalgesic effect.

  12. Screening in planarians identifies MORN2 as a key component in LC3-associated phagocytosis and resistance to bacterial infection.

    PubMed

    Abnave, Prasad; Mottola, Giovanna; Gimenez, Gregory; Boucherit, Nicolas; Trouplin, Virginie; Torre, Cedric; Conti, Filippo; Ben Amara, Amira; Lepolard, Catherine; Djian, Benjamin; Hamaoui, Daniel; Mettouchi, Amel; Kumar, Atul; Pagnotta, Sophie; Bonatti, Stefano; Lepidi, Hubert; Salvetti, Alessandra; Abi-Rached, Laurent; Lemichez, Emmanuel; Mege, Jean-Louis; Ghigo, Eric

    2014-09-10

    Dugesia japonica planarian flatworms are naturally exposed to various microbes but typically survive this challenge. We show that planarians eliminate bacteria pathogenic to Homo sapiens, Caenorhabditis elegans, and/or Drosophila melanogaster and thus represent a model to identify innate resistance mechanisms. Whole-transcriptome analysis coupled with RNAi screening of worms infected with Staphylococcus aureus or Legionella pneumophila identified 18 resistance genes with nine human orthologs, of which we examined the function of MORN2. Human MORN2 facilitates phagocytosis-mediated restriction of Mycobacterium tuberculosis, L. pneumophila, and S. aureus in macrophages. MORN2 promotes the recruitment of LC3, an autophagy protein also involved in phagocytosis, to M. tuberculosis-containing phagosomes and subsequent maturation to degradative phagolysosomes. MORN2-driven trafficking of M. tuberculosis to single-membrane, LC3-positive compartments requires autophagy-related proteins Atg5 and Beclin-1, but not Ulk-1 and Atg13, highlighting the importance of MORN2 in LC3-associated phagocytosis. These findings underscore the value of studying planarian defenses to identify immune factors. PMID:25211076

  13. Molecular cloning and characterization of SL3: a stem cell-specific SL RNA from the planarian Schmidtea mediterranea.

    PubMed

    Rossi, Alessandro; Ross, Eric J; Jack, Antonia; Sánchez Alvarado, Alejandro

    2014-01-01

    Spliced leader (SL) trans-splicing is a biological phenomenon, common among many metazoan taxa, consisting in the transfer of a short leader sequence from a small SL RNA to the 5' end of a subset of pre-mRNAs. While knowledge of the biochemical mechanisms driving this process has accumulated over the years, the functional consequences of such post-transcriptional event at the organismal level remain unclear. In addition, the fact that functional analyses have been undertaken mainly in trypanosomes and nematodes leaves a somehow fragmented picture of the possible biological significance and evolution of SL trans-splicing in eukaryotes. Here, we analyzed the spatial expression of SL RNAs in the planarian flatworm Schmidtea mediterranea, with the goal of identifying novel developmental paradigms for the study of trans-splicing in metazoans. Besides the previously identified SL1 and SL2, S. mediterranea expresses a third SL RNA described here as SL3. While, SL1 and SL2 are collectively expressed in a broad range of planarian cell types, SL3 is highly enriched in a subset of the planarian stem cells engaged in regenerative responses. Our findings provide new opportunities to study how trans-splicing may regulate the phenotype of a cell. PMID:24120894

  14. Riluzole attenuates the effects of chemoconvulsants acting on glutamatergic and GABAergic neurotransmission in the planarian Dugesia tigrina.

    PubMed

    Ramakrishnan, Latha; Dalhoff, Zachary; Fettig, Samantha L; Eggerichs, Michael R; Nelson, Briegette E; Shrestha, Bibita; Elshikh, Amira H; Karki, Pratima

    2013-10-15

    Planarians, the non-parasitic flatworms, display dose-dependent, distinct (C-like and corkscrew-like) hyperkinesias upon exposure to 0.001-10 mM aqueous solutions of glutamatergic agonists (L-glutamate and N-methyl-D-aspartate (NMDA)) and 0.001-5 mM concentrations of the glutamate decarboxylase (GAD) inhibitor (semicarbazide). In the planarian seizure-like activity (PSLA) experiments the three chemoconvulsants displayed the following order of potency (EC50): L-glutamate (0.6mM)>NMDA (1.4 mM)>semicarbazide (4.5mM). Planarian hyperkinesias behavior counting experiments also revealed that riluzole (0.001 to 1mM), an anti-convulsive agent, displayed no significant behavioral activity by itself, but attenuated hyperkinesias elicited by the three chemoconvulsants targeting either glutamatergic or GABAergic neurotransmission with the following order of potency (IC50): NMDA (44.7 µM)>semicarbazide (88.3 µM)>L-glutamate (160 µM). Further, (+)-MK-801, a specific NMDA antagonist, alleviated 3mM NMDA (47%) or 3mM L-glutamate (27%) induced planarian hyperkinesias. The results provide pharmacological evidence for the presence of glutamatergic receptor-like and semicarbazide sensitive functional GAD enzyme-like proteins in planaria in addition to demonstrating, for the first time, the anti-convulsive effects of riluzole in an invertebrate model. High performance liquid chromatography coupled with fluorescence detection (HPLC-F) analysis performed on planarian extracts post no drug treatment (control) or treatment with 3mM semicarbazide, combination of 3mM semicarbazide and 0.1 mM riluzole, or 0.1 mM riluzole revealed that 3 mM semicarbazide induced 35% decrease in the GABA levels and a combination of 3mM semicarbazide and 0.1 mM riluzole induced 42% decrease in glutamate levels with respect to the control group. PMID:23872399

  15. Embryonic development of the nervous system in the planarian Schmidtea polychroa.

    PubMed

    Monjo, Francisco; Romero, Rafael

    2015-01-15

    The development of a nervous system is a key innovation in the evolution of metazoans, which is illustrated by the presence of a common developmental toolkit for the formation of this organ system. Neurogenesis in the Spiralia, in particular the Platyhelminthes, is, however, poorly understood when compared with other animal groups. Here, we characterize embryonic neurogenesis in the freshwater flatworm Schmidtea polychroa and analyze the expression of soxB and a set of proneural bHLH genes, which are gene families with a well-established role in metazoan early neural development. We show that the nervous system is fully de novo assembled after the early embryo ingests the maternal nutrients. At early stages of neurogenesis, soxB1 genes are expressed in putative neural progenitor cells, whereas soxB2 and neural bHLH genes (achaete-scute, neuroD and beta3) are associated with late neurogenesis and the specification of neural subpopulations of the central and peripheral nervous system. Our findings are consistent with the role of proneural genes in other bilaterians, suggesting that the ancestral neural-specific gene regulatory network is conserved in triclads, despite exhibiting a divergent mode of development. PMID:25446032

  16. Ethanol and cocaine: environmental place conditioning, stereotypy, and synergism in planarians.

    PubMed

    Tallarida, Christopher S; Bires, Kristopher; Avershal, Jacob; Tallarida, Ronald J; Seo, Stephanie; Rawls, Scott M

    2014-09-01

    More than 90% of individuals who use cocaine also report concurrent ethanol use, but only a few studies, all conducted with vertebrates, have investigated pharmacodynamic interactions between ethanol and cocaine. Planaria, a type of flatworm often considered to have the simplest 'brain,' is an invertebrate species especially amenable to the quantification of drug-induced behavioral responses and identification of conserved responses. Here, we investigated stereotypical and environmental place conditioning (EPC) effects of ethanol administered alone and in combination with cocaine. Planarians displayed concentration-related increases in C-shaped movements following exposure to ethanol (0.01-1%) (maximal effect: 9.9±1.1 C-shapes/5 min at 0.5%) or cocaine (0.1-5 mM) (maximal effect: 42.8±4.1 C-shapes/5 min at 5 mM). For combined administration, cocaine (0.1-5 mM) was tested with submaximal ethanol concentrations (0.01, 0.1%); the observed effect for the combination was enhanced compared to its predicted effect, indicating synergism for the interaction. The synergy with ethanol was specific for cocaine, as related experiments revealed that combinations of ethanol and nicotine did not result in synergy. For EPC experiments, ethanol (0.0001-1%) concentration-dependently increased EPC, with significant environmental shifts detected at 0.01 and 1%. Cocaine (0.001-1 ?M) produced an inverted U-shaped concentration-effect curve, with a significant environmental shift observed at 0.01 ?M. For combined exposure, variable cocaine concentrations (0.001-1 ?M) were administered with a statistically ineffective concentration of ethanol (0.0001%). For each concentration of cocaine, the environmental shift was enhanced by ethanol, with significance detected at 1 ?M. Cocaethylene, a metabolite of cocaine and ethanol, also produced C-shapes and EPC. Lidocaine (0.001-10 ?M), an anesthetic and analog of cocaine, did not produce EPC or C-shaped movements. Evidence from planarians that ethanol produces place-conditioning effects and motor dysfunction, and interacts synergistically with cocaine, suggests that aspects of ethanol neuropharmacology are conserved across species. PMID:25212751

  17. Ethanol and cocaine: environmental place conditioning, stereotypy and synergism in planarians

    PubMed Central

    Tallarida, Christopher S.; Bires, Kristopher; Avershal, Jacob; Tallarida, Ronald J.; Seo, Stephanie; Rawls, Scott M.

    2015-01-01

    More than 90% of individuals who use cocaine also report concurrent ethanol use, but only a few studies, all conducted with vertebrates, have investigated pharmacodynamic interactions between ethanol and cocaine. Planaria, a type of flatworm often considered to have the simplest ‘brain’, is an invertebrate species especially amenable to the quantification of drug-induced behavioral responses and identification of conserved responses. Here, we investigated stereotypical and environmental place conditioning (EPC) effects of ethanol administered alone and in combination with cocaine. Planarians displayed concentration-related increases in C-shape movements following exposure to ethanol (0.01 – 1%) (maximal effect: 9.9 ± 1.1 C-shapes/5 min at 0.5%) or cocaine (0.1 – 5 mM) (maximal effect: 42.8 ± 4.1 C-shapes/5 min at 5 mM). For combined administration, cocaine (0.1 – 5 mM) were tested with submaximal ethanol concentrations (0.01, 0,1%), the observed effect for the combination was enhanced compared to its predicted effect, indicating synergism for the interaction. The synergy with ethanol was specific for cocaine, as related experiments revealed that combinations of ethanol and nicotine did not result in synergy. For EPC experiments, ethanol (0.0001 – 1%) concentration-dependently increased EPC, with significant environmental shifts detected at 0.01 and 1%. Cocaine (0.001 – 1 ?M) produced an inverted U-shaped concentration-effect curve, with a significant environmental shift observed at 0.01 ?M. For combined exposure, variable cocaine concentrations (0.001 – 1 ?M) were administered with a statistically ineffective concentration of ethanol (0.0001%). For each concentration of cocaine, the environmental shift was enhanced by ethanol, with significance detected at 1 ?M. Cocaethylene, a metabolite of cocaine and ethanol, also produced C-shapes and EPC. Lidocaine (0.001 – 10 ?M), an anesthetic and analog of cocaine, did not produce EPC or C-shape movements. Evidence from planarians that ethanol produces place-conditioning effects, motor dysfunction, and interacts synergistically with cocaine suggests that aspects of ethanol neuropharmacology are conserved across species. PMID:25212751

  18. No Evidence for a Culturable Bacterial Tetrodotoxin Producer in Pleurobranchaea maculata (Gastropoda: Pleurobranchidae) and Stylochoplana sp. (Platyhelminthes: Polycladida)

    PubMed Central

    Salvitti, Lauren R.; Wood, Susanna A.; McNabb, Paul; Cary, Stephen Craig

    2015-01-01

    Tetrodotoxin (TTX) is a potent neurotoxin found in the tissues of many taxonomically diverse organisms. Its origin has been the topic of much debate, with suggestions including endogenous production, acquisition through diet, and symbiotic bacterial synthesis. Bacterial production of TTX has been reported in isolates from marine biota, but at lower than expected concentrations. In this study, 102 strains were isolated from Pleurobranchaea maculata (Opisthobranchia) and Stylochoplana sp. (Platyhelminthes). Tetrodotoxin production was tested utilizing a recently developed sensitive method to detect the C9 base of TTX via liquid chromatography—mass spectrometry. Bacterial strains were characterized by sequencing a region of the 16S ribosomal RNA gene. To account for the possibility that TTX is produced by a consortium of bacteria, a series of experiments using marine broth spiked with various P. maculata tissues were undertaken. Sixteen unique strains from P. maculata and one from Stylochoplana sp. were isolated, representing eight different genera; Pseudomonadales, Actinomycetales, Oceanospirillales, Thiotrichales, Rhodobacterales, Sphingomonadales, Bacillales, and Vibrionales. Molecular fingerprinting of bacterial communities from broth experiments showed little change over the first four days. No C9 base or TTX was detected in isolates or broth experiments (past day 0), suggesting a culturable microbial source of TTX in P. maculata and Stylochoplana sp. is unlikely. PMID:25635464

  19. A new genus and species for the first recorded cave-dwelling Cavernicola (Platyhelminthes) from South America

    PubMed Central

    Leal-Zanchet, Ana Maria; de Souza, Stella Teles; Ferreira, Rodrigo Lopes

    2014-01-01

    Abstract Species diversity of Brazilian cave fauna has been seriously underestimated. A karst area located in Felipe Guerra, northeastern Brazil, which is a hotspot of subterranean diversity in Brazil, has revealed more than 20 troglobitic species, most of them still undescribed. Based on recent samplings in this karst area, we document the occurrence of the suborder Cavernicola (Platyhelminthes) in South American hypogean environments for the first time and describe a new genus and species for this suborder. Hausera Leal-Zanchet & Souza, gen. n. has features concordant with those defined for the family Dimarcusidae. The new genus is characterized by two unique features, viz. an intestine extending dorsally to the brain and ovovitelline ducts located dorsally to the nerve cords, which is complemented by a combination of other characters. The type-specimens of Hausera hauseri Leal-Zanchet & Souza, sp. n. are typical stygobionts, unpigmented and eyeless, and they may constitute an oceanic relict as is the case of other stygobiotic invertebrates found in this karst area in northeastern Brazil. PMID:25349486

  20. Complete Sequence of the mitochondrial genome of the tapeworm Hymenolepis diminuta: Gene arrangements indicate that platyhelminths are eutrochozoans

    SciTech Connect

    von Nickisch-Rosenegk, Markus; Brown, Wesley M.; Boore, Jeffrey L.

    2001-01-01

    Using ''long-PCR'' we have amplified in overlapping fragments the complete mitochondrial genome of the tapeworm Hymenolepis diminuta (Platyhelminthes: Cestoda) and determined its 13,900 nucleotide sequence. The gene content is the same as that typically found for animal mitochondrial DNA (mtDNA) except that atp8 appears to be lacking, a condition found previously for several other animals. Despite the small size of this mtDNA, there are two large non-coding regions, one of which contains 13 repeats of a 31 nucleotide sequence and a potential stem-loop structure of 25 base pairs with an 11-member loop. Large potential secondary structures are identified also for the non-coding regions of two other cestode mtDNAs. Comparison of the mitochondrial gene arrangement of H. diminuta with those previously published supports a phylogenetic position of flatworms as members of the Eutrochozoa, rather than being basal to either a clade of protostomes or a clade of coelomates.

  1. zic-1 Expression in Planarian Neoblasts after Injury Controls Anterior Pole Regeneration

    PubMed Central

    Vásquez-Doorman, Constanza; Petersen, Christian P.

    2014-01-01

    Mechanisms that enable injury responses to prompt regenerative outgrowth are not well understood. Planarians can regenerate essentially any tissue removed by wounding, even after decapitation, due to robust regulation of adult pluripotent stem cells of the neoblast population. Formation of pole signaling centers involving Wnt inhibitors or Wnt ligands promotes head or tail regeneration, respectively, and this process requires the use of neoblasts early after injury. We used expression profiling of purified neoblasts to identify factors needed for anterior pole formation. Using this approach, we identified zic-1, a Zic-family transcription factor, as transcriptionally activated in a subpopulation of neoblasts near wound sites early in head regeneration. As head regeneration proceeds, the Wnt inhibitor notum becomes expressed in the newly forming anterior pole in zic-1-expressing cells descended from neoblasts. Inhibition of zic-1 by RNAi resulted in a failure to express notum at the anterior pole and to regenerate a head, but did not affect tail regeneration. Both injury and canonical Wnt signaling inhibition are required for zic-1 expression, and double-RNAi experiments suggest zic-1 inhibits Wnt signaling to allow head regeneration. Analysis of neoblast fate determinants revealed that zic-1 controls specification of notum-expressing cells from foxD-expressing neoblasts to form the anterior pole, which organizes subsequent outgrowth. Specialized differentiation programs may in general underlie injury-dependent formation of tissue organizing centers used for regenerative outgrowth. PMID:24992682

  2. Reactive Oxygen Species in Planarian Regeneration: An Upstream Necessity for Correct Patterning and Brain Formation.

    PubMed

    Pirotte, Nicky; Stevens, An-Sofie; Fraguas, Susanna; Plusquin, Michelle; Van Roten, Andromeda; Van Belleghem, Frank; Paesen, Rik; Ameloot, Marcel; Cebrià, Francesc; Artois, Tom; Smeets, Karen

    2015-01-01

    Recent research highlighted the impact of ROS as upstream regulators of tissue regeneration. We investigated their role and targeted processes during the regeneration of different body structures using the planarian Schmidtea mediterranea, an organism capable of regenerating its entire body, including its brain. The amputation of head and tail compartments induces a ROS burst at the wound site independently of the orientation. Inhibition of ROS production by diphenyleneiodonium (DPI) or apocynin (APO) causes regeneration defaults at both the anterior and posterior wound sites, resulting in reduced regeneration sites (blastemas) and improper tissue homeostasis. ROS signaling is necessary for early differentiation and inhibition of the ROS burst results in defects on the regeneration of the nervous system and on the patterning process. Stem cell proliferation was not affected, as indicated by histone H3-P immunostaining, fluorescence-activated cell sorting (FACS), in situ hybridization of smedwi-1, and transcript levels of proliferation-related genes. We showed for the first time that ROS modulate both anterior and posterior regeneration in a context where regeneration is not limited to certain body structures. Our results indicate that ROS are key players in neuroregeneration through interference with the differentiation and patterning processes. PMID:26180588

  3. Toxicity of a hazardous chemical mixture in the planarian, Dugesia dorotocephala

    SciTech Connect

    Ramsdell, H.S.; Matthews, C.M.

    1995-12-31

    The responses of the planarian, Dugesia dorotocephala to toxic chemical mixtures representative of water contaminants associated with hazardous waste sites have been studied in laboratory experiments. These free-living flatworms are readily maintained under laboratory conditions and are a useful invertebrate model for toxicology studies. Their widespread occurrence also makes them potentially useful for environmental studies. Mature asexual Dugesia dorotocephala were exposed for 14 days to mixtures of seven contaminants frequently detected in water at hazardous waste sites. The complete 1X mixture contained both metals (As, 3.1 ppm; Cr, 0.7 ppm; Pb, 3.7 ppm) and organics (chloroform, 1.5 ppm; benzene, 5.0 ppm; phenol, 3.4 ppm; trichloroethylene, 3.8 ppm). Groups of planaria were treated with the complete mixture at 0.1X, 1X and 10X concentrations. Additional groups were exposed to the metals-only or organics-only submixtures, also at 0.1X, 1X and 10X concentrations. Treatment solutions were renewed daily. Suppression of fissioning was observed in all of the 1X and 10X treatment groups. Significant mortality occurred only in the 10X complete and 1 0X metals-only treatments. It appears that the toxic effects of the complete mixture are primarily associated with the metal components.

  4. Reactive Oxygen Species in Planarian Regeneration: An Upstream Necessity for Correct Patterning and Brain Formation

    PubMed Central

    Pirotte, Nicky; Stevens, An-Sofie; Fraguas, Susanna; Plusquin, Michelle; Van Roten, Andromeda; Van Belleghem, Frank; Paesen, Rik; Ameloot, Marcel; Cebrià, Francesc; Artois, Tom; Smeets, Karen

    2015-01-01

    Recent research highlighted the impact of ROS as upstream regulators of tissue regeneration. We investigated their role and targeted processes during the regeneration of different body structures using the planarian Schmidtea mediterranea, an organism capable of regenerating its entire body, including its brain. The amputation of head and tail compartments induces a ROS burst at the wound site independently of the orientation. Inhibition of ROS production by diphenyleneiodonium (DPI) or apocynin (APO) causes regeneration defaults at both the anterior and posterior wound sites, resulting in reduced regeneration sites (blastemas) and improper tissue homeostasis. ROS signaling is necessary for early differentiation and inhibition of the ROS burst results in defects on the regeneration of the nervous system and on the patterning process. Stem cell proliferation was not affected, as indicated by histone H3-P immunostaining, fluorescence-activated cell sorting (FACS), in situ hybridization of smedwi-1, and transcript levels of proliferation-related genes. We showed for the first time that ROS modulate both anterior and posterior regeneration in a context where regeneration is not limited to certain body structures. Our results indicate that ROS are key players in neuroregeneration through interference with the differentiation and patterning processes. PMID:26180588

  5. A Generic and Cell-Type-Specific Wound Response Precedes Regeneration in Planarians.

    PubMed

    Wurtzel, Omri; Cote, Lauren E; Poirier, Amber; Satija, Rahul; Regev, Aviv; Reddien, Peter W

    2015-12-01

    Regeneration starts with injury. Yet how injuries affect gene expression in different cell types and how distinct injuries differ in gene expression remain unclear. We defined the transcriptomes of major cell types of planarians-flatworms that regenerate from nearly any injury-and identified 1,214 tissue-specific markers across 13 cell types. RNA sequencing on 619 single cells revealed that wound-induced genes were expressed either in nearly all cell types or specifically in one of three cell types (stem cells, muscle, or epidermis). Time course experiments following different injuries indicated that a generic wound response is activated with any injury regardless of the regenerative outcome. Only one gene, notum, was differentially expressed early between anterior- and posterior-facing wounds. Injury-specific transcriptional responses emerged 30 hr after injury, involving context-dependent patterning and stem-cell-specialization genes. The regenerative requirement of every injury is different; however, our work demonstrates that all injuries start with a common transcriptional response. PMID:26651295

  6. zic-1 Expression in Planarian neoblasts after injury controls anterior pole regeneration.

    PubMed

    Vásquez-Doorman, Constanza; Petersen, Christian P

    2014-07-01

    Mechanisms that enable injury responses to prompt regenerative outgrowth are not well understood. Planarians can regenerate essentially any tissue removed by wounding, even after decapitation, due to robust regulation of adult pluripotent stem cells of the neoblast population. Formation of pole signaling centers involving Wnt inhibitors or Wnt ligands promotes head or tail regeneration, respectively, and this process requires the use of neoblasts early after injury. We used expression profiling of purified neoblasts to identify factors needed for anterior pole formation. Using this approach, we identified zic-1, a Zic-family transcription factor, as transcriptionally activated in a subpopulation of neoblasts near wound sites early in head regeneration. As head regeneration proceeds, the Wnt inhibitor notum becomes expressed in the newly forming anterior pole in zic-1-expressing cells descended from neoblasts. Inhibition of zic-1 by RNAi resulted in a failure to express notum at the anterior pole and to regenerate a head, but did not affect tail regeneration. Both injury and canonical Wnt signaling inhibition are required for zic-1 expression, and double-RNAi experiments suggest zic-1 inhibits Wnt signaling to allow head regeneration. Analysis of neoblast fate determinants revealed that zic-1 controls specification of notum-expressing cells from foxD-expressing neoblasts to form the anterior pole, which organizes subsequent outgrowth. Specialized differentiation programs may in general underlie injury-dependent formation of tissue organizing centers used for regenerative outgrowth. PMID:24992682

  7. Amputation induces stem cell mobilization to sites of injury during planarian regeneration.

    PubMed

    Guedelhoefer, Otto C; Sánchez Alvarado, Alejandro

    2012-10-01

    How adult stem cell populations are recruited for tissue renewal and repair is a fundamental question of biology. Mobilization of stem cells out of their niches followed by correct migration and differentiation at a site of tissue turnover or injury are important requirements for proper tissue maintenance and regeneration. However, we understand little about the mechanisms that control this process, possibly because the best studied vertebrate adult stem cell systems are not readily amenable to in vivo observation. Furthermore, few clear examples of the recruitment of fully potent stem cells, compared with limited progenitors, are known. Here, we show that planarian stem cells directionally migrate to amputation sites during regeneration. We also show that during tissue homeostasis they are stationary. Our study not only uncovers the existence of specific recruitment mechanisms elicited by amputation, but also sets the stage for the systematic characterization of evolutionarily conserved stem cell regulatory processes likely to inform stem cell function and dysfunction in higher organisms, including humans. PMID:22899852

  8. Reproductive mode and ovarian morphology regulation in chimeric planarians composed of asexual and sexual neoblasts.

    PubMed

    Nodono, Hanae; Matsumoto, Midori

    2012-07-01

    Planarians are comprised of populations with different reproductive strategies: exclusively innately asexual (AS), exclusively innately sexual (InS), and seasonally switching. AS worms can be sexualized experimentally by feeding them with minced InS worms, and the resultant worms are characterized as acquired sexual (AqS). Differences between InS and AqS worms are expected to provide important clues to the poorly understood mechanism underlying the regulation of their reproductive mode. Morphological differences were found between InS and AqS worm ovaries, and we showed that the pluripotent stem cells (neoblasts) from InS worms, but not those of AqS worms, have the capacity to initiate the sexual state autonomously via neoblast fraction transplantation. To compare their reproductive mode and ovarian morphology regulation, InS donor neoblast fractions were transplanted into non-lethally X-ray-irradiated AS recipients. All transplants showed stable chimerism and reproduced sexually, suggesting that InS worm neoblasts can initiate sexual state autonomously, even when coexisting with AS worm neoblasts. The chimeras formed extraordinarily large and supernumerary ovaries equivalent to AqS worms, which were not seen in InS worms, suggesting that regulation of ovarian morphology in AS worm-derived cells in response to endogenous sexualizing stimulation distinctly differs from that of InS worms. PMID:22565827

  9. smedinx-11 is a planarian stem cell gap junction gene required for regeneration and homeostasis.

    PubMed

    Oviedo, Néstor J; Levin, Michael

    2007-09-01

    The largely unknown mechanisms that regulate adult stem cells probably involve signals from neighboring differentiated cells. Gap junction channels providing direct cell-cell communication via small molecules are a crucial component of morphogenesis and normal physiology. However, no specific gap junction protein has yet been functionally linked to adult/somatic stem cell behavior in vivo or to organ regeneration. We report the identification and characterization of smedinx-11--an innexin gap junction channel gene expressed in the adult stem cells (neoblasts) of the planarian Schmidtea mediterranea. smedinx-11 RNAi treatment inhibits regeneration and abrogates neoblast maintenance. Moreover, smedinx-11 expression is enriched in an irradiation-sensitive subpopulation (;X2') and is required for proper expression of other stem cell-specific markers. Analyses of the smedinx-11 downregulation phenotype revealed a striking anterior-posterior neoblast gradient. Our data demonstrate a novel role for gap junction proteins and suggest gap junction-mediated signaling as a new and tractable control point for adult, somatic stem cell regulation. PMID:17670787

  10. DrRad51 is required for chiasmata formation in meiosis in planarian Dugesia ryukyuensis.

    PubMed

    Chinone, Ayako; Matsumoto, Midori

    2014-05-01

    Rad51, a conserved eukaryotic protein, mediates the homologous-recombination repair of DNA double-strand breaks that occur during both mitosis and meiosis. During prophase I of meiosis, homologous recombination enhances the linkage between homologous chromosomes to increase the accuracy of segregation at anaphase I. In polyploidy situations, however, difficulties with homologous chromosome segregation often disrupt meiosis. Yet, triploid individuals of the planarian Dugesia ryukyuensis are able to produce functional gametes through a specialized form of meiosis. To shed light on the molecular mechanisms that promote successful meiosis in triploid D. ryukyuensis, we investigated rad51 gene function. We isolated three genes of the Rad51 family, the Rad51 homolog Dr-rad51 and the Rad51 paralogs Dr-rad51B and Dr-rad51C. Dr-rad51 was expressed in germ-line and presumably in somatic stem cells, but was not necessary for the regeneration of somatic tissue. RNA-interference (RNAi) depletion of Dr-rad51 during sexualization did not affect chromosome behavior in zygotene oocytes, but did result in the loss of chiasmata at the diplotene stage. Thus, homologous recombination does not appear to be necessary for synapsis, but is needed for crossover and proper segregation in D. ryukyuensis. PMID:24488935

  11. Production of asexual and sexual offspring in the triploid sexual planarian Dugesia ryukyuensis.

    PubMed

    Kobayashi, Kazuya; Arioka, Sachiko; Hoshi, Motonori; Matsumoto, Midori

    2009-09-01

    Certain freshwater planarians reproduce asexually as well as sexually, and their chromosomal ploidies include polyploidy, aneuploidy and mixoploidy. Previously, we successfully performed an experiment in which a clonal population produced by asexual reproduction of the Dugesia ryukyuensis (OH strain) switched to the sexual mode of reproduction. Worms of this strain are triploid with a pericentric inversion on Chromosome 4. The worms were switched to sexual reproduction after being fed with sexually mature Bdellocephala brunnea, which is a sexually reproducing species. The resulting sexualized OH strain produced cocoons filled with several eggs. Two putative factors, Mendelian factor(s) and chromosomal control(s), have been proposed as determining the reproductive mode. The present study demonstrated that inbreeding of the resultant sexualized worms produced the following four types of offspring through sexual reproduction: diploid asexual worms, triploid asexual worms, diploid sexual worms and triploid sexual worms. The chromosomal mutation on Chromosome 4 was inherited by these offspring independent of their reproductive mode. These results provide two important pieces of information: (i) the putative genetic factor was not necessarily inherited in a Mendelian fashion; and (ii) the reproductive mode is not regulated by chromosomal changes such as polyploidy or chromosomal mutations. This suggests that asexuality in D. ryukyuensis is regulated by an unknown factor(s) other than a Mendelian factor or a chromosomal control. PMID:21392298

  12. Gene expression of pluripotency determinants is conserved between mammalian and planarian stem cells.

    PubMed

    Onal, Pinar; Grün, Dominic; Adamidi, Catherine; Rybak, Agnieszka; Solana, Jordi; Mastrobuoni, Guido; Wang, Yongbo; Rahn, Hans-Peter; Chen, Wei; Kempa, Stefan; Ziebold, Ulrike; Rajewsky, Nikolaus

    2012-06-13

    Freshwater planaria possess extreme regeneration capabilities mediated by abundant, pluripotent stem cells (neoblasts) in adult animals. Although planaria emerged as an attractive in vivo model system for stem cell biology, gene expression in neoblasts has not been profiled comprehensively and it is unknown how molecular mechanisms for pluripotency in neoblasts relate to those in mammalian embryonic stem cells (ESCs). We purified neoblasts and quantified mRNA and protein expression by sequencing and shotgun proteomics. We identified ?4000 genes specifically expressed in neoblasts, including all ?30 known neoblast markers. Genes important for pluripotency in ESCs, including regulators as well as targets of OCT4, were well conserved and upregulated in neoblasts. We found conserved expression of epigenetic regulators and demonstrated their requirement for planarian regeneration by knockdown experiments. Post-transcriptional regulatory genes characteristic for germ cells were also enriched in neoblasts, suggesting the existence of a common ancestral state of germ cells and ESCs. We conclude that molecular determinants of pluripotency are conserved throughout evolution and that planaria are an informative model system for human stem cell biology. PMID:22543868

  13. A planarian p53 homolog regulates proliferation and self-renewal in adult stem cell lineages.

    PubMed

    Pearson, Bret J; Sánchez Alvarado, Alejandro

    2010-01-01

    The functions of adult stem cells and tumor suppressor genes are known to intersect. However, when and how tumor suppressors function in the lineages produced by adult stem cells is unknown. With a large population of stem cells that can be manipulated and studied in vivo, the freshwater planarian is an ideal system with which to investigate these questions. Here, we focus on the tumor suppressor p53, homologs of which have no known role in stem cell biology in any invertebrate examined thus far. Planaria have a single p53 family member, Smed-p53, which is predominantly expressed in newly made stem cell progeny. When Smed-p53 is targeted by RNAi, the stem cell population increases at the expense of progeny, resulting in hyper-proliferation. However, ultimately the stem cell population fails to self-renew. Our results suggest that prior to the vertebrates, an ancestral p53-like molecule already had functions in stem cell proliferation control and self-renewal. PMID:20040488

  14. JNK controls the onset of mitosis in planarian stem cells and triggers apoptotic cell death required for regeneration and remodeling.

    PubMed

    Almuedo-Castillo, María; Crespo-Yanez, Xenia; Crespo, Xenia; Seebeck, Florian; Bartscherer, Kerstin; Salò, Emili; Adell, Teresa

    2014-06-01

    Regeneration of lost tissues depends on the precise interpretation of molecular signals that control and coordinate the onset of proliferation, cellular differentiation and cell death. However, the nature of those molecular signals and the mechanisms that integrate the cellular responses remain largely unknown. The planarian flatworm is a unique model in which regeneration and tissue renewal can be comprehensively studied in vivo. The presence of a population of adult pluripotent stem cells combined with the ability to decode signaling after wounding enable planarians to regenerate a complete, correctly proportioned animal within a few days after any kind of amputation, and to adapt their size to nutritional changes without compromising functionality. Here, we demonstrate that the stress-activated c-jun-NH2-kinase (JNK) links wound-induced apoptosis to the stem cell response during planarian regeneration. We show that JNK modulates the expression of wound-related genes, triggers apoptosis and attenuates the onset of mitosis in stem cells specifically after tissue loss. Furthermore, in pre-existing body regions, JNK activity is required to establish a positive balance between cell death and stem cell proliferation to enable tissue renewal, remodeling and the maintenance of proportionality. During homeostatic degrowth, JNK RNAi blocks apoptosis, resulting in impaired organ remodeling and rescaling. Our findings indicate that JNK-dependent apoptotic cell death is crucial to coordinate tissue renewal and remodeling required to regenerate and to maintain a correctly proportioned animal. Hence, JNK might act as a hub, translating wound signals into apoptotic cell death, controlled stem cell proliferation and differentiation, all of which are required to coordinate regeneration and tissue renewal. PMID:24922054

  15. JNK Controls the Onset of Mitosis in Planarian Stem Cells and Triggers Apoptotic Cell Death Required for Regeneration and Remodeling

    PubMed Central

    Almuedo-Castillo, María; Crespo, Xenia; Seebeck, Florian; Bartscherer, Kerstin; Salò, Emili; Adell, Teresa

    2014-01-01

    Regeneration of lost tissues depends on the precise interpretation of molecular signals that control and coordinate the onset of proliferation, cellular differentiation and cell death. However, the nature of those molecular signals and the mechanisms that integrate the cellular responses remain largely unknown. The planarian flatworm is a unique model in which regeneration and tissue renewal can be comprehensively studied in vivo. The presence of a population of adult pluripotent stem cells combined with the ability to decode signaling after wounding enable planarians to regenerate a complete, correctly proportioned animal within a few days after any kind of amputation, and to adapt their size to nutritional changes without compromising functionality. Here, we demonstrate that the stress-activated c-jun–NH2–kinase (JNK) links wound-induced apoptosis to the stem cell response during planarian regeneration. We show that JNK modulates the expression of wound-related genes, triggers apoptosis and attenuates the onset of mitosis in stem cells specifically after tissue loss. Furthermore, in pre-existing body regions, JNK activity is required to establish a positive balance between cell death and stem cell proliferation to enable tissue renewal, remodeling and the maintenance of proportionality. During homeostatic degrowth, JNK RNAi blocks apoptosis, resulting in impaired organ remodeling and rescaling. Our findings indicate that JNK-dependent apoptotic cell death is crucial to coordinate tissue renewal and remodeling required to regenerate and to maintain a correctly proportioned animal. Hence, JNK might act as a hub, translating wound signals into apoptotic cell death, controlled stem cell proliferation and differentiation, all of which are required to coordinate regeneration and tissue renewal. PMID:24922054

  16. Regeneration-dependent conditional gene knockdown (Readyknock) in planarian: demonstration of requirement for Djsnap-25 expression in the brain for negative phototactic behavior.

    PubMed

    Takano, Tomomi; Pulvers, Jeremy N; Inoue, Takeshi; Tarui, Hiroshi; Sakamoto, Hiroshi; Agata, Kiyokazu; Umesono, Yoshihiko

    2007-06-01

    Freshwater planarians have a simple and evolutionarily primitive brain structure. Here, we identified the Djsnap-25 gene encoding a homolog of the evolutionarily conserved synaptic protein SNAP-25 from the planarian Dugesia japonica and assessed its role in brain function. Djsnap-25 was expressed widely in the nervous system. To investigate the specific role of Djsnap-25 in the brain, we developed a unique technique of RNA interference (RNAi), regeneration-dependent conditional gene knockdown (Readyknock), exploiting the high regenerative capacity of planarians, and succeeded in selectively eliminating the DjSNAP-25 activity in the head region while leaving the DjSNAP-25 activity in the trunk region intact. These knockdown animals showed no effect on brain morphology or on undirected movement of the trunk itself. Light-avoidance behavior or negative phototaxis was used to quantitatively analyze brain function in the knockdown animals. The results suggested that the DjSNAP-25 activity within the head region is required for two independent sensory-processing pathways that regulate locomotive activity and directional movement downstream of distinct primary sensory outputs coming from the head margin and the eyes, respectively, during negative phototaxis. Our approach demonstrates that planarians are a powerful model organism to study the molecular basis of the brain as an information-processing center. PMID:17547648

  17. In vivo and in vitro metabolism of tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), by the freshwater planarian, Dugesia japonica.

    PubMed

    Wu, Jui-Pin; Li, Mei-Hui; Chen, Jhih-Sheng; Lee, Hui-Ling

    2012-06-01

    Cigarette smoke is a risk factor for human health, and many studies were conducted to investigate its adverse effects on humans and other mammals. However, since large amounts of cigarette products are produced and consumed, it is possible that tobacco chemicals can end up in aquatic environments through several routes, thus influencing aquatic organisms. In this study, the presence of tobacco-specific nitrosamine (TSNA), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), in aquatic environment was demonstrated. Since toxic effects on and distribution patterns of tobacco chemicals in aquatic organisms were rarely studied, after results of an acute toxicity pretest were obtained, experiment was conducted to investigate the bioaccumulation pattern of NNK and distribution patterns of its metabolites, mainly 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), in NNK-treated freshwater planarians, Dugesia japonica. Results from in vivo and in vitro studies showed that NNK was readily converted to NNAL through the carbonyl reduction in bodies of NNK-treated planarians. Tissue concentrations of both chemicals increased in time- and dose-dependent manners. Furthermore, we examined the end products of NNK/NNAL ?-hydroxylation in NNK-treated planarians, but only 1-(3-pyridyl)-1,4-butanediol was detected, suggesting that NNK metabolism in planarians partially differs from that in mammalian systems. This is the first report on NNK metabolism in an aquatic organism and can be used as a foundation for developing freshwater planarians as a new in vivo model for the study of NNK toxicology in the future. PMID:22386463

  18. Wnt/Notum spatial feedback inhibition controls neoblast differentiation to regulate reversible growth of the planarian brain.

    PubMed

    Hill, Eric M; Petersen, Christian P

    2015-12-15

    Mechanisms determining final organ size are poorly understood. Animals undergoing regeneration or ongoing adult growth are likely to require sustained and robust mechanisms to achieve and maintain appropriate sizes. Planarians, well known for their ability to undergo whole-body regeneration using pluripotent adult stem cells of the neoblast population, can reversibly scale body size over an order of magnitude by controlling cell number. Using quantitative analysis, we showed that after injury planarians perfectly restored brain:body proportion by increasing brain cell number through epimorphosis or decreasing brain cell number through tissue remodeling (morphallaxis), as appropriate. We identified a pathway controlling a brain size set-point that involves feedback inhibition between wnt11-6/wntA/wnt4a and notum, encoding conserved antagonistic signaling factors expressed at opposite brain poles. wnt11-6/wntA/wnt4a undergoes feedback inhibition through canonical Wnt signaling but is likely to regulate brain size in a non-canonical pathway independently of beta-catenin-1 and APC. Wnt/Notum signaling tunes numbers of differentiated brain cells in regenerative growth and tissue remodeling by influencing the abundance of brain progenitors descended from pluripotent stem cells, as opposed to regulating cell death. These results suggest that the attainment of final organ size might be accomplished by achieving a balance of positional signaling inputs that regulate the rates of tissue production. PMID:26525673

  19. Identification of HECT E3 ubiquitin ligase family genes involved in stem cell regulation and regeneration in planarians.

    PubMed

    Henderson, Jordana M; Nisperos, Sean V; Weeks, Joi; Ghulam, Mahjoobah; Marín, Ignacio; Zayas, Ricardo M

    2015-08-15

    E3 ubiquitin ligases constitute a large family of enzymes that modify specific proteins by covalently attaching ubiquitin polypeptides. This post-translational modification can serve to regulate protein function or longevity. In spite of their importance in cell physiology, the biological roles of most ubiquitin ligases remain poorly understood. Here, we analyzed the function of the HECT domain family of E3 ubiquitin ligases in stem cell biology and tissue regeneration in planarians. Using bioinformatic searches, we identified 17 HECT E3 genes that are expressed in the Schmidtea mediterranea genome. Whole-mount in situ hybridization experiments showed that HECT genes were expressed in diverse tissues and most were expressed in the stem cell population (neoblasts) or in their progeny. To investigate the function of all HECT E3 ligases, we inhibited their expression using RNA interference (RNAi) and determined that orthologs of huwe1, wwp1, and trip12 had roles in tissue regeneration. We show that huwe1 RNAi knockdown led to a significant expansion of the neoblast population and death by lysis. Further, our experiments showed that wwp1 was necessary for both neoblast and intestinal tissue homeostasis as well as uncovered an unexpected role of trip12 in posterior tissue specification. Taken together, our data provide insights into the roles of HECT E3 ligases in tissue regeneration and demonstrate that planarians will be a useful model to evaluate the functions of E3 ubiquitin ligases in stem cell regulation. PMID:25956527

  20. The Mi-2-like Smed-CHD4 gene is required for stem cell differentiation in the planarian Schmidtea mediterranea.

    PubMed

    Scimone, M Lucila; Meisel, Joshua; Reddien, Peter W

    2010-04-01

    Freshwater planarians are able to regenerate any missing part of their body and have extensive tissue turnover because of the action of dividing cells called neoblasts. Neoblasts provide an excellent system for in vivo study of adult stem cell biology. We identified the Smed-CHD4 gene, which is predicted to encode a chromatin-remodeling protein similar to CHD4/Mi-2 proteins, as required for planarian regeneration and tissue homeostasis. Following inhibition of Smed-CHD4 with RNA interference (RNAi), neoblast numbers were initially normal, despite an inability of the animals to regenerate. However, the proliferative response of neoblasts to amputation or growth stimulation in Smed-CHD4(RNAi) animals was diminished. Smed-CHD4(RNAi) animals displayed a dramatic reduction in the numbers of certain neoblast progeny cells. Smed-CHD4 was required for the formation of these neoblast progeny cells. Together, these results indicate that Smed-CHD4 is required for neoblasts to produce progeny cells committed to differentiation in order to control tissue turnover and regeneration and suggest a crucial role for CHD4 proteins in stem cell differentiation. PMID:20223763

  1. Weak extremely-low-frequency magnetic field-induced regeneration anomalies in the planarian, Dugesia tigrina

    SciTech Connect

    Jenrow, K.A.; Smith, C.H.; Liboff, A.R.

    1996-12-31

    The authors recently reported that cephalic regeneration in the planarian Dugesia tigrina was significantly delayed in populations exposed continuously to combined parallel DC and AC magnetic fields. This effect was consistent with hypotheses suggesting an underlying resonance phenomenon. The authors report here, in a parallel series of investigations on the same model system, that the incidence of regeneration anomalies presenting as tumor-like protuberances also increases significantly (P < .001) in association with exposure to weak 60 Hz magnetic fields, with peak intensities ranging between 1.0 and 80.0 {micro}T. These anomalies often culminate in the complete disaggregation of the organism. Similar to regeneration rate effects, the incidence of regeneration anomalies is specifically dependent upon the planaria possessing a fixed orientation with respect to the applied magnetic field vectors. However, unlike the regeneration rate effects, the AC magnetic field alone, in the absence of any measurable DC field, is capable of producing these anomalies. Moreover, the incidence of regeneration anomalies follows a clear dose-response relationship as a function of AC magnetic field intensity, with the threshold for induced electric field intensity estimated at 5 {micro} V/m. The addition of either 51.1 or 78.4 {micro}T DC magnetic fields, applied in parallel combination with the AC field, enhances the appearance of anomalies relative to the 60 Hz AC field alone, but only at certain AC field intensities. Thus, whereas the previous study of regeneration rate effects appeared to involve exclusively resonance interactions, the regeneration anomalies reported here appear to result primarily from Faraday induction coupling.

  2. Mortality and antioxidant responses in the planarian (Dugesia japonica) after exposure to copper.

    PubMed

    Zhang, Xiufang; Zhang, Bowen; Yi, Hongyang; Zhao, Bosheng

    2014-03-01

    The planarians (Dugesia japonica) are distributed widely in China, Japan, Korea, and southern Siberia. In this study, the acute toxicity of copper on D. japonica was evaluated using mortality and the activity of the enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), and reactive oxygen species (ROS) as endpoints. Acute toxicity tests were conducted according to the American Society for Testing and Materials guidelines. The 24-, 48-, 72-, and 96-h median lethal concentration that killed 50% of individuals (LC50) were calculated as 8.70, 6.31, 4.48, and 4.23 mg Cu²?/L, respectively, based on measured copper concentrations. When compared with different phyla or classes of freshwater animals, the rank of D. japonica in species sensitivity was in the range of 25-26 for 96-h LC??. The antioxidant enzymes SOD and CAT were determined in D. japonica exposed to two copper concentrations (50 and 100 ?g Cu²?/L) with a short-term exposure (15 days). They all attained peak value and then reduced during the experimental period. The GPx activities were activated only for 100 ?g/L treatments at days 3 and 6 and then renewed to the original level. Meanwhile, copper significantly increased the levels of ROS in D. japonica. Our study suggests that the adult D. japonica was less sensitive to copper than most other aquatic species. Copper may induce oxidative stress and interfere with the antioxidant defense system of the D. japonica, including SOD and CAT. GPx might be an insusceptible antioxidant enzyme in the metabolic detoxification processes in adult D. japonica. PMID:22773437

  3. Modeling planarian regeneration: a primer for reverse-engineering the worm.

    PubMed

    Lobo, Daniel; Beane, Wendy S; Levin, Michael

    2012-01-01

    A mechanistic understanding of robust self-assembly and repair capabilities of complex systems would have enormous implications for basic evolutionary developmental biology as well as for transformative applications in regenerative biomedicine and the engineering of highly fault-tolerant cybernetic systems. Molecular biologists are working to identify the pathways underlying the remarkable regenerative abilities of model species that perfectly regenerate limbs, brains, and other complex body parts. However, a profound disconnect remains between the deluge of high-resolution genetic and protein data on pathways required for regeneration, and the desired spatial, algorithmic models that show how self-monitoring and growth control arise from the synthesis of cellular activities. This barrier to progress in the understanding of morphogenetic controls may be breached by powerful techniques from the computational sciences-using non-traditional modeling approaches to reverse-engineer systems such as planaria: flatworms with a complex bodyplan and nervous system that are able to regenerate any body part after traumatic injury. Currently, the involvement of experts from outside of molecular genetics is hampered by the specialist literature of molecular developmental biology: impactful collaborations across such different fields require that review literature be available that presents the key functional capabilities of important biological model systems while abstracting away from the often irrelevant and confusing details of specific genes and proteins. To facilitate modeling efforts by computer scientists, physicists, engineers, and mathematicians, we present a different kind of review of planarian regeneration. Focusing on the main patterning properties of this system, we review what is known about the signal exchanges that occur during regenerative repair in planaria and the cellular mechanisms that are thought to underlie them. By establishing an engineering-like style for reviews of the molecular developmental biology of biomedically important model systems, significant fresh insights and quantitative computational models will be developed by new collaborations between biology and the information sciences. PMID:22570595

  4. Diversity, specificity and speciation in larval Diplostomidae (Platyhelminthes: Digenea) in the eyes of freshwater fish, as revealed by DNA barcodes.

    PubMed

    Locke, Sean A; Al-Nasiri, Fatima S; Caffara, Monica; Drago, Fabiana; Kalbe, Martin; Lapierre, Angela Rose; McLaughlin, J Daniel; Nie, Pin; Overstreet, Robin M; Souza, Geza T R; Takemoto, Ricardo M; Marcogliese, David J

    2015-11-01

    Larvae (metacercariae) in some species of Diplostomidae (Platyhelminthes: Digenea) inhabit fish eyes and are difficult to identify to species based on morphology. DNA barcoding has clarified the diversity and life cycles of diplostomids in North America, Europe and Africa, but has seldom been used in parasites sampled in large numbers or at large spatial scales. Here, distance-based analysis of cytochrome c oxidase 1 barcodes and, in some specimens, internal transcribed spacer (ITS-1, 5.8S, ITS-2) sequences was performed for over 2000 diplostomids from Africa, the Middle East, Europe, Asia and the Americas. Fifty-two species of Diplostomum, Tylodelphys and Austrodiplostomum (Digenea: Diplostomidae) were distinguished. The 52 species comprise 12 identified species, six species in two species complexes and 34 putative species, and 33/52 had been delineated in previous studies. Most (23/40) of the unidentified, putative species distinguished by cytochrome c oxidase 1 distances were supported by at least one additional line of evidence. As the intensity of sampling of the 52 species increased, variation in cytochrome c oxidase 1 decreased between and increased within species, while the spatial scale at which species were sampled had no effect. Nonetheless, variation between species always exceeded variation within species. New life-cycle linkages, geographic and host records, and genetic data were recorded in several species, including Tylodelphys jenynsiae, Tylodelphys immer and Diplostomum ardeae. Species of Diplostomum inhabiting the lens are less host-specific and less numerous than those infecting other tissues, suggesting that reduced immune activity in the lens has influenced rates of speciation. PMID:26276524

  5. Ameliorating effect of chloride on nitrite toxicity to freshwater invertebrates with different physiology: a comparative study between amphipods and planarians.

    PubMed

    Alonso, A; Camargo, J A

    2008-02-01

    High nitrite concentrations in freshwater ecosystems may cause toxicity to aquatic animals. These living organisms can take nitrite up from water through their chloride cells, subsequently suffering oxidation of their respiratory pigments (hemoglobin, hemocyanin). Because NO(2)(-) and Cl(-) ions compete for the same active transport site, elevated chloride concentrations in the aquatic environment have the potential of reducing nitrite toxicity. Although this ameliorating effect is well documented in fish, it has been largely ignored in wild freshwater invertebrates. The aim of this study was to compare the ameliorating effect of chloride on nitrite toxicity to two species of freshwater invertebrates differing in physiology: Eulimnogammarus toletanus (amphipods) and Polycelis felina (planarians). The former species presents gills (with chloride cells) and respiratory pigments, whereas in the latter species these are absent. Test animals were exposed in triplicate for 168 h to a single nitrite concentration (5 ppm NO(2)-N for E. toletanus and 100 ppm NO(2)-N for P. felina) at four different environmental chloride concentrations (27.8, 58.3, 85.3, and 108.0 ppm Cl(-)). The number of dead animals and the number of affected individuals (i.e., number of dead plus inactive invertebrates) were monitored every day. LT(50) (lethal time) and ET(50) (effective time) were estimated for each species and each chloride concentration. LT(50) and ET(50) values increased with increases in the environmental chloride concentration, mainly in amphipods. Results clearly show that the ameliorating effect of chloride on nitrite toxicity was more significant in amphipods than in planarians, likely because of the absence of gills (with chloride cells) and respiratory pigments in P. felina. Additionally, this comparative study indicates that the ecological risk assessment of nitrite in freshwater ecosystems should take into account not only the most sensitive and key species in the communities, but also chloride levels in the aquatic environment. PMID:17851627

  6. Molecular Characterization of Gastrothylax crumenifer (Platyhelminthes: Gastrothylacidae) from Goats in the Western Part of India by LSU of Nuclear Ribosomal DNA

    PubMed Central

    Kumar, Ashwani; Verma, Chandni; Singh, Hridaya Shanker

    2014-01-01

    The rumen parasite, Gastrothylax crumenifer (Platyhelminthes: Gastrothylacidae), is a highly pathogenic trematode parasite of goat (Capra hircus). It sucks blood that causes acute disease like anemia, and severe economic losses occur due to morbidity and mortality of the ruminant infected by these worms. The study of these rumen paramphistomes, their infection, and public health importance remains unclear in India especially in the western part of state Uttar Pradesh (U.P.), Meerut, India, where the goat meat consumption is very high. This paper provides the molecular characterization of G. crumenifer recovered from the rumen of Capra hircus from Meerut, U.P., India by the partial sequence of 28S rDNA. Nucleotide sequence similarity searching on BLAST of 28S rDNA from parasites showed the highest identity with those of G. crumenifer from the same host Capra hircus. This is the first report of molecular identification of G. crumenifer from this part of India. PMID:25548426

  7. The CCR4-NOT complex mediates deadenylation and degradation of stem cell mRNAs and promotes planarian stem cell differentiation.

    PubMed

    Solana, Jordi; Gamberi, Chiara; Mihaylova, Yuliana; Grosswendt, Stefanie; Chen, Chen; Lasko, Paul; Rajewsky, Nikolaus; Aboobaker, A Aziz

    2013-01-01

    Post-transcriptional regulatory mechanisms are of fundamental importance to form robust genetic networks, but their roles in stem cell pluripotency remain poorly understood. Here, we use freshwater planarians as a model system to investigate this and uncover a role for CCR4-NOT mediated deadenylation of mRNAs in stem cell differentiation. Planarian adult stem cells, the so-called neoblasts, drive the almost unlimited regenerative capabilities of planarians and allow their ongoing homeostatic tissue turnover. While many genes have been demonstrated to be required for these processes, currently almost no mechanistic insight is available into their regulation. We show that knockdown of planarian Not1, the CCR4-NOT deadenylating complex scaffolding subunit, abrogates regeneration and normal homeostasis. This abrogation is primarily due to severe impairment of their differentiation potential. We describe a stem cell specific increase in the mRNA levels of key neoblast genes after Smed-not1 knock down, consistent with a role of the CCR4-NOT complex in degradation of neoblast mRNAs upon the onset of differentiation. We also observe a stem cell specific increase in the frequency of longer poly(A) tails in these same mRNAs, showing that stem cells after Smed-not1 knock down fail to differentiate as they accumulate populations of transcripts with longer poly(A) tails. As other transcripts are unaffected our data hint at a targeted regulation of these key stem cell mRNAs by post-transcriptional regulators such as RNA-binding proteins or microRNAs. Together, our results show that the CCR4-NOT complex is crucial for stem cell differentiation and controls stem cell-specific degradation of mRNAs, thus providing clear mechanistic insight into this aspect of neoblast biology. PMID:24367277

  8. The CCR4-NOT Complex Mediates Deadenylation and Degradation of Stem Cell mRNAs and Promotes Planarian Stem Cell Differentiation

    PubMed Central

    Solana, Jordi; Gamberi, Chiara; Mihaylova, Yuliana; Grosswendt, Stefanie; Chen, Chen; Lasko, Paul; Rajewsky, Nikolaus; Aboobaker, A. Aziz

    2013-01-01

    Post-transcriptional regulatory mechanisms are of fundamental importance to form robust genetic networks, but their roles in stem cell pluripotency remain poorly understood. Here, we use freshwater planarians as a model system to investigate this and uncover a role for CCR4-NOT mediated deadenylation of mRNAs in stem cell differentiation. Planarian adult stem cells, the so-called neoblasts, drive the almost unlimited regenerative capabilities of planarians and allow their ongoing homeostatic tissue turnover. While many genes have been demonstrated to be required for these processes, currently almost no mechanistic insight is available into their regulation. We show that knockdown of planarian Not1, the CCR4-NOT deadenylating complex scaffolding subunit, abrogates regeneration and normal homeostasis. This abrogation is primarily due to severe impairment of their differentiation potential. We describe a stem cell specific increase in the mRNA levels of key neoblast genes after Smed-not1 knock down, consistent with a role of the CCR4-NOT complex in degradation of neoblast mRNAs upon the onset of differentiation. We also observe a stem cell specific increase in the frequency of longer poly(A) tails in these same mRNAs, showing that stem cells after Smed-not1 knock down fail to differentiate as they accumulate populations of transcripts with longer poly(A) tails. As other transcripts are unaffected our data hint at a targeted regulation of these key stem cell mRNAs by post-transcriptional regulators such as RNA-binding proteins or microRNAs. Together, our results show that the CCR4-NOT complex is crucial for stem cell differentiation and controls stem cell-specific degradation of mRNAs, thus providing clear mechanistic insight into this aspect of neoblast biology. PMID:24367277

  9. Transcription factors lhx1/5-1 and pitx are required for the maintenance and regeneration of serotonergic neurons in planarians.

    PubMed

    Currie, Ko W; Pearson, Bret J

    2013-09-01

    In contrast to most adult organisms, freshwater planarians can regenerate any injured body part, including their entire nervous system. This allows for the analysis of genes required for both the maintenance and regeneration of specific neural subtypes. In addition, the loss of specific neural subtypes may uncover previously unknown behavioral roles for that neural population in the context of the adult animal. Here we show that two homeodomain transcription factor homologs, Smed-lhx1/5-1 and Smed-pitx, are required for the maintenance and regeneration of serotonergic neurons in planarians. When either lhx1/5-1 or pitx was knocked down by RNA interference, the expression of multiple canonical markers for serotonergic neurons was lost. Surprisingly, the loss of serotonergic function uncovered a role for these neurons in the coordination of motile cilia on the ventral epidermis of planarians that are required for their nonmuscular gliding locomotion. Finally, we show that in addition to its requirement in serotonergic neurons, Smed-pitx is required for proper midline patterning during regeneration, when it is required for the expression of the midline-organizing molecules Smed-slit in the anterior and Smed-wnt1 in the posterior. PMID:23903188

  10. Optic chiasm formation in planarian I: Cooperative netrin- and robo-mediated signals are required for the early stage of optic chiasm formation.

    PubMed

    Yamamoto, Hiroshi; Agata, Kiyokazu

    2011-04-01

    Freshwater planarians can regenerate a brain, including eyes, from the anterior blastema, and coordinately form an optic chiasm during eye and brain regeneration. To investigate the role of the netrin- and slit-signaling systems during optic chiasm formation, we cloned three receptor genes (Djunc5A, Djdcc and DjroboA) expressed in visual neurons and their ligand genes (DjnetB and Djslit) and analyzed their functions by RNA interference (RNAi). Although each of DjroboA(RNAi), Djunc5A(RNAi) and DjnetB(RNAi) showed a weak phenotype and Djslit(RNAi) showed a severe defect of eye formation, we did not observe any defect of crossing of visual axons over the midline among single knockdown planarians. However, among double knockdown planarians, some of DjnetB(RNAi);DjroboA(RNAi) and Djunc5A(RNAi);DjroboA(RNAi) showed complete disconnection between the visual axons from the two sides, suggesting that some combination of netrin- and robo-mediated signals may be required for crossing over the midline. Finally, we carefully investigated the distribution patterns of cells expressing DjNetB protein, DjnetB, and Djslit at the early stage of regeneration, and found that visual axons projected along a path sandwiched between DjNetB protein and Djslit-positive cells. These results suggest that two different collaborative or combinatory signals may be required for midline crossing at the early stage of chiasm formation during eye and brain regeneration. PMID:21428985

  11. Transfection of Platyhelminthes

    PubMed Central

    Moguel, Bárbara; Bobes, Raúl J.; Carrero, Julio C.; Laclette, Juan P.

    2015-01-01

    Flatworms are one of the most diverse groups within Lophotrochozoa with more than 20,000 known species, distributed worldwide in different ecosystems, from the free-living organisms in the seas and lakes to highly specialized parasites living in a variety of hosts, including humans. Several infections caused by flatworms are considered major neglected diseases affecting countries in the Americas, Asia, and Africa. For several decades, a particular interest on free-living flatworms was due to their ability to regenerate considerable portions of the body, implying the presence of germ cells that could be important for medicine. The relevance of reverse genetics for this group is clear; understanding the phenotypic characteristics of specific genes will shed light on developmental traits of free-living and parasite worms. The genetic manipulation of flatworms will allow learning more about the mechanisms for tissue regeneration, designing new and more effective anthelmintic drugs, and explaining the host-parasite molecular crosstalk so far partially inaccessible for experimentation. In this review, availability of transfection techniques is analyzed across flatworms, from the initial transient achievements to the stable manipulations now developed for free-living and parasite species. PMID:26090388

  12. Protostomia: Lophotrochozoa: Mollusca Platyhelminthes

    E-print Network

    shells ­ lost or reduced in some · Heart and open circulatory system ­ hemocoel · 3 main body parts: foot, freshwater, terrestrial · Calcium carbonate shells ­ lost or reduced in some · Heart and open circulatory system ­ hemocoel · 3 main body parts: foot, visceral mass, mantle · Radula for feeding + complete gut

  13. Stem cell-dependent formation of a functional anterior regeneration pole in planarians requires Zic and Forkhead transcription factors.

    PubMed

    Vogg, Matthias C; Owlarn, Suthira; Pérez Rico, Yuvia A; Xie, Jianlei; Suzuki, Yoko; Gentile, Luca; Wu, Wei; Bartscherer, Kerstin

    2014-06-15

    Planarians can regenerate their head within days. This process depends on the direction of adult stem cells to wound sites and the orchestration of their progenitors to commit to appropriate lineages and to arrange into patterned tissues. We identified a zinc finger transcription factor, Smed-ZicA, as a downstream target of Smed-FoxD, a Forkhead transcription factor required for head regeneration. Smed-zicA and Smed-FoxD are co-expressed with the Wnt inhibitor notum and the Activin inhibitor follistatin in a cluster of cells at the anterior-most tip of the regenerating head - the anterior regeneration pole - and in surrounding stem cell progeny. Depletion of Smed-zicA and Smed-FoxD by RNAi abolishes notum and follistatin expression at the pole and inhibits head formation downstream of initial polarity decisions. We suggest a model in which ZicA and FoxD transcription factors synergize to control the formation of Notum- and Follistatin-producing anterior pole cells. Pole formation might constitute an early step in regeneration, resulting in a signaling center that orchestrates cellular events in the growing tissue. PMID:24704339

  14. egr-4, a target of EGFR signaling, is required for the formation of the brain primordia and head regeneration in planarians.

    PubMed

    Fraguas, Susanna; Barberán, Sara; Iglesias, Marta; Rodríguez-Esteban, Gustavo; Cebrià, Francesc

    2014-05-01

    During the regeneration of freshwater planarians, polarity and patterning programs play essential roles in determining whether a head or a tail regenerates at anterior or posterior-facing wounds. This decision is made very soon after amputation. The pivotal role of the Wnt/?-catenin and Hh signaling pathways in re-establishing anterior-posterior (AP) polarity has been well documented. However, the mechanisms that control the growth and differentiation of the blastema in accordance with its AP identity are less well understood. Previous studies have described a role of Smed-egfr-3, a planarian epidermal growth factor receptor, in blastema growth and differentiation. Here, we identify Smed-egr-4, a zinc-finger transcription factor belonging to the early growth response gene family, as a putative downstream target of Smed-egfr-3. Smed-egr-4 is mainly expressed in the central nervous system and its silencing inhibits anterior regeneration without affecting the regeneration of posterior regions. Single and combinatorial RNA interference to target different elements of the Wnt/?-catenin pathway, together with expression analysis of brain- and anterior-specific markers, revealed that Smed-egr-4: (1) is expressed in two phases - an early Smed-egfr-3-independent phase and a late Smed-egfr-3-dependent phase; (2) is necessary for the differentiation of the brain primordia in the early stages of regeneration; and (3) that it appears to antagonize the activity of the Wnt/?-catenin pathway to allow head regeneration. These results suggest that a conserved EGFR/egr pathway plays an important role in cell differentiation during planarian regeneration and indicate an association between early brain differentiation and the proper progression of head regeneration. PMID:24700819

  15. Heterogeneity of ouabain binding sites in Schistosoma mansoni. First evidence for the presence of two (Na+ + K+)-ATPase isoforms in platyhelminths.

    PubMed

    Pardon, R S; Noël, F

    1994-01-20

    Binding experiments with [3H]ouabain were performed to investigate the presence of (Na+ + K+)-ATPase (EC3.6.1.3) isoforms in adult male Schistosoma mansoni, the trematode responsible for human schistosomiasis. Non-linear regression analysis of equilibrium experiments performed with homogenates in a Mg-Pi medium indicated the presence of about 10% (Bmax = 223 +/- 67 fmol/mg protein) high-affinity sites (KD = 0.285 +/- 0.045 microM) and 90% (Bmax = 2117 +/- 348 fmol/mg protein) sites with a 20-fold lower affinity (KD = 4.9 +/- 1.28 microM). This was confirmed by their-exponential decay of [3H]ouabain dissociation. Furthermore, determination of association and dissociation rate constants indicated that the two classes of binding sites differed by their dissociation rate constants for ouabain (k-1 = 0.0185 +/- 0.0019 min-1 and 0.0997 +/- 0.0528 min-1 for high- and low-affinity sites, respectively). Surprisingly, the association rate constant measured for ouabain binding to S. mansoni homogenate (0.038 microM-1.min-1) was lower (25- to 80-fold) than the one usually observed for mammalian enzymes. This is the first direct evidence for the existence of (Na+ + K+)-ATPase isoforms in platyhelminths, invertebrates of great importance from the phylogenetic point of view. PMID:8304977

  16. Light and electron microscopic studies of the intestinal epithelium in Notoplana humilis (Platyhelminthes, Polycladida): the contribution of mesodermal/gastrodermal neoblasts to intestinal regeneration.

    PubMed

    Okano, Daisuke; Ishida, Sachiko; Ishiguro, Sei-Ichi; Kobayashi, Kazuya

    2015-12-01

    Some free-living flatworms in the phylum Platyhelminthes possess strong regenerative capability that depends on putative pluripotent stem cells known as neoblasts. These neoblasts are defined based on several criteria, including their proliferative capacity and the presence of cellular components known as chromatoid bodies. Polyclads, which are marine flatworms, have the potential to be a good model system for stem cell research, yet little information is available regarding neoblasts and regeneration. In this study, transmission electron microscopy and immunostaining analyses, using antibodies against phospho-histone H3 and BrdU, were used to identify two populations of neoblasts in the polyclad Notoplana humilis: mesodermal neoblasts (located in the mesenchymal space) and gastrodermal neoblasts (located within the intestine, where granular club cells and phagocytic cells are also located). Light and electron microscopic analyses also suggested that phagocytic cells and mesodermal/gastrodermal neoblasts, but not granular club cells, migrated into blastemas and remodeled the intestine during regeneration. Therefore, we suggest that, in polyclads, intestinal regeneration is accomplished by mechanisms underlying both morphallaxis (remodeling of pre-existing tissues) and epimorphosis (de novo tissue formation derived from mesodermal/gastrodermal neoblasts). Based on the assumption that gastrodermal neoblasts, which are derived from mesodermal neoblasts, are intestinal stem cells, we propose a model to study intestinal regeneration. PMID:26104134

  17. The beta-lactam antibiotic ceftriaxone inhibits physical dependence and abstinence-induced withdrawal from cocaine, amphetamine, methamphetamine, and clorazepate in planarians.

    PubMed

    Rawls, Scott M; Cavallo, Federica; Capasso, Anna; Ding, Zhe; Raffa, Robert B

    2008-04-28

    Ceftriaxone (a beta-lactam antibiotic) has recently been identified as having the rare ability to increase the expression and functional activity of the glutamate transporter subtype 1 (GLT-1) in rat spinal cord cultures. GLT-1 has been implicated in diverse neurological disorders and in opioid dependence and withdrawal. It has been speculated that it might also be involved in the physical dependence and withdrawal of other abused drugs, but demonstration of this property can be difficult in mammalian models. Here, we demonstrate for the first time using a planarian model that ceftriaxone attenuates both the development of physical dependence and abstinence-induced withdrawal from cocaine, amphetamine, methamphetamine, and a benzodiazepine (clorazepate) in a concentration-related manner. These results suggest that physical dependence and withdrawal from several drugs involve a common - beta-lactam-sensitive - mechanism in planarians. If these findings can be shown to extend to mammals, beta-lactam antibiotics might represent a novel pharmacotherapy or adjunct approach for treating drug abuse or serve as a template for drug discovery efforts aimed at treating drug abuse, recovery from drug abuse, or ameliorating the withdrawal from chronic use of therapeutic medications. PMID:18342307

  18. A common origin of complex life cycles in parasitic flatworms: evidence from the complete mitochondrial genome of Microcotyle sebastis (Monogenea: Platyhelminthes)

    PubMed Central

    Park, Joong-Ki; Kim, Kyu-Heon; Kang, Seokha; Kim, Won; Eom, Keeseon S; Littlewood, DTJ

    2007-01-01

    Background The parasitic Platyhelminthes (Neodermata) contains three parasitic groups of flatworms, each having a unique morphology, and life style: Monogenea (primarily ectoparasitic), Trematoda (endoparasitic flukes), and Cestoda (endoparasitic tapeworms). The evolutionary origin of complex life cyles (multiple obligate hosts, as found in Trematoda and Cestoda) and of endo-/ecto-parasitism in these groups is still under debate and these questions can be resolved, only if the phylogenetic position of the Monogenea within the Neodermata clade is correctly estimated. Results To test the interrelationships of the major parasitic flatworm groups, we estimated the phylogeny of the Neodermata using complete available mitochondrial genome sequences and a newly characterized sequence of a polyopisthocotylean monogenean Microcotyle sebastis. Comparisons of inferred amino acid sequences and gene arrangement patterns with other published flatworm mtDNAs indicate Monogenea are sister group to a clade of Trematoda+Cestoda. Conclusion Results confirm that vertebrates were the first host for stem group neodermatans and that the addition of a second, invertebrate, host was a single event occurring in the Trematoda+Cestoda lineage. In other words, the move from direct life cycles with one host to complex life cycles with multiple hosts was a single evolutionary event. In association with the evolution of life cycle patterns, our result supports the hypothesis that the most recent common ancestor of the Neodermata giving rise to the Monogenea adopted vertebrate ectoparasitism as its initial life cycle pattern and that the intermediate hosts of the Trematoda (molluscs) and Cestoda (crustaceans) were subsequently added into the endoparasitic life cycles of the Trematoda+Cestoda clade after the common ancestor of these branched off from the monogenean lineage. Complex life cycles, involving one or more intermediate hosts, arose through the addition of intermediate hosts and not the addition of a vertebrate definitive host. Additional evidence is required from monopisthocotylean monogeneans in order to confirm the monophyly of the group. PMID:17270057

  19. Evolutionary processes involved in the diversification of chelonian and mammal polystomatid parasites (Platyhelminthes, Monogenea, Polystomatidae) revealed by palaeoecology of their hosts.

    PubMed

    Héritier, Laurent; Badets, Mathieu; Du Preez, Louis H; Aisien, Martins S O; Lixian, Fan; Combes, Claude; Verneau, Olivier

    2015-11-01

    Polystomatid flatworms (Platyhelminthes) are monogenean parasites that infect exclusively aquatic or semi-aquatic sarcopterygians such as the Australian lungfish, amphibians, freshwater turtles and the African common hippopotamus. Previous studies on the phylogenetic relationships of these parasites, excluding Oculotrema hippopotami infecting common hippos, showed a global coevolution between hosts and their parasites at a macroevolutionary scale. These studies also demonstrated a strong correlation between the diversification of early neobatrachian polystomes and Gondwana breakup in the Mesozoic period. However the origin of chelonian polystomes is still in question as a switch from presumably primitive aquatic amniotes to turtles at the time of their first appearance, or soon after during their radiation, was assumed. In order to resolve this sticking point, we extended the phylogeny of polystomes with broader parasite sampling, i.e. 55 polystome species including Nanopolystoma tinsleyi a polystome infecting caecilians and O. hippopotami, and larger set of sequence data covering two nuclear and two mitochondrial genes coding for the ribosomal RNA 18S and 28S, the Cytochrome c Oxidase I and the ribosomal RNA 12S, respectively. The secondary structure of nuclear rRNAs genes (stems and loops) was taken into account for sequence alignments and Bayesian analyses were performed based on the appropriate models of evolution selected independently for the four designed partitions. Molecular calibrations were also conducted for dating the main speciation events in the polystome tree. The phylogenetic position of chelonian parasites that are phylogenetically closer to N. tinsleyi than all other amphibian polystomes and molecular time estimates suggest that these parasites originated following a switch from caecilians, at a geological period when primitive turtles may already have adapted to an aquatic life style, i.e. at about 178Million years ago, or a little later when the crown group of extant turtles have already diversified, i.e. at about 152Mya. Similarly, because O. hippopotami constitutes the sister group of chelonian parasites, proposing that an African caecilian could be the ancestral host for this polystome species seems at this stage the most likely hypothesis to explain its occurrence within the common hippo. Regardless of the scenario that may be predicted to explain the origin of polystomes within aquatic or semi-aquatic amniotes, their presence and evolution are indicative of early aquatic ecological habits within ancestral lineages. PMID:26072314

  20. Toxicity of selenium (Na sub 2 SeO sub 3 ) and mercury (HgCl sub 2 ) on the planarian Dugesia gonocephala

    SciTech Connect

    Congiu, A.M.; Casu, S.; Ugazio, G. )

    1989-10-01

    The toxicity of selenium (Na{sub 2}SeO{sub 3}) and mercury (HgCl{sub 2}) was determined by using a freshwater planarian which is particularly sensitive to pollution, and belongs to a fissiparous breed of Dugesia gonocephala. The mortality and fissiparity frequency of the subjects were studied. They were exposed to intense treatments (48 hours) or for medium to long periods of time (21 days) to either the single compounds or a combination of both, and were fed or fasting. The lethal effect of sodium selenite is correlated to the food intake, whereas the toxicity of mercurous chloride is probably the result of a fixative effect which does not depend on feeding. The 21-day treatment with the first compound has a non-negligible lethal effect which is probably due to an accumulation phenomenon. At doses where an antioxidant effect prevails, fissiparity is stimulated. On the other hand, the second compound reduces reproduction frequency to half the base values. Compared to the Paracentrotus lividus, the Dugesia gonocephala offers various advantages concerning toxicological experiments; besides being easier to handle in the laboratory, it is available all year round and is not subject to seasonal cycles. It is also more susceptible to the toxic effect of mercury, which is a common and highly toxic pollutant, than the sea urchin.

  1. The kappa-opioid receptor antagonist nor-BNI inhibits cocaine and amphetamine, but not cannabinoid (WIN 52212-2), abstinence-induced withdrawal in planarians: an instance of 'pharmacologic congruence'.

    PubMed

    Raffa, Robert B; Stagliano, Gregory W; Ross, Geoffrey; Powell, Jenay A; Phillips, Austin G; Ding, Zhe; Rawls, Scott M

    2008-02-01

    The broad applicability of receptor theory to diverse species, from invertebrates to mammals, provides evidence for the evolution in complexity of pharmacologic receptor diversification and of receptor-effector signal transduction mechanisms. However, pre-mammalian species have less receptor subtype differentiation, and thus, might share signal transduction pathways to a greater extent than do mammals, a phenomenon that we term 'pharmacologic congruence'. We have demonstrated previously that the lowest species considered to have a centralized nervous system, planarians, display both abstinence-induced and antagonist-precipitated withdrawal signs, indicative of the development of physical dependence. We report here: (1) amphetamine abstinence-induced withdrawal, and (2) the attenuation of cocaine and amphetamine, but not cannabinoid agonist (WIN 52212-2), abstinence-induced withdrawal by the opioid receptor antagonist naloxone and by the selective kappa-opioid receptor subtype antagonist nor-BNI (nor-Binaltorphimine), but not by the selective mu-opioid or the delta-opioid receptor subtype antagonists CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2)) and naltrindole. These results provide evidence that the withdrawal from cocaine and amphetamine, but not cannabinoids, in planarians is mediated through a common nor-BNI-sensitive (kappa-opioid receptor-like) pathway. PMID:18178175

  2. Occurrence of Echeneibothrium (Platyhelminthes, Cestoda) in the

    E-print Network

    to obtain the go- nadal index. An analysis ofvaliance (ANOVA) was used to test for dif- ferences of the gonadal tissues ("go- nadal index") of A. gibbus, which coincided with infection by this cestode

  3. 0 50000 100000 150000 200000 250000 Platyhelminthes

    E-print Network

    Miller, Scott

    Porifera Cnidaria Echinodermata Annelida Mollusca Arthropoda MMS lots Total IZ lots The Importance spongites (orange), BOEM slide number 80, MAPTEM Annelida: Hesiocaeca methanicola Desbruyères & Toulmond, photo by NOAA Staff New Species Described Total: 298 175 - Annelida 87 - Arthropoda 2 - Chordata 11

  4. A Transcriptomic-Phylogenomic Analysis of the Evolutionary Relationships of Flatworms

    PubMed Central

    Egger, Bernhard; Lapraz, François; Tomiczek, Bart?omiej; Müller, Steven; Dessimoz, Christophe; Girstmair, Johannes; Škunca, Nives; Rawlinson, Kate A.; Cameron, Christopher B.; Beli, Elena; Todaro, M. Antonio; Gammoudi, Mehrez; Noreña, Carolina; Telford, Maximilian J.

    2015-01-01

    Summary The interrelationships of the flatworms (phylum Platyhelminthes) are poorly resolved despite decades of morphological and molecular phylogenetic studies [1, 2]. The earliest-branching clades (Catenulida, Macrostomorpha, and Polycladida) share spiral cleavage and entolecithal eggs with other lophotrochozoans. Lecithoepitheliata have primitive spiral cleavage but derived ectolecithal eggs. Other orders (Rhabdocoela, Proseriata, Tricladida and relatives, and Bothrioplanida) all have derived ectolecithal eggs but have uncertain affinities to one another. The orders of parasitic Neodermata emerge from an uncertain position from within these ectolecithal classes. To tackle these problems, we have sequenced transcriptomes from 18 flatworms and 5 other metazoan groups. The addition of published data produces an alignment of >107,000 amino acids with less than 28% missing data from 27 flatworm taxa in 11 orders covering all major clades. Our phylogenetic analyses show that Platyhelminthes consist of the two clades Catenulida and Rhabditophora. Within Rhabditophora, we show the earliest-emerging branch is Macrostomorpha, not Polycladida. We show Lecithoepitheliata are not members of Neoophora but are sister group of Polycladida, implying independent origins of the ectolecithal eggs found in Lecithoepitheliata and Neoophora. We resolve Rhabdocoela as the most basally branching euneoophoran taxon. Tricladida, Bothrioplanida, and Neodermata constitute a group that appears to have lost both spiral cleavage and centrosomes. We identify Bothrioplanida as the long-sought closest free-living sister group of the parasitic Neodermata. Among parasitic orders, we show that Cestoda are closer to Trematoda than to Monogenea, rejecting the concept of the Cercomeromorpha. Our results have important implications for understanding the evolution of this major phylum. PMID:25866392

  5. Diversity of introduced terrestrial flatworms in the Iberian Peninsula: a cautionary tale

    PubMed Central

    Álvarez-Presas, Marta; Tudó, Àngels; Jones, Hugh; Riutort, Marta

    2014-01-01

    Many tropical terrestrial planarians (Platyhelminthes, Geoplanidae) have been introduced around the globe. One of these species is known to cause significant decline in earthworm populations, resulting in a reduction of ecological functions that earthworms provide. Flatworms, additionally, are a potential risk to other species that have the same dietary needs. Hence, the planarian invasion might cause significant economic losses in agriculture and damage to the ecosystem. In the Iberian Peninsula only Bipalium kewense Moseley, 1878 had been cited till 2007. From that year on, four more species have been cited, and several reports of the presence of these animals in particular gardens have been received. In the present study we have: (1) analyzed the animals sent by non-specialists and also the presence of terrestrial planarians in plant nurseries and garden centers; (2) identified their species through morphological and phylogenetic molecular analyses, including representatives of their areas of origin; (3) revised their dietary sources and (4) used Species Distribution Modeling (SDM) for one species to evaluate the risk of its introduction to natural areas. The results have shown the presence of at least ten species of alien terrestrial planarians, from all its phylogenetic range. International plant trade is the source of these animals, and many garden centers are acting as reservoirs. Also, landscape restoration to reintroduce autochthonous plants has facilitated their introduction close to natural forests and agricultural fields. In conclusion, there is a need to take measures on plant trade and to have special care in the treatment of restored habitats. PMID:24949245

  6. Developmental diversity in free-living flatworms

    PubMed Central

    2012-01-01

    Flatworm embryology has attracted attention since the early beginnings of comparative evolutionary biology. Considered for a long time the most basal bilaterians, the Platyhelminthes (excluding Acoelomorpha) are now robustly placed within the Spiralia. Despite having lost their relevance to explain the transition from radially to bilaterally symmetrical animals, the study of flatworm embryology is still of great importance to understand the diversification of bilaterians and of developmental mechanisms. Flatworms are acoelomate organisms generally with a simple centralized nervous system, a blind gut, and lacking a circulatory organ, a skeleton and a respiratory system other than the epidermis. Regeneration and asexual reproduction, based on a totipotent neoblast stem cell system, are broadly present among different groups of flatworms. While some more basally branching groups - such as polyclad flatworms - retain the ancestral quartet spiral cleavage pattern, most flatworms have significantly diverged from this pattern and exhibit unique strategies to specify the common adult body plan. Most free-living flatworms (i.e. Platyhelminthes excluding the parasitic Neodermata) are directly developing, whereas in polyclads, also indirect developers with an intermediate free-living larval stage and subsequent metamorphosis are found. A comparative study of developmental diversity may help understanding major questions in evolutionary biology, such as the evolution of cleavage patterns, gastrulation and axial specification, the evolution of larval types, and the diversification and specialization of organ systems. In this review, we present a thorough overview of the embryonic development of the different groups of free-living (turbellarian) platyhelminths, including the Catenulida, Macrostomorpha, Polycladida, Lecithoepitheliata, Proseriata, Bothrioplanida, Rhabdocoela, Fecampiida, Prolecithophora and Tricladida, and discuss their main features under a consensus phylogeny of the phylum. PMID:22429930

  7. New primers for DNA barcoding of digeneans and cestodes (Platyhelminthes).

    PubMed

    Van Steenkiste, Niels; Locke, Sean A; Castelin, Magalie; Marcogliese, David J; Abbott, Cathryn L

    2015-07-01

    Digeneans and cestodes are species-rich taxa and can seriously impact human health, fisheries, aqua- and agriculture, and wildlife conservation and management. DNA barcoding using the COI Folmer region could be applied for species detection and identification, but both 'universal' and taxon-specific COI primers fail to amplify in many flatworm taxa. We found that high levels of nucleotide variation at priming sites made it unrealistic to design primers targeting all flatworms. We developed new degenerate primers that enabled acquisition of the COI barcode region from 100% of specimens tested (n = 46), representing 23 families of digeneans and 6 orders of cestodes. This high success rate represents an improvement over existing methods. Primers and methods provided here are critical pieces towards redressing the current paucity of COI barcodes for these taxa in public databases. PMID:25490869

  8. [Phylogenetic analyses of the family Tetraonchidae (Platyhelminthes: Monogenea)].

    PubMed

    Gerasev, P I

    2004-01-01

    A phylogenetic reconstruction of the monogenean family Tetraonchidae was carried out by methods of parsimony-based cladistics. The analysis included 20 species of tetraonchids and two out-groups (Sundanonchus tomanorum and Dactylogyrus amphibothrium) and was based on 34 morphofunctional characters. Software PAUP 4.0 and Winclada were used for the phylogenetic reconstructions. Obtained results allow proposing a preliminary phylogenetic hypothesis of the family Tetraonchidae along with the discussion of host-parasite association. According to the current taxonomic view, the family Tetraonchidae included two genera. Cladistic analysis showed a monophyly of the family and the genus Tetraonchus Diesing, 1858. Two representative of the former genus, Tetraoncus monenteron and T. borealis, parasitize the pikes (Esocoformes: Esocidae) and the grayling (Salmonidae: Thymallinae) respectively. The genus Salmonchus Spassky et Roytman, 1958 has a complicated structure and its intrageneric relationships were not completely resolved; in general, the analysis allows to recognise several species groups: Salmonchus oncorhynchi--the parasite of the Oncorhynchus masou smolt living during the first year of life in fresh water; four species (S. variabilis, S. gussevi, S. grumosus, S. alaskensis) inhabiting specifically the whitefishes (Salmonidae: Coregoninae); all reminder of Salmonchus species occurring on the salmons (Salmonidae: Salmoninae). The bootstrap test gives a support only for the following clades: family Tetraonchidae (75%), genus Tetraonchus (88%); a group of Salmonchus species associated with the whitefishes (93%) and grouping of four species (S. huhonis, S. pseudolenoki, S. skrjabini and S. lenoki) from the lenoks (Brachymystax) and taimens (Hucho) (61%). PMID:15553772

  9. Checklist of tapeworms (Platyhelminthes, Cestoda) of vertebrates in Finland

    PubMed Central

    Haukisalmi, Voitto

    2015-01-01

    Abstract A checklist of tapeworms (Cestoda) of vertebrates (fishes, birds and mammals) in Finland is presented, based on published observations, specimens deposited in the collections of the Finnish Museum of Natural History (Helsinki) and the Zoological Museum of the University of Turku, and additional specimens identified by the present author. The checklist includes 170 tapeworm species from 151 host species, comprising 447 parasite species/host species combinations. Thirty of the tapeworm species and 96 of the parasite/host species combinations have not been previously reported from Finland. The total number of tapeworm species in Finland (170 spp.) is significantly lower than the corresponding figure for the Iberian Peninsula (257 spp.), Slovakia (225 spp.) and Poland (279 spp.). The difference between Finland and the other three regions is particularly pronounced for anseriform, podicipediform, charadriiform and passeriform birds, reflecting inadequate and/or biased sampling of these birds in Finland. It is predicted that there are actually ca. 270 species of tapeworms in Finland, assuming that true number of bird tapeworms in Finland corresponds to that in other European countries with more comprehensive knowledge of the local tapeworm fauna. The other main pattern emerging from the present data is the seemingly unexplained absence in (northern) Fennoscandia of several mammalian tapeworms that otherwise have extensive distributions in the Holarctic region or in Eurasia, including the northern regions. Previously unknown type specimens, that is, the holotype of Bothrimonus nylandicus Schneider, 1902 (a junior synonym of Diplocotyle olrikii Krabbe, 1874) (MZH 127096) and the syntypes of Caryophyllaeides fennica (Schneider, 1902) (MZH 127097) were located in the collections of the Finnish Museum of Natural History. PMID:26668540

  10. Platyhelminthes in tongue--a rare case and review.

    PubMed

    Gupta, D S; Goyal, Arun K; Tandon, Padam Narayan; Jurel, Sunit K; Srivastava, Shilpi; Dangi, Uday R; Singh, Sudhansu; Jain, Ravi

    2012-11-01

    Humans are the only known definitive host of the tapeworm Taenia solium and become a carrier by eating undercooked pork contaminated with "Cysticercus cellulosae" (cysticerci). Pigs act as an intermediate host and acquire cysticercosis by ingestion of eggs or proglottids from human feces, which develop into cysticerci within tissue, mostly without causing clinical symptoms in the host. Cysticercosis occurs in humans in a context of "fecal peril" by ingestion of egg-contaminated soil, water, vegetation, or auto-infestation. It has been reported in the published data that the separation of swine from humans, healthy cooking, and hygienic practices would lead to the eradication of the disease. However, cysticercosis is still a major public health problem in endemic regions, with more than 50 million infected people and is now a re-emerging disease in industrialized countries owing to human migration. It is the second most common cause of seizures in tropical countries. We report a case of oral cysticercosis in a 28-year-old woman who presented with a painless swelling in the ventral portion of the tongue. An excisional biopsy was performed, and histopathologic examination revealed a cystic cavity containing the tapeworm. PMID:22364857

  11. Evolution and Functional Morphology of the Proboscis in Kalyptorhynchia (Platyhelminthes).

    PubMed

    Smith, Julian P S; Litvaitis, Marian K; Gobert, Stefan; Uyeno, Theodore; Artois, Tom

    2015-08-01

    Predatory flatworms belonging to the taxon Kalyptorhynchia are characterized by an anterior muscular proboscis that they use to seize prey. In many cases, the proboscis is armed with hooks, derived either from the extracellular matrix that surrounds the muscles or from intracellular deposits in the epithelium covering the proboscis. Glands associated with the proboscis reportedly are venomous; however, there are few direct tests of this hypothesis. This article reviews the structure and current knowledge of the function of the proboscis in the Kalyptorhynchia, points to areas in which the current understanding of phylogenetic relationships within this taxon is incongruent with our hypothesis of how the proboscis evolved, and addresses areas in need of further research, especially as regards functional morphology and biomechanics. PMID:26002347

  12. The repertoire of G protein-coupled receptors in the human parasite Schistosoma mansoni and the model organism Schmidtea mediterranea

    PubMed Central

    2011-01-01

    Background G protein-coupled receptors (GPCRs) constitute one of the largest groupings of eukaryotic proteins, and represent a particularly lucrative set of pharmaceutical targets. They play an important role in eukaryotic signal transduction and physiology, mediating cellular responses to a diverse range of extracellular stimuli. The phylum Platyhelminthes is of considerable medical and biological importance, housing major pathogens as well as established model organisms. The recent availability of genomic data for the human blood fluke Schistosoma mansoni and the model planarian Schmidtea mediterranea paves the way for the first comprehensive effort to identify and analyze GPCRs in this important phylum. Results Application of a novel transmembrane-oriented approach to receptor mining led to the discovery of 117 S. mansoni GPCRs, representing all of the major families; 105 Rhodopsin, 2 Glutamate, 3 Adhesion, 2 Secretin and 5 Frizzled. Similarly, 418 Rhodopsin, 9 Glutamate, 21 Adhesion, 1 Secretin and 11 Frizzled S. mediterranea receptors were identified. Among these, we report the identification of novel receptor groupings, including a large and highly-diverged Platyhelminth-specific Rhodopsin subfamily, a planarian-specific Adhesion-like family, and atypical Glutamate-like receptors. Phylogenetic analysis was carried out following extensive gene curation. Support vector machines (SVMs) were trained and used for ligand-based classification of full-length Rhodopsin GPCRs, complementing phylogenetic and homology-based classification. Conclusions Genome-wide investigation of GPCRs in two platyhelminth genomes reveals an extensive and complex receptor signaling repertoire with many unique features. This work provides important sequence and functional leads for understanding basic flatworm receptor biology, and sheds light on a lucrative set of anthelmintic drug targets. PMID:22145649

  13. Ca2+ channels and Praziquantel: a view from the free world

    PubMed Central

    Chan, John D.; Zarowiecki, Magdalena; Marchant, Jonathan S.

    2012-01-01

    Targeting the cellular Ca2+ channels and pumps that underpin parasite Ca2+ homeostasis may realize novel antihelmintic agents. Indeed, the antischistosomal drug praziquantel (PZQ) is a key clinical agent that has been proposed to work in this manner. Heterologous expression data has implicated an action of PZQ on voltage-operated Ca2+ channels, although the relevant in vivo target of this drug has remained undefined over three decades of clinical use. The purpose of this review is to bring new perspective to this issue by discussing the potential utility of free-living planarian flatworms for providing new insight into the mechanism of PZQ action. First, we discuss in vivo functional genetic data from the planarian system that broadly supports the molecular data collected in heterologous systems and the ‘Ca2+ hypothesis’ of PZQ action. On the basis of these similarities we highlight our current knowledge of platyhelminth voltage operated Ca2+ channels, their unique molecular pharmacology and the downstream functional PZQ interactome engaged by dysregulation of Ca2+ influx that has potential to yield novel antischistosomal targets. Overall the broad dataset underscore a common theme of PZQ-evoked disruptions of Ca2+ homeostasis in trematodes, cestodes and turbellarians, and showcase the utility of the planarian model for deriving insight into drug action and targets in parasitic flatworms. PMID:23246536

  14. DYNAMIQUE DES POPULATIONS DE MONOGENES, ECTOPARASITES DE TLOSTENS : STRATGIES DMOGRAPHIQUES ET

    E-print Network

    Genaud, Stéphane

    : DEMOGRAPHIC STRATEGIES AND MATHEMATICAL IMPLICATIONS The Platyhelminths, or flatworms, are represented. KEY WORDS: Platyhelminth - Monogenea - Téléosteans, parasite - Population dynamics - Ecological

  15. The regeneration capacity of the flatworm Macrostomum lignano—on repeated regeneration, rejuvenation, and the minimal size needed for regeneration

    PubMed Central

    Ladurner, P.; Nimeth, K.; Gschwentner, R.; Rieger, R.

    2006-01-01

    The lion’s share of studies on regeneration in Plathelminthes (flatworms) has been so far carried out on a derived taxon of rhabditophorans, the freshwater planarians (Tricladida), and has shown this group’s outstanding regeneration capabilities in detail. Sharing a likely totipotent stem cell system, many other flatworm taxa are capable of regeneration as well. In this paper, we present the regeneration capacity of Macrostomum lignano, a representative of the Macrostomorpha, the basal-most taxon of rhabditophoran flatworms and one of the most basal extant bilaterian protostomes. Amputated or incised transversally, obliquely, and longitudinally at various cutting levels, M. lignano is able to regenerate the anterior-most body part (the rostrum) and any part posterior of the pharynx, but cannot regenerate a head. Repeated regeneration was observed for 29 successive amputations over a period of almost 12 months. Besides adults, also first-day hatchlings and older juveniles were shown to regenerate after transversal cutting. The minimum number of cells required for regeneration in adults (with a total of 25,000 cells) is 4,000, including 160 neoblasts. In hatchlings only 1,500 cells, including 50 neoblasts, are needed for regeneration. The life span of untreated M. lignano was determined to be about 10 months. PMID:16604349

  16. A Reevaluation of the Taxonomy of the Mesocoelium monas Complex (Platyhelminthes: Digenea: Mesoceliidae) 

    E-print Network

    Calhoun, Dana Marie

    2012-07-16

    [20?24]), therefore 072881.00 is most likely M. crossophorum. USNPC 090335.00 Host: Mediterranean house gecko, turkish gecko, Hemidactylus turcicus (Linnaeus) (Squamata: Gekkonidae) (Appendix A7) Locality: Louisiana, USA Description: Based...

  17. The first troglobitic species of freshwater flatworm of the suborder Continenticola (Platyhelminthes) from South America

    PubMed Central

    de Souza, Stella Teles; Morais, Ana Laura Nunes; Cordeiro, Lívia Medeiros; Leal-Zanchet, Ana Maria

    2015-01-01

    Abstract Brazilian cave diversity, especially of invertebrates, is poorly known. The Bodoquena Plateau, which is located in the Cerrado Biome in central Brazil, has approximately 200 recorded caves with a rich system of subterranean water resources and high troglobitic diversity. Herein we describe a new troglobitic species of Girardia that represents the first obligate cave-dwelling species of the suborder Continenticola in South America. Specimens of the new species, which occur in a limestone cave in the Bodoquena Plateau, in the Cerrado biome, are unpigmented and eyeless. Species recognition in the genus Girardia is difficult, due to their great morphological resemblance. However, the new species can be easily recognized by a unique feature in its copulatory apparatus, namely a large, branched bulbar cavity with multiple diverticula. PMID:25632242

  18. The first troglobitic species of freshwater flatworm of the suborder Continenticola (Platyhelminthes) from South America.

    PubMed

    de Souza, Stella Teles; Morais, Ana Laura Nunes; Cordeiro, Lívia Medeiros; Leal-Zanchet, Ana Maria

    2015-01-01

    Brazilian cave diversity, especially of invertebrates, is poorly known. The Bodoquena Plateau, which is located in the Cerrado Biome in central Brazil, has approximately 200 recorded caves with a rich system of subterranean water resources and high troglobitic diversity. Herein we describe a new troglobitic species of Girardia that represents the first obligate cave-dwelling species of the suborder Continenticola in South America. Specimens of the new species, which occur in a limestone cave in the Bodoquena Plateau, in the Cerrado biome, are unpigmented and eyeless. Species recognition in the genus Girardia is difficult, due to their great morphological resemblance. However, the new species can be easily recognized by a unique feature in its copulatory apparatus, namely a large, branched bulbar cavity with multiple diverticula. PMID:25632242

  19. Bucephalidae (Platyhelminthes: Digenea) of Plectropomus (Serranidae: Epinephelinae) in the tropical Pacific.

    PubMed

    Bott, Nathan J; Miller, Terrence L; Cribb, Thomas H

    2013-07-01

    We examined four species of Plectropomus Oken, 1817 (Serranidae: Epinephelinae), Plectropomus areolatus (Rüppell), Plectropomus laevis (Lacepède), Plectropomus leopardus (Lacepède) and Plectropomus maculatus (Bloch) from sites off Heron Island and Lizard Island on the Great Barrier Reef, Australia (GBR), and the Gambier Islands, French Polynesia. Three new species of Neidhartia Nagaty, 1937, five new species of Prosorhynchus Odhner, 1905, and one previously described species, Prosorhynchus freitasi Nagaty, 1937, are characterised. The three species of Neidhartia, Neidhartia haywardi n. sp., Neidhartia plectropomi n. sp. and Neidhartia tyleri n. sp. are readily distinguishable morphologically. Two of the six species of Prosorhynchus (Prosorhynchus lesteri n. sp. and Prosorhynchus wrightae n. sp.) are easily distinguished from their other congeners by morphology but the other four species (P. freitasi, Prosorhynchus heronensis n. sp., Prosorhynchus munozae n. sp. and Prosorhynchus plectropomi n. sp.) are generally similar in morphology and were only distinguished initially by comparing their ITS2 rRNA sequences. Three additional taxa, one from the GBR and two from French Polynesia, were recognised as distinct on the basis that their ITS2 rRNA sequences differed from those of the new taxa described here; these species remain unnamed for the present. Inter-specific divergence observed within these genera in the ITS2 rRNA ranged from 10 to 42 base pairs (4-16 %) for species of Neidhartia and 2-57 base pairs (3-21 %) for species of Prosorhynchus. Inter-generic divergences were 42-55 base pairs (17-21 %). No intraspecific variation in the ITS2 rRNA region was observed for any of the six species for which multiple sequence replicates were obtained. Phylogenetic analysis of 12 operational taxa from Plectropomus together with sequences of three other species from epinepheline serranids demonstrated that Neidhartia and Prosorhynchus were reciprocally monophyletic with the exception that P. wrightae n. sp. fell either within or basal to the Neidhartia species. The richness of bucephalids in species of Plectropomus appears to be exceptional within the Serranidae relative to that observed in other serranid genera in the tropical Indo-West Pacific. PMID:23728730

  20. Description of a New Temnocephala Species (Platyhelminthes) from the Southern Neotropical Region.

    PubMed

    de León, Rodrigo Ponce; Vera, Bárbara Berón; Volonterio, Odile

    2015-08-01

    The genus Temnocephala is endemic to the Neotropical region. Temnocephala mexicana and Temnocephala chilensis are the only 2 temnocephalans whose known distribution ranges extend to the south beyond Parallel 40°S. No Temnocephala species has ever been recorded from the extensive area between Parallel 43°S and the southern end of the South American continent, which makes the study of the southern limit of the distribution of the genus a topic of great interest. The southernmost report corresponds to T. chilensis from the Telsen River, Chubut Province, Argentina. In March 2000, several temnocephalans were found on the freshwater anomuran crustacean Aegla neuquensis from the same locality; the specimens were identified as belonging to a new species, which is described here. This species is characterized by possessing an unusually thin-walled, narrow zone that has the appearance of a deep groove connecting the introvert to the shaft of the penial stylet; an introvert with 36 longitudinal rows of spines, each bearing 6-8 spines that are progressively smaller towards the distal end; a distal end of the introvert with a very thin, sclerotized wall without spines; a seminal vesicle that opens sub-polarly into the contractile vesicle; a pair of paranephrocytes at the level of the pharynx and a second pair at the level of the anterior portion of the anterior testes, and eggs with very long stalks. On the basis of their overall morphology, host preference, and geographical distribution, T. chilensis and the new species are closely related, so a diagnostic key for the southern species of Temnocephala is also included. The type locality of the new species is in the southern limit of the known distribution area of T. chilensis, so after this work there are 2 known species marking the southern limit of the distribution of the genus. PMID:25871978

  1. Three new species of freshwater Macrostomum (Platyhelminthes, Macrostomida) from southern China.

    PubMed

    Sun, Ting; Zhang, Lv; Wang, An-Tai; Zhang, Yu

    2015-01-01

    Macrostomum is a diverse genus of turbellarians with more than 180 species described from around the world. However, the Macrostomum fauna in China is poorly known. In this study, three new species of freshwater Macrostomum were described from southern China based on morphology of the penis stylet, an important character for species identification in this genus. In M. heyuanensis n. sp., the penis stylet bends 108° leftwards at its 1/2 length then backwards besides the distal opening, and the terminal region is thicker than other parts of penis stylet. In M. dongyuanensis n. sp., the penis stylet is J-shaped, with the opening at the tail end. In M. bicaudatum n. sp., the penis stylet is C-shaped, with the upper margin of the distal end longer but slimmer than the lower margin. In addition, molecular phylogenetic analyses were conducted to aid the classification of the novel species. Finally, their habitat and taxonomic status are compared and discussed. PMID:26623848

  2. First records of Cotylea (Polycladida, Platyhelminthes) for the Atlantic coast of the Iberian Peninsula

    PubMed Central

    Noreña, Carolina; Marquina, Daniel; Perez, Jacinto; Almon, Bruno

    2014-01-01

    Abstract A study of polyclad fauna of the Atlantic coast of the Iberian Peninsula was carried out from 2010 to 2013. The paper reports nine new records belonging to three Cotylean families: the family Euryleptidae Lang, 1884, Pseudocerotidae Lang, 1884 and the family Prosthiostomidae Lang, 1884, and describes one new species, Euryleptodes galikias sp. n. PMID:24843268

  3. Co-Speciation of the Ectoparasite Gyrodactylus teuchis (Monogenea, Platyhelminthes) and Its Salmonid Hosts

    PubMed Central

    Hahn, Christoph; Weiss, Steven J.; Stojanovski, Stojmir; Bachmann, Lutz

    2015-01-01

    Co-speciation is a fundamental concept of evolutionary biology and intuitively appealing, yet in practice hard to demonstrate as it is often blurred by other evolutionary processes. We investigate the phylogeographic history of the monogenean ectoparasites Gyrodactylus teuchis and G. truttae on European salmonids of the genus Salmo. Mitochondrial cytochrome oxidase subunit 1 and the nuclear ribosomal internal transcribed spacer 2 were sequenced for 189 Gyrodactylus individuals collected from 50 localities, distributed across most major European river systems, from the Iberian- to the Balkan Peninsula. Despite both anthropogenic and naturally caused admixture of the principal host lineages among major river basins, co-phylogenetic analyses revealed significant global congruence for host and parasite phylogenies, providing firm support for co-speciation of G. teuchis and its salmonid hosts brown trout (S. trutta) and Atlantic salmon (S. salar). The major split within G. teuchis, coinciding with the initial divergence of the hosts was dated to ~1.5 My BP, using a Bayesian framework based on an indirect calibration point obtained from the host phylogeny. The presence of G. teuchis in Europe thus predates some of the major Pleistocene glaciations. In contrast, G. truttae exhibited remarkably low intraspecific genetic diversity. Given the direct life cycle and potentially high transmission potential of gyrodactylids, this finding is interpreted as indication for a recent emergence (<60 ky BP) of G. truttae via a host-switch. Our study thus suggests that instances of two fundamentally different mechanisms of speciation (co-speciation vs. host-switching) may have occurred on the same hosts in Europe within a time span of less than 1.5 My in two gyrodactylid ectoparasite species. PMID:26080029

  4. Ultrastructural and cytochemical aspects of the germarium and the vitellarium in Syndesmis patagonica (Platyhelminthes, Rhabdocoela, Umagillidae).

    PubMed

    Falleni, Alessandra; Lucchesi, Paolo; Ghezzani, Claudio; Brogger, Martín I

    2014-06-01

    The cytoarchitecture of the female gonad of the endosymbiont umagillid Syndesmis patagonica has been investigated using electron microscopy and cytochemical techniques. The female gonad consists of paired germaria and vitellaria located behind the pharynx in the mid-posterior region of the body. Both the germaria and the vitellaria are enveloped by an outer extracellular lamina and an inner sheath of accessory cells which contribute to the extracellular lamina. Oocyte maturation occurs completely during the prophase of the first meiotic division. Oocyte differentiation is characterized by the appearance of chromatoid bodies and the development of endoplasmic reticulum and Golgi complexes. These organelles appear to be involved in the production of round granules, about 2-2.5 ?m in diameter, with a homogeneous electron-dense core surrounded by a granular component and a translucent halo delimited by a membrane. These egg granules migrate to the periphery of mature oocytes, are positive to the cytochemical test for polyphenol detection, are unaffected by protease and have been interpreted as eggshell granules. The mature oocytes also contain a small number of yolk granules, lipid droplets, and glycogen particles scattered throughout the ooplasm. The vitellaria are branched organs composed of vitelline follicles with vitellocytes at different stages of maturation. Developing vitellocytes contain well-developed rough endoplasmic reticulum and small Golgi complexes involved in the production of eggshell and yolk globules. Eggshell globules are round, measure 4-5 ?m in diameter, and have a mosaic-like patterned content which contains polyphenols. The yolk globules, 2-3 ?m in diameter, show a homogeneous protein content of medium electron density, devoid of polyphenols, and completely digested by protease. The mature vitellocytes also contain glycogen as further reserve material. The presence of polyphenolic eggshell granules in the oocytes and of polyphenolic eggshell globules with a mosaic-like pattern in the vitellocytes have been considered apomorphic features of the Rhabdocoela + Prolecithophora. PMID:24469987

  5. Biogeographical implications of Zambezian Cichlidogyrus species (Platyhelminthes: Monogenea: Ancyrocephalidae) parasitizing Congolian cichlids.

    PubMed

    Vanhove, Maarten P M; Van Steenberge, Maarten; Dessein, Steven; Volckaert, Filip A M; Snoeks, Jos; Huyse, Tine; Pariselle, Antoine

    2013-01-01

    Fishes normally restricted to inland waters are valuable model systems for historical biogeography, inter alia, because of their limited dispersal abilities and concordance with the distribution patterns of other freshwater taxa (Zogaris et al. 2009). The comparison of fish species assemblages has been the major biogeographical tool for delineating African aquatic ecoregions as the fossil record is often meagre and merely offers complementary information. This is, for example, the case for the Zambezian and Congolian ichthyofaunal provinces, which display substantial contemporary fish diversity (Stewart 2001). Between both regions lies the Bangweulu-Mweru ecoregion (sensu Scott 2005), known for its high percentage of endemicity. Although hydrographically belonging to the Congo Basin, the Bangweulu-Mweru ecoregion has a high affinity with the Zambezi province (Scott 2005), due to historical river connections (Tweddle 2010). Studies comparing the Zambezi and Congo ichthyofaunal provinces are rare and hampered by lack of data from the Congo Basin. The latter harbours more than 1250 fish species (Snoeks et al. 2011) while in the Zambezi, only 120 freshwater fishes are found (Tweddle 2010). Indeed, species richness declines in all major African teleost families from the Congo Basin southwards, riverine haplochromine cichlids forming a notable exception to this rule (Joyce et al. 2005). Although it was hypothesized by Tweddle (2010) that the origin of many Zambezian fish species is in the Congo Basin, the haplochromines Serranochromis Regan, Sargochromis Regan, Pharyngochromis Greenwood and Chetia Trewavas, together forming the serranochromines, have their centre of diversity in the rivers of the Zambezian ichthyofaunal province (Joyce et al. 2005). Therefore, the biogeographical history of Cichlidae across the Zambezi- Congo watershed is not only key to cichlid biogeography on an African scale, but also complementary to biogeography of all other teleosts in the region. Yet, colonisation and speciation patterns are difficult to unravel due to complex hydrological history (Katongo et al. 2007; Schwarzer et al. 2012). PMID:24614480

  6. Insight into the role of cetaceans in the life cycle of the tetraphyllideans (Platyhelminthes: Cestoda).

    PubMed

    Aznar, F J; Agustí, C; Littlewood, D T J; Raga, J A; Olson, P D

    2007-02-01

    Four types of tetraphyllidean larvae infect cetaceans worldwide: two plerocercoids differing in size, 'small' (SP) and 'large' (LP), and two merocercoids referred to as Phyllobothrium delphini and Monorygma grimaldii. The latter merocercoid larvae parasitize marine mammals exclusively and exhibit a specialised cystic structure. Adult stages are unknown for any of the larvae and thus the role of cetaceans in the life cycle of these species has been a long-standing problem. The SP and LP forms are thought to be earlier stages of P. delphini and M. grimaldii that are presumed to infect large pelagic sharks that feed on cetaceans. A molecular analysis of the D2 variable region of the large subunit ribosomal DNA gene based on several individuals of each larval type collected from three Mediterranean species of cetaceans showed consistent and unique molecular signatures for each type regardless of host species or site of infection. The degree of divergence suggested that LP, P. delphini and M. grimaldii larvae may represent separate species, whereas SP may be conspecific with M. grimaldii. In all host species, individuals of SP accumulated in the gut areas in which the lymphoid tissue was especially developed. We suggest therefore that these larvae use the lymphatic system to migrate to the abdominal peritoneum and mesenteries where they develop into forms recognizable as M. grimaldii. The plerocercoid stage of P. delphini remains unknown. In a partial phylogenetic tree of the Tetraphyllidea, all larvae formed a clade that included a representative of the genus Clistobothrium, some species of which parasitize sharks such as the great white which is known to feed on cetaceans. A bibliographic examination of tetraphyllidean infections in marine mammals indicated that these larvae are acquired mostly offshore. In summary, the evidence suggests that cetaceans play a significant role in the life cycle of these larvae. In addition, it seems clear that cetaceans act as natural intermediate hosts for P. delphini and M. grimaldii, as within these hosts they undergo development from the plerocercoid stage to the merocercoid stage. Because tetraphyllidean species use fish, cephalopods and other marine invertebrates as intermediate hosts, the inclusion of cetaceans in the life cycle would have facilitated their transmission to apex predators such as the large, lamnid sharks. The biological significance of infections of LP in cetaceans is unclear, but infections do not seem to be accidental as such larvae show high prevalence and abundance as well as a high degree of site specificity, particularly in the anal crypts and bile ducts. PMID:17161403

  7. InternationalJournalfor Parasitology Vol.21, No. 7, pp. 821-838, 1991 Printed in Great Britain

    E-print Network

    IN THE MONOGENEA (PLATYHELMINTHES), BASED UPON A PARSIMONY ANALYSIS OF SPERMIOGENETIC AND SPERMATOZOAL.Cladisticstudyin the Monogenea(Platyhelminthes),based upon aparsimony analysis of spermiogenetic and spermatozoal: Monogenea, Platyhelminthes; Polyopisthocotylea; MonopisthocotyIea; phylogeny; cladistics; systematics

  8. Mar Biol (2007) 151:12151223 DOI 10.1007/s00227-006-0563-2

    E-print Network

    2007-01-01

    belong to members of various phyla including Porifera, Cnidaria, Platyhelminthes, and Mollusca (Douglas to the well-studied cnidarians, symbiotic platyhelminth worms, and particularly acoelomorphs are the most

  9. The Slipper Snail, Crepidula: An Emerging Lophotrochozoan Model System

    E-print Network

    Collin, Rachel

    stricto of Paps et al., 2009) includes molluscs, anne- lids, nemertines, the lophophorates, platyhelminths], Gnatho- stomulida, Nemertea, dicyemid Mesozoa, Entoprocta, and some Platyhelminthes [including polyclad

  10. Vestigial prototroch in a basal nemertean, Carinoma tremaphoros (Nemertea; Palaeonemertea)

    E-print Network

    Maslakova, Svetlana

    affinities of ne- merteans. Although some authors traditionally view them as related to platyhelminthes based 1964) or platyhelminthes and nemerteans (Ivanova- Kazas 1985). Rouse (1999) suggested an apomorph

  11. Weak extremely-low-frequency magnetic fields and regeneration in the planarian Dugesia tigrina

    SciTech Connect

    Jenrow, K.A.; Smith, C.H.; Liboff, A.R.

    1995-06-01

    Extremely-low-frequency (ELF), low-intensity magnetic fields have been shown to influence cell signaling processes in a variety of systems, both in vivo and in vitro. Similar effects have been demonstrated for nervous system development and neurite outgrowth. The authors report that regeneration in planaria, which incorporates many of these processes, is also affected by ELF magnetic fields. The rate of cephalic regeneration, reflected by the mean regeneration time (MRT), for planaria populations regenerating under continuous exposure to combined DC (78.4 {mu}T) and AC (60.0 Hz at 10.0 {mu}T{sub peak}) magnetic fields applied in parallel was found to be significantly delayed (P {much_lt} 0.001) by 48 {+-} 1 h relative to two different types of control populations (MRT {minus}140 {+-} 12 h). One control population was exposed to only the AC component of this field combination, while the other experienced only the ambient geomagnetic field. All measurements were conducted in a low-gradient, low-noise magnetics laboratory under well-maintained temperature conditions. This delay in regeneration was shown to be dependent on the planaria having a fixed orientation with respect to the magnetic field vectors. Results also indicate that this orientation-dependent transduction process does not result from Faraday induction but is consistent with a Ca{sup 2+} cyclotron resonance mechanism. Data interpretation also permits the tentative conclusion that the effect results from an inhibition of events at an early stage in the regeneration process before the onset of proliferation and differentiation.

  12. Acute toxic responses of the freshwater planarian, Dugesia dorotocephala, to methylmercury

    SciTech Connect

    Best, J.B.; Morita, M.; Ragin, J.; Best, J. Jr.

    1981-07-01

    Toxic responses of planaria to various aquatic habitat concentrations of methylmercury chloride (MMC) were investigated. One hundred percent lethality occurred within 5 h in 2 ppM MMC, 24 h in 1 ppM MMC, and 5 days in 0.5 ppM MMC. No deaths occurred in 0.2 ppM MMC over a 10 day period, however, non-lethal toxic responses were observed. Varying degrees of head resorption, progressing caudally from the snout were observed. With continuing exposure, partial head regeneration and recovery toward more normal appearance occurred by 10 days. Teratogenic effects were observed in surgical decapitation experiments. Head regeneration was retarded in 0.1 and 0.2 ppM MMC. Malformations, visible lesions, or gross behavioral abnormalities were produced by 2 week exposure of planaria to concentrations of 20 ppB MMC or lower. (RJC)

  13. A wound-induced Wnt expression program controls planarian regeneration polarity

    E-print Network

    Petersen, Christian P.

    Regeneration requires specification of the identity of new tissues to be made. Whether this process relies only on intrinsic regulative properties of regenerating tissues or whether wound signaling provides input into ...

  14. Planarian Worms, Shock Generators and Apathetic Witnesses: Teaching Psychology and Graphic Novels

    ERIC Educational Resources Information Center

    Aleixo, Paul A.; Norris, Claire E.

    2013-01-01

    Comics and graphic novels have made a greater impact on popular culture in recent years and can be used for enhancing the learning experience of psychology students. One of the best known and respected comic book writers of the last 30 years is Alan Moore, who has included a number of detailed references to psychological studies and experiments in…

  15. Planarian regeneration involves distinct stem cell responses to wounds and tissue absence

    E-print Network

    Wenemoser, Danielle

    Regeneration requires signaling from a wound site for detection of the wound and a mechanism that determines the nature of the injury to specify the appropriate regenerative response. Wound signals and tissue responses to ...

  16. First documentation and molecular confirmation of three trematode species (Platyhelminthes: Trematoda) infecting the polychaete Marenzelleria viridis (Annelida: Spionidae).

    PubMed

    Phelan, Krystin; Blakeslee, April M H; Krause, Maureen; Williams, Jason D

    2016-01-01

    Polychaete worms are hosts to a wide range of marine parasites; yet, studies on trematodes using these ecologically important species as intermediate hosts are lacking. During examination of the spionid polychaete Marenzelleria viridis collected on the north shore of Long Island, New York, putative trematode cysts were discovered in the body cavity of these polychaetes. In order to verify these cysts as metacercariae of trematodes, specimens of the eastern mudsnail Ilyanassa obsoleta (a very common first intermediate host of trematodes in the region) were collected for molecular comparison. DNA barcoding using cytochrome C oxidase I regions confirmed the presence of three species of trematodes (Himasthla quissetensis, Lepocreadium setiferoides, and Zoogonus lasius) in both M. viridis and I. obsoleta hosts. Brown bodies were also recovered from polychaetes, and molecular testing confirmed the presence of L. setiferoides and Z. lasius, indicating an immune response of the polychaete leading to encapsulation of the cysts. From the 125 specimens of M. viridis collected in 2014, 95 (76.8 %) were infected with trematodes; of these 95 infected polychaetes, 86 (90.5 %) contained brown bodies. This is the first confirmation that trematodes use M. viridis as a second intermediate host and that this intermediate host demonstrates a clear immune response to metacercarial infection. Future research should explore the role of these polychaetes in trematode life cycles, the effectiveness of the immune response, and transmission pathways to vertebrate definitive hosts. PMID:26385466

  17. A new and alien species of ``oyster leech'' (Platyhelminthes, Polycladida, Stylochidae) from the brackish North Sea Canal, The Netherlands

    NASA Astrophysics Data System (ADS)

    Sluys, Ronald; Faubel, Anno; Rajagopal, Sanjeevi; Velde, Gerard Van Der

    2005-11-01

    A new species of polyclad flatworm, Imogine necopinata Sluys, sp. nov., is described from a brackish habitat in The Netherlands. Taxonomic affinities with Asian species and the ecology of the animals suggest that the species is an introduced, exotic component of the Dutch fauna. The new species belongs to a group of worms with species that are known to predate on oysters.

  18. Cryptostylochus hullensis sp. nov. (Polycladida, Acotylea, Platyhelminthes): A possible case of transoceanic dispersal on a ship's hull

    NASA Astrophysics Data System (ADS)

    Faubel, A.; Gollasch, S.

    1996-12-01

    In July 1993, the car carrier “Faust” entered Bremerhaven after a voyage from the North-American Atlantic coast to Europe. In a dockyard, five living specimens of the order Polycladida were collected from the hull of the ship. This could be a possible case of trans-atlantic dispersal of plathelminths living as fouling organisms of ships. The specimens found represent a new species of the genus Cryptostylochus Faubel, 1983, Cryptostylochus hullensis sp. nov.

  19. Ribosomal DNA as molecular markers and their applications in the identification of fish parasites (Platyhelminthes: Monogenea) from India

    PubMed Central

    Chaudhary, Anshu; Verma, Chandni; Singh, Hridaya Shanker

    2014-01-01

    The development of molecular techniques for taxonomic analysis of monogenean parasites has led to a great increase for proper identification and factualness. These molecular techniques, in particular the use of molecular markers, have been used to identify and validate the monogenean parasites. Although, improvements in marker detection systems particularly of elements of rDNA like 18S, ITS and 28S used in monogeneans parasites have enabled great advances to be made in recent years in India. However, the molecular sequence analysis and phylogenetic relationships among the parasitic helminthes is unconventional in India. Many workers have been always questioned the validity of Indian species of monogeneans and emphasized the need to ascertain the status of species from Indian fish. Here we would like to provide additional resolution for the interpretation of use of molecular markers in study of monogeneans in India. This review provides an overview of current stage of studies in India that have been used in applying molecular techniques to monogenean.

  20. Expression of the histone chaperone SET/TAF-I? during the strobilation process of Mesocestoides corti (Platyhelminthes, Cestoda).

    PubMed

    Costa, Caroline B; Monteiro, Karina M; Teichmann, Aline; da Silva, Edileuza D; Lorenzatto, Karina R; Cancela, Martín; Paes, Jéssica A; Benitz, André de N D; Castillo, Estela; Margis, Rogério; Zaha, Arnaldo; Ferreira, Henrique B

    2015-08-01

    The histone chaperone SET/TAF-I? is implicated in processes of chromatin remodelling and gene expression regulation. It has been associated with the control of developmental processes, but little is known about its function in helminth parasites. In Mesocestoides corti, a partial cDNA sequence related to SET/TAF-I? was isolated in a screening for genes differentially expressed in larvae (tetrathyridia) and adult worms. Here, the full-length coding sequence of the M. corti SET/TAF-I? gene was analysed and the encoded protein (McSET/TAF) was compared with orthologous sequences, showing that McSET/TAF can be regarded as a SET/TAF-I? family member, with a typical nucleosome-assembly protein (NAP) domain and an acidic tail. The expression patterns of the McSET/TAF gene and protein were investigated during the strobilation process by RT-qPCR, using a set of five reference genes, and by immunoblot and immunofluorescence, using monospecific polyclonal antibodies. A gradual increase in McSET/TAF transcripts and McSET/TAF protein was observed upon development induction by trypsin, demonstrating McSET/TAF differential expression during strobilation. These results provided the first evidence for the involvement of a protein from the NAP family of epigenetic effectors in the regulation of cestode development. PMID:25823644

  1. Identification of the Boudicca and Sinbad retrotransposons in the genome of the human blood fluke Schistosoma haematobium.

    PubMed

    Copeland, Claudia S; Lewis, Fred A; Brindley, Paul J

    2006-08-01

    Schistosomes have a comparatively large genome, estimated for Schistosoma mansoni to be about 270 megabase pairs (haploid genome). Recent findings have shown that mobile genetic elements constitute significant proportions of the genomes of S. mansoni and S. japonicum. Much less information is available on the genome of the third major human schistosome, S. haematobium. In order to investigate the possible evolutionary origins of the S. mansoni long terminal repeat retrotransposons Boudicca and Sinbad, several genomes were searched by Southern blot for the presence of these retrotransposons. These included three species of schistosomes, S. mansoni, S. japonicum, and S. haematobium, and three related platyhelminth genomes, the liver flukes Fasciola hepatica and Fascioloides magna and the planarian, Dugesia dorotocephala. In addition, Homo sapiens and three snail host genomes, Biomphalaria glabrata, Oncomelania hupensis, and Bulinus truncatus, were examined for possible indications of a horizontal origin for these retrotransposons. Southern hybridization analysis indicated that both Boudicca and Sinbad were present in the genome of S. haematobium. Furthermore, low stringency Southern hybridization analyses suggested that a Boudicca-like retrotransposon was present in the genome of B. truncatus, the snail host of S. haematobium. PMID:17072464

  2. Long-term changes in the invertebrate communities of SUDS

    E-print Network

    Crustacea Mollusca Insecta Oligochaeta Hirudinea Tricladida Axis 1 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Axis2 0 WM07 L03 L07 H07 P07 Linburn Community composition change Crustacea Mollusca Insecta Oligochaeta;Community composition change Crustacea Mollusca Insecta Oligochaeta Hirudinea Tricladida Axis 1 0.0 0.5 1

  3. Developmental Cell, Vol. 8, 623627, May, 2005, Copyright 2005 by Elsevier Inc. DOI 10.1016/j.devcel.2005.04.007 improvements in hand, Reddien et al. (2005) moved on

    E-print Network

    Alvarado, Alejandro Sánchez

    2005-01-01

    : to assess the consequences of RNAi knockdowns of A Large-Scale RNAi Screen 1,065 planarian genes obtained from cDNA libraries from planarian heads and neoblast-enriched cell pop-in Planarians ulations defects and behavioral phenotypes were charac-planarians, classic models for regeneration studies. terized

  4. TECHNOLOGY REPORT Identification of Immunological Reagents for Use in the

    E-print Network

    Alvarado, Alejandro Sánchez

    Planarians by Means of Whole-Mount Immunofluorescence and Confocal Microscopy Sofia M.C. Robb and Alejandro, interest in planarians as a model system for the study of metazoan regeneration, adult stem cell biologyU-labeling of planarian stem cells, and thousands of planarian cDNA sequences soon to be released into public databases

  5. Transparency Master: Planaria in the Classroom.

    ERIC Educational Resources Information Center

    Jensen, Lauritz A.; Allen, A. Lester

    1983-01-01

    Background information on the morphology and physiology of planarians and uses of the organism in schools is provided. Also provided is a transparency master demonstrating a planarian with an everted proboscis, two-headed/two-tailed planarians, and a planarian demonstrating the digestive tract. (JN)

  6. Contribution of Trans-splicing, 5 -Leader Length, Cap-Poly(A) Synergism, and Initiation Factors to Nematode Translation in an

    E-print Network

    Davis, Richard E.

    the kinetoplastid protozo- ans, and perhaps platyhelminths (11, 12). However, it is not clear that resolution of polycistronic pre-mRNAs is the sole role for spliced leader trans-splicing, particularly in platyhelminths (see

  7. THE INTERRELATION OF WATER QUALITY, GILL PARASITES, AND GILL PATHOLOGY OF SOME FISHES FROM SOUTH BISCAYNE BAY,

    E-print Network

    water quality were heavily infested with the Monogenea (Platyhelminthes) Neodiplectanum wenningeri (on G. . Monogenea (Platyhelminthes) of the gills are common in fish. Since parasites affect the health of fish

  8. NOAA Technical Rep_o_rt_N_M_F_S_I_2_1 A_u..gu_s_t1_9_94 Marine Flora and Fauna of the

    E-print Network

    United States Platyhelminthes: Monogenea Sherman S. Hendrix u.s. Department of Commerce #12;u Bulletin Marine Flora and Fauna of the Eastern United States Platyhelminthes: Monogenea Sherman S. Hendrix

  9. Biology II--1750 Dr. Scott D. Snyder

    E-print Network

    Snyder, Scott D.

    , Porifera Chapter 11 Chapter 12 Systematics II Protozoa 5 February 6 Exam I Cnidaria, Platyhelminthes Chapter 13 Chapter 14 Porifera, Cnidaria 6 February 13 Platyhelminthes Nemata, Rotifera Chapter 14 Chapter

  10. The phylogenetic placement of two enigmatic metazoan parasites: Polypodium hydriforme and Myxozoa

    E-print Network

    Evans, Nathaniel Michael

    2009-07-15

    Caenorhabditis elegans X03680 Nematomorpha Chordodes morgani AF03639 Nemertea Amphiporus sp. AF1907 Nemertodermatida Meara stichopi AF19085 Onychophora Peripatus sp. AY210837 Platyhelminthes Diclidophora denticulata AJ2879 Platyhelminthes...

  11. A Bmp/Admp Regulatory Circuit Controls Maintenance and Regeneration of Dorsal-Ventral Polarity in Planarians

    E-print Network

    Reddien, Peter

    Animal embryos have diverse anatomy and vary greatly in size. It is therefore remarkable that a common signaling pathway, BMP signaling, controls development of the dorsoventral (DV) axis throughout the Bilateria [1, 2, ...

  12. Molecular and Biochemical Parasitology 90 (1997) 395397 Erratum to ``Surprising diversity and distribution of spliced

    E-print Network

    Davis, Richard E.

    1997-01-01

    ,enolasetrans-splicing,andidentificationofflatwormSLRNAs/genes Hostandsourceb Organisma ClassificationEnolasetrans-splicingc SLRNAandGened PhylumPlatyhelminthes=metacercaria)(WoodsHole,MA) Allocreadioidea(Superfamily) PhylumPlatyhelminthes,ClassTurbellaria StylochuszebraFree-living(Carmel,CA)Acoela(Order)ND- Intestineofseaurchin(HalfSyndesmisfranciscanaRhabdocoela(Order)-ND MoonBay,CA) PhylumPlatyhelminthes

  13. Division of Ultrastructure Research and Evolutionary Biology, Department of Zoology and Limnology, University of Innsbruck, Technikerstrae 25, Innsbruck, Austria; 2

    E-print Network

    Schärer, Lukas

    Platyhelminthes: Macrostomum lignano, n. sp. (Rhabditophora, Macrostomorpha) P. Ladurner1 , L. Scha¨rer1,2 , W, the basal-most subtaxon of the Platyhelminthes­Rhabditophora. This new species can be easily cultured including the main groups of the Platyhelminthes, Ehlers 1985). There is considerable recent debate over

  14. Histochem Cell Biol (2005) 123:89104 DOI 10.1007/s00418-004-0722-9

    E-print Network

    Schärer, Lukas

    2005-01-01

    analyses within Platy- helminthes and to Drosophila and C. elegans. Keywords Platyhelminthes antigens in a broad variety of species. Free-living Platyhelminthes are characterised pheno- typically Platyhelminthes are known to be the only major body plan possessing apparently totipotent stem cells (neo- blasts

  15. A large 28S rDNA-based phylogeny confirms the limitations of established morphological characters for classification of proteocephalidean tapeworms (Platyhelminthes, Cestoda).

    PubMed

    de Chambrier, Alain; Waeschenbach, Andrea; Fisseha, Makda; Scholz, Tomáš; Mariaux, Jean

    2015-01-01

    Proteocephalidean tapeworms form a diverse group of parasites currently known from 315 valid species. Most of the diversity of adult proteocephalideans can be found in freshwater fishes (predominantly catfishes), a large proportion infects reptiles, but only a few infect amphibians, and a single species has been found to parasitize possums. Although they have a cosmopolitan distribution, a large proportion of taxa are exclusively found in South America. We analyzed the largest proteocephalidean cestode molecular dataset to date comprising more than 100 species (30 new), including representatives from 54 genera (80%) and all subfamilies, thus significantly improving upon previous works to develop a molecular phylogeny for the group. The Old World origin of proteocephalideans is confirmed, with their more recent expansion in South America. The earliest diverging lineages are composed of Acanthotaeniinae and Gangesiinae but most of the presently recognized subfamilies (and genera) appear not to be monophyletic; a deep systematic reorganization of the order is thus needed and the present subfamilial system should be abandoned. The main characters on which the classical systematics of the group has been built, such as scolex morphology or relative position of genital organs in relation to the longitudinal musculature, are of limited value, as demonstrated by the very weak support for morphologically-defined subfamilies. However, new characters, such as the pattern of uterus development, relative ovary size, and egg structure have been identified, which may be useful in defining phylogenetically well-supported subgroups. A strongly supported lineage infecting various snakes from a wide geographical distribution was found. Although several improvements over previous works regarding phylogenetic resolution and taxon coverage were achieved in this study, the major polytomy in our tree, composed largely of siluriform parasites from the Neotropics, remained unresolved and possibly reflects a rapid radiation. The genus Spasskyellina Freze, 1965 is resurrected for three species of Monticellia bearing spinitriches on the margins of their suckers. PMID:25987870

  16. A large 28S rDNA-based phylogeny confirms the limitations of established morphological characters for classification of proteocephalidean tapeworms (Platyhelminthes, Cestoda)

    PubMed Central

    de Chambrier, Alain; Waeschenbach, Andrea; Fisseha, Makda; Scholz, Tomáš; Mariaux, Jean

    2015-01-01

    Abstract Proteocephalidean tapeworms form a diverse group of parasites currently known from 315 valid species. Most of the diversity of adult proteocephalideans can be found in freshwater fishes (predominantly catfishes), a large proportion infects reptiles, but only a few infect amphibians, and a single species has been found to parasitize possums. Although they have a cosmopolitan distribution, a large proportion of taxa are exclusively found in South America. We analyzed the largest proteocephalidean cestode molecular dataset to date comprising more than 100 species (30 new), including representatives from 54 genera (80%) and all subfamilies, thus significantly improving upon previous works to develop a molecular phylogeny for the group. The Old World origin of proteocephalideans is confirmed, with their more recent expansion in South America. The earliest diverging lineages are composed of Acanthotaeniinae and Gangesiinae but most of the presently recognized subfamilies (and genera) appear not to be monophyletic; a deep systematic reorganization of the order is thus needed and the present subfamilial system should be abandoned. The main characters on which the classical systematics of the group has been built, such as scolex morphology or relative position of genital organs in relation to the longitudinal musculature, are of limited value, as demonstrated by the very weak support for morphologically-defined subfamilies. However, new characters, such as the pattern of uterus development, relative ovary size, and egg structure have been identified, which may be useful in defining phylogenetically well-supported subgroups. A strongly supported lineage infecting various snakes from a wide geographical distribution was found. Although several improvements over previous works regarding phylogenetic resolution and taxon coverage were achieved in this study, the major polytomy in our tree, composed largely of siluriform parasites from the Neotropics, remained unresolved and possibly reflects a rapid radiation. The genus Spasskyellina Freze, 1965 is resurrected for three species of Monticellia bearing spinitriches on the margins of their suckers. PMID:25987870

  17. The first multi-gene phylogeny of the Macrostomorpha sheds light on the evolution of sexual and asexual reproduction in basal Platyhelminthes.

    PubMed

    Janssen, Toon; Vizoso, Dita B; Schulte, Gregor; Littlewood, D Timothy J; Waeschenbach, Andrea; Schärer, Lukas

    2015-11-01

    The Macrostomorpha-an early branching and species-rich clade of free-living flatworms-is attracting interest because it contains Macrostomum lignano, a versatile model organism increasingly used in evolutionary, developmental, and molecular biology. We elucidate the macrostomorphan molecular phylogeny inferred from both nuclear (18S and 28S rDNA) and mitochondrial (16S rDNA and COI) marker genes from 40 representatives. Although our phylogeny does not recover the Macrostomorpha as a statistically supported monophyletic grouping, it (i) confirms many taxa previously proposed based on morphological evidence, (ii) permits the first placement of many families and genera, and (iii) reveals a number of unexpected placements. Specifically, Myozona and Bradynectes are outside the three classic families (Macrostomidae, Microstomidae and Dolichomacrostomidae) and the asexually fissioning Myomacrostomum belongs to a new subfamily, the Myozonariinae nov. subfam. (Dolichomacrostomidae), rather than diverging early. While this represents the first evidence for asexuality among the Dolichomacrostomidae, we show that fissioning also occurs in another Myozonariinae, Myozonaria fissipara nov. sp. Together with the placement of the (also fissioning) Microstomidae, namely as the sister taxon of Dolichomacrostomidae, this suggests that fissioning is not basal within the Macrostomorpha, but rather restricted to the new taxon Dolichomicrostomida (Dolichomacrostomidae+Microstomidae). Furthermore, our phylogeny allows new insights into the evolution of the reproductive system, as ancestral state reconstructions reveal convergent evolution of gonads, and male and female genitalia. Finally, the convergent evolution of sperm storage organs in the female genitalia appears to be linked to the widespread occurrence of hypodermic insemination among the Macrostomorpha. PMID:26093054

  18. Assessment of platyhelminth diversity within amphibians of French Guiana revealed a new species of Nanopolystoma (Monogenea: Polystomatidae) in the caecilian Typhlonectes compressicauda.

    PubMed

    du Preez, Louis H; Badets, Mathieu; Verneau, Olivier

    2014-12-01

    An expedition was undertaken to French Guiana in search of amphibian parasites. Of the 23 anuran species collected and screened for polystomes, the toad Rhinella margaritifera (Laurenti) was the sole species found to be infected with a polystome, namely Wetapolystoma almae Gray, 1983. Of the two caecilian species collected, a new species of Nanopolystoma du Preez, Huyse et Wilkinson, 2008 was discovered from the urinary bladder of the aquatic caecilian Typhlonectes compressicauda (Duméril et Bibron). The small size of the mature worm, two non-diverticulated caeca of equal length that are non-confluent posteriorly, vitelline follicles in two dense lateral fields, a single follicular testis in the middle of the body, small ovary and a single operculated egg in utero, vaginae present and the caecilian host allowed the identification of the specimen as Nanopolystoma. Larger body size, hamulus length, egg diameter and occurrence in the caecilian family Typhlonectidae distinguishes the new species from the two other known polystomes in Nanopolystoma; thus, the description of Nanopolystoma tinsleyi sp. n. is provided within this paper. PMID:25651695

  19. Ultrastructure of the vitellarium of Ancyrocephalus paradoxus (Monogenea: Monopisthocotylea), with comments on the nature of the vitellarium in the Monogenea and related platyhelminth groups.

    PubMed

    Poddubnaya, Larisa G; Bru?anská, Magdaléna; Swiderski, Zdzis?aw; Gibson, David I

    2013-03-01

    Fine structural features of the vitelline follicles of the monopisthocotylean monogenean Ancyrocephalus paradoxus are revealed and compared with those of other monogenean species. As in other monogeneans, each vitelline follicle of A. paradoxus is composed of a single cell type, i.e. vitellocytes at various stages of development, with no sign of any interstitial cells. There is no special isolation of the vitelline follicles from the surrounding tissue, and both heterologous (between adjacent membranes of the vitelline and surrounding parenchymal cells) and homologous (between adjacent membranes of the vitelline cells) cell junctions (zonulae occludentes) are present. Non-membrane-bound vitelline clusters of A. paradoxus contain 50-100 vitelline globules, moderately electron-dense lipid droplets and glycogen particles present in the mature cell cytoplasm. In a search for phylogenetically informative characters of the fine structure of the vitellarium, the new findings are compared with those known for trematodes, and, to enable this, additional observations were made on the structure of the vitellarium of the aspidogastrean Aspidogaster limacoides. Some new discriminatory traits are revealed in A. limacoides; these include the presence of a single type of cellular component within the vitellarium, sarcoplasmic processes filling the space between and around the vitellocytes and zonulae occludentes between adjacent membranes of vitelline and muscle cells. On the basis of ultrastructural features of the vitellarium, a relationship between the Monogenea and the Aspidogastrea is indicated. PMID:23269512

  20. Automated Analysis of Behavior: A Computer-Controlled System for Drug

    E-print Network

    Levin, Michael

    to overcome these problems dur- ing investigation of neural function in planarian flat- worms and frog larvae of controversies in neurobiology. For exam- ple, the lack of consensus on the learning ability of planarian

  1. Description and quantification of cocaine withdrawal signs in Planaria.

    PubMed

    Raffa, Robert B; Desai, Prarthna

    2005-01-25

    Previous work provided indirect evidence that planarians undergo abstinence-induced withdrawal from cocaine. The present study's purpose was to determine if planarians display withdrawal signs and, if so, to quantify the behaviors. Planarians were soaked in cocaine then transferred to either the same cocaine concentration or cocaine-free water. Compared to the cocaine/cocaine group, the cocaine/water group displayed a significant number of atypical behaviors, providing direct evidence of a 'withdrawal phenomenon' in planarians. PMID:15680960

  2. Seminars in Cell & Developmental Biology 20 (2009) 557564 Contents lists available at ScienceDirect

    E-print Network

    Oviedo, Néstor J.

    2009-01-01

    : Regeneration Cancer Stem cells Wound healing Amphibians Planarians a b s t r a c t A better understanding powerful regeneration models, the vertebrate urodele amphibians and invertebrate planarians, in light of cancer regulation. Urodele limb and eye lens regeneration is described, as well as the planarian

  3. Gen564 Readings Spring 2015 Prof: Ahna Skop

    E-print Network

    Skop, Ahna

    transcriptomic analysis reveals conserved features of stem cell pluripotency in planarians and mammals. Stem father's planarian: a classic model enters the era of functional genomics. Nat Rev Genet. 2002 Mar;3-cell transcriptomics in biology and medicine. Nat Methods. 2014 Jan;11(1):22-4. Movie: http://www.hhmi.org/biointeractive/planarian

  4. INTRODUCTION The replacement of cells that are lost to normal physiological

    E-print Network

    Oviedo, Néstor J.

    planarian Schmidtea mediterranea possesses an abundant population of undifferentiated cells, many of which). Neoblasts are considered the adult stem cells in planarians because they constantly self-renew and produce.1242/dmm.000117 Planarian PTEN homologs regulate stem cells and regeneration through TOR signaling Néstor J

  5. The Stem Cell System of the Basal Flatworm Macrostomum Lignano

    E-print Network

    Schärer, Lukas

    , and summarize the main advantages that we think it has over the classical planarian model. Third, we give/24/2008 8:21:34 PM #12;U ncorrected Proof 76 P. Ladurner et al. 5.1 Flatworm Stem Cells Rising `Planarian that planarian regeneration might be performed by witchcraft' H.V. Brøndsted, 1969 Fascinated by the phenomenal

  6. Regeneration in Planaria Phillip A Newmark,Carnegie Institution of Washington, Baltimore, Maryland, USA

    E-print Network

    Alvarado, Alejandro Sánchez

    Planarians possess remarkable regenerative abilities enabling them to replace parts of the body removed though the architecture of both planarian and vertebrate blastemas is the same, the mechanism of blastema formation in planarians differs from that of vertebrates in two basic aspects. First, the wound epithelium

  7. Pedobiologia 42,433--440 (1998) Gustav Fischer Verlag lena

    E-print Network

    Carranza, Salvador

    1998-01-01

    , NEW ZEALAND 1998 A reappraisal of the phylogenetic and taxonomic position of land planarians, Cromwell Road, London SW7 5BD, United Kingdom Accepted: 20. July 1998 Summary. Land planarians belong, the Paludicola and the Terricola (land planarians). Phylogenetic analyses using morphological characters support

  8. Advanced Review The history and enduring

    E-print Network

    Alvarado, Alejandro Sánchez

    Advanced Review The history and enduring contributions of planarians to the study of animal to regenerate tissues lost to age and injury, planarians have long fascinated naturalists. In the Western hemisphere alone, their documented history spans more than 200 years. Planarians were described in the early

  9. Cell Stem Cell Molecular Analysis of Stem Cells and Their

    E-print Network

    Alvarado, Alejandro Sánchez

    and Regeneration in the Planarian Schmidtea mediterranea George T. Eisenhoffer,1 Hara Kang,1 and Alejandro Sa@neuro.utah.edu DOI 10.1016/j.stem.2008.07.002 SUMMARY In adult planarians, the replacement of cells lost homeostasis and regeneration, but also the utility of studies in planarians to broadly inform stem cell

  10. Proc. Natl. Acad. Sci. USA Vol. 96, pp. 50495054, April 1999

    E-print Network

    Alvarado, Alejandro Sánchez

    -stranded RNA specifically disrupts gene expression during planarian regeneration ALEJANDRO SA´NCHEZ ALVARADO that introduction of double-stranded RNA selectively abrogates gene function in planarians, a classic model of regeneration. The ability to eliminate gene function in a regenerating organism such as the planarian overcomes

  11. SMEDWI-2 Is a PIWI-Like Protein That Regulates

    E-print Network

    Oviedo, Néstor J.

    SMEDWI-2 Is a PIWI-Like Protein That Regulates Planarian Stem Cells Peter W. Reddien,* Ne´stor J, smedwi-1 and smedwi-2, expressed in the di- viding adult stem cells (neoblasts) of the planarian by PIWI-class proteins remain unclear. Here we report on the planarian S. medi- terranea genes smedwi-1

  12. Gen564 Readings Spring 2014 Prof: Ahna Skop

    E-print Network

    Skop, Ahna

    in planarians and mammals. Stem Cells. 2012 Aug;30(8):1734-45. doi: 10.1002/stem.1144. Review: Phillip A. Newmark & Alejandro Sánchez Alvarado Not your father's planarian: a classic model enters the era.1038/nrg2484. Movie: http://www.hhmi.org/biointeractive/planarian-regeneration-and-stem-cells Mar 25th

  13. Volume 1, 2000 March 7, 2000

    E-print Network

    Alvarado, Alejandro Sánchez

    will argue for the reinstatement of planarians, a classical and currently understudied ex- perimental of animal regeneration. The developmental plasticity and phylogenetic position of planarians, coupled these organisms to the forefront of regenera- tion research. Planarians are currently in a unique position

  14. DEVELOPMENT 3121RESEARCH ARTICLE

    E-print Network

    Oviedo, Néstor J.

    DEVELOPMENT 3121RESEARCH ARTICLE INTRODUCTION The planarian flatworm exhibits a remarkable ability-conserved and widely relevant molecular controls of morphogenesis. Planarian stem cells (neoblasts) have the potential-mediated signals in regeneration and homeostasis, using the planarian species Schmidtea mediterranea as a tractable

  15. Evolution of Developmental Control Mechanisms Long-range neural and gap junction protein-mediated cues control polarity during

    E-print Network

    Oviedo, Néstor J.

    -mediated cues control polarity during planarian regeneration Néstor J. Oviedo a,1 , Junji Morokuma a , Peter in planarians. Modulation of gap junction-dependent and neural signals specifically induces ectopic anterior of regenerative medicine. Planarians possess an accessible adult somatic stem cell population (neoblasts

  16. Acknowledgements This work was supported by grants from the National Eye Institute and the Human Frontier Science Program. J.H.R.M. is an Investigator with the Howard Hughes Medical

    E-print Network

    Alvarado, Alejandro Sánchez

    @bcm.tmc.edu) .............................................................. FGFR-related gene nou-darake restricts brain tissues to the head region of planarians Francesc Cebria ............................................................................................................................................................................. The study of planarian regeneration may help us to understand how we can rebuild organs and tissues after injury, disease or ageing1 . The robust regenerative abilities of planarians are based upon a population

  17. Evolution of Developmental Control Mechanisms Germ layer specification and axial patterning in the embryonic development of the

    E-print Network

    Amaya, Enrique

    in the embryonic development of the freshwater planarian Schmidtea polychroa José María Martín-Durán a, , Enrique Available online 25 January 2010 Keywords: Planarian Embryo Patterning Gastrulation Germ layers Polarity Regeneration Although patterning during regeneration in adult planarians has been studied extensively, very

  18. Developmental Cell, Vol. 8, 635649, May, 2005, Copyright 2005 by Elsevier Inc. DOI 10.1016/j.devcel.2005.02.014 Identification of Genes Needed for Regeneration,

    E-print Network

    Alvarado, Alejandro Sánchez

    * Therefore, studies of planarian biology will help the un-Department of Neurobiology and Anatomy derstanding are the only known proliferating cells in adult planarians and reside in the parenchyma. Follow- ing injury- tially undifferentiated cells covered by epidermal cells.Planarians have been a classic model system

  19. Morphological and molecular description of eight new species of Gyrodactylus von Nordmann, 1832 (Platyhelminthes: Monogenea) from poeciliid fishes, collected in their natural distribution range in the Gulf of Mexico slope, Mexico.

    PubMed

    García-Vásquez, Adriana; Razo-Mendivil, Ulises; Rubio-Godoy, Miguel

    2015-09-01

    Eight new species of Gyrodactylus are described from Poecilia mexicana, Poeciliopsis gracilis, Pseudoxiphophorus bimaculatus [syn. = Heterandria bimaculata], and Xiphophorus hellerii collected in the Nautla and La Antigua River Basins in Veracruz, and in the Tecolutla River Basin in Puebla, Mexico. Analyzing the morphology of the marginal hooks, Gyrodactylus pseudobullatarudis n. sp. and Gyrodactylus xtachuna n. sp. are both very similar to Gyrodactylus bullatarudis; Gyrodactylus takoke n. sp. resembles Gyrodactylus xalapensis; Gyrodactylus lhkahuili n. sp. is similar to Gyrodactylus jarocho; and both Gyrodactylus microdactylus n. sp. and Gyrodactylus actzu n. sp. are similar to Gyrodactylus poeciliae in that all three species possess extremely short shaft points. A hypothesis of the systematic relationships of the eight new Gyrodactylus species and some of the known gyrodactylids infecting poeciliids was constructed with sequences of the Internal Transcribed Spacers (ITS1 and ITS2) and the 5.8S ribosomal gene of the rRNA. Phylogenetic trees showed that the new and previously described species of Gyrodactylus infecting poeciliid fishes do not form a monophyletic assemblage. Trees also showed that the eight new species described morphologically correspond to well-supported monophyletic groups; and that morphologically similar species are also phylogenetically close. Additionally, we correct previous erroneous records of the presence of Gyrodactylus bullatarudis on wild Poecilia mexicana and Xiphophorus hellerii collected in Mexico, as re-examination of the original specimens indicated that these corresponded to Gyrodactylus pseudobullatarudis n. sp. (infecting Poecilia mexicana and Xiphophorus hellerii) and to Gyrodactylus xtachuna n. sp. (on Xiphophorus hellerii). Finally, given the widespread anthropogenic translocation of poeciliid fishes for the aquarium trade and mosquito control programs, as well as the existence of invasive, feral poeciliid populations worldwide, we discuss the possibility that gyrodactylid parasites could be introduced along with the fish hosts-this work provides taxonomic information to assess that possibility, as it describes parasites collected from poeciliid fishes within their native distribution range. PMID:26091759

  20. New records of Cotylea (Polycladida, Platyhelminthes) from Lizard Island, Great Barrier Reef, Australia, with remarks on the distribution of the Pseudoceros Lang, 1884 and Pseudobiceros Faubel, 1984 species of the Indo-Pacific Marine Region.

    PubMed

    Marquina, Daniel; Aguado, M Teresa; Noreña, Carolina

    2015-01-01

    In the present work eleven polyclad species of Lizard Island are studied. Seven of them are new records for this locality of the Australian coral reef and one is new to science, Lurymare clavocapitata n. sp. (Family Prosthiostomidae). The remaining recorded species belong to the genera Pseudoceros (P. bimarginatus, P. jebborum, P. stimpsoni, P. zebra, P. paralaticlavus and P. prudhoei) and Pseudobiceros (Pb. hancockanus, Pb. hymanae, Pb. flowersi and Pb. uniarborensis). Regardless of the different distribution patterns, all pseudocerotid species show brilliant colours, but similar internal morphology. Furthermore, differences in the form and size of the stylet are characteristic, because it is a sclerotic structure that is not affected during fixation. In Pseudoceros, the distance between the sucker and the female pore also differs among species. These features do not vary enough to be considered as diagnostic, but they provide information that can help to disentangle similarly coloured species complexes. A key of the genera Pseudoceros and Pseudobiceros of the Indo-Pacific region is provided, in order to facilitate the identification of species from this area. PMID:26624074

  1. The Worm's Turn.

    ERIC Educational Resources Information Center

    Miller, John C., Jr.

    1983-01-01

    Discusses experiments involving classical conditioning of planarians. Suitable for advanced high school students or college-level independent study, flatworms are trained to curl up under a bright light. Then the planarians to are subjected to controlled reproduction experiments to determine whether the learned behavior is inherited by their…

  2. Biochem. J. (2004) 382, 501510 (Printed in Great Britain) 501 Characterization of a UDP-N-acetyl-D-galactosamine:polypeptide

    E-print Network

    2004-01-01

    (roundworms) and the Platyhelminthes (flatworms), with the latter including the classes Cestoda (tapeworms) and Trematoda (flukes). The dog tapeworm Echinococcus granulosus is an agent of hydatid disease, a major

  3. Developmentally regulated expression, alternative splicing and distinct sub-groupings in members of the Schistosoma mansoni venom allergen-like (SmVAL) gene family

    E-print Network

    Chalmers, Iain W.; McArdle, Andrew J.; Coulson, Richard M. R.; Wagner, Marissa A.; Schmid, Ralf; Hirai, Hirohisa; Hoffmann, Karl F.

    2008-02-23

    important Platyhelminthes (class Trematoda) and describe individual members' phylogenetic relationships, genomic organization and life cycle expression profiles. Twenty-eight SmVALs with complete SCP/TAPS domains were identified and comparison...

  4. First evidence of maternal transmission of algal endosymbionts at an oocyte stage in a triploblastic host, with observations on reproduction

    E-print Network

    , Cnidaria, Platyhelminthes, and Mollusca (Douglas 1995) as well as members of the recently designated phylum Porifera and in a few members of the diploblastic phylum Cnidaria (Benayahu et al. 1992; Douglas 1994

  5. PREY SHEETS Instructions: Select items from two

    E-print Network

    · Nonsegmented worms · Primarily benthic, non parasitic · Resemble flatworms, but.. ­ Body is thicker and more elongated Ribbon Worm Uncl (Digested) #12;Phylum Platyhelminthes · Flatworms · Free-living and parasitic · Very rare in stomachs · Classes: Turbellaria, Cestoidea Turbellarian Flatworms Tapeworm #12;Phylum

  6. Name /evol/58_917 08/16/2004 03:32PM Plate # 0-Composite pg 174 # 1 Allen Press DTPro System GALLEY 174 File # 17TQ

    E-print Network

    Sequeira, Andrea

    (Schluter 2000). For example, among the platyhelminth vertebrate par- *We dedicate this paper to Ernst Mayr (Mayr 1963). Indeed, the pro- liferation of parasite species across a wide array of hosts, apparently

  7. Computational identification and evolutionaty enalysis of metazoan micrornas 

    E-print Network

    Anzola Lagos, Juan Manuel

    2009-05-15

    position of problematic groups like the Platyhelminthes. Gene sequences suggest the acoel flatworms are not members of the phylum Platyhelminthes, but instead are the most basal branch of triploblastic bilaterians. Using microRNAs as genetic markers, 12... Sempere and collaborators obtained a picture in which the acoel flatworms are indeed basal triploblastic bilaterians, suggesting our understanding of the group Platyhelmintha is incomplete, because according to this picture Platyhelmintha...

  8. Studies of the biology of Polychoerus carmelensis (Turbellaria: Acoela)

    E-print Network

    Armitage, Kenneth

    1961-01-01

    to the white background (c hi square = 16.8, l' planarians. The testing was repeated four times using the same animals . The results were simil ar in all cases. Since all of the animals came from an area...

  9. Tissue absence initiates regeneration through Follistatin-mediated inhibition of Activin signaling

    E-print Network

    Gavino, Michael A.

    Regeneration is widespread, but mechanisms that activate regeneration remain mysterious. Planarians are capable of whole-body regeneration and mount distinct molecular responses to wounds that result in tissue absence and ...

  10. Heal Thy Cell(f): A Single-Cell View of Regeneration.

    PubMed

    Issigonis, Melanie; Newmark, Phillip A

    2015-12-01

    In this issue of Developmental Cell, Wurtzel et al. (2015) use single-cell transcriptome sequencing on planarian cells to investigate the cell-type specificity and temporal dynamics underlying the regenerative wound response. PMID:26651286

  11. dlx and sp6-9 Control Optic Cup Regeneration in a Prototypic Eye

    E-print Network

    Lapan, Sylvain William

    Optic cups are a structural feature of diverse eyes, from simple pit eyes to camera eyes of vertebrates and cephalopods. We used the planarian prototypic eye as a model to study the genetic control of optic cup formation ...

  12. Wnt Signaling and the Polarity of the Primary Body Axis

    E-print Network

    Petersen, Christian P.

    How animals establish and pattern the primary body axis is one of the most fundamental problems in biology. Data from diverse deuterostomes (frog, fish, mouse, and amphioxus) and from planarians (protostomes) suggest that ...

  13. Supplement 22, Part 1, Authors: A To Z 

    E-print Network

    Zidar, Judith A.; Shaw, Judith H.; Hanfman, Deborah T.; Kirby, Margie D.; Rayburn, Jane D.; Edwards, Shirley J.; Hood, Martha W.

    1978-01-01

    of vertebrates to serve as paratenic host Angiostrongylus cantonensis Alicata, J. E.; and McCarthy, Deroceras laeve D. D., 1964 a Vaginalus plebeius all from island of Rarotonga Bradybaena similaris Subulina octona Macrobrachium sp. planarians Rattus...

  14. The Effects of Genetic and Environmental Factors on the Reproductive Behaviors of Drosophila melanogaster 

    E-print Network

    Saleem, Sehresh

    2014-12-18

    ........................................................................ 89 1 1. INTRODUCTION AND LITERATURE REVIEW 1.1 Animal behavior Animals exhibit a variety of behaviors, ranging from a planarian displaying a simple behavior such as chemotaxis to humans engaging in complex social interactions. The complex...

  15. Attachment of the cap to the central microtubules of tetrahymena cilia

    E-print Network

    Dentler, William L., Jr

    1984-03-01

    with cytoplasmic microtubules, electron-dense material has been found between the plasma membrane and the ends of microtubules associated with Tetrahymena contractile vacuoles (Allen & Wolf, 1979; Scott & Hufnagel, 1983) and with secretory cells in planarians (Dent...

  16. Innate sexuality determines the mechanisms of telomere maintenance.

    PubMed

    Tasaka, Kenta; Yokoyama, Naoki; Nodono, Hanae; Hoshi, Motonori; Matsumoto, Midori

    2013-01-01

    Recently, telomere length has been shown to be differentially regulated in asexually and sexually reproducing planarians. In addition, it was found that asexual worms maintain telomere length somatically during reproduction by fission or when regeneration is induced by amputation, whereas sexual worms only achieve telomere elongation through sexual reproduction. We have established an experimental bioassay system to induce switching from asexual to sexual reproduction in planarians, that is, sexualization. In this study, the relationship between the reproductive mode and telomere maintenance was investigated using innate asexually reproducing worms, innate sexually reproducing worms, and experimentally sexualized worms. Here, we show that innate asexual planarians maintain telomere length during cell division and that innate sexual planarians exhibit telomere shortening. However, experimental sexualized worms maintain telomere length during cell division. These results indicate that innate sexuality is linked to the mechanism of telomere maintenance. PMID:23319366

  17. Small RNA pathways in Schmidtea mediterranea.

    PubMed

    Resch, Alissa M; Palakodeti, Dasaradhi

    2012-01-01

    Planarians are bilaterally symmetrical fresh water organisms capable of regenerating body parts from small fragments following bodily injury. Planarians possess a specialized population of pluripotent cells called neoblasts, which are responsible for their unique regenerative ability. The study of planarian stem cell biology and regeneration has traditionally focused on the transcription factors and proteins that regulate signal transduction pathways. New evidence shows that small RNA molecules are important players in stem cell function and regeneration, yet little is known about the exact nature of their regulatory roles during the regenerative process. In this review, we discuss biogenesis of microRNAs and piwiRNAs and their functional role in key developmental pathways in vertebrates and invertebrates with an emphasis on recent studies on planarian small RNA pathways. PMID:22450996

  18. Regeneration of neuronal cell types in Schmidtea mediterranea: an immunohistochemical and expression study.

    PubMed

    Fraguas, Susanna; Barberán, Sara; Ibarra, Begoña; Stöger, Linda; Cebrià, Francesc

    2012-01-01

    Freshwater planarians are unique in their ability to regenerate a complete Central Nervous System (CNS) from almost any small piece of their body in just a few days. The planarian CNS contains a pair of anterior cephalic ganglia lying on top of two ventral nerve cords that extend along the length of the animal. Studies of planarian CNS regeneration have generally used pan-neural markers, which provide only a general overview of the process. Nevertheless, some reports have started to characterize the genes that are required for this process. In this study, to obtain a more detailed description of planarian neural regeneration, we monitored the regeneration of neuronal populations specifically labelled with antibodies against serotonin, allatostatin, neuropeptide F, GYRFamide and FMRFamide. We also characterized the regeneration of dopaminergic and octopaminergic cell populations by in situ hybridization. Finally, we characterized the expression pattern of a set of receptors for neurotransmitters, neuropeptides and hormones that are suggested to play a role in the regeneration process itself. Together, these data provide a more detailed description of the cellular events occurring during anterior and posterior CNS regeneration in planarians and provide the foundations for future mechanistic studies into the regeneration process in this important model system. PMID:22451002

  19. Spring 2015 SYLLABUS BIO 318 -001 Invertebrate Zoology 4.0 credit hours

    E-print Network

    Pawlik, Joseph

    Mar 03 (T) Mollusca, Annelida Chpts. 16, 17. Mar 05 (R) Annelida. Mar 10 (T) Holiday Mar 12 (R) Holiday Mar 17 (T) Annelida, Other worm phyla. Chpt. 18 Mar 19 (R) EXAM 3, Arthropods. Chpt. 20. Mar 24 (T) Platyhelminthes 17 (T) Pseudocoelomates 24 (T) Mollusca Mar 03 (T) Annelida 10 (T) No lab ­ Holiday! 17 (T

  20. Published online 5 March 2009 Nucleic Acids Research, 2009, Vol. 37, No. 7 e52 doi:10.1093/nar/gkp052

    E-print Network

    Brejova, Brona

    , Slovakia, 3 Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome.bioinformatics.uwaterloo.ca/ downloads/exonhunter INTRODUCTION Schistosoma japonicum is one of three human parasitic organisms from the phylum Platyhelminthes (flatworms) that cause schistosomiasis. This disease is responsible for 15 000

  1. Evolutionary analysis of the cystatin family in three Schistosoma species

    PubMed Central

    Cuesta-Astroz, Yesid; Scholte, Larissa L. S.; Pais, Fabiano Sviatopolk-Mirsky; Oliveira, Guilherme; Nahum, Laila A.

    2014-01-01

    The cystatin family comprises cysteine protease inhibitors distributed in 3 subfamilies (I25A–C). Family members lacking cystatin activity are currently unclassified. Little is known about the evolution of Schistosoma cystatins, their physiological roles, and expression patterns in the parasite life cycle. The present study aimed to identify cystatin homologs in the predicted proteome of three Schistosoma species and other Platyhelminthes. We analyzed the amino acid sequence diversity focused in the identification of protein signatures and to establish evolutionary relationships among Schistosoma and experimentally validated human cystatins. Gene expression patterns were obtained from different developmental stages in Schistosoma mansoni using microarray data. In Schistosoma, only I25A and I25B proteins were identified, reflecting little functional diversification. I25C and unclassified subfamily members were not identified in platyhelminth species here analyzed. The resulting phylogeny placed cystatins in different clades, reflecting their molecular diversity. Our findings suggest that Schistosoma cystatins are very divergent from their human homologs, especially regarding the I25B subfamily. Schistosoma cystatins also differ significantly from other platyhelminth homologs. Finally, transcriptome data publicly available indicated that I25A and I25B genes are constitutively expressed thus could be essential for schistosome life cycle progression. In summary, this study provides insights into the evolution, classification, and functional diversification of cystatins in Schistosoma and other Platyhelminthes, improving our understanding of parasite biology and opening new frontiers in the identification of novel therapeutic targets against helminthiases. PMID:25071834

  2. Stem cells and fluid flow drive cyst formation in an invertebrate excretory organ.

    PubMed

    Thi-Kim Vu, Hanh; Rink, Jochen C; McKinney, Sean A; McClain, Melainia; Lakshmanaperumal, Naharajan; Alexander, Richard; Sánchez Alvarado, Alejandro

    2015-01-01

    Cystic kidney diseases (CKDs) affect millions of people worldwide. The defining pathological features are fluid-filled cysts developing from nephric tubules due to defective flow sensing, cell proliferation and differentiation. The underlying molecular mechanisms, however, remain poorly understood, and the derived excretory systems of established invertebrate models (Caenorhabditis elegans and Drosophila melanogaster) are unsuitable to model CKDs. Systematic structure/function comparisons revealed that the combination of ultrafiltration and flow-associated filtrate modification that is central to CKD etiology is remarkably conserved between the planarian excretory system and the vertebrate nephron. Consistently, both RNA-mediated genetic interference (RNAi) of planarian orthologues of human CKD genes and inhibition of tubule flow led to tubular cystogenesis that share many features with vertebrate CKDs, suggesting deep mechanistic conservation. Our results demonstrate a common evolutionary origin of animal excretory systems and establish planarians as a novel and experimentally accessible invertebrate model for the study of human kidney pathologies. PMID:26057828

  3. ‘Death and Axes’: Unexpected Ca2+ Entry Phenologs Predict New Anti-schistosomal Agents

    PubMed Central

    Chan, John D.; Agbedanu, Prince N.; Zamanian, Mostafa; Gruba, Sarah M.; Haynes, Christy L.; Day, Timothy A.; Marchant, Jonathan S.

    2014-01-01

    Schistosomiasis is a parasitic flatworm disease that infects 200 million people worldwide. The drug praziquantel (PZQ) is the mainstay therapy but the target of this drug remains ambiguous. While PZQ paralyses and kills parasitic schistosomes, in free-living planarians PZQ caused an unusual axis duplication during regeneration to yield two-headed animals. Here, we show that PZQ activation of a neuronal Ca2+ channel modulates opposing dopaminergic and serotonergic pathways to regulate ‘head’ structure formation. Surprisingly, compounds with efficacy for either bioaminergic network in planarians also displayed antischistosomal activity, and reciprocally, agents first identified as antischistocidal compounds caused bipolar regeneration in the planarian bioassay. These divergent outcomes (death versus axis duplication) result from the same Ca2+ entry mechanism, and comprise unexpected Ca2+ phenologs with meaningful predictive value. Surprisingly, basic research into axis patterning mechanisms provides an unexpected route for discovering novel antischistosomal agents. PMID:24586156

  4. To Each His Own

    NASA Astrophysics Data System (ADS)

    Carter, Jason A.; Lind, Christine H.; Truong, M. Phuong; Collins, Eva-Maria S.

    2015-10-01

    Planarians are among the most complex animals with the ability to regenerate complete organisms from small tissue pieces. This ability allows them to reproduce by splitting themselves into a head and a tail piece, making them a rare example of asexual reproduction via transverse fission in multi-cellular organisms. Due to the stochastic nature of long reproductive cycles, which range from days to months, few and primarily qualitative studies have been conducted to understand the reproductive behaviors of asexual planarians. We have executed the largest long-term study on planarian asexual reproduction to date, tracking more than 23,000 reproductive events of three common planarian species found in Europe, North America, and Asia, respectively: Schmidtea mediterranea, Dugesia tigrina, and Dugesia japonica. This unique data collection allowed us to perform a detailed statistical analysis of their reproductive strategies. Since the three species share a similar anatomy and mode of reproduction by transverse division, we were surprised to find that each species had acquired its own distinct strategy for optimizing its reproductive success. We statistically examined each strategy, associated trade-offs, and the potential regulatory mechanisms on the population level. Interestingly, models for cell cycle length regulation in unicellular organisms could be directly applied to describe reproductive cycle lengths of planarians, despite the difference in underlying biological mechanisms. Finally, we examined the ecological implications of each strategy through intra- and inter-species competition experiments and found that D. japonica outcompeted the other two species due to its relatively equal distribution of resources on head and tail pieces, its cannibalistic behaviors and ability to thrive in crowded environments. These results show that this species would pose a serious threat to endogenous planarian populations if accidentally introduced in their habitats.

  5. Substantial Loss of Conserved and Gain of Novel MicroRNA Families in Flatworms

    PubMed Central

    Fromm, Bastian; Worren, Merete Molton; Hahn, Christoph; Hovig, Eivind; Bachmann, Lutz

    2013-01-01

    Recent studies on microRNA (miRNA) evolution focused mainly on the comparison of miRNA complements between animal clades. However, evolution of miRNAs within such groups is poorly explored despite the availability of comparable data that in some cases lack only a few key taxa. For flatworms (Platyhelminthes), miRNA complements are available for some free-living flatworms and all major parasitic lineages, except for the Monogenea. We present the miRNA complement of the monogenean flatworm Gyrodactylus salaris that facilitates a comprehensive analysis of miRNA evolution in Platyhelminthes. Using the newly designed bioinformatics pipeline miRCandRef, the miRNA complement was disentangled from next-generation sequencing of small RNAs and genomic DNA without a priori genome assembly. It consists of 39 miRNA hairpin loci of conserved miRNA families, and 22 novel miRNAs. A comparison with the miRNA complements of Schmidtea mediterranea (Turbellaria), Schistosoma japonicum (Trematoda), and Echinococcus granulosus (Cestoda) reveals a substantial loss of conserved bilaterian, protostomian, and lophotrochozoan miRNAs. Eight of the 46 expected conserved miRNAs were lost in all flatworms, 16 in Neodermata and 24 conserved miRNAs could not be detected in the cestode and the trematode. Such a gradual loss of miRNAs has not been reported before for other animal phyla. Currently, little is known about miRNAs in Platyhelminthes, and for the majority of the lost miRNAs there is no prediction of function. As suggested earlier they might be related to morphological simplifications. The presence and absence of 153 conserved miRNAs was compared for platyhelminths and 32 other metazoan taxa. Phylogenetic analyses support the monophyly of Platyhelminthes (Turbellaria + Neodermata [Monogenea {Trematoda + Cestoda}]). PMID:24025793

  6. Inexpensive Animal Learning Exercises for Huge Introductory Laboratory Classes

    ERIC Educational Resources Information Center

    Katz, Albert N.

    1978-01-01

    Suggests use of the planarian D. Dorotocephala, an animal 20 mm in size, in order to provide inexpensive lab experiences for students in large introductory psychology courses. The animal can be used to study perception, memory, behavior modification, and group processes. (Author/AV)

  7. The evaluation of the activity of medicinal remedies of plant and animal origin on the regeneration of the earthworms' tail segments.

    PubMed

    Bybin, Viktor Alexandrovich; Stom, Daevard Iosifovich

    2014-01-01

    Now, in the global community there is enough hard recommendation to replace the vertebrate test animals into simpler organisms at the development, testing, and evaluation of the quality pharmaceuticals. The feature of planarian to regenerate in new individual planarian from a piece, which is only 1/7 of the original animal, allowed to create the alternative methods of testing of drugs, dietary supplements, water quality, influence of electromagnetic fields, and other radiations. The tests on planarian can replace the ones that are held today on mammals. However, the lacks of the bioassays based on the planarian regeneration are the need for complex and expensive video equipment for recording the regrowth of worms' body, the difficulties of culturing of flatworms and fairly long period of response. These difficulties can be avoided by using another group of the worms of type Annelida. The new individual can be fully recovered only from the front half of the body in many species of earthworms. Thus, the influence of the pharmaceuticals from earthworms, mummy, and Orthilia secunda on the ability of earthworms to regenerate lost tail segments has been investigated. The relations of the activity of preparations tested with doses and the time of the storage have been revealed. The principal possibility of applicability of the test reaction studied as a way to evaluate the effects and quality of remedies based on medicinal plants and earthworms has been shown. PMID:26692755

  8. Cocaine and kappa-opioid withdrawal in Planaria blocked by D-, but not L-, glucose.

    PubMed

    Umeda, Sumiyo; Stagliano, Gregory W; Raffa, Robert B

    2004-08-27

    Planarians (Dugesia dorotocephala) that were exposed for 1 h to cocaine (80 microM) or to the kappa-selective opioid receptor agonist U-50,488H (1 microM) displayed an abstinence-induced withdrawal syndrome, indicative of the development of physical dependence, when they were tested in cocaine- (or U-50,488H-) free water, but not when they were tested in cocaine- (or U-50,488H-) containing water. The withdrawal was manifested as a significant (P<0.05) decrease in the rate of planarian spontaneous locomotor activity over a 5-min observation period, using a recently designed metric. Co-exposure of the planarians to D-glucose (1 microM) or to 2-deoxy-D-glucose (2-DG, 1 microM), but not to L-glucose (1 microM), significantly attenuated (P<0.05) the development of physical dependence, shown by an attenuated withdrawal syndrome, from cocaine and U-50,488H. These results suggest that either D-glucose and 2-deoxy-D-glucose compete with a common cocaine and kappa-opioid transport mechanism or that the development of physical dependence (or the inhibition of abstinence-induced withdrawal) in planarians requires energy supplied from glucose metabolism. PMID:15276876

  9. Leading Edge Cell 132, January 25, 2008 2008 Elsevier Inc. 185

    E-print Network

    De Robertis, Eddy M.

    is that we all come from a planarian." In this one brief statement, Lewis encapsulated the profound meaning bottom-dwelling (benthic) animal with eyes, cen- tral nervous system, a small appendage, and an open slit-like blastopore. Endoderm is shown in red, central nervous system in dark blue, and surface ectoderm in light blue

  10. Djrho2 is involved in regeneration of visual nerves in Dugesia japonica.

    PubMed

    Ma, Changxin; Gao, Yang; Chai, Guoliang; Su, Hanxia; Wang, Niejun; Yang, Yigang; Li, Chunbo; Miao, Di; Wu, Wei

    2010-11-01

    The freshwater planarian is a powerful animal model for studying regeneration and stem cell activity in vivo. During regeneration, stem cells (neoblasts in planarian) migrated to the wounding edge to re-build missing parts of the body. However, proteins involved in regulating cell migration during planarian regeneration have not been studied extensively. Here we report two small GTPase genes (Djrho2 and Djrho3) of Dugesia japonica (strain Pek-1). In situ hybridization results indicated that Djrho2 was expressed throughout the body with the exception of the pharynx region while Djrho3 was specifically expressed along the gastro-vascular system. Djrho2 was largely expressed in neoblasts since its expression was sensitive to X-ray irradiation. In Djrho2-RNAi planarians, smaller anterior blastemas were observed in tail fragments during regeneration. Consistently, defective regeneration of visual nerve was detected by immunostainning with VC-1 antibody. These results suggested that Djrho2 is required for proper anterior regeneration in planairan. In contrast, no abnormality was observed after RNAi of Djrho3. We compared protein compositions of control and Djrho2-RNAi planarians using an optimized proteomic approach. Twenty-two up-regulated and 26 de-regulated protein spots were observed in the two-dimensional electrophoresis gels, and 17 proteins were successfully identified by Mass Spectrometry (MS) analysis. Among them, 6 actin-binding or cytoskeleton-related proteins were found de-expressed in Djrho2-RNAi animals, suggesting that abnormal cytoskeleton assembling and cell migration were likely reasons of defected regeneration. PMID:21115166

  11. The lecanicephalidean fauna of three species of eagle rays of the genus Aetomylaeus (Myliobatiformes: Myliobatidae).

    E-print Network

    Koch, Kendra Rae

    2009-07-16

    in the class Cestoda of the phylum Platyhelminthes. Commonly known as tapeworms, these mainly intestinal helminths parasitize members of all classes of vertebrates, i.e., fishes, “reptiles,” amphibians, mammals, birds, and chondrichthyans (Wardle and Mc...Leod, 1952). The greatest diversity of tapeworms is found in the latter three classes; over 900 species of tapeworms are currently known from chondrichthyans (sharks, rays, and ratfishes). Within this group, by far the greatest diversity is encountered...

  12. A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians

    PubMed Central

    Ruiz-Trillo, I.; Paps, J.; Loukota, M.; Ribera, C.; Jondelius, U.; Baguñà, J.; Riutort, M.

    2002-01-01

    Bilateria are currently subdivided into three superclades: Deuterostomia, Ecdysozoa, and Lophotrochozoa. Within this new taxonomic frame, acoelomate Platyhelminthes, for a long time held to be basal bilaterians, are now considered spiralian lophotrochozoans. However, recent 18S rDNA [small subunit (SSU)] analyses have shown Platyhelminthes to be polyphyletic with two of its orders, the Acoela and the Nemertodermatida, as the earliest extant bilaterians. To corroborate such position and avoid the criticisms of saturation and long-branch effects thrown on the SSU molecule, we have searched for independent molecular data bearing good phylogenetic information at deep evolutionary nodes. Here we report a phylogenetic analysis of DNA sequences from the myosin heavy chain type II (myosin II) gene from a large set of metazoans, including acoels and nemertodermatids. Our study demonstrates, both for the myosin II data set alone and for a combined SSU + myosin II data set, that Platyhelminthes are polyphyletic and that acoels and nemertodermatids are the extant earliest bilaterians. Hence, the common bilaterian ancestor was not, as currently held, large and complex but small, simple, and likely with direct development. This scenario has far-reaching implications for understanding the evolution of major body plans and for perceptions of the Cambrian evolutionary explosion. PMID:12177440

  13. Phylogenetic analysis of the endoribonuclease Dicer family.

    PubMed

    Gao, Zeqian; Wang, Miao; Blair, David; Zheng, Yadong; Dou, Yongxi

    2014-01-01

    Dicers are proteins of the ribonuclease III family with the ability to process dsRNA, involved in regulation of gene expression at the post-transcriptional level. Dicers are conserved from basal metazoans to higher metazoans and contain a number of functional domains that interact with dsRNA. The completed genome sequences of over 34 invertebrate species allowed us to systematically investigate Dicer genes over a diverse range of phyla. The majority of invertebrate Dicers clearly fell into the Dicer1 or Dicer2 subfamilies. Most nematodes possessed only one Dicer gene, a member of the Dicer1 subfamily, whereas two Dicer genes (Dicer1 and Dicer2) were present in all platyhelminths surveyed. Analysis of the key domains showed that a 5' pocket was conserved across members of the Dicer1 subfamily, with the exception of the nematode Bursaphelenchus xylophilus. Interestingly, Nematostella vectensis DicerB grouped into Dicer2 subfamily harbored a 5' pocket, which is commonly present in Dicer1. Similarly, the 3' pocket was also found to be conserved in all Dicer proteins with the exceptions of Schmidtea mediterranea Dicer2 and Trichoplax adherens Dicer A. The loss of catalytic residues in the RNase III domain was noted in platyhelminths and cnidarians, and the 'ball' and 'socket' junction between two RNase III domains in platyhelminth Dicers was different from the canonical junction, suggesting the possibility of different conformations. The present data suggest that Dicers might have duplicated and diversified independently, and have evolved for various functions in invertebrates. PMID:24748168

  14. Phylogenetic Analysis of the Endoribonuclease Dicer Family

    PubMed Central

    Gao, Zeqian; Wang, Miao; Blair, David; Zheng, Yadong; Dou, Yongxi

    2014-01-01

    Dicers are proteins of the ribonuclease III family with the ability to process dsRNA, involved in regulation of gene expression at the post-transcriptional level. Dicers are conserved from basal metazoans to higher metazoans and contain a number of functional domains that interact with dsRNA. The completed genome sequences of over 34 invertebrate species allowed us to systematically investigate Dicer genes over a diverse range of phyla. The majority of invertebrate Dicers clearly fell into the Dicer1 or Dicer2 subfamilies. Most nematodes possessed only one Dicer gene, a member of the Dicer1 subfamily, whereas two Dicer genes (Dicer1 and Dicer2) were present in all platyhelminths surveyed. Analysis of the key domains showed that a 5? pocket was conserved across members of the Dicer1 subfamily, with the exception of the nematode Bursaphelenchus xylophilus. Interestingly, Nematostella vectensis DicerB grouped into Dicer2 subfamily harbored a 5? pocket, which is commonly present in Dicer1. Similarly, the 3? pocket was also found to be conserved in all Dicer proteins with the exceptions of Schmidtea mediterranea Dicer2 and Trichoplax adherens Dicer A. The loss of catalytic residues in the RNase III domain was noted in platyhelminths and cnidarians, and the ‘ball’ and ‘socket’ junction between two RNase III domains in platyhelminth Dicers was different from the canonical junction, suggesting the possibility of different conformations. The present data suggest that Dicers might have duplicated and diversified independently, and have evolved for various functions in invertebrates. PMID:24748168

  15. Types or States? Cellular Dynamics and Regenerative Potential.

    PubMed

    Adler, Carolyn E; Sánchez Alvarado, Alejandro

    2015-11-01

    Many of our organs can maintain and repair themselves during homeostasis and injury, as a result of the action of tissue-specific, multipotent stem cells. However, recent evidence from mammalian systems suggests that injury stimulates dramatic plasticity, or transient changes in cell potential, in both stem cells and more differentiated cells. Planarian flatworms possess abundant stem cells, making them an exceptional model for understanding the cellular behavior underlying homeostasis and regeneration. Recent discoveries of cell lineages and regeneration-specific events provide an initial framework for unraveling the complex cellular contributions to regeneration. In this review, we discuss the concept of cellular plasticity in the context of planarian regeneration, and consider the possibility that pluripotency may be a transient, probabilistic state exhibited by stem cells. PMID:26437587

  16. Inhibitory effects of pain relief drugs on neurological enzymes: implications on their potential neurotoxicity to aquatic animals.

    PubMed

    Wu, Jui-Pin; Li, Mei-Hui

    2015-03-01

    Pain relief medications commonly occur in the aquatic environment at measurable levels. While the neurotoxicity of pain relievers to higher vertebrates is currently known, little is known about their effects on aquatic animals. This study investigated the neurotoxicity of pain relievers to aquatic animals. We used three neurological enzymes, cholinesterase (ChE), adenosine triphosphatase (ATPase), and monoamine oxidase (MAO), from a freshwater planarian (Dugesia japonica) and green neon shrimp (Neocaridina denticulata) as biomarkers to examine the effects of pain relievers on in vitro activity. The activity of MAO and ChE, but not ATPase, was significantly inhibited by acetaminophen, but not by other pain relievers examined. It was likely that the inhibitory effects of acetaminophen on shrimp neurological enzymes were more severe than on the planarian. These findings suggest that acetaminophen is potentially neurotoxic to aquatic animals, at least in terms of neurotransmission disturbance. PMID:25801321

  17. Regeneration across metazoan phylogeny: lessons from model organisms.

    PubMed

    Li, Qiao; Yang, Hao; Zhong, Tao P

    2015-02-20

    Comprehending the diversity of the regenerative potential across metazoan phylogeny represents a fundamental challenge in biology. Invertebrates like Hydra and planarians exhibit amazing feats of regeneration, in which an entire organism can be restored from minute body segments. Vertebrates like teleost fish and amphibians can also regrow large sections of the body. While this regenerative capacity is greatly attenuated in mammals, there are portions of major organs that remain regenerative. Regardless of the extent, there are common basic strategies to regeneration, including activation of adult stem cells and proliferation of differentiated cells. Here, we discuss the cellular features and molecular mechanisms that are involved in regeneration in different model organisms, including Hydra, planarians, zebrafish and newts as well as in several mammalian organs. PMID:25697100

  18. Towards a bioinformatics of patterning: a computational approach to understanding regulative morphogenesis

    PubMed Central

    Lobo, Daniel; Malone, Taylor J.; Levin, Michael

    2013-01-01

    Summary The mechanisms underlying the regenerative abilities of certain model species are of central importance to the basic understanding of pattern formation. Complex organisms such as planaria and salamanders exhibit an exceptional capacity to regenerate complete body regions and organs from amputated pieces. However, despite the outstanding bottom-up efforts of molecular biologists and bioinformatics focused at the level of gene sequence, no comprehensive mechanistic model exists that can account for more than one or two aspects of regeneration. The development of computational approaches that help scientists identify constructive models of pattern regulation is held back by the lack of both flexible morphological representations and a repository for the experimental procedures and their results (altered pattern formation). No formal representation or computational tools exist to efficiently store, search, or mine the available knowledge from regenerative experiments, inhibiting fundamental insights from this huge dataset. To overcome these problems, we present here a new class of ontology to encode formally and unambiguously a very wide range of possible morphologies, manipulations, and experiments. This formalism will pave the way for top-down approaches for the discovery of comprehensive models of regeneration. We chose the planarian regeneration dataset to illustrate a proof-of-principle of this novel bioinformatics of shape; we developed a software tool to facilitate the formalization and mining of the planarian experimental knowledge, and cured a database containing all of the experiments from the principal publications on planarian regeneration. These resources are freely available for the regeneration community and will readily assist researchers in identifying specific functional data in planarian experiments. More importantly, these applications illustrate the presented framework for formalizing knowledge about functional perturbations of morphogenesis, which is widely applicable to numerous model systems beyond regenerating planaria, and can be extended to many aspects of functional developmental, regenerative, and evolutionary biology. PMID:23429669

  19. Galantamine reverses scopolamine-induced behavioral alterations in Dugesia tigrina.

    PubMed

    Ramakrishnan, Latha; Amatya, Christina; DeSaer, Cassie J; Dalhoff, Zachary; Eggerichs, Michael R

    2014-09-01

    In planaria (Dugesia tigrina), scopolamine, a nonselective muscarinic receptor antagonist, induced distinct behaviors of attenuated motility and C-like hyperactivity. Planarian locomotor velocity (pLMV) displayed a dose-dependent negative correlation with scopolamine concentrations from 0.001 to 1.0 mM, and a further increase in scopolamine concentration to 2.25 mM did not further decrease pLMV. Planarian hyperactivity counts was dose-dependently increased following pretreatment with scopolamine concentrations from 0.001 to 0.5 mM and then decreased for scopolamine concentrations ? 1 mM. Planarian learning and memory investigated using classical Pavlovian conditioning experiments demonstrated that scopolamine (1 mM) negatively influenced associative learning indicated by a significant decrease in % positive behaviors from 86 % (control) to 14 % (1 mM scopolamine) and similarly altered memory retention, which is indicated by a decrease in % positive behaviors from 69 % (control) to 27 % (1 mM scopolamine). Galantamine demonstrated a complex behavior in planarian motility experiments since co-application of low concentrations of galantamine (0.001 and 0.01 mM) protected planaria against 1 mM scopolamine-induced motility impairments; however, pLMV was significantly decreased when planaria were tested in the presence of 0.1 mM galantamine alone. Effects of co-treatment of scopolamine and galantamine on memory retention in planaria via classical Pavlovian conditioning experiments showed that galantamine (0.01 mM) partially reversed scopolamine (1 mM)-induced memory deficits in planaria as the % positive behaviors increased from 27 to 63 %. The results demonstrate, for the first time in planaria, scopolamine's effects in causing learning and memory impairments and galantamine's ability in reversing scopolamine-induced memory impairments. PMID:24402079

  20. Shedding light on photosensitive behaviour in brown planaria (Dugesia Tigrina).

    PubMed

    Davidson, Colin; Prados, Jose; Gibson, Claire L; Young, Andrew M J; Barnes, Darrel; Sherlock, Rachel; Hutchinson, Claire V

    2011-01-01

    The planarian flatworm is one of the simplest animals to develop two eyecups that enable them to detect the presence and direction of light, which they typically avoid. In this study we assessed responses of planaria to different intensities of light. We found that they exhibited a graded, sigmoidal, photonegative response to light intensity. A two-octave increase in luminance (on the upward slope of the sigmoid) corresponded to a 9% increase in the speed planaria travelled to avoid light. PMID:21936302

  1. SmedGD 2.0: The Schmidtea mediterranea genome database.

    PubMed

    Robb, Sofia M C; Gotting, Kirsten; Ross, Eric; Sánchez Alvarado, Alejandro

    2015-08-01

    Planarians have emerged as excellent models for the study of key biological processes such as stem cell function and regulation, axial polarity specification, regeneration, and tissue homeostasis among others. The most widely used organism for these studies is the free-living flatworm Schmidtea mediterranea. In 2007, the Schmidtea mediterranea Genome Database (SmedGD) was first released to provide a much needed resource for the small, but growing planarian community. SmedGD 1.0 has been a depository for genome sequence, a draft assembly, and related experimental data (e.g., RNAi phenotypes, in situ hybridization images, and differential gene expression results). We report here a comprehensive update to SmedGD (SmedGD 2.0) that aims to expand its role as an interactive community resource. The new database includes more recent, and up-to-date transcription data, provides tools that enhance interconnectivity between different genome assemblies and transcriptomes, including next-generation assemblies for both the sexual and asexual biotypes of S. mediterranea. SmedGD 2.0 (http://smedgd.stowers.org) not only provides significantly improved gene annotations, but also tools for data sharing, attributes that will help both the planarian and biomedical communities to more efficiently mine the genomics and transcriptomics of S. mediterranea. PMID:26138588

  2. Toxicity and behavioral effects of dimethylsulfoxide in planaria.

    PubMed

    Pagán, Oné R; Rowlands, Amanda L; Urban, Kimberly R

    2006-10-30

    In this work, we describe aspects of the toxicity and behavioral effects of dimethylsulfoxide (DMSO) in planaria. Planarian worms have traditionally been a favored animal model in developmental biology. More recently, this organism is being recognized as an animal model in neuropharmacology research. DMSO is often used in cell and tissue culture as a cryoprotectant agent and is also commonly used to enhance the solubility of hydrophobic drugs in aqueous solutions. This compound can elicit various physiological effects in both vertebrates and invertebrates. Many drugs and drug candidates are hydrophobic, needing solvents like DMSO to be able to reach their physiological targets. As planaria becomes increasingly popular in neuropharmacology research, a description of the DMSO effects in this organism is essential. We found that DMSO is toxic to planarians at concentrations above 5% (705 mM), with an LD(50) of 10% (1.4M) at exposure times above 5 min. At sub-toxic concentrations, DMSO decreases planarian exploratory behavior in a concentration-dependent manner. This reduction in locomotor behavior is reversible and preincubation-independent. DMSO at a concentration of 0.1% (14.1 mM), which is usually enough to solubilize hydrophobic substances in aqueous solutions, did not display any toxic or behavioral effects in planaria. Therefore, in this animal model, DMSO concentrations above 0.1% should be avoided in order to be able to reliably observe any behavioral or toxic effects of hydrophobic drugs. PMID:16979295

  3. A nitric oxide synthase inhibitor (L-NAME) attenuates abstinence-induced withdrawal from both cocaine and a cannabinoid agonist (WIN 55212-2) in Planaria.

    PubMed

    Rawls, Scott M; Rodriguez, Tonatiu; Baron, David A; Raffa, Robert B

    2006-07-12

    We previously reported that planarians (Dugesia dorotocephala) that have been exposed to cocaine for 1 h undergo abstinence-induced withdrawal when placed into cocaine-free, but not cocaine-containing, water. We now report that planarians also display dose-related abstinence-induced withdrawal following exposure to the synthetic cannabinoid agonist WIN 55212-2, but not its inactive enantiomer (WIN 55212-3). The withdrawal from WIN 55212-2 was manifested as a significant (P < 0.05) decrease in the rate of planarian spontaneous locomotor activity over a 5-min observation period, using a recently designed metric (pLMV). We also report that withdrawal from cocaine (80 microM) or WIN 55212-2 (10 microM) was attenuated by the selective inhibitor of nitric oxide synthesis L-NAME (L-nitro-arginine methyl ester), which had no effect of its own on pLMV. These results suggest a common NO-dependent pathway of withdrawal from cocaine and WIN 55212-2 in Planaria. PMID:16782070

  4. Characterization of a flatworm inositol (1,4,5) trisphosphate receptor (IP?R) reveals a role in reproductive physiology.

    PubMed

    Zhang, Dan; Liu, Xiaolong; Chan, John D; Marchant, Jonathan S

    2013-01-01

    Inositol 1,4,5-trisphosphate receptors (IP?Rs) are intracellular Ca²? channels that elevate cytoplasmic Ca²? in response to the second messenger IP3. Here, we describe the identification and in vivo functional characterization of the planarian IP?R, the first intracellular Ca²? channel to be defined in flatworms. A single IP?R gene in Dugesia japonica encoded a 2666 amino acid protein (Dj.IP?R) that shared well conserved structural features with vertebrate IP?R counterparts. Expression of an NH?-terminal Dj.IP?R region (amino acid residues 223-585) recovered high affinity ³H-IP? binding (0.9±0.1 nM) which was abolished by a single point mutation of an arginine residue (R495L) important for IP? coordination. In situ hybridization revealed that Dj.IP?R mRNA was most strongly expressed in the pharynx and optical nerve system as well as the reproductive system in sexualized planarians. Consistent with this observed tissue distribution, in vivo RNAi of Dj.IP?R resulted in a decreased egg-laying behavior suggesting Dj.IP?R plays an upstream role in planarian reproductive physiology. PMID:23481272

  5. Dynamics of asexual reproduction in flatworms

    NASA Astrophysics Data System (ADS)

    Schoetz, Eva-Maria; Talbot, Jared; Dunkel, Joern

    2010-03-01

    Planarians (flatworms) are one of the simplest bilaterally symmetric organisms and famous for their extraordinary regenerative capabilities. One can cut a worm in 100 pieces and after a few weeks one obtains 100 new worms that have reconstructed their entire body, including a central nervous system. This amazing regenerative capability is due to a population of stem cells distributed throughout the planarian body. These stem cells do not only allow the worms to heal without scarring after wounding, they also allow for asexual reproduction: Planarians can split themselves in two, and then regenerate the missing body parts within about a week. Naively, one would think that this kind of asexual reproduction could be captured by simple models that describe cell growth in bacteria or other lower organisms. However, we find that there is much more to the story by monitoring >15 generations of many individuals, as well as the long-term behavior (> 9 months) of worm populations under different environmental conditions, such as population density, temperature, and feeding frequency. Surprisingly, we observe that reproduction decreases with increasing food supply, opposite to the relationship between food and reproduction in other asexually reproducing organisms (e.g. bacteria, yeast), and causing obese worms. Finally, our data allows us to address the question of aging in an organism that is thought to be ``forever young''.

  6. Contribution of electron microscopic studies to the biology and classification of parasitic cestodes (review article).

    PubMed

    Jamjoom, Manal B

    2007-12-01

    Members of phylum Platyhelminthes are leaf-like or tape-like worms. Class Cestoidea are exclusively parasitic organisms; covered with a nonciliated integument; ciliated epithelium, when present, confined to embryos (onchospheres) hatched from eggs; scolex provided with suckers and frequently hooks for attachment to host tissue; body in most species divided into separate, sexually complete proglottids. Class: Cestoidea: comprises two subclasses: Cestodaria body undivided; only one set of reproductive organs; oncosphere hatching from egg has 10 hooklets. Cestoda: body typically with scolex and series of proglottids, each with one set (rarely 2 sets) of male and female organs; oncosphere typically has 6 hooklets (Beaver et al., 1984). PMID:18431990

  7. An Overview of Marine Biodiversity in United States Waters

    E-print Network

    Fautin, Daphne G.; Dalton, Penelope; Incze, Lewis S.; Leong, Jo-Ann C.; Pautzke, Clarence; Rosenberg, Andrew; Sandifer, Paul A.; Sedberry, George R.; Tunnell, John W. Jr.; Abbott, Isabella; Brainard, Russell E.; Broduer, Melissa; Eldredge, Lucius G.; Feldman, Michael; Moretzsohn, Fabio; Vroom, Peter S.; Wainstein, Michelle; Wolf, Nicholas

    2010-08-02

    154 217 86 84 187 Kingdom Plantae 246 113 967 821 703 150 Chlorophyta 98 65 195 247 139 Rhodophyta 148 38 392 574 557 Angiospermae UD 10 380 UD 7 Kingdom Protoctista (Protozoa) 51 165 2,169 798 896 759 Dinomastigota (Dinoflagellata) 49 644 43 UD 70... Kingdom Protoctista (Protozoa) 51 Dinomastigota (Dinoflagellata) 49 49 Foraminifera 2 2 Kingdom Animalia 4,359 Porifera 36 32 4 Cnidaria 212 192 20 Platyhelminthes 77 76 1 Mollusca 868 687 181 Annelida 689 445 244 Crustacea 810 549 261 Bryozoa 138 76 62...

  8. Molecular phylogeny of metazoan intermediate filament proteins.

    PubMed

    Erber, A; Riemer, D; Bovenschulte, M; Weber, K

    1998-12-01

    We have cloned cytoplasmic intermediate filament (IF) proteins from a large number of invertebrate phyla using cDNA probes, the monoclonal antibody IFA, peptide sequence information, and various RT-PCR procedures. Novel IF protein sequences reported here include the urochordata and nine protostomic phyla, i.e., Annelida, Brachiopoda, Chaetognatha, Echiura, Nematomorpha, Nemertea, Platyhelminthes, Phoronida, and Sipuncula. Taken together with the wealth of data on IF proteins of vertebrates and the results on IF proteins of Cephalochordata, Mollusca, Annelida, and Nematoda, two IF prototypes emerge. The L-type, which includes 35 sequences from 11 protostomic phyla, shares with the nuclear lamins the long version of the coil 1b subdomain and, in most cases, a homology segment of some 120 residues in the carboxyterminal tail domain. The S-type, which includes all four subfamilies (types I to IV) of vertebrate IF proteins, lacks 42 residues in the coil 1b subdomain and the carboxyterminal lamin homology segment. Since IF proteins from all three phyla of the chordates have the 42-residue deletion, this deletion arose in a progenitor prior to the divergence of the chordates into the urochordate, cephalochordate, and vertebrate lineages, possibly already at the origin of the deuterostomic branch. Four phyla recently placed into the protostomia on grounds of their 18S rDNA sequences (Brachiopoda, Nemertea, Phoronida, and Platyhelminthes) show IF proteins of the L-type and fit by sequence identity criteria into the lophotrochozoic branch of the protostomia. PMID:9847417

  9. The European eel may tolerate multiple infections at a low biological cost.

    PubMed

    Mayo-Hernández, Elvira; Serrano, Emmanuel; Peñalver, Jose; García-Ayala, Alfonsa; Ruiz de Ybáñez, Rocío; Muñoz, Pilar

    2015-06-01

    Most animals are concurrently infected with multiple parasites, and interactions among them may influence both disease dynamics and host fitness. However, the sublethal costs of parasite infections are difficult to measure and the effects of concomitant infections with multiple parasite species on individual physiology and fitness are poorly described for wild hosts. To understand the costs of co-infection, we investigated the relationships among 189 European eel (Anguilla anguilla) from Mar Menor, parasites (richness and intensity) and eel's 'health status' (fluctuant asymmetry, splenic somatic index and the scaled mass index) by partial least squares regression. We found a positive relationship with 44% of the health status variance explained by parasites. Contracaecum sp. (Nematoda: Anisakidae) was the strongest predictor variable (44·72%) followed by Bucephalus anguillae (Platyhelminthes: Bucephalidae), (29·26%), considered the two most relevant parasites in the analysis. Subsequently, 15·67 and 12·01% of the response variables block were explained by parasite richness and Deropristis inflata (Platyhelminthes: Deropristiidae), respectively. Thus, the presence of multiple parasitic exposures with little effect on condition, strongly suggests that eels from Mar Menor tolerate multiparasitism. PMID:25711727

  10. Put a tiger in your tank: the polyclad flatworm Maritigrella crozieri as a proposed model for evo-devo

    PubMed Central

    2013-01-01

    Polyclad flatworms are an early branching clade within the rhabditophoran Platyhelminthes. They provide an interesting system with which to explore the evolution of development within Platyhelminthes and amongst Spiralia (Lophotrochozoa). Unlike most other flatworms, polyclads undergo spiral cleavage (similar to that seen in some other spiralian taxa), they are the only free-living flatworms where development via a larval stage occurs, and they are the only flatworms in which embryos can be reared outside of their protective egg case, enabling embryonic manipulations. Past work has focused on comparing early cleavage patterns and larval anatomy between polyclads and other spiralians. We have selected Maritigrella crozieri, the tiger flatworm, as a suitable polyclad species for developmental studies, because it is abundant and large in size compared to other species. These characteristics have facilitated the generation of a transcriptome from embryonic and larval material and are enabling us to develop methods for gene expression analysis and immunofluorescence techniques. Here we give an overview of M. crozieri and its development, we highlight the advantages and current limitations of this animal as a potential evo-devo model and discuss current lines of research. PMID:24107307

  11. Behavioral characterization of serotonergic activation in the flatworm Planaria.

    PubMed

    Farrell, Martilias S; Gilmore, Kirsti; Raffa, Robert B; Walker, Ellen A

    2008-05-01

    Serotonin (5-hydroxytryptamine, 5-HT) receptors have been identified in Planaria, a model used for studying the pharmacology of behavioral phenomena. This study characterized the behavioral and locomotor effects of 5-HT, a 5-HT1A agonist, a 5-HT1B/2C agonist, and a 5-HT1A antagonist to examine the role of 5-HT receptor activation in this species. Planarians were video recorded individually in a clear plastic cube containing drug solution or vehicle. To quantify locomotor velocity (pLMV), planarians were placed individually into a dish containing drug solution or vehicle and the rate of gridline crossings was recorded. For the antagonist experiments, four conditions were studied: water alone, agonist alone, antagonist alone, and agonist plus antagonist. The decrease in pLMV induced by the5-HT1A agonist (8-OH-DPAT), and the 5-HT1B/2C agonist (mCPP), was antagonized by pretreatment with the 5-HT1A antagonist (WAY-100635) at a dose that had no effect of its own on pLMV. At a higher concentration of WAY-100635, further decreases in pLMV induced by 8-OH-DPAT were observed. Each agonist produced increased occurrences of 'C-like position' and 'screw-like hyperkinesia', 5-HT and mCPP produced 'writhing', and only mCPP produced a significant increase in duration of 'headswing' behavior. The results demonstrate that the 5-HT1A receptor identified in Planaria mediates behavioral responses to 5-HT receptor ligands, supporting the notion that planarians possess functional 5-HT receptors and might serve as a simple model for their study. PMID:18469535

  12. When does a ganglion become a brain? Evolutionary origin of the central nervous system.

    PubMed

    Sarnat, Harvey B; Netsky, Martin G

    2002-12-01

    A brain, a neural structure located in the head, differs from a ganglion by the following characteristics: (1) a brain subserves the entire body, not just restricted segments; (2) it has functionally specialized parts; (3) it is bilobar; (4) commissures and neurons form the surface with axons in the central core; (5) interneurons are more numerous than primary motor or primary sensory neurons; and (6) multisynaptic rather than monosynaptic circuits predominate. A "cephalic ganglion" does not exist in any living animal and probably never occurred even in extinct ancestral species. It also is not a developmental stage in the ontogenesis of any vertebrate. Amphioxus may represent an intermediate stage in the evolution of the vertebrate nervous system, but the anatomic relationship between the notochord and neural tube is more complex. The decussating interneuron of amphioxus, to mediate a primitive coiling reflex away from any stimulus, provides a phylogenetic explanation for the pattern of crossed long ascending and descending pathways in the subsequent evolution of the vertebrate central nervous system. The evolution of the vertebrate central nervous system may have begun with free-living flatworms (planaria) that evolved before the divergence of metazoans into invertebrate and chordate branches. The planarian is the simplest animal to develop a body plan of bilateral symmetry and axes of growth with gradients of genetic expression, enabling cephalization, dorsal and ventral surfaces, medial and lateral regions, and an aggregate of neural cells in the head that form a bilobed brain. Neurons of the planarian brain more closely resemble those of vertebrates than those of advanced invertebrates, exhibiting typical vertebrate features of multipolar shape, dendritic spines with synaptic boutons, a single axon, expression of vertebrate-like neural proteins, and relatively slow spontaneously generated electrical activity. The planarian is thus not only the first animal to possess a brain, but may be the ancestor of the vertebrate brain. PMID:12523550

  13. Glutamate carboxypeptidase II (GCPII) inhibitor displays anti-glutamate and anti-cocaine effects in an invertebrate assay.

    PubMed

    Tallarida, Chris; Song, Kevin; Raffa, Robert B; Rawls, Scott M

    2012-06-01

    Glutamate carboxypeptidase II (GCPII) inhibitors are promising anti-glutamatergic and anti-addictive agents. We hypothesized that a GCPII inhibitor 2 (phosphonomethyl) pentanedioic acid (2-PMPA) would display anti-stereotypical activity in planarians. Experiments revealed that 2-PMPA displayed no overt behavioral activity by itself but attenuated stereotypical counts (C-shape hyperkinesias) elicited by four compounds (2-PMPA rank order potency: glutamate>NMDA>pilocarpine>cocaine). These data suggest GCPII inhibitors display broad-spectrum efficacy against behavioral activity produced by glutamatergic and non-glutamatergic compounds in an invertebrate assay. PMID:21850438

  14. Emerging developmental model systems.

    PubMed

    Kiefer, Julie C

    2006-10-01

    This primer briefly describes four emerging animal model systems that promise to provide insights into specific aspects of developmental biology. Highlighted here are two relatively well-characterized model systems, Gasterosteus aculeatus (three-spine stickleback fish) and Schmidtea mediterranea (planarian), as well as two organisms on which research is in its infancy, Carollia perspicillata (short-tailed fruit bat), and the basal metazoan, Trichoplax adhaerens. Scientists who helped develop these species into model systems discuss why they chose to research these animals. PMID:16881053

  15. Differential behavioral effect of the TRPM8/TRPA1 channel agonist icilin (AG-3-5).

    PubMed

    Rawls, Scott M; Gomez, Teresa; Ding, Zhe; Raffa, Robert B

    2007-12-01

    Molecular identification of two new transient receptor potential (TRP) channels, TRPM8 and TRPA1, has prompted an intense interest in their functional roles. We report that an acute exposure to the TRPM8/TRPA1 agonist icilin (0.01-100 microM), but not TRPV1 agonist capsaicin (10 microM), causes an atypical dose-related increase in planarian motility. This is the first demonstration of a TRPM8/TRPA1 channel subtype agonist-induced differential pharmacological effect in invertebrates and provides a novel sensitive, quantifiable end-point for studying TRP channel pharmacology. PMID:17765220

  16. Ergot Alkaloids (Re)generate New Leads as Antiparasitics.

    PubMed

    Chan, John D; Agbedanu, Prince N; Grab, Thomas; Zamanian, Mostafa; Dosa, Peter I; Day, Timothy A; Marchant, Jonathan S

    2015-09-01

    Praziquantel (PZQ) is a key therapy for treatment of parasitic flatworm infections of humans and livestock, but the mechanism of action of this drug is unresolved. Resolving PZQ-engaged targets and effectors is important for identifying new druggable pathways that may yield novel antiparasitic agents. Here we use functional, genetic and pharmacological approaches to reveal that serotonergic signals antagonize PZQ action in vivo. Exogenous 5-hydroxytryptamine (5-HT) rescued PZQ-evoked polarity and mobility defects in free-living planarian flatworms. In contrast, knockdown of a prevalently expressed planarian 5-HT receptor potentiated or phenocopied PZQ action in different functional assays. Subsequent screening of serotonergic ligands revealed that several ergot alkaloids possessed broad efficacy at modulating regenerative outcomes and the mobility of both free living and parasitic flatworms. Ergot alkaloids that phenocopied PZQ in regenerative assays to cause bipolar regeneration exhibited structural modifications consistent with serotonergic blockade. These data suggest that serotonergic activation blocks PZQ action in vivo, while serotonergic antagonists phenocopy PZQ action. Importantly these studies identify the ergot alkaloid scaffold as a promising structural framework for designing potent agents targeting parasitic bioaminergic G protein coupled receptors. PMID:26367744

  17. JNK signalling is necessary for a Wnt- and stem cell-dependent regeneration programme.

    PubMed

    Tejada-Romero, Belen; Carter, Jean-Michel; Mihaylova, Yuliana; Neumann, Bjoern; Aboobaker, A Aziz

    2015-07-15

    Regeneration involves the integration of new and old tissues in the context of an adult life history. It is clear that the core conserved signalling pathways that orchestrate development also play central roles in regeneration, and further study of conserved signalling pathways is required. Here we have studied the role of the conserved JNK signalling cascade during planarian regeneration. Abrogation of JNK signalling by RNAi or pharmacological inhibition blocks posterior regeneration and animals fail to express posterior markers. While the early injury-induced expression of polarity markers is unaffected, the later stem cell-dependent phase of posterior Wnt expression is not established. This defect can be rescued by overactivation of the Hh or Wnt signalling pathway to promote posterior Wnt activity. Together, our data suggest that JNK signalling is required to establish stem cell-dependent Wnt expression after posterior injury. Given that Jun is known to be required in vertebrates for the expression of Wnt and Wnt target genes, we propose that this interaction may be conserved and is an instructive part of planarian posterior regeneration. PMID:26062938

  18. Set1 and MLL1/2 Target Distinct Sets of Functionally Different Genomic Loci In Vivo.

    PubMed

    Duncan, Elizabeth M; Chitsazan, Alex D; Seidel, Chris W; Sánchez Alvarado, Alejandro

    2015-12-29

    Histone H3 lysine 4 trimethylation (H3K4me3) is known to correlate with both active and poised genomic loci, yet many questions remain regarding its functional roles in vivo. We identify functional genomic targets of two H3K4 methyltransferases, Set1 and MLL1/2, in both the stem cells and differentiated tissue of the planarian flatworm Schmidtea mediterranea. We show that, despite their common substrate, these enzymes target distinct genomic loci in vivo, which are distinguishable by the pattern each enzyme leaves on the chromatin template, i.e., the breadth of the H3K4me3 peak. Whereas Set1 targets are largely associated with the maintenance of the stem cell population, MLL1/2 targets are specifically enriched for genes involved in ciliogenesis. These data not only confirm that chromatin regulation is fundamental to planarian stem cell function but also provide evidence for post-embryonic functional specificity of H3K4me3 methyltransferases in vivo. PMID:26711341

  19. Ethanol exposure induces a delay in the reacquisition of function during head regeneration in Schmidtea mediterranea.

    PubMed

    Lowe, Jesse R; Mahool, Tyler D; Staehle, Mary M

    2015-01-01

    Prenatal exposure to ethanol affects neurodevelopmental processes, leading to a variety of physical and cognitive impairments collectively termed Fetal Alcohol Spectrum Disorders (FASD). The molecular level ethanol-induced alterations that underlie FASD are poorly understood and are difficult to study in mammals. Ethanol exposure has been shown to affect regulation and differentiation of embryonic stem cells in vitro, suggesting that in vivo effects such as FASD could arise from similar alterations of stem cells. In this study, we hypothesize that ethanol exposure affects head regeneration and neuroregeneration in the Schmidtea mediterranea planarian. S. mediterranea freshwater flatworms have remarkable regenerative abilities arising from an abundant population of pluripotent adult somatic stem cells known as neoblasts. Here, we evaluated the mobility-normalized photophobic behavior of ethanol-exposed planaria as an indicator of cognitive function in intact and head-regenerating worms. Our studies show that exposure to 1% ethanol induces a delay in the reacquisition of behavior during head regeneration that cannot be attributed to the effect of ethanol on intact worms. This suggests that the S. mediterranea planarian could provide insight into conserved neurodevelopmental processes that are affected by ethanol and that lead to FASD in humans. PMID:25612472

  20. Ergot Alkaloids (Re)generate New Leads as Antiparasitics

    PubMed Central

    Chan, John D.; Agbedanu, Prince N.; Grab, Thomas; Zamanian, Mostafa; Dosa, Peter I.; Day, Timothy A.; Marchant, Jonathan S.

    2015-01-01

    Abstract Praziquantel (PZQ) is a key therapy for treatment of parasitic flatworm infections of humans and livestock, but the mechanism of action of this drug is unresolved. Resolving PZQ-engaged targets and effectors is important for identifying new druggable pathways that may yield novel antiparasitic agents. Here we use functional, genetic and pharmacological approaches to reveal that serotonergic signals antagonize PZQ action in vivo. Exogenous 5-hydroxytryptamine (5-HT) rescued PZQ-evoked polarity and mobility defects in free-living planarian flatworms. In contrast, knockdown of a prevalently expressed planarian 5-HT receptor potentiated or phenocopied PZQ action in different functional assays. Subsequent screening of serotonergic ligands revealed that several ergot alkaloids possessed broad efficacy at modulating regenerative outcomes and the mobility of both free living and parasitic flatworms. Ergot alkaloids that phenocopied PZQ in regenerative assays to cause bipolar regeneration exhibited structural modifications consistent with serotonergic blockade. These data suggest that serotonergic activation blocks PZQ action in vivo, while serotonergic antagonists phenocopy PZQ action. Importantly these studies identify the ergot alkaloid scaffold as a promising structural framework for designing potent agents targeting parasitic bioaminergic G protein coupled receptors. PMID:26367744

  1. Identification and expression analysis of a heat-shock protein 70 gene in Polycelis sp.

    PubMed

    Cheng, Fangfang; Dong, Zimei; Dong, Yanping; Sima, Yingxu; Chen, Jing; Li, Xiaoyan; Chen, Guangwen; Liu, Dezeng

    2015-11-01

    Heat-shock protein 70 (HSP70) is ubiquitously found in a variety of organisms and plays an important role in cytoprotection, environmental monitoring, and disease resistance. In this study, the full-length complementary DNA (cDNA) of hsp70 from planarian Polycelis sp. was first cloned using rapid amplification of cDNA ends (RACE). The expression levels of Pyhsp70 were analyzed in the presence of various stressors by real-time PCR, and its temporal-spatial expression patterns were also examined in both intact and regenerative animals by whole-mount in situ hybridization. The results show that (1) the deduced amino acid sequence of Pyhsp70 includes three typical HSP70 family signature motifs and is highly conserved during evolution; (2) Pyhsp70 expression is induced by prolonged starvation, tissue damage, and ionic liquid but inhibited by high or low temperatures; and (3) Pyhsp70 mRNA is mainly expressed in the head peripheral region and in the regenerating blastema during regeneration. These results suggest that the highly expressed Pyhsp70 gene may contribute to enhance cytoprotection and tolerance against stress-induced molecular damage, and the migration of neoblasts to the wound, which might also be involved in the proliferation and differentiation of neoblasts. Our work provides basic data for the study of stress responses and regenerative mechanism in freshwater planarians. PMID:26311284

  2. The characteristics of sox gene in Dugesia japonica.

    PubMed

    Dong, Zimei; Shi, Changying; Zhang, Haixia; Dou, He; Cheng, Fangfang; Chen, Guangwen; Liu, Dezeng

    2014-07-10

    Sox genes play important roles in animal developmental processes, including embryogenesis, neural cell stemness, neurogenesis, sex determination, among others. Here, the full length sox gene in planarian Dugesia japonica, named DjsoxB, was cloned using rapid amplification of cDNA ends (RACE). Phylogenetic analysis demonstrates that DjsoxB is highly conserved evolutionarily in metazoans. Whole-mount in situ hybridization found DjsoxB mRNA to be mainly expressed in the head, intestine and mouth in both sexually mature and immature planarians. Moreover, DjsoxB transcripts were detected in the blastema after amputation and throughout the head regeneration processes. The data from real-time PCR showed that the mRNA expression levels of DjsoxB were distinctly up-regulated from 3 to 7days after amputation. These results suggest that DjsoxB gene might be active in CNS formation and functional recovery during head regeneration, maintenance of adult CNS function and the development of other tissues (e.g. intestine) in D. japonica. PMID:24768739

  3. Whole-body acoel regeneration is controlled by Wnt and Bmp-Admp signaling.

    PubMed

    Srivastava, Mansi; Mazza-Curll, Kathleen L; van Wolfswinkel, Josien C; Reddien, Peter W

    2014-05-19

    Whole-body regeneration is widespread in the Metazoa, yet little is known about how underlying molecular mechanisms compare across phyla. Acoels are an enigmatic phylum of invertebrate worms that can be highly informative about many questions in bilaterian evolution, including regeneration. We developed the three-banded panther worm, Hofstenia miamia, as a new acoelomorph model system for molecular studies of regeneration. Hofstenia were readily cultured, with accessible embryos, juveniles, and adults for experimentation. We developed molecular resources and tools for Hofstenia, including a transcriptome and robust systemic RNAi. We report the identification of molecular mechanisms that promote whole-body regeneration in Hofstenia. Wnt signaling controls regeneration of the anterior-posterior axis, and Bmp-Admp signaling controls regeneration of the dorsal-ventral axis. Perturbation of these pathways resulted in regeneration-abnormal phenotypes involving axial feature duplication, such as the regeneration of two heads following Wnt perturbation or the regeneration of ventral cells in place of dorsal ones following bmp or admp RNAi. Hofstenia regenerative mechanisms are strikingly similar to those guiding regeneration in planarians. However, phylogenetic analyses using the Hofstenia transcriptome support an early branching position for acoels among bilaterians, with the last common ancestor of acoels and planarians being the ancestor of the Bilateria. Therefore, these findings identify similar whole-body regeneration mechanisms in animals separated by more than 550 million years of evolution. PMID:24768051

  4. Carbamazepine inhibits distinct chemoconvulsant-induced seizure-like activity in Dugesia tigrina.

    PubMed

    Ramakrishnan, Latha; Desaer, Cassie

    2011-10-01

    Planaria, non-parasitic flatworms, were recently shown to be a simple yet sensitive model for investigating the pharmacology of convulsants and anticonvulsants. The present findings show that three distinct chemoconvulsants, (-)-nicotine, picrotoxin, and N-methyl-D-aspartate (NMDA), induce dose-dependent seizure-like paroxysms in the planarian Dugesia tigrina. Carbamazepine and oxcarbazepine, iminodibenzyl derivatives, exhibit anticonvulsive effects mediated mainly through the inactivation of voltage-gated sodium channels. Apart from these primary molecular targets, both carbamazepine and oxcarbazepine are known to activate ?-aminobutyric acid type A (GABA(A)) receptors and inhibit NMDA activated glutamate receptors and neuronal nicotinic acetylcholine receptors (nAChRs). The present study shows that in D. tigrina both carbamazepine and oxcarbazepine inhibit chemoconvulsant-induced seizure behaviors in a dose-dependent manner. Carbamazepine (100 ?M) decreased by ~65% the cumulative mean planarian seizure-like activity (pSLA) observed in the presence of (-)-nicotine (10 ?M), picrotoxin (5mM), or NMDA (3mM), whereas oxcarbazepine (1 ?M) decreased by 45% the cumulative mean pSLA induced by (-)-nicotine (10?M). The results demonstrate, for the first time, the anti-seizure pharmacology of carbamazepine and oxcarbazepine in an invertebrate seizure model. PMID:21699913

  5. Selective amputation of the pharynx identifies a FoxA-dependent regeneration program in planaria

    PubMed Central

    Adler, Carolyn E; Seidel, Chris W; McKinney, Sean A; Sánchez Alvarado, Alejandro

    2014-01-01

    Planarian flatworms regenerate every organ after amputation. Adult pluripotent stem cells drive this ability, but how injury activates and directs stem cells into the appropriate lineages is unclear. Here we describe a single-organ regeneration assay in which ejection of the planarian pharynx is selectively induced by brief exposure of animals to sodium azide. To identify genes required for pharynx regeneration, we performed an RNAi screen of 356 genes upregulated after amputation, using successful feeding as a proxy for regeneration. We found that knockdown of 20 genes caused a wide range of regeneration phenotypes and that RNAi of the forkhead transcription factor FoxA, which is expressed in a subpopulation of stem cells, specifically inhibited regrowth of the pharynx. Selective amputation of the pharynx therefore permits the identification of genes required for organ-specific regeneration and suggests an ancient function for FoxA-dependent transcriptional programs in driving regeneration. DOI: http://dx.doi.org/10.7554/eLife.02238.001 PMID:24737865

  6. Mephedrone ("bath salt") pharmacology: insights from invertebrates.

    PubMed

    Ramoz, L; Lodi, S; Bhatt, P; Reitz, A B; Tallarida, C; Tallarida, R J; Raffa, R B; Rawls, S M

    2012-04-19

    Psychoactive bath salts (also called meph, drone, meow meow, m-CAT, bounce, bubbles, mad cow, etc.) contain a substance called mephedrone (4-methylcathinone) that may share psychostimulant properties with amphetamine and cocaine. However, there are only limited studies of the neuropharmacological profile of mephedrone. The present study used an established invertebrate (planarian) assay to test the hypothesis that acute and repeated mephedrone exposure produces psychostimulant-like behavioral effects. Acute mephedrone administration (50-1000 ?M) produced stereotyped movements that were attenuated by a dopamine receptor antagonist (SCH 23390) (0.3 ?M). Spontaneous discontinuation of mephedrone exposure (1, 10 ?M) (60 min) resulted in an abstinence-induced withdrawal response (i.e. reduced motility). In place conditioning experiments, planarians in which mephedrone (100, 500 ?M) was paired with the non-preferred environment during conditioning displayed a shift in preference upon subsequent testing. These results suggest that mephedrone produces three behavioral effects associated with psychostimulant drugs, namely dopamine-sensitive stereotyped movements, abstinence-induced withdrawal, and environmental place conditioning. PMID:22300981

  7. Calcium channels of schistosomes: unresolved questions and unexpected answers

    PubMed Central

    Salvador-Recatalà, Vicenta; Greenberg, Robert M.

    2011-01-01

    Parasitic flatworms of the genus Schistosoma are the causative agents of schistosomiasis, a highly prevalent, neglected tropical disease that causes significant morbidity in hundreds of millions of people worldwide. The current treatment of choice against schistosomiasis is praziquantel (PZQ), which is known to affect Ca2+ homeostasis in schistosomes, but which has an undefined molecular target and mode of action. PZQ is the only available antischistosomal drug in most parts of the world, making reports of PZQ resistance particularly troubling. Voltage-gated Ca2+ (Cav) channels have been proposed as possible targets for PZQ, and, given their central role in the neuromuscular system, may also serve as targets for new anthelmintic therapeutics. Indeed, ion channels constitute the majority of targets for current anthelmintics. Cav channel subunits from schistosomes and other platyhelminths have several unique properties that make them attractive as potential drug targets, and that could also provide insights into structure-function relationships in, and evolution of, Cav channels. PMID:22347719

  8. The cytoskeleton and motor proteins of human schistosomes and their roles in surface maintenance and host-parasite interactions.

    PubMed

    Jones, Malcolm K; Gobert, Geoffrey N; Zhang, Lihua; Sunderland, Philip; McManus, Donald P

    2004-07-01

    Schistosomes are parasitic blood flukes, responsible for significant human disease in tropical and developing nations. Here we review information on the organization of the cytoskeleton and associated motor proteins of schistosomes, with particular reference to the organization of the syncytial tegument, a unique cellular adaptation of these and other neodermatan flatworms. Extensive EST databases show that the molecular constituents of the cytoskeleton and associated molecular systems are likely to be similar to those of other eukaryotes, although there are potentially some molecules unique to schistosomes and platyhelminths. The biology of some components, particular those contributing to host-parasite interactions as well as chemotherapy and immunotherapy are discussed. Unresolved questions in relation to the structure and function of the tegument relate to dynamic organization of the syncytial layer. PMID:15221857

  9. Multigene analysis of lophophorate and chaetognath phylogenetic relationships.

    PubMed

    Helmkampf, Martin; Bruchhaus, Iris; Hausdorf, Bernhard

    2008-01-01

    Maximum likelihood and Bayesian inference analyses of seven concatenated fragments of nuclear-encoded housekeeping genes indicate that Lophotrochozoa is monophyletic, i.e., the lophophorate groups Bryozoa, Brachiopoda and Phoronida are more closely related to molluscs and annelids than to Deuterostomia or Ecdysozoa. Lophophorates themselves, however, form a polyphyletic assemblage. The hypotheses that they are monophyletic and more closely allied to Deuterostomia than to Protostomia can be ruled out with both the approximately unbiased test and the expected likelihood weights test. The existence of Phoronozoa, a putative clade including Brachiopoda and Phoronida, has also been rejected. According to our analyses, phoronids instead share a more recent common ancestor with bryozoans than with brachiopods. Platyhelminthes is the sister group of Lophotrochozoa. Together these two constitute Spiralia. Although Chaetognatha appears as the sister group of Priapulida within Ecdysozoa in our analyses, alternative hypothesis concerning chaetognath relationships could not be rejected. PMID:17937996

  10. The evolution of the serotonergic nervous system.

    PubMed Central

    Hay-Schmidt, A

    2000-01-01

    The pattern of development of the serotonergic nervous system is described from the larvae of ctenophores, platyhelminths, nemerteans, entoprocts, ectoprocts (bryozoans), molluscs, polychaetes, brachiopods, phoronids, echinoderms, enteropneusts and lampreys. The larval brain (apical ganglion) of spiralian protostomes (except nermerteans) generally has three serotonergic neurons and the lateral pair always innervates the ciliary band of the prototroch. In contrast, brachiopods, phoronids, echinoderms and enteropneusts have numerous serotonergic neurons in the apical ganglion from which the ciliary band is innervated. This pattern of development is much like the pattern seen in lamprey embryos and larvae, which leads the author to conclude that the serotonergic raphe system found in vertebrates originated in the larval brain of deuterostome invertebrates. Further, the neural tube of chordates appears to be derived, at least in part, from the ciliary band of deuterostome invertebrate larvae. The evidence shows no sign of a shift in the dorsal ventral orientation within the line leading to the chordates. PMID:10885511

  11. 18S rRNA suggests that Entoprocta are protostomes, unrelated to Ectoprocta.

    PubMed

    Mackey, L Y; Winnepenninckx, B; De Wachter, R; Backeljau, T; Emschermann, P; Garey, J R

    1996-05-01

    The Ento- and Ectoprocta are sometimes placed together in the Bryozoa, which have variously been regarded as proto- or deuterostomes. However, Entoprocta have also been allied to the pseudocoelomates, while Ectoprocta are often united with the Brachiopoda and Phoronida in the (super)phylum Lophophorata. Hence, the phylogenetic relationships of these taxa are still much debated. We determined complete 18S rRNA sequences of two entoprocts, an ectoproct, an inarticulate brachiopod, a phoronid, two annelids, and a platyhelminth. Phylogenetic analyses of these data show that (1) entoprocts and lophophorates have spiralian, protostomous affinities, (2) Ento- and Ectoprocta are not sister taxa, (3) phoronids and brachiopods form a monophyletic clade, and (4) neither Ectoprocta or Annelida appear to be monophyletic. Both deuterostomous and pseudocoelomate features may have arisen at least two times in evolutionary history. These results advocate a Spiralia-Radialia-based classification rather than one based on the Protostomia-Deuterostomia concept. PMID:8662007

  12. Lophotrochozoan mitochondrial genomes

    SciTech Connect

    Valles, Yvonne; Boore, Jeffrey L.

    2005-10-01

    Progress in both molecular techniques and phylogeneticmethods has challenged many of the interpretations of traditionaltaxonomy. One example is in the recognition of the animal superphylumLophotrochozoa (annelids, mollusks, echiurans, platyhelminthes,brachiopods, and other phyla), although the relationships within thisgroup and the inclusion of some phyla remain uncertain. While much ofthis progress in phylogenetic reconstruction has been based on comparingsingle gene sequences, we are beginning to see the potential of comparinglarge-scale features of genomes, such as the relative order of genes.Even though tremendous progress is being made on the sequencedetermination of whole nuclear genomes, the dataset of choice forgenome-level characters for many animals across a broad taxonomic rangeremains mitochondrial genomes. We review here what is known aboutmitochondrial genomes of the lophotrochozoans and discuss the promisethat this dataset will enable insight into theirrelationships.

  13. Eukaryotic opportunists dominate the deep-subsurface biosphere in South Africa.

    PubMed

    Borgonie, G; Linage-Alvarez, B; Ojo, A O; Mundle, S O C; Freese, L B; Van Rooyen, C; Kuloyo, O; Albertyn, J; Pohl, C; Cason, E D; Vermeulen, J; Pienaar, C; Litthauer, D; Van Niekerk, H; Van Eeden, J; Lollar, B Sherwood; Onstott, T C; Van Heerden, E

    2015-01-01

    Following the discovery of the first Eukarya in the deep subsurface, intense interest has developed to understand the diversity of eukaryotes living in these extreme environments. We identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4?km depths in palaeometeoric fissure water up to 12,300?yr old in South African mines. Protozoa and Fungi have also been identified; however, they are present in low numbers. Characterization of the different species reveals that many are opportunistic organisms with an origin due to recharge from surface waters rather than soil leaching. This is the first known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen is the limiting factor for eukaryal population growth. The discovery of a group of Eukarya underground has important implications for the search for life on other planets in our solar system. PMID:26597082

  14. Phylogenetic study of the oxytocin-like immunoreactive system in invertebrates.

    PubMed

    Mizuno, J; Takeda, N

    1988-01-01

    1. A phylogenetic study of oxytocin (OXT)-like immunoreactive cells was performed by the PAP method in the central nervous system of invertebrates. 2. The immunoreactivity was detected in the nerve cells of Hydra magnipapillata of the Coelenterata; Neanthes japonica and Pheretima communissima of the Annelida; Oncidium verrucosum, Limax marginatus and Meretrix lamarckii of the Mollusca; and Baratha brassica of the Arthropoda. 3. No immunoreactive cells were found in Bipalium sp. of the Platyhelminthes; Pomacea canaliculata, Aplysia kurodai, Bradybaena similaris and Achatina fulica of the Mollusca; and Gnorimosphaeroma rayi, Procambarus clarkii, Hemigrapsus sanguineus, Helice tridens and Gryllus bimaculatus of the Arthropoda; Asterina pectinifera of the Echinodermata; and Halocynthia roretzi of the Protochordata. 4. These results demonstrate that an OXT-immunoreactive substance is widely present not only in vertebrates but also in invertebrates. 5. OXT seems to have been introduced into these invertebrates at an early stage of their phylogenetic history. PMID:2907439

  15. Phylogenetic study of the arginine-vasotocin/arginine-vasopressin-like immunoreactive system in invertebrates.

    PubMed

    Mizuno, J; Takeda, N

    1988-01-01

    1. A phylogenetic study of arg-vasotocin (AVT)/arg-vasopressin (AVP)-like immunoreactive cells was performed by the PAP method in the central nervous system of invertebrates. 2. The immunoreactivity was detected in the nerve cells of Hydra magnipapillata of the Coelenterata; Neanthes japonica and Pheretima communissima of the Annelida; Pomacea canaliculata, Aplysia kurodai, Oncidium verrucosum, Bradybaena similaris, Achatina fulica, Limax marginatus and Meretrix lamarckii of the Mollusca; Gnorimosphaeroma rayi, Hemigrapsus sanguineus, Gryllus bimaculatus and Baratha brassicae of the Arthropoda; Asterina pectinifera of the Echinodermata; and Halocynthia roretzi of the Protochordata. 3. No immunoreactivity was detected in Bipalium sp. of the Platyhelminthes, or in Procambarus clarkii and Helice tridens of the Arthropoda. 4. From these results, it appears that AVT/AVP is a phylogenetically ancient peptide which is present in a wide variety of invertebrates. 5. The actions of AVT/AVP and its presence in invertebrates are discussed. PMID:2907440

  16. Eukaryotic opportunists dominate the deep-subsurface biosphere in South Africa

    PubMed Central

    Borgonie, G.; Linage-Alvarez, B.; Ojo, A. O.; Mundle, S.O.C.; Freese, L B.; Van Rooyen, C.; Kuloyo, O.; Albertyn, J.; Pohl, C.; Cason, E. D.; Vermeulen, J.; Pienaar, C.; Litthauer, D.; Van Niekerk, H.; Van Eeden, J.; Lollar, B. Sherwood.; Onstott, T. C.; Van Heerden, E.

    2015-01-01

    Following the discovery of the first Eukarya in the deep subsurface, intense interest has developed to understand the diversity of eukaryotes living in these extreme environments. We identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4?km depths in palaeometeoric fissure water up to 12,300?yr old in South African mines. Protozoa and Fungi have also been identified; however, they are present in low numbers. Characterization of the different species reveals that many are opportunistic organisms with an origin due to recharge from surface waters rather than soil leaching. This is the first known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen is the limiting factor for eukaryal population growth. The discovery of a group of Eukarya underground has important implications for the search for life on other planets in our solar system. PMID:26597082

  17. The revised microRNA complement of Fasciola hepatica reveals a plethora of overlooked microRNAs and evidence for enrichment of immuno-regulatory microRNAs in extracellular vesicles.

    PubMed

    Fromm, B; Trelis, M; Hackenberg, M; Cantalapiedra, F; Bernal, D; Marcilla, A

    2015-09-01

    MicroRNAs (miRNAs) are gene regulators that have recently been shown to down-regulate the immune response via extracellular vesicles in the mammalian host of helminthic parasites. Using the miRNA prediction pipeline miRCandRef, we expanded the current miRNA set of the liver fluke Fasciola hepatica (Platyhelminthes, Trematoda) from 16 to 54 miRNAs (42 conserved and 13 novel). Comparing the cellular expression levels with extracellular vesicles, we found all miRNAs expressed and enriched for miRNAs with immuno-regulatory function, tissue growth and cancer. Our findings support the hypothesis that miRNAs are the molecular mediators of the previously demonstrated immune modulatory function of extracellular vesicles. PMID:26183562

  18. Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness (Addenda 2013).

    PubMed

    Zhang, Zhi-Qiang

    2013-01-01

    The kingdom Animalia is here estimated to have a total of 1,659,420 described species (including 133,692 fossil species) in 40 phyla. Among these, the most successful phylum Arthropoda alone represents 1,302,809 species, or about 78.5% of the total. The second largest phylum, Mollusca (118,061 species), is <10% of Arthropoda in diversity, but it is still much more diverse than other successful invertebrate phyla Platyhelminthes (29,488 species), Nematoda (25,043 species), Echinodermata (20,550 species), Annelida (17,426 species), Cnidaria (16,363 species), Bryozoa (11,474 species) and Porifera (10,876 species). The phylum Craniata, including the vertebrates, represents 85,432 species (including 19,974 fossil species): among these, 35,644 species of "fishes", 7,171 species of amphibians, 15,507 species of reptiles, 11,087 species of birds, and 16,014 species of mammals. PMID:26146682

  19. Platyzoan mitochondrial genomes.

    PubMed

    Wey-Fabrizius, Alexandra R; Podsiadlowski, Lars; Herlyn, Holger; Hankeln, Thomas

    2013-11-01

    Platyzoa is a putative lophotrochozoan (spiralian) subtaxon within the protostome clade of Metazoa, comprising a range of biologically diverse, mostly small worm-shaped animals. The monophyly of Platyzoa, the relationships between the putative subgroups Platyhelminthes, Gastrotricha and Gnathifera (the latter comprising at least Gnathostomulida, "Rotifera" and Acanthocephala) as well as some aspects of the internal phylogenies of these subgroups are highly debated. Here we review how complete mitochondrial (mt) genome data contribute to these debates. We highlight special features of the mt genomes and discuss problems in mtDNA phylogenies of the clade. Mitochondrial genome data seem to be insufficient to resolve the position of the platyzoan clade within the Spiralia but can help to address internal phylogenetic questions. The present review includes a tabular survey of all published platyzoan mt genomes. PMID:23274056

  20. Analysis of 18S rRNA gene sequences suggests significant molecular differences between Macrodasyida and Chaetonotida (Gastrotricha).

    PubMed

    Manylov, Oleg G; Vladychenskaya, Natalia S; Milyutina, Irina A; Kedrova, Olga S; Korokhov, Nikolai P; Dvoryanchikov, Gennady A; Aleshin, Vladimir V; Petrov, Nikolai B

    2004-03-01

    Partial 18S rRNA gene sequences of four macrodasyid and one chaetonotid gastrotrichs were obtained and compared with the available sequences of other gastrotrich species and representatives of various metazoan phyla. Contrary to the earlier molecular data, the gastrotrich sequences did not comprise a monophyletic group but formed two distinct clades, corresponding to the Macrodasyida and Chaetonotida, with the basal position occupied by the sequences of Tetranchyroderma sp. and Xenotrichula sp., respectively. Depending on the taxon sampling and methods of analysis, the two clades were separated by various combinations of clades Rotifera, Gnathostomulida, and Platyhelminthes, and never formed a clade with Nematoda. Thus, monophyly of the Gastrotricha is not confirmed by analysis of the presently available molecular data. PMID:15012964

  1. Venus Kinase Receptors: Prospects in Signaling and Biological Functions of These Invertebrate Kinases

    PubMed Central

    Dissous, Colette; Morel, Marion; Vanderstraete, Mathieu

    2014-01-01

    Venus kinase receptors (VKRs) form a family of invertebrate receptor tyrosine kinases (RTKs) initially discovered in the parasitic platyhelminth Schistosoma mansoni. VKRs are single transmembrane receptors that contain an extracellular venus fly trap structure similar to the ligand-binding domain of G protein-coupled receptors of class C, and an intracellular tyrosine kinase domain close to that of insulin receptors. VKRs are found in a large variety of invertebrates from cnidarians to echinoderms and are highly expressed in larval stages and in gonads, suggesting a role of these proteins in embryonic and larval development as well as in reproduction. VKR gene silencing could demonstrate the function of these receptors in oogenesis as well as in spermatogenesis in S. mansoni. VKRs are activated by amino acids and are highly responsive to arginine. As many other RTKs, they form dimers when activated by ligands and induce intracellular pathways involved in protein synthesis and cellular growth, such as MAPK and PI3K/Akt/S6K pathways. VKRs are not present in vertebrates or in some invertebrate species. Questions remain open about the origin of this little-known RTK family in evolution and its role in emergence and specialization of Metazoa. What is the meaning of maintenance or loss of VKR in some phyla or species in terms of development and physiological functions? The presence of VKRs in invertebrates of economical and medical importance, such as pests, vectors of pathogens, and platyhelminth parasites, and the implication of these RTKs in gametogenesis and reproduction processes are valuable reasons to consider VKRs as interesting targets in new programs for eradication/control of pests and infectious diseases, with the main advantage in the case of parasite targeting that VKR counterparts are absent from the vertebrate host kinase panel. PMID:24860549

  2. Developmentally regulated expression, alternative splicing and distinct sub-groupings in members of the Schistosoma mansoni venom allergen-like (SmVAL) gene family

    PubMed Central

    Chalmers, Iain W; McArdle, Andrew J; Coulson, Richard MR; Wagner, Marissa A; Schmid, Ralf; Hirai, Hirohisa; Hoffmann, Karl F

    2008-01-01

    Background The Sperm-coating protein/Tpx-1/Ag5/PR-1/Sc7 (SCP/TAPS) domain is found across phyla and is a major structural feature of insect allergens, mammalian sperm proteins and parasitic nematode secreted molecules. Proteins containing this domain are implicated in diverse biological activities and may be important for chronic host/parasite interactions. Results We report the first description of an SCP/TAPS gene family (Schistosoma mansoni venom allergen-like (SmVALs)) in the medically important Platyhelminthes (class Trematoda) and describe individual members' phylogenetic relationships, genomic organization and life cycle expression profiles. Twenty-eight SmVALs with complete SCP/TAPS domains were identified and comparison of their predicted protein features and gene structures indicated the presence of two distinct sub-families (group 1 & group 2). Phylogenetic analysis demonstrated that this group 1/group 2 split is zoologically widespread as it exists across the metazoan sub-kingdom. Chromosomal localisation and PCR analysis, coupled to inspection of the current S. mansoni genomic assembly, revealed that many of the SmVAL genes are spatially linked throughout the genome. Quantitative lifecycle expression profiling demonstrated distinct SmVAL expression patterns, including transcripts specifically associated with lifestages involved in definitive host invasion, transcripts restricted to lifestages involved in the invasion of the intermediate host and transcripts ubiquitously expressed. Analysis of SmVAL6 transcript diversity demonstrated statistically significant, developmentally regulated, alternative splicing. Conclusion Our results highlight the existence of two distinct SCP/TAPS protein types within the Platyhelminthes and across taxa. The extensive lifecycle expression analysis indicates several SmVAL transcripts are upregulated in infective stages of the parasite, suggesting that these particular protein products may be linked to the establishment of chronic host/parasite interactions. PMID:18294395

  3. Visualization and 3D Reconstruction of Flame Cells of Taenia solium (Cestoda)

    PubMed Central

    Valverde-Islas, Laura E.; Arrangoiz, Esteban; Vega, Elio; Robert, Lilia; Villanueva, Rafael; Reynoso-Ducoing, Olivia; Willms, Kaethe; Zepeda-Rodríguez, Armando; Fortoul, Teresa I.; Ambrosio, Javier R.

    2011-01-01

    Background Flame cells are the terminal cells of protonephridial systems, which are part of the excretory systems of invertebrates. Although the knowledge of their biological role is incomplete, there is a consensus that these cells perform excretion/secretion activities. It has been suggested that the flame cells participate in the maintenance of the osmotic environment that the cestodes require to live inside their hosts. In live Platyhelminthes, by light microscopy, the cells appear beating their flames rapidly and, at the ultrastructural, the cells have a large body enclosing a tuft of cilia. Few studies have been performed to define the localization of the cytoskeletal proteins of these cells, and it is unclear how these proteins are involved in cell function. Methodology/Principal Findings Parasites of two different developmental stages of T. solium were used: cysticerci recovered from naturally infected pigs and intestinal adults obtained from immunosuppressed and experimentally infected golden hamsters. Hamsters were fed viable cysticerci to recover adult parasites after one month of infection. In the present studies focusing on flame cells of cysticerci tissues was performed. Using several methods such as video, confocal and electron microscopy, in addition to computational analysis for reconstruction and modeling, we have provided a 3D visual rendition of the cytoskeletal architecture of Taenia solium flame cells. Conclusions/Significance We consider that visual representations of cells open a new way for understanding the role of these cells in the excretory systems of Platyhelminths. After reconstruction, the observation of high resolution 3D images allowed for virtual observation of the interior composition of cells. A combination of microscopic images, computational reconstructions and 3D modeling of cells appears to be useful for inferring the cellular dynamics of the flame cell cytoskeleton. PMID:21412407

  4. Design of a flexible component gathering algorithm for converting cell-based models to graph representations for use in evolutionary search

    PubMed Central

    2014-01-01

    Background The ability of science to produce experimental data has outpaced the ability to effectively visualize and integrate the data into a conceptual framework that can further higher order understanding. Multidimensional and shape-based observational data of regenerative biology presents a particularly daunting challenge in this regard. Large amounts of data are available in regenerative biology, but little progress has been made in understanding how organisms such as planaria robustly achieve and maintain body form. An example of this kind of data can be found in a new repository (PlanformDB) that encodes descriptions of planaria experiments and morphological outcomes using a graph formalism. Results We are developing a model discovery framework that uses a cell-based modeling platform combined with evolutionary search to automatically search for and identify plausible mechanisms for the biological behavior described in PlanformDB. To automate the evolutionary search we developed a way to compare the output of the modeling platform to the morphological descriptions stored in PlanformDB. We used a flexible connected component algorithm to create a graph representation of the virtual worm from the robust, cell-based simulation data. These graphs can then be validated and compared with target data from PlanformDB using the well-known graph-edit distance calculation, which provides a quantitative metric of similarity between graphs. The graph edit distance calculation was integrated into a fitness function that was able to guide automated searches for unbiased models of planarian regeneration. We present a cell-based model of planarian that can regenerate anatomical regions following bisection of the organism, and show that the automated model discovery framework is capable of searching for and finding models of planarian regeneration that match experimental data stored in PlanformDB. Conclusion The work presented here, including our algorithm for converting cell-based models into graphs for comparison with data stored in an external data repository, has made feasible the automated development, training, and validation of computational models using morphology-based data. This work is part of an ongoing project to automate the search process, which will greatly expand our ability to identify, consider, and test biological mechanisms in the field of regenerative biology. PMID:24917489

  5. What RNAi screens in model organisms revealed about microbicidal response in mammals?

    PubMed Central

    Abnave, Prasad; Conti, Filippo; Torre, Cedric; Ghigo, Eric

    2015-01-01

    The strategies evolved by pathogens to infect hosts and the mechanisms used by the host to eliminate intruders are highly complex. Because several biological pathways and processes are conserved across model organisms, these organisms have been used for many years to elucidate and understand the mechanisms of the host-pathogen relationship and particularly to unravel the molecular processes enacted by the host to kill pathogens. The emergence of RNA interference (RNAi) and the ability to apply it toward studies in model organisms have allowed a breakthrough in the elucidation of host-pathogen interactions. The aim of this mini-review is to highlight and describe recent breakthroughs in the field of host-pathogen interactions using RNAi screens of model organisms. We will focus specifically on the model organisms Drosophila melanogaster, Caenorhabditis elegans, and Danio rerio. Moreover, a recent study examining the immune system of planarian will be discussed. PMID:25629007

  6. A colony multiplex quantitative PCR-Based 3S3DBC method and variations of it for screening DNA libraries.

    PubMed

    An, Yang; Toyoda, Atsushi; Zhao, Chen; Fujiyama, Asao; Agata, Kiyokazu

    2015-01-01

    A DNA library is a collection of DNA fragments cloned into vectors and stored individually in host cells, and is a valuable resource for molecular cloning, gene physical mapping, and genome sequencing projects. To take the best advantage of a DNA library, a good screening method is needed. After describing pooling strategies and issues that should be considered in DNA library screening, here we report an efficient colony multiplex quantitative PCR-based 3-step, 3-dimension, and binary-code (3S3DBC) method we used to screen genes from a planarian genomic DNA fosmid library. This method requires only 3 rounds of PCR reactions and only around 6 hours to distinguish one or more desired clones from a large DNA library. According to the particular situations in different research labs, this method can be further modified and simplified to suit their requirements. PMID:25646755

  7. An in vivo requirement for the mediator subunit med14 in the maintenance of stem cell populations.

    PubMed

    Burrows, Jeffrey T A; Pearson, Bret J; Scott, Ian C

    2015-04-14

    The Mediator complex has recently been shown to be a key player in the maintenance of embryonic and induced pluripotent stem cells. However, the in vivo consequences of loss of many Mediator subunits are unknown. We identified med14 as the gene affected in the zebrafish logelei (log) mutant, which displayed a morphological arrest by 2 days of development. Surprisingly, microarray analysis showed that transcription was not broadly affected in log mutants. Indeed, log cells transplanted into a wild-type environment were able to survive into adulthood. In planarians, RNAi knockdown demonstrated a requirement for med14 and many other Mediator components in adult stem cell maintenance and regeneration. Multiple stem/progenitor cell populations were observed to be reduced or absent in zebrafish med14 mutant embryos. Taken together, our results show a critical, evolutionarily conserved, in vivo function for Med14 (and Mediator) in stem cell maintenance, distinct from a general role in transcription. PMID:25772472

  8. Opening the genetic toolbox of niche model organisms with high throughput techniques: novel proteins in regeneration as a case study.

    PubMed

    Looso, Mario

    2014-04-01

    Understanding in vivo regeneration of complex structures offers a fascinating perspective for translation into medical applications. Unfortunately, mammals in general lack large-scale regenerative capacity, whereas planarians, newts or Hydra can regenerate complete body parts. Such organisms are, however, poorly annotated because of the lack of sequence information. This leads to limited access for molecular biological investigations. In the last decade, high throughput technologies and new methods enabling the effective generation of transgenic animals have rapidly evolved. These developments have allowed the extensive use of niche model organisms as part of a trend towards the accessibility of a greater panel of model species for scientific research. The case study that follows provides an insight into the impact of high throughput techniques on the landscape of models of regeneration. The cases presented here give evidence of alternative stem cell maintenance pathways, the identification of new protein families and new stem cell markers. PMID:24741707

  9. Early embryogenesis of planaria: a cryptic larva feeding on maternal resources.

    PubMed

    Cardona, Albert; Hartenstein, Volker; Romero, Rafael

    2006-11-01

    The early planarian embryo presents a complete ciliated epidermis and a pharynx and feeds on maternal yolk cells. In this paper, we report on all the elements involved in the formation of such an autonomous embryo, which we name cryptic larva. First, we provide a description of the spherical and fusiform yolk cells and their relationship with the blastomeres, from the laying of the egg capsule up to their final fate in mid embryonic stages. Then, we describe the early cleavage and the subsequent development of the tissues of the cryptic larva, namely, the primary epidermis, the embryonic pharynx, and a new cell type, the star cells. Finally, we discuss the possibility that the cryptic larva either constitutes a vestigial larva or, more likely, is the evolutionary result of the competition between multiple embryos for the limited and shared maternal resources in the egg capsule. PMID:16932928

  10. An In Vivo Requirement for the Mediator Subunit Med14 in the Maintenance of Stem Cell Populations

    PubMed Central

    Burrows, Jeffrey T.A.; Pearson, Bret J.; Scott, Ian C.

    2015-01-01

    Summary The Mediator complex has recently been shown to be a key player in the maintenance of embryonic and induced pluripotent stem cells. However, the in vivo consequences of loss of many Mediator subunits are unknown. We identified med14 as the gene affected in the zebrafish logelei (log) mutant, which displayed a morphological arrest by 2 days of development. Surprisingly, microarray analysis showed that transcription was not broadly affected in log mutants. Indeed, log cells transplanted into a wild-type environment were able to survive into adulthood. In planarians, RNAi knockdown demonstrated a requirement for med14 and many other Mediator components in adult stem cell maintenance and regeneration. Multiple stem/progenitor cell populations were observed to be reduced or absent in zebrafish med14 mutant embryos. Taken together, our results show a critical, evolutionarily conserved, in vivo function for Med14 (and Mediator) in stem cell maintenance, distinct from a general role in transcription. PMID:25772472

  11. Evolution of multicellular animals as deduced from 5S rRNA sequences: a possible early emergence of the Mesozoa.

    PubMed

    Ohama, T; Kumazaki, T; Hori, H; Osawa, S

    1984-06-25

    The nucleotide sequences of 5S rRNA from a mesozoan Dicyema misakiense and three metazoan species, i.e., an acorn-worm Saccoglossus kowalevskii, a moss-animal Bugula neritina, and an octopus Octopus vulgaris have been determined. A phylogenic tree of multicellular animals has been constructed from 73 5S rRNA sequences available at present including those from the above four sequences. The tree suggests that the mesozoan is the most ancient multicellular animal identified so far, its emergence time being almost the same as that of flagellated or ciliated protozoans. The branching points of planarians and nematodes are a little later than that of the mesozoan but are clearly earlier than other metazoan groups including sponges and jellyfishes. Many metazoan groups seem to have diverged within a relatively short period. PMID:6539911

  12. A Colony Multiplex Quantitative PCR-Based 3S3DBC Method and Variations of It for Screening DNA Libraries

    PubMed Central

    An, Yang; Toyoda, Atsushi; Zhao, Chen; Fujiyama, Asao; Agata, Kiyokazu

    2015-01-01

    A DNA library is a collection of DNA fragments cloned into vectors and stored individually in host cells, and is a valuable resource for molecular cloning, gene physical mapping, and genome sequencing projects. To take the best advantage of a DNA library, a good screening method is needed. After describing pooling strategies and issues that should be considered in DNA library screening, here we report an efficient colony multiplex quantitative PCR-based 3-step, 3-dimension, and binary-code (3S3DBC) method we used to screen genes from a planarian genomic DNA fosmid library. This method requires only 3 rounds of PCR reactions and only around 6 hours to distinguish one or more desired clones from a large DNA library. According to the particular situations in different research labs, this method can be further modified and simplified to suit their requirements. PMID:25646755

  13. Synaptonemal complex extension from clustered telomeres mediates full-length chromosome pairing in Schmidtea mediterranea.

    PubMed

    Xiang, Youbin; Miller, Danny E; Ross, Eric J; Sánchez Alvarado, Alejandro; Hawley, R Scott

    2014-12-01

    In the 1920s, József Gelei proposed that chromosome pairing in flatworms resulted from the formation of a telomere bouquet followed by the extension of synapsis from telomeres at the base of the bouquet, thus facilitating homolog pairing in a processive manner. A modern interpretation of Gelei's model postulates that the synaptonemal complex (SC) is nucleated close to the telomeres and then extends progressively along the full length of chromosome arms. We used the easily visible meiotic chromosomes, a well-characterized genome, and RNAi in the sexual biotype of the planarian Schmidtea mediterranea to test that hypothesis. By identifying and characterizing S. mediterranea homologs of genes encoding synaptonemal complex protein 1 (SYCP1), the topoisomerase-like protein SPO11, and RAD51, a key player in homologous recombination, we confirmed that SC formation begins near the telomeres and progresses along chromosome arms during zygotene. Although distal regions pair at the time of bouquet formation, pairing of a unique interstitial locus is not observed until the formation of full-length SC at pachytene. Moreover, neither full extension of the SC nor homologous pairing is dependent on the formation of double-strand breaks. These findings validate Gelei's speculation that full-length pairing of homologous chromosomes is mediated by the extension of the SC formed near the telomeres. S. mediterranea thus becomes the first organism described (to our knowledge) that forms a canonical telomere bouquet but does not require double-strand breaks for synapsis between homologous chromosomes. However, the initiation of SC formation at the base of the telomere bouquet, which then is followed by full-length homologous pairing in planarian spermatocytes, is not observed in other species and may not be conserved. PMID:25404302

  14. Stereochemistry and neuropharmacology of a 'bath salt' cathinone: S-enantiomer of mephedrone reduces cocaine-induced reward and withdrawal in invertebrates.

    PubMed

    Vouga, Alexandre; Gregg, Ryan A; Haidery, Maryah; Ramnath, Anita; Al-Hassani, Hassan K; Tallarida, Christopher S; Grizzanti, David; Raffa, Robert B; Smith, Garry R; Reitz, Allen B; Rawls, Scott M

    2015-04-01

    Knowledge about the neuropharmacology of mephedrone (MEPH) applies primarily to the racemate, or street form of the drug, but not to its individual enantiomers. Here, through chemical isolation of MEPH enantiomers and subsequent behavioral characterization in established invertebrate (planarian) assays, we began separating adverse effects of MEPH from potential therapeutic actions. We first compared stereotypical and environmental place conditioning (EPC) effects of racemic MEPH, S-MEPH, and R-MEPH. Stereotypy was enhanced by acute treatment (100-1000 ?M) with each compound; however, S-MEPH was less potent and efficacious than racemate and R-MEPH. Both R-MEPH (10, 100, 250 ?M) and racemate (100 ?M) produced EPC, but S-MEPH was ineffective at all concentrations (10-100 ?M). After showing that S-MEPH lacked rewarding efficacy, we investigated its ability to alter three of cocaine's behavioral effects (EPC, withdrawal, and stereotypy). Cocaine (1 ?M) produced EPC that was abolished when S-MEPH (100 ?M) was administered after cocaine conditioning. Spontaneous withdrawal from chronic cocaine exposure caused a reduction in motility that was not evident during acute or continuous cocaine treatment but was attenuated by S-MEPH (100 ?M) treatment during the cocaine abstinence interval. Acute stereotypy produced by 1 mM cocaine, nicotine or racemic MEPH was not affected by S-MEPH (10-250 ?M). The present results obtained using planarian assays suggest that the R-enantiomer of MEPH is predominantly responsible for its stimulant and rewarding effects and the S-enantiomer is capable of antagonizing cocaine's addictive-like behaviors without producing rewarding effects of its own. PMID:25496724

  15. What role do annelid neoblasts play? A comparison of the regeneration patterns in a neoblast-bearing and a neoblast-lacking enchytraeid oligochaete.

    PubMed

    Myohara, Maroko

    2012-01-01

    The term 'neoblast' was originally coined for a particular type of cell that had been observed during annelid regeneration, but is now used to describe the pluripotent/totipotent stem cells that are indispensable for planarian regeneration. Despite having the same name, however, planarian and annelid neoblasts are morphologically and functionally distinct, and many annelid species that lack neoblasts can nonetheless substantially regenerate. To further elucidate the functions of the annelid neoblasts, a comparison was made between the regeneration patterns of two enchytraeid oligochaetes, Enchytraeus japonensis and Enchytraeus buchholzi, which possess and lack neoblasts, respectively. In E. japonensis, which can reproduce asexually by fragmentation and subsequent regeneration, neoblasts are present in all segments except for the eight anterior-most segments including the seven head-specific segments, and all body fragments containing neoblasts can regenerate a complete head and a complete tail, irrespective of the region of the body from which they were originally derived. In E. japonensis, therefore, no antero-posterior gradient of regeneration ability exists in the trunk region. However, when amputation was carried out within the head region, where neoblasts are absent, the number of regenerated segments was found to be dependent on the level of amputation along the body axis. In E. buchholzi, which reproduces only sexually and lacks neoblasts in all segments, complete heads were never regenerated and incomplete (hypomeric) heads could be regenerated only from the anterior region of the body. Such an antero-posterior gradient of regeneration ability was observed for both the anterior and posterior regeneration in the whole body of E. buchholzi. These results indicate that the presence of neoblasts correlates with the absence of an antero-posterior gradient of regeneration ability along the body axis, and suggest that the annelid neoblasts are more essential for efficient asexual reproduction than for the regeneration of missing body parts. PMID:22615975

  16. Opposing roles of voltage-gated Ca2+ channels in neuronal control of regenerative patterning.

    PubMed

    Zhang, Dan; Chan, John D; Nogi, Taisaku; Marchant, Jonathan S

    2011-11-01

    There is intense interest in developing methods to regulate proliferation and differentiation of stem cells into neuronal fates for the purposes of regenerative medicine. One way to do this is through in vivo pharmacological engineering using small molecules. However, a key challenge is identification of relevant signaling pathways and therein druggable targets to manipulate stem cell behavior efficiently in vivo. Here, we use the planarian flatworm as a simple chemical-genetic screening model for nervous system regeneration to show that the isoquinoline drug praziquantel (PZQ) acts as a small molecule neurogenic to produce two-headed animals with integrated CNSs following regeneration. Characterization of the entire family of planarian voltage-operated Ca(2+) channel ? subunits (Ca(v)?), followed by in vivo RNAi of specific Ca(v) subunits, revealed that PZQ subverted regeneration by activation of a specific voltage-gated Ca(2+) channel isoform (Ca(v)1A). PZQ-evoked Ca(2+) entry via Ca(v)1A served to inhibit neuronally derived Hedgehog signals, as evidenced by data showing that RNAi of Ca(v)1A prevented PZQ-evoked bipolarity, Ca(2+) entry, and decreases in wnt1 and wnt11-5 levels. Surprisingly, the action of PZQ was opposed by Ca(2+) influx through a closely related neuronal Ca(v) isoform (Ca(v)1B), establishing a novel interplay between specific Ca(v)1 channel isoforms, Ca(2+) entry, and neuronal Hedgehog signaling. These data map PZQ efficacy to specific neuronal Ca(v) complexes in vivo and underscore that both activators (Ca(v)1A) and inhibitors (Ca(v)1B) of Ca(2+) influx can act as small molecule neurogenics in vivo on account of the unique coupling of Ca(2+) channels to neuronally derived polarity cues. PMID:22049441

  17. De novo assembly and validation of planaria transcriptome by massive parallel sequencing and shotgun proteomics.

    PubMed

    Adamidi, Catherine; Wang, Yongbo; Gruen, Dominic; Mastrobuoni, Guido; You, Xintian; Tolle, Dominic; Dodt, Matthias; Mackowiak, Sebastian D; Gogol-Doering, Andreas; Oenal, Pinar; Rybak, Agnieszka; Ross, Eric; Sánchez Alvarado, Alejandro; Kempa, Stefan; Dieterich, Christoph; Rajewsky, Nikolaus; Chen, Wei

    2011-07-01

    Freshwater planaria are a very attractive model system for stem cell biology, tissue homeostasis, and regeneration. The genome of the planarian Schmidtea mediterranea has recently been sequenced and is estimated to contain >20,000 protein-encoding genes. However, the characterization of its transcriptome is far from complete. Furthermore, not a single proteome of the entire phylum has been assayed on a genome-wide level. We devised an efficient sequencing strategy that allowed us to de novo assemble a major fraction of the S. mediterranea transcriptome. We then used independent assays and massive shotgun proteomics to validate the authenticity of transcripts. In total, our de novo assembly yielded 18,619 candidate transcripts with a mean length of 1118 nt after filtering. A total of 17,564 candidate transcripts could be mapped to 15,284 distinct loci on the current genome reference sequence. RACE confirmed complete or almost complete 5' and 3' ends for 22/24 transcripts. The frequencies of frame shifts, fusion, and fission events in the assembled transcripts were computationally estimated to be 4.2%-13%, 0%-3.7%, and 2.6%, respectively. Our shotgun proteomics produced 16,135 distinct peptides that validated 4200 transcripts (FDR ?1%). The catalog of transcripts assembled in this study, together with the identified peptides, dramatically expands and refines planarian gene annotation, demonstrated by validation of several previously unknown transcripts with stem cell-dependent expression patterns. In addition, our robust transcriptome characterization pipeline could be applied to other organisms without genome assembly. All of our data, including homology annotation, are freely available at SmedGD, the S. mediterranea genome database. PMID:21536722

  18. Lack of metabolic ageing in the long-lived flatworm Schmidtea polychroa.

    PubMed

    Mouton, Stijn; Willems, Maxime; Houthoofd, Wouter; Bert, Wim; Braeckman, Bart P

    2011-09-01

    Freshwater planarians have a large totipotent stem cell population allowing high rates of cell renewal and morphological plasticity. It is often suggested that they are able to rejuvenate during fission, regeneration and starvation. These features, together with the rapidly expanding molecular toolset, make planarians such as Schmidtea polychroa and S. mediterranea interesting for ageing research. Yet, the basic demographic and physiological data are lacking or still based on fragmentary observations of one century ago. Here, we present the first longitudinal physiological study of the species S. polychroa. Survival, size and metabolic rate, measured by microcalorimetry, of a cohort of 28 individuals were followed over a period of three years. Sexual maturity was reached during the second month after which the worms continued growing up to 5 months. This initial growth phase was followed by alternating periods of synchronised growth and degrowth. Although mass-specific metabolic rates declined during the initial growth phase, no changes were found later in life. The absence of metabolic ageing may be explained by the very high rate of cell renewal during homeostasis and alternating phases of degrowth and growth during which tissues are renewed. Surprisingly, all deaths occurred in pairs of worms that were housed in the same culture recipient, suggesting that worms did not die from ageing. Taking into account the metabolic and demographic data, we suggest that S. polychroa shows negligible ageing. Detailed analyses of size and metabolic rate revealed a remarkable biphasic allometric scaling relation. During the initial growth phase (months 1-5) the allometric scaling exponent b was 0.86 while later in life, it increased to an unusually large value of 1.17, indicating that mass-specific metabolic rate increases with size in adult S. polychroa. PMID:21549188

  19. Synaptonemal complex extension from clustered telomeres mediates full-length chromosome pairing in Schmidtea mediterranea

    PubMed Central

    Xiang, Youbin; Miller, Danny E.; Ross, Eric J.; Sánchez Alvarado, Alejandro; Hawley, R. Scott

    2014-01-01

    In the 1920s, József Gelei proposed that chromosome pairing in flatworms resulted from the formation of a telomere bouquet followed by the extension of synapsis from telomeres at the base of the bouquet, thus facilitating homolog pairing in a processive manner. A modern interpretation of Gelei’s model postulates that the synaptonemal complex (SC) is nucleated close to the telomeres and then extends progressively along the full length of chromosome arms. We used the easily visible meiotic chromosomes, a well-characterized genome, and RNAi in the sexual biotype of the planarian Schmidtea mediterranea to test that hypothesis. By identifying and characterizing S. mediterranea homologs of genes encoding synaptonemal complex protein 1 (SYCP1), the topoisomerase-like protein SPO11, and RAD51, a key player in homologous recombination, we confirmed that SC formation begins near the telomeres and progresses along chromosome arms during zygotene. Although distal regions pair at the time of bouquet formation, pairing of a unique interstitial locus is not observed until the formation of full-length SC at pachytene. Moreover, neither full extension of the SC nor homologous pairing is dependent on the formation of double-strand breaks. These findings validate Gelei’s speculation that full-length pairing of homologous chromosomes is mediated by the extension of the SC formed near the telomeres. S. mediterranea thus becomes the first organism described (to our knowledge) that forms a canonical telomere bouquet but does not require double-strand breaks for synapsis between homologous chromosomes. However, the initiation of SC formation at the base of the telomere bouquet, which then is followed by full-length homologous pairing in planarian spermatocytes, is not observed in other species and may not be conserved. PMID:25404302

  20. Opposing roles of voltage-gated Ca2+ channels in neuronal control of regenerative patterning

    PubMed Central

    Zhang, Dan; Chan, John D.; Nogi, Taisaku; Marchant, Jonathan S.

    2011-01-01

    There is intense interest in developing methods to regulate proliferation and differentiation of stem cells into neuronal fates for the purposes of regenerative medicine. One way to do this is through in vivo pharmacological engineering using small molecules. However, a key challenge is identification of relevant signaling pathways and therein drugable targets to manipulate stem cell behaviour efficiently in vivo. Here, we use the planarian flatworm as a simple chemical-genetic screening model for nervous system regeneration to show that the isoquinoline drug praziquantel (PZQ) acts as a small molecule neurogenic to produce two-headed animals with integrated central nervous systems following regeneration. Characterization of the entire family of planarian voltage-operated Ca2+ channel alpha subunits (Cav?), followed by in vivo RNAi of specific Cav subunits revealed that PZQ subverted regeneration by activation of a specific voltage-gated Ca2+ channel isoform (Ca 1A). PZQ-evoked Ca2+ v entry via Cav1A served to inhibit neuronally-derived Hedgehog signals, as evidenced by data showing that RNAi of Cav1A prevented PZQ-evoked bipolarity, Ca2+ entry and decreases in wnt1 and wnt11-5 levels. Surprisingly the action of PZQ was opposed by Ca2+ influx through a closely related neuronal Cav isoform (Cav1B), establishing a novel interplay between specific Cav1 channel isoforms, Ca2+ entry and neuronal Hedgehog signaling. These data map PZQ efficacy to specific neuronal Cav complexes in vivo and underscore that both activators (Cav1A) and inhibitors of Ca2+ influx (Cav1B) can act as small molecule neurogenics in vivo on account of the unique coupling of Ca2+ channels to neuronally-derived polarity cues. PMID:22049441

  1. Purification and kinetic analysis of cytosolic and mitochondrial thioredoxin glutathione reductase extracted from Taenia solium cysticerci.

    PubMed

    Plancarte, Agustin; Nava, Gabriela

    2015-02-01

    Thioredoxin glutathione reductases (TGRs) (EC 1.8.1.9) were purified to homogeneity from the cytosolic (cTsTGR) and mitochondrial (mTsTGR) fractions of Taenia solium, the agent responsible for neurocysticercosis, one of the major central nervous system parasitic diseases in humans. TsTGRs had a relative molecular weight of 132,000, while the corresponding value per subunit obtained under denaturing conditions, was of 62,000. Specific activities for thioredoxin reductase and glutathione reductase substrates for both TGRs explored were in the range or lower than values obtained for other platyhelminths and mammalian TGRs. cTsTGR and mTsTGR also showed hydroperoxide reductase activity using hydroperoxide as substrate. Km(DTNB) and Kcat(DTNB) values for cTsTGR and mTsTGR (88?µM and 1.9?s(-1); 45?µM and 12.6?s(-1), respectively) and Km(GSSG) and Kcat(GSSG) values for cTsTGR and mTsTGR (6.3?µM and 0.96?s(-1); 4?µM and 1.62?s(-1), respectively) were similar to or lower than those reported for mammalian TGRs. Mass spectrometry analysis showed that 12 peptides from cTsTGR and seven from mTsTGR were a match for gi|29825896 thioredoxin glutathione reductase [Echinococcus granulosus], confirming that both enzymes are TGRs. Both T. solium TGRs were inhibited by the gold compound auranofin, a selective inhibitor of thiol-dependent flavoreductases (I???=?3.25, 2.29?nM for DTNB and GSSG substrates, respectively for cTsTGR; I???=?5.6, 25.4?nM for mTsTGR toward the same substrates in the described order). Glutathione reductase activity of cTsTGR and mTsTGR exhibited hysteretic behavior with moderate to high concentrations of GSSG; this result was not observed either with thioredoxin, DTNB or NADPH. However, the observed hysteretic kinetics was suppressed with increasing amounts of both parasitic TGRs. These data suggest the existence of an effective substitute which may account for the lack of the detoxification enzymes glutathione reductase and thioredoxin reductase in T. solium, as has been described for very few other platyhelminths. PMID:25541385

  2. Modular evolution of glutathione peroxidase genes in association with different biochemical properties of their encoded proteins in invertebrate animals

    PubMed Central

    Bae, Young-An; Cai, Guo-Bin; Kim, Seon-Hee; Zo, Young-Gun; Kong, Yoon

    2009-01-01

    Background Phospholipid hydroperoxide glutathione peroxidases (PHGPx), the most abundant isoforms of GPx families, interfere directly with hydroperoxidation of lipids. Biochemical properties of these proteins vary along with their donor organisms, which has complicated the phylogenetic classification of diverse PHGPx-like proteins. Despite efforts for comprehensive analyses, the evolutionary aspects of GPx genes in invertebrates remain largely unknown. Results We isolated GPx homologs via in silico screening of genomic and/or expressed sequence tag databases of eukaryotic organisms including protostomian species. Genes showing strong similarity to the mammalian PHGPx genes were commonly found in all genomes examined. GPx3- and GPx7-like genes were additionally detected from nematodes and platyhelminths, respectively. The overall distribution of the PHGPx-like proteins with different biochemical properties was biased across taxa; selenium- and glutathione (GSH)-dependent proteins were exclusively detected in platyhelminth and deuterostomian species, whereas selenium-independent and thioredoxin (Trx)-dependent enzymes were isolated in the other taxa. In comparison of genomic organization, the GSH-dependent PHGPx genes showed a conserved architectural pattern, while their Trx-dependent counterparts displayed complex exon-intron structures. A codon for the resolving Cys engaged in reductant binding was found to be substituted in a series of genes. Selection pressure to maintain the selenocysteine codon in GSH-dependent genes also appeared to be relaxed during their evolution. With the dichotomized fashion in genomic organizations, a highly polytomic topology of their phylogenetic trees implied that the GPx genes have multiple evolutionary intermediate forms. Conclusion Comparative analysis of invertebrate GPx genes provides informative evidence to support the modular pathways of GPx evolution, which have been accompanied with sporadic expansion/deletion and exon-intron remodeling. The differentiated enzymatic properties might be acquired by the evolutionary relaxation of selection pressure and/or biochemical adaptation to the acting environments. Our present study would be beneficial to get detailed insights into the complex GPx evolution, and to understand the molecular basis of the specialized physiological implications of this antioxidant system in their respective donor organisms. PMID:19344533

  3. The invasive New Guinea flatworm Platydemus manokwari in France, the first record for Europe: time for action is now

    PubMed Central

    Winsor, Leigh; Gey, Delphine; Gros, Pierre; Thévenot, Jessica

    2014-01-01

    Non-indigenous terrestrial flatworms (Platyhelminthes) have been recorded in thirteen European countries. They include Bipalium kewense and Dolichoplana striata that are largely restricted to hothouses and may be regarded as non-invasive species. In addition there are species from the southern hemisphere such as the invasive New Zealand flatworm Arthurdendyus triangulatus in the United Kingdom, Eire and the Faroe Islands, the Australian flatworm Australoplana sanguinea alba in Eire and the United Kingdom, and the Australian Blue Garden flatworm Caenoplana coerulea in France, Menorca and the United Kingdom. The United Kingdom has some twelve or more non-indigenous species most of which are Australian and New Zealand species. These species may move to an invasive stage when optimum environmental and other conditions occur, and the flatworms then have the potential to cause economic or environmental harm. In this paper, we report the identification (from morphology and molecular analysis of COI sequences) of non-indigenous terrestrial flatworms found in a hothouse in Caen (France) as the New Guinea flatworm Platydemus manokwari de Beauchamp, 1963 (Platyhelminthes, Continenticola, Geoplanidae, Rhynchodeminae). Platydemus manokwari is among the “100 World’s Worst Invader Alien Species”. Lists of World geographic records, prey in the field and prey in laboratories of P. manokwari are provided. This species is considered a threat to native snails wherever it is introduced. The recent discovery of P. manokwari in France represents a significant extension of distribution of this Invasive Alien Species from the Indo-Pacific region to Europe. If it escaped the hothouse, the flatworm might survive winters and become established in temperate countries. The existence of this species in France requires an early warning of this incursion to State and European Union authorities, followed by the eradication of the flatworm in its locality, tightening of internal quarantine measures to prevent further spread of the flatworm to and from this site, identifying if possible the likely primary source of the flatworm, and tracing other possible incursions that may have resulted from accidental dispersal of plants and soil from the site. PMID:24688873

  4. Kicking in the Guts: Schistosoma mansoni Digestive Tract Proteins are Potential Candidates for Vaccine Development

    PubMed Central

    Figueiredo, Barbara Castro-Pimentel; Ricci, Natasha Delaqua; de Assis, Natan Raimundo Gonçalves; de Morais, Suellen Batistoni; Fonseca, Cristina Toscano; Oliveira, Sergio Costa

    2015-01-01

    Schistosomiasis is a debilitating disease that represents a major health problem in at least 74 tropical and subtropical countries. Current disease control strategies consist mainly of chemotherapy, which cannot prevent recurrent re-infection of people living in endemic area. In the last decades, many researchers made a remarkable effort in the search for an effective vaccine to provide long-term protection. Parasitic platyhelminthes of Schistosoma genus, which cause the disease, live in the blood vessels of definitive hosts where they are bathed in host blood for many years. Among the most promising molecules as vaccine candidates are the proteins present in the host–parasite interface, so numerous tegument antigens have been assessed and the achieved protection never got even close to 100%. Besides the tegument, the digestive tract is the other major site of host–parasite interface. Since parasites feed on blood, they need to swallow a considerable amount of blood for nutrient acquisition. Host blood ingested by schistosomes passes through the esophagus and reaches the gut where many peptidases catalyze the proteolysis of blood cells. Recent studies show the emergence of antigens related to the parasite blood feeding, such as esophageal gland proteins, proteases, and other proteins related to nutrient uptake. Herein, we review what is known about Schistosoma mansoni digestive tract proteins, emphasizing the ones described as potential vaccine candidates. PMID:25674091

  5. Lessons from parasitic flatworms about evolution and historical biogeography of their vertebrate hosts.

    PubMed

    Verneau, Olivier; Du Preez, Louis; Badets, Mathieu

    2009-01-01

    Cophylogenetic studies investigate the evolutionary trends within host-parasite associations. Examination of the different levels of fidelity between host and parasite phylogenies provides a powerful tool to inspect patterns and processes of parasite diversification over host evolution and geological times. Within the phylum Platyhelminthes, the monogeneans are mainly fish parasites. The Polystomatidae, however, are known from the sarcopterygian Australian lungfish and tetrapods such as amphibians, freshwater turtles, and the African hippopotamus. Cophylogenetic and biogeographic vicariance analyses, supplemented by molecular calibrations, showed that the Polystomatidae may track the evolutionary history of the first aquatic tetrapods in the Palaeozoic age. Evolutionary lines of the major polystome lineages would also be intimately related to the evolution of their hosts over hundreds of millions years. Since the Mesozoic, evolution of polystomes would have been shaped mainly by plate tectonics during the break-up of Gondwanaland and subsequent dispersal of ancestral neobatrachian host lineages. Therefore the Polystomatidae could serve as a novel model to improve cophylogenetic tools and to inspect a suite of questions about the evolution of vertebrate hosts. PMID:19281948

  6. Helminth.net: expansions to Nematode.net and an introduction to Trematode.net.

    PubMed

    Martin, John; Rosa, Bruce A; Ozersky, Philip; Hallsworth-Pepin, Kymberlie; Zhang, Xu; Bhonagiri-Palsikar, Veena; Tyagi, Rahul; Wang, Qi; Choi, Young-Jun; Gao, Xin; McNulty, Samantha N; Brindley, Paul J; Mitreva, Makedonka

    2015-01-01

    Helminth.net (http://www.helminth.net) is the new moniker for a collection of databases: Nematode.net and Trematode.net. Within this collection we provide services and resources for parasitic roundworms (nematodes) and flatworms (trematodes), collectively known as helminths. For over a decade we have provided resources for studying nematodes via our veteran site Nematode.net (http://nematode.net). In this article, (i) we provide an update on the expansions of Nematode.net that hosts omics data from 84 species and provides advanced search tools to the broad scientific community so that data can be mined in a useful and user-friendly manner and (ii) we introduce Trematode.net, a site dedicated to the dissemination of data from flukes, flatworm parasites of the class Trematoda, phylum Platyhelminthes. Trematode.net is an independent component of Helminth.net and currently hosts data from 16 species, with information ranging from genomic, functional genomic data, enzymatic pathway utilization to microbiome changes associated with helminth infections. The databases' interface, with a sophisticated query engine as a backbone, is intended to allow users to search for multi-factorial combinations of species' omics properties. This report describes updates to Nematode.net since its last description in NAR, 2012, and also introduces and presents its new sibling site, Trematode.net. PMID:25392426

  7. Environmental Induction of Polyembryony in Echinoid Echinoderms.

    PubMed

    Allen, Jonathan D; Armstrong, Anne Frances; Ziegler, Shelby L

    2015-12-01

    Polyembryony, or the production of multiple offspring from a single zygote, is a widespread phenomenon in the animal kingdom. Various types of polyembryony have been described in arthropods, bryozoans, chordates, cnidarians, echinoderms, and platyhelminthes. We describe the induction of polyembryony in embryos of the sand dollar Echinarachnius parma and the pencil urchin Eucidaris tribuloides in response to elevated temperature and reduced salinity. Data on the environmental variation in temperature and salinity that normally occurs during the spawning season, combined with the range of laboratory conditions over which polyembryony was induced, suggest that polyembryony may occur frequently in these species under natural conditions. We tested an additional two species of echinoids for similar responses, but found little evidence for polyembryony in the green urchin Strongylocentrotus droebachiensis or the variegated urchin Lytechinus variegatus, suggesting that polyembryony is not a universal response of echinoids to fluctuations in temperature and salinity. The unexpected developmental changes that we observed in response to present-day fluctuations in temperature and salinity suggest that ongoing and future environmental shifts may drive substantial changes in marine invertebrate developmental patterns, and that these changes will be different across taxa. PMID:26695821

  8. Intracellular Immunohistochemical Detection of Tetrodotoxin in Pleurobranchaea maculata (Gastropoda) and Stylochoplana sp. (Turbellaria)

    PubMed Central

    Salvitti, Lauren R.; Wood, Susanna A.; Winsor, Leigh; Cary, Stephen Craig

    2015-01-01

    Tetrodotoxin (TTX), is a potent neurotoxin targeting sodium channels that has been identified in multiple marine and terrestrial organisms. It was recently detected in the Opisthobranch Pleurobranchaea maculata and a Platyhelminthes Stylochoplana sp. from New Zealand. Knowledge on the distribution of TTX within these organisms is important to assist in elucidating the origin and ecological role of this toxin. Intracellular micro-distribution of TTX was investigated using a monoclonal antibody-based immunoenzymatic technique. Tetrodotoxin was strongly localized in neutral mucin cells and the basement membrane of the mantle, the oocytes and follicles of the gonad tissue, and in the digestive tissue of P. maculata. The ova and pharynx were the only two structures to contain TTX in Stylochoplana sp. Using liquid chromatography-mass spectrometry, TTX was identified in the larvae and eggs, but not the gelatinous egg cases of P. maculata. Tetrodotoxin was present in egg masses of Stylochoplana sp. These data suggest that TTX has a defensive function in adult P. maculata, who then invest this in their progeny for protection. Localization in the digestive tissue of P. maculata potentially indicates a dietary source of TTX. Stylochoplana sp. may use TTX in prey capture and for the protection of offspring. PMID:25636158

  9. Evolution of flatworm central nervous systems: Insights from polyclads

    PubMed Central

    Quiroga, Sigmer Y.; Carolina Bonilla, E.; Marcela Bolaños, D.; Carbayo, Fernando; Litvaitis, Marian K.; Brown, Federico D.

    2015-01-01

    The nervous systems of flatworms have diversified extensively as a consequence of the broad range of adaptations in the group. Here we examined the central nervous system (CNS) of 12 species of polyclad flatworms belonging to 11 different families by morphological and histological studies. These comparisons revealed that the overall organization and architecture of polyclad central nervous systems can be classified into three categories (I, II, and III) based on the presence of globuli cell masses -ganglion cells of granular appearance-, the cross-sectional shape of the main nerve cords, and the tissue type surrounding the nerve cords. In addition, four different cell types were identified in polyclad brains based on location and size. We also characterize the serotonergic and FMRFamidergic nervous systems in the cotylean Boninia divae by immunocytochemistry. Although both neurotransmitters were broadly expressed, expression of serotonin was particularly strong in the sucker, whereas FMRFamide was particularly strong in the pharynx. Finally, we test some of the major hypothesized trends during the evolution of the CNS in the phylum by a character state reconstruction based on current understanding of the nervous system across different species of Platyhelminthes and on up-to-date molecular phylogenies. PMID:26500427

  10. Gastrointestinal Parasites of Ecuadorian Mantled Howler Monkeys (Alouatta palliata aequatorialis) Based on Fecal Analysis.

    PubMed

    Helenbrook, William D; Wade, Susan E; Shields, William M; Stehman, Stephen V; Whipps, Christopher M

    2015-06-01

    An analysis of gastrointestinal parasites of Ecuadorian mantled howler monkeys, Alouatta palliata aequatorialis, was conducted based on examination of fecal smears, flotations, and sedimentations. At least 1 type of parasite was detected in 97% of the 96 fecal samples screened across 19 howler monkey groups using these techniques. Samples averaged 3.6 parasite species per individual (±1.4 SD). Parasites included species representing genera of 2 apicomplexans: Cyclospora sp. (18% of individual samples) and Isospora sp. (3%); 6 other protozoa: Balantidium sp. (9%), Blastocystis sp. (60%), Chilomastix sp. (4%), Dientamoeba sp. (3%), Entamoeba species (56%), Iodamoeba sp. (5%); 4 nematodes: Enterobius sp. (3%), Capillaria sp. (78%), Strongyloides spp. (88%) which included 2 morphotypes, Trypanoxyuris sp. (12%); and the platyhelminth Controrchis sp. (15%). A statistically significant positive correlation was found between group size and each of 3 different estimators of parasite species richness adjusted for sampling effort (ICE: r(2) = 0.24, P = 0.05; Chao2: r(2) = 0.25, P = 0.05, and Jackknife: r(2) = 0.31, P = 0.03). Two significant associations between co-infecting parasites were identified. Based on the prevalence data, individuals infected with Balantidium sp. were more likely to also be infected with Isospora sp. (?(2) = 6.02, P = 0.01), while individuals harboring Chilomastix sp. were less likely to have Capillaria sp. present (?(2) = 4.03, P = 0.04). PMID:25686475

  11. Combined large and small subunit ribosomal RNA phylogenies support a basal position of the acoelomorph flatworms.

    PubMed Central

    Telford, Maximilian J; Lockyer, Anne E; Cartwright-Finch, Chloë; Littlewood, D Timothy J

    2003-01-01

    The phylogenetic position of the phylum Platyhelminthes has been re-evaluated in the past decade by analysis of diverse molecular datasets. The consensus is that the Rhabditophora + Catenulida, which includes most of the flatworm taxa, are not primitively simple basal bilaterians but are related to coelomate phyla such as molluscs. The status of two other groups of acoelomate worms, Acoela and Nemertodermatida, is less clear. Although many characteristics unite these two groups, initial molecular phylogenetic studies placed the Nemertodermatida within the Rhabditophora, but placed the Acoela at the base of the Bilateria, distant from other flatworms. This contradiction resulted in scepticism about the basal position of acoels and led to calls for further data. We have sequenced large subunit ribosomal RNA genes from 13 rhabditophorans + catenulids, three acoels and one nemertodermatid, tripling the available data. Our analyses strongly support a basal position of both acoels and nemertodermatids. Alternative hypotheses are significantly less well supported by the data. We conclude that the Nemertodermatida and Acoela are basal bilaterians and, owing to their unique body plan and embryogenesis, should be recognized as a separate phylum, the Acoelomorpha. PMID:12803898

  12. Parasite neuropeptide biology: Seeding rational drug target selection?

    PubMed Central

    McVeigh, Paul; Atkinson, Louise; Marks, Nikki J.; Mousley, Angela; Dalzell, Johnathan J.; Sluder, Ann; Hammerland, Lance; Maule, Aaron G.

    2011-01-01

    The rationale for identifying drug targets within helminth neuromuscular signalling systems is based on the premise that adequate nerve and muscle function is essential for many of the key behavioural determinants of helminth parasitism, including sensory perception/host location, invasion, locomotion/orientation, attachment, feeding and reproduction. This premise is validated by the tendency of current anthelmintics to act on classical neurotransmitter-gated ion channels present on helminth nerve and/or muscle, yielding therapeutic endpoints associated with paralysis and/or death. Supplementary to classical neurotransmitters, helminth nervous systems are peptide-rich and encompass associated biosynthetic and signal transduction components – putative drug targets that remain to be exploited by anthelmintic chemotherapy. At this time, no neuropeptide system-targeting lead compounds have been reported, and given that our basic knowledge of neuropeptide biology in parasitic helminths remains inadequate, the short-term prospects for such drugs remain poor. Here, we review current knowledge of neuropeptide signalling in Nematoda and Platyhelminthes, and highlight a suite of 19 protein families that yield deleterious phenotypes in helminth reverse genetics screens. We suggest that orthologues of some of these peptidergic signalling components represent appealing therapeutic targets in parasitic helminths. PMID:24533265

  13. Molecular and biochemical characterization of Paragonimus westermani tyrosinase.

    PubMed

    Bae, Y-A; Kim, S-H; Ahn, C-S; Kim, J-G; Kong, Y

    2015-05-01

    Trematode tyrosinases (TYRs) play a major role in the tanning process during eggshell formation. We investigated the molecular and biochemical features of Paragonimus westermani TYR (PwTYR). The PwTYR cDNA was composed of 1568-bp encompassing a 1422-bp-long open reading frame (474-amino acid polypeptide). A strong phylogenetic relationship with Platyhelminthes and Deuterostomian orthologues was evident. The recombinant PwTYR expressed in prokaryotic cells promptly oxidized diphenol substrates, with a preferential affinity toward ortho-positioned hydroxyl groups. It demonstrated fairly weak activity for monophenol compounds. Diphenol oxidase activity was augmented with an increase of pH from 5.0 to 8.0, while monophenol oxidase activity was highest at an acidic pH and gradually decreased as pH increased. Transcription profile of PwTYR was temporally upregulated along with worm development. PwTYR was specifically localized in vitellocytes and eggs. The results suggested that conversion of tyrosine to L-dihydroxyphenylalanine by PwTYR monophenol oxidase activity might be rate-limiting step during the sclerotization process of P. westermani eggs. The pH-dependent pattern of monophenol and diphenol oxidase activity further proposes that the initial hydroxylation might slowly but steadily progress in acidic secreted vesicles of vitellocytes and the second oxidation process might be rapidly accelerated by neural or weak alkaline pH environments within the ootype. PMID:25621413

  14. Quo Vadis Venomics? A Roadmap to Neglected Venomous Invertebrates

    PubMed Central

    von Reumont, Bjoern Marcus; Campbell, Lahcen I.; Jenner, Ronald A.

    2014-01-01

    Venomics research is being revolutionized by the increased use of sensitive -omics techniques to identify venom toxins and their transcripts in both well studied and neglected venomous taxa. The study of neglected venomous taxa is necessary both for understanding the full diversity of venom systems that have evolved in the animal kingdom, and to robustly answer fundamental questions about the biology and evolution of venoms without the distorting effect that can result from the current bias introduced by some heavily studied taxa. In this review we draw the outlines of a roadmap into the diversity of poorly studied and understood venomous and putatively venomous invertebrates, which together represent tens of thousands of unique venoms. The main groups we discuss are crustaceans, flies, centipedes, non-spider and non-scorpion arachnids, annelids, molluscs, platyhelminths, nemerteans, and echinoderms. We review what is known about the morphology of the venom systems in these groups, the composition of their venoms, and the bioactivities of the venoms to provide researchers with an entry into a large and scattered literature. We conclude with a short discussion of some important methodological aspects that have come to light with the recent use of new -omics techniques in the study of venoms. PMID:25533518

  15. Macrofauna associated to Mycale microsigmatosa (Porifera, Demospongiae) in Rio de Janeiro State, SE Brazil

    NASA Astrophysics Data System (ADS)

    Ribeiro, Suzi M.; Omena, Elianne P.; Muricy, Guilherme

    2003-08-01

    The macrofauna (endo- and epi-biotic) associated to the sponge Mycale ( Carmia) microsigmatosa Arndt, 1927 was studied at three sites in Rio de Janeiro State, Brazil (Arraial do Cabo, Niterói, and Rio de Janeiro). A total of 2235 individuals (over 1 mm long) of 75 invertebrate species were found associated to 19 specimens of the sponge. The most abundant and diverse taxa were the crustaceans (83%, 31 spp.), polychetes (10%, 18 spp.), and molluscs (3.7%, 15 spp.). Cnidarians, platyhelminthes, ascidians, echinoderms, pycnogonids, bryozoans, and sponges were also represented. Amphipod crustaceans were the dominant group, comprising 61% of all individuals collected. Species richness and abundance of associated fauna were highly correlated with sponge volume, but diversity and evenness were not. The site of collection influenced the species composition of the fauna associated to M. microsigmatosa but did not change significantly its diversity, abundance, richness, and dominance patterns of higher taxa. Pregnant females and juvenile stages of 29% of the species associated, including crustaceans, molluscs, echinoderms, and pycnogonids were frequently found inside M. microsigmatosa. Although many of these organisms do occur and reproduce in other habitats outside the sponge as well, M. microsigmatosa is also important for their reproduction and survivorship, thus contributing for the maintenance of biodiversity in Southwestern Atlantic sublittoral rocky shores.

  16. The Global Invertebrate Genomics Alliance (GIGA): Developing Community Resources to Study Diverse Invertebrate Genomes

    PubMed Central

    2014-01-01

    Over 95% of all metazoan (animal) species comprise the “invertebrates,” but very few genomes from these organisms have been sequenced. We have, therefore, formed a “Global Invertebrate Genomics Alliance” (GIGA). Our intent is to build a collaborative network of diverse scientists to tackle major challenges (e.g., species selection, sample collection and storage, sequence assembly, annotation, analytical tools) associated with genome/transcriptome sequencing across a large taxonomic spectrum. We aim to promote standards that will facilitate comparative approaches to invertebrate genomics and collaborations across the international scientific community. Candidate study taxa include species from Porifera, Ctenophora, Cnidaria, Placozoa, Mollusca, Arthropoda, Echinodermata, Annelida, Bryozoa, and Platyhelminthes, among others. GIGA will target 7000 noninsect/nonnematode species, with an emphasis on marine taxa because of the unrivaled phyletic diversity in the oceans. Priorities for selecting invertebrates for sequencing will include, but are not restricted to, their phylogenetic placement; relevance to organismal, ecological, and conservation research; and their importance to fisheries and human health. We highlight benefits of sequencing both whole genomes (DNA) and transcriptomes and also suggest policies for genomic-level data access and sharing based on transparency and inclusiveness. The GIGA Web site (http://giga.nova.edu) has been launched to facilitate this collaborative venture. PMID:24336862

  17. Spiral cleavage and early embryology of a loxosomatid entoproct and the usefulness of spiralian apical cross patterns for phylogenetic inferences

    PubMed Central

    2012-01-01

    Background Among the four major bilaterian clades, Deuterostomia, Acoelomorpha, Ecdysozoa, and Lophotrochozoa, the latter shows an astonishing diversity of bodyplans. While the largest lophotrochozoan assemblage, the Spiralia, which at least comprises Annelida, Mollusca, Entoprocta, Platyhelminthes, and Nemertea, show a spiral cleavage pattern, Ectoprocta, Brachiopoda and Phoronida (the Lophophorata) cleave radially. Despite a vast amount of recent molecular phylogenetic analyses, the interrelationships of lophotrochozoan phyla remain largely unresolved. Thereby, Entoprocta play a key role, because they have frequently been assigned to the Ectoprocta, despite their differently cleaving embryos. However, developmental data on entoprocts employing modern methods are virtually non-existent and the data available rely exclusively on sketch drawings, thus calling for thorough re-investigation. Results By applying fluorescence staining in combination with confocal microscopy and 3D-imaging techniques, we analyzed early embryonic development of a basal loxosomatid entoproct. We found that cleavage is asynchronous, equal, and spiral. An apical rosette, typical for most spiralian embryos, is formed. We also identified two cross-like cellular arrangements that bear similarities to both, a "molluscan-like" as well as an "annelid-like" cross, respectively. Conclusions A broad comparison of cleavage types and apical cross patterns across Lophotrochozoa shows high plasticity of these character sets and we therefore argue that these developmental traits should be treated and interpreted carefully when used for phylogenetic inferences. PMID:22458754

  18. Phylogeny and mitochondrial gene order variation in Lophotrochozoa in the light of new mitogenomic data from Nemertea

    PubMed Central

    Podsiadlowski, Lars; Braband, Anke; Struck, Torsten H; von Döhren, Jörn; Bartolomaeus, Thomas

    2009-01-01

    Background The new animal phylogeny established several taxa which were not identified by morphological analyses, most prominently the Ecdysozoa (arthropods, roundworms, priapulids and others) and Lophotrochozoa (molluscs, annelids, brachiopods and others). Lophotrochozoan interrelationships are under discussion, e.g. regarding the position of Nemertea (ribbon worms), which were discussed to be sister group to e.g. Mollusca, Brachiozoa or Platyhelminthes. Mitochondrial genomes contributed well with sequence data and gene order characters to the deep metazoan phylogeny debate. Results In this study we present the first complete mitochondrial genome record for a member of the Nemertea, Lineus viridis. Except two trnP and trnT, all genes are located on the same strand. While gene order is most similar to that of the brachiopod Terebratulina retusa, sequence based analyses of mitochondrial genes place nemerteans close to molluscs, phoronids and entoprocts without clear preference for one of these taxa as sister group. Conclusion Almost all recent analyses with large datasets show good support for a taxon comprising Annelida, Mollusca, Brachiopoda, Phoronida and Nemertea. But the relationships among these taxa vary between different studies. The analysis of gene order differences gives evidence for a multiple independent occurrence of a large inversion in the mitochondrial genome of Lophotrochozoa and a re-inversion of the same part in gastropods. We hypothesize that some regions of the genome have a higher chance for intramolecular recombination than others and gene order data have to be analysed carefully to detect convergent rearrangement events. PMID:19660126

  19. WormBase 2016: expanding to enable helminth genomic research

    PubMed Central

    Howe, Kevin L.; Bolt, Bruce J.; Cain, Scott; Chan, Juancarlos; Chen, Wen J.; Davis, Paul; Done, James; Down, Thomas; Gao, Sibyl; Grove, Christian; Harris, Todd W.; Kishore, Ranjana; Lee, Raymond; Lomax, Jane; Li, Yuling; Muller, Hans-Michael; Nakamura, Cecilia; Nuin, Paulo; Paulini, Michael; Raciti, Daniela; Schindelman, Gary; Stanley, Eleanor; Tuli, Mary Ann; Van Auken, Kimberly; Wang, Daniel; Wang, Xiaodong; Williams, Gary; Wright, Adam; Yook, Karen; Berriman, Matthew; Kersey, Paul; Schedl, Tim; Stein, Lincoln; Sternberg, Paul W.

    2016-01-01

    WormBase (www.wormbase.org) is a central repository for research data on the biology, genetics and genomics of Caenorhabditis elegans and other nematodes. The project has evolved from its original remit to collect and integrate all data for a single species, and now extends to numerous nematodes, ranging from evolutionary comparators of C. elegans to parasitic species that threaten plant, animal and human health. Research activity using C. elegans as a model system is as vibrant as ever, and we have created new tools for community curation in response to the ever-increasing volume and complexity of data. To better allow users to navigate their way through these data, we have made a number of improvements to our main website, including new tools for browsing genomic features and ontology annotations. Finally, we have developed a new portal for parasitic worm genomes. WormBase ParaSite (parasite.wormbase.org) contains all publicly available nematode and platyhelminth annotated genome sequences, and is designed specifically to support helminth genomic research. PMID:26578572

  20. The bilaterian roots of cordon-bleu

    PubMed Central

    2013-01-01

    Background The actin cytoskeleton is essential for many physiological processes of eukaryotic cells. The emergence of new actin fibers is initiated by actin nucleators. Whereas most of them are evolutionary old, the cordon-bleu actin nucleator is classified as vertebrate specific. Findings Using sensitive methods for sequence similarity detection, we identified homologs of cordon-bleu not only in non-vertebrate chordates but also in arthropods, molluscs, annelids and platyhelminthes. These genes contain only a single WH2 domain and therefore resemble more the vertebrate cordon-bleu related 1 protein than the three WH2 domain containing cordon-bleu. Furthermore, we identified a homolog of the N-terminal, ubiquitin like, cobl domain of cordon-bleu in the cnidarian Nematostella vectensis. Conclusion Our results suggest that the ur-form of the cordon-bleu protein family evolved already with the emergence of the bilateria by the combination of existing cobl and WH2 domains. Following a vertebrate specific gene-duplication, one copy gained two additional WH2 domains leading to the actin nucleating cordon-bleu. The function of the ur-form of the cordon-bleu protein family is so far unknown. The identification of a homolog in the model organism Drosophila melanogaster could facilitate its experimental characterization. PMID:24079804